[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010095675A1 - System for measuring biological information, method for measuring biological information, blood sugar meter, body composition meter and sphygmomanometer - Google Patents

System for measuring biological information, method for measuring biological information, blood sugar meter, body composition meter and sphygmomanometer Download PDF

Info

Publication number
WO2010095675A1
WO2010095675A1 PCT/JP2010/052419 JP2010052419W WO2010095675A1 WO 2010095675 A1 WO2010095675 A1 WO 2010095675A1 JP 2010052419 W JP2010052419 W JP 2010052419W WO 2010095675 A1 WO2010095675 A1 WO 2010095675A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
time
biological information
attribute
measurement
Prior art date
Application number
PCT/JP2010/052419
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 明久
伸樹 矢倉
心哉 小高
幸哉 澤野井
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Publication of WO2010095675A1 publication Critical patent/WO2010095675A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1112Global tracking of patients, e.g. by using GPS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/07Home care
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches

Definitions

  • the present invention relates to a biological information measurement system, a biological information measurement method, a blood glucose meter, a body composition meter, and a blood pressure monitor that acquire biological information, for example.
  • various biological information acquisition devices such as a body composition meter (including a body weight / body composition meter), a sphygmomanometer, and a blood glucose meter have been proposed for acquiring biological information.
  • a body composition meter including a body weight / body composition meter
  • a sphygmomanometer for acquiring biological information.
  • a blood glucose meter for acquiring biological information.
  • Various improvements have been made to these biological information acquisition devices in order to improve accuracy.
  • the measured value of the biological information differs depending on the state of the living body at the time of measurement. Nevertheless, it may be measured in a situation inappropriate for measurement. In some cases, the risk of disease can be determined by the difference in the measured values depending on the condition of the living body.
  • the wake-up time and bedtime may differ depending on the life rhythm, and if it is processed uniformly only in the time zone, it may not be an appropriate classification.
  • a biometric information acquisition apparatus that can automatically determine a situation in which biometric information is measured has not been provided, instead of performing uniform processing in this way.
  • the present invention provides a biological information measuring system, a biological information measuring method, a blood glucose meter, a body composition meter, and a biological information measuring system that can automatically determine the attributes of biological information determined by the situation in which the biological information is measured.
  • An object of the present invention is to provide a sphygmomanometer and improve user convenience.
  • the present invention relates to body motion information acquisition means for acquiring body motion information related to body motion of a living body, biological information acquisition means for acquiring biological information of the living body, and determining an attribute of the biological information based on the body motion information. It is a biometric information acquisition apparatus provided with the attribute determination means to do.
  • the body motion information acquisition means is a body motion detection means for detecting body motion, such as an acceleration sensor for acquiring acceleration data capable of calculating the number of steps or an amount of activity, or a pendulum sensor capable of counting the number of steps, or the body motion detection means.
  • the body motion information detected in (1) can be configured by communication means for acquiring by communication.
  • the body motion information may be acceleration data measured by a body motion measuring device such as a pedometer or activity meter, the number of steps, an activity amount, or a plurality of these.
  • the biological information may be appropriate information regarding the living body such as a blood glucose level, a blood pressure value, a body composition value, or a plurality thereof.
  • the body composition value can be a value related to body composition, such as body fat percentage, subcutaneous fat percentage, internal fat percentage, skeletal muscle percentage, or BMI.
  • the biological information acquisition means is a biological information detection means for detecting biological information, such as a blood glucose detection means for detecting a blood sugar level, a body composition detection means for detecting a body composition, a blood pressure detection means for detecting blood pressure, or the biological information detection.
  • the communication means for receiving the biological information detected by the means can be configured.
  • the attribute of the biological information can be constituted by information that can determine in what state the acquired biological information is measured, such as an appropriate attribute and an inappropriate attribute.
  • a disease risk-related attribute related to a disease risk such as early morning hypertension, white coat hypertension, and masked hypertension can be determined.
  • the disease risk determined as a disease risk-related attribute is a post-wake-up measurement SBP that is an average of systolic blood pressure (SBP) and diastolic blood pressure (DBP) measured after waking up.
  • SBP systolic blood pressure
  • DBP diastolic blood pressure
  • the present invention it is possible to determine what attribute biological information corresponds to based on body motion information measured by a body motion measurement device which is another device. Therefore, it is possible to determine the attribute of the biological information that cannot be determined as appropriate or inappropriate by the single biological information measuring device by using the body movement measuring device.
  • body movement measurement time acquisition means for acquiring body movement measurement time information that is the time when the body movement is measured, and biological information that acquires biological information measurement time information that is the time when the biological information is measured
  • a measurement time acquisition unit wherein the attribute determination unit determines an attribute of the biological information based on whether or not body motion information for a predetermined time before the biological information measurement satisfies a predetermined criterion.
  • the body movement measurement time information and the biological information measurement time information can be composed of appropriate data such as time data or numerical data that can be converted into time by an appropriate calculation.
  • the predetermined time can be appropriately set according to the biological information that is the target of attribute determination.
  • the predetermined standard can be appropriately set according to the biological information that is the target of attribute determination.
  • the attribute of the measured biological information can be determined based on the body movement information for a predetermined time before the biological information measurement. Therefore, for example, it is determined that biological information measured immediately after exercise is an inappropriate attribute, or because blood pressure as biological information measured after waking up is higher than a blood pressure measured at other times by a predetermined pressure or more, it is an attribute of early morning hypertension Various determinations can be made, such as determining that
  • a relative time between the body movement information measurement time and the biological information measurement time is calculated by the time of the difference.
  • Relative time adjustment means to adjust and match the time axis
  • the attribute determining means may be configured to determine the attribute of the biological information based on the body motion information after the time axes are matched by the relative time adjusting means. This makes it possible to accurately determine the attribute of the biological information by adjusting the time difference between the devices.
  • a body movement measuring apparatus including a server apparatus as the biological information acquisition apparatus, a body movement detection unit that detects body movement information of a living body, and a communication unit that transmits the body movement information;
  • a biological information acquisition system comprising a plurality of types of biological information measuring devices having biological information detecting means for detecting biological information and communication means for transmitting the biological information, the body movement information acquiring means and the biological information
  • the acquisition unit includes a communication unit that is provided in the server device and acquires the body movement information from the body movement measurement device and acquires the biological information from the biological information measurement device.
  • the attribute determination unit is A biometric information acquisition system in which different attribute determination conditions are set for each type of information measurement device can be provided.
  • the body movement measuring device may be a pedometer that counts the number of steps or an activity meter that calculates an activity amount.
  • the biological information measuring device can be constituted by an appropriate device that measures biological information, such as a blood glucose meter, a body composition meter, a blood pressure monitor, or a plurality of these.
  • the communication means may be a wired or wireless communication means.
  • the attribute can be appropriately determined according to the type of the biological information measuring device.
  • the attribute determination means stores the biological information if a predetermined time has not elapsed since the end of the predetermined amount of exercise determined based on the body movement.
  • the biological information is blood pressure
  • the biological information is inappropriate if the predetermined time has not elapsed since the end of the predetermined amount or more of the exercise determined based on the body movement.
  • the biological information is blood glucose
  • the biological information is determined to be an inappropriate attribute if a predetermined time has not elapsed since the meal timing determined based on the body movement. It can be configured. This makes it possible to correctly determine whether the measured biological information is an appropriate attribute or an inappropriate attribute for the body composition measuring device, the blood pressure measuring device, and the blood glucose measuring device.
  • the biological information when the biological information is blood pressure, it may be configured to further determine whether the blood pressure attribute is measured at home based on the body movement or the clinic blood pressure attribute measured in the clinic. it can. Thereby, since the home blood pressure attribute and the clinic blood pressure attribute can be determined, it is possible to determine masked hypertension and white coat hypertension.
  • the attribute determination result when the biological information is blood pressure, the attribute determination result may be different with a smaller difference than when the biological information is body composition. Therefore, it is possible to properly use the determination criterion appropriately depending on the blood pressure and the body composition, and the attribute can be accurately determined.
  • the present invention also includes a body motion information acquisition step for acquiring body motion information related to body motion of a living body, a biological information acquisition step for acquiring biological information of the living body, and attributes of the biological information based on the body motion information. It can be set as the biometric information acquisition method provided with the attribute determination step to determine.
  • the present invention also includes a body motion information acquisition step for acquiring body motion information related to body motion of a living body, a biological information acquisition step for acquiring biological information of the living body, and attributes of the biological information based on the body motion information. It can be set as the biometric information display method provided with the attribute determination step to determine, and the display step which displays the determined attribute and the said biometric information. Thereby, the attribute of the measured biological information can be displayed, and the user can confirm it.
  • the present invention provides body motion information acquisition means for acquiring body motion information relating to body motion of a living body, Biological information acquisition means for acquiring biological information of the biological body, attribute determination means for determining an attribute of the biological information based on the body movement information, and display means for displaying the determined attribute and the biological information. And a biological information display device. Thereby, the attribute of the measured biological information can be displayed, and the user can confirm it.
  • the present invention is also a blood glucose meter comprising blood glucose detection means for detecting a blood glucose level of a living body and storage means for storing blood glucose information of the blood glucose level, and the body motion information for acquiring the body motion information of the living body
  • the blood glucose meter may include an acquisition unit and an attribute determination unit that determines an attribute of the blood glucose level based on whether or not the body motion information satisfies a predetermined body motion condition. Thereby, the attribute of the measured blood glucose level can be determined.
  • the blood glucose meter is provided with a measurement inappropriate time zone acquisition means for acquiring a measurement inappropriate time zone based on meal timing, and if the measurement time does not fall within the measurement inappropriate time zone, the blood glucose level is appropriately measured. It can also be set as the output information as a measurement blood glucose level.
  • the measurement inappropriate time zone acquisition means acquires from the body motion detection data a body motion detection device non-use time zone acquisition means for acquiring a time zone during which the body motion detection device is not used, and acquires the usage time of the electric toothbrush.
  • the electric toothbrush usage time acquisition means, or the meal time acquisition means for obtaining the meal time based on the body movement detection device non-use time and the electric toothbrush usage time acquired by these means can be used. With this configuration, it is possible to prevent the blood sugar level from being measured in the measurement inappropriate time zone.
  • the present invention is also a body composition meter comprising body composition detecting means for detecting a body composition value of a living body and storage means for storing body composition information of the body composition value, wherein the body motion information of the living body is obtained.
  • a body composition meter can be provided that includes body motion information acquisition means to be acquired and attribute determination means for determining an attribute of the body composition value based on whether or not the body motion information satisfies a predetermined body motion condition. Thereby, the attribute of the measured body composition value can be determined.
  • the body composition meter is configured to acquire at least one of body movement information related to body movement of the living body or meal time information about meal time of the living body, and avoids a time zone in which activity based on the body movement information is strong.
  • the body composition information acquired in either the time zone or the time zone avoiding a fixed time after meal based on the meal time information may be output as output information.
  • the meal time information may be a meal start time, a meal end time, or both.
  • This configuration can prevent the body composition from being measured in a time zone that is inappropriate for the measurement due to actions that affect the measurement, such as exercise and meals.
  • the body composition meter includes a notification unit that notifies that the measurement of the body composition is on standby, and is configured to acquire the wake-up time information related to the wake-up time of the living body, and the estimated wake-up time based on the wake-up time information It may be configured that the notification means informs that it is waiting for the measurement of the body composition when it becomes a belt, and the body composition information acquired in this estimated wake-up time zone is output as output information.
  • the notification means includes an audio output means for outputting an alarm sound, a buzzer sound or a message sound, a light emitting means such as an LED or a lamp for emitting light, a display such as a liquid crystal display or an organic EL display for displaying characters or figures. Means, or a plurality of these.
  • This configuration makes it possible to measure body composition at an appropriate timing that matches the individual's life rhythm.
  • the present invention is a sphygmomanometer comprising a blood pressure detection means for detecting a blood pressure value of a living body and a storage means for storing blood pressure information of the blood pressure value, and the body motion information for acquiring the body motion information of the living body
  • the sphygmomanometer may include an acquisition unit and an attribute determination unit that determines an attribute of the blood pressure value based on whether or not the body motion information satisfies a predetermined body motion condition. Thereby, the attribute of the measured blood pressure value can be determined.
  • the sphygmomanometer includes position information acquisition means for acquiring position information at the time of blood pressure measurement, classifies a plurality of measured blood pressure information according to a predetermined condition based on the position information, and compares the blood pressure information according to the classification. Based on the result, disease risk related information related to the disease risk may be calculated, and the disease risk related information may be output as the output information.
  • the position information acquisition means can be constituted by a GPS (Global Positioning System) apparatus or a communication means for acquiring position information from another apparatus.
  • Other devices include devices such as body motion detectors that incorporate GPS functions, mobile phones and PHS (Personal Handyphone System) that perform wireless communication with communication base stations, and whether or not you were at work from the work hours at the time of measurement.
  • a computer device for determining whether or not the patient was at the time of measurement from the medical chart information at the time of the visit, and a computer device for identifying the location at the time of measurement based on transportation commuter pass or IC card usage information For example, an appropriate apparatus can be used.
  • This configuration can reliably determine cardiovascular diseases such as white coat hypertension and masked hypertension.
  • the present invention it is possible to automatically determine the attribute of the biological information, and by determining whether the measurement is performed in an inappropriate situation or by processing the biological information according to the measurement situation, the user's Convenience can be improved.
  • FIG. 6 is a block diagram of a biological information acquisition system according to a second embodiment.
  • FIG. 10 is a flowchart showing operations of the mobile phone and the sphygmomanometer according to the third embodiment. 10 is a flowchart of an operation for prompting remeasurement according to the third embodiment.
  • FIG. 10 is a flowchart showing operations of the mobile phone and the sphygmomanometer according to the third embodiment.
  • 10 is a flowchart of an operation for prompting remeasurement according to the third embodiment.
  • FIG. 10 is a block diagram of a sphygmomanometer according to a sixth embodiment. Explanatory drawing of the system configuration
  • FIG. 10 is a flowchart of overall operations executed by the sphygmomanometer according to Embodiment 6.
  • 10 is a flowchart showing an operation of blood pressure measurement processing according to the sixth embodiment.
  • FIG. 18 is a flowchart showing the operation of risk index display processing according to the sixth embodiment.
  • FIG. 10 is an explanatory diagram of a screen according to the sixth embodiment.
  • FIG. 10 is an explanatory diagram of a system configuration according to a seventh embodiment.
  • the flowchart which shows the operation
  • the graph which shows the classification
  • FIG. FIG. 10 is an explanatory diagram of a screen according to the seventh embodiment.
  • This invention is to determine an attribute such as whether the biological information is appropriate or inappropriate or related to a disease risk based on body movement within a predetermined time from the measurement of the biological information.
  • FIG. 1 is a configuration diagram showing a schematic configuration of the biological information measuring system 1.
  • the biological information measurement system 1 includes a server 150, a body motion detection device 110, a blood glucose meter 160, a body composition meter 270, and a sphygmomanometer 240 that are communicably connected. Communication between these apparatuses is performed by an appropriate method such as USB (Universal Serial Bus) for wired connection, Bluetooth (registered trademark) for wireless communication, LAN (Local Area Network), or the Internet.
  • USB Universal Serial Bus
  • Bluetooth registered trademark
  • LAN Local Area Network
  • the server 150 is connected to the body motion detection device 110 and the biological information measurement device H (the blood glucose meter 160, the body composition meter 270, and the blood pressure meter 240) so as to communicate with each other, and receives data from all of these devices. Processing.
  • the biological information measurement device H the blood glucose meter 160, the body composition meter 270, and the blood pressure meter 240
  • the body motion detection device 110 is connected so that all the biological information measurement devices H can communicate with each other, and transmits body motion information, measurement time information, and current time information to these biological information measurement devices H.
  • the body motion detection device 110 includes identification information (such as a device ID or user ID), device type information, body motion information measured by itself (such as the number of steps or amount of activity), measurement time information when body motion is measured, and current The time information is transmitted to the server 150.
  • the body motion detection device 110 is configured by an appropriate device that detects body motion, such as a pedometer for counting the number of steps or an activity meter for calculating an activity amount.
  • Each biological information measuring device H receives body motion information, measurement time information, and current time information from the body motion detection device 110, and whether the biological information (blood glucose level, body composition value, blood pressure value) measured by itself is appropriate Attribute determination such as whether or not is executed.
  • each biological information measuring device H has identification information (device ID or user ID, etc.), device type information, self-measured biometric information (blood glucose level, body composition value, blood pressure value), and measurement time when biometric information is measured. Information and current time information are transmitted to the server 150.
  • FIG. 2A shows the configuration of the server 150.
  • the server 150 includes a control unit 151, an operation unit 152, a display unit 153, a storage unit 154, a communication unit 155, and a time measuring unit 156.
  • the control unit 151 includes a CPU, a ROM, and a RAM, and executes a control operation and a calculation operation of each unit in accordance with a program stored in the ROM or the like.
  • the time axes are relatively adjusted. Time adjustment processing to be performed, and attribute determination processing for determining the attribute of the biological information acquired from the biological information measurement device H based on the body motion information acquired from the body motion detection device 110 are also executed.
  • the operation unit 152 includes an operation input device such as a keyboard and a mouse, and sends an input signal input by the operation to the control unit 151.
  • the display unit 153 includes a display device such as a liquid crystal display or a CRT display, and performs display according to a control signal from the control unit 151.
  • the storage unit 154 includes a storage device such as a hard disk, and stores appropriate programs and data.
  • various data received from the server 150, the body motion detection device 110, the blood glucose meter 160, the body composition meter 270, and the sphygmomanometer 240, and the attribute of the biological information of each biological information measuring device H are determined. Attribute determination information is stored.
  • the communication unit 155 includes an appropriate communication interface such as a USB (Universal Serial Bus) for wired connection, Bluetooth (registered trademark) for wireless communication, or a Local Area Network (LAN), and communicates with other devices under the control of the control unit 151. Send and receive data.
  • USB Universal Serial Bus
  • Bluetooth registered trademark
  • LAN Local Area Network
  • Time measuring unit 156 measures time and transmits the current time to control unit 151. As a result, time management such as measurement of the current time and measurement of elapsed time can be performed.
  • FIG. 2 (B) shows the configuration of the blood glucose meter 160.
  • the blood glucose meter 160 includes a control unit 161, an operation unit 162, a display unit 163, a blood glucose measurement unit 164, a communication unit 165, a storage unit 166, and a time measuring unit 167.
  • the control unit 161 includes a CPU, a ROM, and a RAM, and executes control operations and arithmetic operations of each unit according to a program stored in the ROM or the like.
  • the operation unit 162 is a button that receives a setting input and an operation input for displaying past measurement data, and transmits a pressing signal to the control unit 161.
  • the display unit 163 includes a display device such as a liquid crystal display or a CRT display, and performs display according to a control signal from the control unit 151.
  • a display device such as a liquid crystal display or a CRT display
  • appropriate screen display such as measured blood glucose level, past blood glucose level, setting input screen, measured blood glucose level attribute (appropriate attribute or inappropriate attribute) is performed.
  • the blood glucose measurement unit 164 measures the blood glucose level of the user and transmits the measured blood glucose level to the control unit 161.
  • This blood glucose level is measured by an electrode method that measures the current generated when the collected blood sugar reacts with the drug solution, or a colorimetric method that measures the color change caused by the reaction between the blood sugar and the drug solution. Can be carried out by a known method.
  • the communication unit 165 includes an appropriate communication interface such as a USB (Universal Serial Bus) for wired connection, Bluetooth (registered trademark) for wireless communication, or a Local Area Network (LAN), and communicates with other devices according to the control of the control unit 161. Send and receive data.
  • USB Universal Serial Bus
  • Bluetooth registered trademark
  • LAN Local Area Network
  • the storage unit 166 stores appropriate data such as the measured blood glucose level and the measurement time.
  • the measured blood glucose level and measurement time are stored as biological information.
  • the storage unit 166 determines whether the measured blood glucose level is appropriate (appropriate attribute) measured in a normal state or inappropriate (appropriate attribute) measured in an inappropriate state. Information for determination is also stored.
  • the time measuring unit 167 measures time and transmits the current time to the control unit 161. As a result, time management such as measurement of the current time and measurement of elapsed time can be performed.
  • FIG. 2C shows the configuration of the body motion detection device 110.
  • the body motion detection device 110 includes a communication unit 111, an acceleration detection unit 112, a display unit 113, a calculation unit 114, a power supply connection unit 115, a storage unit 116, an operation unit 117, a power supply unit 118, and a timer unit 119.
  • the body motion detection device 110 may be configured by an appropriate device that measures body motion, such as a pedometer that counts the number of steps, an activity meter that measures the amount of activity, or an exercise meter that measures the number of steps and the amount of activity. it can.
  • the communication unit 111 includes an appropriate communication interface such as USB (Universal Serial Bus) for wired connection, Bluetooth (registered trademark) for wireless communication, or LAN (Local Area Network), and is connected to other devices according to the control of the calculation unit 114. Send and receive data.
  • USB Universal Serial Bus
  • Bluetooth registered trademark
  • LAN Local Area Network
  • the acceleration detection unit 112 is a sensor that detects acceleration as an example of a change caused by a user's walking or the like, and transmits a detection signal (acceleration data) to the calculation unit 114.
  • the acceleration detection unit 112 includes a one-dimensional acceleration sensor that detects acceleration in one direction, a two-dimensional acceleration sensor that detects acceleration in two orthogonal directions, or a three-dimensional acceleration sensor that detects acceleration in three orthogonal directions. A three-dimensional acceleration sensor with a large amount of information is most preferable.
  • the display unit 113 is configured by a display device such as a liquid crystal, and displays information according to a display control signal from the calculation unit 114.
  • the information to be displayed can be information relating to body movement such as the number of steps and the amount of activity.
  • the calculation unit 114 is driven by power received from the power supply unit 118 via the power supply connection unit 115, receives (detects) detection signals from the acceleration detection unit 112 and the operation unit 117, the communication unit 111, the display unit 113, and the storage. Power supply (power supply) and operation control (display control) to the unit 116 are executed. In addition, based on the detection signal received from the acceleration detection unit 112, processing for calculating the number of steps and calculating the amount of activity is performed with reference to the walking determination reference data stored in the storage unit 116.
  • the storage unit 116 stores a step count counting program for detecting a signal portion due to walking in the detection signal and counting the number of steps, threshold data for counting the number of steps, an activity amount calculating program for calculating an activity amount, and the like. is doing. Further, body motion detection data in which the detected body motion is associated with the detection time, the counted number of steps, and the calculated amount of activity are also stored.
  • the operation unit 117 is used to input user information such as weight and stride, date and time input operation for setting the clock, display content switching operation for switching display contents to various contents such as the number of steps, calories consumed, and walking distance, and data transmission to the server 150 An appropriate operation input such as a data transmission operation is received, and this operation input signal is transmitted to the calculation unit 114.
  • the power supply unit 118 supplies necessary operating power to each unit through the power supply connection unit 115.
  • the timer unit 119 measures the time and transmits the current time to the calculator 114. As a result, time management such as measurement of the current time and measurement of elapsed time can be performed.
  • FIG. 3D shows the configuration of the sphygmomanometer 240.
  • the sphygmomanometer 240 includes a cuff 241, a pressure sensor 242, a pump 243, a valve 244, an oscillation circuit 245, a pump drive circuit 246, a valve drive circuit 247, a clock 248, a power supply 249, a control unit 250, a display unit 251, and a processing memory. 252, a recording memory 253, an operation unit 254, and a communication unit 255.
  • the cuff 241 is a belt-like member that is attached to the blood pressure measurement site of the user, and pressurizes with the air pressure supplied through the air tube 241a.
  • the pressure sensor 242 is a capacitance type pressure sensor and measures the pressure of the air bag in the cuff 241. The pressure sensor 242 changes its capacitance value according to the pressure in the cuff 241 (cuff pressure), and outputs this capacitance value to the oscillation circuit 245.
  • the pump 243 and the valve 244 apply pressure to the cuff 241 and adjust (control) the pressure in the cuff.
  • the oscillation circuit 245 outputs a signal having a frequency corresponding to the capacitance value of the pressure sensor 242 to the control unit 250.
  • the pump drive circuit 246 drives the pump 243 according to the control signal from the control unit 250.
  • the valve drive circuit 247 drives the valve 244 in accordance with a control signal from the control unit 250.
  • the clock 248 is a device that measures the current date and time, and outputs the date and time counted to the control unit 250 as necessary.
  • the power source 249 supplies power to each component.
  • the control unit 250 executes control of the pump 243, the valve 244, the display unit 251, the processing memory 252, the recording memory 253, and the communication unit 255, blood pressure measurement processing, and management of recorded values.
  • the display unit 251 is configured by a display device such as a liquid crystal screen, and displays a blood pressure value according to a signal sent from the control unit 250.
  • the processing memory 252 stores blood pressure calculation parameters and a sphygmomanometer control program.
  • the recording memory 253 stores the blood pressure value, and stores the date / time / user / measurement value in association with each other as necessary.
  • the operation unit 254 includes a power switch, a measurement switch, a stop switch, a recording call switch, and a user selection switch (not shown).
  • the operation unit 254 accepts an operation input such as power ON / OFF of the sphygmomanometer and start of measurement.
  • An input signal is sent to the control unit 250.
  • the communication unit 255 executes a process of transmitting the measured blood pressure to the external device and receiving information on the measurement inappropriate time zone from the external device under the control of the control unit 250.
  • FIG. 3E shows the structure of the body composition meter 270.
  • This body composition meter 270 is mainly composed of a display operation unit 271 that is a first housing held by a user and a weight measurement unit 291 that is a second housing on which the user rides. It functions as a weight scale as well as a composition meter.
  • the display operation unit 271 includes a communication unit 272, a storage unit 273, a timing unit 274, an operation unit 275, a display unit 276, a constant current circuit unit 277, a power supply unit 278, a control unit 279, a double integration AD unit 282, and an impedance detection unit. 283 and an electrode portion 284 are provided.
  • the communication unit 272 is connected to the control unit 279, and communicates with other devices according to the control signal of the control unit 279.
  • the storage unit 273 is configured by a device that can store information such as a nonvolatile memory or a hard disk, and reads and writes information according to a control signal from the control unit 279.
  • the storage unit 273 stores user information about the user. This user information is stored by numbers such as user 1 and user 2, for example, and the user's gender, age, and height, or these and weight are stored.
  • the time measuring unit 274 (time measuring means) is a device for measuring time such as the current date and time, and sends the time to the control unit 279 as necessary.
  • the operation unit 275 includes a plurality of buttons that are pressed, and sends input information that is pressed down by the user, such as input of user physical information such as sex, age, height, and weight, to the control unit 279. .
  • the display unit 276 is configured by a display device such as a liquid crystal screen, and displays images such as characters and figures in accordance with image signals sent from the control unit 279.
  • the constant current circuit unit 277 flows a high-frequency (alternating current) current supplied from the power supply unit 278 to the current application electrode unit 284 in one direction based on the control of the control unit 279.
  • the power supply unit 278 supplies operating power to each unit including the control unit 279.
  • the control unit 279 is configured by a CPU, a ROM, a RAM, or a microcomputer (microcomputer), and executes a control operation and a calculation operation of each unit according to a program stored in the ROM or the like. As this program, a body composition measurement program is stored.
  • the double integration AD unit 282 is a double integration type AD (analog / digital) conversion unit that converts an analog signal supplied from the impedance detection unit 283 into a digital signal.
  • AD analog / digital
  • the impedance detection unit 283 detects the impedance of the user based on the potential difference between the electrode unit 136 provided in the weight measurement unit 291 and the electrode unit 284 provided in the display operation unit 271.
  • the electrode unit 284 is provided on the surface of the grip portion of the display operation unit 271 that the user holds by hand.
  • the electrode unit 284 supplies a high-frequency (alternating current) current supplied from the power supply unit 278 to the palm of the user holding the grip portion. Apply.
  • the body weight measurement unit 291 includes an operation unit 292, a battery 293, a load detection unit 294, and an electrode unit 297.
  • the operation unit 292 functions as an input switch for switching the power ON / OFF, and sends the input signal that has been input to the control unit 279.
  • the battery 293 supplies power to each unit with the power supply unit 278 at the center.
  • the load detection unit 294 has a built-in load cell 295, and measures the weight of the user who rides on the upper surface cover unit 296 (see FIG. 1) that also serves as the upper surface cover of the housing. The weight measured at this time is sent to the double integration AD unit 282.
  • the electrode unit 297 is provided on the surface of the upper surface portion (see FIG. 1) of the weight measuring unit 291 on which the user rides, and is an electrode for current measurement that receives current flowing from the sole of the user. .
  • This electrode part 297 is composed of four electrodes on the user's left toe side, left toe side, right toe side, and right toe side.
  • FIG. 4 is a configuration diagram of data stored in the body movement detection device 110 and each biological information measurement device H. Note that the same data is stored and stored in the storage unit 154 of the server 150 for each user.
  • FIG. 4A shows the data structure of the body motion detection device data D1 stored in the storage unit 116 of the body motion detection device 110.
  • This body movement detection device data D1 is composed of identification information, device type information, and body movement information.
  • the body motion detection device (or a code indicating the body motion detection device) is stored as the device type information.
  • the content of body movement information consists of acceleration and measurement time.
  • the acceleration and the measurement time are continuous data of the acceleration acquired continuously at a predetermined time interval and the measurement time.
  • the present invention is not limited to this, and it may be composed of the number of steps determined based on the fact that a predetermined number of times or more of accelerations are separated at predetermined time intervals, and the start time and end time of the step count, All of these may be stored.
  • FIG. 4B shows a data configuration of blood glucose meter data D2 stored in the storage unit 166 of the blood glucose meter 160.
  • the blood glucose meter data D2 includes identification information, device type information, biological information, and attribute determination information.
  • ID is stored as identification information
  • a blood glucose meter (or a code indicating a blood glucose meter) is stored as device type information.
  • the blood glucose level and the measurement time are stored.
  • attribute determination information an inappropriate attribute and an appropriate attribute are stored.
  • the inappropriate attribute is stored as a condition that it is within a predetermined time after the meal starts.
  • the appropriate attribute is stored as a condition that it is not an inappropriate attribute.
  • FIG. 4C shows a data configuration of body composition meter data D3 stored in the storage unit 273 of the body composition meter 270.
  • ID is stored as identification information
  • a body composition meter (or a code indicating the body composition meter) is stored as device type information.
  • the body composition meter data D3 includes identification information, device type information, biological information, and attribute determination information.
  • body composition As biological information, body composition, body weight, and measurement time are stored. As the body composition, visceral fat percentage, skeletal muscle percentage, BMI, and the like are stored.
  • an inappropriate attribute and an appropriate attribute are stored.
  • the inappropriate attribute is stored as a condition that it is within a predetermined time from a body motion of a predetermined intensity.
  • the appropriate attribute is stored as a condition that it is not an inappropriate attribute.
  • FIG. 4D shows a data configuration of the sphygmomanometer data D4 stored in the recording memory 253 of the sphygmomanometer 240.
  • the sphygmomanometer data D4 includes identification information, device type information, biological information, and attribute determination information.
  • a sphygmomanometer (or a code indicating the sphygmomanometer) is stored as the device type information.
  • a blood pressure value and a measurement time thereof are stored.
  • attribute determination information an inappropriate attribute, an appropriate attribute, an early morning hypertension attribute, a white coat hypertension attribute, and a masked hypertension attribute are stored.
  • the inappropriate attribute is stored as a condition that it is within a predetermined time from the body movement of a predetermined intensity.
