[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010000170A1 - 一种光开关 - Google Patents

一种光开关 Download PDF

Info

Publication number
WO2010000170A1
WO2010000170A1 PCT/CN2009/072150 CN2009072150W WO2010000170A1 WO 2010000170 A1 WO2010000170 A1 WO 2010000170A1 CN 2009072150 W CN2009072150 W CN 2009072150W WO 2010000170 A1 WO2010000170 A1 WO 2010000170A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
output
waveguide
beam splitter
optical signal
Prior art date
Application number
PCT/CN2009/072150
Other languages
English (en)
French (fr)
Inventor
江晓清
杨建义
王帆
周海峰
操时宜
Original Assignee
华为技术有限公司
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 浙江大学 filed Critical 华为技术有限公司
Publication of WO2010000170A1 publication Critical patent/WO2010000170A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1223Basic optical elements, e.g. light-guiding paths high refractive index type, i.e. high-contrast waveguides

Definitions

  • the present invention relates to the field of optical communications, and more particularly to an optical switch for implementing optical switching in optical communications. Background technique
  • optical switches that have been commercially used include mechanical optical switches, MEMS (Micro-Electro-Mechanical Systems) optical switches, and waveguide-type thermo-optic optical switches.
  • the response speed of these optical switches is generally on the order of milliseconds, but
  • the optical switching optical switches required by some switching technologies require switching response speeds in the order of nanoseconds, such as OBS (Optical Burst Switch) technology and Optical Packet Switching (OPS).
  • OBS Optical Burst Switch
  • OPS Optical Packet Switching
  • optical switches with a response speed of two stages in nanoseconds are generally realized by the plasma dispersion effect of carriers of silicon materials.
  • the principle is as follows: Injecting a silicon material around a waveguide that transmits an optical signal, and applying a certain voltage on the silicon material causes a change in the carrier concentration of the silicon material, thereby generating a plasma dispersion effect of the carrier of the silicon material, and the plasma dispersion effect This will cause a change in the refractive index of the silicon material, which in turn changes the equivalent optical path of the optical signal transmitted in the waveguide to achieve a change in the phase of the optical signal from the final waveguide.
  • the plasma dispersion effect of the above silicon material carriers has a response speed of more than nanoseconds, and is very suitable for use in high speed optical switches.
  • the prior art optical switches utilizing the plasma dispersion effect of the above silicon material carriers mainly include: Y-branch type and total internal reflection type digital optical switches (DOS, Digital Optical Switch) Structure, based on MZI (Much-Zahnder, Mach-Zehnder) interferometric optical switch structure, and optical switch structure using micro-ring resonator.
  • DOS Digital Optical Switch
  • MZI Miuch-Zahnder, Mach-Zehnder
  • the digital optical switch of the split-fork or total internal reflection type requires a large control power consumption, and is generally not suitable for the production of a large-scale optical switch array.
  • FIG. 1 the figure shows a conventional MZI interference type optical switch structure in which a phase modulator is disposed on one of two waveguide arms of a 1X2 splitter output, and the phase modulator is made of a silicon material.
  • the phase of the optical signal of the output waveguide is controlled by the plasma dispersion effect of the carrier of the silicon material.
  • the optical signals output by the two waveguide arms will produce an interference output at one of the output terminals of the 2X2 beam splitter, and the other output terminal B will not have Optical signal output;
  • the phase modulator causes the phase change of the optical signal to be not ⁇
  • the optical signals output by the two waveguide arms will produce an interference output at one of the output terminals of the 2X2 beam splitter, and the other output terminal
  • the function of the optical switch can be realized without the output of the optical signal.
  • the above MZI interferometric optical switch requires symmetry of the beam splitting in the two waveguide arms, but the energy of the silicon material is changed due to the carrier dispersion effect of the silicon material, and the energy of the absorbed optical signal is also very high. Large, resulting in a large additional loss of the final output optical signal, severely changing the symmetry of the light intensity in the two waveguide arms of the MZI interferometric optical switch, and can not make the optical switch extinction ratio control in a small range (current optical signal The loss can only be controlled at around 10dB). And the above MZI interference type optical switch requires strict ⁇ phase control.
  • the figure shows a schematic diagram of a conventional optical switch structure using a microring resonator.
  • the optical signal input from the incident end of the waveguide 1 is in the waveguide 1 and the microring if the wavelength of the optical signal conforms to the resonance condition.
  • the coupling of the resonant cavity is coupled into the microring resonator for transmission and coupled to the waveguide 2 from the coupling of the waveguide 2 and the microring resonator, and finally the optical signal is output from the reflective end of the waveguide 2; if the wavelength of the optical signal If it does not meet the resonance condition, it will be directly output from the through end of the waveguide 1.
  • the function of controlling the output of the optical signal from different terminals is the function required by the optical switch.
  • the above optical switch structure using the micro-ring resonator is very sensitive to the wavelength of the optical signal, and the loss of the micro-ring resonator is required to obtain a high extinction ratio.
  • the additional loss of the optical signal transmitted in the optical switch has a large influence.
  • Embodiments of the present invention provide an optical switch that has a higher extinction ratio and is not particularly sensitive to wavelengths of light waves.
  • the embodiment of the present invention adopts the following technical solutions:
  • An optical switch comprising:
  • Input beam splitter for inputting an optical signal
  • An output beam splitter for outputting an optical signal
  • Two waveguide arms connected between the input beam splitter and the output beam splitter for transmitting optical signals from the input beam splitter to the output beam splitter;
  • Two sets of microring resonators are respectively coupled to the two waveguide arms for respectively adjusting the phase of the optical signal output by the corresponding waveguide arm.
  • the resonant cavity is capable of adjusting the phase of the optical signal transmitted in the waveguide arm such that the optical signals output by the two waveguide arms have a phase difference to realize the optical switching function.
  • the optical signal input by the input beam splitter is transmitted in two waveguide arms, and the optical signals in the two waveguide arms are respectively coupled into corresponding microring resonators, and by refraction, the refraction of the microring resonator Rate, which changes the equivalent optical path of the optical signal transmitted in the microring resonator and ultimately changes the phase of the output optical signal.
  • the optical signals output by the corresponding waveguide arms are equal or equal. In this way, the optical signal output from the output beam splitter can be controlled to realize the function of the high extinction ratio optical switch.
  • the present embodiment adopts simultaneous control of two waveguide arms, only the phase difference of the optical signals in the two waveguide arms needs to be an even multiple of ⁇ or an odd multiple of ⁇ , and the microring resonator is not required to be completely in resonance state, for different
  • the optical signal of the wavelength can make the microring resonator not in the resonance state, and adopt different modulation points, so that the phase of the optical signal in the waveguide arm is different by an even multiple of ⁇ or an odd number of ⁇ .
  • FIG. 1 is a structural diagram of a conventional MZ I interference type optical switch in the prior art
  • FIG. 2 is a structural diagram of an optical switch using a microring resonator in the prior art
  • FIG. 3 is a structural diagram of an optical switch in Embodiment 1 of the present invention.
  • FIG. 4 is a structural diagram of an optical switch in Embodiment 2 of the present invention.
  • FIG. 5 is a response diagram of an output optical signal of a waveguide arm in Embodiment 2 of the present invention.
  • FIG. 6 is a schematic view showing a waveguide structure of a p-i-n junction implanted in Embodiment 2 of the present invention.
  • Figure 7 is a structural diagram of an optical switch in Embodiment 3 of the present invention.
  • FIG. 8 is a schematic view of a racetrack-shaped microring resonator in Embodiment 3 of the present invention.
  • FIG. 9 is a schematic view of an elliptical microring resonator in Embodiment 3 of the present invention.
  • FIG. 10 is a schematic view of a microdisk-shaped microring resonator in Embodiment 3 of the present invention.
