[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010001442A1 - 照明制御装置 - Google Patents

照明制御装置 Download PDF

Info

Publication number
WO2010001442A1
WO2010001442A1 PCT/JP2008/001774 JP2008001774W WO2010001442A1 WO 2010001442 A1 WO2010001442 A1 WO 2010001442A1 JP 2008001774 W JP2008001774 W JP 2008001774W WO 2010001442 A1 WO2010001442 A1 WO 2010001442A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
lamp
adjustment
current
illumination
Prior art date
Application number
PCT/JP2008/001774
Other languages
English (en)
French (fr)
Inventor
志賀雅人
北原忠幸
神子諭
小島直人
福田志郎
Original Assignee
株式会社MERSTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社MERSTech filed Critical 株式会社MERSTech
Priority to CN2008801301070A priority Critical patent/CN102077690A/zh
Priority to JP2009548519A priority patent/JP4528886B2/ja
Priority to PCT/JP2008/001774 priority patent/WO2010001442A1/ja
Priority to US13/000,631 priority patent/US20110109239A1/en
Publication of WO2010001442A1 publication Critical patent/WO2010001442A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/041Controlling the light-intensity of the source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/06Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using impedances
    • H02M5/08Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using impedances using capacitors only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3927Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by pulse width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/72Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps in street lighting