  • the predetermined intensity here is set to a value smaller than the predetermined intensity in the body composition meter data D3.
  • the predetermined time here is set shorter than the predetermined time in the body composition meter data D3.
  • the appropriate attribute is stored as a condition that it is not an inappropriate attribute.
  • the early morning hypertension attribute is stored as a condition that a value obtained by subtracting the other blood pressure from the blood pressure within a predetermined time after getting up is larger than the predetermined blood pressure.
  • the white coat hypertension attribute is stored as a condition that the value obtained by subtracting the measured blood pressure in the home from the measured blood pressure in the clinic is greater than the predetermined pressure.
  • the masked hypertension attribute is stored as a condition that the value obtained by subtracting the measured blood pressure in the home from the measured blood pressure in the clinic is smaller than the predetermined pressure.
  • FIG. 5 shows a screen configuration diagram of the analysis display screen 10 displayed on the display unit 153 of the server 150.
  • the analysis display screen 10 includes a step count display unit 11, a time display unit 12, a state display unit 13, a blood glucose display unit 14, a body composition display unit 15, and a blood pressure display unit 16.
  • the data for one day designated as appropriate is displayed.
  • the average value for each time may be displayed, or the average value for each day of the week may be displayed for each day of the week.
  • the step count display unit 11 displays the number of steps per hour in a bar graph format based on the body motion detection device data D1.
  • the number of steps for example, running
  • the time display unit 12 displays the time from 0:00 to 24:00 in units of one hour.
  • the state display unit 13 displays the state of the living body determined from the body motion detection device data D1.
  • the state of the living body indicates a state such as getting up, eating (breakfast, lunch, dinner, etc.), medical examination, and sleeping.
  • the acceleration is detected when the acceleration has not been detected for a predetermined time or more but has started to be detected.
  • the predetermined time or more has passed, the time when no longer detected can be set to bedtime.
  • the meal can be determined by an appropriate method, such as a meal when a minute acceleration is detected for a predetermined time, or a meal that is input as being eaten by an appropriate input means.
  • the body motion detection device 110 is equipped with a GPS, and a period of time in a medical facility such as a hospital can be determined as a medical treatment.
  • the blood glucose display unit 14 displays the blood glucose level at the position of the measured measurement time based on the blood glucose meter data D2. In addition, the determined attribute is displayed together with the blood glucose level. In the example shown in the figure, “ ⁇ ” indicating that the blood glucose level measured before a meal is an appropriate attribute is displayed, and “X” indicating that the blood glucose level measured immediately after the meal is an inappropriate attribute. Is displayed.
  • the body composition display unit 15 displays the body composition values (subcutaneous fat rate and skeletal muscle rate, such as the subcutaneous fat rate in the illustrated example) at the position of the measured measurement time based on the body composition meter data D3.
  • the determined attribute is also displayed together with the body composition value.
  • “ ⁇ ” indicating that the body composition value measured after getting up is an appropriate attribute is displayed, and the body composition value measured immediately after intense exercise is an inappropriate attribute “ “ ⁇ ” is displayed.
  • the blood pressure display unit 16 displays the blood pressure value at the position of the measured measurement time based on the sphygmomanometer data D4.
  • the determined attribute is also displayed together with the blood pressure value.
  • ⁇ ⁇ '' indicating that the blood pressure value measured after getting up is an appropriate attribute is displayed, and the blood pressure value measured during medical treatment is indicated as a white coat hypertension attribute ⁇ (white) Is displayed.
  • x is displayed for inappropriate attributes
  • “(temporary)” is displayed for masked hypertension attributes, and other appropriate display is performed according to the determined attribute.
  • FIG. 6 is an explanatory diagram of a body motion information input screen displayed on each biological information measuring device H.
  • FIG. 6A shows a body motion information input screen 20 a displayed on the display unit 163 of the blood glucose meter 160.
  • the body motion information input screen 20a includes a body motion input mode display unit 29, a measurement time display unit 23, and a measurement date display unit 24.
  • the body motion input mode display unit 29 displays that the body motion input mode is set. Thereby, the user can connect the body motion detection device 110 and input body motion information. In addition, it is good also as a structure which displays the confirmation screen whether a body motion input is performed, and displays this body motion information input screen 20a, when it selects when it inputs.
  • the measurement time display unit 23 is a part that displays the measurement time, and normally displays the current time. When displaying past information, the measurement time of the information is displayed.
  • the measurement date display unit 24 is a part that displays the measurement date, and normally displays the current date. When displaying past information, the measurement date of the information is displayed.
  • FIG. 6B shows a body motion information input screen 30 a displayed on the display unit 276 of the body composition meter 270.
  • the body motion information input screen 30a is provided with a body motion input mode display unit 39.
  • the body motion input mode display unit 39 displays that the body motion input mode is set. Thereby, the user can connect the body motion detection device 110 and input body motion information. In addition, it is good also as a structure which displays the confirmation screen of whether to perform body movement input, and displays this body movement information input screen 30a, when it selects when it inputs.
  • FIG. 6C shows a body motion information input screen 40 a displayed on the display unit 251 of the sphygmomanometer 240.
  • the body motion information input screen 40a is provided with a body motion input mode display section 49, a measurement date display section 45, and a measurement time display section 46.
  • the body movement input mode display unit 49 displays that the body movement input mode is set. Thereby, the user can connect the body motion detection device 110 and input body motion information. In addition, it is good also as a structure which displays the confirmation screen of whether to perform body movement input, and displays this body movement information input screen 40a, when it selects when it inputs.
  • the measurement date display unit 45 is a part that displays the measurement date, and normally displays the current date. When displaying past information, the measurement date of the information is displayed.
  • the measurement time display unit 46 is a part that displays the measurement time, and normally displays the current time. When displaying past information, the measurement time of the information is displayed.
  • FIG. 7 is an explanatory diagram of a measurement result display screen displayed on each biological information measuring device H. 7A1 and 7A2 show a blood glucose measurement result display screen 20b displayed on the display unit 163 of the blood glucose meter 160.
  • the blood glucose measurement result display screen 20b includes an attribute display unit 21, a blood glucose level display unit 22, a measurement time display unit 23, and a measurement date display unit 24.
  • the attribute display unit 21 When the attribute display unit 21 acquires the body motion detection device data D1 from the body motion detection device 110, the blood glucose level displayed on the blood glucose level display unit 22 is the “appropriate” attribute shown in FIG. 7 (A1). Or “inappropriate” attribute shown in FIG. When the body movement detection device data D1 is not acquired, the attribute display unit 21 may display “not evaluated” or the like indicating that no attribute is displayed or attribute determination is not performed.
  • FIG. 7 (B1) and FIG. 7 (B2) show a body composition measurement result display screen 30b displayed on the display unit 276 of the body composition meter 270.
  • the body composition measurement result display screen 30b includes an attribute display unit 31, a weight display unit 32, a subcutaneous fat rate display unit 33, and a skeletal muscle rate display unit 34.
  • the attribute display unit 31 displays “appropriate” as the subcutaneous fat rate display unit 33 and the skeletal muscle rate display unit 34 show in FIG. "Attribute or” inappropriate “attribute shown in FIG. 7 (B2).
  • the attribute display unit 31 may display “not evaluated” or the like indicating that no attribute is displayed or attribute determination is not performed.
  • FIG. 7 (C1) and FIG. 7 (C2) show a blood pressure measurement result display screen 40b displayed on the display unit 251 of the sphygmomanometer 240.
  • the blood pressure measurement result display screen 40b includes an attribute display unit 41, a systolic blood pressure value display unit 42, a diastolic blood pressure value display unit 43, a pulse rate display unit 44, a measurement date display unit 45, and a measurement time display unit 46. .
  • the attribute display unit 41 when acquiring the body motion detection device data D1 from the body motion detection device 110, displays the blood pressure value (maximum blood pressure value) displayed on the systolic blood pressure value display unit 42 and the diastolic blood pressure value display unit 43. And (minimum blood pressure value) is “appropriate” attribute shown in FIG. 7 (C1), “inappropriate” attribute shown in FIG. 7 (C2), “white coat hypertension” attribute or “masked hypertension attribute”. When the body movement detection device data D1 is not acquired, the attribute display unit 41 may display “not evaluated” or the like indicating that no attribute is displayed or attribute determination is not performed.
  • FIG. 8 is a flowchart of operations executed by the calculation unit 114 of the body motion detection device 110 and the control units (161, 250, 279) of the biological information measurement device H.
  • the body motion detection device 110 reads the body motion detection data from the storage unit 116 (step S1), and processes it into transmission body motion data as necessary (step S2).
  • the body movement data for transmission is, for example, divided by a predetermined time (30 minute unit, 1 hour unit, etc.), counted the number of steps within the predetermined time, and stepped data by time composed of the time and the number of steps within the time.
  • Appropriate data such as the start time and end time of an activity accompanied by body movement of a predetermined intensity or more, or the body movement intensity and the time thereof can be used.
  • the body movement data for transmission is the body movement data for transmission corresponding to the biological information measuring device H that is a partner to transmit data from now on. For this reason, it is preferable to let the user select which type of biological information measuring device H to transmit in advance, or connect to the biological information measuring device H and communicate at the time of connection to determine the type. .
  • the biological information measuring device H to be transmitted is the blood glucose meter 160, it is possible to determine the time when the meal is considered to have been eaten and to set the meal start time and the meal end time as body movement data for transmission. preferable.
  • the biological information measuring device H to be transmitted is the body composition meter 270, it is preferable that the time from the time when the body motion with the intensity of sweating is started to be the body motion data for transmission.
  • the biological information measuring device H to be transmitted is the sphygmomanometer 240, it is preferable that the time from the start of the body motion that causes a change in blood pressure to be the body motion data for transmission.
  • the body motion detecting device 110 transmits the created body motion data for transmission to the biological information measuring device H together with the current time (step S3).
  • the biological information measuring apparatus H displays the body movement information input screen (20a, 30a, 40a) and receives the body movement data for transmission and the current time (step S4), and the biological information measuring apparatus H now knows It is determined whether or not the time coincides (step S5).
  • step S5 If they match (step S5: Yes), it is considered that the time axes of both match, so the process proceeds to step S7 without performing relative time adjustment.
  • step S5 the biological information measuring device H sets the measurement time of either data by the time difference between the received current time of the body motion detection device 110 and the current time recognized by itself.
  • the time axis is shifted to match (step S6).
  • the measurement time of the biological information (blood glucose level, body composition value, blood pressure value) measured by the biological information measuring device H is advanced or delayed by the time difference, or included in the body motion data for transmission of the body motion detection device 110.
  • the current time data is adjusted so as to be advanced or delayed by the time difference.
  • the biological information measuring device H reads the biological information and attribute determination information from its own storage unit (165, 253, 273) (step S7).
  • the biological information measuring device H determines the attribute of the biological information based on the acquired attribute determination information and the transmission body motion data (step S8).
  • This attribute determination has different standards depending on the type of the biological information measuring device H, as shown in the attribute determination information of various data shown in FIG. Therefore, each biological information measuring device H determines the attribute of the biological information measured by itself in accordance with the reference registered in the attribute determination information of itself.
  • the biological information measuring device H outputs the biological information together with the determined attribute (step S9), and ends the process.
  • the biometric information and attribute output may be executed by displaying them on the measurement result display screen (20, 30, 40) displayed on the display unit (163, 251, 276).
  • FIG. 9 is a flowchart showing operations performed mainly by the server 150 of the biological information measurement system 1.
  • the server 150 determines the attribute of the biological information acquired from each biological information measuring device H.
  • the body motion detection device 110 and each biological information measurement device H read the detection information, identification information, and device type information shown in FIG. 4 (step S11), and transmit data to the server 150 together with the current time (step S12).
  • the detection information is body movement information in the case of the body movement detection device 110 and biological information in the case of each biological information measurement device H.
  • the timing at which the body movement detecting device 110 and each biological information measuring device H transmit this data may be executed at an appropriate timing, and may be executed separately by each device.
  • the server 150 When the server 150 receives various data from the body movement detection device 110 and each biological information measurement device H (step S13), the server 150 identifies a processing target device from the device type information included in the data (step S14). By this processing, it is specified which of the body motion detection device 110, the blood glucose meter 160, the sphygmomanometer 240, or the body composition meter 270 is the processing target device.
  • the server 150 determines whether or not the current time included in the data received in step S13 matches the current time measured by itself (step S15).
  • step S15 the measurement time included in the received data is adjusted to match the time axis of the server 150 (step S16).
  • This adjustment is executed by shifting (advancing or delaying) the measurement time of the processing target device by the time difference between the current time of the processing target device and the current time of the server 150.
  • the time of the server 150 is used as a reference.
  • the time of the server 150 is adjusted in accordance with the time of the body motion detection device 110 so that the time of the body motion detection device 110 is used as a reference. Also good.
  • the server 150 processes the detection information as necessary (step S17). Specifically, when the processing target device is the body motion detection device 110, the acceleration of the body motion information that is detection information is processed. This processing is processed into data suitable for determining the attribute of the biological information of each biological information measuring device H, and is processed into the data described as the body motion data for transmission in step S2 described above.
  • the server 150 reads the biological information and attribute determination information (step S18), determines the attributes of the biological information (step S19), and displays the biological information and attributes.
  • the analysis display screen 10 is displayed at 153 (step S20). Since steps S18 to S20 are the same as steps S7 to S9 described above, detailed description thereof is omitted.
  • step S21: Yes If there is data on an unprocessed device (body motion detection device 110 or biological information measurement device H) (step S21: Yes), the server 150 returns to step S14 and repeats the process, and there is no data on an unprocessed device. If (step S21: No), the process is terminated.
  • the biological information (blood glucose level, body composition value, blood pressure value) measured by the blood glucose meter 160, the body composition meter 270, and the sphygmomanometer 240 as the biological information measuring device H corresponds to any attribute. It can be determined based on the body motion information of the body motion detection device 110 which is another device. Therefore, the single blood glucose meter 160, the body composition meter 270, and the blood pressure meter 240 cannot determine the attribute of whether the measured biological information is appropriate or inappropriate. Can be made possible.
  • the attribute is determined based on body movement information for a predetermined time before measurement of biological information (blood glucose level, body composition value, blood pressure value), it is determined that the attribute is inappropriate because the biological information is measured immediately after exercise.
  • biological information blood glucose level, body composition value, blood pressure value
  • Various determinations can be made, such as determining that the blood pressure measured after waking up is an attribute of early morning hypertension because the blood pressure measured at other times is higher than a predetermined pressure.
  • the blood glucose meter 160, the body composition meter 270, and the sphygmomanometer 240 have different attribute determination information that is a reference for attribute determination, appropriate attribute determination according to each device can be performed. .
  • the attribute determination is performed by matching the time axes of the body motion detection device 110 and each biological information measurement device H, the attribute determination can be performed with high accuracy.
  • the biological information measured by each biological information measuring device H is appropriate or inappropriate, the biological information measured in an inappropriate situation is used as a determination factor such as a disease risk by a doctor or the like. Can be excluded.
  • the attribute can be determined afterwards based on the biological information stored in each biological information measuring device H and the body motion information detected by the body motion detecting device 110. Thereby, even if it is forgotten that the measurement has been performed in an inappropriate situation such as immediately after exercise after a number of days has elapsed after the measurement, it is possible to determine that the attribute is inappropriate by automatic determination.
  • the attribute can be automatically determined based on the accumulated data without depending on the memory of the patient, so that an appropriate diagnosis without error can be performed.
  • the home blood pressure attribute and the clinic blood pressure attribute can be determined from the information on the measurement location acquired by the body motion detection device 110 for the blood pressure measured by the sphygmomanometer 270, it is possible to determine masked hypertension and white coat hypertension. Become.
  • the blood pressure measured by the sphygmomanometer 270 can be determined based on the body motion information acquired by the body motion detection device 110, it is possible to determine the attribute of early morning hypertension. In this way, the disease risk can be automatically determined.
  • the user who performed the measurement knows the attribute himself / herself.
  • a doctor or the like can check the screen at the time of examination.
  • the present invention provides biological information acquisition means for acquiring biological information relating to a living body, biological state information acquisition means for acquiring biological state information relating to a changing state of the biological body, and biological information acquired by the biological information acquisition means.
  • the present invention can be understood as a biological information acquisition apparatus including a situation-specific processing unit that processes based on the situation information and an output unit that outputs output information processed by the situation-specific processing unit.
  • a blood glucose meter for measuring a user's blood glucose level has been provided. It is known that the blood glucose level measured by this blood glucose meter changes depending on the situation of the user. More specifically, after meals, blood glucose levels are higher than normal. For this reason, it is known that the blood glucose level appears higher than normal if the user's situation to measure is a situation in which not much time has passed since meals.
  • the conventional blood glucose meter could not discriminate under what circumstances the blood glucose level was measured. For this reason, if the user declares that he / she is after a meal, he / she can take time to measure it, but if he / she does not self-report or plans at home, he / she can measure it after meals to check for an incorrect blood sugar level. There was a possibility.
  • the body movement detection device is used for counting the number of steps of a user, calculating calorie consumption, etc., and has not been used for other purposes.
  • the body movement detection device of the second embodiment can notify the blood glucose meter whether or not a certain time has elapsed since the user's meal, and the blood glucose meter that has received the notification is not suitable for measurement.
  • the purpose is to prevent blood glucose levels from being measured.
  • FIG. 10 is an external configuration diagram of the biological information acquisition system 100 including the body motion detection device 110, the electric toothbrush 130, the server 150, and the blood glucose meter 160
  • FIG. 11 is a block diagram of the biological information acquisition system 100. .
  • the server 150 acquires information on the body movement detection device 110 and the electric toothbrush 130, and transmits information calculated by the server 150 to the blood glucose meter 160 using this information. It is the composition to do.
  • the body motion detection device 110 has various components, but is the same as that shown in FIG. 2 (C). The detailed explanation is omitted.
  • the electric toothbrush 130 includes a control unit 131, an operation unit 132, a vibration unit 133, and a communication unit 134.
  • the control unit 131 includes a CPU, a ROM, and a RAM, and executes a control operation of each unit according to a program stored in the ROM or the like. Specifically, the drive of the vibration unit 133 is started / stopped according to the ON / OFF operation of the operation unit 132, and the drive start time and stop time are transmitted to the server 150 by the communication unit 134.
  • the operation unit 132 includes a push button for receiving input of power ON / OFF, speed switching, and the like, and sends a push signal to the control unit 131 when pressed.
  • the vibration unit 133 includes a vibration motor, and rotates / stops according to an ON / OFF signal from the control unit 131.
  • the communication unit 134 includes an appropriate communication interface such as a USB (Universal Serial Bus) for wired connection, Bluetooth (registered trademark) for wireless communication, or a LAN (Local Area Network), and the vibration unit 133 is controlled by the control unit 131.
  • the drive start time and drive stop time are transmitted to the server 150.
  • server 150 is the same as that described with reference to FIG. 2A in the first embodiment, the same reference numerals are given to the same elements, and detailed description thereof is omitted.
  • control part 151 of this Example measures the blood glucose which is a fixed time centering on after meal completion from the body movement detection data received from the body movement detection apparatus 110 and the electric toothbrush usage time data received from the electric toothbrush 130.
  • the prohibited time zone is estimated, and this blood glucose measurement prohibited time zone is transmitted to the blood glucose meter 160.
  • body motion detection data acceleration data, step count data, activity amount data, or a plurality of these measured by the body motion detection device 110 and the electric toothbrush 130 were used for the storage unit 154 of this example.
  • Electric toothbrush usage time data is stored.
  • the communication unit 155 of this embodiment receives data from the body motion detection device 110 and the electric toothbrush 130 and transmits the data to the blood glucose meter 160.
  • the communication unit 165 of this embodiment sends data such as body movement detection data and electric toothbrush usage time data received from the server 150 to the control unit 161.
  • FIG. 12 shows a process in which the server 150 acquires body motion detection data and electric toothbrush usage time data from the body motion detection device 110 and the electric toothbrush 130, calculates a time zone in which blood glucose level measurement is prohibited, and transmits it to the blood glucose meter 160. It is a flowchart of.
  • the control unit 151 of the server 150 acquires body motion detection data (pedometer data) from the body motion detection device 110 (step S101).
  • the body motion detection data may be appropriate data such as the acceleration data itself acquired by the body motion detection device 110 with the acceleration detection unit 112, or the number of steps and time obtained from the acceleration data.
  • the control unit 151 adds up the acquired body movement detection data (step S102).
  • body motion detection data is divided into arbitrary time units such as 10-minute units or 30-minute units, and the number of steps in this time unit is counted.
  • step S103 If the number of steps in the time unit is not less than the set value K (step S103: No), the control unit 151 returns to the process in step S102 and executes the next time unit.
  • the determination here may be determination as to whether or not the amount of activity within the time unit is less than the set value K. In either determination, it is possible to determine whether or not the user has used the body motion detection device 110.
  • step S104 determines whether or not the set number of times (N times) continues (step S104). In this determination, for example, if the time unit having only the number of steps less than the set value K continues for a predetermined number of times or more, it can be determined that the body motion detection device 110 is not used in that time zone.
  • step S104 If it continues more than the set number of times (step S104: Yes), the control part 151 will calculate that it is a body movement detection apparatus non-use time slot
  • control unit 151 repeats steps S102 to S106 until the processing is completed for all the time units counted in step S102 (step S107: No).
  • step S107 If all the data is completed (step S107: Yes), the control unit 151 acquires the electric toothbrush usage time data from the electric toothbrush 130 (step S108).
  • the electric toothbrush usage time data acquired at this time may include the time when the electric toothbrush is turned on and the time when it is turned off.
  • the control unit 151 calculates the use time zone of the electric toothbrush from the acquired electric toothbrush use time data (step S109).
  • the control unit 151 calculates a blood glucose measurement prohibition time zone from the body motion detection device non-use time zone and the body motion detection device usage time zone calculated so far, and the electric toothbrush usage time zone (step S110).
  • the time and activity in which the user (subject) was active based on the body motion detection device non-use time zone and the body motion detection device use time zone. It can be distinguished from the time that was not.
  • the non-use time zone of the body motion detection device 110 ( ⁇ in the body motion detection device column) and the non-use time zone of the electric toothbrush 130 ( ⁇ in the toothbrush column). It is possible that a meal was eaten.
  • the user eats in the time zone just before the electric toothbrush starts to be used and the body motion detection device non-use time zone (the time zone when it was not active). It can be estimated that it was the meal time zone that was being used.
  • From this meal time zone to the time after a predetermined time can be calculated as a blood glucose measurement prohibited time zone.
  • the predetermined time it is preferable to set in advance the time from when the blood sugar level rises due to a meal until it returns to the normal value.
  • the control unit 151 transmits the blood glucose measurement prohibition time zone calculated in this way to the blood glucose meter 160 (step S111), and ends the process.
  • FIG. 14 is a flowchart of the operation executed by the control unit 161 of the blood glucose meter 160.
  • the control unit 161 receives blood glucose measurement prohibition time zone data from the server 150 through the communication unit 165 (step S131), and displays the blood glucose measurement prohibition time zone on the display unit 163 (step S132). This informs the user of a time zone that is not suitable for blood glucose measurement after a meal, thereby preventing an inappropriate time measurement.
  • the control unit 161 waits until a measurement operation is input by the operation unit 162 (step S133: No). If there is a measurement operation input (step S133: Yes), whether or not the current time is within the blood glucose measurement prohibited time zone. Is determined (step S134).
  • step S134 the control unit 161 performs blood glucose measurement by the blood glucose measurement unit 164 (step S135), and displays the measured blood glucose level on the display unit 163 (step S136). To finish the process. At this time, the measured blood glucose level may be transmitted to the server 150.
  • step S134 When it is the blood glucose measurement prohibited time zone (step S134: Yes), the control unit 1616 displays that measurement is impossible on the display unit 163 (step S137), and ends the process.
  • This indication that measurement is not possible is possible to measure that a normal blood glucose level cannot be obtained because it is estimated as a post-meal time, or after a predetermined time (the remaining time from the current time to the end time of the blood glucose measurement prohibited time zone). Appropriate indications such as a notice can be made.
  • the blood glucose meter 160 including the blood glucose level acquisition unit (blood glucose measurement unit 164) that acquires the blood glucose level as the biological information acquisition unit uses the measurement inappropriate time zone based on the meal timing as the biological state information acquisition unit.
  • the measurement inappropriate time zone acquisition means to acquire (the communication unit 165 that receives the blood glucose measurement prohibition time zone in step S131), and the situation-specific processing means (control unit 161 that executes steps S134 to S137) If the blood glucose level is not within the measurement inappropriate time zone, the blood glucose level is set as output information (blood glucose level) as an appropriately measured blood glucose level, so that the blood glucose level after meal should be measured. Can be prevented.
  • the measurement accuracy of the blood glucose level measured by the blood glucose meter 160 can be improved.
  • the user himself / herself makes measurements at home or the like, it is possible to easily obtain an accurate blood glucose level by measuring in an appropriate state.
  • the user does not need to manage the meal time himself or manually input the meal time into the blood glucose meter 160. As a result, it is possible to improve the convenience for the user by avoiding additional labor.
  • the meal time zone is estimated from both the data of the body motion detection device 110 and the electric toothbrush 130, the meal time zone can be estimated with higher accuracy than when only one of them is used.
  • step S137 since measurement is not performed and measurement itself is not executed in step S137, even if blood glucose measurement is performed at a certain time after meal which is not suitable for measurement, it can be locked and not measured. Therefore, it can be ensured that the measurement is not performed at a certain time after the meal, and the measurement accuracy of the blood glucose meter 160 can be maintained.
  • the blood glucose meter 160 may be configured to notify the user with an alarm or the like when the blood glucose measurement prohibition time period elapses and the recommended time suitable for measurement is reached.
  • a sound output device that outputs an alarm sound or sound is provided, and the control unit 151 performs an operation to check whether or not the blood glucose measurement prohibition time period has passed every predetermined time, and the sound is determined at the timing when it is determined that the time has passed. What is necessary is just to make it the structure which alert
  • a body motion detection device for example, a pedometer
  • a sphygmomanometer that measures a user's blood pressure has been provided. It is known that the blood pressure measured by this sphygmomanometer changes depending on the condition of the living body. More specifically, after exercise, the blood pressure value becomes higher than normal. For this reason, it is known that if the state of the living body to be measured is a state in which not much time has passed since exercise, the blood pressure is measured higher than normal.
  • the conventional sphygmomanometer could not be distinguished from the normal blood pressure even when measured in such a biological situation. For this reason, there is a possibility that the blood pressure that is high immediately after exercise is measured and this blood pressure is treated as a normal blood pressure.
  • a body composition meter for measuring a user's body composition has been provided.
  • the body composition measured by this body composition meter changes depending on the state of the living body. More specifically, when the user's skin is in a state of moisture such as sweat, the contact resistance changes from the dry state, so that an error appears in the measurable impedance. For this reason, if the state of the living body to be measured is a state of sweating, the body composition is measured to a value different from that in normal times.
  • the conventional body composition meter could not be distinguished from the normal body composition even when measured in such a biological situation. For this reason, there was a possibility that the body composition was measured while sweating, and this body composition was treated as a normal body composition.
  • the body movement detection device is used for counting the number of steps of a user, calculating calorie consumption, etc., and has not been used for other purposes.
  • the body motion detection device can notify the sphygmomanometer or body composition meter of the movement state of the living body, and the sphygmomanometer or body composition meter that has received the measurement is at a timing that is not suitable for measurement. The purpose is to prevent this.
  • FIG. 15 shows an external perspective view of the mobile phone 220, the sphygmomanometer 240, and the body composition meter 270
  • FIG. 16 shows the biometric information acquisition system 200 that includes the mobile phone 220, the sphygmomanometer 240, and the body composition meter 270.
  • a block diagram is shown.
  • a server 150 (not shown) that can communicate with them is also provided. Since the server 150 is the same as that of the first embodiment, detailed description thereof is omitted.
  • the mobile phone 220 includes a control unit 221, a communication unit 222, an operation unit 223, a display unit 224, a storage unit 225, a call unit 226, a voice output unit 227, and an acceleration detection unit 228. ing.
  • the control unit 221 includes a CPU, a ROM, and a RAM, and executes various operations according to programs and data stored in the ROM and RAM. In operation, the RAM is used as a temporary storage area.
  • the communication unit 222 performs wireless communication with the base station apparatus via the antenna according to the control of the control unit 221 and transmits / receives data.
  • the operation unit 223 includes a plurality of push buttons, and sends a press signal pressed by the user to the control unit 221.
  • the display unit 224 includes an appropriate display device such as a liquid crystal display, and displays images such as characters and pictures according to control signals from the control unit 221.
  • the storage unit 225 is configured by a storage medium such as a nonvolatile memory, and stores necessary data and programs.
  • the call unit 226 includes a voice output unit including a speaker for calling and a D / A converter, and a voice input unit including a microphone and an A / D converter.
  • a voice output unit including a speaker for calling and a D / A converter
  • a voice input unit including a microphone and an A / D converter.
  • the voice output unit 227 executes output of music data, ringing tone, and the like according to the control of the control unit 221.
  • the acceleration detection unit 228 is configured by an acceleration sensor, and sends the detected acceleration signal to the control unit 221.
  • This acceleration sensor is composed of a one-dimensional acceleration sensor that detects acceleration in one direction, a two-dimensional acceleration sensor that detects acceleration in two orthogonal directions, or a three-dimensional acceleration sensor that detects acceleration in three orthogonal directions. A three-dimensional acceleration sensor with a large amount of information is most preferable.
  • the acceleration detector 228 enables the mobile phone 220 to function as a body motion detector (such as a pedometer or activity meter).
  • the mobile phone 220 is used.
  • the present invention is not limited to this, and an appropriate device capable of measuring the number of steps and the amount of activity, such as the body movement detection device 110 described in the first embodiment, may be used. it can.
  • the sphygmomanometer 240 is the same as that shown in FIG. 3D, and therefore, the same reference numerals are given to the same elements, and detailed description thereof is omitted. Since the body composition meter 270 is the same as that shown in FIG. 3E, the same reference numerals are given to the same elements, and detailed description thereof is omitted.
  • the communication unit 272 in the body composition meter 270 of this embodiment communicates with other devices such as the mobile phone 220 in accordance with the control signal of the control unit 279.
  • the communication unit 272 is not limited to the mobile phone 220, and communicates with other biometric information acquisition devices such as a blood pressure monitor 240, or communicates with a server, a personal computer, or a mobile information terminal (such as a PDA or another mobile phone). For example, it may be configured to communicate with an appropriate device.
  • the mobile phone 220 can detect the presence or absence of exercise by the acceleration detection unit 228 and transmit a message based on the detection to the sphygmomanometer 240 or the body composition meter 270.
  • FIG. 17 is a flowchart showing the operation of the mobile phone 220 and the sphygmomanometer 240 when prohibiting blood pressure measurement after continuous exercise for a certain time.
  • the control unit 221 of the mobile phone 220 waits until the sphygmomanometer 240 is connected (step S201: No). When the sphygmomanometer 240 is connected (step S201: Yes), the latest predetermined time (for example, 5 minutes). The exercise data is confirmed (step S202). The confirmation of the movement data is based on the acceleration data acquired from the acceleration detector 228, whether or not there is a walk (or running) of a certain number of steps or an activity of a certain amount or more during the most recent predetermined time. Good to run by.
  • step S203 If there is an exercise of a predetermined amount or more within the latest predetermined time (step S203: Yes), the control unit 221 transmits a message to the sphygmomanometer 240 (step S204), and the process is terminated.