  • FIG. 11 is a schematic view of a copper-money-shaped microring resonator in Embodiment 3 of the present invention.
  • FIG. 12 is a schematic diagram of a microring resonator connected in parallel according to Embodiment 3 of the present invention
  • FIG. 13 is a schematic diagram of a microring resonator connected in series according to Embodiment 3 of the present invention
  • FIG. 14 is a third embodiment of the present invention
  • a schematic diagram of a microring resonator connected in a mesh
  • the embodiment provides an optical switch including: an input beam splitter 31, an output beam splitter 32, two waveguide arms 33, and two sets of microring resonators 34.
  • the input beam splitter 31 is provided with an input end and two output ends.
  • the output beam splitter 32 is provided with two input ends and at least one output end. The two output ends and the output points of the input beam splitter 31 are provided.
  • the two input ends of the beam splitter 32 are connected by two waveguide arms 33. This is input by the input beam splitter 31
  • the optical signal is transmitted through two waveguide arms 33 to the output beam splitter 32 and ultimately from the output of the output beam splitter 32.
  • the optical switch in this embodiment is mainly characterized in that two sets of microring resonators 34 are coupled to the two waveguide arms 33 to phase adjust the optical signals transmitted in the waveguide arms 33.
  • the optical signal is coupled into the microring resonator 34 during transmission of the waveguide arm 33, and the voltage applied to the microring resonator 34 can adjust the refractive index of the microring resonator 34, thereby changing the optical signal.
  • the equivalent optical path transmitted in the microring resonator 34 when the optical signal is again coupled back to the corresponding waveguide arm 33 by the microring resonator, its phase changes, so the microring resonator 34 in this embodiment is realized.
  • the phase of the optical signal in the waveguide arm 33 is adjusted.
  • the two sets of microring resonators 34 are phase-adjusted to the optical signals in their corresponding waveguide arms 33, and the phase differences of the optical signals output by the two waveguide arms 33 are an even multiple of ⁇ or an odd multiple of ⁇ , thus It is possible to couple the two optical signals having phase differences at the output beam splitter 32.
  • the phase difference is an even multiple of ⁇
  • the coupled optical signal is output from an output of the output beam splitter 32
  • the phase difference is an odd multiple of ⁇
  • the coupled optical signal is output from the output beam splitter 32
  • One output is output, or not output.
  • the microring resonator 34 in this embodiment is fabricated by the plasma dispersion effect of the carrier. Therefore, adjusting the voltage applied to the microring resonator 34 can adjust the carrier concentration of the pin injection region, thereby changing the The refractive index of the microring resonator 34 is such that the equivalent optical path of the optical signal transmitted in the microring resonator 34 can be varied.
  • the optical switch in this embodiment controls the phase of the optical signal through the micro-ring resonator, thereby realizing the function of the optical switch and having lower control power consumption.
  • the microring resonator is fabricated by the plasma dispersion effect of carriers, the plasma dispersion effect of the carrier can be as fast as nanoseconds.
  • the resonance characteristics of the cavity so that when the vicinity of the resonance point, the relative optical signal intensity of the interference arms is not changed due to the plasma dispersion effect of the carriers, that is, the odd phase of the phase difference is ⁇ or the odd number of ⁇
  • the optical switch provided in this embodiment has a higher extinction ratio.
  • the two waveguide arms are controlled at the same time in this embodiment, only the phase difference of the optical signals in the two waveguide arms needs to be an even multiple of ⁇ or an odd multiple of ⁇ , and the microring resonator is not required to be completely in resonance state.
  • the optical signals of different wavelengths can make the microring resonator not in the resonance state, and adopt different modulation points, so that the phase of the optical signal in the waveguide arm is different by an even multiple of ⁇ or the odd of ⁇ .
  • This embodiment further provides an optical switch.
  • the optical switch in this embodiment uses a 1X2 beam splitter as an input beam splitter for inputting an optical signal.
  • the optical switch uses a 2X2 type splitter.
  • As an output beam splitter two waveguide arms are connected between the 1X2 beam splitter and the 2X2 beam splitter, and two sets of corresponding T-ring resonators are respectively disposed on the two waveguide arms, and the two groups
  • the parameters of the ring resonator are the same, namely: all single-ring resonators with the same parameters.
  • the 1X2 type beam splitter in this embodiment can be made of a Y-branched waveguide, and the 2X2 type beam splitter can be made of an X-junction waveguide. Both of the above beam splitters can be made with a directional coupler or by a multimode interferometer.
  • the frequency response of the output optical signal in the waveguide arm can be expressed as follows by the action of the single microring resonator:
  • is the ratio of the field strength when the coupling region of the waveguide arm to the single microring resonator is straight through, and the power coupling ratio satisfies: ⁇ is the residual ratio of the field strength of the light around the single microring resonator.
  • f is the frequency of the photon in the optical signal.
  • the power of the output optical signal can be known as: ⁇ / , + / - 2 ⁇ ⁇ ⁇ ( ⁇ ⁇ ⁇ )
  • the above formula (2) and formula (3) can be used to obtain the power response diagram of the optical signal output by the waveguide arm, and the frequency pattern, as shown in Fig. 5.
  • the upper part of Fig. 5 is the power of the output optical signal with ⁇
  • the variation diagram, the lower half of Figure 5 is a plot of the phase of the output optical signal as a function of ⁇ .
  • the phase difference between the output signals of the two waveguide arms is an odd multiple of ⁇ , and the light output by the two waveguide arms
  • the power of the signals is equal.
  • the two optical signals are coupled in the 2X2 beam splitter in Figure 4, they are output from the other output of the 2X2 beam splitter, which is equivalent to the optical switch in this embodiment being "OFF".
  • “State, due to the above "OFF” state the power of the output signals of the two waveguide arms is equal, thereby avoiding the disadvantage that the extinction ratio is not high due to the power imbalance of the output signals of the two waveguide arms.
  • the output signals of the two waveguide arms are simultaneously modulated to produce an odd multiple of the phase difference of ⁇ , compared with the prior art.
  • the phase difference of the odd multiple of the modulation ⁇ in the present embodiment is easier.
  • the above “ON” state and “OFF” state together realize the function of the optical switch.
  • the carrier concentration is changed by applying a voltage, so that a plasma dispersion effect occurs in the microring resonator, and then the refractive index of the microring resonator is changed, so that the optical signal can be changed in the microring resonator.
  • the microring resonator is fabricated by the plasma dispersion effect of the carrier, the plasma dispersion effect response speed of the carrier can reach nanoseconds and has a low control power consumption.
  • the resonance characteristics of the cavity when the vicinity of the resonance point, the relative optical signal intensity of the interference arms is not changed due to the plasma dispersion effect of the carriers, that is, when the two states of the phase ⁇ even and odd multiple are changed.
  • the two output optical signals are guaranteed to be equal in two states, so the optical switch provided in this embodiment has a higher extinction ratio.
  • Different output outputs of the beam for example:
  • the first modulation mode when the optical switch is in the "ON" state, allows the optical signals output by the two waveguide arms to simultaneously correspond to point A in Fig. 5, and can be modulated when the optical switch needs to be turned “OFF".
  • the optical signal outputted by one of the waveguide arms is modulated to point B (referred to as shallow modulation), and the optical signal output by the other waveguide arm is modulated to B, point (called deep modulation). Turn the optical switch to the "OFF" state.
  • Figure 5 is the response curve obtained under ideal conditions. Although the response curves are slightly different in actual shallow modulation and deep modulation, deep modulation can be achieved by designing the single microring resonator and the waveguide arm to be overcoupled. The additional losses do not destroy the over-coupling conditions, so that the response curves of shallow and deep modulations do not differ much. In order to make the "OFF" state of the light-on light more accurate, it is possible to actually measure the response curve of the shallow modulation and the deep modulation, and the response points of the shallow modulation and the deep modulation correspond to the state points corresponding to the B point and the B point.