Definitions

  • the present invention relates to a lighting control device.
  • Patent Document 1 discloses a full-bridge MERS.
  • MERS an element capable of forward control, such as a transistor having a power MOSFET or a diode connected in antiparallel, is used as an element having no reverse blocking capability.
  • the MERS is configured by connecting a bridge circuit composed of four semiconductor elements and a capacitor that absorbs and releases magnetic energy to the positive electrode and the negative electrode of the bridge circuit. And MERS can flow an electric current in either direction by controlling the gate phase of these four semiconductor elements.
  • MERS multi semiconductor elements located on a diagonal line among four semiconductor elements connected in a bridge form a pair, and the ON / OFF switching operation of the two pairs is performed in synchronization with the frequency of the power source. When one pair is on, the other pair is turned off. In addition, the capacitor repeatedly charges and discharges magnetic energy in accordance with the ON / OFF switching timing.
  • MERS controls the magnitude of the output voltage and the current phase of MERS by controlling the gate phase of two pairs of two semiconductor elements located on the diagonal line among the four semiconductor elements. It can be arbitrarily controlled, and thereby a desired power factor can be obtained.
  • Japanese Patent No. 3634982 Japanese Patent No. 3634982
  • the power factor of the power supply decreases because the phase of the current is delayed with respect to the phase of the power supply voltage due to the internal reactance.
  • the power factor is low, a part of the power supplied from the power transmission side is directly returned from the load side to the power transmission side. That is, a part of the electric power becomes reactive electric power that simply goes back and forth between the power transmission side and the load side through the transmission line.
  • power loss occurs when passing through the transmission line.
  • the voltage supplied to the load may be adjusted to advance the phase of the current flowing through the load.
  • the load is an illuminating lamp
  • the phase of the current cannot be simply adjusted for the purpose of improving the power factor of the power source.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique capable of improving the power factor of a power source to which a plurality of illuminating lamps are connected and performing dimming of the illuminating lamps. .
  • an aspect of the present invention is a lighting control device, and the lighting control device includes one or a plurality of lighting lamps having an inductive load or connected to the inductive load.
  • a first adjustment switch that is connected between the first system and the power supply and adjusts the magnitude of the voltage and the phase of the current output from the power supply to the first system illumination lamp, and the illumination lamp or inductive load having an inductive load
  • a second unit that is connected between a power source and a second system including one or a plurality of illuminating lamps connected to a load, and that adjusts the magnitude of the voltage and the phase of the current output from the power source to the second system illuminating lamp.
  • An adjustment switch a first adjustment unit that controls the first adjustment switch, a second adjustment unit that controls the second adjustment switch, and current phase adjustment and dimming for the first adjustment unit and the second adjustment unit
  • a power factor adjustment instruction unit for instructing The adjustment instructing unit advances the phase of the current flowing through the first system illumination lamp with respect to the phase of the power supply voltage, delays the phase of the current flowing through the second system illumination lamp with respect to the phase of the power supply voltage, And adjusting the voltage output to the first system illumination lamp and the second system illumination lamp to adjust the brightness of the first system illumination lamp and the second system illumination lamp.
  • the first adjustment unit and the second adjustment unit are instructed.
  • the present invention it is possible to improve the power factor of a power source to which a plurality of illumination lamps are connected, and to perform dimming of the illumination lamps.
  • FIGS. 2A and 2B are diagrams for explaining MERS switching control by the control unit.
  • FIGS. 3A and 3B are diagrams for explaining switching control of MERS by the control unit.
  • FIGS. 4A and 4B are diagrams for explaining MERS switching control by the control unit.
  • FIGS. 5A, 5 ⁇ / b> B, 5 ⁇ / b> C, and 5 ⁇ / b> D are diagrams for explaining operation results of the MERS embedded system.
  • FIG. It is a functional block diagram explaining schematic structure of a 1st adjustment part and a power factor adjustment instruction
  • MERS Magnetic energy regenerative switch
  • the illumination control apparatus is connected between a first system including one or a plurality of illumination lamps having an inductive load and an AC power supply, and is output from the AC power supply to the first system illumination lamp.
  • a first adjustment switch for adjusting the magnitude of the voltage and the phase of the current and a second system including one or a plurality of illuminating lamps having an inductive load and an AC power source, A second adjustment switch that adjusts the magnitude of the voltage output to the illuminating lamp and the phase of the current; a first adjustment unit that controls the first adjustment switch; a second adjustment unit that controls the second adjustment switch; A power factor adjustment instruction unit that instructs the adjustment unit and the second adjustment unit to adjust the current phase and to adjust the light.
  • the adjustment switch is, for example, a magnetic energy regenerative switch (MERS) (hereinafter referred to as MERS).
  • MERS magnetic energy regenerative switch
  • the power factor adjustment instruction unit advances the phase of the current flowing through the first system lighting lamp with respect to the phase of the power supply voltage, and delays the phase of the current flowing through the second system lighting lamp with respect to the phase of the power supply voltage.
  • the power factor of the AC power supply is adjusted, and the voltages output to the first system illumination lamp and the second system illumination lamp are adjusted to adjust the brightness of the first system illumination lamp and the second system illumination lamp.
  • MERS as an adjustment switch
  • a MERS embedded system in which MERS is connected in series between an AC voltage source and a dielectric load will be described as an example.
  • MERS can comprise an alternating current power supply device by incorporating it into an alternating voltage source, and can constitute a MERS built-in load by incorporating it into an inductive load.
  • FIG. 1 is a diagram showing a basic configuration of the MERS embedded system 10.
  • the MERS embedded system 10 includes an AC voltage source 20 and an inductive load 50 having inductance.
  • MERS 30 is inserted between AC voltage source 20 and inductive load 50.
  • the MERS embedded system 10 includes a control unit 40 that controls switching of the MERS 30.
  • the MERS 30 is a magnetic energy regenerative switch that can control currents in both forward and reverse directions and can regenerate magnetic energy to the load side without loss.
  • the MERS 30 includes a bridge circuit composed of four reverse conducting semiconductor switches SW1, SW2, SW3, and SW4, and an energy storage capacitor 32 that absorbs magnetic energy of a current flowing through the circuit when the bridge circuit is switched off. Prepare.
  • a reverse conducting semiconductor switch SW1 and a reverse conducting semiconductor switch SW4 are connected in series, a reverse conducting semiconductor switch SW2 and a reverse conducting semiconductor switch SW3 are connected in series, and they are connected in parallel. Is formed.
  • the capacitor 32 is at a connection point between the DC terminal DC (P) at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW3, and between the reverse conduction type semiconductor switch SW2 and the reverse conduction type semiconductor switch SW4. It is connected to a direct current terminal DC (N). Further, there is an alternating current between the AC terminal at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW4 and the AC terminal at the connection point between the reverse conduction type semiconductor switch SW2 and the reverse conduction type semiconductor switch SW3.
  • the voltage source 20 and the inductive load 50 are connected in series.
  • a first pair of reverse conducting semiconductor switches SW1 and SW2 located on the diagonal line disposed in the MERS 30 and a second pair of reverse conducting semiconductor switches SW3 and SW4 also located on the diagonal line are connected to the power source. It is turned ON / OFF alternately in synchronization with the frequency. That is, when one pair is ON, the other pair is OFF. For example, when an OFF gate is given to the first pair and an ON gate is given to the second pair, the current conducted in the forward direction is changed to the reverse conduction type semiconductor switch SW3-capacitor 32- The capacitor flows through the path of the reverse conducting semiconductor switch SW4, whereby the capacitor 32 is charged. That is, the magnetic energy of the circuit is stored in the capacitor 32.
  • the magnetic energy of the circuit at the time of current interruption is accumulated in the capacitor until the voltage of the capacitor 32 rises and the current becomes zero, and the current interruption is completed when the voltage of the capacitor 32 rises until the capacitor current becomes zero.
  • the ON gate is already given to the second pair, the charge of the capacitor 32 is discharged to the inductive load 50 through the reverse conducting semiconductor switches SW3 and SW4 which are turned on and accumulated in the capacitor 32. Magnetic energy is regenerated to the inductive load 50.
  • a pulse voltage is applied to the inductive load 50.
  • the magnitude of the voltage depends on the capacitance of the capacitor 32 and the reverse conduction type semiconductor switches SW1 to SW4 and the inductive load 50 are resistant to each other. It can be within the allowable voltage range. Further, unlike the conventional series power factor correction capacitor, a direct current capacitor can be used for MERS30.
  • the reverse conducting semiconductor switches SW1 to SW4 are made of power MOSFETs, for example, and have gates G1, G2, G3, and G4, respectively. Body diodes are connected in parallel to the channels of the reverse conducting semiconductor switches SW1 to SW4.
  • a diode may be added in reverse parallel to the reverse conducting semiconductor switches SW1 to SW4.
  • the reverse conducting semiconductor switches SW1 to SW4 for example, an element such as an IGBT or a transistor having a diode connected in antiparallel can be used.
  • the control unit 40 controls switching of the reverse conducting semiconductor switches SW1 to SW4 of the MERS 30. Specifically, a pair ON / OFF operation composed of reverse conducting semiconductor switches SW1, SW2 located on a diagonal line in the bridge circuit of MERS 30 and a pair ON / OFF operation composed of reverse conducting semiconductor switches SW3, SW4 are provided.
  • the control signal is transmitted to the gates G1 to G4 so that each of them is simultaneously performed every half cycle so that when one is ON, the other is OFF.
  • 2A, 2 ⁇ / b> B, 3 ⁇ / b> A, 3 ⁇ / b> B, 4 ⁇ / b> A, and 4 ⁇ / b> B are diagrams for explaining switching control of the MERS 30 by the control unit 40.
  • the control unit 40 turns on the reverse conducting semiconductor switches SW1 and SW2 in a state where the capacitor 32 has no charging voltage, as shown in FIG. 2A, the current is reverse conducting semiconductor switches SW3 and SW1. And a path passing through the reverse conduction type semiconductor switches SW2 and SW4, and enters a parallel conduction state.
  • the control unit 40 turns off the reverse conducting semiconductor switches SW1 and SW2 at a predetermined timing before the voltage of the AC voltage source 20 is inverted, for example, about 2 ms.
  • the current flows through a path passing through the reverse conducting semiconductor switch SW3-capacitor 32-reverse conducting semiconductor switch SW4.
  • the magnetic energy is absorbed (charged) in the capacitor 32.
  • the reverse conducting semiconductor switches SW3 and SW4 are turned on at the timing when the reverse conducting semiconductor switches SW1 and SW2 are turned off.
  • the current is cut off.
  • the reverse conducting semiconductor switches SW3 and SW4 are already ON, and the capacitor 32 has a charging voltage, so that the current is reverse conducting as shown in FIG. It flows through a path passing through the type semiconductor switch SW4-capacitor 32-reverse conducting type semiconductor switch SW3. Then, the magnetic energy accumulated in the capacitor 32 is released (discharged).
  • the control unit 40 turns off the reverse conducting semiconductor switches SW3 and SW4.
  • the current flows through a path passing through the reverse conducting semiconductor switch SW1-capacitor 32-reverse conducting semiconductor switch SW2.
  • the reverse conducting semiconductor switches SW1 and SW2 are turned on at the timing when the reverse conducting semiconductor switches SW3 and SW4 are turned off.
  • the current is cut off, and when the voltage of the AC voltage source 20 is inverted, the reverse conducting semiconductor switches SW1 and SW2 are already ON, and the capacitor 32 has a charging voltage. As shown in b), the current flows through a path through the reverse conducting semiconductor switch SW2-capacitor 32-reverse conducting semiconductor switch SW1. Then, the magnetic energy accumulated in the capacitor 32 is discharged. When the discharge from the capacitor 32 is completed, the parallel conduction state shown in FIG. Thus, the MERS 30 can flow a current in both directions by alternately bringing two pairs of opposing conductive semiconductor switches facing each other into a conductive state.
  • FIGS. 5A, 5 ⁇ / b> B, 5 ⁇ / b> C, and 5 ⁇ / b> D are diagrams for explaining operation results of the MERS embedded system 10.
  • 5A shows the waveforms of the power supply voltage and current when the MERS 30 is not incorporated
  • FIG. 5B shows the waveforms of the power supply voltage, current, and load voltage when the MERS 30 is incorporated.
  • FIG. 5C shows the waveform of the capacitor voltage and the current flowing through the reverse conducting semiconductor switch SW1
  • FIG. 5D shows the timing when the reverse conducting semiconductor switch SW1 is turned on.
  • the power factor of the AC voltage source 20 is smaller than 1.
  • the phase of the current can be advanced as shown in FIG.
  • the power factor can be 1.
  • the MERS 30 stores the magnetic energy of the inductive load 50 in the capacitor 32 by adjusting the gate phase of the two pairs on the diagonal line of the reverse conducting semiconductor switches SW1 to SW4, and advances the phase of the current.
  • the power factor of the AC voltage source 20 can be made 1.
  • the MERS 30 can not only advance the phase of the current but also can arbitrarily control the phase of the current, whereby the power factor can be arbitrarily adjusted.
  • the load voltage can be increased or decreased steplessly.
  • the capacitor voltage is 0 at the timing when the reverse conducting semiconductor switch SW1 is turned on, and the current flowing through the reverse conducting semiconductor switch SW1 is parallel. This is a current that flows through the diode of the reverse conducting semiconductor switch SW1 when conducting.
  • the capacitor voltage is 0 even when the reverse conducting semiconductor switch SW1 is turned off. That is, switching is performed at 0 voltage and 0 current, and therefore loss due to switching can be eliminated. Since the other three reverse conducting semiconductor switches SW2 to SW4 are switched in synchronization with the reverse conducting semiconductor switch SW1, the same result is obtained.
  • the charging / discharging cycle of the capacitor 32 is a half cycle of the resonance cycle of the inductive load 50 and the capacitor 32.
  • the MERS 30 always has zero voltage 0. Current switching, that is, soft switching is possible.
  • the capacitor 32 used in the MERS 30 is only for storing the magnetic energy of the inductance in the circuit. For this reason, the capacitor capacity can be significantly reduced as compared with the voltage source capacitor of the conventional voltage type inverter.
  • the capacitor capacity is selected so that the resonance period with the load is shorter than the switching frequency.
  • each MERS 30 can be given a unique ID number, and this can be used to control each MERS 30 by receiving an external control signal.
  • the MERS 30 can be wirelessly controlled by sending a control signal wirelessly using a communication line such as the Internet.
  • the MERS 30 has a configuration including a bridge circuit formed by four reverse conducting semiconductor switches SW1 to SW4 and a capacitor 32 connected between the DC terminals of the bridge circuit. May have the following configuration.
  • FIG. 6 and 7 are diagrams showing another aspect of the MERS 30.
  • FIG. The MERS 30 shown in FIG. 6 has two reverse-conducting semiconductor switches, two diodes and two full-conducting MERS 30 composed of the four reverse-conducting semiconductor switches SW1 to SW4 and one capacitor 32 described above. It is a vertical half-bridge type composed of two capacitors.
  • the vertical half-bridge structure MERS 30 is provided in parallel with two reverse conducting semiconductor switches SW5 and SW6 connected in series, and the two reverse conducting semiconductor switches SW5 and SW6. It includes two capacitors 33 and 34 connected in series, and two diodes D1 and D2 connected in parallel with the two capacitors 33 and 34, respectively.