  • the message at this time is preferably a content that allows the user to recognize that it is immediately after exercise and is not suitable for blood pressure measurement, such as “Let's rest for a while and measure again”.
  • the sphygmomanometer 240 displays the message on the display unit 251.
  • step S203 If there is no exercise of a predetermined amount or more within the latest predetermined time (step S203: No), the control unit 221 transmits a message to the sphygmomanometer 240 (step S205). It is preferable that the message at this time has a content that allows the user to recognize that blood pressure measurement is possible, such as “please press the start button”.
  • the control unit 250 of the sphygmomanometer 240 Upon receiving this message, the control unit 250 of the sphygmomanometer 240 performs blood pressure measurement in response to the user pressing the measurement switch (start button) (step S206). At this time, the control unit 250 of the sphygmomanometer 240 displays the measured blood pressure on the display unit 251 and transmits it to the mobile phone 220.
  • the control unit 221 of the mobile phone 220 acquires blood pressure data (step S207), transmits the acquired blood pressure data to the server 150 (step S208), and ends the process.
  • FIG. 18 is a flowchart of an operation for prompting re-measurement when blood pressure is measured by the sphygmomanometer 240 and exercise is performed at least 5 minutes before that.
  • the control unit 250 of the sphygmomanometer 240 performs blood pressure measurement in response to the operation of the operation unit 254 by the user (step S211), and transmits the measured blood pressure data to the mobile phone 220.
  • the control unit 221 of the mobile phone 220 receives and acquires the blood pressure data and the measurement time from the sphygmomanometer 240 (step S212), and confirms whether or not the user is exercising in the latest predetermined time (for example, 5 minutes) (step S212). S213).
  • the confirmation as to whether or not the user is exercising may be performed by the same process as in step S202 described above.
  • movement assumed it can be set as the exercise
  • Step S214 may be the same as step S204 described above.
  • control unit 221 stores the blood pressure data in the storage unit 225 (step S215) and transmits it to the server 150 (step S216). The process is terminated.
  • FIG. 19 is a flowchart showing operations of the mobile phone 220 and the body composition meter 270 when prohibiting body composition measurement after a certain period of continuous movement.
  • the control unit 221 of the mobile phone 220 waits until the body composition meter 270 is connected (step S221: No).
  • the most recent predetermined time for example, 5) Minute
  • the confirmation of the movement data is based on the acceleration data acquired from the acceleration detector 228, whether or not there is a walk (or running) of a certain number of steps or an activity of a certain amount or more during the most recent predetermined time. Good to run by.
  • step S223 If there is an exercise of a predetermined amount or more within the latest predetermined time (step S223: Yes), the control unit 221 transmits a message to the body composition meter 270 (step S224), and the process is terminated. It is preferable that the message at this time has a content that allows the user to recognize that it is not suitable for body composition measurement after exercise, such as “Let's take a rest for a while”.
  • the body composition monitor 270 that has received this message displays the message on the display unit 276.
  • control unit 221 transmits a message to the body composition meter 270 (step S225). It is preferable that the message at this time has a content that allows the user to recognize that body composition measurement is possible, such as “please press the start button”.
  • control unit 279 of the body composition meter 270 Upon receiving this message, the control unit 279 of the body composition meter 270 receives the user's operation unit 275 (start button) and performs body composition measurement (step S226). At this time, the control unit 279 of the body composition meter 270 displays the measured body composition on the display unit 276 and transmits it to the mobile phone 220.
  • the control unit 221 of the mobile phone 220 acquires body composition data (step S227), transmits the acquired body composition data to the server 150 (step S228), and ends the process.
  • FIG. 20 is a flowchart of an operation for prompting remeasurement when the body composition is measured by the body composition meter 270 and there is exercise immediately before 5 minutes.
  • the control unit 279 of the body composition meter 270 performs body composition measurement in response to the operation of the operation unit 275 by the user (step S231), and transmits the measured body composition data to the mobile phone 220.
  • the control unit 221 of the mobile phone 220 receives and obtains the body composition data and the measurement time from the body composition meter 270 (step S232), and confirms whether or not the user is exercising at the latest predetermined time (for example, 5 minutes). (Step S233).
  • the confirmation as to whether or not the user is exercising may be executed by the same process as in step S222 described above. Moreover, as an exercise
  • Step S233 If there is a predetermined amount or more of exercise within the most recent predetermined time (step S233: Yes), the control unit 221 transmits a message to the body composition meter 270 (step S234), and ends the process.
  • Step S234 may be the same as step S224 described above.
  • control unit 221 stores the body composition data in the storage unit 225 (step S235) and transmits it to the server 150 (step S236). ), The process is terminated.
  • the body motion detection device (cell phone 220) including the body motion detection unit (acceleration detection unit 228) that detects the body motion of the living body as the body state information acquisition unit is the processing unit (step by step).
  • a control unit 221 that executes S213 to S215 and S233 to S235 determines a living state in a predetermined time zone (the latest 5 minutes) based on body motion information (motion data) by the body motion detecting means, and the determination result Based on the biometric information (blood pressure or body composition) acquired by the biometric information acquisition means is determined (storage or remeasurement), and information based on the determination is output information (remeasurement message or body composition data to be stored) Therefore, it is possible to determine the biological status of the predetermined time zone based on the body movement information, and to determine the handling of the biological information based on the biological status It is possible. Therefore, it is possible to prevent a measurement error of biological information due to an external factor such as exercise.
  • the sphygmomanometer 240 it is possible to prevent the user from measuring immediately after exercise and obtaining a blood pressure value higher than normal.
  • the body composition meter 270 the skin contact impedance due to perspiration changes immediately after exercise and the body composition value is different from the normal body composition value when sweating. Can be prevented.
  • fat measurement which is a kind of body composition value
  • contact resistance between the electrode portions 284 and 297 and the user's skin is reduced due to the influence of sweat (moisture), and prevents fat from being calculated. it can. Therefore, the reliability of the measurement results obtained by the biological information measuring device such as the sphygmomanometer 240 or the body composition meter 270 can be increased.
  • the server 150 since highly reliable measurement data (blood pressure, body composition, etc.) excluding the measurement after a predetermined exercise is transmitted to the server 150, the reliability of the data managed by the server 150 can be increased. Thereby, when performing user's health management etc., it can prevent improper treatment and advice based on data with low reliability measured immediately after exercise, for example.
  • highly reliable measurement data blood pressure, body composition, etc.
  • a body composition meter which is a kind of biological information acquisition device, recommends measurement in an appropriate state according to a life rhythm acquired from a body motion detection device (for example, an activity meter).
  • the body composition measured by this body composition meter includes a condition where measurement is recommended and a condition where measurement accuracy is lowered. More specifically, for example, immediately after a meal, after bathing, after drinking a lot of alcohol, etc., the user's biological condition is different from normal, and thus there is an error in the impedance to be measured. For this reason, depending on the biological condition to be measured, the body composition is measured to a value different from that in normal times.
  • the conventional body composition meter could not be distinguished from the normal body composition even when measured in such a biological situation. For this reason, there is a possibility that the body composition is measured in a biological state different from the normal state, and this body composition is handled as the normal body composition.
  • the body composition meter of Example 4 is intended to acquire the life rhythm of the user and prevent the body composition meter from being measured at a timing unsuitable for measurement based on this.
  • the body motion detection device 110 described in the first embodiment and the body composition meter 270 described in the first embodiment are connected to be communicable and used.
  • This communication may be configured such that the body motion detection device 110 and the body composition meter 270 communicate directly, or may be communication via an appropriate device such as the server 150 described in the first embodiment.
  • the body movement detection device 110 also includes a meal button for inputting a meal time on the operation unit 117.
  • a meal button for inputting a meal time on the operation unit 117.
  • the pressed time can be used as a button for storing the pressed time as a meal time.
  • the storage unit 116 stores meal completion time data in addition to body movement detection data.
  • the body composition meter 270 stores life rhythm data based on activity intensity data and mealtime data acquired from the body motion detection device 110 in the storage unit 273.
  • This life rhythm data is composed of, for example, a time zone in which activities are active, a time zone of meals, and the like.
  • an appropriate measurement time zone calculation program for calculating a time zone suitable for measurement using activity intensity data and meal time data is also stored.
  • the control unit 279 also executes an appropriate measurement time zone calculation program.
  • FIG. 21 is a flowchart of operations executed by the control unit 279 of the body composition meter 270.
  • the control unit 279 communicates with the body motion detection device 110 and determines whether there is the latest data (step S301).
  • control unit 279 fetches the data (step S302), and determines whether or not there is activity intensity data in the fetched data (step S303).
  • step S303 When there is activity intensity data in the captured data (step S303: Yes), the control unit 279 updates the personal life rhythm data stored in the storage unit 273, and adds a time zone in which the activity is active. (Step S304).
  • the activity for example, when the body motion detection device 110 is viewed as an activity meter, when the exercise intensity (Mets) is added and when the activity is active I can judge.
  • the determination of whether or not the activity here is active may be performed by acquiring data from a device other than the body motion detection device 110 and executing it.
  • data is acquired from the sphygmomanometer 240 of the first embodiment, and when the blood pressure increases, it is determined that the activity is active, or when the heart rate increases, the activity is active It can be judged.
  • step S304 determines whether there is meal time data in the captured data (step S305).
  • the control unit 279 updates the personal life rhythm data and adds a meal time zone (step S306).
  • the meal time may be stored as a meal time when the meal button of the body motion detection device 110 is pressed, and a predetermined time before and after this time may be stored as the meal time.
  • the meal timing may be set regardless of morning or evening.
  • step S306 or when there is no mealtime data (step S305: No), or when there is no latest data in step S301 (step S301: No), the control unit 279 is based on the acquired data. Then, a time zone in which measurement of the body composition is recommended is calculated (step S307).
  • the recommended time zone may be a time when it is difficult for the activity to become active and a time excluding 2 hours after eating.
  • the control unit 279 executes processing using the calculated recommended time (step S308), and ends the processing.
  • the body composition measurement is performed by the body composition meter 270, it is determined whether or not the recommended time is the recommended time. If the recommended time, the measurement, display, and storage are performed. An error message may be displayed so that measurement is not performed after time has elapsed.
  • the process to be used can be a notification process for notifying that the time is suitable for measurement when the recommended time has come.
  • This notification can be an appropriate notification such as a notification by a visual sign using the display unit 276 or an LED (not shown), a notification by an audio output unit that outputs a sound such as an alarm sound, or both. .
  • the body composition meter 270 provided with the body composition measuring means (impedance detection unit 283) for measuring the body composition of the living body as the biological information acquisition means is obtained by the biological situation information acquisition means (communication unit 272). It is configured to acquire at least one of body movement information (activity intensity data) related to body movements of the living body and meal time information (meal time data) related to meal times of the living body, and executes processing means for each situation (steps S301 to S308).
  • the body composition acquired by the control unit 279) in any one of a time zone avoiding a strong activity time zone based on the body movement information or a time zone avoiding a certain time after meal based on the meal time information. By outputting information as output information, it is possible to prevent measurement in a time zone unsuitable for measurement and to recommend measurement in a stable state. .
  • the user only has to use the body motion detection device 110 and the body composition meter 270, and since there is no need to manually input the activity time and meal time into the body composition meter 270, it can be used conveniently.
  • the data of the body motion detection device 110 it is possible to prevent the occurrence of input leakage as in the case of manual input by the user, and it is possible to calculate the measurement recommended time with high certainty.
  • the operation unit 117 of the body motion detection device 110 may not be provided with a meal button and may not be configured to store meal data.
  • steps 305 to S306 may be omitted and the measurement may be avoided only during the time period when the activity is active. Even in this case, since it is possible to avoid measuring the body composition during a time period in which the activity is strengthened, it is possible to suppress the occurrence of an error in the measurement of the body composition due to the difference in the biological situation.
  • a body composition meter which is a type of biological information acquisition device, recommends measurement in an appropriate state according to a life rhythm acquired from an alarm clock.
  • the body composition measured by this body composition meter includes a condition where measurement is recommended and a condition where measurement accuracy is lowered. More specifically, for example, immediately after a meal, after bathing, after drinking a lot of alcohol, etc., the user's biological condition is different from normal, and thus there is an error in the impedance to be measured. For this reason, depending on the biological condition to be measured, the body composition is measured to a value different from that in normal times.
  • the conventional body composition meter could not be distinguished from the normal body composition even when measured in such a biological situation. For this reason, there is a possibility that the body composition is measured in a biological state different from the normal state, and this body composition is handled as the normal body composition.
  • the body composition meter of Example 5 is intended to obtain a user's life rhythm from an alarm clock and to measure the body composition meter at a timing suitable for the measurement based on this.
  • the body composition meter 270 described in the first embodiment and a known alarm clock are connected so as to be communicable.
  • This communication may be configured such that the alarm clock and the body composition meter 270 communicate directly, or may be communication via an appropriate device such as the server 150 described in the first embodiment.
  • the alarm function may be used by giving the body composition meter 270 an alarm function.
  • the time is measured by the time measuring unit 274, the setting of the alarm time is received by the operation unit 275, and when the set alarm time is reached, the alarm is notified by the display on the display unit 276, the alarm output not shown or the like. What is necessary is just composition.
  • FIG. 22 is a flowchart of the operation executed by the control unit 279 of the body composition meter 270.
  • the control unit 279 communicates with the alarm clock and determines whether there is latest data (step S401).
  • step S401 when using the alarm function of the body composition meter 270 itself, it is determined whether or not there is the latest data in the alarm time stored in the storage unit 273.
  • step S401 If there is the latest data (step S401: Yes), the control unit 279 takes in the data (step S402) and re-estimates the recommended measurement time (step S403).
  • This recommended measurement time can be determined as a time that is most likely to be a wake-up time by confirming the wake-up time from the accumulated wake-up time data.
  • step S403 After this step S403 or when there is no latest data from the alarm clock (step S401: No), the control unit 279 waits until the recommended time is reached, and turns on the power when the recommended time is reached (step S404).
  • This notification can be an appropriate notification such as a notification by a visual sign using the display unit 276 or an LED (not shown), a notification by an audio output unit that outputs a sound such as an alarm sound, or both. .
  • the body composition meter 270 provided with the body composition measuring means (impedance detection unit 283) that measures the body composition of the living body as the biological information acquisition means notifies that the body composition measurement is on standby. Configured to acquire the wake-up time information (wake-up time) related to the wake-up time of the living body by the biological state information acquisition means (the communication unit 272 or the storage unit 273).
  • the situation-specific processing means the control unit 279 that executes steps S404 to S405.
  • the user only needs to use the alarm clock (or the alarm function of the body composition meter 270) and the body composition meter 270, and the user does not have to manually input the activity time and the meal time into the body composition meter 270. Can be used.
  • the wake-up time that is the most frequent as an individual life rhythm based on the wake-up time and to instruct the measurement timing.
  • the life rhythm of an individual basically lasts for days close to the same rhythm. Therefore, by recognizing the wake-up time, it is possible to instruct a recommended time suitable for measurement based on past data without inputting the data of the wake-up time of the day.
  • Blood pressure is one of the indices for analyzing cardiovascular diseases. Performing risk analysis based on blood pressure is effective in preventing cardiovascular diseases such as stroke, heart failure and myocardial infarction.
  • cardiovascular diseases such as stroke, heart failure and myocardial infarction.
  • early morning hypertension in which blood pressure rises in the early morning, is related to heart disease and stroke.
  • morning surge a symptom of a sudden rise in blood pressure between 1 hour and 1.5 hours after waking up, called morning surge, has a causal relationship with stroke.
  • the applicant has already invented a sphygmomanometer that stores time (lifestyle) and blood pressure in association with each other, and calculates and displays a risk index from the blood pressure value in a specific morning / night time zone (Patent No. 4025220). No. 2006-158879).
  • the time when the blood pressure is measured by a clock built in the sphygmomanometer is acquired, and the blood pressure and the measurement time are associated and stored.
  • a blood pressure value measured in a predetermined time zone (morning / night) is extracted from the stored blood pressure value, and a risk index is calculated based on the difference.
  • blood pressure values used for risk index calculation are extracted at time, so when measuring people with different life patterns from general people, such as shift workers, even if the clock is set correctly Risk indicators will not be calculated.
  • the blood pressure measurement start switch is provided with a plurality of switches specialized for each measurement condition such as “after waking up” and “before going to bed” to solve the above-described problem. Yes.
  • the method using this switch cannot prevent the human error that the user performs measurement by pressing a measurement switch different from the measurement condition. For this reason, there is a problem that a correct risk index may not be calculated.
  • the sphygmomanometer 240 analyzes a user's life pattern based on data such as a pedometer, and based on the life pattern under specific conditions (after waking up, before going to bed, etc.).
  • the object is to solve the above problems by extracting the measured blood pressure value and calculating the risk index.
  • FIG. 23 is a block diagram of the sphygmomanometer 240.
  • the sphygmomanometer 240 is the same as the sphygmomanometer 240 described in the first embodiment, and FIG. 23 shows the configuration in more detail.
  • the operation unit 254 includes a power switch 254a, a measurement switch 254b, an index switch 254c, a record call switch 254d, and a user selection switch 254e.
  • the power switch 254a accepts a power ON / OFF operation.
  • the measurement switch 254b is a switch that accepts a measurement start operation and starts blood pressure measurement when this operation is performed.
  • the index switch 254c is a switch that performs an appropriate operation such as obtaining data serving as an index from the body movement detection device 110 when operated.
  • the recording call switch 254d is a switch that executes an operation of calling a past measurement record from the recording memory 253 and displaying it on the display unit 251.
  • the user selection switch 254e is a switch for selecting a user to be measured from now on when a plurality of users are registered.
  • an interface 256 that is connected to the control unit 250 and transmits / receives data to / from the external memory 257 is provided.
  • FIG. 24 is an explanatory diagram of a system configuration.
  • the above-described blood pressure monitor 240, the server 150 described in the first embodiment, and the body motion detection device 110 are used.
  • FIG. 24A is a system configuration diagram of a cardiovascular disease risk calculation system 500A.
  • a server 150 is connected to the sphygmomanometer 240 through the Internet 501, and a body motion detection device 110 is connected. Since the body movement detection device 110 is the same as that described in the first embodiment, a detailed description thereof will be omitted.
  • the storage unit 154 (see FIG. 11 of the first embodiment) of the server 150 stores body motion detection data and the like measured by the body motion detection device 110.
  • the configuration of the cardiovascular disease risk calculation system 500B is not limited to the configuration of the cardiovascular disease risk calculation system 500A, and a configuration of a cardiovascular disease risk calculation system 500B using a personal computer 550 may be used as shown in FIG.
  • body motion detection data is transmitted from the server 150 to the personal computer 550
  • blood pressure data is transmitted from the sphygmomanometer 240
  • body motion detection data is transmitted from the body motion detection device 110
  • the personal computer 550 What is necessary is just to set it as the structure which calculates a cardiovascular disease risk.
  • FIG. 25 is a flowchart of the overall operation executed by the control unit 279 of the sphygmomanometer 240.
  • the control unit 250 of the sphygmomanometer 240 initializes the processing memory 252 and performs 0 mmHg adjustment of the pressure sensor 242 (step S502).
  • the control unit 250 causes the user of the sphygmomanometer 240 to be selected with the user selection switch 254e (step S503).
  • the control unit 250 performs a blood pressure measurement process described later (step S505).
  • step S504: index switch
  • the control unit 250 performs a risk index display process described later (step S506).
  • step S504 power switch
  • the control unit 250 turns off the power to the sphygmomanometer 240 and ends the process.
  • FIG. 26 is a flowchart showing the operation of the control unit 250 that executes the blood pressure measurement process.
  • the control unit 250 closes the valve 244 and pressurizes the cuff 241 with the pump 243 (step S511).
  • the controller 250 continues the pressurization until the cuff pressure becomes a predetermined pressure (step S512: ⁇ predetermined pressure), and when the predetermined pressure is reached (step S512: ⁇ predetermined pressure), stops the driving of the pump 243, and the valve The cuff pressure is gradually reduced by 244 (step S513).
  • the predetermined pressure may be a preset pressure (for example, 160 mmHg).
  • it may be a pressure obtained by estimating the blood pressure of the measurer during pressurization and adding a predetermined pressure (for example, 40 mmHg) to the estimated systolic blood pressure.
  • the control unit 250 extracts a vibration component accompanying the arterial volume change superimposed on the cuff pressure obtained during decompression, and calculates a blood pressure value by a predetermined calculation (step S514).
  • step S515 YES
  • the valve 244 is opened and the air in the cuff 241 is exhausted (step S516).
  • the control unit 250 displays the calculated blood pressure value on the display unit 251 (step S517), and records it in the recording memory 253 in association with the measurement date / time (step S518).
  • FIG. 27 is a flowchart showing the operation of the control unit 250 that executes the risk index display process.
  • the control unit 250 takes in body motion detection data (step count data) from the body motion detection device 110 connected to the sphygmomanometer 240 via the communication unit 255 (step S521). ). And the control part 250 analyzes a life pattern from body movement detection data, and extracts the time of waking up and going to bed (step S522).
  • the life pattern analysis can be obtained from a graph representing the daily step count data shown in FIG. 28 as a frequency distribution for each hour. That is, it is possible to analyze the time when the step count data starts to be counted in the day as the wake-up time, and conversely the time when the step count data is not counted as the bedtime.
  • control unit 250 After extracting the time of getting up and going to bed in this way, the control unit 250 extracts the blood pressure value measured in the vicinity of each time from the data stored in the recording memory 253 (step S523).
  • step S524 If the number of extracted blood pressure values is sufficient for risk index calculation (step S524: satisfied), the control unit 250 calculates the risk index (step S525).
  • This risk index can be calculated as follows. For example, if the data of blood pressure values measured for the first time after getting up for one week are extracted, and the number of data is m, the SBP (systolic blood pressure: systolic blood pressure) is measured by the following formulas 1 and 2. ) Average and post-wake measurement DBP (Diastolic blood pressure) average can be determined.
  • the risk of early morning hypertension can be determined.
  • the standard value for risk determination is based on, for example, the standard of the US Blood Pressure Joint Committee or the home blood pressure standard of the Japanese Society of Hypertension, and the standard of SBP (systolic blood pressure) is 135 mmHg and DBP (diastolic blood pressure). ) Is 85 mmHg.
  • zone immediately after getting up, and the difference (ME difference) of both are calculated. Is also possible.
  • ME average (measured SBP average after waking up + measured SBP average before going to bed) / 2
  • ME difference average SBP measured after getting up-average SBP measured before going to bed
  • the control unit 250 displays the risk index calculated in this way on the display unit 251 (step S526) and stores it in the recording memory 253 (step S527).
  • the risk index to be displayed or stored here is the index value itself such as the average SBP after waking up as described above as shown in the screen configuration diagram of FIG. 29A.
  • the comparison result with the determination criterion can be used, or both.
  • the display unit 251 displays the morning average mark 554 indicating the average of morning measurement values, the SPB average 551 after waking up, and the DBP average after waking up. 552, pulse average 553, and measurement date 556 may be displayed.
  • a risk display mark 555 may be further displayed, and the risk such as early morning hypertension may be indicated as a risk determination result by a symbol or a numerical value.
  • risk indicators can be calculated from a plurality of data (for example, three or more data), thereby enabling more accurate risk judgment. Therefore, the number of data necessary for calculating the risk index is determined in advance, and when the number of extracted data is less than that (step S524: insufficient), the control unit 250 calculates the risk index without calculating the risk index. A message that cannot be displayed is displayed on the display unit 251 (step S528).
  • the sphygmomanometer 240 including the blood pressure measurement unit (the control unit 250 that performs the blood pressure measurement process) that measures the blood pressure of the living body as the biological information acquisition unit acquires the body motion information as the biological state information acquisition unit.
  • the means (communication unit 255) obtains the body motion information (step count data) measured by the separate body motion detection device (body motion detection device 110), and executes the processing means according to the situation (steps S521 to S528). Blood pressure values measured when the body movement information satisfies a predetermined condition (the time when the step count data starts to be counted and the time when the step count data is not counted) (the blood pressure value at the rising time and the blood pressure value at the sleeping time). ) Based on the disease risk related information (post-wake-up measurement SBP average, post-wake-up measurement DBP average, early morning hypertension) By outputting the force information can be reliably calculated risk measures with high precision.
  • the user only needs to use the data of the body motion detection device 110 and does not need to manually input the measurement at the time of wakeup or the measurement at the time of going to the sphygmomanometer 240. It is possible to reliably determine the risk of the disease.
  • the life pattern analysis and the risk index are calculated by the main body of the sphygmomanometer 240, but these processes are performed via the personal computer 550 or the Internet 501 that can be connected to the sphygmomanometer 240 and the body motion detection device 110.
  • the host computer such as the server 150 may be used.
  • the risk index is displayed on the personal computer 550, or the risk index is downloaded to the sphygmomanometer 240 or the body motion detection device 110 and displayed on the sphygmomanometer 240 or the body motion detection device 110. It is good to display an indicator.
  • the data used for the analysis of the life pattern is not limited to the step count data, but may be activity amount data measured by the body motion detection device 110 as an activity amount meter, or personal vital data stored in the server 150. . Even in this case, life patterns can be analyzed, and a reliable determination of disease risk can be performed while preventing human error.
  • life pattern to be analyzed is set to be after waking up, before going to bed, or both, it is not limited thereto, and may be an appropriate pattern such as exercise, rest, or both.
  • a sphygmomanometer which is a type of biological information acquisition device
  • a description will be given of a seventh embodiment in which a disease risk is calculated by comparing measurement results for each place where a user measures blood pressure.
  • Blood pressure is one of the indices for analyzing cardiovascular diseases. Performing risk analysis based on blood pressure is effective in preventing cardiovascular diseases such as stroke, heart failure and myocardial infarction. In particular, early morning hypertension, in which blood pressure rises in the early morning, is related to heart disease and stroke.
  • Blood pressure is constantly changing, and one of the factors is mental tension. For example, there is a phenomenon in which the blood pressure measured at a medical institution (examination room blood pressure) is measured higher than the blood pressure measured at home (home blood pressure) (white coat effect). Among these white coat effects, a phenomenon in which the home blood pressure is normal and the examination room blood pressure exceeds the hypertension reference value is classified as white coat hypertension. Since patients with white coat hypertension are treated with antihypertensive drugs by the examination room blood pressure, the blood pressure may drop too much at home, and the quality of life (QOL) may decrease.
  • QOL quality of life
  • the phenomenon in which the home blood pressure is higher than the hypertension reference value and the examination room blood pressure is normal is classified as masked hypertension. Patients with masked hypertension may not be treated because the examination room blood pressure is normal, and hypertension may progress.
  • hypertension under stress a phenomenon in which the blood pressure measured under stress at the workplace or the like when the home blood pressure is normal is equal to or higher than the hypertension reference value is classified as hypertension under stress.
  • This hypertension under stress is also referred to as workplace hypertension when, for example, the blood pressure at the workplace is high.
  • a home blood pressure monitor equipped with a printing function Japanese Utility Model Laid-Open No. 4-60201
  • a blood pressure value storage unit and a display unit are separated from the main body of the blood pressure monitor and can be brought to a medical institution (Japanese Patent No. 3832473). No.) has been invented.
  • the sphygmomanometer 240 acquires the place (position information) where the user was present at the time when the blood pressure was measured, and compares and displays the blood pressure value at each measurement place.
  • the purpose is to solve the problem.
  • FIG. 30 is an explanatory diagram of a system configuration.
  • the sphygmomanometer 240 and the server 150 described in the sixth embodiment and the GPS device 602 are used. Since the sphygmomanometer 240 and the server 150 are the same as those of the sixth embodiment, detailed description thereof is omitted.
  • FIG. 30A is a system configuration diagram of a cardiovascular disease risk calculation system 600A.
  • a server 150 is connected to the blood pressure monitor 240 through the Internet 501, and a GPS device 602 is connected.
  • the GPS device 602 communicates with a GPS satellite (not shown) to acquire its own location information, and transmits this location information data to the sphygmomanometer 240.
  • the storage unit 154 (see FIG. 11 of the first embodiment) of the server 150 stores position information data and the like measured by the GPS device 602.
  • the configuration of the cardiovascular disease risk calculation system 600B is not limited to the configuration of the cardiovascular disease risk calculation system 600A, and a configuration of a cardiovascular disease risk calculation system 600B using a personal computer 550 may be used as shown in FIG.
  • the position information data is transmitted from the server 150 to the personal computer 550
  • the blood pressure data is transmitted from the sphygmomanometer 240
  • the position information data is transmitted from the GPS device 602
  • the personal computer 550 receives the cardiovascular disease. What is necessary is just to make the structure which calculates a risk.
  • FIG. 31 is a flowchart showing the operation of the control unit 250 that executes the risk index display process.
  • the control unit 250 of the seventh embodiment executes the overall operation described in the sixth embodiment (steps S501 to S506 in FIG. 25) and the blood pressure measurement process (steps S511 to S518 in FIG. 26). Therefore, detailed description thereof is omitted.
  • the control unit 250 takes in the user location information data from the GPS device 602 connected to the sphygmomanometer 240 (step S621).
  • the control unit 250 extracts the time that the user has been at a specific location from the acquired position information data (step S622). This process is performed as follows. First, in this embodiment, a specific place is a medical institution and a home. The position information of the GPS device 602 is stored in association with time and longitude / latitude. Therefore, the time when the user was at the medical institution or home is extracted based on the longitude / latitude information. In order to identify the location based on the longitude and latitude, it is only necessary to use publicly available map information.
  • the control unit 250 extracts the blood pressure value measured at each time from the data in the recording memory 253 after extracting the time at the specific place (step S623).
  • the blood pressure value measured by the medical institution is recorded in a predetermined server such as the server 150, downloaded from the server in advance to the sphygmomanometer 240 and stored in the recording memory 253.
  • Step S624 Satisfaction
  • the control unit 250 calculates the risk index (Step S625). This risk index is classified as shown in the graph of FIG.
  • the systolic blood pressure of the home blood pressure is SBPhome
  • the diastolic blood pressure is DBPhome
  • the systolic blood pressure of the examination room blood pressure is SBPoffice
  • the diastolic blood pressure is DBPoffice
  • White coat hypertension corresponds to the case where the systolic blood pressure is lower than 135 mmHg at home measurement and 140 mmHg or higher at the clinic measurement, or the diastolic blood pressure is lower than 85 mmHg at home measurement and 90 mmHg or higher at the clinic measurement.
  • Masked hypertension corresponds to cases where the systolic blood pressure is 135 mmHg or higher at home measurement and lower than 140 mmHg at the clinic measurement, or diastolic blood pressure is 85 mmHg or higher at home measurement and lower than 90 mmHg at the clinic measurement.
  • the control unit 250 displays the risk index determined by comparing the home blood pressure and the clinic blood pressure in this way on the display unit 251 as shown in FIG. 33 (step S626), and stores it in the recording memory 253 (step S626). S627).
  • the content displayed on the display unit 251 is an appropriate method such as displaying the risk index message 656 as shown in FIG. 33A or displaying the risk index mark 654 as shown in FIG. Can be performed.
  • the display unit 251 may also display a systolic blood pressure (maximum blood pressure) 651, a diastolic blood pressure (minimum blood pressure) 652, a pulse 653, and a measurement date 655 as shown in the figure.
  • a systolic blood pressure (maximum blood pressure) 651 a systolic blood pressure (maximum blood pressure) 651, a diastolic blood pressure (minimum blood pressure) 652, a pulse 653, and a measurement date 655 as shown in the figure.
  • step S624 insufficient
  • step S624 the control unit 250 calculates the risk index without calculating the risk index.