  • the present embodiment can obtain the above state points by actually measuring the response curve, and different response curves can be obtained for the optical signals of different wavelengths, so the optical switch in this embodiment is insensitive to wavelength, and this embodiment Only the phase change characteristics of the output optical signal after the coupling of the waveguide arm and the microring resonator are utilized, and the microring resonator is not required to operate at the resonance point, compared with the prior art light directly using the microring resonator in FIG. Switch house The range of wavelengths that can be applied is larger.
  • the second modulation mode when the optical switch is in the "ON" state, allows the optical signals output by the two waveguide arms to correspond to points A and A' in Fig. 5, respectively.
  • the single microring resonator described above can be modulated, that is: one of the microring resonators utilizes a pn junction injection or a charge accumulation of the MOS structure (corresponding to an equivalent refractive index drop), The optical signal outputted by the corresponding waveguide arm is modulated to point B; and the other arm is demodulated by the pn junction or the depletion of the MOS structure (corresponding to the equivalent refractive index rise), so that the optical signal outputted by the corresponding waveguide arm is modulated to B, point.
  • This modulation mode is similar to the fully symmetrical double-arm push-pull operation mode, which is in shallow modulation, and the additional loss caused by modulation is small, and the control is convenient.
  • This embodiment cannot use intrinsic silicon (i-S i ) as a waveguide material, such as a p-type or n-type silicon material of 1 X 1017, which increases the transmission loss of the waveguide.
  • the required modulation power consumption can be controlled in the uW (microwatt) level, especially if the M0S structure is used. Because the carrier dispersion effect of silicon is above the nanosecond level, device speeds are generally conveniently on the order of nanoseconds, such as by an improved modulation speed of the structure, even on the order of ps (picoseconds).
  • the parameters of the two waveguide arms may have slight differences. Even if the modulation of the micro-ring resonator is accurate, the optical signals output by the two waveguide arms may still be has a difference. In order to make up for the above differences, it is necessary to take into account the tolerances of the fabrication.
  • the specific tolerances can be achieved as follows: A phase compensation device using thermo-optical effect is placed on one of the waveguide arms and on the beam splitter to effectively compensate The simplest method is to design a heating electrode near the straight waveguide arm, and use the thermo-optic effect of the silicon material to perform initial phase modulation. Since the thermo-optic effect hardly increases the transmission loss of the waveguide, it is convenient to adjust the initial maximum of the optical switch. Good state.
  • phase compensation device of the above thermo-optic effect can be replaced by a fixed phase replenisher, for example: one of the two waveguide arms is a curved waveguide or a tapered waveguide; or the two The waveguide arms are made of waveguide arms of different lengths.
  • the optical switch in this embodiment can be a S0I having a thickness of several hundred nanometers in the top layer of silicon.
  • Fabricated on a material submicron-sized silicon-based single-mode waveguides are fabricated using a plasma dry etch process and subjected to high temperature annealing under hydrogen protection to reduce losses due to waveguide sidewall roughness;
  • the dispersion-effect microring resonator can be realized by pn junction, pin junction or MOS structure. The dispersion effect caused by pn junction and pin junction is strong, and the micro-ring resonator made of M0S structure requires minimum control power consumption. .
  • This embodiment adopts the replacement of some devices, mainly replacing the 2X2 type beam splitter with the 2X1 type beam splitter, which can realize the function of the door switch, and also belongs to one type of optical switch, sometimes the door in this embodiment
  • a switch can also be referred to as a light modulator.
  • the structure of the optical modulator is basically the same as that of the optical switch of FIG. 4.
  • the output beam splitter in this embodiment is a 2X1 beam splitter instead of a 2X2 beam splitter.
  • the response diagram of the output signals of the two waveguide arms is also the same as that of FIG. 5, so that the specific working state of the optical switch in this embodiment is described as follows:
  • the phase difference between the output signals of the two waveguide arms is an even multiple of ⁇
  • the output of the two waveguide arms The power of the optical signals is equal.
  • the two optical signals are coupled in the 2X1 type beam splitter in FIG. 7, they are output from the output of the 2X1 type beam splitter, which is equivalent to the optical modulator in this embodiment being "ON".
  • “State due to the above "ON” state, the power of the two waveguide arms outputting the optical signal is the highest, ensuring that the additional loss of the "ON" state is low.
  • the optical signal resonates in the microring resonator and is coupled to the corresponding waveguide arm for transmission after resonance.
  • the phase difference between the output signals of the two waveguide arms is an odd multiple of ⁇ , and the light output by the two waveguide arms The power of the signals is equal.
  • the optical signals When the two optical signals are coupled in the 2X1 type beam splitter in Fig. 7, the optical signals will not be output, which is equivalent to the "OFF" state of the optical modulator in this embodiment. Due to the "OFF" status only It is necessary to ensure that the phase of the B point and the B' point are different by an odd multiple of ⁇ , and the output signals of the two waveguide arms are simultaneously modulated to generate an odd multiple of the phase difference of ⁇ , which is compared with the optical signal of only one waveguide arm in the prior art. In other words, the phase difference of the odd multiple of the modulation ⁇ in the present embodiment is easier.
  • the conditions of the "ON" state and the "OFF” state can be changed due to the difference of the selected 2X1 type beam splitter, for example:
  • the waveguide arm output optical signals respectively correspond to points B and B' in FIG. 5, and the phase difference between the output signals of the two waveguide arms is an odd multiple of ⁇ , and the output of the 2X1 beam splitter is output.
  • Optical signal if the optical signals output by the waveguide arms correspond to the ⁇ and ⁇ points in Fig. 5, respectively, the phase difference between the output signals of the two waveguide arms is an even multiple of ⁇ , then the 2X1 type beam splitter The output does not output an optical signal.
  • the modulation process for outputting the optical signal with the waveguide arm in this embodiment can also be divided into two different modulation processes as in the case of the second embodiment.
  • the microring resonator used in the above embodiment is generally a circular ring resonator.
  • the microring resonator such as: racetrack shape, ellipse shape, butterfly shape or copper shape, as shown in FIG. To Figure 11.
  • Embodiment 2 and Embodiment 3 a single micro-ring resonator is used, but due to the resonance characteristics of a single micro-ring resonator, the output optical signal of the waveguide arm is in a phase where the phase changes rapidly, and the power of the optical signal changes. Very significant, this will directly result in a smaller bandwidth of the optical signal passing through the waveguide arm and the single microring resonator.
  • the embodiment may also improve the bandwidth in the following manners:
  • each set of microring resonators in this embodiment includes at least one microring resonator cascaded in a direction perpendicular to the waveguide arm by coupling, and the cascade is called parallel.
  • the parallel transmission of the microring resonators increases the bandwidth of the waveguide arm through the optical signal.
  • each set of microring resonators includes a direction and a wave parallel to the waveguide arm
  • the at least one microring resonator coupled to the lead arm and the microring resonator are not coupled.
  • the coupling of the plurality of microring resonators and the waveguide arm is called a series connection, and the bandwidth of the waveguide arm through the optical signal can also be increased.
  • each of the micro-ring resonators includes at least three micro-ring resonators coupled according to a mesh structure, and the mesh-coupled micro-ring resonator needs to consider the final optical signal output. Whether the direction can be output to the output beam splitter.
  • This embodiment is mainly used in a device for directly performing optical switching and optical routing in optical communication, and optical conversion and electro-optical conversion when optical communication is performed in exchange routing are omitted.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Description

