WO2010099700A1 - 上行资源分配、状态报告发送方法及装置 - Google Patents
上行资源分配、状态报告发送方法及装置 Download PDFInfo
- Publication number
- WO2010099700A1 WO2010099700A1 PCT/CN2010/000264 CN2010000264W WO2010099700A1 WO 2010099700 A1 WO2010099700 A1 WO 2010099700A1 CN 2010000264 W CN2010000264 W CN 2010000264W WO 2010099700 A1 WO2010099700 A1 WO 2010099700A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- uplink resource
- radio bearer
- uplink
- tokens
- resource allocation
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
Definitions
- the present invention relates to the field of wireless communication technologies, and in particular, to an uplink resource allocation, a status report sending method, and an apparatus. Background technique
- the uplink scheduling process of the existing mobile communication system mainly includes two aspects, one is the Buffer Status Report (BSR) mechanism, and the other is the uplink resource allocation process.
- BSR Buffer Status Report
- the specification of the existing 3GPP LTE R8 defines the format and content of the BSR report sent by the mobile terminal UE (User Equipment) to the base station in 3GPP TS 36.321 V8.3.0. Among them, with QoS
- the short BSR reports only the buffered data amount BS (Buffer Size) with the highest priority RBG, and its format is as shown in FIG. 1
- the long BSR can report the BS of four RBGs, and its format is as shown in FIG. 2 .
- the LCG ID is the identification number of the logical channel group
- the Buffer Size is the amount of buffered data for each RBG
- Oct is one byte.
- the uplink resource allocation process (which may also be referred to as an uplink rate control process)
- the uplink resource allocation process in the current LTE specification is also defined in 3GPP TS 36.321 V8.3.0 and 3GPP TS 36.300 V8.6.0, and the resource allocation process on the UE side is mainly This is done by the token bucket mechanism, as shown in Figure 3:
- Each RB corresponds to a token bucket, where the BS is the amount of buffered data corresponding to the RB, and the priority bit rate (PBR) is the rate of actual injection in each period of the token bucket, that is, in each period.
- the PBR can be understood as the basic rate requirement of the RB or the basic guaranteed rate requirement.
- the value is a fixed value related to the RB priority.
- Bj is the number of tokens in the token bucket, and R is the current value. The amount of data actually sent during the send cycle.
- Step 1 Update Bj according to PBR when the uplink data transmission period arrives.
- Step 2 Allocate resources for all RBs with Bj>0 according to the order of RB priority from high to low, and Update Bj according to the result of resource allocation (Bj can be negative, which can avoid frequent segmentation and assembly of data packets);
- Step 3 If there are still uplink resources remaining, allocate resources to each RB according to the order of priority from high to low (regardless of the size of the Bj value), until the buffered data of the RB is sent or there is no uplink resource remaining (this step) Bj is no longer updated).
- the first uplink resource allocation is performed in the foregoing step 2, and the uplink resource is allocated to the RB of the Bj>0 according to the minimum value of the corresponding Bj, the corresponding BS, and the current remaining uplink resource, so as to preferentially satisfy the RB with the higher priority.
- the purpose of the PBR rate requirement is performed in the foregoing step 2, and the uplink resource is allocated to the RB of the Bj>0 according to the minimum value of the corresponding Bj, the corresponding BS, and the current remaining uplink resource, so as to preferentially satisfy the RB with the higher priority.
- the second uplink resource allocation is performed, and the remaining uplink resources after the first uplink resource allocation are allocated to the RBs, so as to achieve the purpose of fully utilizing the uplink resources.
- the ideal situation that the base station performs the uplink resource allocation for each UE according to the BSR reported by each UE is that, when the UE allocates the uplink resource to each RB by using the token bucket mechanism, the uplink resources obtained by the UE are sufficient to complete the uplink in the foregoing step 1.
- Resource allocation that is, meeting the PBR rate requirements of each RB.
- the base station may not be able to allocate the uplink resources to the UEs properly. That is, after the uplink resources obtained by the UEs can meet the PBR rate requirements of the RBs, the uplink resources remain. The uplink resources obtained by the UE cannot meet the PBR rate requirements of each RB.
- the UE when a UE performs uplink resource allocation, the PBR rate requirement corresponding to each RB is satisfied, and after the remaining uplink resources are allocated to each RB, and the cache data volume of the RBG of the UE is still large, the UE caches the cache. After the data is reported to the base station, the base station still allocates more uplink resources to the UE according to the buffered data volume. The uplink resources are limited, and the uplink resources allocated by the base station to other UEs are insufficient to meet the PBR rate requirements of other UEs. It is unreasonable for the base station to allocate uplink resources to each UE.
- the UE performs uplink resource allocation for each RB according to the token bucket mechanism. After the first uplink resource allocation is performed, and the PBR rate requirement corresponding to each RB is met, if the uplink resource remains, the second uplink resource allocation is performed. , that is, the remaining uplink resources are allocated to the RBs in descending order of priority, assuming that one RB obtains the remaining uplink resources, but the Bj corresponding to the RB is not updated at this time, if the UE is in the next transmission period, The obtained uplink resources are insufficient to meet all RB correspondences. When the PBR rate is required, the UE may still allocate the uplink resource to the RB. Therefore, after the PBR rate requirement of the RB is met, the RB obtains more uplink resources and does not meet the PBR rate. The required RB causes the uplink resource allocation to be unreasonable. Summary of the invention
- An embodiment of the present invention provides an uplink resource allocation method and apparatus, which are used to enable a mobile terminal to allocate uplink resources to each radio bearer more reasonably;
- the embodiment of the invention further provides a method and a device for transmitting a status report, so that the base station allocates uplink resources to each mobile terminal more reasonably;
- the embodiment of the invention further provides a method and a device for transmitting a status report, so that the base station allocates uplink resources to each mobile terminal more reasonably.
- An embodiment of the present invention provides an uplink resource allocation method, including:
- the mobile terminal When the uplink data sending period arrives, the mobile terminal updates the number of tokens in the token bucket corresponding to each radio bearer;
- the second radio bearer is determined to perform the second uplink resource allocation, and the number of tokens in the token bucket corresponding to the second radio bearer is updated according to the second allocated uplink resource.
- the embodiment of the invention further provides a method for sending a status report, including:
- the mobile terminal determines, in the current uplink data transmission period, the first wireless bearer that obtains the uplink resource in the second uplink resource allocation or obtains the uplink resource quantity that is greater than a set threshold;
- the implementation of the present invention further provides a method for sending a status report, including: After the uplink resource allocation is performed in the current uplink data transmission period, the mobile terminal determines a smaller value of the number of tokens in the token bucket corresponding to the radio bearer and the corresponding cache data amount;
- the embodiment of the invention provides a mobile terminal, including:
- an updating unit configured to update the number of tokens in the token bucket corresponding to each radio bearer when the uplink data sending period arrives;
- a first allocation update unit configured to perform first uplink resource allocation on the first wireless bearer with the number of tokens greater than zero according to the order of the wireless bearer priorities from high to low, and according to the first allocation
- the uplink resource updates the number of tokens in the token bucket corresponding to the first wireless bearer
- a second allocation update unit configured to: when there is a remaining uplink resource, determine that the second wireless bearer performs the second uplink resource allocation, and update the second wireless bearer corresponding to the second allocated uplink resource The number of tokens in the token bucket.
- the embodiment of the invention further provides a mobile terminal, including:
- a determining unit configured to determine, in a current uplink data sending period, a first wireless bearer that obtains an uplink resource in a second uplink resource allocation or obtains an uplink resource quantity that is greater than a set threshold;
- a calculating unit configured to calculate, for each radio bearer group, a sum of buffer data amounts corresponding to the remaining radio bearers except the first radio bearer;
- a sending unit configured to send the sum value to the base station; or send the sum value to the base station when the setting condition is met.
- the embodiment of the invention further provides a mobile terminal, including:
- a determining unit configured to determine, after the uplink resource allocation is performed in the current uplink data sending period, a smaller value of the number of tokens in the token bucket corresponding to the wireless bearer and the corresponding cache data amount;
- a calculating unit configured to calculate, for each radio bearer group, a sum of the smaller values corresponding to each radio bearer included
- An embodiment of the present invention provides an uplink resource allocation method, where a mobile terminal allocates an uplink resource to each radio bearer, and in the method, when the uplink resource is allocated to the radio bearer in the first time and the second time, the uplink is allocated according to the uplink.
- the resource update radio bearer corresponds to the number of tokens in the token bucket. Therefore, the number of tokens can more accurately represent the satisfaction of the corresponding long-term statistical PBR rate, for example, obtaining uplink resources in the second uplink resource allocation.
- the corresponding token number is negative after updating, and the smaller the negative value, the corresponding token of the PBR updated corresponding to the wireless bearer is started at the beginning of the next uplink data transmission period.
- the uplink resource is not allocated to the radio bearer in the resource allocation. Therefore, the uplink resource allocated to the radio bearer that meets the PBR rate requirement can be reduced, and further avoided.
- more uplink resources are available, and there are still cases where the radio bearer does not meet the PBR rate requirement, and the UE is more reasonable to allocate uplink resources to each radio bearer.
- the embodiment of the present invention further provides a method for sending a status report, where the mobile terminal determines that the uplink resource is obtained in the second uplink resource allocation in the current uplink data transmission period, or the number of uplink resources obtained is greater than a set threshold. And calculating, for each radio bearer group, a sum of buffer data amounts corresponding to the remaining radio bearers except the first radio bearer; and transmitting the sum value to the base station. After obtaining the uplink resource that meets the PBR rate requirement, the first wireless bearer obtains the uplink resource again, indicating that the UE obtains more uplink resources that meet the PBR rate requirements corresponding to each wireless bearer, when the situation occurs.
- the sum value sent by the method is smaller than the sum of the buffered data amounts of all radio bearers constituting the wireless bearer group, and accordingly, the base station allocates the UE according to the received sum value.
- the uplink resources are less, and the reduced uplink resources can be allocated to other UEs, and the UEs that meet the PBR rate requirements of the RBs are required to obtain more uplink resources, and the PBR rate requirements corresponding to the RBs are not met.
- the base station is more reasonable in allocating uplink resources to each UE.
- the embodiment of the present invention further provides a method for sending a status report, and after performing uplink resource allocation in the current uplink data transmission period, determining the number of tokens in the token bucket corresponding to the radio bearer and corresponding thereto a smaller value of the amount of buffered data; and for each radio bearer group, calculating a sum value of a smaller value corresponding to each radio bearer included; and transmitting the sum value to the base station.
- the state 4 alarm is sent, when the number of tokens in the token bucket corresponding to the radio bearer is smaller than the corresponding amount of buffered data, the number of uplink resources allocated to the number of tokens can be allocated to the radio bearer to satisfy the corresponding PBR rate.