  • a message that cannot be displayed is displayed (step S628).
  • the blood pressure value fluctuates depending on the day of the week, the day of the week, the season, etc., it is desirable to use data at times as close as possible for the blood pressure value used for risk index calculation.
  • the sphygmomanometer 240 including the blood pressure measurement unit (the control unit 250 that performs the blood pressure measurement process) that measures the blood pressure of the living body as the biological information acquisition unit is the position information acquisition unit as the biological state information acquisition unit.
  • Communication unit 255) acquires position information at the time of blood pressure measurement, and a plurality of pieces of blood pressure information measured by the situation-specific processing means (control unit 250 that executes steps S621 to S628) are determined based on the position information.
  • the measurement environment (home, clinic, workplace, etc.) can be automatically identified using location information, and blood pressure information can be automatically classified by measurement environment, making it possible to accurately determine circulatory diseases without much effort. it can.
  • the sphygmomanometer 240 is configured to extract the time at a specific place and calculate the risk index.
  • these processes are performed by a personal computer 550 to which the sphygmomanometer 240 or the GPS device 602 can be connected or the Internet. You may perform by host computers, such as the server 150 via 501 grade
  • GPS device 602 is used as the position information acquisition means, the present invention is not limited to the GPS device 602 itself, and a body motion detection device 110 (pedometer or activity meter) incorporating a GPS function is used. Also good.
  • the mobile phone 220 or PHS can be used as the location information acquisition means.
  • the mobile phone 220 and the PHS always transmit minute radio waves when the power is on. Therefore, it is possible to acquire position information from the base station having the strongest radio field intensity.
  • location information based on working hours information at work, medical chart information during hospital visits, transportation commuter pass / IC card usage information, etc.
  • the body motion measuring device of the present invention corresponds to the body motion detecting device 110 of the embodiment, Similarly, The body motion detection means corresponds to the acceleration detection unit 112, The body movement measurement time acquisition means corresponds to the timer unit 119, The communication means corresponds to the communication unit 134, the communication unit 165, the communication unit 255, and the communication unit 272, The server device corresponds to the server 150, The body movement information acquisition unit and the biological information acquisition unit correspond to the communication unit 155, The blood glucose measuring device corresponds to the blood glucose meter 160, The biological information detection means corresponds to the blood glucose measurement unit 164, the pressure sensor 242, and the impedance detection unit 283, The biological information measurement time acquisition unit corresponds to the timer unit 167, the clock 248, and the timer unit 274, The blood pressure measurement device corresponds to the sphygmomanometer 240, The body composition measuring device corresponds to the body composition meter 270, The biological information measuring device corresponds to the biological information measuring
  • the attribute determination unit corresponds to the control unit 161 that executes step S8, the control unit 250, the control unit 279, and the control unit 151 that executes step S19.
  • the body motion information corresponds to the acceleration of the body motion detection device data D1
  • the body movement measurement time information corresponds to the measurement time of the body movement detection device data D1
  • the type information corresponds to the device type information of body movement detection device data D1, blood glucose meter data D2, body composition meter data D3, and sphygmomanometer data D4
  • the biological information measurement time information corresponds to the measurement time of the blood glucose meter data D2, the body composition meter data D3, and the sphygmomanometer data D4
  • Biometric information corresponds to blood sugar, body composition, blood pressure
  • the attributes of biometric information correspond to the appropriate attribute, inappropriate attribute, early morning hypertension attribute, white coat hypertension attribute, and masked hypertension attribute.
  • the present invention is not limited only to the configuration of the above-described embodiment, and many embodiments can be
  • the present invention can be used in the field using a device for acquiring biological information, such as a pedometer, activity meter, blood glucose meter, body composition meter, and blood pressure meter.
  • a device for acquiring biological information such as a pedometer, activity meter, blood glucose meter, body composition meter, and blood pressure meter.
  • health management at home health management at a medical facility such as a hospital, health management at a health facility such as a gym, health management at a rehabilitation facility, or health management at a facility such as a nursery school or a nursing home, etc. It can be used in various fields.
  • Storage part 274 ... Timer part, 279 ... Control part, 283 ... Impedance detection part, H ... Biological body Information measuring device, D1 ... body movement detecting device data, D2 ... blood glucose meter data, D3 ... body composition meter data, D4 ... sphygmomanometer data

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Ophthalmology & Optometry (AREA)
  • Emergency Medicine (AREA)
  • Optics & Photonics (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

Provided is a system for measuring biological information whereby an attribute of biological information that is determined on the basis of the situation in which the biological information is measured can be automatically determined. Thus, the user's convenience can be improved. An apparatus for obtaining biological information characterized by comprising: a communication section (155) for obtaining body movement detection unit data (D1) relating to movements of a body; a communication section (155) for obtaining blood sugar meter data (D2), body composition meter data (D3), or sphygmomanometer data (D4) of said body; and a means for determining the attributes of the blood sugar meter data (D2), body composition meter data (D3) and sphygmomanometer data (D4) of said body on the basis of the body movement detection unit data (D1).

Description

生体情報測定システム、生体情報測定方法、血糖計、体組成計、および血圧計Biological information measuring system, biological information measuring method, blood glucose meter, body composition meter, and blood pressure meter
 この発明は、例えば生体の情報を取得するような生体情報測定システム、生体情報測定方法、血糖計、体組成計、および血圧計に関する。 The present invention relates to a biological information measurement system, a biological information measurement method, a blood glucose meter, a body composition meter, and a blood pressure monitor that acquire biological information, for example.
 従来、生体情報を取得するものとして、体組成計(体重体組成計を含む)、血圧計、および血糖計など、様々な生体情報取得装置が提案されている。 
 これらの生体情報取得装置は、精度を向上させるべく様々な改良が行われている。 
 しかし、生体情報は、測定時の生体の状況によって測定値が異なる。にもかかわらず、測定に不適切な状況で測定されることがある。また、生体の状況による測定値の差によって疾患のリスクを判定できる場合もある。
Conventionally, various biological information acquisition devices such as a body composition meter (including a body weight / body composition meter), a sphygmomanometer, and a blood glucose meter have been proposed for acquiring biological information.
Various improvements have been made to these biological information acquisition devices in order to improve accuracy.
However, the measured value of the biological information differs depending on the state of the living body at the time of measurement. Nevertheless, it may be measured in a situation inappropriate for measurement. In some cases, the risk of disease can be determined by the difference in the measured values depending on the condition of the living body.
 ここで、血圧が測定された時刻を取得し、この測定の時間帯によって朝に測定された血圧と夜に測定された血圧とを抽出し、リスク指標を算出する血圧計が提案されている(特許文献1参照)。 Here, a sphygmomanometer has been proposed that obtains the time at which blood pressure was measured, extracts blood pressure measured in the morning and blood pressure measured at night according to the time zone of the measurement, and calculates a risk index ( Patent Document 1).
 しかし、起床時刻や就寝時刻は生活リズムによって異なることがあり、時間帯だけで画一的に処理すると、適切な分類にはならない場合があり得るという問題点がある。そして、このように画一的に処理するのではなく、生体情報が測定されている状況を自動的に判別できるような生体情報取得装置は提供されていなかった。 However, there is a problem that the wake-up time and bedtime may differ depending on the life rhythm, and if it is processed uniformly only in the time zone, it may not be an appropriate classification. In addition, a biometric information acquisition apparatus that can automatically determine a situation in which biometric information is measured has not been provided, instead of performing uniform processing in this way.
特許第4025220号公報Japanese Patent No. 4025220
 この発明は、上述の問題に鑑み、生体情報がどのような状況で測定されたかによって定まる生体情報の属性を自動的に判別できる生体情報測定システム、生体情報測定方法、血糖計、体組成計、および血圧計を提供し、利用者の利便性を向上させることを目的とする。 In view of the above-described problems, the present invention provides a biological information measuring system, a biological information measuring method, a blood glucose meter, a body composition meter, and a biological information measuring system that can automatically determine the attributes of biological information determined by the situation in which the biological information is measured. An object of the present invention is to provide a sphygmomanometer and improve user convenience.
 この発明は、生体の体動に関する体動情報を取得する体動情報取得手段と、前記生体の生体情報を取得する生体情報取得手段と、前記体動情報に基づいて前記生体情報の属性を判定する属性判定手段とを備えた生体情報取得装置であることを特徴とする。 The present invention relates to body motion information acquisition means for acquiring body motion information related to body motion of a living body, biological information acquisition means for acquiring biological information of the living body, and determining an attribute of the biological information based on the body motion information. It is a biometric information acquisition apparatus provided with the attribute determination means to do.
 前記体動情報取得手段は、歩数や活動量を算出可能な加速度データを取得する加速度センサ、または歩数をカウント可能な振り子センサなど、体動を検出する体動検出手段、または該体動検出手段で検出された体動情報を通信によって取得する通信手段で構成することができる。 The body motion information acquisition means is a body motion detection means for detecting body motion, such as an acceleration sensor for acquiring acceleration data capable of calculating the number of steps or an amount of activity, or a pendulum sensor capable of counting the number of steps, or the body motion detection means. The body motion information detected in (1) can be configured by communication means for acquiring by communication.
 前記体動情報は、歩数計や活動量計といった体動測定装置により測定した加速度データ、歩数、活動量、またはこれらの複数とすることができる。 
 前記生体情報は、血糖値、血圧値、体組成値、あるいはこれらの複数など、生体に関する適宜の情報とすることができる。また、体組成値は、体脂肪率、皮下脂肪率、内蔵脂肪率、骨格筋率、あるいはBMIなど、体組成に関する値とすることができる。
The body motion information may be acceleration data measured by a body motion measuring device such as a pedometer or activity meter, the number of steps, an activity amount, or a plurality of these.
The biological information may be appropriate information regarding the living body such as a blood glucose level, a blood pressure value, a body composition value, or a plurality thereof. The body composition value can be a value related to body composition, such as body fat percentage, subcutaneous fat percentage, internal fat percentage, skeletal muscle percentage, or BMI.
 前記生体情報取得手段は、血糖値を検出する血糖検出手段、体組成を検出する体組成検出手段、血圧を検出する血圧検出手段など、生体情報を検出する生体情報検出手段、または該生体情報検出手段で検出された生体情報を受信する通信手段で構成することができる。 The biological information acquisition means is a biological information detection means for detecting biological information, such as a blood glucose detection means for detecting a blood sugar level, a body composition detection means for detecting a body composition, a blood pressure detection means for detecting blood pressure, or the biological information detection. The communication means for receiving the biological information detected by the means can be configured.
 前記生体情報の属性は、適切属性と不適切属性など、取得した生体情報がどのような状態で測定されたものかを判別可能な情報で構成することができる。また、血圧計であれば、早朝高血圧や白衣高血圧や仮面高血圧といった疾患リスクに関連のある疾患リスク関連属性を判別可能に構成することもできる。 The attribute of the biological information can be constituted by information that can determine in what state the acquired biological information is measured, such as an appropriate attribute and an inappropriate attribute. In the case of a sphygmomanometer, a disease risk-related attribute related to a disease risk such as early morning hypertension, white coat hypertension, and masked hypertension can be determined.
 ここで、疾患リスク関連属性として判別する疾患リスクは、起床後に測定された収縮期血圧(Systolic blood pressure:SBP)および拡張期血圧(Diastolic blood pressure:DBP)の各々の平均である起床後測定SBP平均、起床後測定DBP平均、早朝高血圧、就寝前に測定されたSBPおよびDBPの各々の平均である就寝前測定SBP平均、就寝前測定DBP平均、またはこれらの複数とすることができる。 Here, the disease risk determined as a disease risk-related attribute is a post-wake-up measurement SBP that is an average of systolic blood pressure (SBP) and diastolic blood pressure (DBP) measured after waking up. Average, post-wake-up DBP average, early morning hypertension, SBP measured before bedtime and DBP average before bedtime measurement SBP average, before-sleep measurement DBP average, or a plurality of these.
 この発明により、生体情報がどのような属性に該当するものかを、別の装置である体動測定装置で測定された体動情報に基づいて判定することができる。従って、単体の生体情報測定装置では適切なものか不適切なものかといった属性判定できなかった生体情報について、体動測定装置の利用により属性判定可能とすることができる。 According to the present invention, it is possible to determine what attribute biological information corresponds to based on body motion information measured by a body motion measurement device which is another device. Therefore, it is possible to determine the attribute of the biological information that cannot be determined as appropriate or inappropriate by the single biological information measuring device by using the body movement measuring device.
 この発明の態様として、前記体動を測定した時刻である体動測定時刻情報を取得する体動測定時刻取得手段と、前記生体情報を測定した時刻である生体情報測定時刻情報を取得する生体情報測定時刻取得手段とを備え、前記属性判定手段は、前記生体情報測定前の所定時間の体動情報が所定基準を満たすか否かにより前記生体情報の属性を判定する構成とすることができる。 As an aspect of the present invention, body movement measurement time acquisition means for acquiring body movement measurement time information that is the time when the body movement is measured, and biological information that acquires biological information measurement time information that is the time when the biological information is measured A measurement time acquisition unit, wherein the attribute determination unit determines an attribute of the biological information based on whether or not body motion information for a predetermined time before the biological information measurement satisfies a predetermined criterion.
 前記体動測定時刻情報および前記生体情報測定時刻情報は、時刻データで構成する、あるいは、適宜の演算により時刻に換算可能な数値データで構成するなど、適宜のデータで構成することができる。 The body movement measurement time information and the biological information measurement time information can be composed of appropriate data such as time data or numerical data that can be converted into time by an appropriate calculation.
 前記所定時間は、属性判定の対象となる生体情報に応じて適宜異なる時間を設定することができる。 The predetermined time can be appropriately set according to the biological information that is the target of attribute determination.
 前記所定基準は、属性判定の対象となる生体情報に応じて適宜異なる基準を設定することができる。 The predetermined standard can be appropriately set according to the biological information that is the target of attribute determination.
 この態様により、生体情報測定前の所定時間の体動情報によって、測定した生体情報の属性を判定できる。従って、例えば運動直後に測定した生体情報を不適切の属性であると判定する、あるいは起床後に測定した生体情報としての血圧が他の時刻に測定した血圧より所定圧以上高いために早朝高血圧の属性であると判定するなど、種々の判定を行うことができる。 In this aspect, the attribute of the measured biological information can be determined based on the body movement information for a predetermined time before the biological information measurement. Therefore, for example, it is determined that biological information measured immediately after exercise is an inappropriate attribute, or because blood pressure as biological information measured after waking up is higher than a blood pressure measured at other times by a predetermined pressure or more, it is an attribute of early morning hypertension Various determinations can be made, such as determining that
 またこの発明の態様として、前記体動測定時刻情報と、前記生体情報測定時刻情報とにズレがある場合、該ズレの時間分だけ前記体動情報測定時刻と生体情報測定時刻との相対時刻を調整して時間軸を一致させる相対時刻調整手段を備え、
前記属性判定手段は、前記相対時刻調整手段により時間軸を一致させた上で前記体動情報に基づいて前記生体情報の属性を判定する構成とすることができる。 
 これにより、装置間の時間のズレを調整して精度よく生体情報の属性を判定することができる。
Further, as an aspect of the present invention, when there is a difference between the body movement measurement time information and the biological information measurement time information, a relative time between the body movement information measurement time and the biological information measurement time is calculated by the time of the difference. Relative time adjustment means to adjust and match the time axis,
The attribute determining means may be configured to determine the attribute of the biological information based on the body motion information after the time axes are matched by the relative time adjusting means.
This makes it possible to accurately determine the attribute of the biological information by adjusting the time difference between the devices.
 またこの発明は、前記生体情報取得装置としてのサーバ装置と、生体の体動情報を検出する体動検出手段と該体動情報を送信する通信手段とを有する体動測定装置と、前記生体の生体情報を検出する生体情報検出手段と該生体情報を送信する通信手段とを有する複数種類の生体情報測定装置とを備えた生体情報取得システムであって、前記体動情報取得手段および前記生体情報取得手段は、前記サーバ装置に設けられて前記体動測定装置から前記体動情報を取得し前記生体情報測定装置から前記生体情報を取得する通信手段で構成され、前記属性判定手段は、前記生体情報測定装置の種類別に異なる属性判定条件が設定されている
生体情報取得システムとすることができる。
According to another aspect of the present invention, there is provided a body movement measuring apparatus including a server apparatus as the biological information acquisition apparatus, a body movement detection unit that detects body movement information of a living body, and a communication unit that transmits the body movement information; A biological information acquisition system comprising a plurality of types of biological information measuring devices having biological information detecting means for detecting biological information and communication means for transmitting the biological information, the body movement information acquiring means and the biological information The acquisition unit includes a communication unit that is provided in the server device and acquires the body movement information from the body movement measurement device and acquires the biological information from the biological information measurement device. The attribute determination unit is A biometric information acquisition system in which different attribute determination conditions are set for each type of information measurement device can be provided.
 前記体動測定装置は、歩数をカウントする歩数計、または活動量を算出する活動量計とすることができる。 
 前記生体情報測定装置は、血糖計、体組成計、血圧計、あるいはこれらの複数など、生体情報を測定する適宜の装置で構成することができる。 
 前記通信手段は、有線または無線の通信手段とすることができる。
The body movement measuring device may be a pedometer that counts the number of steps or an activity meter that calculates an activity amount.
The biological information measuring device can be constituted by an appropriate device that measures biological information, such as a blood glucose meter, a body composition meter, a blood pressure monitor, or a plurality of these.
The communication means may be a wired or wireless communication means.
 これにより、生体情報測定装置の種類に応じて適切に属性を判定することができる。 Thereby, the attribute can be appropriately determined according to the type of the biological information measuring device.
 またこの発明の態様として、前記属性判定手段は、前記生体情報が体組成である場合、前記体動に基づいて判定する所定量以上の運動終了から所定時刻が経過していなければ当該生体情報が不適切属性であると判定する構成であり、前記生体情報が血圧である場合、前記体動に基づいて判定する所定量以上の運動終了から所定時刻が経過していなければ当該生体情報が不適切属性であると判定する構成であり、前記生体情報が血糖である場合、前記体動に基づいて判定する食事タイミングから所定時刻が経過していなければ当該生体情報が不適切属性であると判定する構成とすることができる。 
 これにより、体組成測定装置、血圧測定装置、および血糖測定装置について、測定した生体情報がそれぞれ適切属性か不適切属性かを正しく判定することができる。
As another aspect of the present invention, when the biological information is a body composition, the attribute determination means stores the biological information if a predetermined time has not elapsed since the end of the predetermined amount of exercise determined based on the body movement. When the biological information is blood pressure, the biological information is inappropriate if the predetermined time has not elapsed since the end of the predetermined amount or more of the exercise determined based on the body movement. When the biological information is blood glucose, the biological information is determined to be an inappropriate attribute if a predetermined time has not elapsed since the meal timing determined based on the body movement. It can be configured.
This makes it possible to correctly determine whether the measured biological information is an appropriate attribute or an inappropriate attribute for the body composition measuring device, the blood pressure measuring device, and the blood glucose measuring device.
 またこの発明の態様として、前記生体情報が血圧である場合、前記体動に基づいて家庭で測定した家庭血圧属性か、診療室で測定した診療室血圧属性かをさらに判定する構成とすることができる。 
 これにより、家庭血圧属性と診療室血圧属性とを判定できるため、仮面高血圧や白衣高血圧を判定することが可能となる。
Further, as an aspect of the present invention, when the biological information is blood pressure, it may be configured to further determine whether the blood pressure attribute is measured at home based on the body movement or the clinic blood pressure attribute measured in the clinic. it can.
Thereby, since the home blood pressure attribute and the clinic blood pressure attribute can be determined, it is possible to determine masked hypertension and white coat hypertension.
 またこの発明の態様として、前記生体情報が血圧である場合、前記生体情報が体組成である場合よりも小さい値の差で前記属性判定の結果が異なる構成とすることができる。 
 これにより、血圧と体組成で判定基準を適切に使い分けることができ、精度よく属性を判定することができる。
Further, as an aspect of the present invention, when the biological information is blood pressure, the attribute determination result may be different with a smaller difference than when the biological information is body composition.
Thereby, it is possible to properly use the determination criterion appropriately depending on the blood pressure and the body composition, and the attribute can be accurately determined.
 またこの発明は、生体の体動に関する体動情報を取得する体動情報取得ステップと、前記生体の生体情報を取得する生体情報取得ステップと、前記体動情報に基づいて前記生体情報の属性を判定する属性判定ステップとを備えた生体情報取得方法とすることができる。 The present invention also includes a body motion information acquisition step for acquiring body motion information related to body motion of a living body, a biological information acquisition step for acquiring biological information of the living body, and attributes of the biological information based on the body motion information. It can be set as the biometric information acquisition method provided with the attribute determination step to determine.
 これにより、生体情報測定装置で測定した生体情報がどのような属性に該当するものかを、別の装置である体動測定装置の体動情報に基づいて判定することができる。 Thus, it is possible to determine what attribute the biological information measured by the biological information measuring device corresponds to based on the body motion information of the body motion measuring device which is another device.
 またこの発明は、生体の体動に関する体動情報を取得する体動情報取得ステップと、前記生体の生体情報を取得する生体情報取得ステップと、前記体動情報に基づいて前記生体情報の属性を判定する属性判定ステップと、判定した属性と前記生体情報とを表示する表示ステップとを備えた生体情報表示方法とすることができる。 
 これにより、測定した生体情報の属性を表示でき、利用者が確認することができる。
The present invention also includes a body motion information acquisition step for acquiring body motion information related to body motion of a living body, a biological information acquisition step for acquiring biological information of the living body, and attributes of the biological information based on the body motion information. It can be set as the biometric information display method provided with the attribute determination step to determine, and the display step which displays the determined attribute and the said biometric information.
Thereby, the attribute of the measured biological information can be displayed, and the user can confirm it.
 またこの発明は、生体の体動に関する体動情報を取得する体動情報取得手段と、
前記生体の生体情報を取得する生体情報取得手段と、前記体動情報に基づいて前記生体情報の属性を判定する属性判定手段と、判定した属性と前記生体情報とを表示する表示手段とを備えた生体情報表示装置とすることができる。 
 これにより、測定した生体情報の属性を表示でき、利用者が確認することができる。
Further, the present invention provides body motion information acquisition means for acquiring body motion information relating to body motion of a living body,
Biological information acquisition means for acquiring biological information of the biological body, attribute determination means for determining an attribute of the biological information based on the body movement information, and display means for displaying the determined attribute and the biological information. And a biological information display device.
Thereby, the attribute of the measured biological information can be displayed, and the user can confirm it.
 またこの発明は、生体の血糖値を検出する血糖検出手段と、該血糖値の血糖情報を記憶する記憶手段とを備えた血糖計であって、前記生体の体動情報を取得する体動情報取得手段と、前記体動情報が所定体動条件を満たすか否かによって前記血糖値の属性を判定する属性判定手段を備えた血糖計とすることができる。 
 これにより、測定した血糖値の属性を判定することができる。
The present invention is also a blood glucose meter comprising blood glucose detection means for detecting a blood glucose level of a living body and storage means for storing blood glucose information of the blood glucose level, and the body motion information for acquiring the body motion information of the living body The blood glucose meter may include an acquisition unit and an attribute determination unit that determines an attribute of the blood glucose level based on whether or not the body motion information satisfies a predetermined body motion condition.
Thereby, the attribute of the measured blood glucose level can be determined.
 なお、この血糖計に、食事タイミングに基づく測定不適時間帯を取得する測定不適時間帯取得手段を備え、測定時刻が前記測定不適時間帯に入っていなければ前記血糖値を適切に測定された適切測定血糖値として出力情報とする構成とすることもできる。 The blood glucose meter is provided with a measurement inappropriate time zone acquisition means for acquiring a measurement inappropriate time zone based on meal timing, and if the measurement time does not fall within the measurement inappropriate time zone, the blood glucose level is appropriately measured. It can also be set as the output information as a measurement blood glucose level.
 この場合の前記測定不適時間帯取得手段は、体動検出データより体動検出装置を使用していない時間帯を取得する体動検出装置不使用時間帯取得手段、電動歯ブラシの使用時間を取得する電動歯ブラシ使用時間取得手段、あるいはこれらの手段で取得した体動検出装置不使用時間と電動歯ブラシ使用時間とに基づいて食事時間を求める食事時間取得手段で構成することができる。 
 この構成により、測定不適時間帯に血糖値が測定されることを防止することができる。
In this case, the measurement inappropriate time zone acquisition means acquires from the body motion detection data a body motion detection device non-use time zone acquisition means for acquiring a time zone during which the body motion detection device is not used, and acquires the usage time of the electric toothbrush. The electric toothbrush usage time acquisition means, or the meal time acquisition means for obtaining the meal time based on the body movement detection device non-use time and the electric toothbrush usage time acquired by these means can be used.
With this configuration, it is possible to prevent the blood sugar level from being measured in the measurement inappropriate time zone.
 またこの発明は、生体の体組成値を検出する体組成検出手段と、該体組成値の体組成情報を記憶する記憶手段とを備えた体組成計であって、前記生体の体動情報を取得する体動情報取得手段と、前記体動情報が所定体動条件を満たすか否かによって前記体組成値の属性を判定する属性判定手段を備えた体組成計とすることができる。 
 これにより、測定した体組成値の属性を判定することができる。
The present invention is also a body composition meter comprising body composition detecting means for detecting a body composition value of a living body and storage means for storing body composition information of the body composition value, wherein the body motion information of the living body is obtained. A body composition meter can be provided that includes body motion information acquisition means to be acquired and attribute determination means for determining an attribute of the body composition value based on whether or not the body motion information satisfies a predetermined body motion condition.
Thereby, the attribute of the measured body composition value can be determined.
 なお、この体組成計は、生体の体動に関する体動情報、または生体の食事時間に関する食事時間情報の少なくとも一方を取得する構成であり、前記体動情報に基づく活動の強い時間帯を避けた時間帯、または前記食事時間情報に基づく食事後一定時間を避けた時間帯のいずれかの時間帯に取得した体組成情報を出力情報として出力する構成とすることもできる。 The body composition meter is configured to acquire at least one of body movement information related to body movement of the living body or meal time information about meal time of the living body, and avoids a time zone in which activity based on the body movement information is strong. The body composition information acquired in either the time zone or the time zone avoiding a fixed time after meal based on the meal time information may be output as output information.
 この場合、前記食事時間情報は、食事開始時刻、食事終了時刻、またはこれらの両方とすることができる。 In this case, the meal time information may be a meal start time, a meal end time, or both.
 この構成により、運動や食事といった測定に影響を与える行為によって測定に不適となっている時間帯に体組成が測定されることを防止できる。 This configuration can prevent the body composition from being measured in a time zone that is inappropriate for the measurement due to actions that affect the measurement, such as exercise and meals.
 また、この体組成計は、体組成の測定を待機していることを報知する報知手段を備え、生体の起床時間に関する起床時間情報を取得する構成であり、前記起床時間情報に基づく推定起床時間帯になると体組成の測定を待機していることを前記報知手段により報知し、この推定起床時間帯に取得した体組成情報を出力情報として出力する構成とすることもできる。 In addition, the body composition meter includes a notification unit that notifies that the measurement of the body composition is on standby, and is configured to acquire the wake-up time information related to the wake-up time of the living body, and the estimated wake-up time based on the wake-up time information It may be configured that the notification means informs that it is waiting for the measurement of the body composition when it becomes a belt, and the body composition information acquired in this estimated wake-up time zone is output as output information.
 この場合、前記報知手段は、アラーム音やブザー音またはメッセージ音声を出力する音声出力手段、発光を行うLEDやランプ等の発光手段、文字や図形等を表示する液晶ディスプレイや有機ELディスプレイ等の表示手段、またはこれらの複数により構成することができる。 In this case, the notification means includes an audio output means for outputting an alarm sound, a buzzer sound or a message sound, a light emitting means such as an LED or a lamp for emitting light, a display such as a liquid crystal display or an organic EL display for displaying characters or figures. Means, or a plurality of these.
 この構成により、個人の生活リズムにあった適切なタイミングで体組成の測定を実行することができる。 This configuration makes it possible to measure body composition at an appropriate timing that matches the individual's life rhythm.
 またこの発明は、生体の血圧値を検出する血圧検出手段と、該血圧値の血圧情報を記憶する記憶手段とを備えた血圧計であって、前記生体の体動情報を取得する体動情報取得手段と、前記体動情報が所定体動条件を満たすか否かによって前記血圧値の属性を判定する属性判定手段を備えた血圧計とすることができる。 
 これにより、測定した血圧値の属性を判定することができる。
Further, the present invention is a sphygmomanometer comprising a blood pressure detection means for detecting a blood pressure value of a living body and a storage means for storing blood pressure information of the blood pressure value, and the body motion information for acquiring the body motion information of the living body The sphygmomanometer may include an acquisition unit and an attribute determination unit that determines an attribute of the blood pressure value based on whether or not the body motion information satisfies a predetermined body motion condition.
Thereby, the attribute of the measured blood pressure value can be determined.
 なお、この血圧計は、血圧測定時の位置情報を取得する位置情報取得手段を備え、測定された複数の血圧情報を前記位置情報に基づく所定条件別に分類し、該分類別に前記血圧情報を比較した結果に基づいて疾患リスクに関連のある疾患リスク関連情報を算出し、該疾患リスク関連情報を前記出力情報として出力する構成とすることもできる。 The sphygmomanometer includes position information acquisition means for acquiring position information at the time of blood pressure measurement, classifies a plurality of measured blood pressure information according to a predetermined condition based on the position information, and compares the blood pressure information according to the classification. Based on the result, disease risk related information related to the disease risk may be calculated, and the disease risk related information may be output as the output information.
 この場合、前記位置情報取得手段は、GPS(Global Positioning System)装置、または他の装置から位置情報を取得する通信手段で構成することができる。他の装置は、GPS機能を組み込んだ体動検出装置などの装置、通信基地局との無線通信を行う携帯電話機やPHS(Personal Handyphone System)、職場の勤務時間から測定時に職場にいたか否かを判定するコンピュータ装置、通院時のカルテ情報から測定時に病院にいたか否かを判定するコンピュータ装置、交通機関の定期券やICカードの利用情報などを元に測定時にいた場所を特定するコンピュータ装置など、適宜の装置とすることができる。 In this case, the position information acquisition means can be constituted by a GPS (Global Positioning System) apparatus or a communication means for acquiring position information from another apparatus. Other devices include devices such as body motion detectors that incorporate GPS functions, mobile phones and PHS (Personal Handyphone System) that perform wireless communication with communication base stations, and whether or not you were at work from the work hours at the time of measurement. A computer device for determining whether or not the patient was at the time of measurement from the medical chart information at the time of the visit, and a computer device for identifying the location at the time of measurement based on transportation commuter pass or IC card usage information For example, an appropriate apparatus can be used.
 この構成により、白衣高血圧や仮面高血圧といった循環器系疾患を確実に判定することができる。 This configuration can reliably determine cardiovascular diseases such as white coat hypertension and masked hypertension.
 この発明により、生体情報の属性を自動的に判別することができ、不適切な状況で測定されていないか判定することや、測定状況に応じた生体情報の処理を行うことにより、利用者の利便性を向上させることができる。 According to the present invention, it is possible to automatically determine the attribute of the biological information, and by determining whether the measurement is performed in an inappropriate situation or by processing the biological information according to the measurement situation, the user's Convenience can be improved.