  • the MERS 30 shown in FIG. 7 is a horizontal half-bridge type.
  • the horizontal half-bridge MERS is composed of two reverse conducting semiconductor switches and two capacitors. More specifically, the horizontal half-bridge structure MERS 30 includes a reverse conducting semiconductor switch SW7 and a capacitor 35 provided in series on the first path, and a second path parallel to the first path. Includes a reverse conducting semiconductor switch SW8 and a capacitor 36, and wirings connected in parallel to the first and second paths.
  • FIG. 8 is a schematic diagram illustrating a configuration of the illumination control apparatus according to the first embodiment.
  • the illumination control apparatus 100 of the present embodiment includes a first MERS 30a between the illumination lamps 60a to 60c and the AC voltage source 20, and between the illumination lamps 60d to 60f and the AC voltage source 20.
  • the second MERS 30b is provided.
  • the illuminating lamp 60 is an illuminating lamp having an inductive load or an illuminating lamp connected to the inductive load.
  • Examples of the illumination lamp having an inductive load include a discharge lamp.
  • the discharge lamp is, for example, a fluorescent lamp, a mercury lamp, a sodium lamp, or a neon lamp.
  • examples of the illuminating lamp connected to the inductive load include an incandescent lamp that does not have an inductive load, and a lamp connected to a light source such as an LED.
  • the illumination lamp 60 a discharge lamp is used as the illumination lamp 60 will be described as an example.
  • the number of the illumination lamps 60 is not specifically limited, The at least 1 illumination lamp 60 should just be connected with respect to each of 1st MERS30a and 2nd MERS30b.
  • the illumination control device 100 includes a first adjustment unit 70a for controlling the gate phase angle of the first MERS 30a to adjust the magnitude of the output voltage and the current phase of the first MERS 30a. Moreover, the illumination control apparatus 100 is provided with the 2nd adjustment part 70b for controlling the gate phase angle of 2nd MERS30b, and adjusting the magnitude
  • a second phase detector 90b for detecting the phase of the current flowing through the illuminating lamps 60d to 60f.
  • the first phase detector 90 a and the second phase detector 90 b detect the phase of the current with respect to the phase of the voltage of the AC voltage source 20.
  • the illumination control device 100 includes a first illuminance sensor 110a that detects the illuminance of the irradiation range of the illumination lamps 60a to 60c as first brightness detection means for detecting the brightness of the illumination lamps 60a to 60c.
  • the illumination control apparatus 100 includes a second illuminance sensor 110b that detects the illuminance in the irradiation range of the illumination lamps 60d to 60f as the second brightness detection means for detecting the brightness of the illumination lamps 60d to 60f.
  • the number of the first illuminance sensors 110a and the second illuminance sensors 110b is not particularly limited, and there may be one or more for each system.
  • the first system including the illumination lamps 60a to 60c and the second system including the illumination lamps 60d to 60f are connected in parallel to the AC voltage source 20 that is the same AC power source. Yes.
  • FIG. 9 is a functional block diagram illustrating a schematic configuration of the first adjustment unit 70a, the second adjustment unit 70b, and the power factor adjustment instruction unit 80.
  • the first adjustment unit 70a transmits a control signal to the gates G1 to G4 of the reverse conducting semiconductor switches SW1 to SW4, adjusts the magnitude of the output voltage of the first MERS 30a, and simultaneously controls the current.
  • the 1st control part 40a which adjusts a phase is provided.
  • the first adjustment unit 70a includes a first instruction acquisition unit 72a that receives an instruction signal from an instruction unit 86 (to be described later) of the power factor adjustment instruction unit 80 and transmits the instruction signal to the first control unit 40a.
  • the second adjustment unit 70b transmits a control signal to the gates G1 to G4 of the reverse conducting semiconductor switches SW1 to SW4 to adjust the magnitude of the output voltage of the second MERS 30b and simultaneously adjust the phase of the current. 2 control part 40b is provided.
  • the second adjustment unit 70b includes a second instruction acquisition unit 72b that receives an instruction signal from an instruction unit 86 (to be described later) of the power factor adjustment instruction unit 80 and transmits the instruction signal to the second control unit 40b.
  • the power factor adjustment instruction unit 80 acquires the phase information of the current from the first phase detection unit 90a, acquires the phase information of the current from the second phase detection unit 90b, and the current flowing through the illumination lamp 60 of each system
  • a phase comparison unit 82 that compares phases and transmits the comparison result to the instruction unit 86 is provided. Further, the power factor adjustment instruction unit 80 acquires the detection result of the first illuminance sensor 110a and the detection result of the second illuminance sensor 110b, monitors the luminance of the illumination light 60 of each system, and displays the monitoring result as the instruction unit 86.
  • a luminance monitoring unit 84 is provided.
  • the luminance monitoring unit 84 holds a luminance / illuminance correspondence table in which the luminance of the illumination lamp 60 is associated with the illuminance of the light irradiation region.
  • the luminance monitoring unit 84 includes a parameter holding unit (not shown) and holds a predetermined luminance value of the illuminating lamp.
  • the “required luminance value” is a value having a predetermined width including a lower limit value and an upper limit value of luminance required in the area where the illumination lamp 60 is installed, and the illumination lamp 60 is installed. This value is appropriately set according to the location, and this value can be obtained experimentally. By providing an upper limit for the required luminance value, excessive increase in the luminance of the illuminating lamp 60 can be prevented, and wasteful power consumption can be reduced.
  • the power factor adjustment instruction unit 80 adjusts the current phase to the first adjustment unit 70a and the second adjustment unit 70b based on the information received from the phase comparison unit 82 or based on the information received from the luminance monitoring unit 84.
  • an instruction unit 86 for instructing dimming is included in the power factor adjustment instruction unit 80.
  • the power factor adjustment instructing unit 80 sets the phase of the current flowing through the first system as a leading phase with respect to the phase of the power supply voltage, and the luminance of the illumination lamps 60a to 60c included in the first system is the required luminance.
  • the first adjustment unit 70a is instructed to adjust the first MERS 30a so as to satisfy the value.
  • the power factor adjustment instruction unit 80 acquires the phase information of the current flowing through the illumination lamps 60a to 60c from the first phase detection unit 90a, and sets the power factor of the AC voltage source 20 to 1 or close to 1.
  • the second adjustment unit 70b is instructed to set the phase of the current flowing through the second system to a phase lag with respect to the phase of the power supply voltage.
  • the power factor adjustment instruction unit 80 receives the illuminance value of the irradiation range of the illumination lights 60d to 60f of the second system from the second illuminance sensor 110b, refers to the luminance illuminance correspondence table, and illuminates the illuminance value.
  • the luminance values of the lamps 60d to 60f are converted.
  • the power factor adjustment instruction unit 80 increases the luminance of the illumination lamps 60d to 60f to obtain the necessary luminance value. 2
  • the controller 70b is instructed.
  • the second adjustment unit 70b increases the magnitude of the output voltage of the second MERS 30b so that the luminance of the illumination lamps 60d to 60f increases. Changes in the forward direction. Therefore, the power factor of the AC voltage source 20 is lowered.
  • the power factor adjustment instruction unit 80 acquires the phase information of the current flowing through the illuminating lamps 60d to 60f from the second phase detection unit 90b, and sets the power factor of the AC voltage source 20 to 1 or so that the power factor of the AC voltage source 20 becomes 1. Adjust the phase of the current flowing through the grid in the delay direction. When the luminance values of the illuminating lamps 60a to 60f are larger than the upper limit of the required luminance value, the luminance of the illuminating lamps 60d to 60f is lowered, and thereby the phase of the current of the second system changes in the delay direction. The current phase is adjusted in the advance direction. In this way, the lighting control device 100 can improve the power factor of the AC voltage source 20, preferably close to 1, and more preferably 1. At the same time, the illumination control apparatus 100 can adjust the luminance of the first system illumination lamps 60a to 60c and the second system illumination lamps 60d to 60f to the required luminance value.
  • the first and second luminance detection means may be a voltmeter that detects a voltage output to the illumination lamp 60, for example.
  • a required voltage value corresponding to the required luminance value is held in the parameter holding unit, and the voltages output to the first system and the second system are detected by the first voltmeter and the second voltmeter, respectively.
  • the brightness of the illuminating lamp 60 may be adjusted in the range of the upper limit voltage value and the lower limit voltage value.
  • the illumination control device 100 performs the following control periodically, for example, in the lighting state of each illumination lamp 60. That is, the power factor adjustment instruction unit 80 acquires phase information of the current flowing through the illumination lamps 60a to 60c from the first phase detection unit 90a. Similarly, phase information of the current flowing through the illumination lamps 60d to 60f is acquired from the second phase detector 90b. Then, the phase comparison unit 82 compares the phases of the currents flowing through the illumination lamps 60a to 60c and the illumination lamps 60d to 60f, and transmits the comparison result to the instruction unit 86.
  • the instruction unit 86 instructs the first adjustment unit 70a to advance the phase of the current flowing through the first system lamps 60a to 60c with respect to the phase of the power supply voltage, for example.
  • the instruction unit 86 instructs the second adjustment unit 70b to delay the phase of the current flowing through the second system illumination lamps 60d to 60f with respect to the phase of the power supply voltage.
  • the amount of advance of the phase of the current flowing through the first system connected to the AC voltage source 20 and the amount of delay of the phase of the current flowing through the second system connected to the same AC voltage source 20 are made equal. Thereby, the power factor in the alternating voltage source 20 can be improved, preferably close to 1, and more preferably 1.
  • the power factor adjustment instruction unit 80 determines the power of the AC voltage source 20 when the luminance of the illumination lights 60a to 60f derived from the detection results of the first illuminance sensor 110a and the second illuminance sensor 110b exceeds a predetermined value.
  • the rate may not be in the vicinity of 1, and adjustment may be performed so that the luminance of the illumination lamp 60 is a predetermined value or less.
  • the power factor of the AC voltage source 20 can be improved by setting the phase of the current of the first system and the phase of the current of the second system in opposite phases.
  • the illumination lamp 60 has its electrodes deteriorated due to aging, etc., and it becomes difficult for current to flow, resulting in a decrease in luminance. Therefore, the luminance monitor 84 of the power factor adjustment instruction unit 80 receives the illuminance value of the irradiation range of the first system illumination lamps 60a to 60c from the first illuminance sensor 110a, and the second system illumination lamps 60d to 60f. Is received from the second illuminance sensor 110b. Then, the luminance values of the respective illumination lamps 60a to 60f are derived from the respective illuminance values, and are compared with the necessary luminance values of the illumination lamps held in the parameter holding unit.
  • the luminance monitoring unit 84 transmits a signal to the instruction unit 86 so as to instruct the second adjustment unit 70b to increase the luminance.
  • the instruction unit 86 receives an instruction from the luminance monitoring unit 84, the instruction unit 86 transmits an instruction to the second adjustment unit 70b to increase the luminance of the illumination lamps 60d to 60f.
  • the second adjustment unit 70b controls the gate phase angle of the second MERS 30b to increase the luminance of the illumination lamps 60d to 60f, and increases the magnitude of the output voltage of the second MERS 30b. .
  • luminance of each illumination lamp 60 increases.
  • the power factor adjustment instruction unit 80 compares the phase of the currents of the first system and the second system in the phase comparison unit 82, and adjusts the current of the first system according to the amount of change in the phase of the current of the second system.
  • the first adjustment unit 70a is instructed to change the phase.
  • the lighting control device 100 may have the following configuration. That is, a unique address is set so that the first MERS 30a and the second MERS 30b can be individually accessed. Then, the power factor adjustment instruction unit 80 instructs the first adjustment unit 70a and the second adjustment unit 70b to adjust the current phase and perform dimming by wired or wireless communication via a network such as the Internet or a local area network (LAN). It is the structure to do.
  • a unique address is set so that the first MERS 30a and the second MERS 30b can be individually accessed.
  • the power factor adjustment instruction unit 80 instructs the first adjustment unit 70a and the second adjustment unit 70b to adjust the current phase and perform dimming by wired or wireless communication via a network such as the Internet or a local area network (LAN). It is the structure to do.
  • the AC voltage source 20 includes a first system including the illumination lamps 60a to 60c and a second system including the illumination lamps 60d to 60f. Is connected.
  • the first MERS 30a and the second MERS 30b are connected to each system, and the power factor adjustment instruction unit 80 advances the phase of the current flowing through the first system with respect to the phase of the power supply voltage, for example, the current of the second system Control is made so that the phase is delayed by the same amount as the advance amount of the phase of the current of the first system.
  • the power factor in the AC voltage source 20 to which the first system and the second system are connected can be adjusted.
  • the power factor in the AC voltage source 20 is improved and transmission loss is reduced. it can.
  • the lighting lamp 60 is dimmed while improving the power factor of the AC voltage source 20 by adjusting the phase of the current of each system within a range where the luminance of each lighting lamp 60 satisfies the required luminance. Can do.
  • the phase advance capacitor is large in size and expensive.
  • the MERS 30 is simply incorporated between the illumination lamp 60 and the AC voltage source 20. And since the structure of MERS30 is simple, a size is small, and a price is cheap, while being able to provide the illumination control apparatus 100 easily, the introduction cost can be suppressed very low.
  • the lighting control device 100 of the present embodiment can be applied in units of a distribution system, a power receiving panel, and a distribution panel, and is one system of a plurality of illumination lamps 60 connected to the same distribution system, the receiving panel, or the distribution panel.
  • the power factor can be made close to 1 or near 1 in the distribution system, the receiving panel, or the distribution panel.
  • the illumination control device 100 can be applied to existing illumination lights such as an expressway, an automobile exclusive road, or a general road.
  • the present invention is not limited to the above-described embodiment, and various modifications such as design changes can be added based on the knowledge of those skilled in the art.
  • the embodiment to which such a modification is added is also the present embodiment. It can be included in the scope of the invention.
  • the first MERS 30a and the second MERS 30b are provided in the first system and the second system, respectively, but the MERS 30 may be provided only in the first system, for example.
  • the phase of the current flowing through the second system is delayed due to the electrical reactance component in the illuminating lamp 60, the phase of the current flowing through the first system is advanced by an amount corresponding to this delay amount.
  • the power factor in the AC voltage source 20 can be improved, preferably close to 1, and more preferably 1.
  • the first system and the second system are connected to the AC voltage source 20, but the number of systems is not particularly limited, and a larger number of systems are connected to the AC voltage source 20. May be. In that case, the phases of the currents of the plurality of systems are adjusted to control the power factor of the AC voltage source 20 to be improved.
  • the present invention can be used for lighting equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Inverter Devices (AREA)