- the uplink resource that allocates the amount of the cached data to the wireless bearer can send all the cached data of the radio bearer. If the uplink resource that is actually allocated to the radio bearer is greater than the allocated uplink resource, it indicates that the radio bearer obtains more remaining uplink resources, and when the situation occurs, the cache of all radio bearers constituting the radio bearer group is sent. The sum of the data amount is smaller than that of the base station. Therefore, the base station allocates less uplink resources to the UE according to the received sum value, and thus the reduced uplink resource can be allocated to the base station.
- Figure 1 is a schematic diagram of the format of a short cache status report
- Figure 2 is a schematic diagram of the format of a long cache status report
- FIG. 3 is a schematic diagram of the principle of the token bucket mechanism
- FIG. 5 is a specific flowchart of step S401 and step S402 in the first embodiment of the present invention
- FIG. 6 is a specific flowchart of step S403 in the first embodiment of the present invention
- FIG. 7 is a schematic structural diagram of a mobile terminal according to Embodiment 2 of the present invention.
- Embodiment 8 is a method for sending a status report according to Embodiment 3 of the present invention.
- FIG. 9 is a schematic diagram of a format of a media access control layer protocol data unit
- FIG. 10 is a schematic structural diagram of a mobile terminal according to Embodiment 4 of the present invention.
- Embodiment 11 is a method for sending a status report according to Embodiment 5 of the present invention.
- FIG. 12 is a schematic structural diagram of a mobile terminal according to Embodiment 6 of the present invention. detailed description
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- the first embodiment of the present invention provides an uplink resource allocation method. As shown in FIG. 4, the method includes the following steps: Step S401: When an uplink data sending period arrives, the mobile terminal updates the number of tokens in the token bucket corresponding to each wireless bearer.
- Step S402 Perform first uplink resource allocation on the first radio bearer with the number of tokens greater than zero, and update the first radio bearer according to the uplink resource allocated for the first time, in order from highest to lowest radio bearer priorities. The number of tokens in the corresponding token bucket.
- the first uplink resource allocation is performed on the first wireless bearer whose number of tokens is greater than zero, which may be: determining, for the first radio bearer whose token number is greater than zero, the token in the corresponding token bucket The first, the first amount of the cached data, and the minimum number of the remaining uplink resources, the first uplink resource allocation is performed for the first wireless bearer according to the minimum value.
- Step S403 When there is a remaining uplink resource, determine that the second radio bearer performs the second uplink resource allocation, and update the order in the token bucket corresponding to the second radio bearer according to the second allocated uplink resource. Number of cards.
- the second radio bearer determines, by the second radio bearer, the second uplink resource allocation, where the second radio bearer is determined according to the order of the radio bearers from high to low, and the second radio bearer is corresponding to the second radio bearer. A smaller value of the amount of buffered data and the current number of remaining uplink resources is used for the second uplink resource allocation.
- each wireless bearer is a second radio bearer
- the allocation ratio between the second radio bearers is calculated according to the amount of buffer data corresponding to each second radio bearer, according to the allocation ratio, The remaining uplink resources are allocated to each of the second radio bearers.
- FIG. 5 is a specific implementation process of step S401 and step S402, that is, a specific implementation process of performing the first uplink resource allocation, including:
- Step S501 When the current uplink data transmission period arrives, the token bucket is corresponding to each RB.
- the tokens of the priority bit rate PBR corresponding to each RB are injected, that is, each RB is added with its corresponding PBR number on its corresponding original token number Bj, and the result is the corresponding Bj after the update.
- Step S502 If the step is entered from step S501, the RB with the highest priority is determined to be the RB to be processed. If the step is entered from step S512, the next priority of the priority of the RB processed in step S512 is determined. The RB is the RB to be processed; and the Bj corresponding to the RB to be processed and the corresponding buffered data amount BS are determined; and the current remaining uplink resource quantity is determined.
- Step S503 determining whether Bj is greater than zero, if yes, proceeding to step S504; otherwise, proceeding to step S512.
- Step S504 determining whether the BS is greater than Bj, if yes, proceeding to step S505; otherwise, proceeding to step S506.
- Step S505 Determine whether Bj is smaller than the number of remaining uplink resources, and if yes, go to step S506; otherwise, go to step S507.
- Step S506 Determine whether the BS is smaller than the remaining uplink resource quantity, and if yes, go to step S510; otherwise, go to step S507.
- Step S507 Allocating the remaining uplink resources to the RB.
- Step S508 updating Bj corresponding to the RB and its corresponding BS. Specifically:
- the number of uplink resources allocated to the RB is subtracted from the original Bj, and the result is taken as the updated Bj; the number of uplink resources allocated to the RB is subtracted from the original BS, and the result is used as the updated BS. After the update is completed, the allocation of uplink resources in the current uplink data transmission period is ended.
- Step S509 Allocate an uplink resource of the number of Bj to the RB.
- this step may also allocate an uplink resource that is greater than Bj to the RB, and the number of uplink resources that are specifically allocated beyond Bj is the size of the remaining portion of the data packet.
- Step S510 Allocate an uplink resource of the number of BSs to the RB.
- Step S511 Update Bj corresponding to the RB and its corresponding BS, and update the remaining uplink resource quantity. Specifically:
- the number of uplink resources allocated to the RB is subtracted from the original BS, and the result is used as the updated BS;
- the number of uplink resources allocated to the RB is subtracted from the original remaining uplink resource, and the result is used as the updated remaining uplink resource.
- Step S512 Determine whether the current RB to be processed is the RB with the lowest priority, and if yes, go to step S513; otherwise, go to step S502.
- Step S513 the process flow proceeds to step S403.
- the RB whose Bj is greater than zero is the first radio bearer in the foregoing step S402.
- FIG. 6 is a specific implementation process of step S403, that is, a specific implementation process of performing the second uplink resource allocation, including:
- Step S601 is the processing flow of step S401 and step S402 shown in Fig. 5 above.
- Step S602 if the step is entered from step S601, the RB with the highest priority is determined to be the RB to be processed. If the step is entered from step S608, the next priority of the priority of the RB processed in step S608 is determined.
- the RB is the RB to be processed; and the Bj corresponding to the RB to be processed and its corresponding BS are determined; and the current remaining uplink resource quantity is determined.
- Step S603 Determine whether the BS is smaller than the remaining uplink resource quantity, and if yes, go to step S606; otherwise, go to step S604.
- Step S604 allocating the remaining uplink resources to the RB.
- Step S605 Update Bj corresponding to the RB and its corresponding BS. Specifically:
- the number of uplink resources allocated to the RB is subtracted from the original Bj, and the result is taken as the updated Bj; the number of uplink resources allocated to the RB is subtracted from the original BS, and the result is used as the updated BS. After the update is completed, the allocation of uplink resources in the current transmission period is ended.
- Step S606 Allocate an uplink resource of the number of BSs to the RB.
- Step S607 Update Bj corresponding to the RB and its corresponding BS, and update the remaining uplink resource quantity. Specifically:
- the number of uplink resources allocated to the RB is subtracted from the original Bj, and the result is used as the updated Bj; the number of uplink resources allocated to the RB is subtracted from the original BS, and the result is used as the updated BS; The number of uplink resources allocated to the RB is subtracted from the original remaining uplink resource, and the result is used as the updated number of remaining uplink resources.
- Step S608 Determine whether the current RB to be processed is the RB with the lowest priority, and if yes, go to step S602; otherwise, go to step S609.
- Step S609 End the allocation of uplink resources in the current sending period.
- the RB that obtains the uplink resource in the second uplink resource allocation is the second wireless bearer in the foregoing step S403.
- the uplink resource allocation method according to the foregoing embodiment 1 of the present invention correspondingly, provides a mobile terminal, and the schematic structural diagram thereof is as shown in FIG.
- the updating unit 701 is configured to update the number of tokens in the token bucket corresponding to each radio bearer when the uplink data sending period arrives;
- the first allocation update unit 702 is configured to perform first uplink resource allocation on the first radio bearer with the number of tokens greater than zero according to the order of the radio bearer priorities from high to low, and according to the first allocated uplink resource Updating the number of tokens in the token bucket corresponding to the first radio bearer;
- the second allocation update unit 703 is configured to: when the remaining uplink resources are present, determine that the second radio bearer performs the second uplink resource allocation, and update the token corresponding to the second radio bearer according to the second allocated uplink resource. The number of tokens in the bucket.
- the first allocation update unit 702 performs the first uplink resource allocation on the first radio bearer whose number of tokens is greater than zero, specifically:
- the first uplink resource allocation is performed according to the minimum value.
- the second allocation update unit 703 determines that the second wireless bearer performs the second uplink resource allocation, specifically:
- each radio bearer Determining, by each radio bearer, a second radio bearer, calculating, according to the amount of buffer data corresponding to each second radio bearer, an allocation ratio between each second radio bearer, and remaining the uplink resources according to the allocation ratio Assigned to each second radio bearer; or
- Table 1 shows the state of each RB included in the UE at each moment by using the existing uplink resource allocation method, where the priority is high. To low is RB1-RB3.
- Table 2 shows the uplink resource allocation method and apparatus provided by the first embodiment and the second embodiment.
- the state of each RB included in the UE at each moment, wherein the priority is from high to low is RB1-RB3.
- Table 2 RB Status (Unit: Bytes) RB2 230 150 160 before one dispense
- the remaining uplink resources are zero, that is, after the PBR rate requirement corresponding to the RB1 is met, the uplink resource is allocated to the uplink resource, and the uplink resource obtained by the RB3 does not meet the corresponding PBR rate requirement;
- the method and the device provided in the first embodiment and the second embodiment after the second allocation of the current period, the number of tokens corresponding to the RB1 and RB2 that obtain the uplink resource in the second allocation are updated to -170 and -50, respectively, so The number of tokens corresponding to RB1 and RB2 is updated to -20 and 100 respectively before the first allocation of the period, and further, the uplink resource is not allocated to RB1 in the first allocation of the next period, and 100 bytes of uplink resources are allocated to R.
- Embodiment 3 the uplink resource allocation method and apparatus provided by the first embodiment and the second embodiment of the present invention enable the mobile terminal to allocate uplink resources to each radio bearer more reasonably.
- the third embodiment of the present invention provides a method for sending a status report. As shown in FIG. 8, the method includes: Step S801: The mobile terminal determines, according to the current uplink data transmission period, the uplink resource obtained in the second uplink resource allocation or the obtained uplink resource quantity. The first wireless carrier is greater than the set threshold.