生体情報測定システムの概略構成を示す構成図Configuration diagram showing schematic configuration of biological information measurement system サーバ、血糖計、および体動検出装置の構成を示すブロック図The block diagram which shows the structure of a server, a blood glucose meter, and a body movement detection apparatus 血圧計、および体組成計の構成を示すブロック図Block diagram showing configurations of blood pressure monitor and body composition meter 体動検出装置や各生体情報測定装置に記憶するデータの構成図Configuration diagram of data stored in body motion detection device and each biological information measurement device サーバの表示部に表示する分析表示画面の画面構成図Screen layout of analysis display screen displayed on server display 各生体情報測定装置に表示する体動情報入力画面の説明図Explanatory drawing of the body movement information input screen displayed on each biological information measuring device 各生体情報測定装置に表示する測定結果表示画面の説明図Explanatory drawing of the measurement result display screen displayed on each biological information measuring device 体動検出装置と各生体情報測定装置が実行する動作のフローチャートFlow chart of operations executed by body motion detection device and each biological information measurement device 主にサーバが実行する動作を示すフローチャートFlowchart showing operations mainly executed by the server 実施例2の生体情報取得システムの外観構成図。The external appearance block diagram of the biometric information acquisition system of Example 2. FIG. 実施例2の生体情報取得システムのブロック。6 is a block diagram of a biological information acquisition system according to a second embodiment. 実施例2のサーバが血糖値測定を禁止等する処理のフローチャート。The flowchart of the process which the server of Example 2 prohibits a blood glucose level measurement. 実施例2の食事時間帯の算出方法を説明する説明図。Explanatory drawing explaining the calculation method of the meal time slot | zone of Example 2. FIG. 実施例2の血糖計が実行する動作のフローチャート。The flowchart of the operation | movement which the blood glucose meter of Example 2 performs. 実施例3の携帯電話機と血圧計と体組成計の外観斜視図。The external appearance perspective view of the mobile telephone of Example 3, a blood pressure meter, and a body composition meter. 実施例3の携帯電話機と血圧計と体組成計のブロック図。The block diagram of the mobile telephone of Example 3, a blood pressure meter, and a body composition meter. 実施例3の携帯電話機と血圧計の動作を示すフローチャート。10 is a flowchart showing operations of the mobile phone and the sphygmomanometer according to the third embodiment. 実施例3の再測定を促す動作のフローチャート。10 is a flowchart of an operation for prompting remeasurement according to the third embodiment. 実施例3の携帯電話機と血圧計の動作を示すフローチャート。10 is a flowchart showing operations of the mobile phone and the sphygmomanometer according to the third embodiment. 実施例3の再測定を促す動作のフローチャート。10 is a flowchart of an operation for prompting remeasurement according to the third embodiment. 実施例4の体組成計が実行する動作のフローチャート。The flowchart of the operation | movement which the body composition meter of Example 4 performs. 実施例5の体組成計が実行する動作のフローチャート。The flowchart of the operation | movement which the body composition meter of Example 5 performs. 実施例6の血圧計のブロック図。FIG. 10 is a block diagram of a sphygmomanometer according to a sixth embodiment. 実施例6のシステム構成の説明図。Explanatory drawing of the system configuration | structure of Example 6. FIG. 実施例6の血圧計が実行する全体動作のフローチャート。10 is a flowchart of overall operations executed by the sphygmomanometer according to Embodiment 6. 実施例6の血圧測定処理の動作を示すフローチャート。10 is a flowchart showing an operation of blood pressure measurement processing according to the sixth embodiment. 実施例6のリスク指標表示処理の動作を示すフローチャート。18 is a flowchart showing the operation of risk index display processing according to the sixth embodiment. 実施例6の歩数データを度数分布で表したグラフ。The graph which represented step count data of Example 6 by frequency distribution. 実施例6の画面説明図。FIG. 10 is an explanatory diagram of a screen according to the sixth embodiment. 実施例7のシステム構成の説明図。FIG. 10 is an explanatory diagram of a system configuration according to a seventh embodiment. 実施例7のリスク指標表示処理の動作を示すフローチャートThe flowchart which shows the operation | movement of the risk index display process of Example 7. 実施例7の循環器系疾患の分類を示すグラフ。The graph which shows the classification | category of the circulatory system disease of Example 7. FIG. 実施例7の画面説明図。FIG. 10 is an explanatory diagram of a screen according to the seventh embodiment.
 この発明は、生体情報の測定時から所定時間内の体動に基づいて、その生体情報が適切か不適切か、あるいは疾患リスクに関連するものかといった属性を判定するものである。 This invention is to determine an attribute such as whether the biological information is appropriate or inappropriate or related to a disease risk based on body movement within a predetermined time from the measurement of the biological information.
 以下、この発明の一実施形態を図面と共に説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1は、生体情報測定システム1の概略構成を示す構成図である。 
 生体情報測定システム1は、サーバ150と、体動検出装置110と、血糖計160と、体組成計270と、血圧計240とが通信可能に接続されて構成されている。これらの装置の互いの通信は、有線接続するUSB(Universal Serial Bus)や無線通信するBluetooth(登録商標)やLAN(Local Area Network)やインターネットなど、適宜の方式により実行する。
FIG. 1 is a configuration diagram showing a schematic configuration of the biological information measuring system 1.
The biological information measurement system 1 includes a server 150, a body motion detection device 110, a blood glucose meter 160, a body composition meter 270, and a sphygmomanometer 240 that are communicably connected. Communication between these apparatuses is performed by an appropriate method such as USB (Universal Serial Bus) for wired connection, Bluetooth (registered trademark) for wireless communication, LAN (Local Area Network), or the Internet.
 また、サーバ150は、体動検出装置110と、生体情報測定装置H(血糖計160、体組成計270、および血圧計240)とが通信可能に接続され、これら全ての装置からデータを受け取って処理加工する。 The server 150 is connected to the body motion detection device 110 and the biological information measurement device H (the blood glucose meter 160, the body composition meter 270, and the blood pressure meter 240) so as to communicate with each other, and receives data from all of these devices. Processing.
 体動検出装置110は、全ての生体情報測定装置Hが通信可能に接続され、これらの生体情報測定装置Hに体動情報、測定時刻情報、および現在時刻情報を送信する。また、体動検出装置110は、識別情報(機器IDまたはユーザIDなど)、機器種別情報、自己の測定した体動情報(歩数あるいは活動量など)、体動を測定した測定時刻情報、および現在時刻情報をサーバ150へ送信する。この体動検出装置110は、歩数をカウントする歩数計、あるいは活動量を算出する活動量計など、体動を検出する適宜の装置で構成されている。 The body motion detection device 110 is connected so that all the biological information measurement devices H can communicate with each other, and transmits body motion information, measurement time information, and current time information to these biological information measurement devices H. In addition, the body motion detection device 110 includes identification information (such as a device ID or user ID), device type information, body motion information measured by itself (such as the number of steps or amount of activity), measurement time information when body motion is measured, and current The time information is transmitted to the server 150. The body motion detection device 110 is configured by an appropriate device that detects body motion, such as a pedometer for counting the number of steps or an activity meter for calculating an activity amount.
 各生体情報測定装置Hは、体動検出装置110から体動情報、測定時刻情報、および現在時刻情報を受信して自己の測定した生体情報(血糖値、体組成値、血圧値)が適切か否か等の属性判定を実行する。また、各生体情報測定装置Hは、識別情報(機器IDまたはユーザIDなど)、機器種別情報、自己の測定した生体情報(血糖値、体組成値、血圧値)、生体情報を測定した測定時刻情報、および現在時刻情報をサーバ150へ送信する。 Each biological information measuring device H receives body motion information, measurement time information, and current time information from the body motion detection device 110, and whether the biological information (blood glucose level, body composition value, blood pressure value) measured by itself is appropriate Attribute determination such as whether or not is executed. In addition, each biological information measuring device H has identification information (device ID or user ID, etc.), device type information, self-measured biometric information (blood glucose level, body composition value, blood pressure value), and measurement time when biometric information is measured. Information and current time information are transmitted to the server 150.
 図2および図3は、各装置の構成を示すブロック図である。 
 図2(A)は、サーバ150の構成を示す。このサーバ150は、制御部151、操作部152、表示部153、記憶部154、通信部155、および計時部156を有している。
2 and 3 are block diagrams showing the configuration of each apparatus.
FIG. 2A shows the configuration of the server 150. The server 150 includes a control unit 151, an operation unit 152, a display unit 153, a storage unit 154, a communication unit 155, and a time measuring unit 156.
 制御部151は、CPUとROMとRAMにより構成されており、ROM等に記憶されているプログラムに従って各部の制御動作や演算動作を実行する。この実施例では、サーバ150、体動検出装置110、血糖計160、体組成計270、および血圧計240の現在時刻にズレがある場合に、これらの時間軸を一致させるように相対的に調整する時刻調整処理、および生体情報測定装置Hから取得した生体情報の属性を体動検出装置110から取得した体動情報に基づいて判定する属性判定処理なども実行する。 The control unit 151 includes a CPU, a ROM, and a RAM, and executes a control operation and a calculation operation of each unit in accordance with a program stored in the ROM or the like. In this embodiment, when the current time of the server 150, the body motion detection device 110, the blood glucose meter 160, the body composition meter 270, and the sphygmomanometer 240 is misaligned, the time axes are relatively adjusted. Time adjustment processing to be performed, and attribute determination processing for determining the attribute of the biological information acquired from the biological information measurement device H based on the body motion information acquired from the body motion detection device 110 are also executed.
 操作部152は、キーボードやマウスといった操作入力装置で構成されており、操作入力された入力信号を制御部151へ送る。 
 表示部153は、液晶ディスプレイやCRTディスプレイといった表示装置で構成されており、制御部151の制御信号に従って表示を行う。
The operation unit 152 includes an operation input device such as a keyboard and a mouse, and sends an input signal input by the operation to the control unit 151.
The display unit 153 includes a display device such as a liquid crystal display or a CRT display, and performs display according to a control signal from the control unit 151.
 記憶部154は、ハードディスクなどの記憶装置により構成され、適宜のプログラムやデータが記憶される。この実施例では、サーバ150、体動検出装置110、血糖計160、体組成計270、および血圧計240から受信した各種データ、および各生体情報測定装置Hの生体情報の属性を判定するための属性判定用情報が記憶されている。 The storage unit 154 includes a storage device such as a hard disk, and stores appropriate programs and data. In this embodiment, various data received from the server 150, the body motion detection device 110, the blood glucose meter 160, the body composition meter 270, and the sphygmomanometer 240, and the attribute of the biological information of each biological information measuring device H are determined. Attribute determination information is stored.
 通信部155は、有線接続するUSB(Universal Serial Bus)や無線通信するBluetooth(登録商標)やLAN(Local Area Network)など、適宜の通信インターフェースで構成され、制御部151の制御に従って他の装置とのデータの送受信を行う。 The communication unit 155 includes an appropriate communication interface such as a USB (Universal Serial Bus) for wired connection, Bluetooth (registered trademark) for wireless communication, or a Local Area Network (LAN), and communicates with other devices under the control of the control unit 151. Send and receive data.
 計時部156は、時刻の計時を行い、現在時刻を制御部151に伝達する。これにより、現在時刻の測定や経過時間の計測など、時間管理を行うことができる。 Time measuring unit 156 measures time and transmits the current time to control unit 151. As a result, time management such as measurement of the current time and measurement of elapsed time can be performed.
 図2(B)は、血糖計160の構成を示す。この血糖計160は、制御部161、操作部162、表示部163、血糖測定部164、通信部165、記憶部166、および計時部167を有している。 FIG. 2 (B) shows the configuration of the blood glucose meter 160. The blood glucose meter 160 includes a control unit 161, an operation unit 162, a display unit 163, a blood glucose measurement unit 164, a communication unit 165, a storage unit 166, and a time measuring unit 167.
 制御部161は、CPUとROMとRAMにより構成されており、ROM等に記憶されているプログラムに従って各部の制御動作や演算動作を実行する。 The control unit 161 includes a CPU, a ROM, and a RAM, and executes control operations and arithmetic operations of each unit according to a program stored in the ROM or the like.
 操作部162は、設定入力や過去の測定データを表示させるための操作入力を受け付けるボタンであり、押下信号を制御部161に送信する。 The operation unit 162 is a button that receives a setting input and an operation input for displaying past measurement data, and transmits a pressing signal to the control unit 161.
 表示部163は、液晶ディスプレイやCRTディスプレイといった表示装置で構成されており、制御部151の制御信号に従って表示を行う。この実施例では、測定した血糖値や、過去の血糖値、設定入力画面、測定した血糖値の属性(適切属性か不適切属性か)など、適宜の画面表示を行う。 The display unit 163 includes a display device such as a liquid crystal display or a CRT display, and performs display according to a control signal from the control unit 151. In this embodiment, appropriate screen display such as measured blood glucose level, past blood glucose level, setting input screen, measured blood glucose level attribute (appropriate attribute or inappropriate attribute) is performed.
 血糖測定部164は、利用者の血糖値を測定し、測定した血糖値を制御部161に送信する。この血糖値の測定は、採取した血中の糖分と薬液が反応したときに発生する電流を測定する電極法、または、血中糖分と薬液との反応による色の変化を測定する比色法など、公知の方法によって行うことができる。 The blood glucose measurement unit 164 measures the blood glucose level of the user and transmits the measured blood glucose level to the control unit 161. This blood glucose level is measured by an electrode method that measures the current generated when the collected blood sugar reacts with the drug solution, or a colorimetric method that measures the color change caused by the reaction between the blood sugar and the drug solution. Can be carried out by a known method.
 通信部165は、有線接続するUSB(Universal Serial Bus)や無線通信するBluetooth(登録商標)やLAN(Local Area Network)など、適宜の通信インターフェースで構成され、制御部161の制御に従って他の装置とのデータの送受信を行う。 The communication unit 165 includes an appropriate communication interface such as a USB (Universal Serial Bus) for wired connection, Bluetooth (registered trademark) for wireless communication, or a Local Area Network (LAN), and communicates with other devices according to the control of the control unit 161. Send and receive data.
 記憶部166は、測定した血糖値と測定時刻など、適宜のデータを記憶している。ここで、測定した血糖値と測定時刻は、生体情報として記憶される。また、記憶部166は、測定した血糖値が正常状態で測定された適切なものか(適切属性)、あるいは不適切な状態で測定された不適切なものか(不適切属性)を判定する属性判定用情報も記憶している。 The storage unit 166 stores appropriate data such as the measured blood glucose level and the measurement time. Here, the measured blood glucose level and measurement time are stored as biological information. In addition, the storage unit 166 determines whether the measured blood glucose level is appropriate (appropriate attribute) measured in a normal state or inappropriate (appropriate attribute) measured in an inappropriate state. Information for determination is also stored.
 計時部167は、時刻の計時を行い、現在時刻を制御部161に伝達する。これにより、現在時刻の測定や経過時間の計測など、時間管理を行うことができる。 The time measuring unit 167 measures time and transmits the current time to the control unit 161. As a result, time management such as measurement of the current time and measurement of elapsed time can be performed.
 図2(C)は、体動検出装置110の構成を示す。この体動検出装置110は、通信部111、加速度検知部112、表示部113、演算部114、電源接続部115、記憶部116、操作部117、電源部118、および計時部119を有している。なお、体動検出装置110は、歩数を係数する歩数計、活動量を測定する活動量計、あるいは歩数と活動量を測定する運動量計など、体動を測定する適宜の装置で構成することができる。 FIG. 2C shows the configuration of the body motion detection device 110. The body motion detection device 110 includes a communication unit 111, an acceleration detection unit 112, a display unit 113, a calculation unit 114, a power supply connection unit 115, a storage unit 116, an operation unit 117, a power supply unit 118, and a timer unit 119. Yes. It should be noted that the body motion detection device 110 may be configured by an appropriate device that measures body motion, such as a pedometer that counts the number of steps, an activity meter that measures the amount of activity, or an exercise meter that measures the number of steps and the amount of activity. it can.
 通信部111は、有線接続するUSB(Universal Serial Bus)や無線通信するBluetooth(登録商標)やLAN(Local Area Network)など、適宜の通信インターフェースで構成され、演算部114の制御に従って他の装置とのデータの送受信を行う。 The communication unit 111 includes an appropriate communication interface such as USB (Universal Serial Bus) for wired connection, Bluetooth (registered trademark) for wireless communication, or LAN (Local Area Network), and is connected to other devices according to the control of the calculation unit 114. Send and receive data.
 加速度検知部112は、ユーザの歩行等によって生じる変化の一例として加速度を検知するセンサであり、検知信号(加速度データ)を演算部114に送信する。この加速度検知部112は、一方向の加速度を検知する一次元加速度センサ、直交する二方向の加速度を検知する二次元加速度センサ、または、直交する三方向の加速度を検知する三次元加速度センサで構成することができ、情報量の多い三次元加速度センサが最も好ましい。 The acceleration detection unit 112 is a sensor that detects acceleration as an example of a change caused by a user's walking or the like, and transmits a detection signal (acceleration data) to the calculation unit 114. The acceleration detection unit 112 includes a one-dimensional acceleration sensor that detects acceleration in one direction, a two-dimensional acceleration sensor that detects acceleration in two orthogonal directions, or a three-dimensional acceleration sensor that detects acceleration in three orthogonal directions. A three-dimensional acceleration sensor with a large amount of information is most preferable.
 表示部113は、液晶などの表示機器で構成されており、演算部114からの表示制御信号に従って情報を表示する。この表示する情報は、歩数や活動量など体動に関する情報とすることができる。 The display unit 113 is configured by a display device such as a liquid crystal, and displays information according to a display control signal from the calculation unit 114. The information to be displayed can be information relating to body movement such as the number of steps and the amount of activity.
 演算部114は、電源部118から電源接続部115を介して受け取る電力によって駆動し、加速度検知部112および操作部117からの検知信号の受信(検出)、通信部111、表示部113、および記憶部116に対する電力供給(電源)と動作制御(表示制御)を実行する。また、加速度検知部112から受信する検知信号に基づいて、記憶部116に記憶している歩行判定基準データ等を参照して歩数カウントや活動量算出などの演算する処理も実行する。 The calculation unit 114 is driven by power received from the power supply unit 118 via the power supply connection unit 115, receives (detects) detection signals from the acceleration detection unit 112 and the operation unit 117, the communication unit 111, the display unit 113, and the storage. Power supply (power supply) and operation control (display control) to the unit 116 are executed. In addition, based on the detection signal received from the acceleration detection unit 112, processing for calculating the number of steps and calculating the amount of activity is performed with reference to the walking determination reference data stored in the storage unit 116.
 記憶部116は、検知信号のうち歩行による信号部分を検知して歩数をカウントするための歩数カウントプログラム、歩数をカウントするための閾値データ、活動量を算出するための活動量算出プログラム等を記憶している。また、検出した体動を検出時刻と対応付けた体動検出データ、カウントした歩数、および算出した活動量も記憶している。 The storage unit 116 stores a step count counting program for detecting a signal portion due to walking in the detection signal and counting the number of steps, threshold data for counting the number of steps, an activity amount calculating program for calculating an activity amount, and the like. is doing. Further, body motion detection data in which the detected body motion is associated with the detection time, the counted number of steps, and the calculated amount of activity are also stored.
 操作部117は、体重や歩幅などのユーザ情報の入力操作、時計を合わせる日時入力操作、表示内容を歩数・消費カロリー・歩行距離といった各種内容に切り替える表示内容切替操作、および、サーバ150へデータ送信するデータ送信操作など、適宜の操作入力を受け付け、この操作入力信号を演算部114に送信する。 The operation unit 117 is used to input user information such as weight and stride, date and time input operation for setting the clock, display content switching operation for switching display contents to various contents such as the number of steps, calories consumed, and walking distance, and data transmission to the server 150 An appropriate operation input such as a data transmission operation is received, and this operation input signal is transmitted to the calculation unit 114.
 電源部118は、電源接続部115を通じて、各部に必要な動作電力を供給する。 
 計時部119は、時刻の計時を行い、現在時刻を演算部114に伝達する。これにより、現在時刻の測定や経過時間の計測など、時間管理を行うことができる。
The power supply unit 118 supplies necessary operating power to each unit through the power supply connection unit 115.
The timer unit 119 measures the time and transmits the current time to the calculator 114. As a result, time management such as measurement of the current time and measurement of elapsed time can be performed.
 図3(D)は、血圧計240の構成を示す。この血圧計240は、カフ241、圧力センサ242、ポンプ243、弁244、発振回路245、ポンプ駆動回路246、弁駆動回路247、時計248、電源249、制御部250、表示部251、処理用メモリ252、記録用メモリ253、操作部254、および通信部255により構成されている。 FIG. 3D shows the configuration of the sphygmomanometer 240. The sphygmomanometer 240 includes a cuff 241, a pressure sensor 242, a pump 243, a valve 244, an oscillation circuit 245, a pump drive circuit 246, a valve drive circuit 247, a clock 248, a power supply 249, a control unit 250, a display unit 251, and a processing memory. 252, a recording memory 253, an operation unit 254, and a communication unit 255.
 カフ241は、利用者の血圧測定部位に装着される帯状の部材であり、エア管241aを通じて供給される空気圧により加圧する。 
 圧力センサ242は、静電容量型の圧力センサであり、カフ241内の空気袋の圧力を測定する。この圧力センサ242は、カフ241内の圧力(カフ圧)に応じて容量値が変化し、この容量値を発振回路245へ出力する。
The cuff 241 is a belt-like member that is attached to the blood pressure measurement site of the user, and pressurizes with the air pressure supplied through the air tube 241a.
The pressure sensor 242 is a capacitance type pressure sensor and measures the pressure of the air bag in the cuff 241. The pressure sensor 242 changes its capacitance value according to the pressure in the cuff 241 (cuff pressure), and outputs this capacitance value to the oscillation circuit 245.
 ポンプ243、および弁244は、カフ241内に圧力を付与し、カフ内の圧力を調節(制御)する。 
 発振回路245は、圧力センサ242の容量値に応じた周波数の信号を制御部250へ出力する。
The pump 243 and the valve 244 apply pressure to the cuff 241 and adjust (control) the pressure in the cuff.
The oscillation circuit 245 outputs a signal having a frequency corresponding to the capacitance value of the pressure sensor 242 to the control unit 250.
 ポンプ駆動回路246は、制御部250の制御信号に従ってポンプ243を駆動する。 
 弁駆動回路247は、制御部250の制御信号に従って弁244を駆動する。
The pump drive circuit 246 drives the pump 243 according to the control signal from the control unit 250.
The valve drive circuit 247 drives the valve 244 in accordance with a control signal from the control unit 250.
 時計248は、現在日時を計時する装置であり、必要に応じて計時した日時を制御部250へ出力する。 
 電源249は、各構成部に電力供給を行なう。
The clock 248 is a device that measures the current date and time, and outputs the date and time counted to the control unit 250 as necessary.
The power source 249 supplies power to each component.
 制御部250は、ポンプ243、弁244、表示部251、処理用メモリ252、記録用メモリ253、および通信部255の制御と、血圧測定処理と記録値の管理とを実行する。 The control unit 250 executes control of the pump 243, the valve 244, the display unit 251, the processing memory 252, the recording memory 253, and the communication unit 255, blood pressure measurement processing, and management of recorded values.
 表示部251は、液晶画面などの表示装置によって構成され、制御部250から送られる信号に従って血圧値を表示する。 The display unit 251 is configured by a display device such as a liquid crystal screen, and displays a blood pressure value according to a signal sent from the control unit 250.
 処理用メモリ252は、血圧算出パラメータや血圧計の制御プログラムを記憶している。 The processing memory 252 stores blood pressure calculation parameters and a sphygmomanometer control program.
 記録用メモリ253は、血圧値を記憶し、必要に応じて日時・利用者・測定値を関連付けて記憶する。 The recording memory 253 stores the blood pressure value, and stores the date / time / user / measurement value in association with each other as necessary.
 操作部254は、図示省略する電源スイッチ、測定スイッチ、停止スイッチ、記録呼び出しスイッチ、利用者選択スイッチから構成され、血圧計の電源ON/OFF・測定開始などの操作入力を許容し、入力された入力信号を制御部250へ送る。 
 通信部255は、制御部250の制御に従って、測定した血圧の外部装置への送信や測定不適時間帯に関する情報を外部装置から受信する処理等を実行する。
The operation unit 254 includes a power switch, a measurement switch, a stop switch, a recording call switch, and a user selection switch (not shown). The operation unit 254 accepts an operation input such as power ON / OFF of the sphygmomanometer and start of measurement. An input signal is sent to the control unit 250.
The communication unit 255 executes a process of transmitting the measured blood pressure to the external device and receiving information on the measurement inappropriate time zone from the external device under the control of the control unit 250.
 図3(E)は、体組成計270の構成を示す。この体組成計270は、利用者が手で持つ第1の筐体である表示操作部271、利用者が乗る第2の筐体である体重測定部291とで主に構成されており、体組成計として機能すると共に体重計としても機能する。 FIG. 3E shows the structure of the body composition meter 270. This body composition meter 270 is mainly composed of a display operation unit 271 that is a first housing held by a user and a weight measurement unit 291 that is a second housing on which the user rides. It functions as a weight scale as well as a composition meter.
 表示操作部271は、通信部272、記憶部273、計時部274、操作部275、表示部276、定電流回路部277、電源部278、制御部279、二重積分AD部282、インピーダンス検知部283、および電極部284が設けられている。 The display operation unit 271 includes a communication unit 272, a storage unit 273, a timing unit 274, an operation unit 275, a display unit 276, a constant current circuit unit 277, a power supply unit 278, a control unit 279, a double integration AD unit 282, and an impedance detection unit. 283 and an electrode portion 284 are provided.
 通信部272は、制御部279に接続されており、該制御部279の制御信号に従って他の装置と通信を行う。 The communication unit 272 is connected to the control unit 279, and communicates with other devices according to the control signal of the control unit 279.
 記憶部273は、不揮発性のメモリやハードディスクなどの情報を記憶できる装置で構成されており、制御部279の制御信号に従って情報の読み出しや書き込みを行う。この記憶部273には、利用者についての利用者情報が記憶されている。この利用者情報は、例えば利用者1、利用者2といったように番号によって記憶されており、例えば、利用者の性別、年齢、および身長、あるいはこれらと体重が記憶されている。 The storage unit 273 is configured by a device that can store information such as a nonvolatile memory or a hard disk, and reads and writes information according to a control signal from the control unit 279. The storage unit 273 stores user information about the user. This user information is stored by numbers such as user 1 and user 2, for example, and the user's gender, age, and height, or these and weight are stored.
 計時部274(計時手段)は、現在日時などの時刻を計時する装置であり、必要に応じて時刻を制御部279へ送る。 
 操作部275は、押下操作される複数のボタンにより構成されており、性別、年齢、身長、体重といった利用者の身体情報の入力など、利用者に押下操作された入力情報を制御部279へ送る。
The time measuring unit 274 (time measuring means) is a device for measuring time such as the current date and time, and sends the time to the control unit 279 as necessary.
The operation unit 275 includes a plurality of buttons that are pressed, and sends input information that is pressed down by the user, such as input of user physical information such as sex, age, height, and weight, to the control unit 279. .
 表示部276は、液晶画面などの表示装置によって構成され、制御部279から送られる画像信号に従って文字や図形といった画像を表示する。 
 定電流回路部277は、制御部279の制御に基づいて、電源部278から供給される高周波(交流)電流を電流印加用の電極部284に一方向に流す。
The display unit 276 is configured by a display device such as a liquid crystal screen, and displays images such as characters and figures in accordance with image signals sent from the control unit 279.
The constant current circuit unit 277 flows a high-frequency (alternating current) current supplied from the power supply unit 278 to the current application electrode unit 284 in one direction based on the control of the control unit 279.
 電源部278は、制御部279を含め各部に動作電力を供給する。 
 制御部279は、CPUとROMとRAMあるいはマイコン(マイクロコンピュータ)により構成されており、ROM等に記憶されているプログラムに従って各部の制御動作や演算動作を実行する。このプログラムとしては、体組成測定プログラムが記憶されている。
The power supply unit 278 supplies operating power to each unit including the control unit 279.
The control unit 279 is configured by a CPU, a ROM, a RAM, or a microcomputer (microcomputer), and executes a control operation and a calculation operation of each unit according to a program stored in the ROM or the like. As this program, a body composition measurement program is stored.
 二重積分AD部282は、二重積分型のAD(アナログ/デジタル)変換部であり、インピーダンス検知部283から供給されるアナログ信号をデジタル信号に変換する。 The double integration AD unit 282 is a double integration type AD (analog / digital) conversion unit that converts an analog signal supplied from the impedance detection unit 283 into a digital signal.
 インピーダンス検知部283は、体重測定部291に設けられている電極部136と表示操作部271に設けられている電極部284との電位差に基づいて利用者のインピーダンスを検出する。 The impedance detection unit 283 detects the impedance of the user based on the potential difference between the electrode unit 136 provided in the weight measurement unit 291 and the electrode unit 284 provided in the display operation unit 271.
 電極部284は、利用者が手で持つ表示操作部271のグリップ部分の表面に設けられており、グリップ部分を握っている利用者の手のひらへ電源部278から供給される高周波(交流)電流を印加する。 The electrode unit 284 is provided on the surface of the grip portion of the display operation unit 271 that the user holds by hand. The electrode unit 284 supplies a high-frequency (alternating current) current supplied from the power supply unit 278 to the palm of the user holding the grip portion. Apply.
 体重測定部291は、操作部292、電池293、荷重検知部294、および電極部297により構成されている。 
 操作部292は、電源のON/OFFを切り替えるための入力スイッチとして機能し、入力された入力信号を制御部279へ送る。
The body weight measurement unit 291 includes an operation unit 292, a battery 293, a load detection unit 294, and an electrode unit 297.
The operation unit 292 functions as an input switch for switching the power ON / OFF, and sends the input signal that has been input to the control unit 279.
 電池293は、電源部278を中心に各部へ電力供給を行う。 
 荷重検知部294は、ロードセル295を内蔵しており、筐体の上面カバーを兼ね備える上面カバー部296(図1参照)の上に乗った利用者の体重を測定する。このとき測定した体重は、二重積分AD部282へ送られる。
The battery 293 supplies power to each unit with the power supply unit 278 at the center.
The load detection unit 294 has a built-in load cell 295, and measures the weight of the user who rides on the upper surface cover unit 296 (see FIG. 1) that also serves as the upper surface cover of the housing. The weight measured at this time is sent to the double integration AD unit 282.
 電極部297は、利用者が上に乗る体重測定部291の上面部分(図1参照)の表面に設けられており、利用者の足裏から流れてくる電流を受け取る電流測定用の電極である。この電極部297は、利用者の左足指側、左足踵側、右足指側、右足踵側の4つの電極により構成されている。 The electrode unit 297 is provided on the surface of the upper surface portion (see FIG. 1) of the weight measuring unit 291 on which the user rides, and is an electrode for current measurement that receives current flowing from the sole of the user. . This electrode part 297 is composed of four electrodes on the user's left toe side, left toe side, right toe side, and right toe side.
 図4は、体動検出装置110や各生体情報測定装置Hに記憶するデータの構成図を示す。なお、これらのデータは、同じものがサーバ150の記憶部154にユーザ別に記憶され、蓄積される。 FIG. 4 is a configuration diagram of data stored in the body movement detection device 110 and each biological information measurement device H. Note that the same data is stored and stored in the storage unit 154 of the server 150 for each user.
 図4(A)は、体動検出装置110の記憶部116に記憶される体動検出装置データD1のデータ構成を示す。 
 この体動検出装置データD1は、識別情報、機器種別情報、および体動情報で構成されている。
FIG. 4A shows the data structure of the body motion detection device data D1 stored in the storage unit 116 of the body motion detection device 110.