一种光开关 本申请要求于 2008 年 6 月 30 日提交中国知识产权局、 申请号为 200810128217.5、 发明名称为 "一种光开关" 的中国专利申请的优先权, 在此 并入其全部内容作为参考。
技术领域
本发明涉及光通信领域, 尤其涉及光通信中实现光交换的一种光开关。 背景技术
目前已经商业应用的光开关有机械式光开关、 MEMS (微机械式, Micro-Electro-Mechanical Systems ) 光开关和波导型热光光开关等, 这些 光开关的响应速度一般为毫秒量级, 但有些交换技术所需要的光交换光开关, 需要有纳秒量级的开关响应速度, 如: OBS (Optical Burst Switch: 光突发 交换)技术、 OPS ( Optical Packet Switching: 光分组交换)。
目前响应速度在纳秒两级的光开关一般利用硅材料载流子的等离子色散 效应实现。 原理如下: 在传输光信号的波导周围注入硅材料, 在硅材料上施 加一定的电压会导致硅材料载流子浓度发生变化, 从而产生硅材料载流子的 等离子色散效应, 这种等离子色散效应将引起硅材料折射率发生变化, 进而 改变光信号在波导中传输的等效光程, 以达到改变最后从波导中的光信号的 相位。 上述硅材料载流子的等离子色散效应具有纳秒以上的响应速度, 非常 适合用于高速光开关。
按照波导结构和工作原理来划分, 现有技术中利用上述硅材料载流子的 等离子色散效应的光开关主要包括: Y 分叉型和全内反射型的数字型光开关 (DOS, Digital Optical Switch)结构, 基于 MZI ( Much - Zahnder , 马赫-曾 德)干涉型光开关结构、 以及利用微环谐振腔的光开关结构等。
其中, Υ分叉或全内反射型的数字型光开关需要较大的控制功耗, 一般不 适合大规模光开关阵列的制作。 如图 1所示, 图示出了常规 MZI干涉型光开关结构, 在 1X2分束器输出 的两个波导臂中的其中一个波导臂上设置了相位调制器, 相位调制器由硅材 料制成, 利用硅材料载流子的等离子色散效应控制输出波导的光信号的相位。 当相位调制器使得光信号产生的相位变化为 π时, 两个波导臂输出的光信号 将会在 2X2分束器的其中一个输出端 Α产生干涉输出, 而另一个输出端 B将 不会有光信号输出; 当相位调制器使得光信号产生的相位变化不是 π时, 两 个波导臂输出的光信号将会在 2X2分束器的其中一个输出端 Β产生干涉输出 , 而另一个输出端 Α将不会有光信号输出, 即可实现光开关的功能。
上述 MZI 干涉型光开关需要两个波导臂中光强分束的具有对称性, 但由 于硅材料的载流子色散效应引起硅材料的折射率变化的同时, 伴随的吸收光 信号的能量也非常大, 造成最后输出的光信号产生较大附加损耗, 严重改变 MZI干涉型光开关中两个波导臂中光强的对称性,并且不能使得光开关消光比 控制在较小范围内(目前光信号的损耗只能控制在 10dB左右)。 并且上述 MZI 干涉型光开关需要严格的 π相位控制。
如图 2 所示, 图示出了常规的利用微环谐振腔的光开关结构示意图, 从 波导 1的入射端输入的光信号, 如果该光信号的波长符合谐振条件, 在波导 1 与微环谐振腔的耦合处耦合到微环谐振腔中传输, 并从波导 2 与微环谐振腔 的耦合处耦合到波导 2传输, 最后该光信号从波导 2的反射端输出; 如果该 光信号的波长不符合谐振条件, 将直接从波导 1 的直通端输出, 这种控制光 信号从不同端输出的功能就是光开关需要的功能。
由于从反射端输出光信号的情况要求光信号的波长符合谐振条件 , 上述 利用微环谐振腔的光开关结构, 对光信号的波长非常敏感, 要获得高消光比 时, 微环谐振腔的损耗对该光开关中传输的光信号的附加损耗影响较大。 发明内容
本发明的实施例提供一种光开关, 该光开关具有较高的消光比, 并且对 于光波波长并不会特别敏感。 为达到上述目的, 本发明的实施例采用如下技术方案:
一种光开关, 包括:
输入分束器, 用于输入光信号;
输出分束器, 用于输出光信号;
两个波导臂, 连接在所述输入分束器和输出分束器之间, 用于从输入分 束器向输出分束器传输光信号;
两组微环谐振腔, 分别与所述两个波导臂耦合, 用于分别调整对应波导 臂输出的光信号的相位。 谐振腔, 能够调整在波导臂中传输的光信号的相位, 使得两个波导臂输出的 光信号具有相位差, 实现光开关功能。 本实施例中输入分束器输入的光信号 在两个波导臂中传输, 所述两个波导臂中的光信号分别耦合到对应的微环谐 振腔中, 通过改变, 微环谐振腔的折射率, 这样就可以改变光信号在微环谐 振腔中传输的等效光程, 并最终改变输出光信号的相位。 如果上述两组微环 谐振腔对其对应的波导臂中光信号产生的相位改变刚好为 π的偶数倍和奇数 倍的两状态时, 对应波导臂输出的光信号的强度相等或分别相等。 这样就可 以控制从输出分束器输出的光信号, 实现高消光比光开关的功能。
由于本实施例采用对两个波导臂同时进行控制, 只需要两个波导臂中光 信号的相位相差 π的偶数倍或者 π的奇数倍, 并不要求微环谐振腔完全处于 谐振状态, 对于不同波长的光信号, 可以让微环谐振腔不处于谐振状态, 采 用不同的调制点, 使得波导臂中光信号的相位相差 π的偶数倍或者 π的奇数 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中常规 MZ I干涉型光开关结构图;
图 2为现有技术中利用微环谐振腔的光开关结构图;
图 3为本发明实施例 1中光开关结构图;
图 4为本发明实施例 2中光开关结构图;
图 5为本发明实施例 2中波导臂输出光信号的响应图;
图 6为本发明实施例 2中 p-i-n结注入的波导结构示意图;
图 7为本发明实施例 3中光开关结构图;
图 8为本发明实施例 3中跑道形微环谐振腔示意图;
图 9为本发明实施例 3中椭圓形微环谐振腔示意图;
图 10为本发明实施例 3中微碟形微环谐振腔示意图;
图 11为本发明实施例 3中铜钱形微环谐振腔示意图;
图 12为本发明实施例 3中按照并联连接的微环谐振腔的示意图; 图 1 3为本发明实施例 3中按照串联连接的微环谐振腔的示意图; 图 14为本发明实施例 3中按照网状连接的微环谐振腔的示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例 , 都属于本发明保护的范围。
实施例 1:
如图 3所示, 本实施例提供一种光开关, 包括: 输入分束器 31、 输出分 束器 32、 两个波导臂 33以及两组微环谐振腔 34。
该输入分束器 31上设有一个输入端和两个输出端, 输出分束器 32上设 有两个输入端和至少一个输出端, 在输入分束器 31的两个输出端和输出分束 器 32的两个输入端之间通过两个波导臂 33连接。 这样由输入分束器 31输入 的光信号通过两个波导臂 33传输到输出分束器 32 , 并最终从输出分束器 32 的输出端输出。