Abstract

 照明制御装置100は、照明灯60a~60cを含む第1系統に出力される電圧の大きさと電流の位相を調整する第1MERS30aと、照明灯60d~60fを含む第2系統に出力される電圧の大きさと電流の位相を調整する第2MERS30bと、第1MERS30aおよび第2MERS30bを制御する第1調整部70aおよび第2調整部70bと、電流位相の調整および調光を指示する力率調整指示部80とを備える。力率調整指示部80は、照明灯60a~60cに流れる電流の位相を電源電圧の位相に対して進ませ、照明灯60d~60fに流れる電流の位相を電源電圧の位相に対して遅らせて、交流電圧源20の力率を調整するとともに、照明灯60a~60fに出力される電圧を調整して照明灯60a~60fの輝度を調整する。

Description

照明制御装置
 本発明は、照明制御装置に関するものである。
 逆阻止能力を持たない、逆導通型の4つの素子を用いて順逆両方向の電流をゲート制御のみでON/OFF可能であり、かつ電流を遮断した際の電流の持つ磁気エネルギーをコンデンサに蓄積し、ONゲートが与えられた素子を通して負荷側に放出することで磁気エネルギーをロスなく回生できるスイッチが提案されている(特許文献1参照)。このスイッチは、電流順逆両方向制御が可能なロスの少ない磁気エネルギー回生スイッチであり、MERS(Magnetic Energy Recovery Switch:磁気エネルギー回生スイッチ)と呼ばれている。特許文献1では、フルブリッジ型のMERSを開示している。
 MERSには、逆阻止能力を持たない素子として、たとえばパワーMOSFETやダイオードを逆並列接続したトランジスタなどの順方向制御が可能な素子が用いられている。MERSは、この半導体素子4つで構成されるブリッジ回路と、ブリッジ回路の正極、負極に磁気エネルギーを吸収、放出するコンデンサを接続して構成される。そして、MERSは、これら4つの半導体素子のゲート位相を制御することで、電流をどちらの方向にも流すことが可能となっている。
 また、MERSは、ブリッジ接続された4つの半導体素子のうち、対角線上に位置する2つの半導体素子がペアとなり、2つのペアのON/OFFの切換動作を電源の周波数に同期して行い、一方のペアがONの時は他方のペアがOFFとなるように動作する。また、このON/OFFの切換タイミングに合わせて、コンデンサは磁気エネルギーの充放電を繰り返す。
 そして、一方のペアにOFFゲートが与えられ、他方のペアにONゲートが与えられると、順方向に導通していた電流は他方のペアの第1のダイオード-コンデンサ-他方のペアの第2のダイオードという経路で流れ、これによりコンデンサを充電する。すなわち、回路の磁気エネルギーがコンデンサに蓄積される。電流遮断時の回路の磁気エネルギーは、コンデンサの電圧が上昇して電流がゼロになるまでコンデンサに蓄積される。コンデンサ電流がゼロになるまでコンデンサの電圧が上昇すると、電流の遮断が完了する。この時点で他方のペアには既にONゲートが与えられているため、ONしている半導体素子を通してコンデンサの電荷が負荷側に放電され、コンデンサに蓄積された磁気エネルギーが負荷側に回生される。
 このように、MERSは、4つの半導体素子のうち対角線上に位置する2つの半導体素子からなるペア2つのON/OFFのゲート位相を制御することで、MERSの出力電圧の大きさと電流の位相を任意に制御することが可能であり、これにより所望の力率を得ることができる。
特許第3634982号公報
 ところで、電源に接続された負荷が誘導性負荷の場合、内部のリアクタンスによって電流の位相が電源電圧の位相に対して遅れるため、電源の力率は低下する。力率が低いと、送電側から供給された電力の一部は、そのまま負荷側から送電側に戻されることとなる。すなわち、一部の電力は送電側と負荷側との間を送電線を通して単に行き来するに過ぎない無効電力となってしまう。そして、通常、送電線を通して電力を供給した場合、送電線通る際に電力損失が生じる。
 近年、大気汚染や地球温暖化などの環境問題が特に深刻化してきており、環境問題への取り組みとして、消費エネルギー量の低減(省エネ)が盛んに図られるようになってきている。無駄な電力消費は地球温暖化や大気汚染の一因となるため、環境問題の解決を図る一策として、電力損失の低減が求められる。
 これに対し、電源の力率を改善すれば、同じ電力量を送電する際の無効電力量が低減するため、送電線に流れる電流が少なくなり、そのため送電損失が低減する。電源の力率を改善するためには、負荷に供給する電圧を調整して負荷に流れる電流の位相を進めてやればよい。しかしながら、負荷が照明灯である場合には、照明灯が必要輝度を維持できるように電力を供給する必要があり、また電源の力率の調整による供給電圧の上昇によってかえって無駄な電力消費が増大するおそれがある。そのため、負荷が照明灯の場合には、電源の力率改善を目的として、単純に電流の位相を調整することができない。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、複数の照明灯が接続された電源の力率を改善するとともに、照明灯の調光を行うことができる技術の提供にある。
 上記課題を解決するために、本発明のある態様は照明制御装置であり、この照明制御装置は、誘導性負荷を有する照明灯または誘導性負荷に接続された照明灯を、一つまたは複数含む第1系統と電源との間に接続され、電源から第1系統の照明灯に出力される電圧の大きさと電流の位相を調整する第1調整スイッチと、誘導性負荷を有する照明灯または誘導性負荷に接続された照明灯を、一つまたは複数含む第2系統と電源との間に接続され、電源から第2系統の照明灯に出力される電圧の大きさと電流の位相を調整する第2調整スイッチと、第1調整スイッチを制御する第1調整部と、第2調整スイッチを制御する第2調整部と、第1調整部および第2調整部に対して電流位相の調整および調光を指示する力率調整指示部と、を備え、力率調整指示部は、第1系統の照明灯に流れる電流の位相を電源電圧の位相に対して進ませ、第2系統の照明灯に流れる電流の位相を電源電圧の位相に対して遅らせて、電源の力率を調整するとともに、第1系統の照明灯および第2系統の照明灯に出力される電圧を調整して第1系統の照明灯および第2系統の照明灯の輝度を調整するように、第1調整部と第2調整部に指示することを特徴とする。
 本発明によれば、複数の照明灯が接続された電源の力率を改善するとともに、照明灯の調光を行うことができる。
MERS組み込みシステムの基本構成を示す図である。 図2(a)、(b)は、制御部によるMERSのスイッチング制御を説明するための図である。 図3(a)、(b)は、制御部によるMERSのスイッチング制御を説明するための図である。 図4(a)、(b)は、制御部によるMERSのスイッチング制御を説明するための図である。 図5(a)、(b)、(c)、(d)は、MERS組み込みシステムの動作結果を説明するための図である。 MERSの他の態様を示す図である。 MERSの他の態様を示す図である。 実施形態1に係る照明制御装置の構成を示す概略図である。 第1調整部および力率調整指示部の概略構成を説明する機能ブロック図である。
符号の説明
 SW1、SW2、SW3、SW4、SW5、SW6、SW7、SW8 逆導通型半導体スイッチ、 D1、D2 ダイオード、 10 MERS組み込みシステム、 20 交流電圧源、 30 磁気エネルギー回生スイッチ(MERS)、 30a 第1MERS、 30b 第2MERS、 32、33、34、35、36 コンデンサ、 40 制御部、 40a 第1制御部、 40b 第2制御部、50 誘導性負荷、 60、60a~60f 照明灯、 70a 第1調整部、 70b 第2調整部、 72a 第1指示取得部、 72b 第2指示取得部、 80 力率調整指示部、 82 位相比較部、 84 輝度監視部、 86 指示部、 90a 第1位相検出部、 90b 第2位相検出部、 100 照明制御装置、 110a 第1照度センサ、 110b 第2照度センサ。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
(実施形態1)
 本実施形態に係る照明制御装置は、誘導性負荷を有する一つあるいは複数の照明灯を含む第1系統と交流電源との間に接続され、交流電源から第1系統の照明灯に出力される電圧の大きさと電流の位相を調整する第1調整スイッチと、誘導性負荷を有する一つあるいは複数の照明灯を含む第2系統と交流電源との間に接続され、交流電源から第2系統の照明灯に出力される電圧の大きさと電流の位相を調整する第2調整スイッチと、第1調整スイッチを制御する第1調整部と、第2調整スイッチを制御する第2調整部と、第1調整部および第2調整部に対して電流位相の調整および調光を指示する力率調整指示部と、を備える。調整スイッチは、たとえば磁気エネルギー回生スイッチ(Magnetic Energy Recovery Switch:MERS)(以下、MERSと称する)である。
 力率調整指示部は、第1系統の照明灯に流れる電流の位相を電源電圧の位相に対して進ませ、第2系統の照明灯に流れる電流の位相を電源電圧の位相に対して遅らせて、交流電源の力率を調整するとともに、第1系統の照明灯および第2系統の照明灯に出力される電圧を調整して第1系統の照明灯および第2系統の照明灯の輝度を調整するように、第1調整部と第2調整部に指示する
 まず、調整スイッチとしてのMERSの構成および動作を説明する。本実施形態では、MERSを交流電圧源と誘電性負荷との間に直列に接続したMERS組み込みシステムを例に説明する。なお、MERSは交流電圧源に組み込むことで交流電源装置を構成することができ、また誘導性負荷に組み込むことでMERS組み込み負荷を構成することができる。
 図1は、MERS組み込みシステム10の基本構成を示す図である。
 図1において、MERS組み込みシステム10は、交流電圧源20と、インダクタンスのある誘導性負荷50を備える。交流電圧源20と誘導性負荷50との間には、MERS30が挿入されている。また、MERS組み込みシステム10は、MERS30のスイッチングを制御する制御部40を備える。
 MERS30は、順逆両方向の電流を制御可能であり、磁気エネルギーをロスなく負荷側に回生できる磁気エネルギー回生スイッチである。MERS30は、4つの逆導通型半導体スイッチSW1、SW2、SW3、SW4にて構成されるブリッジ回路と、ブリッジ回路のスイッチ遮断時に回路に流れる電流の磁気エネルギーを吸収するエネルギー蓄積用のコンデンサ32とを備える。
 ブリッジ回路は、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW4とが直列に接続され、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW3とが直列に接続され、それらが並列に接続されて形成されている。
 コンデンサ32は、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW3との接続点にある直流端子DC(P)と、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW4との接続点にある直流端子DC(N)とに接続されている。また、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW4との接続点にある交流端子と、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW3との接続点にある交流端子とには交流電圧源20と誘導性負荷50とが直列接続されている。
 MERS30に配設された対角線上に位置する逆導通型半導体スイッチSW1、SW2からなる第1のペアと、同じく対角線上に位置する逆導通型半導体スイッチSW3、SW4からなる第2のペアが、電源周波数に同期して交互にON/OFFされる。すなわち、片方のペアがONのとき他方のペアはOFFとなる。そして、たとえば第1のペアにOFFゲートが与えられ、第2のペアにONゲートが与えられると、順方向に導通していた電流が第2のペアの逆導通型半導体スイッチSW3-コンデンサ32-逆導通型半導体スイッチSW4という経路で流れ、これによりコンデンサ32が充電される。すなわち、回路の磁気エネルギーがコンデンサ32に蓄積される。