- Step S802 Calculate, by each radio bearer group, a sum of buffer data amounts corresponding to the remaining radio bearers except the first radio bearer.
- Step S803 Send the sum value to the base station; or send the sum value to the base station when the setting condition is met.
- the method for transmitting the status report provided in the third embodiment of the present invention is described in detail below.
- the UE side allocates the obtained uplink resource to each RB included by the token bucket mechanism, including:
- Step 1 Update the number of tokens Bj according to the priority bit rate PBR when the uplink data transmission period arrives.
- Step 2 All resources are allocated to all RBs with Bj>0 according to the RB priority from high to low, and Bj is updated according to the resource allocation result (Bj can be negative, which can avoid frequent segmentation and assembly of data packets).
- Step 3 If there are still uplink resources remaining, allocate resources (in whatever Bj value) according to the order of priority from high to low, until the buffered data of the RB is sent or there is no remaining uplink resources.
- each RB is added with its corresponding PBR number on its corresponding original Bj, and the knot is used as the corresponding Bj after the update.
- the first uplink resource allocation is performed in the foregoing step 2.
- the UE determines the uplink resource allocated to the RB according to the buffered data amount BS corresponding to the RB, the Bj corresponding to the RB, and the number of remaining uplink resources.
- the corresponding Bj corresponding to the RB is updated, specifically: the number of uplink resources allocated to the RB is subtracted from the original Bj, and the result is used as the updated Bj; correspondingly, the corresponding RB is updated.
- the BS is specifically: subtracting the number of uplink resources allocated to the RB in the original BS, and the result is used as the updated BS; and correspondingly updating the remaining uplink resource quantity, specifically: subtracting the number of the remaining remaining resources into the RB Number of uplink resources, results The number of remaining uplink resources after the update.
- Step 3 above is the step performed after the completion of step 2, if there are still uplink resources remaining.
- the second uplink resource allocation is performed, that is, the uplink resource is allocated to the RB again.
- the BS corresponding to the RB is updated correspondingly, and specifically, the RB is allocated to the RB in the original BS.
- the number of uplink resources is used as the updated BS; the corresponding number of remaining uplink resources is also updated, specifically: the number of uplink resources allocated to the RB is subtracted from the original remaining resource quantity, and the result is used as the updated remaining uplink resource quantity.
- the Bj corresponding to each RB when step 3 is executed, the Bj corresponding to each RB is less than or equal to zero, and even if the RB obtains the uplink resource, the Bj is not updated.
- the first radio bearer is: the RB that obtains the uplink resource in the foregoing step 3 or the obtained RB whose uplink resource is greater than the set threshold.
- the amount of buffered data corresponding to each RBG is calculated in step S802
- the amount of buffered data corresponding to the first radio bearer is not considered, that is, only the sum of the buffered data amounts of the remaining RBs except the first radio bearer is calculated.
- step S803 may specifically be:
- the sum value is sent to the base station when the set condition is met. For example, when the sum value corresponding to the RBG is greater than a set threshold, the sum value is sent to the base station; or the sum value of the RBG is periodically sent to the base station, where the period is an integer multiple of the uplink data transmission period.
- the sum of the RBGs may be sent by a MAC Control element field corresponding to the RBG in the Medium Access Control Layer Protocol Data Unit MAC PDU sent by the mobile terminal to the base station.
- the format of the MAC PDU is shown in Figure 9.
- each radio bearer is filled in a MAC SDS (MAC Service Data Unit) field
- each MAC SDU field has a sub-header in the MAC header field of the MAC packet header.
- the sub-header corresponds to the sub-header, wherein the content of the "R” field is a reserved bit, and the "E” field indicates an extended field to indicate whether it is in the MAC header.
- the "L” field indicates the length of the corresponding MAC SDU or MAC control element, the length of "L” is identified by the "F”field
- the "LCID” field indicates the MAC SDU field or the MAC Control element field or the padding field.
- Logical channel identification Logical channel identification.
- the number of uplink resources obtained by the RB in the second uplink resource allocation and the RB may be obtained according to the previous uplink data transmission period.
- the corresponding PBR number is used for uplink resource allocation. For example, when the number of uplink resources obtained by the RB in the second uplink resource allocation is less than the PBR corresponding to the RB in the current uplink data transmission period, the number of uplink resources allocated to the RB is the number of PBRs corresponding to the RB and the previous one.
- the difference between the number of uplink resources obtained by the RB in the second uplink resource allocation in the uplink data transmission period; the number of uplink resources obtained by the RB in the second uplink resource allocation in the current uplink data transmission period is greater than the corresponding RB
- the uplink resource is no longer allocated to the RB.
- a fourth embodiment of the present invention provides a mobile terminal, and a schematic structural diagram thereof is shown in FIG.
- the determining unit 1001 is configured to determine, in the current uplink data sending period, the first wireless bearer that obtains the uplink resource in the second uplink resource allocation or the obtained uplink resource quantity is greater than a set threshold; the calculating unit 1002 is configured to use, for each wireless The bearer group calculates a sum of buffer data amounts corresponding to the remaining wireless bearers except the first radio bearer;
- the sending unit 1003 is configured to send the sum value to the base station; or send the sum value to the base station when the setting condition is met.
- the sum value is sent by a MAC Control element field corresponding to the wireless bearer group in a MAC PDU sent by the mobile terminal to the base station.
- the uplink resource is obtained again, indicating that the UE obtains the PBR rate corresponding to each radio bearer. Requiring more uplink resources, when this occurs, compared with the sum of the buffered data amounts of all radio bearers constituting the radio bearer group, The sum value of the method is smaller. Therefore, correspondingly, the base station allocates less uplink resources to the UE according to the received value, and further allocates the reduced uplink resource to other UEs, so as to avoid corresponding RB corresponding to each RB.
- the PBR rate requires that the UE obtains more uplink resources, and there is also a situation that the UE does not meet the PBR rate requirement corresponding to each RB, and the base station allocates uplink resources to each UE more reasonably.
- Embodiment 5 is a diagrammatic representation of Embodiment 5:
- the fifth embodiment of the present invention further provides a method for sending a status report.
- the method includes: Step S1101: After performing uplink resource allocation in a current uplink data sending period, the mobile terminal determines, in the token bucket corresponding to the radio bearer. a smaller value of the number of tokens and the corresponding amount of cached data; Step S1102: Calculate, for each radio bearer group, a sum of the smaller values corresponding to each radio bearer included;
- Step S1103 Send the sum value to the base station; or send the sum value to the base station when the setting condition is met.
- the UE side allocates the obtained uplink resource to each RB included by the token bucket mechanism, including:
- Step 1 Update the number of tokens Bj according to the priority bit rate PBR when the uplink data transmission period arrives.
- Step 2 All resources are allocated to all RBs with Bj>0 according to the RB priority from high to low, and Bj is updated according to the resource allocation result (Bj can be negative, which can avoid frequent segmentation and assembly of data packets).
- Step 3 If there are still uplink resources remaining, allocate resources (in whatever Bj value) according to the order of priority from high to low, until the buffered data of the RB is sent or there is no remaining uplink resources.
- each RB is added with its corresponding PBR number on its corresponding original Bj, and the knot is used as the corresponding Bj after the update.
- the first uplink resource allocation is performed in the foregoing step 2.
- the UE root The uplink resource allocated to the RB is determined according to the buffered data amount BS corresponding to the RB, the Bj corresponding to the RB, and the number of remaining uplink resources.
- the corresponding Bj corresponding to the RB is updated, specifically: the number of uplink resources allocated to the RB is subtracted from the original Bj, and the result is used as the updated Bj; correspondingly, the corresponding RB is updated.
- the BS is specifically: subtracting the number of uplink resources allocated to the RB in the original BS, and the result is used as the updated BS; and correspondingly updating the remaining uplink resource quantity, specifically: subtracting the number of the remaining remaining resources into the RB
- the number of uplink resources, the result is the number of remaining uplink resources after the update.
- Step 3 above is the step performed after the completion of step 2, if there are still uplink resources remaining.
- the second uplink resource allocation is performed, that is, the uplink resource is allocated to the RB again.
- the BS corresponding to the RB is updated correspondingly, and specifically, the RB is allocated to the RB in the original BS.
- the number of uplink resources is used as the updated BS; the corresponding number of remaining uplink resources is also updated, specifically: the number of uplink resources allocated to the RB is subtracted from the original remaining resource quantity, and the result is used as the updated remaining uplink resource quantity.
- the Bj corresponding to each RB when step 3 is executed, the Bj corresponding to each RB is less than or equal to zero, and even if the RB obtains the uplink resource, the Bj is not updated.
- the number of tokens in the token bucket corresponding to the wireless bearer is the number of tokens after the UE completes the uplink resource allocation update.
- the step may be: obtaining the number of tokens corresponding to each RB and the amount of buffered data corresponding to each RB, and comparing, for each RB, the number of corresponding tokens and the size of the corresponding cached data, and selecting the minimum value.
- the smaller value may be set to zero for convenience of calculation.
- the step S1102 may be: calculating, for each RBG, a sum of the smaller values determined in the above step S1101 corresponding to each of the included RBs.
- the smaller value of the number of tokens in the token bucket corresponding to the radio bearer and the corresponding cache data amount is less than zero, the smaller value is set to zero, and the foregoing steps corresponding to each RB are calculated.
- the sum value of the smaller value is determined in S1101, the sum value is a value greater than or equal to zero.
- the calculated corresponding wireless bearer correspondence may occur.
- the sum of the smaller values is less than zero, and when the sum value is less than zero, the sum value can be set to zero.
- step S1103 may specifically be:
- the sum value is sent to the base station when the set condition is met. For example, when the sum value corresponding to the RBG is greater than a set threshold, the sum value is sent to the base station; or the sum value of the RBG is periodically sent to the base station, and the period is an integer multiple of the foregoing transmission period.
- the sum of the RBGs may be sent by a MAC Control element field corresponding to the RBG in the Medium Access Control Layer Protocol Data Unit MAC PDU sent by the mobile terminal to the base station.
- the format of the MAC PDU is shown in Figure 9.
- each wireless bearer is filled in a MAC SDS (MAC Service Data Unit) field
- each MAC SDU field has a sub-message in the MAC header field of the MAC packet header.
- the header sub-header corresponds to it, wherein the content of the "R” field is a reserved bit, the "E” field indicates an extended field to indicate whether there are more field definitions in the MAC header; the "L” field indicates the corresponding MAC SDU or The length of the MAC control element, the length of "L” is identified by the "F” field; the "LCID” field indicates the logical channel identifier corresponding to the MAC SDU field or the MAC Control element field or the padding field.