本实施例中的光开关关键在于: 在上述两个波导臂 33上分别耦合了两组 微环谐振腔 34 , 对在波导臂 33中传输的光信号进行相位调整。 上述光信号在 波导臂 33的传输过程中, 会耦合到微环谐振腔 34 中, 调整施加在微环谐振 腔 34上的电压可以该微环谐振腔 34的折射率, 这样就能够改变光信号在微 环谐振腔 34中传输的等效光程, 当光信号重新由微环谐振腔耦合回对应波导 臂 33时, 其相位发生了改变, 故而本实施例中的微环谐振腔 34 实现了对波 导臂 33中光信号的相位进行调整。
如果两组微环谐振腔 34对其对应的波导臂 33中光信号都进行相位调整, 并使得两个波导臂 33 输出的光信号的相位相差为 π的偶数倍或者 π的奇数 倍, 这样就可以使得在输出分束器 32将两个具有相位差的光信号耦合起来。 当相位差为 π的偶数倍时, 耦合后的光信号从输出分束器 32的一个输出端输 出; 当相位差为 π的奇数倍时, 耦合后的光信号从输出分束器 32的另一个输 出端输出, 或者不输出。
进一步地, 本实施例中的微环谐振腔 34采用载流子的等离子色散效应制 作, 所以, 调整施加在微环谐振腔 34上的电压可以调整 p-i-n注入区的载流 子浓度, 进而改变该微环谐振腔 34的折射率, 这样就能够改变光信号在微环 谐振腔 34中传输的等效光程。
由以上描述可知, 本实施例中的光开关通过微环谐振腔控制光信号的相 位, 从而实现光开关的功能, 具有较低的控制功耗。 由于微环谐振腔采用了 载流子的等离子色散效应制作, 载流子的等离子色散效应响应速度能够达到 纳秒级。 并且利用谐振腔的谐振特性, 使得在谐振点附近时, 不会因为载流 子的等离子色散效应吸收改变干涉两臂的相对光信号强度, 即在相位相差为 π的偶数倍或为 π的奇数倍的两状态时, 保证两输出光信号的在这两个状态 时光强分别相等, 所以, 本实施例提供的光开关具有较高的消光比。 并且由于本实施例采用对两个波导臂同时进行控制, 只需要两个波导臂 中光信号的相位相差 π的偶数倍或者 π的奇数倍, 并不要求微环谐振腔完全 处于谐振状态, 对于不同波长的光信号, 可以让微环谐振腔不处于谐振状态, 采用不同的调制点, 使得波导臂中光信号的相位相差 π的偶数倍或者 π的奇 实施例 2:
本实施例还提供一种光开关, 如图 4 所示, 本实施例中光开关采用 1X2 型分束器作为输入分束器, 用来输入光信号; 同时, 该光开关采用 2X2 型分 束器作为输出分束器, 在 1X2型分束器和 2X2型分束器之间通过两个波导臂 相连, 并在两个波导臂分别设置了两组相应的 T环谐振腔, 并且这两组 环 谐振腔的参数相同, 即: 都是参数相同的单微环谐振腔。
本实施例中的 1X2型分束器可以采用 Y分叉波导制成, 所述 2X2型分束 器可以采用 X结波导制成。 上述两种分束器均可以采用定向耦合器制成, 或 者由多模干涉器制成。
当光信号从 1X2 型分束器的两个输出端分别输出到两个波导臂之后, 经 由单微环谐振腔的作用, 波导臂中输出光信号的频率响应可表示如下:
Η{ω) = ρ - γ ^(]ωΤ + φ)
+ ( 1 ) 在上面公式中, ρ 为波导臂与单微环谐振腔的耦合区为直通时的场强比 例, 并且功率耦合比例满足:
Figure imgf000008_0001
γ 为光绕单微环谐振腔一周的场强 剩余比例, 光绕单微环谐振腔一周的功率损耗为: Los s=201 gY, φ为调节时归 一化的相位的偏移。 ω为光信号中光子的角频率, 因此 ω=2πί" , f 为光信号中 光子的频率。 T为光绕单微环谐振腔一周所需的时间, T=L*ng/c , L为单微环 谐振腔的周长, ng为群折射率, c为真空中的光速。
由上面频率响应可以得知输出光信号的功率为: τ / 、 + / - 2γρ ο ^(ωΤ ^ φ)
1{ω) =―—— ― ―
ί -\- χ ρ - 2γρ ο (ωΤ + φ) (2) 输出光信号的相位为: tan—1 {Im[H(»)]/ e[H(»)]} = tan
Figure imgf000009_0001
有上述公式(2 )和公式(3 )可以得出由波导臂输出的光信号的功率响 应图, 以及频语图, 具体见图 5 , 图 5中上半部分为输出光信号的功率随 ωΤ 的变化图, 图 5中下半部分为输出光信号的相位随 ωΤ的变化图。
通过分析图 5得出: 如果让两个波导臂输出的光信号分别对应于图 5 中 的 Α点和 Α,点, 则两个波导臂输出光信号之间的相位差为 π的偶数倍, 并且 两个波导臂输出的光信号的功率相等, 当这两个光信号在图 4 中的 2X2型分 束器中耦合后, 从 2X2 型分束器的其中一个输出端输出, 相当于本实施例中 的光开关处于 "ON"状态, 由于上述" ON"状态时, 两个波导臂输出光信号的功率 最高, 保证了 "ON"状态的附加损耗较低。 一般情况下,要使得所述两个波导臂 输出的光信号相位差为 π的偶数倍, 需要光信号在所述微环谐振腔中发生谐 振, 并谐振后耦合到对应的波导臂中传输。
如果让两个波导臂输出光信号分别对应于图 5中的 Β点和 Β,点, 则两个 波导臂输出光信号之间的相位差为 π的奇数倍, 并且两个波导臂输出的光信 号的功率相等, 当这两个光信号在图 4 中的 2X2型分束器中耦合后, 从 2X2 型分束器的另一个输出端输出, 相当于本实施例中的光开关处于 "OFF"状态, 由于上述" OFF"状态时, 两个波导臂输出光信号的功率相等, 于是避免了由于 两个波导臂输出光信号的功率不平衡而导致的消光比不高的缺点。 并且, 由 于" OFF"状态只需要保证 B点和 B,点的相位相差 π的奇数倍, 由两个波导臂输 出光信号同时调制产生 π的奇数倍的相位差, 相对于现有技术中只调制一个 波导臂的光信号而言, 本实施例中的调制 π的奇数倍的相位差更为容易。
上述的 "ON"状态和 "OFF"状态共同实现了光开关的功能。 在微环谐振腔中通过施加电压改变载流子浓度, 从而使得微环谐振腔中 出现等离子色散效应, 进而该变该微环谐振腔的折射率, 这样就可以改变光 信号在微环谐振腔中传输的等效光程, 并最终改变输出光信号的相位。
本实施例中由于微环谐振腔采用了载流子的等离子色散效应制作, 载流 子的等离子色散效应响应速度能够达到纳秒级, 且具有较低的控制功耗。 并 且利用谐振腔的谐振特性, 使得在谐振点附近时, 不会因为载流子的等离子 色散效应吸收改变干涉两臂的相对光信号强度, 即在改变相位为 π 偶数和奇 数倍的两状态时, 保证两输出光信号的在两个状态时分别相等, 所以, 本实 施例提供的光开关具有较高的消光比。 束器不同的输出端输出, 例如:
第一种调制方式, 当光开关处于 "ON"状态,可以让两个波导臂输出的光信 号同时对应于图 5中的 A点, 当需要控制光开关转向" OFF"状态时, 可以通过 调制上述的单微环谐振腔, 将其中一个波导臂输出的光信号调制到 B点 (称 浅调制), 而将另一个波导臂输出的光信号调制到 B,点 (称深调制), 即可将 光开关调成" OFF"状态。