 電流遮断時の回路の磁気エネルギーは、コンデンサ32の電圧が上昇して電流がゼロになるまでコンデンサに蓄積され、コンデンサ電流がゼロになるまでコンデンサ32の電圧が上昇すると、電流の遮断が完了する。この時点で第2のペアには既にONゲートが与えられているため、ONしている逆導通型半導体スイッチSW3、SW4を通してコンデンサ32の電荷が誘導性負荷50に放電され、コンデンサ32に蓄積された磁気エネルギーが誘導性負荷50に回生される。
 電流のON/OFF時、誘導性負荷50にはパルス電圧が印加されるが、電圧の大きさはコンデンサ32の静電容量に応じて逆導通型半導体スイッチSW1~SW4と誘導性負荷50の耐電圧許容範囲内とすることができる。また、MERS30には、従来の直列力率改善コンデンサと異なり、直流のコンデンサを用いることができる。逆導通型半導体スイッチSW1~SW4は、たとえばパワーMOSFETからなり、それぞれゲートG1、G2、G3、G4を有する。逆導通型半導体スイッチSW1~SW4のチャネルには、それぞれボディダイオードが並列接続されている。
 MERS30には、ボディダイオードに加えて、逆導通型半導体スイッチSW1~SW4と逆並列にダイオードを加えてもよい。なお、逆導通型半導体スイッチSW1~SW4としては、たとえばIGBTやダイオードを逆並列接続したトランジスタなどの素子を用いることもできる。
 制御部40は、MERS30の逆導通型半導体スイッチSW1~SW4のスイッチングを制御する。具体的には、MERS30のブリッジ回路における対角線上に位置する逆導通型半導体スイッチSW1、SW2からなるペアのON/OFF動作と、逆導通型半導体スイッチSW3、SW4からなるペアのON/OFF動作とを、一方がONのとき他方がOFFとなるように、半サイクル毎にそれぞれ同時に行うようゲートG1~G4に制御信号を送信する。
 続いて、制御部40によるMERS30のスイッチング制御について詳細に説明する。図2(a)、(b)、図3(a)、(b)、図4(a)、(b)は、制御部40によるMERS30のスイッチング制御を説明するための図である。
 まず、コンデンサ32に充電電圧がない状態で、制御部40が逆導通型半導体スイッチSW1、SW2をONにした場合、図2(a)に示すように、電流は逆導通型半導体スイッチSW3、SW1を通る経路と、逆導通型半導体スイッチSW2、SW4を通る経路を流れ、並列導通状態となる。
 次に、交流電圧源20の電圧が反転する前の所定のタイミング、たとえば約2ms前に、制御部40は逆導通型半導体スイッチSW1、SW2をOFFにする。これにより、図2(b)に示すように、電流は逆導通型半導体スイッチSW3-コンデンサ32-逆導通型半導体スイッチSW4を通る経路を流れる。その結果、コンデンサ32に磁気エネルギーが吸収(充電)される。本実施形態では、逆導通型半導体スイッチSW1、SW2をOFFにするタイミングで、逆導通型半導体スイッチSW3、SW4をONにしている。
 コンデンサ32の充電が完了すると、すなわちコンデンサ32の電圧が所定値以上となると、電流は遮断される。そして、交流電圧源20の電圧が反転すると、逆導通型半導体スイッチSW3、SW4は既にONであり、またコンデンサ32に充電電圧があるため、図3(a)に示すように、電流は逆導通型半導体スイッチSW4-コンデンサ32-逆導通型半導体スイッチSW3を通る経路を流れる。そして、コンデンサ32に蓄積した磁気エネルギーが放出(放電)される。
 次に、コンデンサ32からの放電が終了すると、図3(b)に示すように、電流は逆導通型半導体スイッチSW1、SW3を通る経路と、逆導通型半導体スイッチSW4、SW2を通る経路を流れ、並列導通状態となる。
 次に、交流電圧源20の電圧が反転する前の所定のタイミングで、制御部40は逆導通型半導体スイッチSW3、SW4をOFFにする。これにより、図4(a)に示すように、電流は逆導通型半導体スイッチSW1-コンデンサ32-逆導通型半導体スイッチSW2を通る経路を流れる。その結果、コンデンサ32に磁気エネルギーが吸収される。本実施形態では、逆導通型半導体スイッチSW3、SW4をOFFにするタイミングで、逆導通型半導体スイッチSW1、SW2をONにしている。
 コンデンサ32の充電が完了すると電流は遮断され、そして交流電圧源20の電圧が反転すると、逆導通型半導体スイッチSW1、SW2は既にONであり、またコンデンサ32に充電電圧があるため、図4(b)に示すように、電流は逆導通型半導体スイッチSW2-コンデンサ32-逆導通型半導体スイッチSW1を通る経路を流れる。そして、コンデンサ32に蓄積した磁気エネルギーが放電される。コンデンサ32からの放電が終了すると、図2(a)に示す並列導通状態となり、以後これを繰り返す。このように、MERS30は対向するペア2組の逆導通型半導体スイッチを交互に導通状態にすることにより、双方向に電流を流すことができる。
 このようなMERS30のスイッチング制御により、次のような効果が得られる。図5(a)、(b)、(c)、(d)は、MERS組み込みシステム10の動作結果を説明するための図である。図5(a)は、MERS30が組み込まれていない場合の電源電圧と電流の波形を示し、図5(b)は、MERS30が組み込まれた場合の電源電圧、電流、負荷電圧の波形を示している。また、図5(c)はコンデンサ電圧と逆導通型半導体スイッチSW1を流れる電流の波形を示し、図5(d)は逆導通型半導体スイッチSW1がONになるタイミングを示している。
 図5(a)に示すように、MERS30が組み込まれていない場合、誘導性負荷50の影響により、電流の位相が電源電圧の位相よりも遅れている。そのため交流電圧源20の力率は1より小さい。一方、交流電圧源20と誘導性負荷50との間にMERS30を直列に挿入した場合には、図5(b)に示すように電流の位相を進ませることができるため、交流電圧源20の力率を1とすることが可能である。
 すなわち、MERS30は、逆導通型半導体スイッチSW1~SW4の対角線上のペア2組のゲート位相を調整することで、誘導性負荷50の磁気エネルギーをコンデンサ32に蓄えて、電流の位相を進ませ、これにより交流電圧源20の力率を1にすることが可能である。また、MERS30は、電流の位相を進ませるだけでなく、電流の位相を任意に制御することが可能であり、これにより任意に力率を調整することができる。さらに、誘導性負荷50の磁気エネルギーをコンデンサ32に貯え、蓄えた磁気エネルギーを誘導性負荷50に回生することにより、負荷電圧を無段階に増減させることが可能である。
 また、図5(c)および図5(d)に示すように、逆導通型半導体スイッチSW1がONになるタイミングでは、コンデンサ電圧は0であり、逆導通型半導体スイッチSW1を流れる電流は、並列導通時に逆導通型半導体スイッチSW1のダイオードを流れる電流である。逆導通型半導体スイッチSW1がOFFになるタイミングにおいてもコンデンサ電圧は0である。すなわち、0電圧、0電流でスイッチングされており、そのためスイッチングによる損失を無くすことができる。他の3つの逆導通型半導体スイッチSW2~SW4については、逆導通型半導体スイッチSW1と同期してスイッチングしているため、同様の結果となる。
 コンデンサ32の充放電周期は、誘導性負荷50とコンデンサ32との共振周期の半周期分であり、スイッチング周期が誘導性負荷50とコンデンサ32との共振周期より長い時には、MERS30は常に0電圧0電流スイッチング、すなわちソフトスイッチングが可能である。
 MERS30に用いられるコンデンサ32は、従来の電圧型インバータと異なり、回路にあるインダクタンスの磁気エネルギーを蓄積するためだけのものである。そのため、コンデンサ容量を従来の電圧型インバータの電圧源コンデンサに比べて著しく小さくできる。コンデンサ容量は、負荷との共振周期がスイッチング周波数より短くなるように選定する。
 また、MERS30をゲートパルス発生装置として用いた場合、各MERS30に固有のIDナンバーを付与することができ、これを用いて外部からの制御信号を受信して各MERS30を制御することができる。たとえば、インターネットなどの通信回線を利用して無線で制御信号を送り、MERS30を無線制御できる。
 上述のMERS組み込みシステム10では、MERS30は4つの逆導通型半導体スイッチSW1~SW4で形成されるブリッジ回路と、ブリッジ回路の直流端子間に接続されたコンデンサ32とからなる構成であったが、MERS30は次のような構成であってもよい。
 図6および図7は、MERS30の他の態様を示す図である。 
 図6に示すMERS30は、上述の4つの逆導通型半導体スイッチSW1~SW4と1つのコンデンサ32とからなるフルブリッジ型のMERS30に対して、2つの逆導通型半導体スイッチと2つのダイオード、および2つのコンデンサで構成される縦型のハーフブリッジ型となっている。
 より詳細には、この縦型ハーフブリッジ構造のMERS30は、直列に接続された2つの逆導通型半導体スイッチSW5、SW6と、この2つの逆導通型半導体スイッチSW5、SW6と並列に設けられた、直列に接続された2つのコンデンサ33、34と、この2つのコンデンサ33、34それぞれと並列に接続された2つのダイオードD1、D2と、を含んでいる。
 図7に示すMERS30は、横型のハーフブリッジ型である。横型のハーフブリッジ型MERSは、2つの逆導通型半導体スイッチと2つのコンデンサで構成されている。 
 より詳細には、この横型のハーフブリッジ構造MERS30は、第1の経路上に直列に設けられた逆導通型半導体スイッチSW7およびコンデンサ35と、第1の経路と並列な第2の経路上に直列に設けられた逆導通型半導体スイッチSW8およびコンデンサ36と、第1、第2の経路に対して並列に結線された配線と、を含んでいる。
 続いて、本実施形態に係る照明制御装置について説明する。 
 図8は、実施形態1に係る照明制御装置の構成を示す概略図である。
 図8に示すように、本実施形態の照明制御装置100は、照明灯60a~60cと交流電圧源20との間に第1MERS30aを設け、照明灯60d~60fと交流電圧源20との間に第2MERS30bを設けた構成である。照明灯60は、誘導性負荷を有する照明灯または誘導性負荷に接続された照明灯である。誘導性負荷を有する照明灯としては、たとえば放電灯などが挙げられる。放電灯は、たとえば蛍光灯、水銀灯、ナトリウム灯、またはネオン灯である。また、誘導性負荷に接続された照明灯としては、誘導性負荷を持たない白熱灯、LEDなどの光源にリアクトルを接続したものが挙げられる。本実施形態では、照明灯60に放電灯を用いた場合を例に説明する。また、照明灯60の数は特に限定されず、第1MERS30aおよび第2MERS30bのそれぞれに対して少なくとも一つの照明灯60が接続されていればよい。
 また、照明制御装置100は、第1MERS30aのゲート位相角を制御して第1MERS30aの出力電圧の大きさと電流の位相を調整するための第1調整部70aを備える。また、照明制御装置100は、第2MERS30bのゲート位相角を制御して第2MERS30bの出力電圧の大きさと電流の位相を調整するための第2調整部70bを備える。さらに、照明制御装置100は、第1調整部70aおよび第2調整部70bに電流位相の調整および調光を指示する力率調整指示部80と、照明灯60a~60cに流れる電流の位相を検出する第1位相検出部90aと、照明灯60d~60fに流れる電流の位相を検出する第2位相検出部90bとを備える。具体的には、第1位相検出部90aおよび第2位相検出部90bは、交流電圧源20の電圧の位相に対する電流の位相を検出する。
 さらに、照明制御装置100は、照明灯60a~60cの輝度を検知するための第1輝度検知手段として、照明灯60a~60cの照射範囲の照度を検出する第1照度センサ110aを備える。また、照明制御装置100は、照明灯60d~60fの輝度を検知するための第2輝度検知手段として、照明灯60d~60fの照射範囲の照度を検出する第2照度センサ110bを備える。第1照度センサ110aおよび第2照度センサ110bの数は特に限定されず、各系統に1以上あればよい。
 本実施形態の照明制御装置100では、照明灯60a~60cを含む第1系統と、照明灯60d~60fを含む第2系統とが同一の交流電源である交流電圧源20に並列に接続されている。