This body movement detection device data D1 is composed of identification information, device type information, and body movement information.
 識別情報としては、IDが記憶されており、機器種別情報としては、体動検出装置(若しくは体動検出装置を示すコード)が記憶されている。 ID is stored as the identification information, and the body motion detection device (or a code indicating the body motion detection device) is stored as the device type information.
 体動情報の内容は、加速度と測定時刻で構成されている。この加速度と測定時刻は、所定時間間隔で連続して取得する加速度とその測定時刻との連続データである。なお、これに限らず、所定時間間隔で区切って所定強度以上の加速度が所定回数連続したこと等を基準に判定した歩数と該歩数カウントの開始時刻と終了時刻とで構成してもよく、またこれらを全て記憶してもよい。 The content of body movement information consists of acceleration and measurement time. The acceleration and the measurement time are continuous data of the acceleration acquired continuously at a predetermined time interval and the measurement time. However, the present invention is not limited to this, and it may be composed of the number of steps determined based on the fact that a predetermined number of times or more of accelerations are separated at predetermined time intervals, and the start time and end time of the step count, All of these may be stored.
 図4(B)は、血糖計160の記憶部166に記憶される血糖計データD2のデータ構成を示す。 
 血糖計データD2は、識別情報、機器種別情報、生体情報、および属性判定用情報で構成されている。
FIG. 4B shows a data configuration of blood glucose meter data D2 stored in the storage unit 166 of the blood glucose meter 160.
The blood glucose meter data D2 includes identification information, device type information, biological information, and attribute determination information.
 識別情報としては、IDが記憶されており、機器種別情報としては、血糖計(若しくは血糖計を示すコード)が記憶されている。 ID is stored as identification information, and a blood glucose meter (or a code indicating a blood glucose meter) is stored as device type information.
 生体情報としては、血糖値とその測定時刻とを記憶している。 
 属性判定用情報としては、不適切属性と適切属性が記憶されている。
As the biometric information, the blood glucose level and the measurement time are stored.
As attribute determination information, an inappropriate attribute and an appropriate attribute are stored.
 不適切属性は、食事開始から食後所定時間内であることが条件として記憶されている。 
 適切属性は、不適切属性以外であることが条件として記憶されている。
The inappropriate attribute is stored as a condition that it is within a predetermined time after the meal starts.
The appropriate attribute is stored as a condition that it is not an inappropriate attribute.
 図4(C)は、体組成計270の記憶部273に記憶されている体組成計データD3のデータ構成を示す。 FIG. 4C shows a data configuration of body composition meter data D3 stored in the storage unit 273 of the body composition meter 270.
 識別情報としては、IDが記憶されており、機器種別情報としては、体組成計(若しくは体組成計を示すコード)が記憶されている。 ID is stored as identification information, and a body composition meter (or a code indicating the body composition meter) is stored as device type information.
 体組成計データD3は、識別情報、機器種別情報、生体情報、および属性判定用情報で構成されている。 The body composition meter data D3 includes identification information, device type information, biological information, and attribute determination information.
 生体情報としては、体組成、体重、およびその測定時刻とが記憶されている。体組成としては、内臓脂肪率、骨格筋率、BMIなどが記憶されている。 As biological information, body composition, body weight, and measurement time are stored. As the body composition, visceral fat percentage, skeletal muscle percentage, BMI, and the like are stored.
 属性判定用情報としては、不適切属性と適切属性が記憶されている。 
 不適切属性は、所定強度の体動から所定時間以内であることが条件として記憶されている。
As attribute determination information, an inappropriate attribute and an appropriate attribute are stored.
The inappropriate attribute is stored as a condition that it is within a predetermined time from a body motion of a predetermined intensity.
 適切属性は、不適切属性以外であることが条件として記憶されている。 The appropriate attribute is stored as a condition that it is not an inappropriate attribute.
 図4(D)は、血圧計240の記録用メモリ253に記憶される血圧計データD4のデータ構成を示す。 
 血圧計データD4は、識別情報、機器種別情報、生体情報、および属性判定用情報で構成されている。
FIG. 4D shows a data configuration of the sphygmomanometer data D4 stored in the recording memory 253 of the sphygmomanometer 240.
The sphygmomanometer data D4 includes identification information, device type information, biological information, and attribute determination information.
 識別情報としては、IDが記憶されており、機器種別情報としては、血圧計(若しくは血圧計を示すコード)が記憶されている。 ID is stored as the identification information, and a sphygmomanometer (or a code indicating the sphygmomanometer) is stored as the device type information.
 生体情報としては、血圧値とその測定時刻とが記憶されている。 
 属性判定用情報としては、不適切属性、適切属性、早朝高血圧属性、白衣高血圧属性、および仮面高血圧属性が記憶されている。
As the biological information, a blood pressure value and a measurement time thereof are stored.
As attribute determination information, an inappropriate attribute, an appropriate attribute, an early morning hypertension attribute, a white coat hypertension attribute, and a masked hypertension attribute are stored.
 不適切属性は、所定強度の体動から所定時間以内であることが条件として記憶されている。ここでの所定強度は、体組成計データD3における所定強度よりも小さい値に設定されている。また、ここでの所定時間は、体組成計データD3における所定時間よりも短く設定されている。 The inappropriate attribute is stored as a condition that it is within a predetermined time from the body movement of a predetermined intensity. The predetermined intensity here is set to a value smaller than the predetermined intensity in the body composition meter data D3. The predetermined time here is set shorter than the predetermined time in the body composition meter data D3.
 適切属性は、不適切属性以外であることが条件として記憶されている。 The appropriate attribute is stored as a condition that it is not an inappropriate attribute.
 早朝高血圧属性は、起床後所定時間内の血圧からそれ以外の血圧を減算した値が所定血圧より大きいことが条件として記憶されている。 The early morning hypertension attribute is stored as a condition that a value obtained by subtracting the other blood pressure from the blood pressure within a predetermined time after getting up is larger than the predetermined blood pressure.
 白衣高血圧属性は、診療所での測定血圧から家庭内での測定血圧を減算した値が所定圧より大きいことが条件として記憶されている。 The white coat hypertension attribute is stored as a condition that the value obtained by subtracting the measured blood pressure in the home from the measured blood pressure in the clinic is greater than the predetermined pressure.
 仮面高血圧属性は、診療所での測定血圧から家庭内での測定血圧を減算した値が所定圧より小さいことが条件として記憶されている。 The masked hypertension attribute is stored as a condition that the value obtained by subtracting the measured blood pressure in the home from the measured blood pressure in the clinic is smaller than the predetermined pressure.
 図5は、サーバ150の表示部153に表示する分析表示画面10の画面構成図を示す。 
 この分析表示画面10には、歩数表示部11、時刻表示部12、状態表示部13、血糖表示部14、体組成表示部15、および血圧表示部16が設けられている。図示の例は、適宜指定された1日のデータを表示している。なお、時間別の平均値を表示する、あるいは曜日別にして各曜日の平均値を表示するなど、適宜の方式で表示してもよい。
FIG. 5 shows a screen configuration diagram of the analysis display screen 10 displayed on the display unit 153 of the server 150.
The analysis display screen 10 includes a step count display unit 11, a time display unit 12, a state display unit 13, a blood glucose display unit 14, a body composition display unit 15, and a blood pressure display unit 16. In the example shown in the drawing, the data for one day designated as appropriate is displayed. The average value for each time may be displayed, or the average value for each day of the week may be displayed for each day of the week.
 歩数表示部11は、体動検出装置データD1に基づいて、1時間単位の歩数を棒グラフ形式にして表示している。また、所定強度以上の激しい運動を行っていた歩数(例えば走るなど)は、濃い色の棒グラフにして重ねて表示している。これにより、時間別に活動量がわかるようにしている。 
 時刻表示部12は、0時から24時まで1時間単位で表示している。
The step count display unit 11 displays the number of steps per hour in a bar graph format based on the body motion detection device data D1. In addition, the number of steps (for example, running) that has been intensely exercised over a predetermined intensity is displayed as a dark bar graph. As a result, the amount of activity is understood by time.
The time display unit 12 displays the time from 0:00 to 24:00 in units of one hour.
 状態表示部13は、体動検出装置データD1から判別した生体の状態を表示している。この生体の状態は、起床、食事(朝食、昼食、夕食など)、診療、就寝といった状態を示す。 The state display unit 13 displays the state of the living body determined from the body motion detection device data D1. The state of the living body indicates a state such as getting up, eating (breakfast, lunch, dinner, etc.), medical examination, and sleeping.
 例えば、起床と就寝は、体動検出装置110の加速度検知部112による加速度の検知に基づいて、それまで所定時間以上加速度を検知していなかったが検知し始めたときを起床とし、加速度を検知しなくなって所定時間以上経過すれば検知しなくなったときを就寝とすることができる。また、食事は、所定時間の微小な加速度検知があったときに食事とする、あるいは適宜の入力手段によって食事中と入力された期間を食事とするなど、適宜の方法によって定めることができる。また、診療は、例えば体動検出装置110にGPSを備え、病院などの診療施設内にいる期間を診療と定めることができる。 For example, for getting up and sleeping, based on the detection of acceleration by the acceleration detection unit 112 of the body motion detection device 110, the acceleration is detected when the acceleration has not been detected for a predetermined time or more but has started to be detected. When the predetermined time or more has passed, the time when no longer detected can be set to bedtime. In addition, the meal can be determined by an appropriate method, such as a meal when a minute acceleration is detected for a predetermined time, or a meal that is input as being eaten by an appropriate input means. In the medical treatment, for example, the body motion detection device 110 is equipped with a GPS, and a period of time in a medical facility such as a hospital can be determined as a medical treatment.
 血糖表示部14は、血糖計データD2に基づいて、血糖値を、その測定した測定時刻の位置に表示する。また、血糖値と共に、判定した属性も表示する。図示の例では、食事前に測定している血糖値に適切属性であることを示す「○」を表示し、食事直後に測定している血糖値に不適切属性であることを示す「×」を表示している。 The blood glucose display unit 14 displays the blood glucose level at the position of the measured measurement time based on the blood glucose meter data D2. In addition, the determined attribute is displayed together with the blood glucose level. In the example shown in the figure, “◯” indicating that the blood glucose level measured before a meal is an appropriate attribute is displayed, and “X” indicating that the blood glucose level measured immediately after the meal is an inappropriate attribute. Is displayed.
 体組成表示部15は、体組成計データD3に基づいて、体組成値(皮下脂肪率および骨格筋率など、図示の例は皮下脂肪率)を、その測定した測定時刻の位置に表示する。また、体組成値と共に、判定した属性も表示する。図示の例では、起床後に測定している体組成値に適切属性であることを示す「○」を表示し、激しい運動直後に測定している体組成値に不適切属性であることを示す「×」を表示している。 The body composition display unit 15 displays the body composition values (subcutaneous fat rate and skeletal muscle rate, such as the subcutaneous fat rate in the illustrated example) at the position of the measured measurement time based on the body composition meter data D3. The determined attribute is also displayed together with the body composition value. In the example shown in the figure, “◯” indicating that the body composition value measured after getting up is an appropriate attribute is displayed, and the body composition value measured immediately after intense exercise is an inappropriate attribute “ “×” is displayed.
 血圧表示部16は、血圧計データD4に基づいて、血圧値を、その測定した測定時刻の位置に表示する。また、血圧値と共に、判定した属性も表示する。図示の例では、起床後に測定している血圧値に適切属性であることを示す「○」を表示し、診療中に測定している血圧値に白衣高血圧属性であることを示す「(白)」を表示している。他にも、不適切属性であれば「×」を表示し、仮面高血圧属性であれば「(仮)」を表示するなど、判定した属性に応じて適宜の表示を行う。 The blood pressure display unit 16 displays the blood pressure value at the position of the measured measurement time based on the sphygmomanometer data D4. The determined attribute is also displayed together with the blood pressure value. In the example shown in the figure, `` ○ '' indicating that the blood pressure value measured after getting up is an appropriate attribute is displayed, and the blood pressure value measured during medical treatment is indicated as a white coat hypertension attribute `` (white) Is displayed. In addition, “x” is displayed for inappropriate attributes, “(temporary)” is displayed for masked hypertension attributes, and other appropriate display is performed according to the determined attribute.
 図6は、各生体情報測定装置Hに表示する体動情報入力画面の説明図である。 
 図6(A)は、血糖計160の表示部163に表示する体動情報入力画面20aを示す。 
 体動情報入力画面20aは、体動入力モード表示部29、測定時刻表示部23、および測定日表示部24が設けられている。
FIG. 6 is an explanatory diagram of a body motion information input screen displayed on each biological information measuring device H.
FIG. 6A shows a body motion information input screen 20 a displayed on the display unit 163 of the blood glucose meter 160.
The body motion information input screen 20a includes a body motion input mode display unit 29, a measurement time display unit 23, and a measurement date display unit 24.
 体動入力モード表示部29は、体動入力モードであることを表示する。これにより、利用者は、体動検出装置110を接続して体動情報を入力することができる。なお、体動入力を行うか否かの確認画面を表示し、入力すると選択された場合にこの体動情報入力画面20aを表示する構成としてもよい。 The body motion input mode display unit 29 displays that the body motion input mode is set. Thereby, the user can connect the body motion detection device 110 and input body motion information. In addition, it is good also as a structure which displays the confirmation screen whether a body motion input is performed, and displays this body motion information input screen 20a, when it selects when it inputs.
 測定時刻表示部23は、測定時刻を表示する部位であり、通常は現在時刻を表示している。過去の情報を表示するような場合に、その情報の測定時刻を表示する。 The measurement time display unit 23 is a part that displays the measurement time, and normally displays the current time. When displaying past information, the measurement time of the information is displayed.
 測定日表示部24は、測定日を表示する部位であり、通常は現在の日付を表示している。過去の情報を表示するような場合に、その情報の測定日を表示する。 The measurement date display unit 24 is a part that displays the measurement date, and normally displays the current date. When displaying past information, the measurement date of the information is displayed.
 図6(B)は、体組成計270の表示部276に表示する体動情報入力画面30aを示す。 
 体動情報入力画面30aは、体動入力モード表示部39が設けられている。
FIG. 6B shows a body motion information input screen 30 a displayed on the display unit 276 of the body composition meter 270.
The body motion information input screen 30a is provided with a body motion input mode display unit 39.
 体動入力モード表示部39は、体動入力モードであることを表示する。これにより、利用者は、体動検出装置110を接続して体動情報を入力することができる。なお、体動入力を行うか否かの確認画面を表示し、入力すると選択された場合にこの体動情報入力画面30aを表示する構成としてもよい。 The body motion input mode display unit 39 displays that the body motion input mode is set. Thereby, the user can connect the body motion detection device 110 and input body motion information. In addition, it is good also as a structure which displays the confirmation screen of whether to perform body movement input, and displays this body movement information input screen 30a, when it selects when it inputs.
 図6(C)は、血圧計240の表示部251に表示する体動情報入力画面40aを示す。 
 体動情報入力画面40aは、体動入力モード表示部49、測定日表示部45、および測定時刻表示部46が設けられている。
FIG. 6C shows a body motion information input screen 40 a displayed on the display unit 251 of the sphygmomanometer 240.
The body motion information input screen 40a is provided with a body motion input mode display section 49, a measurement date display section 45, and a measurement time display section 46.
 体動入力モード表示部49は、体動入力モードであることを表示する。これにより、利用者は、体動検出装置110を接続して体動情報を入力することができる。なお、体動入力を行うか否かの確認画面を表示し、入力すると選択された場合にこの体動情報入力画面40aを表示する構成としてもよい。 The body movement input mode display unit 49 displays that the body movement input mode is set. Thereby, the user can connect the body motion detection device 110 and input body motion information. In addition, it is good also as a structure which displays the confirmation screen of whether to perform body movement input, and displays this body movement information input screen 40a, when it selects when it inputs.
 測定日表示部45は、測定日を表示する部位であり、通常は現在の日付を表示している。過去の情報を表示するような場合に、その情報の測定日を表示する。 The measurement date display unit 45 is a part that displays the measurement date, and normally displays the current date. When displaying past information, the measurement date of the information is displayed.
 測定時刻表示部46は、測定時刻を表示する部位であり、通常は現在時刻を表示している。過去の情報を表示するような場合に、その情報の測定時刻を表示する。 The measurement time display unit 46 is a part that displays the measurement time, and normally displays the current time. When displaying past information, the measurement time of the information is displayed.
 図7は、各生体情報測定装置Hに表示する測定結果表示画面の説明図である。 
 図7(A1)および図7(A2)は、血糖計160の表示部163に表示する血糖測定結果表示画面20bを示す。 
 血糖測定結果表示画面20bは、属性表示部21、血糖値表示部22、測定時刻表示部23、および測定日表示部24が設けられている。
FIG. 7 is an explanatory diagram of a measurement result display screen displayed on each biological information measuring device H.
7A1 and 7A2 show a blood glucose measurement result display screen 20b displayed on the display unit 163 of the blood glucose meter 160. FIG.
The blood glucose measurement result display screen 20b includes an attribute display unit 21, a blood glucose level display unit 22, a measurement time display unit 23, and a measurement date display unit 24.
 属性表示部21は、体動検出装置110から体動検出装置データD1を取得している場合に、血糖値表示部22に表示している血糖値が図7(A1)に示す「適切」属性か図7(A2)に示す「不適切」属性かを示す。体動検出装置データD1を取得していない場合、属性表示部21には、属性を表示しないか、あるいは属性判定をしていないことを示す「未評価」などの表示をするとよい。 When the attribute display unit 21 acquires the body motion detection device data D1 from the body motion detection device 110, the blood glucose level displayed on the blood glucose level display unit 22 is the “appropriate” attribute shown in FIG. 7 (A1). Or “inappropriate” attribute shown in FIG. When the body movement detection device data D1 is not acquired, the attribute display unit 21 may display “not evaluated” or the like indicating that no attribute is displayed or attribute determination is not performed.
 図7(B1)および図7(B2)は、体組成計270の表示部276に表示する体組成測定結果表示画面30bを示す。 
 体組成測定結果表示画面30bは、属性表示部31、体重表示部32、皮下脂肪率表示部33、および骨格筋率表示部34が設けられている。
FIG. 7 (B1) and FIG. 7 (B2) show a body composition measurement result display screen 30b displayed on the display unit 276 of the body composition meter 270.
The body composition measurement result display screen 30b includes an attribute display unit 31, a weight display unit 32, a subcutaneous fat rate display unit 33, and a skeletal muscle rate display unit 34.
 属性表示部31は、体動検出装置110から体動検出装置データD1を取得している場合に、皮下脂肪率表示部33、および骨格筋率表示部34が図7(B1)に示す「適切」属性か図7(B2)に示す「不適切」属性かを示す。体動検出装置データD1を取得していない場合、属性表示部31には、属性を表示しないか、あるいは属性判定をしていないことを示す「未評価」などの表示をするとよい。 When the body motion detection device data D1 is acquired from the body motion detection device 110, the attribute display unit 31 displays “appropriate” as the subcutaneous fat rate display unit 33 and the skeletal muscle rate display unit 34 show in FIG. "Attribute or" inappropriate "attribute shown in FIG. 7 (B2). When the body movement detection device data D1 is not acquired, the attribute display unit 31 may display “not evaluated” or the like indicating that no attribute is displayed or attribute determination is not performed.
 図7(C1)および図7(C2)は、血圧計240の表示部251に表示する血圧測定結果表示画面40bを示す。 
 血圧測定結果表示画面40bは、属性表示部41、最高血圧値表示部42、最低血圧値表示部43、脈拍数表示部44、測定日表示部45、および測定時刻表示部46が設けられている。
FIG. 7 (C1) and FIG. 7 (C2) show a blood pressure measurement result display screen 40b displayed on the display unit 251 of the sphygmomanometer 240.
The blood pressure measurement result display screen 40b includes an attribute display unit 41, a systolic blood pressure value display unit 42, a diastolic blood pressure value display unit 43, a pulse rate display unit 44, a measurement date display unit 45, and a measurement time display unit 46. .
 属性表示部41は、体動検出装置110から体動検出装置データD1を取得している場合に、最高血圧値表示部42および最低血圧値表示部43に表示している血圧値(最高血圧値および最低血圧値)が図7(C1)に示す「適切」属性か図7(C2)に示す「不適切」属性か、あるいは「白衣高血圧」属性や「仮面高血圧属性」かを示す。体動検出装置データD1を取得していない場合、属性表示部41には、属性を表示しないか、あるいは属性判定をしていないことを示す「未評価」などの表示をするとよい。 The attribute display unit 41, when acquiring the body motion detection device data D1 from the body motion detection device 110, displays the blood pressure value (maximum blood pressure value) displayed on the systolic blood pressure value display unit 42 and the diastolic blood pressure value display unit 43. And (minimum blood pressure value) is “appropriate” attribute shown in FIG. 7 (C1), “inappropriate” attribute shown in FIG. 7 (C2), “white coat hypertension” attribute or “masked hypertension attribute”. When the body movement detection device data D1 is not acquired, the attribute display unit 41 may display “not evaluated” or the like indicating that no attribute is displayed or attribute determination is not performed.
 図8は、体動検出装置110の演算部114と、生体情報測定装置Hの制御部(161,250,279)が実行する動作のフローチャートである。 
 体動検出装置110は、記憶部116から体動検出データを読み取り(ステップS1)、必要に応じて送信用体動データに加工する(ステップS2)。この送信用体動データは、例えば、所定時間(30分単位や1時間単位など)で区切ってその所定時間内の歩数をカウントし、時間とその時間内の歩数とで構成した時間別歩数データ、所定強度以上の体動を伴う活動の開始時刻と終了時刻、あるいは体動強度とその時刻など、適宜のデータとすることができる。
FIG. 8 is a flowchart of operations executed by the calculation unit 114 of the body motion detection device 110 and the control units (161, 250, 279) of the biological information measurement device H.
The body motion detection device 110 reads the body motion detection data from the storage unit 116 (step S1), and processes it into transmission body motion data as necessary (step S2). The body movement data for transmission is, for example, divided by a predetermined time (30 minute unit, 1 hour unit, etc.), counted the number of steps within the predetermined time, and stepped data by time composed of the time and the number of steps within the time. Appropriate data such as the start time and end time of an activity accompanied by body movement of a predetermined intensity or more, or the body movement intensity and the time thereof can be used.
 この送信用体動データは、これからデータ送信する相手となる生体情報測定装置Hに対応した送信用体動データとすることが好ましい。このため、事前にどの種別の生体情報測定装置Hに送信するのかを利用者に選択させるか、あるいは生体情報測定装置Hと接続させて該接続時に通信して種別を判定しておくことが好ましい。 It is preferable that the body movement data for transmission is the body movement data for transmission corresponding to the biological information measuring device H that is a partner to transmit data from now on. For this reason, it is preferable to let the user select which type of biological information measuring device H to transmit in advance, or connect to the biological information measuring device H and communicate at the time of connection to determine the type. .
 具体的には、送信対象の生体情報測定装置Hが血糖計160であれば、食事をしていたと考えられる時間を判別して食事開始時刻と食事終了時刻を送信用体動データとすることが好ましい。 Specifically, if the biological information measuring device H to be transmitted is the blood glucose meter 160, it is possible to determine the time when the meal is considered to have been eaten and to set the meal start time and the meal end time as body movement data for transmission. preferable.
 また、送信対象の生体情報測定装置Hが体組成計270であれば、汗をかくほどの強度の体動を開始した時刻から終了した時刻を送信用体動データとすることが好ましい。 Further, if the biological information measuring device H to be transmitted is the body composition meter 270, it is preferable that the time from the time when the body motion with the intensity of sweating is started to be the body motion data for transmission.
 また、送信対象の生体情報測定装置Hが血圧計240であれば、血圧に変化をきたす程度の体動を開始した時刻から終了した時刻を送信用体動データとすることが好ましい。 Further, if the biological information measuring device H to be transmitted is the sphygmomanometer 240, it is preferable that the time from the start of the body motion that causes a change in blood pressure to be the body motion data for transmission.
 体動検出装置110は、作成した送信用体動データを現在時刻とともに生体情報測定装置Hへ送信する(ステップS3)。 The body motion detecting device 110 transmits the created body motion data for transmission to the biological information measuring device H together with the current time (step S3).
 生体情報測定装置Hは、体動情報入力画面(20a,30a,40a)を表示して送信用体動データおよび現在時刻を受信し(ステップS4)、生体情報測定装置Hの把握している現在時刻と一致しているか否か判定する(ステップS5)。 The biological information measuring apparatus H displays the body movement information input screen (20a, 30a, 40a) and receives the body movement data for transmission and the current time (step S4), and the biological information measuring apparatus H now knows It is determined whether or not the time coincides (step S5).
 一致していれば(ステップS5:Yes)、両者の時間軸が一致していると考えられるため、相対的な時間調整を行わずにステップS7へ処理を進める。 If they match (step S5: Yes), it is considered that the time axes of both match, so the process proceeds to step S7 without performing relative time adjustment.
 一致していなければ(ステップS5:No)、生体情報測定装置Hは、受信した体動検出装置110の現在時刻と自己の把握する現在時刻との時間差分だけ、どちらかのデータの測定時刻をずらして時間軸を一致させる(ステップS6)。 If they do not coincide with each other (step S5: No), the biological information measuring device H sets the measurement time of either data by the time difference between the received current time of the body motion detection device 110 and the current time recognized by itself. The time axis is shifted to match (step S6).
 例えば、生体情報測定装置Hの測定した生体情報(血糖値、体組成値、血圧値)の測定時刻を上記時間差分だけ早めるあるいは遅らせる、あるいは、体動検出装置110の送信用体動データに含まれている時刻データを上記時間差分だけ早めるあるいは遅らせる、といったように調整する。 For example, the measurement time of the biological information (blood glucose level, body composition value, blood pressure value) measured by the biological information measuring device H is advanced or delayed by the time difference, or included in the body motion data for transmission of the body motion detection device 110. The current time data is adjusted so as to be advanced or delayed by the time difference.
 生体情報測定装置Hは、自己の記憶部(165、253、273)から生体情報と属性判定用情報を読み取る(ステップS7)。 The biological information measuring device H reads the biological information and attribute determination information from its own storage unit (165, 253, 273) (step S7).
 生体情報測定装置Hは、取得した属性判定用情報と、前記送信用体動データとに基づいて、生体情報の属性を判定する(ステップS8)。この属性の判定は、図4に示した各種データの属性判定用情報に示すとおり、生体情報測定装置Hの種類によって基準が異なっている。従って、各生体情報測定装置Hは、自己の属性判定用情報に登録されている基準に従って、自己の測定した生体情報の属性を判定する。 The biological information measuring device H determines the attribute of the biological information based on the acquired attribute determination information and the transmission body motion data (step S8). This attribute determination has different standards depending on the type of the biological information measuring device H, as shown in the attribute determination information of various data shown in FIG. Therefore, each biological information measuring device H determines the attribute of the biological information measured by itself in accordance with the reference registered in the attribute determination information of itself.
 生体情報測定装置Hは、判定した属性と共に生体情報を出力し(ステップS9)、処理を終了する。この生体情報と属性の出力は、表示部(163,251,276)に表示する測定結果表示画面(20,30,40)に表示することで実行するとよい。 The biological information measuring device H outputs the biological information together with the determined attribute (step S9), and ends the process. The biometric information and attribute output may be executed by displaying them on the measurement result display screen (20, 30, 40) displayed on the display unit (163, 251, 276).
 図9は、生体情報測定システム1の主にサーバ150が実行する動作を示すフローチャートである。この動作では、サーバ150が各生体情報測定装置Hから取得した生体情報の属性を判定する。 FIG. 9 is a flowchart showing operations performed mainly by the server 150 of the biological information measurement system 1. In this operation, the server 150 determines the attribute of the biological information acquired from each biological information measuring device H.
 まず、体動検出装置110や各生体情報測定装置Hは、図4に示した検出情報、識別情報、機器種別情報を読み出し(ステップS11)、現在時刻と共にサーバ150へデータ送信する(ステップS12)。ここで、検出情報は、体動検出装置110であれば体動情報、各生体情報測定装置Hであれば生体情報である。 First, the body motion detection device 110 and each biological information measurement device H read the detection information, identification information, and device type information shown in FIG. 4 (step S11), and transmit data to the server 150 together with the current time (step S12). . Here, the detection information is body movement information in the case of the body movement detection device 110 and biological information in the case of each biological information measurement device H.
 体動検出装置110や各生体情報測定装置Hがこのデータ送信を行うタイミングは、適宜のタイミングで実行すればよく、それぞれの装置でバラバラに実行すればよい。 The timing at which the body movement detecting device 110 and each biological information measuring device H transmit this data may be executed at an appropriate timing, and may be executed separately by each device.
 サーバ150は、体動検出装置110や各生体情報測定装置Hから各種データを受信すると(ステップS13)、そのデータに含まれている機器種別情報から処理対象機器を特定する(ステップS14)。この処理により、処理対象機器が、体動検出装置110、血糖計160、血圧計240、または体組成計270のどれであるかを特定する。 When the server 150 receives various data from the body movement detection device 110 and each biological information measurement device H (step S13), the server 150 identifies a processing target device from the device type information included in the data (step S14). By this processing, it is specified which of the body motion detection device 110, the blood glucose meter 160, the sphygmomanometer 240, or the body composition meter 270 is the processing target device.
 サーバ150は、ステップS13で受信したデータに含まれている現在時刻が、自身の測定している現在時刻と一致するか判定する(ステップS15)。 The server 150 determines whether or not the current time included in the data received in step S13 matches the current time measured by itself (step S15).
 一致していなければ(ステップS15:No)、受信したデータに含まれている測定時刻がサーバ150の時間軸に一致するように調整する(ステップS16)。この調整は、処理対象機器の現在時刻とサーバ150の現在時刻との時間差分だけ、処理対象機器の測定時刻をずらす(早めるか遅らせる)ことによって実行する。なお、この説明ではサーバ150の時間を基準としているが、例えば体動検出装置110の時間を基準とするように、体動検出装置110の時間に合わせてサーバ150の時間を調整する構成にしてもよい。 If they do not match (step S15: No), the measurement time included in the received data is adjusted to match the time axis of the server 150 (step S16). This adjustment is executed by shifting (advancing or delaying) the measurement time of the processing target device by the time difference between the current time of the processing target device and the current time of the server 150. In this description, the time of the server 150 is used as a reference. However, for example, the time of the server 150 is adjusted in accordance with the time of the body motion detection device 110 so that the time of the body motion detection device 110 is used as a reference. Also good.
 サーバ150は、必要に応じて検出情報を加工する(ステップS17)。具体的には、処理対象機器が体動検出装置110である場合に、検出情報である体動情報の加速度を加工する。この加工は、各生体情報測定装置Hの生体情報の属性を判定するために適したデータに加工するものであり、上述したステップS2に送信用体動データとして説明したデータに加工する。 The server 150 processes the detection information as necessary (step S17). Specifically, when the processing target device is the body motion detection device 110, the acceleration of the body motion information that is detection information is processed. This processing is processed into data suitable for determining the attribute of the biological information of each biological information measuring device H, and is processed into the data described as the body motion data for transmission in step S2 described above.