- MAC SDS MAC Service Data Unit
- the sum value may be
- the content of the BSR of the MAC control unit corresponding to the radio bearer is set to the absolute value of the sum value, and the reserved bit in the MAC subheader corresponding to the MAC control unit indicates that the value is negative, that is, the set is used. The way indicates that the value is negative.
- the content of the BSR of the MAC control unit corresponding to the radio bearer is set to The sum value, the control The reserved bit in the MAC subheader corresponding to the unit indicates that the value is positive.
- the sixth embodiment of the present invention further provides a mobile terminal, and a schematic structural diagram thereof is shown in FIG. 12, which specifically includes:
- the determining unit 1201 is configured to determine, after performing uplink resource allocation in the current uplink sending period, a smaller value of the number of tokens in the token bucket corresponding to the wireless bearer and the corresponding cache data amount;
- the calculating unit 1202 is configured to calculate, for each radio bearer group, a sum of the smaller values corresponding to each radio bearer included;
- the sending unit 1203 is configured to send the sum value to the base station; or send the sum value to the base station when the setting condition is met.
- the determining unit 1201 sets the smaller value to zero when determining that the number of tokens in the token bucket corresponding to the radio bearer and the corresponding smaller amount of the buffered data amount are less than zero.
- the calculating unit 1202 sets the sum value to zero when the sum value of the smaller values corresponding to each of the included radio bearers is less than zero.
- the sum value is sent by a MAC Control element field corresponding to the wireless bearer group in a MAC PDU sent by the mobile terminal to the base station.
- the sending unit 1203 sets the sum of the BSRs of the MAC control unit corresponding to the radio bearer group.
- the content is set to the absolute value of the sum value, and the reserved bit in the MAC subheader corresponding to the control unit MAC indicates that the value is negative.
- the content of the BSR of the MAC control unit corresponding to the radio bearer is set to the sum value.
- the reserved bit in the MAC subheader corresponding to the control unit MAC indicates that the value is positive.
- the radio bearer when the status report is sent, when the number of tokens in the token bucket corresponding to the radio bearer is smaller than the corresponding buffered data amount, the number of uplink resources of the token number is allocated.
- the radio bearer can satisfy the corresponding PBR rate requirement, and when the number of tokens in the corresponding token bucket is greater than its corresponding cache data amount, the amount of the buffered data amount is allocated. If the uplink resource that is allocated to the radio bearer is greater than the allocated uplink resource, the radio bearer obtains more remaining uplink resources.
- the sum value sent by the method is smaller than the sum of the buffered data amounts of all the wireless bearers constituting the radio bearer group to the base station, and accordingly, the base station according to the received sum
- the value of the uplink resource allocated to the UE is small, and the reduced uplink resource may be allocated to other UEs, so that the UE that meets the PBR rate requirement corresponding to each RB obtains more uplink resources, and the RBs are not satisfied.
- the purpose of the base station to allocate uplink resources to each UE more reasonably is achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Description
上行资源分配、 状态报告发送方法及装置 技术领域
本发明涉及无线通信技术领域, 尤其涉及上行资源分配、 状态报告发送 方法及装置。 背景技术
现有移动通信系统的上行调度过程主要包含两方面内容, 一是緩存状态 报告 BSR ( Buffer Status Report )机制, 二是上行资源分配过程。
现有 3GPP LTE R8的规范 3GPP TS 36.321 V8.3.0中定义了移动终端 UE ( User Equipment )发送给基站的 BSR报告的格式和内容。 其中, 具有 QoS
Group )进行 BSR报告,其中短 BSR只报告具有最高优先级 RBG的緩存数据 量 BS( Buffer Size ),其格式如图 1所示,而长 BSR可以报告四种 RBG的 BS, 其格式如图 2所示, 其中 LCG ID为逻辑信道组的标识号, Buffer Size为每个 RBG的緩存数据量, Oct表示一个字节。
对于上行资源分配过程(也可以称作上行速率控制过程), 3GPP TS 36.321 V8.3.0和 3GPP TS 36.300 V8.6.0中还定义了当前 LTE规范中的上行资源分配 过程, UE侧的资源分配过程主要通过令牌桶机制来完成, 如图 3所示:
每个 RB对应一个令牌桶, 其中 BS为该 RB对应的緩存数据量, 优先级 比特速率 PBR ( Prioritized Bit Rate )为对应令牌桶每个周期内实际注入的速 率, 即每个周期内放入令牌桶中的令牌数, PBR可以理解为 RB的基本速率 要求或者基本保证速率要求, 该值是与 RB优先级相关的固定数值, Bj为令 牌桶中令牌数, R为当前发送周期实际发送的数据量。
UE侧通过令牌桶机制进行上行资源分配和上行速率控制方法如下: 步骤 1: 在上行数据发送周期到达时根据 PBR更新 Bj。
步骤 2: 按 RB优先级从高到底的顺序为所有 Bj>0的 RB分配资源, 并
根据资源分配结果更新 Bj ( Bj可以为负, 这样可以避免数据包的频繁分割和 組装 );
步骤 3: 如果仍有上行资源剩余, 则按照优先级从高到低的顺序为每个 RB分配资源 (不管 Bj值的大小), 直到该 RB的緩存数据发送完毕或者没有 剩余上行资源 (该步骤中 Bj不再更新)。
上述步骤 2中进行第一次上行资源分配, 通过对 Bj>0的 RB按照其对应 的 Bj、 对应的 BS和当前剩余上行资源的最小值分配上行资源, 以达到优先 满足优先级高的 RB的 PBR速率要求的目的。
上述步骤 3 中进行第二次上行资源分配, 将第一次上行资源分配后的剩 余上行资源分配给各 RB, 以达到充分利用上行资源的目的。
基站根据各 UE上报的 BSR为各 UE进行上行资源分配的理想情况应为, 使得 UE采用上述令牌桶机制分配上行资源给其各 RB时, UE获得的上行资 源足够完成上述步骤 1中的上行资源分配, 即满足其各 RB对应的 PBR速率 要求。 但由于上行资源有限, 基站可能无法合理分配上行资源给各 UE, 即可 能存在有的 UE获得的上行资源可以满足其各 RB对应的 PBR速率要求后, 上行资源还有剩余,而此时有的 UE获得的上行资源还无法满足其各 RB对应 的 PBR速率要求。 例如, 当一个 UE进行上行资源分配时, 满足其各 RB对 应的 PBR速率要求, 且将剩余上行资源分配给其各 RB后, 该 UE的 RBG的 緩存数据量仍然艮大时, UE将该緩存数据量上报基站后, 基站根据该緩存数 据量仍会分配较多上行资源给该 UE, 由于上行资源有限, 导致基站分配给其 他 UE的上行资源不足以满足其他 UE各 RB的 PBR速率要求,造成基站给各 UE分配上行资源不合理。