 図9は、第1調整部70a、第2調整部70b、および力率調整指示部80の概略構成を説明する機能ブロック図である。 
 図9に示すように、第1調整部70aは、逆導通型半導体スイッチSW1~SW4のゲートG1~G4に制御信号を送信し、第1MERS30aの出力電圧の大きさを調整するとともに、同時に電流の位相を調整する第1制御部40aを備える。また、第1調整部70aは、力率調整指示部80の後述する指示部86から指示信号を受信し、第1制御部40aに送信する第1指示取得部72aを備える。
 また、第2調整部70bは、逆導通型半導体スイッチSW1~SW4のゲートG1~G4に制御信号を送信し、第2MERS30bの出力電圧の大きさを調整するとともに、同時に電流の位相を調整する第2制御部40bを備える。また、第2調整部70bは、力率調整指示部80の後述する指示部86から指示信号を受信し、第2制御部40bに送信する第2指示取得部72bを備える。
 力率調整指示部80は、第1位相検出部90aから電流の位相情報を取得し、また第2位相検出部90bから電流の位相情報を取得して、各系統の照明灯60に流れる電流の位相を比較し、比較結果を指示部86に送信する位相比較部82を備える。また、力率調整指示部80は、第1照度センサ110aの検知結果と第2照度センサ110bの検知結果を取得して、各系統の照明灯60の輝度を監視し、監視結果を指示部86に送信する輝度監視部84を備える。輝度監視部84は、照明灯60の輝度と光照射領域の照度とを対応付けた輝度照度対応テーブルを保持している。また、輝度監視部84は、図示しないパラメータ保持部を備え、予め規定された照明灯の必要輝度値を保持している。ここで、前記「必要輝度値」は、照明灯60が設置された領域において必要とされる輝度の下限値と上限値とを含む所定の幅を持った値であり、照明灯60が設置された場所に応じて適宜設定され、この値は実験的に求めることができる。必要輝度値に上限を設けることで、照明灯60の輝度の過度の上昇を防ぎ、無駄な電力消費を削減できる。
 さらに力率調整指示部80は、位相比較部82から受信した情報に基づいて、あるいは輝度監視部84から受信した情報に基づいて、第1調整部70aおよび第2調整部70bに電流位相の調整および調光を指示する指示部86を備える。
 続いて、照明制御装置100の動作について説明する。 
 たとえば、まず、力率調整指示部80は、第1系統に流れる電流の位相を電源電圧の位相に対して進み位相とするとともに、第1系統に含まれる照明灯60a~60cの輝度が必要輝度値を満たすように、第1調整部70aに第1MERS30aの調整を指示する。次に、力率調整指示部80は、照明灯60a~60cに流れる電流の位相情報を第1位相検出部90aから取得し、交流電圧源20の力率を1とし、もしくは1に近づけるために、第2系統に流れる電流の位相を電源電圧の位相に対して遅れ位相とするよう第2調整部70bに指示する。
 続いて、力率調整指示部80は、第2系統の照明灯60d~60fの照射範囲の照度値を第2照度センサ110bから受信し、輝度照度対応テーブルを参照して、その照度値を照明灯60d~60fの輝度値に変換する。ここで、たとえば照明灯60d~60fの輝度値が必要輝度値の下限未満であった場合、力率調整指示部80は、照明灯60d~60fの輝度を上げて必要輝度値とするように第2調整部70bに指示する。第2調整部70bは、力率調整指示部80からの指示を受けて、照明灯60d~60fの輝度が上がるように第2MERS30bの出力電圧の大きさを増大させるが、これにともない電流の位相が進み方向に変化する。そのため、交流電圧源20の力率が低くなる。
 力率調整指示部80は、照明灯60d~60fに流れる電流の位相情報を第2位相検出部90bから取得し、交流電圧源20の力率が1とし、もしくは1に近づくように、第1系統に流れる電流の位相を遅れ方向に調整する。照明灯60a~60fの輝度値が必要輝度値の上限より大きい場合には、照明灯60d~60fの輝度を下げ、これにより第2系統の電流の位相が遅れ方向に変化するため、第1系統の電流の位相を進み方向に調整する。照明制御装置100は、このようにして、交流電圧源20の力率を改善することができ、また好ましくは1に近づけることができ、さらに好ましくは1にすることができる。また、それとともに、照明制御装置100は、第1系統の照明灯60a~60cおよび第2系統の照明灯60d~60fの輝度を必要輝度値に調整することができる。
 なお、第1および第2輝度検知手段としては、たとえば照明灯60に出力される電圧を検知する電圧計であってもい。この場合には、パラメータ保持部に必要輝度値に対応する必要電圧値を保持しておき、第1電圧計および第2電圧計でそれぞれ第1系統および第2系統に出力される電圧を検知し、上限電圧値と下限電圧値の範囲で照明灯60の輝度を調整してもよい。
 照明制御装置100は、各照明灯60の点灯状態においては、たとえば定期的に以下の制御を行う。すなわち、力率調整指示部80が照明灯60a~60cに流れる電流の位相情報を第1位相検出部90aから取得する。また、同様に第2位相検出部90bから照明灯60d~60fに流れる電流の位相情報を取得する。そして、位相比較部82が、照明灯60a~60cと照明灯60d~60fのそれぞれに流れる電流の位相を比較して、比較結果を指示部86に送信する。
 指示部86は、この比較結果に基づいて、たとえば第1系統の照明灯60a~60cに流れる電流の位相を電源電圧の位相に対して進ませるように、第1調整部70aに指示する。一方、指示部86は、第2系統の照明灯60d~60fに流れる電流の位相を、電源電圧の位相に対して遅らせるように、第2調整部70bに指示する。たとえば、交流電圧源20に接続された第1系統に流れる電流の位相の進み量と、同じ交流電圧源20に接続された第2系統に流れる電流の位相の遅れ量を同量にする。これにより、交流電圧源20における力率を改善することができ、好ましくは1に近づけることができ、さらに好ましくは1とすることができる。
 ここで、第1系統の電流の位相と第2系統の電流の位相を調整して、交流電圧源20の力率を1近傍に近づけた際に、照明灯60の輝度が過度に増大し、無駄な電力の消費量が増大してしまうおそれがある。そのため、力率調整指示部80は第1照度センサ110aおよび第2照度センサ110bの検知結果から導出される照明灯60a~60fの輝度が所定値を超えた場合には、交流電圧源20の力率が1近傍でなくてもよいこととし、照明灯60の輝度が所定値以下となるように調整を行うようにしてもよい。なお、この場合であっても、第1系統の電流の位相と第2系統の電流の位相とを互いに逆相とすることで、交流電圧源20の力率を改善できる。
 また、通常、照明灯60は、経年劣化などにより電極が劣化し、電流が流れにくくなって輝度が低下していく。そこで、力率調整指示部80の輝度監視部84は、第1系統の照明灯60a~60cの照射範囲の照度値を第1照度センサ110aから受信し、また第2系統の照明灯60d~60fの照射範囲の照度値を第2照度センサ110bから受信する。そして、それぞれの照度値から、それぞれの照明灯60a~60fの輝度値を導出し、パラメータ保持部に保持された照明灯の必要輝度値と比較する。
 たとえば、比較の結果、第2系統の照明灯60d~60fの輝度が必要輝度を下回っていたとする。この場合、輝度監視部84は指示部86に対し、第2調整部70bに輝度の増加を指示するように信号を送信する。指示部86は、輝度監視部84から指示を受けると、第2調整部70bに照明灯60d~60fの輝度を増加させるように指示を送信する。指示部86から指示を受けた第2調整部70bは、照明灯60d~60fの輝度を増加させるように、第2MERS30bのゲート位相角を制御して、第2MERS30bの出力電圧の大きさを増加させる。これにより、各照明灯60の輝度が増加する。
 一方、第2系統の照明灯60d~60fの輝度を増大させるために第2MERS30bの出力電圧の大きさを増加させると、それにともない第2系統に流れる電流の位相も変化する。そこで、力率調整指示部80は、位相比較部82にて第1系統および第2系統の電流の位相を比較し、第2系統の電流の位相の変化量に合わせて、第1系統の電流の位相を変化させるように第1調整部70aに指示する。これにより、照明灯60の輝度を調整するとともに、交流電圧源20における力率を調整することができる。
 なお、照明制御装置100は、以下のような構成であってもよい。すなわち、第1MERS30aおよび第2MERS30bに対して個別にアクセスできるように固有のアドレスを設定する。そして、インターネット、ローカルエリアネットワーク(LAN)などのネットワークを介して有線、無線通信によって、力率調整指示部80が第1調整部70aおよび第2調整部70bに電流位相の調整および調光を指示する構成である。
 以上説明した構成による作用効果を総括すると、本実施形態に係る照明制御装置100では、交流電圧源20に、照明灯60a~60cを含む第1系統と照明灯60d~60fを含む第2系統とが接続されている。そして、各系統にはそれぞれ第1MERS30aおよび第2MERS30bが接続され、力率調整指示部80が、第1系統に流れる電流の位相を電源電圧の位相に対して進ませ、たとえば第2系統の電流の位相を第1系統の電流の位相の進み量と同量だけ遅らせるように制御する。これにより、第1系統および第2系統が接続された交流電圧源20における力率を調整することができ、その結果、交流電圧源20における力率が向上して、送電損失を低減することができる。
 また、各系統の電流の位相を調整するとともに、各系統に含まれる照明灯60の輝度を監視し、各照明灯60の輝度が必要輝度を満たすように、MERS30の出力電圧の大きさを調整している。すなわち、各照明灯60の輝度が必要輝度を満たす範囲内で、各系統の電流の位相を調整することで、交流電圧源20の力率を改善しつつ、照明灯60の調光を行うことができる。
 また、従来、進相コンデンサを用いて力率を改善する方法が実用化されているが、進相コンデンサはサイズが大きく高価である。一方、本実施形態の照明制御装置100では、照明灯60と交流電圧源20との間にMERS30を組み込むだけである。そして、MERS30の構成は簡単でサイズが小さく、価格は安価であるため、照明制御装置100を簡単に設けることができるとともに、その導入コストを非常に低く抑えることができる。
 また、MERS30の逆導通型半導体スイッチSW1~SW4が故障した場合は、交流電圧源20と照明灯60とが導通状態となるだけであり、MERS30の故障によって照明灯60が点灯不能な状態に陥ることはない。そのため、既存の交流電圧源20と照明灯60との間にMERS30を組み込んでも、それによる安全性の低下などの問題は生じない。
 本実施形態の照明制御装置100は、配電系統、受電盤、配電盤単位で適用することが可能であり、同一配電系統、受電盤、あるいは配電盤に接続されている複数の照明灯60の1つの系統に流れる電流を進み位相、他の系統に流れる電流を遅れ位相とすることで、配電系統、受電盤、あるいは配電盤単位で力率を1ないしは1近傍に近づけることができる。照明制御装置100は、たとえば高速道路、自動車専用道路、あるいは一般道などの既設の照明灯に適用することができる。
 本発明は、上述の実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうるものである。
 たとえば、上述の実施形態では、第1系統と第2系統にそれぞれ第1MERS30aと第2MERS30bとを設けたが、たとえば第1系統のみにMERS30を設ける構成であってもよい。この場合、照明灯60内の電気的なリアクタンス成分により、第2系統に流れる電流の位相には遅れが生じるため、この遅れ量に応じた量だけ第1系統に流れる電流の位相を進ませることで、交流電圧源20における力率を改善することができ、好ましくは1に近づけることができ、さらに好ましくは1とすることができる。
 また、上述の実施形態では交流電圧源20に第1系統と第2系統が接続された構成としたが、系統の数は特に限定されず、さらに多数の系統が交流電圧源20に接続されていてもよい。その場合には、それら複数の系統の電流の位相を調整して、交流電圧源20の力率が向上するように制御する。
 本発明は、照明機器に利用できる。