图 5是较理想条件下得到的响应曲线, 虽然在实际的浅调制和深调制时 响应曲线略有不同, 可以通过将单微环谐振腔与波导臂之间设计成过耦合状 态, 使得深调制附加的损耗不会破坏过耦合条件, 这样就可以使浅调制和深 调制的响应曲线不会有太大差别。 为了使的光开光的" OFF"状态更加精确, 可 以通过实际测量浅调制和深调制的响应曲线, 并在浅调制和深调制的响应曲 线与 B点及 B,点对应的状态点。 正是因为本实施例可以通过实际测量响应曲 线得到上述的状态点, 针对不同波长的光信号可以采用分别得到不同的响应 曲线, 故而本实施例中的光开关对波长不敏感, 并且本实施例只利用了波导 臂和微环谐振腔耦合后其输出光信号的相位变化特性, 并没有要求微环谐振 腔需要工作在谐振点上, 比图 2 中直接利用微环谐振腔的现有技术光开关所 能应用的波长范围更大。
第二种调制方式, 当光开关处于 "ON"状态,可以让两个波导臂输出的光信 号分别对应于图 5中的 A点和 A'点。 当需要控制光开关转向" OFF"状态时, 可 以通过调制上述的单微环谐振腔, 即: 其中一个微环谐振腔利用 pn结注入或 M0S结构的电荷积累 (对应等效折射率下降), 使得对应波导臂输出的光信号 调制到 B点; 而另一臂利用 pn结反偏耗尽或 M0S结构的耗尽 (对应等效折射 率上升)方式, 使得对应波导臂输出的光信号调制到 B,点。 这种调制方式近 似完全对称的双臂推挽工作方式, 都处于浅调制, 调制带来的附加损耗较小, 控制方便。 本实施例不能采用本征硅( i-S i )作波导材料, 如采用 1 X 1017的 p型或 n型硅材料, 这样会增加波导的传输损耗。
采用上述的两种调制方式, 所需要的调制功耗都可以控制在 uW (微瓦) 量级, 特别是采用 M0S 结构的话。 因为硅的载流子色散效应响应速度在纳秒 量级以上, 器件速度一般能方便达到纳秒量级, 如通过结构的改进调制速度 甚至可以达到 ps (皮秒)量级。
由于本实施例需要对两个波导臂进行调制, 而两个波导臂的参数可能会 存在微小的差异, 即使在微环谐振腔调制精确的前提下, 两个波导臂输出的 光信号可能还是会存在差异。 为了弥补上述差异, 需要考虑到制作的容差, 具体的容差可以采用如下方式实现: 在其中的一个波导臂上和分束器上设置 一个利用热光效应的相位补偿器件, 进行有效的弥补, 最简单的方法就在直 波导臂附近设计加热电极, 利用硅材料的热光效应进行初始相位调制, 由于 热光效应几乎不会增加波导的传输损耗, 可较方便调整该光开关初始的最佳 状态。
如果光开关的制作精度可以保证, 可以通过固定的相位补充器代替上述 热光效应的相位补偿器件, 例如: 两个波导臂中的一个波导臂为弯曲波导或 锥形波导; 或者将所述两个波导臂制成长度不同的波导臂。
如图 6 所示, 本实施例中光开关可以在顶层硅的厚度为几百纳米的 S0I 材料上制作, 亚微米尺寸的硅基单模波导利用等离子干法刻蚀工艺来制作, 并采用在氢气保护下进行高温退火, 进而减小波导侧壁粗糙引起的损耗; 在 利用载流子浓度的色散效应的微环谐振腔上, 可以通过 pn结、 p-i-n结或者 M0S结构实现, pn结、 p-i-n结引起的色散效应较强, 而 M0S结构制成的微环 谐振腔需要的控制功耗最小。
实施例 3:
本实施例采用了一些器件的替换, 主要是将 2X2 型分束器替换成了 2X1 型分束器, 即可实现门开关的功能, 也属于光开关的一种, 有时本实施例中 的门开关也可以称为光调制器。
如图 7所示, 该光调制器的结构和图 4 中光开关的结构基本相同, 唯一 区别就是本实施例中的输出分束器为一个 2X1型分束器, 而不是一个 2X2型 分束器。 由于只是输出分束器上发生了改变, 所以, 两个波导臂输出光信号 的响应图还和图 5 —样, 这样, 在本实施例中的光开关的具体工作状态描述 ^口下:
如果让两个波导臂输出的光信号分别对应于图 5中的 A点和 A,点, 则两 个波导臂输出光信号之间的相位差为 π的偶数倍, 并且两个波导臂输出的光 信号的功率相等, 当这两个光信号在图 7中的 2X1型分束器中耦合后, 从 2X1 型分束器的输出端输出,相当于本实施例中的光调制器处于 "ON"状态, 由于上 述" ON"状态时, 两个波导臂输出光信号的功率最高,保证了 "ON"状态的附加损 耗较低。 一般情况下, 要使得所述两个波导臂输出的光信号相位差为 π的偶 数倍, 需要光信号在所述微环谐振腔中发生谐振, 并谐振后耦合到对应的波 导臂中传输。
如果让两个波导臂输出光信号分别对应于图 5中的 Β点和 Β,点, 则两个 波导臂输出光信号之间的相位差为 π的奇数倍, 并且两个波导臂输出的光信 号的功率相等, 当这两个光信号在图 7 中的 2X1型分束器中耦合后, 将不会 输出光信号,相当于本实施例中的光调制器处于 "OFF"状态。 由于" OFF"状态只 需要保证 B点和 B'点的相位相差 π的奇数倍, 由两个波导臂输出光信号同时 调制产生 π的奇数倍的相位差, 相对于现有技术中只调制一个波导臂的光信 号而言, 本实施例中的调制 π的奇数倍的相位差更为容易。
上述的 "ON"状态和 "OFF"状态共同实现了门开关的功能, 即实现了光调制 器的功能。
为了能够让本实施例中的光开关能够有多种变化, 在实际制作时, 由于 所选 2X1型分束器的不同, 可以改变" ON"状态和 "OFF"状态的条件, 例如: 如 果两个波导臂输出光信号分别对应于图 5中的 B点和 B'点, 则两个波导臂输 出光信号之间的相位差为 π的奇数倍, 2X1 型分束器的输出端则会输出光信 号; 如果波导臂输出的光信号分别对应于图 5中的 Α点和 Α,点, 则两个波导 臂输出光信号之间的相位差为 π的偶数倍, 则 2X1 型分束器的输出端不会输 出光信号。
本实施例中对与波导臂输出光信号的调制过程, 也可以和实施例 2 中的 情况一样分为两种不同的调制过程。
上述实施例中所用的微环谐振腔一般为圓环形谐振腔, 在实际运用时, 微环谐振腔有很多种变型, 例如: 跑道形、 椭圓形、 蝶形或者铜钱形, 具体 见图 8至图 11。
在上述实施例 2和实施例 3 中均采用了单微环谐振腔, 但由于单个微环 谐振腔的谐振特性, 导致波导臂输出光信号在相位变化快的地方, 同时光信 号的功率变化也非常显著, 这将直接导致该波导臂和单微环谐振腔通过光信 号的带宽较小。
为了提高带宽, 本实施例还可以采用如下几种方式提高带宽:
( 1 )如图 12 所示, 本实施例中的每组微环谐振腔包括在垂直于波导臂 的方向通过耦合的方式级联有至少一个微环谐振腔, 这种级联称为并联, 通 过微环谐振腔的并联可以提高波导臂通过光信号的带宽。
( 2 )如图 1 3 所示, 所述每组微环谐振腔包括在波导臂平行的方向与波 导臂耦合的至少一个微环谐振腔, 并且微环谐振腔之间不耦合, 这种多个微 环谐振腔和波导臂耦合的情况称为串联, 同样能够提高波导臂通过光信号的 带宽。
( 3 )如图 14 所示, 在所述每组微环谐振腔包括至少三个按照网状结构 耦合的微环谐振腔, 这种网状耦合的微环谐振腔, 需要考虑最后光信号输出 的方向是否能够输出到输出分束器中。
本实施例主要用在光通信中直接进行光交换和光路由的设备中, 省去了 光通信在进行交换路由时的光电转换和电光转换。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应所述以权利要求的保护范围为准。