UE按上述令牌桶机制对其各 RB进行上行资源分配, 在执行第一次上行 资源分配, 满足各 RB对应的 PBR速率要求后, 如还有上行资源剩余, 则执 行第二次上行资源分配, 即按优先级从高到低的顺序将剩余上行资源分配给 各 RB, 假定某一个 RB获得了剩余上行资源, 但此时不再更新该 RB对应的 Bj, 如果在下一个发送周期内, UE获得的上行资源不足以满足所有 RB对应
的 PBR速率要求时, 但 UE仍可能将优先分配上行资源给该 RB, 因此, 导致 在满足该 RB对应的 PBR速率要求后, 该 RB获得了更多的上行资源同时, 还存在没有满足 PBR速率要求的 RB, 造成上行资源分配不合理。 发明内容
本发明实施例提供一种上行资源分配方法及装置, 用以使得移动终端更 合理的分配上行资源给其各无线承载;
本发明实施例还提供一种状态报告发送方法及装置, 使得基站更合理的 分配上行资源给各移动终端;
本发明实施例再提供一种状态报告发送方法及装置, 使得基站更合理的 分配上行资源给各移动终端。
本发明实施例提供一种上行资源分配方法, 包括:
在上行数据发送周期到达时, 移动终端更新各无线承载对应的令牌桶中 的令牌数;
按所述各无线承栽优先级从高到低的顺序, 对令牌数大于零的第一无线 承载进行第一次上行资源分配, 并根据第一次分配的上行资源更新所述第一 无线承栽对应的令牌桶中的令牌数;
当存在剩余的上行资源时, 确定出第二无线承载进行第二次上行资源分 配, 并根据第二次分配的上行资源更新所述第二无线承栽对应的令牌桶中的 令牌数。
本发明实施例还提供一种状态报告发送方法, 包括:
移动终端确定出当前上行数据发送周期内在第二次上行资源分配中获得 上行资源或获得的上行资源数量大于设定阈值的第一无线承栽;
对各无线承载组, 计算出除所述第一无线承载外的其余各无线承栽对应 的緩存数据量的和值;
发送所述和值给基站; 或者满足设置奈件时发送所述和值给基站。
本发明实施再提供一种状态报告发送方法, 包括:
当前上行数据发送周期内执行上行资源分配后, 移动终端确定出无线承 载对应的令牌桶中的令牌数与其对应的緩存数据量的较小值;
对各无线承载组, 计算出包含的各无线承栽对应的所述较小值的和值; 发送所述和值给基站; 或者当满足设置奈件时发送所述和值给基站。 本发明实施例提供一种移动终端, 包括:
更新单元, 用于在上行数据发送周期到达时, 更新各无线承载对应的令 牌桶中的令牌数;
第一分配更新单元, 用于按所述各无线承栽优先级从高到低的顺序, 对 令牌数大于零的第一无线承栽进行第一次上行资源分配, 并根据第一次分配 的上行资源更新所述第一无线承栽对应的令牌桶中的令牌数;
第二分配更新单元, 用于当存在剩余的上行资源时, 确定出第二无线承 栽进行第二次上行资源分配, 并根据第二次分配的上行资源更新所述第二无 线承栽对应的令牌桶中的令牌数。
本发明实施例还提供一种移动终端, 包括:
确定单元, 用于确定出当前上行数据发送周期内在第二次上行资源分配 中获得上行资源或获得的上行资源数量大于设定阈值的第一无线承栽;
计算单元, 用于对各无线承载组, 计算出除所述第一无线承载外的其余 各无线承栽对应的緩存数据量的和值;
发送单元, 用于发送所述和值给基站; 或者当满足设置条件时发送所述 和值给基站。
本发明实施例再提供一种移动终端, 包括:
确定单元, 用于当前上行数据发送周期内执行上行资源分配后, 确定出 无线承栽对应的令牌桶中的令牌数与其对应的緩存数据量的较小值;
计算单元, 用于对各无线承载组, 计算出包含的各无线承载对应的所述 较小值的和值;
发送单元, 用于发送所述和值给基站; 或者当满足设置条件时发送所述 和值给基站。
本发明实施例提供了一种上行资源分配方法, 用于移动终端分配上行资 源给其各无线承载, 该方法中在第一次和第二次分配上行资源给无线承载时, 均根据分配的上行资源更新无线承载对应令牌桶中的令牌数, 因此, 该令牌 数可以更准确表示其对应的长期统计的 PBR速率的满足情况, 例如, 在第二 次上行资源分配中获得上行资源的无线承栽, 其对应的令牌数在更新后为负 值, 该负值越小, 在下一个上行数据发送周期开始时, 才艮据该无线承栽对应 的 PBR更新后的其对应的令牌数越小, 相应的, 在下一个上行数据发送周期 第一次上行资源分配中, 该无线承栽获得的上行资源越少, 如果更新后的令 牌数仍为负值, 则在第一次上行资源分配中不分配上行资源给该无线承载, 因此, 可以减少对已满足 PBR速率要求的无线承载分配的上行资源, 进而避 免出现满足 PBR速率要求的无线承栽获得更多上行资源的同时, 还存在没有 满足 PBR速率要求的无线承载的情况, 达到 UE更合理的分配上行资源给其 各无线承载的目的。
本发明实施例还提供了一种状态报告发送方法, 移动终端确定出当前上 行数据发送周期内在第二次上行资源分配中获得上行资源或获得的上行资源 数量大于设定阈值的第一无线承栽; 以及对各无线承载组, 计算出除第一无 线承栽外的其余各无线承栽对应的緩存数据量的和值; 并发送该和值给基站。 上述第一无线承栽获得满足其 PBR速率要求的上行资源后再次获得了上行资 源, 表示该 UE获得了满足其各无线承栽对应的 PBR速率要求外更多的上行 资源, 当出现该情况时, 与发送组成该无线承栽组的所有无线承载的緩存数 据量的和值给基站相比, 该方法发送的和值更小, 因此, 相应的, 基站根据 接收的该和值分配给该 UE的上行资源较少,进而可以将减少的上行资源分配 给其他 UE,避免出现已满足各 RB对应的 PBR速率要求的 UE获得更多上行 资源的同时, 还存在没有满足各 RB对应的 PBR速率要求的 UE的情况, 达 到基站更合理的分配上行资源给各 UE的目的。
本发明实施例再提供了一种状态报告发送方法, 当前上行数据发送周期 内执行上行资源分配后, 确定出无线承载对应的令牌桶中的令牌数与其对应
的緩存数据量的较小值; 以及对各无线承载组, 计算出包含的各无线承载对 应的较小值的和值; 并发送该和值给基站。 发送状态 4艮告时, 当无线承载对 应的令牌桶中的令牌数小于其对应的緩存数据量时, 分配该令牌数数量的上 行资源给该无线承载即可满足其对应的 PBR速率要求, 而当其对应的令牌桶 中的令牌数大于其对应的緩存数据量时, 分配该緩存数据量数量的上行资源 给该无线承栽即可发送该无线承载的全部緩存数据, 若实际分配给该无线承 载的上行资源大于上述分配的上行资源, 则表示该无线承栽获得了更多的剩 余上行资源, 当出现该情况时, 与发送组成该无线承载组的所有无线承载的 緩存数据量的和值给基站相比, 该方法发送的和值更小, 因此, 相应的, 基 站根据接收的该和值分配给该 UE的上行资源较少,进而可以将减少的上行资 源分配给其他 UE,避免出现已满足各 RB对应的 PBR速率要求的 UE获得更 多上行资源的同时, 还存在没有满足各 RB对应的 PBR速率要求的 UE的情 况, 达到基站更合理的分配上行资源给各 UE的目的。 附图说明
图 1为短緩存状态报告的格式示意图;
图 2为长緩存状态报告的格式示意图;
图 3为令牌桶机制原理示意图;
图 4为本发明实施例一提供的一种上行资源分配方法流程图;
图 5为本发明实施例一中步骤 S401和步骤 S402的具体流程图; 图 6为本发明实施例一中步骤 S403的具体流程图;
图 7为本发明实施例二提供的一种移动终端结构示意图;
图 8为本发明实施例三提供的一种状态报告发送方法;
图 9为媒体接入控制层协议数据单元的格式示意图;
图 10为本发明实施例四提供的一种移动终端结构示意图;
图 11为本发明实施例五提供的一种状态报告发送方法;
图 12为本发明实施例六提供的一种移动终端结构示意图。
具体实施方式
实施例一:
本发明实施例一提供一种上行资源分配方法, 如图 4所示, 包括: 步骤 S401、 在上行数据发送周期到达时, 移动终端更新各无线承栽对应 的令牌桶中的令牌数。
步骤 S402、 按各无线承载优先级从高到低的顺序, 对令牌数大于零的第 一无线承载进行第一次上行资源分配, 并根据第一次分配的上行资源更新第 一无线承栽对应的令牌桶中的令牌数。
其中, 对令牌数大于零的第一无线承栽进行第一次上行资源分配, 具体 可以为: 对令牌数大于零的第一无线承载, 确定出其对应的令牌桶中的令牌 数、 对应的緩存数据量和当前剩余的上行资源数量中的最小值, 对第一无线 承栽按照该最小值进行第一次上行资源分配。
步骤 S403、 当存在剩余的上行资源时, 确定出第二无线承载进行第二次 上行资源分配, 并才艮据第二次分配的上行资源更新第二无线承栽对应的令牌 桶中的令牌数。
其中, 确定出第二无线承载进行第二次上行资源分配, 具体可以为: 按各无线承载优先级从高到低的顺序确定第二无线承载, 以及对第二无 线承栽, 按其对应的緩存数据量和当前剩余的上行资源数量中的较小值, 进 行第二次上行资源分配。
其他实施例中, 还可以确定各无线承栽为第二无线承载, 按各第二无线 承栽对应的緩存数据量, 计算出各第二无线承载之间的分配比例, 按该分配 比例, 将剩余的上行资源分配给各第二无线承载。
下面对本发明实施例一提供的上行资源分配方法进行详细阐述。
图 5所示为步骤 S401和步骤 S402的一种具体实现流程, 即进行第一次 上行资源分配的具体实现流程, 包括:
步骤 S501、 在当前上行数据发送周期到达时, 向各 RB对应的令牌桶中
注入各 RB对应的优先级比特速率 PBR数量的令牌, 即对每个 RB在其对应 的原令牌数 Bj上加上其对应的 PBR数量, 结果作为更新后其对应的 Bj。
步驟 S502、 如从步骤 S501进入该步驟, 则确定优先级最高的 RB为待处 理的 RB, 如从步驟 S512进入该步骤, 则确定在步骤 S512中处理的 RB的优 先级的下一优先级的 RB为待处理的 RB; 以及确定出待处理的 RB对应的 Bj 和其对应的緩存数据量 BS; 以及确定出当前的剩余上行资源数量。
步骤 S503、 判断 Bj是否大于零, 如果是, 进入步骤 S504; 否则, 进入 步骤 S512。
步骤 S504、 判断 BS是否大于 Bj, 如果是, 进入步骤 S505; 否则, 进入 步骤 S506。
步骤 S505、判断 Bj是否小于剩余上行资源数量,如果是,进入步骤 S506; 否则, 进入步骤 S507。
步骤 S506、判断 BS是否小于剩余上行资源数量,如果是,进入步骤 S510; 否则, 进入步骤 S507。
步骤 S507、 分配剩余上行资源给该 RB。
步骤 S508、 更新该 RB对应的 Bj和其对应的 BS。 具体为:
在原 Bj中减去分配给该 RB的上行资源数量, 结果作为更新后的 Bj; 在原 BS中减去分配给该 RB的上行资源数量, 结果作为更新后的 BS。 更新完毕后, 结束当前上行数据发送周期上行资源的分配。
步骤 S509、 分配 Bj数量的上行资源给该 RB。
为避免数据包的频繁分割和组装, 本步驟还可以分配大于 Bj数量的上行 资源给该 RB, 具体分配的超出 Bj的上行资源的数量为该数据包剩余部分的 大小。
步骤 S510、 分配 BS数量的上行资源给该 RB。
步骤 S511、 更新该 RB对应的 Bj和其对应的 BS, 及更新剩余上行资源 数量。 具体为:
在原 Bj中减去分配给该 RB的上行资源数量, 结果作为更新后的 Bj;
在原 BS中减去分配给该 RB的上行资源数量, 结果作为更新后的 BS; 在原剩余上行资源中减去分配给该 RB的上行资源数量,结果作为更新后 的剩余上行资源。
步骤 S512、 判断当前待处理的 RB是否为优先级最低的 RB, 如果是, 进 入步骤 S513; 否则, 进入步骤 S502。
步骤 S513、 进入步骤 S403的处理流程。
上述图 5所示流程步骤中, Bj大于零的 RB即为上述步骤 S402中的第一 无线承载。