Claims (11)

  1.  誘導性負荷を有する照明灯または誘導性負荷に接続された照明灯を、一つまたは複数含む第1系統と交流電源との間に接続され、前記交流電源から前記第1系統の照明灯に出力される電圧の大きさと電流の位相を調整する第1調整スイッチと、
     誘導性負荷を有する照明灯または誘導性負荷に接続された照明灯を、一つまたは複数含む第2系統と前記交流電源との間に接続され、前記交流電源から前記第2系統の照明灯に出力される電圧の大きさと電流の位相を調整する第2調整スイッチと、
     前記第1調整スイッチを制御する第1調整部と、
     前記第2調整スイッチを制御する第2調整部と、
     前記第1調整部および前記第2調整部に対して電流位相の調整および調光を指示する力率調整指示部と、
    を備え、前記力率調整指示部は、前記第1系統の照明灯に流れる電流の位相を電源電圧の位相に対して進ませ、前記第2系統の照明灯に流れる電流の位相を電源電圧の位相に対して遅らせて、前記交流電源の力率を調整するとともに、前記第1系統の照明灯および前記第2系統の照明灯に出力される電圧を調整して前記第1系統の照明灯および前記第2系統の照明灯の輝度を調整するように、前記第1調整部と前記第2調整部に指示することを特徴とする照明制御装置。
  2.  前記第1調整スイッチおよび前記第2調整スイッチは、少なくとも2つの逆導通型半導体スイッチと、電流遮断時の電流の磁気エネルギーを蓄積して前記照明灯に回生するためのコンデンサと、を有し、前記第1調整スイッチおよび前記第2調整スイッチのゲート位相を制御することで、前記照明灯に出力する電圧の大きさと電流の位相を調整することを特徴とする請求項1に記載の照明制御装置。
  3.  前記第1系統の照明灯に流れる電流の位相を検出する第1位相検出部と、
     前記第2系統の照明灯に流れる電流の位相を検出する第2位相検出部と、
    を備え、前記力率調整指示部は、前記第1位相検出部および前記第2位相検出部の検出結果に応じて、前記第1系統の照明灯および前記第2系統の照明灯に流れる電流の位相を調整することを特徴とする請求項1または2に記載の照明制御装置。
  4.  前記第1系統の照明灯の輝度を検知する第1輝度検知手段と、
     前記第2系統の照明灯の輝度を検知する第2輝度検知手段と、
    を備え、前記力率調整指示部は、前記第1輝度検知手段および前記第2輝度検知手段の検知結果に応じて、前記第1系統の照明灯および前記第2系統の照明灯の輝度を調整することを特徴とする請求項1ないし3のいずれか1項に記載の照明制御装置。
  5.  前記力率調整指示部は、前記照明灯の輝度が所定値を超えた場合には、前記第1系統の照明灯および前記第2系統の照明灯の輝度を前記所定値以下に調整することを特徴とする請求項1ないし4に記載の照明制御装置。
  6.  前記第1調整スイッチおよび前記第2調整スイッチは、
     4つの逆導通型半導体スイッチで構成されるブリッジ回路と、
     前記ブリッジ回路の直流端子間に接続され、電流遮断時の電流の磁気エネルギーを蓄積して前記照明灯に回生するためのコンデンサと、を有し、
     前記調整部は、前記逆導通型半導体スイッチのゲートに制御信号を送り、前記ブリッジ回路の対角線上に位置する2つの逆導通型半導体スイッチからなるペア2組のうち、一方のペアがONの時に他方のペアがOFFとなるように、各ペアの逆導通型半導体スイッチのON/OFF切換を前記交流電源の周波数に同期して行うことで、前記照明灯に供給する負荷電力量を調整することを特徴とする請求項1ないし5のいずれか1項に記載の照明制御装置。
  7.  前記第1調整スイッチおよび前記第2調整スイッチは、
     直列に接続された2つの逆導通型半導体スイッチと、
     前記2つの逆導通型半導体スイッチと並列に設けられた、直列に接続された2つのコンデンサと、
     前記2つのコンデンサそれぞれと並列に接続された2つのダイオードと、
    を含む縦型のハーフブリッジ構造を有することを特徴とする請求項1ないし5のいずれか1項に記載の照明制御装置。
  8.  前記第1調整スイッチおよび前記第2調整スイッチは、
     第1の経路上に直列に設けられた逆導通型半導体スイッチおよびコンデンサと、
     前記第1の経路と並列な第2の経路上に直列に設けられた逆導通型半導体スイッチおよびコンデンサと、
     前記第1、第2の経路に対して並列に結線された配線と、
    を含む横型のハーフブリッジ構造を有することを特徴とする請求項1ないし5のいずれか1項に記載の照明制御装置。
  9.  前記誘導性負荷を有する照明灯は、放電灯であることを特徴とする請求項1ないし8のいずれか1項に記載の照明制御装置。
  10.  前記放電灯は、蛍光灯、水銀灯、ナトリウム灯、またはネオン灯であることを特徴とする請求項9に記載の照明制御装置。
  11.  前記誘導性負荷に接続された照明灯は、白熱灯またはLEDにリアクトルを接続したものであることを特徴とする請求項1ないし8のいずれか1項に記載の照明制御装置。
PCT/JP2008/001774 2008-07-03 2008-07-03 照明制御装置 WO2010001442A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008801301070A CN102077690A (zh) 2008-07-03 2008-07-03 照明控制装置
JP2009548519A JP4528886B2 (ja) 2008-07-03 2008-07-03 電力制御装置
PCT/JP2008/001774 WO2010001442A1 (ja) 2008-07-03 2008-07-03 照明制御装置
US13/000,631 US20110109239A1 (en) 2008-07-03 2008-07-03 Illumination control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001774 WO2010001442A1 (ja) 2008-07-03 2008-07-03 照明制御装置