 サーバ150は、処理対象機器が生体情報測定装置Hであれば、生体情報と属性判定用情報を読み出し(ステップS18)、生体情報の属性を判定し(ステップS19)、生体情報と属性を表示部153に分析表示画面10として表示する(ステップS20)。このステップS18~S20は、上述したステップS7~S9と同一であるので、その詳細な説明を省略する。 If the device to be processed is the biological information measuring device H, the server 150 reads the biological information and attribute determination information (step S18), determines the attributes of the biological information (step S19), and displays the biological information and attributes. The analysis display screen 10 is displayed at 153 (step S20). Since steps S18 to S20 are the same as steps S7 to S9 described above, detailed description thereof is omitted.
 サーバ150は、未処理の機器(体動検出装置110または生体情報測定装置H)のデータがあれば(ステップS21:Yes)、ステップS14へ処理を戻して繰り返し、未処理の機器のデータが無ければ(ステップS21:No)、処理を終了する。 If there is data on an unprocessed device (body motion detection device 110 or biological information measurement device H) (step S21: Yes), the server 150 returns to step S14 and repeats the process, and there is no data on an unprocessed device. If (step S21: No), the process is terminated.
 以上の構成および動作により、生体情報測定装置Hとしての血糖計160、体組成計270、および血圧計240で測定した生体情報(血糖値、体組成値、血圧値)がどのような属性に該当するものかを、別の装置である体動検出装置110の体動情報に基づいて判定することができる。従って、単体の血糖計160、体組成計270、および血圧計240では測定した生体情報が適切なものか不適切なものかといった属性を判定できなかったが、これを体動検出装置110の利用により可能とすることができる。 With the above configuration and operation, the biological information (blood glucose level, body composition value, blood pressure value) measured by the blood glucose meter 160, the body composition meter 270, and the sphygmomanometer 240 as the biological information measuring device H corresponds to any attribute. It can be determined based on the body motion information of the body motion detection device 110 which is another device. Therefore, the single blood glucose meter 160, the body composition meter 270, and the blood pressure meter 240 cannot determine the attribute of whether the measured biological information is appropriate or inappropriate. Can be made possible.
 また、生体情報(血糖値、体組成値、血圧値)の測定前の所定時間の体動情報によって属性を判定するため、運動直後に測定した生体情報であるから不適切の属性であると判定する、あるいは起床後に測定した血圧が他の時刻に測定した血圧より所定圧以上高いために早朝高血圧の属性であると判定するなど、種々の判定を行うことができる。 In addition, since the attribute is determined based on body movement information for a predetermined time before measurement of biological information (blood glucose level, body composition value, blood pressure value), it is determined that the attribute is inappropriate because the biological information is measured immediately after exercise. Various determinations can be made, such as determining that the blood pressure measured after waking up is an attribute of early morning hypertension because the blood pressure measured at other times is higher than a predetermined pressure.
 また、血糖計160と体組成計270と血圧計240とで、属性判定するための基準である属性判定用情報が異なっていることにより、各装置に応じた適切な属性判定を行うことができる。 In addition, since the blood glucose meter 160, the body composition meter 270, and the sphygmomanometer 240 have different attribute determination information that is a reference for attribute determination, appropriate attribute determination according to each device can be performed. .
 また、体動検出装置110と、各生体情報測定装置Hとの時間軸を一致させて属性判定を行うため、精度よく属性判定を行うことができる。 In addition, since the attribute determination is performed by matching the time axes of the body motion detection device 110 and each biological information measurement device H, the attribute determination can be performed with high accuracy.
 また、属性判定では、各生体情報測定装置Hにて測定した生体情報がそれぞれ適切か不適切かを判定するため、不適切な状況で測定された生体情報を医師等による疾患リスク等の判断要素から除外することができる。 Further, in the attribute determination, in order to determine whether the biological information measured by each biological information measuring device H is appropriate or inappropriate, the biological information measured in an inappropriate situation is used as a determination factor such as a disease risk by a doctor or the like. Can be excluded.
 また、各生体情報測定装置Hに記憶しておいた生体情報と、体動検出装置110で検出しておいた体動情報とに基づいて、事後的に属性を判定することができる。これにより、測定後に日数が経って運動直後など不適切な状況で測定したことを忘れていても、自動判別によって不適切属性であると判別することが可能である。また、医師等が確認する場合に、患者の記憶に頼ることなく、蓄積されたデータによって属性を自動判定できるため、間違いのない適切な診断を行うことができる。 Further, the attribute can be determined afterwards based on the biological information stored in each biological information measuring device H and the body motion information detected by the body motion detecting device 110. Thereby, even if it is forgotten that the measurement has been performed in an inappropriate situation such as immediately after exercise after a number of days has elapsed after the measurement, it is possible to determine that the attribute is inappropriate by automatic determination. In addition, when a doctor or the like confirms, the attribute can be automatically determined based on the accumulated data without depending on the memory of the patient, so that an appropriate diagnosis without error can be performed.
 また、血圧計270で測定した血圧について、体動検出装置110で取得した測定場所の情報から家庭血圧属性と診療室血圧属性とを判定できるため、仮面高血圧や白衣高血圧を判定することが可能となる。 Moreover, since the home blood pressure attribute and the clinic blood pressure attribute can be determined from the information on the measurement location acquired by the body motion detection device 110 for the blood pressure measured by the sphygmomanometer 270, it is possible to determine masked hypertension and white coat hypertension. Become.
 また、血圧計270で測定した血圧について、体動検出装置110で取得した体動情報から起床時の血圧か否か判定できるため、早朝高血圧の属性も判定することができる。このように、疾患リスクを自動的に判定することができる。 In addition, since the blood pressure measured by the sphygmomanometer 270 can be determined based on the body motion information acquired by the body motion detection device 110, it is possible to determine the attribute of early morning hypertension. In this way, the disease risk can be automatically determined.
 また、判定した属性を分析表示画面10、血糖測定結果表示画面20b、体組成測定結果表示画面30b、または血圧測定結果表示画面40bに表示するため、測定を行った利用者が自分で属性を知ることや、医師等が診察時に画面を見て確認することができる。 Moreover, since the determined attribute is displayed on the analysis display screen 10, the blood glucose measurement result display screen 20b, the body composition measurement result display screen 30b, or the blood pressure measurement result display screen 40b, the user who performed the measurement knows the attribute himself / herself. In addition, a doctor or the like can check the screen at the time of examination.
 次に、生体情報取得装置の一種である体動検出装置(例えば歩数計)について、血糖計に対して測定に適切な時間帯をアドバイスする実施例2について説明する。 
 この発明は、生体に関する生体情報を取得する生体情報取得手段と、変化する前記生体の状況に関する生体状況情報を取得する生体状況情報取得手段と、前記生体情報取得手段により取得する生体情報を前記生体状況情報に基づいて処理する状況別処理手段と、該状況別処理手段で処理した出力情報を出力する出力手段とを備えた生体情報取得装置と捕らえることができる。 
Next, a description will be given of a second embodiment that advises a blood glucose meter of an appropriate time zone for a body motion detection device (for example, a pedometer) which is a kind of biological information acquisition device.
The present invention provides biological information acquisition means for acquiring biological information relating to a living body, biological state information acquisition means for acquiring biological state information relating to a changing state of the biological body, and biological information acquired by the biological information acquisition means. The present invention can be understood as a biological information acquisition apparatus including a situation-specific processing unit that processes based on the situation information and an output unit that outputs output information processed by the situation-specific processing unit.
 従来、利用者の血糖値を測定する血糖計が提供されている。この血糖計により測定する血糖値は、利用者の状況によって変化することが知られている。詳述すると、食後は血糖値が平常時よりも高くなる。このため、測定する利用者の状況が、食後からあまり時間の経っていない状況であれば、血糖値が平常時よりも高くあらわれてしまうことが知られている。 Conventionally, a blood glucose meter for measuring a user's blood glucose level has been provided. It is known that the blood glucose level measured by this blood glucose meter changes depending on the situation of the user. More specifically, after meals, blood glucose levels are higher than normal. For this reason, it is known that the blood glucose level appears higher than normal if the user's situation to measure is a situation in which not much time has passed since meals.
 しかし、従来の血糖計は、どのような状況で血糖値が測定されたかを判別することができなかった。このため、利用者自身が食後であることを申告すれば時間を空けて測定することができるが、自己申告しない場合や家庭で図る場合などに、食後に測定して正しくない血糖値を確認するという可能性があった。 However, the conventional blood glucose meter could not discriminate under what circumstances the blood glucose level was measured. For this reason, if the user declares that he / she is after a meal, he / she can take time to measure it, but if he / she does not self-report or plans at home, he / she can measure it after meals to check for an incorrect blood sugar level. There was a possibility.
 一方、体動検出装置は、利用者の歩数のカウントや消費カロリーの計算等に用いられ、他の用途には用いられていなかった。 On the other hand, the body movement detection device is used for counting the number of steps of a user, calculating calorie consumption, etc., and has not been used for other purposes.
 これに対し、実施例2の体動検出装置は、利用者の食事から一定時間が経過したか否かを血糖計に通知することができ、これを受信した血糖計が測定に適さないタイミングで血糖値を測定することを防止することを目的としている。 On the other hand, the body movement detection device of the second embodiment can notify the blood glucose meter whether or not a certain time has elapsed since the user's meal, and the blood glucose meter that has received the notification is not suitable for measurement. The purpose is to prevent blood glucose levels from being measured.
 図10は、体動検出装置110と電動歯ブラシ130とサーバ150と血糖計160とで構成される生体情報取得システム100の外観構成図を示し、図11は生体情報取得システム100のブロック図を示す。 FIG. 10 is an external configuration diagram of the biological information acquisition system 100 including the body motion detection device 110, the electric toothbrush 130, the server 150, and the blood glucose meter 160, and FIG. 11 is a block diagram of the biological information acquisition system 100. .
 この生体情報取得システム100は、図10に示すように体動検出装置110および電動歯ブラシ130の情報をサーバ150が取得し、この情報を用いて該サーバ150が演算した情報を血糖計160に送信する構成となっている。 In this biological information acquisition system 100, as shown in FIG. 10, the server 150 acquires information on the body movement detection device 110 and the electric toothbrush 130, and transmits information calculated by the server 150 to the blood glucose meter 160 using this information. It is the composition to do.
 図11に示すように、体動検出装置110は、各種構成要素を有しているが、図2(C)に示したものと同一であるため、同一要素に同一符号を付してその詳細な説明を省略する。 As shown in FIG. 11, the body motion detection device 110 has various components, but is the same as that shown in FIG. 2 (C). The detailed explanation is omitted.
 電動歯ブラシ130は、制御部131、操作部132、振動部133、および通信部134を有している。 
 制御部131は、CPUとROMとRAMにより構成されており、ROM等に記憶されているプログラムに従って各部の制御動作を実行する。具体的には、操作部132のON/OFF操作に従って振動部133の駆動開始/停止を行い、この駆動開始時間と停止時間を通信部134によりサーバ150へ送信する。
The electric toothbrush 130 includes a control unit 131, an operation unit 132, a vibration unit 133, and a communication unit 134.
The control unit 131 includes a CPU, a ROM, and a RAM, and executes a control operation of each unit according to a program stored in the ROM or the like. Specifically, the drive of the vibration unit 133 is started / stopped according to the ON / OFF operation of the operation unit 132, and the drive start time and stop time are transmitted to the server 150 by the communication unit 134.
 操作部132は、電源のON/OFFや速度切替等を入力受付するための押下ボタンで構成され、押下されると押下信号を制御部131に送る。 
 振動部133は、振動用モータで構成されており、制御部131のON/OFF信号に従って回転/停止を行う。 
 通信部134は、有線接続するUSB(Universal Serial Bus)や無線通信するBluetooth(登録商標)やLAN(Local Area Network)など、適宜の通信インターフェースで構成され、制御部131の制御に従って振動部133の駆動開始時間と駆動停止時間をサーバ150へ送信する。
The operation unit 132 includes a push button for receiving input of power ON / OFF, speed switching, and the like, and sends a push signal to the control unit 131 when pressed.
The vibration unit 133 includes a vibration motor, and rotates / stops according to an ON / OFF signal from the control unit 131.
The communication unit 134 includes an appropriate communication interface such as a USB (Universal Serial Bus) for wired connection, Bluetooth (registered trademark) for wireless communication, or a LAN (Local Area Network), and the vibration unit 133 is controlled by the control unit 131. The drive start time and drive stop time are transmitted to the server 150.
 サーバ150は、実施例1にて図2(A)と共に説明したものと同一であるため、同一要素に同一符号を付してその詳細な説明を省略する。 Since the server 150 is the same as that described with reference to FIG. 2A in the first embodiment, the same reference numerals are given to the same elements, and detailed description thereof is omitted.
 なお、この実施例の制御部151は、体動検出装置110から受信する体動検出データと電動歯ブラシ130から受信する電動歯ブラシ使用時間データとから食事完了後を中心とする一定時間である血糖測定禁止時間帯を推定し、この血糖測定禁止時間帯を血糖計160へ送信する。 In addition, the control part 151 of this Example measures the blood glucose which is a fixed time centering on after meal completion from the body movement detection data received from the body movement detection apparatus 110 and the electric toothbrush usage time data received from the electric toothbrush 130. The prohibited time zone is estimated, and this blood glucose measurement prohibited time zone is transmitted to the blood glucose meter 160.
 また、この実施例の記憶部154には、体動検出装置110で測定された体動検出データ(加速度データ、歩数データ、活動量データ、またはこれらの複数)、および電動歯ブラシ130が使用された電動歯ブラシ使用時間データが記憶されている。 
 また、この実施例の通信部155は、体動検出装置110および電動歯ブラシ130からデータを受信し、血糖計160へデータを送信する。
In addition, body motion detection data (acceleration data, step count data, activity amount data, or a plurality of these) measured by the body motion detection device 110 and the electric toothbrush 130 were used for the storage unit 154 of this example. Electric toothbrush usage time data is stored.
In addition, the communication unit 155 of this embodiment receives data from the body motion detection device 110 and the electric toothbrush 130 and transmits the data to the blood glucose meter 160.
 血糖計160は、実施例1にて図2(B)と共に説明したものと同一であるため、同一要素に同一符号を付してその詳細な説明を省略する。 
 なお、この実施例の通信部165は、サーバ150から受信した体動検出データや電動歯ブラシ使用時間データといったデータを制御部161に送る。
Since the blood glucose meter 160 is the same as that described in conjunction with FIG. 2B in the first embodiment, the same reference numerals are given to the same elements, and detailed descriptions thereof are omitted.
Note that the communication unit 165 of this embodiment sends data such as body movement detection data and electric toothbrush usage time data received from the server 150 to the control unit 161.
 図12は、サーバ150が体動検出装置110および電動歯ブラシ130から体動検出データおよび電動歯ブラシ使用時間データを取得し、血糖値測定を禁止する時間帯を算出して血糖計160に送信する処理のフローチャートである。 FIG. 12 shows a process in which the server 150 acquires body motion detection data and electric toothbrush usage time data from the body motion detection device 110 and the electric toothbrush 130, calculates a time zone in which blood glucose level measurement is prohibited, and transmits it to the blood glucose meter 160. It is a flowchart of.
 サーバ150の制御部151は、体動検出装置110から体動検出データ(歩数計データ)を取得する(ステップS101)。この体動検出データは、体動検出装置110が加速度検知部112で取得した加速度データそのものとする、あるいはこの加速度データから求めた歩数と時間とするなど、適宜のデータとすることができる。 The control unit 151 of the server 150 acquires body motion detection data (pedometer data) from the body motion detection device 110 (step S101). The body motion detection data may be appropriate data such as the acceleration data itself acquired by the body motion detection device 110 with the acceleration detection unit 112, or the number of steps and time obtained from the acceleration data.
 制御部151は、取得した体動検出データを集計する(ステップS102)。この集計では、例えば10分単位や30分単位といった任意の時間単位で体動検出データを区切り、この時間単位内の歩数をカウントする。 The control unit 151 adds up the acquired body movement detection data (step S102). In this tabulation, body motion detection data is divided into arbitrary time units such as 10-minute units or 30-minute units, and the number of steps in this time unit is counted.
 制御部151は、上記時間単位内の歩数が設定値K未満でなければ(ステップS103:No)、ステップS102に処理を戻して次の時間単位の集計を実行する。なお、ここでの判定は、時間単位内の活動量が設定値K未満か否かの判定としてもよい。どちらの判定でも、利用者が体動検出装置110を使用していたか否かを判定することが可能になる。 If the number of steps in the time unit is not less than the set value K (step S103: No), the control unit 151 returns to the process in step S102 and executes the next time unit. The determination here may be determination as to whether or not the amount of activity within the time unit is less than the set value K. In either determination, it is possible to determine whether or not the user has used the body motion detection device 110.
 時間単位内の歩数が設定値K未満であれば(ステップS103:Yes)、制御部151は、設定回数(N回)以上連続しているか判定する(ステップS104)。この判定では、例えば設定値K未満の歩数しかなかった時間単位が所定回数以上連続していれば、その時間帯で体動検出装置110を不使用であったと判定できる。 If the number of steps in the time unit is less than the set value K (step S103: Yes), the control unit 151 determines whether or not the set number of times (N times) continues (step S104). In this determination, for example, if the time unit having only the number of steps less than the set value K continues for a predetermined number of times or more, it can be determined that the body motion detection device 110 is not used in that time zone.
 設定回数以上連続していれば(ステップS104:Yes)、制御部151は、体動検出装置不使用時間帯であると算出する(ステップS105)。設定回数以上連続していなければ(ステップS104:No)、制御部151は、体動検出装置使用時間帯であると算出する(ステップS106)。このステップS104の判定により、利用者の生活リズム(生活パターン)を判定することができる。 If it continues more than the set number of times (step S104: Yes), the control part 151 will calculate that it is a body movement detection apparatus non-use time slot | zone (step S105). If it is not continuous more than the set number of times (step S104: No), the control unit 151 calculates that it is the body motion detection device usage time zone (step S106). By the determination in step S104, the user's life rhythm (life pattern) can be determined.
 制御部151は、ステップS102で集計した全ての時間単位について処理が終了するまでステップS102~S106を繰り返す(ステップS107:No)。 The control unit 151 repeats steps S102 to S106 until the processing is completed for all the time units counted in step S102 (step S107: No).
 全データが終了すれば(ステップS107:Yes)、制御部151は、電動歯ブラシ130から電動歯ブラシ使用時間データを取得する(ステップS108)。このとき取得する電動歯ブラシ使用時間データは、電動歯ブラシがONされた時刻とOFFされた時刻とが含まれているとよい。 If all the data is completed (step S107: Yes), the control unit 151 acquires the electric toothbrush usage time data from the electric toothbrush 130 (step S108). The electric toothbrush usage time data acquired at this time may include the time when the electric toothbrush is turned on and the time when it is turned off.
 制御部151は、取得した電動歯ブラシ使用時間データから電動歯ブラシの使用時間帯を算出する(ステップS109)。 The control unit 151 calculates the use time zone of the electric toothbrush from the acquired electric toothbrush use time data (step S109).
 制御部151は、これまでに算出した体動検出装置不使用時間帯および体動検出装置使用時間帯と、電動歯ブラシ使用時間帯とから、血糖測定禁止時間帯を算出する(ステップS110)。 The control unit 151 calculates a blood glucose measurement prohibition time zone from the body motion detection device non-use time zone and the body motion detection device usage time zone calculated so far, and the electric toothbrush usage time zone (step S110).
 詳述すると、図13(A)の説明図に示すように、まず体動検出装置不使用時間帯および体動検出装置使用時間帯とにより、利用者(被験者)が活動していた時間と活動していなかった時間とを区別することができる。 More specifically, as shown in the explanatory diagram of FIG. 13A, first, the time and activity in which the user (subject) was active based on the body motion detection device non-use time zone and the body motion detection device use time zone. It can be distinguished from the time that was not.
 また、電動歯ブラシ使用時間帯により、歯磨きをした時間帯を把握することができる。 In addition, it is possible to grasp the time period during which the toothpaste was brushed by the electric toothbrush usage time period.
 ここで、図13(B)に示すように、体動検出装置110の不使用時間帯(体動検出装置欄の×)で、かつ、電動歯ブラシ130の不使用時間帯(ハブラシ欄の×)に、食事がされた可能性がある。 Here, as shown in FIG. 13 (B), the non-use time zone of the body motion detection device 110 (× in the body motion detection device column) and the non-use time zone of the electric toothbrush 130 (× in the toothbrush column). It is possible that a meal was eaten.
 そして、これらの情報をまとめてみると、電動歯ブラシが使用開始される少し前の時間帯で、かつ、体動検出装置不使用時間帯(活動していなかった時間帯)に、利用者が食事をしていた食事時間帯であると推定することができる。 And when these information is put together, the user eats in the time zone just before the electric toothbrush starts to be used and the body motion detection device non-use time zone (the time zone when it was not active). It can be estimated that it was the meal time zone that was being used.
 この食事時間帯から所定時間後までを、血糖測定禁止時間帯として算出することができる。ここでの所定時間は、食事によって血糖値が上がってから正常値に戻るまでの時間を予め設定しておくとよい。 From this meal time zone to the time after a predetermined time can be calculated as a blood glucose measurement prohibited time zone. As the predetermined time here, it is preferable to set in advance the time from when the blood sugar level rises due to a meal until it returns to the normal value.
 制御部151は、このようにして算出した血糖測定禁止時間帯を血糖計160へ送信し(ステップS111)、処理を終了する。 The control unit 151 transmits the blood glucose measurement prohibition time zone calculated in this way to the blood glucose meter 160 (step S111), and ends the process.
 図14は、血糖計160の制御部161が実行する動作のフローチャートである。 
 制御部161は、通信部165によりサーバ150から血糖測定禁止時間帯データを受信し(ステップS131)、この血糖測定禁止時間帯を表示部163に表示する(ステップS132)。これにより、食後の血糖測定に適していない時間帯を利用者に知らせ、不適切な時間の測定を未然に防止している。
FIG. 14 is a flowchart of the operation executed by the control unit 161 of the blood glucose meter 160.
The control unit 161 receives blood glucose measurement prohibition time zone data from the server 150 through the communication unit 165 (step S131), and displays the blood glucose measurement prohibition time zone on the display unit 163 (step S132). This informs the user of a time zone that is not suitable for blood glucose measurement after a meal, thereby preventing an inappropriate time measurement.
 制御部161は、操作部162による測定操作の入力があるまで待機し(ステップS133:No)、測定操作の入力があると(ステップS133:Yes)、現在時刻が血糖測定禁止時間帯内か否かを判定する(ステップS134)。 The control unit 161 waits until a measurement operation is input by the operation unit 162 (step S133: No). If there is a measurement operation input (step S133: Yes), whether or not the current time is within the blood glucose measurement prohibited time zone. Is determined (step S134).
 血糖測定禁止時間帯でなければ(ステップS134:No)、制御部161は、血糖測定部164による血糖測定を実行し(ステップS135)、測定した血糖値を表示部163に表示(ステップS136)して処理を終了する。このとき、測定した血糖値をサーバ150に送信してもよい。 If it is not the blood glucose measurement prohibition time zone (step S134: No), the control unit 161 performs blood glucose measurement by the blood glucose measurement unit 164 (step S135), and displays the measured blood glucose level on the display unit 163 (step S136). To finish the process. At this time, the measured blood glucose level may be transmitted to the server 150.
 血糖測定禁止時間帯であった場合(ステップS134:Yes)、制御部1616は、表示部163に測定不可である旨を表示し(ステップS137)、処理を終了する。 When it is the blood glucose measurement prohibited time zone (step S134: Yes), the control unit 1616 displays that measurement is impossible on the display unit 163 (step S137), and ends the process.
 この測定不可の表示は、食後時間と推定されるため正常な血糖値が得られない旨、または所定時間後(現在時刻から血糖測定禁止時間帯の終了時刻までの残り時間)に測定可能となる旨など、適宜の表示とすることができる。 This indication that measurement is not possible is possible to measure that a normal blood glucose level cannot be obtained because it is estimated as a post-meal time, or after a predetermined time (the remaining time from the current time to the end time of the blood glucose measurement prohibited time zone). Appropriate indications such as a notice can be made.
 以上に説明したように、生体情報取得手段として血糖値を取得する血糖値取得手段(血糖測定部164)を備えた血糖計160は、生体状況情報取得手段として食事タイミングに基づく測定不適時間帯を取得する測定不適時間帯取得手段(ステップS131で血糖測定禁止時間帯を受信する通信部165)を有し、状況別処理手段(ステップS134~S137を実行する制御部161)は、測定時刻が前記測定不適時間帯に入っていなければ前記血糖値を適切に測定された適切測定血糖値として出力情報(血糖値)とする構成であるから、食後の血糖値が上がっている状態で測定されることを防止することができる。 As described above, the blood glucose meter 160 including the blood glucose level acquisition unit (blood glucose measurement unit 164) that acquires the blood glucose level as the biological information acquisition unit uses the measurement inappropriate time zone based on the meal timing as the biological state information acquisition unit. The measurement inappropriate time zone acquisition means to acquire (the communication unit 165 that receives the blood glucose measurement prohibition time zone in step S131), and the situation-specific processing means (control unit 161 that executes steps S134 to S137) If the blood glucose level is not within the measurement inappropriate time zone, the blood glucose level is set as output information (blood glucose level) as an appropriately measured blood glucose level, so that the blood glucose level after meal should be measured. Can be prevented.
 従って、血糖計160で測定する血糖値の測定精度を向上させることができる。特に、家庭等で利用者自身が測定する場合にも、適正な状態で測定して精度のよい血糖値を取得することを容易に実現できる。 Therefore, the measurement accuracy of the blood glucose level measured by the blood glucose meter 160 can be improved. In particular, even when the user himself / herself makes measurements at home or the like, it is possible to easily obtain an accurate blood glucose level by measuring in an appropriate state.
 また、利用者は、自ら食事時間を管理することや、血糖計160に食事時間を手入力するといった必要がない。これにより、別途の手間をかけることを防止して利用者の利便性を向上することができる。 Also, the user does not need to manage the meal time himself or manually input the meal time into the blood glucose meter 160. As a result, it is possible to improve the convenience for the user by avoiding additional labor.
 また、体動検出装置110と電動歯ブラシ130とのデータの両方から食事時間帯を推定するため、一方のみを使用する場合よりも精度よく食事時間帯を推定することができる。 Moreover, since the meal time zone is estimated from both the data of the body motion detection device 110 and the electric toothbrush 130, the meal time zone can be estimated with higher accuracy than when only one of them is used.
 また、ステップS137で測定不可表示を行って測定そのものを実行しないため、測定に適さない食後一定時間に血糖測定が行われようとしてもロックして測定させないことができる。従って、食後一定時間に測定されないことを徹底することができ、血糖計160の測定精度を維持することができる。 In addition, since measurement is not performed and measurement itself is not executed in step S137, even if blood glucose measurement is performed at a certain time after meal which is not suitable for measurement, it can be locked and not measured. Therefore, it can be ensured that the measurement is not performed at a certain time after the meal, and the measurement accuracy of the blood glucose meter 160 can be maintained.
 なお、血糖計160は、血糖測定禁止時間帯が経過して測定に適した推奨時間になると、アラーム等で利用者に知らせる構成にしてもよい。この場合、アラーム音または音声を出力する音声出力装置を設け、制御部151が所定時間毎に血糖測定禁止時間帯が経過したか否か確認する動作を実行し、経過したと判定したタイミングで音声出力装置によりアラーム音等を報知する構成にすればよい。 The blood glucose meter 160 may be configured to notify the user with an alarm or the like when the blood glucose measurement prohibition time period elapses and the recommended time suitable for measurement is reached. In this case, a sound output device that outputs an alarm sound or sound is provided, and the control unit 151 performs an operation to check whether or not the blood glucose measurement prohibition time period has passed every predetermined time, and the sound is determined at the timing when it is determined that the time has passed. What is necessary is just to make it the structure which alert | reports an alarm sound etc. by an output device.
 これにより、利用者は血糖測定に適した時間になったことを知ることができ、これを契機にして血糖値を測定することができる。従って、利用者自身が時間を気にしたり血糖計160の表示部163を確認したりせずとも、適切な測定時間を知ることができる。また、アラーム音を聞けば測定を行うという習慣を付けることにより、利用者が測定を忘れてしまうことを防止でき、定期的な血圧測定を安定して実行することができる。 This makes it possible for the user to know that the time suitable for blood glucose measurement has come, and to measure the blood glucose level as a trigger. Accordingly, the user can know the appropriate measurement time without worrying about the time or checking the display unit 163 of the blood glucose meter 160. In addition, it is possible to prevent the user from forgetting the measurement by making a habit of performing the measurement when listening to the alarm sound, and to regularly perform the blood pressure measurement.
 次に、生体情報取得装置の一種である体動検出装置(例えば歩数計)について、血圧計や体組成計に対して測定に適切な時間帯をアドバイスする実施例3について説明する。 Next, a description will be given of a third embodiment that advises a blood pressure monitor and a body composition meter of an appropriate time zone for a body motion detection device (for example, a pedometer) which is a type of biological information acquisition device.
 従来、利用者の血圧を測定する血圧計が提供されている。この血圧計により測定する血圧は、生体の状況によって変化することが知られている。詳述すると、運動後は血圧値が平常時よりも高くなる。このため、測定する生体の状況が、運動後からあまり時間の経っていない状況であれば、血圧が平常時よりも高く測定されることが知られている。 Conventionally, a sphygmomanometer that measures a user's blood pressure has been provided. It is known that the blood pressure measured by this sphygmomanometer changes depending on the condition of the living body. More specifically, after exercise, the blood pressure value becomes higher than normal. For this reason, it is known that if the state of the living body to be measured is a state in which not much time has passed since exercise, the blood pressure is measured higher than normal.
 しかし、従来の血圧計は、こういった生体状況で測定されても平常時の血圧と区別することができなかった。このため、運動直後で高くなっている血圧を測定し、この血圧を平常時の血圧として扱う可能性があった。 However, the conventional sphygmomanometer could not be distinguished from the normal blood pressure even when measured in such a biological situation. For this reason, there is a possibility that the blood pressure that is high immediately after exercise is measured and this blood pressure is treated as a normal blood pressure.
 また、従来、利用者の体組成を測定する体組成計が提供されている。この体組成計により測定する体組成は、生体の状況によって変化する。詳述すると、利用者の皮膚が汗などで水分を含んでいる状態だと、乾燥している状態と接触抵抗が変わるため、測定できるインピーダンスに誤差があらわれる。このため、測定する生体の状況が、発汗している状況であれば、体組成が平常時と異なる値に測定される。 In addition, conventionally, a body composition meter for measuring a user's body composition has been provided. The body composition measured by this body composition meter changes depending on the state of the living body. More specifically, when the user's skin is in a state of moisture such as sweat, the contact resistance changes from the dry state, so that an error appears in the measurable impedance. For this reason, if the state of the living body to be measured is a state of sweating, the body composition is measured to a value different from that in normal times.
 しかし、従来の体組成計は、こういった生体状況で測定されても平常時の体組成と区別することができなかった。このため、発汗している状態で体組成を測定し、この体組成を平常時の体組成として扱う可能性があった。 However, the conventional body composition meter could not be distinguished from the normal body composition even when measured in such a biological situation. For this reason, there was a possibility that the body composition was measured while sweating, and this body composition was treated as a normal body composition.
 一方、体動検出装置は、利用者の歩数のカウントや消費カロリーの計算等に用いられ、他の用途には用いられていなかった。 On the other hand, the body movement detection device is used for counting the number of steps of a user, calculating calorie consumption, etc., and has not been used for other purposes.