图 6所示为步驟 S403的一种具体实现流程, 即进行第二次上行资源分配 的具体实现流程, 包括:
步骤 S601、 为上述图 5所示步骤 S401和步骤 S402的处理流程。
步骤 S602、如从步驟 S601进入该步骤, 则确定优先级最高的 RB为待处 理的 RB, 如从步骤 S608进入该步骤, 则确定在步骤 S608中处理的 RB的优 先级的下一优先级的 RB为待处理的 RB; 以及确定出待处理的 RB对应的 Bj 和其对应的 BS; 以及确定出当前的剩余上行资源数量。
步骤 S603、判断 BS是否小于剩余上行资源数量,如果是,进入步骤 S606; 否则, 进入步骤 S604。
步骤 S604、 分配剩余上行资源给该 RB。
步骤 S605、 更新该 RB对应的 Bj和其对应的 BS。 具体为:
在原 Bj中减去分配给该 RB的上行资源数量, 结果作为更新后的 Bj; 在原 BS中减去分配给该 RB的上行资源数量, 结果作为更新后的 BS。 更新完毕后, 结束当前发送周期上行资源的分配。
步骤 S606、 分配 BS数量的上行资源给该 RB。
步骤 S607、 更新该 RB对应的 Bj和其对应的 BS, 及更新剩余上行资源 数量。 具体为:
在原 Bj中减去分配给该 RB的上行资源数量, 结果作为更新后的 Bj; 在原 BS中减去分配给该 RB的上行资源数量, 结果作为更新后的 BS;
在原剩余上行资源中减去分配给该 RB的上行资源数量,结果作为更新后 的剩余上行资源数量。
步骤 S608、 判断当前待处理的 RB是否为优先级最低的 RB, 如果是, 进 入步骤 S602; 否则, 进入步骤 S609。
步骤 S609、 结束当前发送周期上行资源的分配。
上述图 6所示流程步骤中,在第二次上行资源分配中获得上行资源的 RB 即为上述步骤 S403中的第二无线承栽。
基于同一发明构思, 根据本发明上述实施例一提供的上行资源分配方法, 相应地, 本发明实施例二提供了一种移动终端, 其结构示意图如图 7所示, 具体包括:
更新单元 701 , 用于在上行数据发送周期到达时, 更新各无线承载对应的 令牌桶中的令牌数;
第一分配更新单元 702, 用于按各无线承载优先级从高到低的顺序,对令 牌数大于零的第一无线承载进行第一次上行资源分配 , 并根据第一次分配的 上行资源更新第一无线承载对应的令牌桶中的令牌数;
第二分配更新单元 703, 用于当存在剩余的上行资源时,确定出第二无线 承载进行第二次上行资源分配, 并根据第二次分配的上行资源更新第二无线 承栽对应的令牌桶中的令牌数。
较佳地, 上述第一分配更新单元 702对令牌数大于零的第一无线承载进 行第一次上行资源分配, 具体为:
对令牌数大于零的第一无线承栽, 确定出其对应的令牌桶中的令牌数、 对应的緩存数据量和当前剩余的上行资源数量中的最小值, 对第一无线承栽 按照该最小值进行第一次上行资源分配。
较佳地, 上述第二分配更新单元 703确定出第二无线承栽进行第二次上 行资源分配, 具体为:
确定各无线承载为第二无线承载, 按各第二无线承栽对应的緩存数据量, 计算出各第二无线承栽之间的分配比例, 按该分配比例, 将剩余的上行资源
分配给各第二无线承载; 或者
按各无线承载优先级从高到低的顺序确定第二无线承栽, 以及对第二无 线承载, 按其对应的緩存数据量和当前剩余的上行资源数量中的较小值, 进 行第二次上行资源分配。
下面举例说明采用实施例一和实施例二提供的方法和装置的有益效果: 例如, 表 1所示为采用现有上行资源分配方法, 各时刻 UE包含的各 RB 的状态, 其中优先级从高到低为 RB1-RB3。
表 1 : RB状态 (单位: 字节)
RB3 180 100 120
RB1 170 150 0
当前周期第
RB2 70 150 0 220 一次分配后
RB3 60 100 0
RB1 0 150 - 170 当前周期第
RB2 20 150 - 50 0 二次分配后
RB3 60 100 0
RB1 180 150 - 20 下一周期第
RB2 120 150 100 250 一次分配前
RB3 130 100 100
RB1 180 150 - 20 下一周期第
RB2 20 150 0 50 一次分配后
RB3 30 100 0 比较上述表 1和表 2中的数据可见: 采用现有上行资源分配方法, 当前 周期第二次分配后,在第二次分配中获得上行资源的 RB1和 RB2对应的令牌 数没有更新,所以在下一周期第一次分配前 RB1和 RB2对应的令牌数分别更 新为 150和 150, 进而在下一周期第一次分配中 RB1和 RB2分别获得 150字 节和 100字节的上行资源后,剩余上行资源为零,即在已满足 RB1对应的 PBR 速率要求后又分配给其更多的上行资源, 而 RB3获得的上行资源还没有满足 其对应的 PBR速率要求;而采用上述实施例一和实施例二提供的方法和装置, 当前周期第二次分配后,在第二次分配中获得上行资源的 RB1和 RB2对应的 令牌数分别更新为 - 170和- 50, 所以在下一周期第一次分配前 RB1和 RB2 对应的令牌数分别更新为- 20和 100, 进而在, 下一周期第一次分配中不分 配上行资源给 RB1 , 分配 100字节的上行资源给 RB2, 因此还可以分配 100 字节的上行资源给 RB3, 满足了 RB3对应的 PBR速率要求。 因此, 采用本发 明实施例一和实施例二提供的上行资源分配方法和装置, 使得移动终端更合 理的分配上行资源给其各无线承载。
实施例三:
本发明实施例三提供一种状态报告发送方法, 如图 8所示, 包括: 步骤 S801、 移动终端确定出当前上行数据发送周期内在第二次上行资源 分配中获得上行资源或获得的上行资源数量大于设定阈值的第一无线承栽。
步骤 S802、 对各无线承载组, 计算出除第一无线承载外的其余各无线承 载对应的緩存数据量的和值。
步骤 S803、发送该和值给基站; 或者满足设置条件时发送该和值给基站。 下面对本发明实施例三提供的状态报告发送方法进行详细阐述。
本发明实施例三中, UE側通过令牌桶机制, 将其获得的上行资源分配给 其包含的各 RB, 包括:
步骤 1: 在上行数据发送周期到达时根据优先级比特速率 PBR更新令牌 数 Bj。
步骤 2: 按照 RB优先级从高到低的顺序为所有 Bj>0的 RB分配资源, 并根据资源分配结果更新 Bj ( Bj可以为负, 这样可以避免数据包的频繁分割 和组装)。
步骤 3: 如果仍有上行资源剩余, 则按照优先级从高到低的顺序为每个 RB分配资源 (不管 Bj值的大小), 直到该 RB的緩存数据发送完毕或者没有 剩余上行资源。
上述步骤 1中, 对每个 RB在其对应的原 Bj上加上其对应的 PBR数量, 结杲作为更新后其对应的 Bj。
上述步骤 2中进行第一次上行资源分配, 对于当前待处理的 RB, UE根 据该 RB对应的緩存数据量 BS、 该 RB对应的 Bj和剩余上行资源数量, 确定 分配给该 RB的上行资源。 当分配上行资源给该 RB后, 相应的更新该 RB对 应的 Bj, 具体为: 在原 Bj中减去分配给该 RB的上行资源数量, 结果作为更 新后的 Bj; 相应的还更新该 RB对应的 BS, 具体为: 在原 BS中减去分配给 该 RB的上行资源数量, 结果作为更新后的 BS; 相应的还更新剩余上行资源 数量, 具体为: 在原剩余资源数量中减去分给该 RB的上行资源数量, 结果作
为更新后的剩余上行资源数量。 完成该步骤后, 如不存在避免数据包分割和 组装的情况, Bj等于零, 如存在, 则 Bj小于零。
上述步骤 3为完成步骤 2后, 如果仍有上行资源剩余时执行的步驟。 步 驟 3中进行第二次上行资源分配, 即再次分配上行资源给若干个 RB, 对于再 次获得上行资源的 RB, 相应的更新该 RB对应的 BS, 具体为 , 在原 BS中减 去分配给该 RB的上行资源数量, 结果作为更新后的 BS; 相应的还更新剩余 上行资源数量,具体为:在原剩余资源数量中减去分给该 RB的上行资源数量, 结果作为更新后的剩余上行资源数量。 但对于各 RB对应的 Bj, 执行步骤 3 时, 各 RB对应的 Bj均小于等于零, 则即使 RB又获得上行资源, 也不更新 Bj。
因此, 上述步骤 S801中, 第一无线承载即为: 上述步骤 3中获得上行资 源的 RB或获得的上行资源大于设定阈值的 RB。
步骤 S802中计算各 RBG对应的緩存数据量时, 不考虑第一无线承载对 应的緩存数据量,即只计算出除第一无线承载外的其余各 RB的緩存数据量的 和值。
上述步骤 S803具体可以为:
每个上行数据发送周期都发送该和值给基站; 或者
满足设置条件时发送该和值给基站。 例如, 当该 RBG对应的该和值大于 设定阈值时发送该和值给基站; 或者周期地发送该 RBG的该和值给基站, 该 周期为上述上行数据发送周期的整数倍。
较佳地, 该 RBG的该和值可以通过移动终端发送给基站的媒体接入控制 层协议数据单元 MAC PDU中与 RBG对应的 MAC控制单元 MAC Control element字段发送。 MAC PDU的格式如图 9所示。
其中, 每个无线承载的业务数据填充在媒体接入控制层服务数据单元 MAC SDU ( MAC Service Data Unit )字段, 每个 MAC SDU字段在 MAC报 文头 MAC header字段中都有一个子报文头 sub-header与之相对应,其中, "R" 字段内容为预留比特, "E" 字段表示扩展字段, 以表示是否在 MAC header
有更多字段定义; "L" 字段标明对应 MAC SDU或者 MAC control element的 长度, "L" 的长度由 "F" 字段标识; "LCID"字段表示 MAC SDU字段或者 MAC Control element字段或者 padding字段对应的逻辑信道标识。
其他实施例中, 上述步骤 2中, 第一次为第一无线承载分配上行资源时, 可以根据前一个上行数据发送周期内该 RB在第二次上行资源分配中获得的 上行资源数量和该 RB对应的 PBR数量进行上行资源分配。 例如, 当前一个 上行数据发送周期内该 RB在第二次上行资源分配中获得的上行资源数量小 于该 RB对应的 PBR时, 分配给该 RB的上行资源数量为该 RB对应的 PBR 数量与前一个上行数据发送周期内该 RB 在第二次上行资源分配中获得的上 行资源数量的差值;当前一个上行数据发送周期内该 RB在第二次上行资源分 配中获得的上行资源数量大于该 RB对应的 PBR时, 则本次不再分配上行资 源给该 RB。
基于同一发明构思, 根据本发明上述实施例三提供的状态报告发送方法, 相应地, 本发明实施例四提供了一种移动终端, 其结构示意图如图 10所示, 具体包括:
确定单元 1001 , 用于确定出当前上行数据发送周期内在第二次上行资源 分配中获得上行资源或获得的上行资源数量大于设定阈值的第一无线承栽; 计算单元 1002, 用于对各无线承载组, 计算出除第一无线承载外的其余 各无线承栽对应的緩存数据量的和值;
发送单元 1003, 用于发送该和值给基站; 或者当满足设置条件时发送该 和值给基站。
较佳地, 该和值通过移动终端发送给基站的 MAC PDU中与该无线承栽 组对应的 MAC Control element字段发送。
采用实施例三和实施例四提供的方法及装置, 上述第一无线承栽获得满 足其 PBR速率要求的上行资源后再次获得了上行资源, 表示该 UE获得了满 足其各无线承载对应的 PBR速率要求外更多的上行资源, 当出现该情况时, 与发送组成该无线承载组的所有无线承载的緩存数据量的和值给基站相比,
该方法发送的和值更小, 因此, 相应的, 基站根据接收的该和值分配给该 UE 的上行资源较少, 进而可以将减少的上行资源分配给其他 UE, 避免出现已满 足各 RB对应的 PBR速率要求的 UE获得更多上行资源的同时, 还存在没有 满足各 RB对应的 PBR速率要求的 UE的情况, 达到基站更合理的分配上行 资源给各 UE的目的。
实施例五:
本发明实施例五还提供一种状态报告发送方法, 如图 11所示, 包括: 步骤 S1101、 当前上行数据发送周期内执行上行资源分配后, 移动终端确 定出无线承载对应的令牌桶中的令牌数与其对应的緩存数据量的较小值; 步骤 S1102、对各无线承载组, 计算出包含的各无线承载对应的该较小值 的和值;
步骤 S1103、发送该和值给基站; 或者当满足设置条件时发送该和值给基 站。
下面对本发明实施例五提供的状态报告发送方法进行详细阐述。
本发明实施例五中, UE側通过令牌桶机制, 将其获得的上行资源分配给 其包含的各 RB, 包括:
步骤 1 : 在上行数据发送周期到达时根据优先级比特速率 PBR更新令牌 数 Bj。
步骤 2: 按照 RB优先级从高到低的顺序为所有 Bj>0的 RB分配资源, 并根据资源分配结果更新 Bj ( Bj可以为负, 这样可以避免数据包的频繁分割 和组装)。
步骤 3: 如果仍有上行资源剩余, 则按照优先级从高到低的顺序为每个 RB分配资源 (不管 Bj值的大小), 直到该 RB的緩存数据发送完毕或者没有 剩余上行资源。
上述步骤 1中, 对每个 RB在其对应的原 Bj上加上其对应的 PBR数量, 结杲作为更新后其对应的 Bj。
上述步骤 2中进行第一次上行资源分配, 对于当前待处理的 RB, UE根
据该 RB对应的緩存数据量 BS、 该 RB对应的 Bj和剩余上行资源数量, 确定 分配给该 RB的上行资源。 当分配上行资源给该 RB后, 相应的更新该 RB对 应的 Bj, 具体为: 在原 Bj中减去分配给该 RB的上行资源数量, 结果作为更 新后的 Bj; 相应的还更新该 RB对应的 BS, 具体为: 在原 BS中减去分配给 该 RB的上行资源数量, 结果作为更新后的 BS; 相应的还更新剩余上行资源 数量, 具体为: 在原剩余资源数量中减去分给该 RB的上行资源数量, 结果作 为更新后的剩余上行资源数量。 完成该步骤后, 如不存在避免数据包分割和 组装的情况, Bj等于零, 如存在, 则 Bj小于零。
上述步骤 3为完成步骤 2后, 如果仍有上行资源剩余时执行的步骤。 步 骤 3中进行第二次上行资源分配, 即再次分配上行资源给若干个 RB, 对于再 次获得上行资源的 RB, 相应的更新该 RB对应的 BS, 具体为, 在原 BS中减 去分配给该 RB的上行资源数量, 结果作为更新后的 BS; 相应的还更新剩余 上行资源数量,具体为:在原剩余资源数量中减去分给该 RB的上行资源数量, 结果作为更新后的剩余上行资源数量。 但对于各 RB对应的 Bj, 执行步骤 3 时, 各 RB对应的 Bj均小于等于零, 则即使 RB又获得上行资源, 也不更新 Bj。
因此, 上述步骤 S1101 中, 在当前上行数据发送周期内执行上行资源分 配后,无线承栽对应的令牌桶中的令牌数即为 UE完成上行资源分配更新后的 令牌数。 该步骤具体可以为: 获取各 RB对应的令牌数及各 RB对应的緩存数 据量, 对于每个 RB, 比较其对应的令牌数和其对应的緩存数据量的大小, 并 选取其中的最小值。
当移动终端确定出无线承载对应的令牌桶中的令牌数与其对应的緩存数 据量的较小值小于零时, 为了便于计算, 该较小值可以设置为零。
上述步骤 S1102具体可以为: 对各 RBG, 计算出包含的各 RB对应的上 述步骤 S1101中确定出的较小值的和值。
上述过程中, 对于无线承载对应的令牌桶中的令牌数与其对应的緩存数 据量的较小值小于零时,将该较小值设置为零, 则计算各 RB对应的上述步骤
S1101中确定出的较小值的和值时, 该和值为大于等于零的数值。
当无线承栽对应的令牌桶中的令牌数与其对应的緩存数据量的较小值小 于零, 该较小值按照其实际数值进行计算时, 则可能出现计算出的各无线承 栽对应的所述较小值的和值小于零的情况, 当该和值小于零时, 可以将该和 值设置为零。
上述步骤 S1103具体可以为:
每个上行数据发送周期都发送该和值给基站; 或者
满足设置条件时发送该和值给基站。 例如, 当该 RBG对应的该和值大于 设定阄值时发送该和值给基站; 或者周期地发送该 RBG的该和值给基站, 该 周期为上述发送周期的整数倍。
较佳地, 该 RBG的该和值可以通过移动终端发送给基站的媒体接入控制 层协议数据单元 MAC PDU中与 RBG对应的 MAC控制单元 MAC Control element字段发送。 MAC PDU的格式如图 9所示。
其中, 每个无线承栽的业务数据填充在媒体接入控制层服务数据单元 MAC SDU ( MAC Service Data Unit )字段, 每个 MAC SDU字段在 MAC报 文头 MAC header字段中都有一个子报文头 sub-header与之相对应,其中, "R" 字段内容为预留比特, "E" 字段表示扩展字段, 以表示是否在 MAC header 有更多字段定义; "L" 字段标明对应 MAC SDU或者 MAC control element的 长度, "L" 的长度由 "F" 字段标识; "LCID"字段表示 MAC SDU字段或者 MAC Control element字段或者 padding字段对应的逻辑信道标识。
对于各无线承载组, 当计算出包含各无线承栽对应的该较小值的和值小 于零时, 为了便于与当前规范定义的 BSR的发送格式相匹配, 可以将该和值 在与所述无线承载对应的 MAC控制单元的 BSR的内容设置为和值的绝对值, 通过该 MAC控制单元对应的 MAC 子报文头 (MAC subheader ) 中的预留比 特指示该值为负, 即采用置位的方式指示该值为负。 同样, 由于存在预留比 特位, 当计算出包含各无线承载对应的该较小值的和值大于零时, 将该和值 在与所述无线承载对应的 MAC控制单元的 BSR的内容设置为该和值, 该控
制单元对应的 MAC subheader中的预留比特指示该值为正。
基于同一发明构思, 根据本发明上述实施例五提供的状态报告发送方法, 相应地,本发明实施例六还提供了一种移动终端,其结构示意图如图 12所示, 具体包括:
确定单元 1201 , 用于当前上行发送周期内执行上行资源分配后, 确定出 无线承栽对应的令牌桶中的令牌数与其对应的緩存数据量的较小值;
计算单元 1202, 用于对各无线承载组, 计算出包含的各无线承载对应的 该较小值的和值;
发送单元 1203, 用于发送该和值给基站; 或者当满足设置条件时发送该 和值给基站。
其中, 确定单元 1201在确定无线承载对应的令牌桶中的令牌数与其对应 的緩存数据量的较小值小于零时, 将所述较小值设置为零。
计算单元 1202在包含的各无线承载对应的所述较小值的和值小于零时, 将所述和值设置为零。
较佳地, 该和值通过移动终端发送给基站的 MAC PDU中与该无线承栽 组对应的 MAC Control element字段发送。
所述发送单元 1203发送的所述各无线承载对应的所述较小值的和值小于 零时, 所述发送单元 1203将所述和值在所述无线承载组对应的 MAC控制单 元的 BSR 的内容设置为该和值的绝对值, 并在所述控制单元 MAC对应的 MAC subheader中的预留比特指示该值为负。 所述发送单元 1203发送的所述 各无线承载对应的所述较小值的和值大于零时, 将该和值在与所述无线承载 对应的 MAC控制单元的 BSR的内容设置为该和值, 所述控制单元 MAC对 应的 MAC subheader中的预留比特指示该值为正。
采用实施例五和实施例六提供的方法及装置, 发送状态报告时, 当无线 承载对应的令牌桶中的令牌数小于其对应的緩存数据量时, 分配该令牌数数 量的上行资源给该无线承载即可满足其对应的 PBR速率要求, 而当其对应的 令牌桶中的令牌数大于其对应的緩存数据量时, 分配该緩存数据量数量的上
行资源给该无线承栽即可发送该无线承栽的全部緩存数据, 若实际分配给该 无线承载的上行资源大于上述分配的上行资源, 则表示该无线承载获得了更 多的剩余上行资源, 当出现该情况时, 与发送组成该无线承载组的所有无线 承栽的緩存数据量的和值给基站相比, 该方法发送的和值更小, 因此, 相应 的 ,基站根据接收的该和值分配给该 UE的上行资源较少,进而可以将减少的 上行资源分配给其他 UE, 避免出现已满足各 RB对应的 PBR速率要求的 UE 获得更多上行资源的同时,还存在没有满足各 RB对应的 PBR速率要求的 UE 的情况, 达到基站更合理的分配上行资源给各 UE的目的。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。
Claims
1、 一种上行资源分配方法, 其特征在于, 包括:
在上行数据发送周期到达时, 移动终端更新各无线承载对应的令牌桶中 的令牌数;
按所述各无线承载优先级从高到低的顺序, 对令牌数大于零的第一无线 承栽进行第一次上行资源分配, 并根据第一次分配的上行资源更新所述第一 无线承载对应的令牌桶中的令牌数;
当存在剩余的上行资源时, 确定出第二无线承载进行第二次上行资源分 配, 并根据第二次分配的上行资源更新所述第二无线承栽对应的令牌桶中的 令牌数。
2、 如权利要求 1所述的方法, 其特征在于, 所述对令牌数大于零的第一 无线承栽进行第一次上行资源分配, 具体为:
对令牌数大于零的第一无线承栽, 确定出其对应的令牌桶中的令牌数、 对应的緩存数据量和当前剩余的上行资源数量中的最小值, 对所述第一无线 承栽按照所述最小值进行第一次上行资源分配。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述确定出第二无线承 载进行第二次上行资源分配, 具体为:
确定所述各无线承栽为第二无线承载, 按各所述第二无线承栽对应的緩 存数据量, 计算出各所述第二无线承载之间的分配比例, 按所述分配比例, 将剩余的上行资源分配给各所述第二无线承栽; 或者
按所述各无线承载优先级从高到低的顺序确定第二无线承载, 以及对所 述第二无线承栽, 按其对应的緩存数据量和当前剩余的上行资源数量中的较 小值, 进行第二次上行资源分配。
4、 一种状态报告发送方法, 其特征在于, 包括:
移动终端确定出当前上行数据发送周期内在第二次上行资源分配中获得 上行资源或获得的上行资源数量大于设定阈值的第一无线承载;
对各无线承栽组, 计算出除所述第一无线承载外的其余各无线承载对应 的緩存数据量的和值;
发送所述和值给基站; 或者满足设置条件时发送所述和值给基站。
5、 如权利要求 4所述的方法, 其特征在于, 所述和值通过所述移动终端 发送给所述基站的媒体接入控制层协议数据单元 MAC PDU中与所述无线承 载组对应的 MAC控制单元 MAC Control element字段发送。
6、 一种状态^ ^告发送方法, 其特征在于, 包括:
当前上行数据发送周期内执行上行资源分配后, 移动终端确定出无线承 栽对应的令牌桶中的令牌数与其对应的緩存数据量的较小值;
对各无线承栽组, 计算出包含的各无线承栽对应的所述较小值的和值; 发送所述和值给基站; 或者当满足设置条件时发送所述和值给基站。
7、 如权利要求 6所述的方法, 其特征在于, 所述移动终端确定出无线承 载对应的令牌桶中的令牌数与其对应的緩存数据量的较小值小于零时, 将所 述较小值设置为零。
8、 如权利要求 6所述的方法, 其特征在于, 所述计算出包含的各无线承 载对应的所述较小值的和值小于零时, 将所述和值设置为零。
9、 如权利要求 6所述的方法, 其特征在于, 所述和值通过所述移动终端 发送给所述基站的媒体接入控制层协议数据单元 MAC PDU中与所迷无线承 栽组对应的 MAC控制单元 MAC Control element字段发送。
10、 如权利要求 9所述的方法, 其特征在于, 当计算出包含的各无线承 载对应的所述较小值的和值小于零时, 所述和值在与所迷无线承载组对应的 MAC控制单元的緩存状态报告的内容设置为该和值的绝对值, 并在所述控制 单元 MAC对应的 MAC 子报文头中的预留比特指示该值为负。
11、 一种移动终端, 其特征在于, 包括:
更新单元, 用于在上行数据发送周期到达时, 更新各无线承栽对应的令 牌桶中的令牌数;
第一分配更新单元, 用于按所述各无线承栽优先级从高到低的顺序, 对