Claims

权利 要求 书
1、 一种光开关, 其特征在于, 包括:
输入分束器, 用于输入光信号;
输出分束器, 用于输出光信号;
两个波导臂, 连接在所述输入分束器和输出分束器之间, 用于从输入分束 器向输出分束器传输光信号;
两组微环谐振腔, 分别与所述两个波导臂耦合, 用于分别调整对应波导臂 输出的光信号的相位。
2、 根据权利要求 1所述的光开关, 其特征在于, 所述微环谐振腔为采用载 流子的等离子色散效应制作的光电调制微环谐振腔。
3、 根据权利要求 1所述的光开关, 其特征在于, 所述微环谐振腔通过调整 光信号在微环谐振腔中传输的等效光程, 进而调整对应波导臂输出的光信号的 相位。
4、 根据权利要求 1所述的光开关, 其特征在于, 所述两个波导臂中的光信 号通过微环谐振腔调整相位后, 两个波导臂中的光信号的相位相差为 π的偶数 倍时, 所述两个波导臂输出光信号的强度相等; 或者两个波导臂中的光信号的 相位相差为 π的奇数倍时, 所述两个波导臂输出光信号的强度相等。
5、 根据权利要求 1所述的光开关, 其特征在于, 所述输入分束器为 Υ分叉 波导、 或者由定向耦合器或多模干涉器制成的 1X2型分束器。
6、 根据权利要求 1所述的光开关, 其特征在于:
在所述两个波导臂输出的光信号相位差为 π的偶数倍时; 或者在所述两个 波导臂输出的光信号相位差为 π的奇数倍时, 所述输出分束器的输出端输出光 信号。
7、 根据权利要求 1所述的光开关, 其特征在于:
在所述两个波导臂输出的光信号相位差为 π的偶数倍时, 所述输出分束器 的第一输出端输出光信号; 在所述两个波导臂输出的光信号相位差为 π的奇数倍时, 所述输出分束器 的第二输出端输出光信号。
8、 根据权利要求 6或 7所述的光开关, 其特征在于, 所述两个波导臂输出 的光信号强度相等。
9、 根据权利要求 6或 7所述的光开关, 其特征在于, 所述输出分束器为 X 结波导, 或者由定向耦合器或多模干涉器制成的 2X2型分束器。
10、 根据权利要求 1 所述的光开关, 其特征在于, 所述每组微环谐振腔包 括在垂直于波导臂的方向通过耦合的方式级联有至少一个微环谐振腔; 或者 所述每组微环谐振腔包括在波导臂平行的方向与波导臂耦合的至少一个微 环谐振腔, 并且微环谐振腔之间不耦合; 或者
所述每组微环谐振腔包括至少三个按照网状结构耦合的微环谐振腔。
11、 根据权利要求 1 所述的光开关, 其特征在于, 所述两个波导臂中的一 个波导臂上设置有相位补偿器。
12、 根据权利要求 11所述的光开关, 其特征在于, 所述相位补偿器为热光 效应相位补偿器; 或者
通过两个波导臂中的一个波导臂为弯曲波导或锥形波导实现所述相位补偿
H; 或者
通过两个波导臂长度不同实现所述相位补偿器。
1 3、 根据权利要求 1至 7中任意一项或者 10至 12中任意一项所述的光开 关, 其特征在于, 所述微环谐振腔为圓形或跑道形或椭圓形或蝶形或铜钱形。
PCT/CN2009/072150 2008-06-30 2009-06-05 一种光开关 WO2010000170A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810128217.5 2008-06-30
CN2008101282175A CN101620298B (zh) 2008-06-30 2008-06-30 一种光开关

Publications (1)

Publication Number Publication Date
WO2010000170A1 true WO2010000170A1 (zh) 2010-01-07

Family

ID=41465489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072150 WO2010000170A1 (zh) 2008-06-30 2009-06-05 一种光开关

Country Status (2)