Publications (1)

Publication Number Publication Date
WO2010001442A1 true WO2010001442A1 (ja) 2010-01-07

Family

ID=41465557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/001774 WO2010001442A1 (ja) 2008-07-03 2008-07-03 照明制御装置

Country Status (4)

Country Link
US (1) US20110109239A1 (ja)
JP (1) JP4528886B2 (ja)
CN (1) CN102077690A (ja)
WO (1) WO2010001442A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401413A (zh) * 2013-07-31 2013-11-20 华南理工大学 一种功率因数调整电路及其工作方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160014A (zh) * 2008-09-26 2011-08-17 莫斯科技株式会社 电力变换装置
JP2011097688A (ja) * 2009-10-28 2011-05-12 Merstech Inc 電力変換装置及び電力変換方法
JP5476279B2 (ja) * 2010-11-19 2014-04-23 シャープ株式会社 Led駆動回路およびled照明機器
KR20120139038A (ko) * 2011-06-16 2012-12-27 삼성디스플레이 주식회사 광원 모듈, 상기 광원 모듈의 구동 방법 및 이를 포함하는 표시 장치
CN102646987B (zh) * 2012-04-12 2014-07-30 华南理工大学 一种功率因数调整电路和调整方法
KR101991029B1 (ko) * 2012-08-16 2019-06-19 엘지이노텍 주식회사 조명 제어 시스템
US9666357B2 (en) 2012-09-11 2017-05-30 Qualcomm Incorporated Apparatus system, and method for wirelessly receiving power using conductive structures
CN103338545B (zh) * 2013-01-12 2016-03-02 华南理工大学 一种日光灯调光电路及其工作方法
CN103208805A (zh) * 2013-01-12 2013-07-17 华南理工大学 一种功率因数调节电路和控制方法
CN103369798A (zh) * 2013-07-31 2013-10-23 华南理工大学 一种日光灯调光电路及其控制方法
CN104378880A (zh) * 2014-10-31 2015-02-25 华南理工大学 一种日光灯调光电路及其控制方法
DE102017117888A1 (de) * 2017-08-07 2019-02-07 Infineon Technologies Austria Ag Elektronische Schaltung mit einer Halbbrückenschaltung und einem Spannungsklemmelement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217887A (ja) * 1988-02-23 1989-08-31 Toshiba Electric Equip Corp 放電灯点灯装置
JP2007058676A (ja) * 2005-08-25 2007-03-08 Tokyo Institute Of Technology 進相電流による交流電圧制御装置
JP2007252049A (ja) * 2006-03-14 2007-09-27 Toshiba Mitsubishi-Electric Industrial System Corp 磁気エネルギー回生電流スイッチを用いた単相誘導電動機
JP2008071545A (ja) * 2006-09-12 2008-03-27 Nippon Steel Corp 照明灯制御方法及び照明灯制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181491A (ja) * 1983-03-31 1984-10-15 東芝ライテック株式会社 放電灯点灯装置
JPS63129389A (ja) * 1986-11-20 1988-06-01 富士通機電株式会社 冷陰極管の点灯回路
JP3634982B2 (ja) * 1999-06-11 2005-03-30 財団法人理工学振興会 スナバーエネルギーを回生する電流順逆両方向スイッチ
DE10356515A1 (de) * 2003-12-03 2005-07-14 Siemens Ag Antriebssystem
CN1954482A (zh) * 2004-05-12 2007-04-25 财团法人理工学振兴会 使磁能量再生的交流电源装置
CN101491163B (zh) * 2006-08-03 2012-08-22 夏普株式会社 显示装置用照明装置和具有它的显示装置
CN101399512A (zh) * 2007-09-27 2009-04-01 天钰科技股份有限公司 风扇驱动系统
WO2009075366A1 (ja) * 2007-12-11 2009-06-18 Tokyo Institute Of Technology ソフトスイッチング電力変換装置
WO2009139077A1 (ja) * 2008-05-15 2009-11-19 国立大学法人 東京工業大学 交流電圧制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217887A (ja) * 1988-02-23 1989-08-31 Toshiba Electric Equip Corp 放電灯点灯装置
JP2007058676A (ja) * 2005-08-25 2007-03-08 Tokyo Institute Of Technology 進相電流による交流電圧制御装置
JP2007252049A (ja) * 2006-03-14 2007-09-27 Toshiba Mitsubishi-Electric Industrial System Corp 磁気エネルギー回生電流スイッチを用いた単相誘導電動機
JP2008071545A (ja) * 2006-09-12 2008-03-27 Nippon Steel Corp 照明灯制御方法及び照明灯制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401413A (zh) * 2013-07-31 2013-11-20 华南理工大学 一种功率因数调整电路及其工作方法

Also Published As

Publication number Publication date
JPWO2010001442A1 (ja) 2011-12-15
JP4528886B2 (ja) 2010-08-25
US20110109239A1 (en) 2011-05-12
CN102077690A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
WO2010001442A1 (ja) 照明制御装置
US6188183B1 (en) High intensity discharge lamp ballast
TWI495389B (zh) 以發光二極體為光源之照明系統
JP6110856B2 (ja) 電力制御ユニット、負荷、特にledユニットに提供される電力を制御する方法及びコンバータユニットの出力電圧を制御する電圧制御ユニット
FI61781C (fi) Effektregulator speciellt ljusregulator
CN102197708B (zh) 放电灯点灯装置以及使用这些装置的车辆用前照灯点灯装置
JP2007058676A (ja) 進相電流による交流電圧制御装置
US9380659B2 (en) Electrical device and method for compensating an effect of an electrical current of a load, in particular an LED unit, and driver device for driving a load, in particular an LED unit
JP4481366B2 (ja) 照明制御装置
CN102047762A (zh) 高压放电灯点灯装置及照明器具
CN101663922B (zh) 灯镇流器及照明设备
CN110602834A (zh) 一种利用开关控制应急照明灯具亮度的电路及方法
WO2010001441A1 (ja) 調光機能付アダプタ、調光機能付照明灯、調光機能付ソケット、および照明制御装置
EP2999312B1 (en) Lamp drive power supply and method for controlling lamp drive power supply
JPH08222390A (ja) 放電灯点灯装置
KR20130085843A (ko) 균등수명 선형 스위칭 엘이디 장치 및 그를 이용한 엘이디 조명장치
US6621237B2 (en) Gas-discharge lamp lighting apparatus with optimized circuit configuration
US9220160B2 (en) Discharge lamp lighting device and headlight using same
KR102346802B1 (ko) 터널등용 배터리 관리 시스템
JP4000621B2 (ja) 車両用負荷駆動装置
US20080093995A1 (en) Ballast For High Intensity Discharge Lamps
WO2005051050A1 (en) The apparatus and method for synchronous lighting by one ballast with two bulb
ES2765876T3 (es) Dispositivo controlador y método de control para controlar una carga, en particular una unidad led
US20120104960A1 (en) Circuit for converting dc into ac pulsed voltage
JPH11121186A (ja) 放電灯用インバータ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880130107.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009548519

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08776786

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13000631

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 842/DELNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 08776786

Country of ref document: EP

Kind code of ref document: A1