令牌数大于零的第一无线承载进行第一次上行资源分配, 并根据第一次分配 的上行资源更新所述第一无线承载对应的令牌桶中的令牌数;
第二分配更新单元, 用于当存在剩余的上行资源时, 确定出第二无线承 载进行第二次上行资源分配, 并根据第二次分配的上行资源更新所述第二无 线承载对应的令牌桶中的令牌数。
12、 如权利要求 11所述的移动终端, 其特征在于, 所述第一分配更新单 元对令牌数大于零的第一无线承载进行第一次上行资源分配, 具体为:
对令牌数大于零的第一无线承载, 确定出其对应的令牌桶中的令牌数、 对应的緩存数据量和当前剩余的上行资源数量中的最小值, 对所述第一无线 承栽按照所述最小值进行第一次上行资源分配。
13、 如权利要求 11或 12所述的移动终端, 其特征在于, 所述第二分配 更新单元确定出第二无线承栽进行第二次上行资源分配, 具体为:
确定所述各无线承载为第二无线承载, 按各所述第二无线承载对应的緩 存数据量, 计算出各所述第二无线承载之间的分配比例, 按所述分配比例, 将剩余的上行资源分配给各所述第二无线承载; 或者
按所述各无线承载优先级从高到低的顺序确定第二无线承载, 以及对所 述第二无线承栽, 按其对应的緩存数据量和当前剩余的上行资源数量中的较 小值, 进行第二次上行资源分配。
14、 一种移动终端, 其特征在于, 包括:
确定单元, 用于确定出当前上行数据发送周期内在第二次上行资源分配 中获得上行资源或获得的上行资源数量大于设定阈值的第一无线承载;
计算单元, 用于对各无线承载组, 计算出除所述第一无线承载外的其余 各无线承载对应的緩存数据量的和值;
发送单元, 用于发送所述和值给基站; 或者当满足设置条件时发送所述 和值给基站。
15、 如权利要求 14所述的移动终端, 其特征在于, 所述和值通过所述移 动终端发送给所述基站的媒体接入控制层协议数据单元 MAC PDU中与所述
无线承载组对应的 MAC控制单元 MAC Control element字段发送。
16、 一种移动终端, 其特征在于, 包括:
确定单元, 用于当前上行数据发送周期内执行上行资源分配后, 确定出 无线承载对应的令牌桶中的令牌数与其对应的緩存数据量的较小值;
计算单元, 用于对各无线承载组, 计算出包含的各无线承载对应的所述 较小值的和值;
发送单元, 用于发送所述和值给基站; 或者当满足设置条件时发送所述 和值给基站。
17、 如权利要求 16所述的移动终端, 其特征在于, 所述确定单元在确定 出无线承栽对应的令牌桶中的令牌数与其对应的緩存数据量的较小值小于零 时, 将所述较小值设置为零。
18、 如权利要求 16所述的移动终端, 其特征在于, 所述计算单元在计算 出包含的各无线承载对应的所述较小值的和值小于零时, 将所述和值设置为 令。
19、 如权利要求 16所述的移动终端, 其特征在于, 所述和值通过所述移 动终端发送给所述基站的媒体接入控制层协议数据单元 MAC PDU中与所述 无线承载组对应的 MAC控制单元 MAC Control element字段发送。
20、 如权利要求 19所述的移动终端, 其特征在于, 所述发送单元发送的 所述各无线承栽对应的所述较小值的和值小于零时, 所述发送单元将所述和 值在所述无线承载组对应的 MAC控制单元的緩存状态报告的内容设置为该 和值的绝对值,并在所述控制单元 MAC对应的 MAC 子报文头中的预留比特 指示该值为负。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910078851A CN101827391A (zh) | 2009-03-04 | 2009-03-04 | 上行资源分配、状态报告发送方法及装置 |
CN200910078851.7 | 2009-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010099700A1 true WO2010099700A1 (zh) | 2010-09-10 |
Family
ID=42691040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/000264 WO2010099700A1 (zh) | 2009-03-04 | 2010-03-04 | 上行资源分配、状态报告发送方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101827391A (zh) |
WO (1) | WO2010099700A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102413570B (zh) * | 2010-09-20 | 2016-05-11 | 株式会社Ntt都科摩 | 一种无线通信系统中的基站以及资源调度方法 |
EP2940956B1 (en) * | 2013-01-30 | 2021-05-19 | Huawei Technologies Co., Ltd. | Uplink transmission method, base station, and user equipment |
CN104754750B (zh) * | 2013-12-31 | 2018-10-19 | 华为终端(东莞)有限公司 | 资源分配方法和装置 |
PL3001755T3 (pl) * | 2014-09-26 | 2019-04-30 | Alcatel Lucent | Alokacja zasobów łącza wstępującego dla komunikacji bezpośredniej pomiędzy urządzeniami użytkownika w obrębie grup |
CN107204836B (zh) * | 2016-03-16 | 2020-02-04 | 电信科学技术研究院 | 一种载波聚合的并行调度方法及装置 |
WO2019161529A1 (en) * | 2018-02-22 | 2019-08-29 | Qualcomm Incorporated | Logical channel prioritization in a medium access control layer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1984457A (zh) * | 2006-04-04 | 2007-06-20 | 华为技术有限公司 | 一种基站控制的上行调度方法 |
CN101150516A (zh) * | 2007-09-28 | 2008-03-26 | 杭州华三通信技术有限公司 | 一种分配带宽的方法、设备和系统 |
CN101242622A (zh) * | 2007-02-08 | 2008-08-13 | 鼎桥通信技术有限公司 | 一种上行资源分配方法、系统及用户终端 |
-
2009
- 2009-03-04 CN CN200910078851A patent/CN101827391A/zh active Pending
-
2010
- 2010-03-04 WO PCT/CN2010/000264 patent/WO2010099700A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1984457A (zh) * | 2006-04-04 | 2007-06-20 | 华为技术有限公司 | 一种基站控制的上行调度方法 |
CN101242622A (zh) * | 2007-02-08 | 2008-08-13 | 鼎桥通信技术有限公司 | 一种上行资源分配方法、系统及用户终端 |
CN101150516A (zh) * | 2007-09-28 | 2008-03-26 | 杭州华三通信技术有限公司 | 一种分配带宽的方法、设备和系统 |
Also Published As
Publication number | Publication date |
---|---|
CN101827391A (zh) | 2010-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109565703B (zh) | 用于管理无线通信网络中的数据通信的方法和设备 | |
US10708940B2 (en) | Method and apparatus for reporting buffer state by user equipment in communication system | |
EP2364053B1 (en) | Method and related device for synchronizing semi-persistent scheduling data delivery and semi-persistent scheduling resource arrival in a wireless communication system | |
US8385196B2 (en) | Method and apparatus for supporting uplink starvation avoidance in a long term evolution system | |
EP3447978B1 (en) | Data transmission method and device | |
JP5875581B2 (ja) | 効率的スケジューリングを支援するためのbsr情報の送達のための方法およびデバイス | |
WO2021004182A1 (zh) | 数据传输方法、装置、第一通信节点及第二通信节点 | |
US20090168793A1 (en) | Prioritising Data Transmission | |
CN108337633B (zh) | 数据分流配置方法、基站系统和用户终端 | |
WO2012122924A1 (zh) | 一种上行数据的调度方法、系统及装置 | |
CN111213403B (zh) | 无线通信系统中QoS流的调度方法及装置 | |
TW202002705A (zh) | 支援資料預處理之方法及其行動通訊裝置 | |
WO2010099704A1 (zh) | 一种无线承载状态发送方法及装置 | |
US10244423B2 (en) | Chunk-based scheduling method and chunk-based scheduling apparatus in wireless communication system | |
WO2014162895A1 (ja) | 無線基地局及び移動局 | |
WO2010099700A1 (zh) | 上行资源分配、状态报告发送方法及装置 | |
WO2012136087A1 (zh) | 一种资源调度的方法及系统及一种终端 | |
WO2020088400A1 (zh) | 资源调度方法、装置及设备 | |
CN107426823B (zh) | 一种媒体访问控制层复用方法及系统 | |
CN105704828A (zh) | 一种资源调度的方法和装置 | |
CN102685816A (zh) | 一种用户面配置参数的处理方法及装置 | |
WO2017101121A1 (zh) | 传输信令、传输数据和建立gtp隧道的方法及设备 | |
WO2016101148A1 (zh) | 物理无线资源块调度的方法、设备和系统 | |
WO2024138877A1 (zh) | 传输bsr的方法及装置 | |
CN109802893B (zh) | 数据传输方法、装置和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10748290 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10748290 Country of ref document: EP Kind code of ref document: A1 |