Country Link
CN (1) CN101620298B (zh)
WO (1) WO2010000170A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884031A2 (de) 2013-12-13 2015-06-17 Walter Degelsegger Türblatt mit einem in eine stirnseitige Ausnehmung eingesetzten Schlosskasten
CN111563583A (zh) * 2020-04-03 2020-08-21 清华大学 基于神经常微分方程的光计算芯片设计方法及光计算芯片
CN114296177A (zh) * 2022-01-25 2022-04-08 吉林大学 基于二氧化硅/聚合物混合波导的跑道型微环光开关及其制备方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726801B (zh) * 2008-10-28 2011-11-02 华为技术有限公司 一种光开关装置的控制方法和光开关装置
CN102636841B (zh) * 2012-04-27 2014-11-12 浙江大学 一种微环辅助的环镜结构
CN103904555B (zh) * 2012-12-28 2017-03-15 上海贝尔股份有限公司 光学器件、可调激光器以及实现可调激光器的方法
CN103487889A (zh) * 2013-08-12 2014-01-01 上海交通大学 基于双谐振腔耦合马赫-曾德尔光开关结构
CN103913803A (zh) * 2014-03-10 2014-07-09 上海大学 基于串联分形拓扑结构的延迟均衡器
CN105308500B (zh) * 2014-04-09 2019-02-12 华为技术有限公司 一种光逻辑器件及光计算方法
JP2017527842A (ja) 2014-07-18 2017-09-21 華為技術有限公司Huawei Technologies Co.,Ltd. 波長選択スイッチ及び波長選択方法
CN104503185B (zh) * 2014-12-16 2017-09-26 兰州大学 一种基于微环谐振器的二进制光学减法器
US20160356959A1 (en) * 2015-06-05 2016-12-08 Huawei Technologies Canada Co., Ltd. Tunable Optical Element
CN105092531B (zh) * 2015-08-31 2017-10-20 浙江大学 基于双环谐振腔辅助的马赫‑曾德尔干涉仪光学生物传感器
CN105207057B (zh) * 2015-10-29 2018-01-23 中国科学院半导体研究所 波长快速调谐的单片集成外腔振荡激光器
CN106125452B (zh) * 2016-06-28 2018-10-02 东南大学 基于单层石墨烯的单一结构的双逻辑门光调制器件
CN117130101A (zh) * 2016-12-19 2023-11-28 朗美通经营有限责任公司 具有椭圆光束的自由空间多路传送切换器
CN109884809B (zh) * 2017-12-06 2020-10-16 海思光电子有限公司 用于硅基双微环光开关的波长对准方法、装置和系统
CN109240019B (zh) * 2018-11-30 2024-04-02 桂林电子科技大学 一种二进制全光比较器
CN112904479B (zh) * 2021-01-27 2022-03-29 华中科技大学 一种基于反向Fano耦合微环的光开关
CN113703244B (zh) * 2021-08-19 2023-12-19 扬州大学 一种大规模集成的电光微环光学相控阵
CN113791502B (zh) * 2021-11-16 2022-03-22 之江实验室 一种基于耦合环形谐振腔的超高消光比集成电光调制器
CN114815325A (zh) * 2022-06-29 2022-07-29 浙江大学 一种基于热光调制的微环辅助mzi光开关
WO2024065174A1 (zh) * 2022-09-27 2024-04-04 华为技术有限公司 光发射机、光发射方法、光模块、设备及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475704A (en) * 1993-07-21 1995-12-12 Samsung Electronics Co., Ltd. Optical processor with booster output
CN1361875A (zh) * 1999-05-21 2002-07-31 内诺维什技术公司 椭圆形谐振器装置
CN1292273C (zh) * 2005-02-05 2006-12-27 中国科学院上海光学精密机械研究所 具有波长选择性的2×2波导光开关
CN101126827A (zh) * 2007-10-09 2008-02-20 浙江大学 基于谐振环辅助的mz干涉结构的光学隔离器
CN101140343A (zh) * 2007-10-18 2008-03-12 中国科学院长春光学精密机械与物理研究所 一种微谐振环信道选择光开关
US20080123701A1 (en) * 2005-12-30 2008-05-29 Jian-Jun He Wavelength switchable semiconductor laser using half-wave coupled active double-ring resonator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078605A (en) * 1998-02-20 2000-06-20 Massachusetts Institute Of Technology Track-changing utilizing phase response of resonators

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475704A (en) * 1993-07-21 1995-12-12 Samsung Electronics Co., Ltd. Optical processor with booster output
CN1361875A (zh) * 1999-05-21 2002-07-31 内诺维什技术公司 椭圆形谐振器装置
CN1292273C (zh) * 2005-02-05 2006-12-27 中国科学院上海光学精密机械研究所 具有波长选择性的2×2波导光开关
US20080123701A1 (en) * 2005-12-30 2008-05-29 Jian-Jun He Wavelength switchable semiconductor laser using half-wave coupled active double-ring resonator
CN101126827A (zh) * 2007-10-09 2008-02-20 浙江大学 基于谐振环辅助的mz干涉结构的光学隔离器
CN101140343A (zh) * 2007-10-18 2008-03-12 中国科学院长春光学精密机械与物理研究所 一种微谐振环信道选择光开关

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884031A2 (de) 2013-12-13 2015-06-17 Walter Degelsegger Türblatt mit einem in eine stirnseitige Ausnehmung eingesetzten Schlosskasten
CN111563583A (zh) * 2020-04-03 2020-08-21 清华大学 基于神经常微分方程的光计算芯片设计方法及光计算芯片
CN111563583B (zh) * 2020-04-03 2022-08-09 清华大学 基于神经常微分方程的光计算芯片设计方法及光计算芯片
CN114296177A (zh) * 2022-01-25 2022-04-08 吉林大学 基于二氧化硅/聚合物混合波导的跑道型微环光开关及其制备方法

Also Published As

Publication number Publication date
CN101620298B (zh) 2011-04-20
CN101620298A (zh) 2010-01-06

Similar Documents

Publication Publication Date Title
WO2010000170A1 (zh) 一种光开关
Jia et al. WDM-compatible multimode optical switching system-on-chip
Li et al. Ring resonator modulators in silicon for interchip photonic links
US8625936B1 (en) Advanced modulation formats using optical modulators
Gutierrez et al. Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance
WO2015021577A1 (zh) 基于双谐振腔耦合马赫—曾德尔光开关结构
CN103293715A (zh) 一种基于微环-马赫曾德尔干涉仪结构的电光调制器
US20020159684A1 (en) Novel optical waveguide switch using cascaded mach-zehnder interferometers
Pathak Photonics integrated circuits
WO2016149289A1 (en) Differential ring modulator
CN103064199A (zh) 反射型可调光延迟线
Zhixun et al. Hybrid photonic-plasmonic electro-optic modulator for optical ring network-on-chip
CN110221385B (zh) 一种基于石墨烯的波导集成的多模电光调制器及制作方法
Zhou et al. Wavelength-selective switching using double-ring resonators coupled by a three-waveguide directional coupler
CN114942533A (zh) 高调制效率微环调制器
Chen et al. Analysis of a silicon reconfigurable feed-forward optical delay line
US20210116726A1 (en) Dual-slab-layer low-loss silicon optical modulator
CN106842631B (zh) 一种可集成多功能光学调制器
Wang et al. Ultrafast and high extinction ratio 1× 4 electro-optical switch based on cascaded dual-output MZI
CN217587794U (zh) 高调制效率微环调制器
Ding et al. Demonstration of a directed XNOR/XOR optical logic circuit based on silicon Mach–Zehnder interferometer
CN115755442A (zh) 一种基于波导上硫化锑的o波段多模干涉型硅基光开关
CN104503185B (zh) 一种基于微环谐振器的二进制光学减法器
Hu et al. An integrated device for electro-optic modulation and dense wavelength division multiplexing based on photonic crystals
Shu et al. A polarization multiplexing optical circuit for efficient phase tuning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09771940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09771940

Country of ref document: EP

Kind code of ref document: A1