 これに対し、実施例3の体動検出装置は、生体の運動状況を血圧計や体組成計に通知することができ、これを受信した血圧計や体組成計が測定に適さないタイミングで測定することを防止することを目的としている。 On the other hand, the body motion detection device according to the third embodiment can notify the sphygmomanometer or body composition meter of the movement state of the living body, and the sphygmomanometer or body composition meter that has received the measurement is at a timing that is not suitable for measurement. The purpose is to prevent this.
 図15は、携帯電話機220と血圧計240と体組成計270の外観斜視図を示し、図16は、携帯電話機220と血圧計240と体組成計270とで構成される生体情報取得システム200のブロック図を示す。この実施例では、携帯電話機220と血圧計240と体組成計270に加えて、これらと通信可能な図示省略するサーバ150も備えている。このサーバ150は、実施例1と同一であるため、その詳細な説明を省略する。 FIG. 15 shows an external perspective view of the mobile phone 220, the sphygmomanometer 240, and the body composition meter 270, and FIG. 16 shows the biometric information acquisition system 200 that includes the mobile phone 220, the sphygmomanometer 240, and the body composition meter 270. A block diagram is shown. In this embodiment, in addition to the mobile phone 220, the sphygmomanometer 240, and the body composition meter 270, a server 150 (not shown) that can communicate with them is also provided. Since the server 150 is the same as that of the first embodiment, detailed description thereof is omitted.
 携帯電話機220は、図16に示すように、制御部221、通信部222、操作部223、表示部224、記憶部225、通話部226、音声出力部227、および、加速度検出部228により構成されている。 As shown in FIG. 16, the mobile phone 220 includes a control unit 221, a communication unit 222, an operation unit 223, a display unit 224, a storage unit 225, a call unit 226, a voice output unit 227, and an acceleration detection unit 228. ing.
 制御部221は、CPU、ROM、およびRAMで構成され、ROMやRAMに記憶されたプログラムやデータに従って各種動作を実行する。また、動作に際してRAMを一時記憶エリアとして利用する。 The control unit 221 includes a CPU, a ROM, and a RAM, and executes various operations according to programs and data stored in the ROM and RAM. In operation, the RAM is used as a temporary storage area.
 通信部222は、制御部221の制御に従ってアンテナを介して基地局装置と無線通信を実行し、データの送受信を行う。 
 操作部223は、複数の押下ボタンで構成され、利用者に押下された押下信号を制御部221へ送る。
The communication unit 222 performs wireless communication with the base station apparatus via the antenna according to the control of the control unit 221 and transmits / receives data.
The operation unit 223 includes a plurality of push buttons, and sends a press signal pressed by the user to the control unit 221.
 表示部224は、液晶ディスプレイなどの適宜の表示機器で構成され、制御部221の制御信号に従って文字や絵といった画像を表示する。 The display unit 224 includes an appropriate display device such as a liquid crystal display, and displays images such as characters and pictures according to control signals from the control unit 221.
 記憶部225は、不揮発性メモリなどの記憶媒体によって構成され、必要なデータやプログラムを記憶する。 The storage unit 225 is configured by a storage medium such as a nonvolatile memory, and stores necessary data and programs.
 通話部226は、通話用スピーカおよびD/A変換器で構成される音声出力部と、マイクロフォンおよびA/D変換器で構成される音声入力部とで構成されている。これにより、アナログの音声信号とデジタルの音声データを相互に変換し、上述した通信部222を介して遠隔地の携帯電話機220と音声データを送受信して通話を成立させる。 The call unit 226 includes a voice output unit including a speaker for calling and a D / A converter, and a voice input unit including a microphone and an A / D converter. As a result, the analog voice signal and the digital voice data are mutually converted, and the voice data is transmitted to and received from the remote mobile phone 220 via the communication unit 222 described above to establish a call.
 音声出力部227は、制御部221の制御に従って、音楽データの出力や呼び出し音の出力などを実行する。 The voice output unit 227 executes output of music data, ringing tone, and the like according to the control of the control unit 221.
 加速度検出部228は、加速度センサによって構成され、検出した加速度信号を制御部221へ送る。この加速度センサは、一方向の加速度を検知する一次元加速度センサ、直交する二方向の加速度を検知する二次元加速度センサ、または、直交する三方向の加速度を検知する三次元加速度センサで構成することができ、情報量の多い三次元加速度センサが最も好ましい。この加速度検出部228によって、携帯電話機220が体動検出装置(歩数計や活動量計など)としても機能できるようにしている。 The acceleration detection unit 228 is configured by an acceleration sensor, and sends the detected acceleration signal to the control unit 221. This acceleration sensor is composed of a one-dimensional acceleration sensor that detects acceleration in one direction, a two-dimensional acceleration sensor that detects acceleration in two orthogonal directions, or a three-dimensional acceleration sensor that detects acceleration in three orthogonal directions. A three-dimensional acceleration sensor with a large amount of information is most preferable. The acceleration detector 228 enables the mobile phone 220 to function as a body motion detector (such as a pedometer or activity meter).
 なお、この実施例では携帯電話機220を用いているが、これに限らず実施例1に説明した体動検出装置110を用いるなど、歩数や活動量を測定可能な適宜の装置を利用することができる。 In this embodiment, the mobile phone 220 is used. However, the present invention is not limited to this, and an appropriate device capable of measuring the number of steps and the amount of activity, such as the body movement detection device 110 described in the first embodiment, may be used. it can.
 血圧計240は、図3(D)に示したものと同一であるため、同一要素に同一符号を付して、その詳細な説明を省略する。 
 体組成計270は、図3(E)に示したものと同一であるため、同一要素に同一符号を付して、その詳細な説明を省略する。
The sphygmomanometer 240 is the same as that shown in FIG. 3D, and therefore, the same reference numerals are given to the same elements, and detailed description thereof is omitted.
Since the body composition meter 270 is the same as that shown in FIG. 3E, the same reference numerals are given to the same elements, and detailed description thereof is omitted.
 なお、この実施例の体組成計270における通信部272は、制御部279の制御信号に従って携帯電話機220等の他の装置と通信を行う。なお、この通信部272は、携帯電話機220に限らず、血圧計240などの他の生体情報取得装置と通信する、あるいはサーバやパーソナルコンピュータや携帯情報端末(PDAあるいは他の携帯電話機等)と通信するなど、適宜の装置と通信する構成にしてもよい。 In addition, the communication unit 272 in the body composition meter 270 of this embodiment communicates with other devices such as the mobile phone 220 in accordance with the control signal of the control unit 279. The communication unit 272 is not limited to the mobile phone 220, and communicates with other biometric information acquisition devices such as a blood pressure monitor 240, or communicates with a server, a personal computer, or a mobile information terminal (such as a PDA or another mobile phone). For example, it may be configured to communicate with an appropriate device.
 この構成により、携帯電話機220は、加速度検出部228で運動の有無等を検出し、これに基づくメッセージを血圧計240や体組成計270に送信できる。 With this configuration, the mobile phone 220 can detect the presence or absence of exercise by the acceleration detection unit 228 and transmit a message based on the detection to the sphygmomanometer 240 or the body composition meter 270.
 図17は、一定時間の連続運動があった後に血圧測定することを禁止する際の携帯電話機220と血圧計240の動作を示すフローチャートである。 FIG. 17 is a flowchart showing the operation of the mobile phone 220 and the sphygmomanometer 240 when prohibiting blood pressure measurement after continuous exercise for a certain time.
 携帯電話機220の制御部221は、血圧計240が接続されるまで待機し(ステップS201:No)、血圧計240が接続されると(ステップS201:Yes)、直近の所定時間(例えば5分)の運動データを確認する(ステップS202)。この運動データの確認は、加速度検出部228から取得する加速度データに基づいて、直近の所定時間の間に一定歩数以上の歩行(あるいは走行)がある、または一定量以上の活動があるか否かによって実行すると良い。 The control unit 221 of the mobile phone 220 waits until the sphygmomanometer 240 is connected (step S201: No). When the sphygmomanometer 240 is connected (step S201: Yes), the latest predetermined time (for example, 5 minutes). The exercise data is confirmed (step S202). The confirmation of the movement data is based on the acceleration data acquired from the acceleration detector 228, whether or not there is a walk (or running) of a certain number of steps or an activity of a certain amount or more during the most recent predetermined time. Good to run by.
 直近の所定時間以内に所定量以上の運動があれば(ステップS203:Yes)、制御部221は、血圧計240へメッセージを送信し(ステップS204)、処理を終了する。このときのメッセージは、例えば「しばらく安静にして測りなおしましょう」など、運動直後であって血圧測定に適していないことを利用者が認識できる内容にすることが好ましい。このメッセージを受信した血圧計240は、表示部251にメッセージを表示する。 If there is an exercise of a predetermined amount or more within the latest predetermined time (step S203: Yes), the control unit 221 transmits a message to the sphygmomanometer 240 (step S204), and the process is terminated. The message at this time is preferably a content that allows the user to recognize that it is immediately after exercise and is not suitable for blood pressure measurement, such as “Let's rest for a while and measure again”. Upon receiving this message, the sphygmomanometer 240 displays the message on the display unit 251.
 直近の所定時間以内に所定量以上の運動がなければ(ステップS203:No)、制御部221は、血圧計240へメッセージを送信する(ステップS205)。このときのメッセージは、例えば「開始ボタンを押してください」など、血圧測定が可能なことを利用者が認識できる内容にすることが好ましい。 If there is no exercise of a predetermined amount or more within the latest predetermined time (step S203: No), the control unit 221 transmits a message to the sphygmomanometer 240 (step S205). It is preferable that the message at this time has a content that allows the user to recognize that blood pressure measurement is possible, such as “please press the start button”.
 このメッセージを受信した血圧計240の制御部250は、利用者の測定スイッチ(開始ボタン)の押下を受けて血圧測定を実行する(ステップS206)。このとき血圧計240の制御部250は、測定した血圧を表示部251に表示すると共に携帯電話機220へ送信する。 Upon receiving this message, the control unit 250 of the sphygmomanometer 240 performs blood pressure measurement in response to the user pressing the measurement switch (start button) (step S206). At this time, the control unit 250 of the sphygmomanometer 240 displays the measured blood pressure on the display unit 251 and transmits it to the mobile phone 220.
 携帯電話機220の制御部221は、血圧データを取得し(ステップS207)、取得した血圧データをサーバ150へ送信して(ステップS208)、処理を終了する。 The control unit 221 of the mobile phone 220 acquires blood pressure data (step S207), transmits the acquired blood pressure data to the server 150 (step S208), and ends the process.
 図18は、血圧計240で血圧測定した場合に、その直近5分前までに運動があった場合に再測定を促す動作のフローチャートである。 
 血圧計240の制御部250は、利用者による操作部254の操作を受けて血圧測定を実行し(ステップS211)、測定した血圧データを携帯電話機220へ送信する。
FIG. 18 is a flowchart of an operation for prompting re-measurement when blood pressure is measured by the sphygmomanometer 240 and exercise is performed at least 5 minutes before that.
The control unit 250 of the sphygmomanometer 240 performs blood pressure measurement in response to the operation of the operation unit 254 by the user (step S211), and transmits the measured blood pressure data to the mobile phone 220.
 携帯電話機220の制御部221は、血圧計240から血圧データと測定時刻とを受信して取得し(ステップS212)、直近の所定時間(例えば5分)に運動しているか否か確認する(ステップS213)。この運動しているか否かの確認は、上述したステップS202と同一の処理によって実行すると良い。また、想定する運動としては、例えば1分以上の連続した歩行や、洗濯物干しの運動等とすることができる。 The control unit 221 of the mobile phone 220 receives and acquires the blood pressure data and the measurement time from the sphygmomanometer 240 (step S212), and confirms whether or not the user is exercising in the latest predetermined time (for example, 5 minutes) (step S212). S213). The confirmation as to whether or not the user is exercising may be performed by the same process as in step S202 described above. Moreover, as an exercise | movement assumed, it can be set as the exercise | movement of 1 minute or more continuous walk, the laundry drying, etc., for example.
 直近の所定時間以内に所定量以上の運動があれば(ステップS213:Yes)、制御部221は、血圧計240へメッセージを送信し(ステップS214)、処理を終了する。このステップS214は上述したステップS204と同一の処理を事項すればよい。 If there is a predetermined amount or more of exercise within the most recent predetermined time (step S213: Yes), the control unit 221 transmits a message to the sphygmomanometer 240 (step S214), and the process is terminated. Step S214 may be the same as step S204 described above.
 直近の所定時間以内に所定量以上の運動がなければ(ステップS213:No)、制御部221は、血圧データを記憶部225に記憶し(ステップS215)、サーバ150へ送信して(ステップS216)、処理を終了する。 If there is no exercise of a predetermined amount or more within the latest predetermined time (step S213: No), the control unit 221 stores the blood pressure data in the storage unit 225 (step S215) and transmits it to the server 150 (step S216). The process is terminated.
 図19は、一定時間の連続運動があった後に体組成測定することを禁止する際の携帯電話機220と体組成計270の動作を示すフローチャートである。 FIG. 19 is a flowchart showing operations of the mobile phone 220 and the body composition meter 270 when prohibiting body composition measurement after a certain period of continuous movement.
 携帯電話機220の制御部221は、体組成計270が接続されるまで待機し(ステップS221:No)、体組成計270が接続されると(ステップS221:Yes)、直近の所定時間(例えば5分)の運動データを確認する(ステップS222)。この運動データの確認は、加速度検出部228から取得する加速度データに基づいて、直近の所定時間の間に一定歩数以上の歩行(あるいは走行)がある、または一定量以上の活動があるか否かによって実行すると良い。 The control unit 221 of the mobile phone 220 waits until the body composition meter 270 is connected (step S221: No). When the body composition meter 270 is connected (step S221: Yes), the most recent predetermined time (for example, 5) Minute) of exercise data is confirmed (step S222). The confirmation of the movement data is based on the acceleration data acquired from the acceleration detector 228, whether or not there is a walk (or running) of a certain number of steps or an activity of a certain amount or more during the most recent predetermined time. Good to run by.
 直近の所定時間以内に所定量以上の運動があれば(ステップS223:Yes)、制御部221は、体組成計270へメッセージを送信し(ステップS224)、処理を終了する。このときのメッセージは、例えば「しばらく安静にして測りなおしましょう」など、運動後であって体組成測定に適していないことを利用者が認識できる内容にすることが好ましい。このメッセージを受信した体組成計270は、表示部276にメッセージを表示する。 If there is an exercise of a predetermined amount or more within the latest predetermined time (step S223: Yes), the control unit 221 transmits a message to the body composition meter 270 (step S224), and the process is terminated. It is preferable that the message at this time has a content that allows the user to recognize that it is not suitable for body composition measurement after exercise, such as “Let's take a rest for a while”. The body composition monitor 270 that has received this message displays the message on the display unit 276.
 直近の所定時間以内に所定量以上の運動がなければ(ステップS223:No)、制御部221は、体組成計270へメッセージを送信する(ステップS225)。このときのメッセージは、例えば「開始ボタンを押してください」など、体組成測定が可能なことを利用者が認識できる内容にすることが好ましい。 If there is no exercise of a predetermined amount or more within the latest predetermined time (step S223: No), the control unit 221 transmits a message to the body composition meter 270 (step S225). It is preferable that the message at this time has a content that allows the user to recognize that body composition measurement is possible, such as “please press the start button”.
 このメッセージを受信した体組成計270の制御部279は、利用者の操作部275(開始ボタン)の押下を受けて体組成測定を実行する(ステップS226)。このとき体組成計270の制御部279は、測定した体組成を表示部276に表示すると共に携帯電話機220へ送信する。 Upon receiving this message, the control unit 279 of the body composition meter 270 receives the user's operation unit 275 (start button) and performs body composition measurement (step S226). At this time, the control unit 279 of the body composition meter 270 displays the measured body composition on the display unit 276 and transmits it to the mobile phone 220.
 携帯電話機220の制御部221は、体組成データを取得し(ステップS227)、取得した体組成データをサーバ150へ送信して(ステップS228)、処理を終了する。 The control unit 221 of the mobile phone 220 acquires body composition data (step S227), transmits the acquired body composition data to the server 150 (step S228), and ends the process.
 図20は、体組成計270で体組成測定した場合に、その直近5分前までに運動があった場合に再測定を促す動作のフローチャートである。 
 体組成計270の制御部279は、利用者による操作部275の操作を受けて体組成測定を実行し(ステップS231)、測定した体組成データを携帯電話機220へ送信する。
FIG. 20 is a flowchart of an operation for prompting remeasurement when the body composition is measured by the body composition meter 270 and there is exercise immediately before 5 minutes.
The control unit 279 of the body composition meter 270 performs body composition measurement in response to the operation of the operation unit 275 by the user (step S231), and transmits the measured body composition data to the mobile phone 220.
 携帯電話機220の制御部221は、体組成計270から体組成データと測定時刻とを受信して取得し(ステップS232)、直近の所定時間(例えば5分)に運動しているか否か確認する(ステップS233)。この運動しているか否かの確認は、上述したステップS222と同一の処理によって実行すると良い。また、想定する運動としては、例えば1分以上の連続した歩行や、洗濯物干しの運動等とすることができる。 The control unit 221 of the mobile phone 220 receives and obtains the body composition data and the measurement time from the body composition meter 270 (step S232), and confirms whether or not the user is exercising at the latest predetermined time (for example, 5 minutes). (Step S233). The confirmation as to whether or not the user is exercising may be executed by the same process as in step S222 described above. Moreover, as an exercise | movement assumed, it can be set as the exercise | movement of 1 minute or more continuous walk, the laundry drying, etc., for example.
 直近の所定時間以内に所定量以上の運動があれば(ステップS233:Yes)、制御部221は、体組成計270へメッセージを送信し(ステップS234)、処理を終了する。このステップS234は上述したステップS224と同一の処理を事項すればよい。 If there is a predetermined amount or more of exercise within the most recent predetermined time (step S233: Yes), the control unit 221 transmits a message to the body composition meter 270 (step S234), and ends the process. Step S234 may be the same as step S224 described above.
 直近の所定時間以内に所定量以上の運動がなければ(ステップS233:No)、制御部221は、体組成データを記憶部225に記憶し(ステップS235)、サーバ150へ送信して(ステップS236)、処理を終了する。 If there is no exercise of a predetermined amount or more within the latest predetermined time (step S233: No), the control unit 221 stores the body composition data in the storage unit 225 (step S235) and transmits it to the server 150 (step S236). ), The process is terminated.
 以上に説明したように、生体状況情報取得手段として生体の体動を検出する体動検出手段(加速度検出部228)を備えた体動検出装置(携帯電話機220)は、状況別処理手段(ステップS213~S215,S233~S235を実行する制御部221)により前記体動検出手段による体動情報(運動データ)に基づいて所定時間帯(直近5分間)の生体状況を判定し、該判定結果に基づいて前記生体情報取得手段により取得した生体情報(血圧または体組成)の取扱(保存または再測定)を決定し、該決定に基づく情報を出力情報(再測定のメッセージまたは保存する体組成データ)として出力する構成であるから、体動情報に基づいて所定時間帯の生体状況を判定することができ、この生体状況に基づいて生体情報の取扱を決定することができる。従って、例えば運動という外的要因による生体情報の測定誤差を防止することができる。 As described above, the body motion detection device (cell phone 220) including the body motion detection unit (acceleration detection unit 228) that detects the body motion of the living body as the body state information acquisition unit is the processing unit (step by step). A control unit 221 that executes S213 to S215 and S233 to S235 determines a living state in a predetermined time zone (the latest 5 minutes) based on body motion information (motion data) by the body motion detecting means, and the determination result Based on the biometric information (blood pressure or body composition) acquired by the biometric information acquisition means is determined (storage or remeasurement), and information based on the determination is output information (remeasurement message or body composition data to be stored) Therefore, it is possible to determine the biological status of the predetermined time zone based on the body movement information, and to determine the handling of the biological information based on the biological status It is possible. Therefore, it is possible to prevent a measurement error of biological information due to an external factor such as exercise.
 すなわち、血圧計240の場合であれば、利用者が運動直後に測定して平常時よりも高い血圧値となってしてしまうことを防止できる。 
 また、体組成計270の場合であれば、利用者が運動直後に測定して汗による皮膚の接触インピーダンスが変化して発汗していない平常時の体組成値と異なる体組成値となることを防止することができる。具体的には、体組成値の一種である脂肪測定に関して、汗(水分)の影響によって電極部284,297と利用者の皮膚との接触抵抗が減り、脂肪が少なく算出されるといったことを防止できる。 
 従って、血圧計240や体組成計270といった生体情報測定装置による測定結果の信頼度を高めることができる。
That is, in the case of the sphygmomanometer 240, it is possible to prevent the user from measuring immediately after exercise and obtaining a blood pressure value higher than normal.
In the case of the body composition meter 270, the skin contact impedance due to perspiration changes immediately after exercise and the body composition value is different from the normal body composition value when sweating. Can be prevented. Specifically, with respect to fat measurement, which is a kind of body composition value, contact resistance between the electrode portions 284 and 297 and the user's skin is reduced due to the influence of sweat (moisture), and prevents fat from being calculated. it can.
Therefore, the reliability of the measurement results obtained by the biological information measuring device such as the sphygmomanometer 240 or the body composition meter 270 can be increased.
 また、所定の運動後の測定を除いた信頼度の高い測定データ(血圧や体組成など)をサーバ150に送信するため、サーバ150が管理するデータの信頼度も高めることができる。これにより、利用者の健康管理等を行うに際して、例えば運動直後に測定された信頼度の低いデータに基づいて不適切な治療やアドバイスをしてしまうといったことを防止できる。 In addition, since highly reliable measurement data (blood pressure, body composition, etc.) excluding the measurement after a predetermined exercise is transmitted to the server 150, the reliability of the data managed by the server 150 can be increased. Thereby, when performing user's health management etc., it can prevent improper treatment and advice based on data with low reliability measured immediately after exercise, for example.
 次に、生体情報取得装置の一種である体組成計について、体動検出装置(例えば活動量計)から取得する生活リズムに応じて適切な状態での測定を推奨する実施例4について説明する。 Next, a description will be given of a fourth embodiment in which a body composition meter, which is a kind of biological information acquisition device, recommends measurement in an appropriate state according to a life rhythm acquired from a body motion detection device (for example, an activity meter).
 従来、利用者の体組成を測定する体組成計が提供されている。この体組成計により測定する体組成は、測定が推奨される条件と、測定精度が低下する条件とがある。詳述すると、例えば食事直後や入浴後、アルコール多飲後などは、利用者の生体状況が平常時とは異なっているため、測定するインピーダンス等に誤差があらわれる。このため、測定する生体状況によっては、体組成が平常時と異なる値に測定される。 Conventionally, a body composition meter for measuring a user's body composition has been provided. The body composition measured by this body composition meter includes a condition where measurement is recommended and a condition where measurement accuracy is lowered. More specifically, for example, immediately after a meal, after bathing, after drinking a lot of alcohol, etc., the user's biological condition is different from normal, and thus there is an error in the impedance to be measured. For this reason, depending on the biological condition to be measured, the body composition is measured to a value different from that in normal times.
 しかし、従来の体組成計は、こういった生体状況で測定されても平常時の体組成と区別することができなかった。このため、平常時と異なる生体状態で体組成を測定し、この体組成を平常時の体組成として扱う可能性があった。 However, the conventional body composition meter could not be distinguished from the normal body composition even when measured in such a biological situation. For this reason, there is a possibility that the body composition is measured in a biological state different from the normal state, and this body composition is handled as the normal body composition.
 これに対し、実施例4の体組成計は、利用者の生活リズムを取得し、これをもとに測定に適さないタイミングで体組成計が測定されることを防止することを目的としている。 On the other hand, the body composition meter of Example 4 is intended to acquire the life rhythm of the user and prevent the body composition meter from being measured at a timing unsuitable for measurement based on this.
 この実施例4では、実施例1で説明した体動検出装置110と、実施例1で説明した体組成計270とを通信可能に接続して使用する。この通信は、体動検出装置110と体組成計270とが直接的に通信する構成であってもよく、実施例1で説明したサーバ150などの適宜の装置を介する通信であってもよい。 In the fourth embodiment, the body motion detection device 110 described in the first embodiment and the body composition meter 270 described in the first embodiment are connected to be communicable and used. This communication may be configured such that the body motion detection device 110 and the body composition meter 270 communicate directly, or may be communication via an appropriate device such as the server 150 described in the first embodiment.
 この実施例4の体動検出装置110は、操作部117に、食事時間を入力する食事ボタンも備えている。この食事ボタンは、例えば食事のタイミングで押下されると、この押下された時刻を食事時刻として記憶するためのボタンとすることができる。 
 記憶部116は、体動検出データに加えて、食事完了時刻データも記憶される。
The body movement detection device 110 according to the fourth embodiment also includes a meal button for inputting a meal time on the operation unit 117. For example, when the meal button is pressed at a meal timing, the pressed time can be used as a button for storing the pressed time as a meal time.
The storage unit 116 stores meal completion time data in addition to body movement detection data.
 また、体組成計270は、記憶部273に、体動検出装置110から取得した活動強度データおよび食事時間データに基づく生活リズムデータが記憶される。この生活リズムデータは、例えば活動が活発になっている時間帯や食事の時間帯等で構成されている。また、体組成を測定する体組成測定プログラムに加えて、活動強度データおよび食事時間データを用いて測定に適した時間帯を算出する適切測定時間帯算出プログラムも記憶されている。 
 制御部279は、体組成測定プログラムに加えて、適切測定時間帯算出プログラムも実行する。
The body composition meter 270 stores life rhythm data based on activity intensity data and mealtime data acquired from the body motion detection device 110 in the storage unit 273. This life rhythm data is composed of, for example, a time zone in which activities are active, a time zone of meals, and the like. In addition to a body composition measurement program for measuring body composition, an appropriate measurement time zone calculation program for calculating a time zone suitable for measurement using activity intensity data and meal time data is also stored.
In addition to the body composition measurement program, the control unit 279 also executes an appropriate measurement time zone calculation program.
 体動検出装置110と体組成計270のその他の構成については、上述したとおりであるので、その詳細な説明を省略する。 Since the other configurations of the body motion detection device 110 and the body composition meter 270 are as described above, a detailed description thereof will be omitted.
 図21は、体組成計270の制御部279が実行する動作のフローチャートである。 
 制御部279は、体動検出装置110と通信し、最新データがあるか否か判定する(ステップS301)。
FIG. 21 is a flowchart of operations executed by the control unit 279 of the body composition meter 270.
The control unit 279 communicates with the body motion detection device 110 and determines whether there is the latest data (step S301).
 最新データがあった場合(ステップS301:Yes)、制御部279は、データを取り込み(ステップS302)、この取込データ内に活動強度データがあるか否か判定する(ステップS303)。 If there is the latest data (step S301: Yes), the control unit 279 fetches the data (step S302), and determines whether or not there is activity intensity data in the fetched data (step S303).
 取込データに活動強度データがある場合(ステップS303:Yes)、制御部279は、記憶部273に記憶している個人の生活リズムデータを更新し、活動が活発になっている時間帯を追加する(ステップS304)。ここで、活動が活発になっているいか否かは、例えば体動検出装置110を活動量計として見た場合、運動強度(Mets)が加算された時を活動が活発になっている時と判断できる。 When there is activity intensity data in the captured data (step S303: Yes), the control unit 279 updates the personal life rhythm data stored in the storage unit 273, and adds a time zone in which the activity is active. (Step S304). Here, whether or not the activity is active, for example, when the body motion detection device 110 is viewed as an activity meter, when the exercise intensity (Mets) is added and when the activity is active I can judge.
 なお、ここでの活動が活発になっているか否かの判断は、体動検出装置110以外の装置からデータを取得して実行する構成にしてもよい。例えば、実施例1の血圧計240からデータを取得し、血圧が上昇した時を活動が活発になっている時と判定する、あるいは心拍数が上がった時を活動が活発になっている時と判定するといったことができる。 It should be noted that the determination of whether or not the activity here is active may be performed by acquiring data from a device other than the body motion detection device 110 and executing it. For example, data is acquired from the sphygmomanometer 240 of the first embodiment, and when the blood pressure increases, it is determined that the activity is active, or when the heart rate increases, the activity is active It can be judged.
 このステップS304の後、あるいはステップS303で活動強度データが無かった場合(ステップS303:No)、制御部279は、取込データ内に食事時間データがあるか否かを判定する(ステップS305)。 After this step S304 or when there is no activity intensity data in step S303 (step S303: No), the control unit 279 determines whether there is meal time data in the captured data (step S305).
 食事時間データがあれば(ステップS305:Yes)、制御部279は、個人の生活リズムデータを更新し、食事の時間帯を追加する(ステップS306)。この食事時間は、例えば体動検出装置110の食事ボタンが押下されたタイミングを食事時刻とし、この時刻の前後所定時間を食事時間として記憶すると良い。なお、体組成測定に朝食・夕食の区別は必要ないため、1つの食事ボタンが押下されれば朝夕に関係なく食事タイミングとする構成にすればよい。 If there is meal time data (step S305: Yes), the control unit 279 updates the personal life rhythm data and adds a meal time zone (step S306). For example, the meal time may be stored as a meal time when the meal button of the body motion detection device 110 is pressed, and a predetermined time before and after this time may be stored as the meal time. In addition, since it is not necessary to distinguish between breakfast and dinner for body composition measurement, if one meal button is pressed, the meal timing may be set regardless of morning or evening.
 このステップS306の後、または食時時間データが無かった場合(ステップS305:No)、あるいはステップS301で最新データが無かった場合(ステップS301:No)、制御部279は、入手済みのデータに基づいて体組成の測定を推奨する時間帯を算出する(ステップS307)。この推奨時間帯は、例えば活動が活発になりづらい時間で、かつ食後2時間を除いた時間とするとよい。 After step S306, or when there is no mealtime data (step S305: No), or when there is no latest data in step S301 (step S301: No), the control unit 279 is based on the acquired data. Then, a time zone in which measurement of the body composition is recommended is calculated (step S307). For example, the recommended time zone may be a time when it is difficult for the activity to become active and a time excluding 2 hours after eating.
 制御部279は、算出した推奨時間を利用する処理を実行し(ステップS308)、処理を終了する。 The control unit 279 executes processing using the calculated recommended time (step S308), and ends the processing.
 この利用する処理は、例えば体組成計270により体組成測定が行われた際に推奨時間か否かを判定し、推奨時間であれば測定、表示、および記憶を行い、推奨時間でなければ所定時間後に再測定するようにエラーメッセージを表示して測定しない処理とすることができる。 For example, when the body composition measurement is performed by the body composition meter 270, it is determined whether or not the recommended time is the recommended time. If the recommended time, the measurement, display, and storage are performed. An error message may be displayed so that measurement is not performed after time has elapsed.
 他にも、上記利用する処理は、推奨時間が到来したときに測定に適した時間であることを報知する報知処理とすることもできる。この報知は、表示部276や図示省略するLEDなどによる視覚サインによる報知、アラーム音等の音を出力する音声出力部による聴覚サインの報知、あるいはこれらの両方など、適宜の報知とすることができる。 In addition, the process to be used can be a notification process for notifying that the time is suitable for measurement when the recommended time has come. This notification can be an appropriate notification such as a notification by a visual sign using the display unit 276 or an LED (not shown), a notification by an audio output unit that outputs a sound such as an alarm sound, or both. .
 以上に説明したように、生体情報取得手段として生体の体組成を測定する体組成測定手段(インピーダンス検知部283)を備えた体組成計270は、生体状況情報取得手段(通信部272)により、生体の体動に関する体動情報(活動強度データ)、または生体の食事時間に関する食事時間情報(食事時間データ)の少なくとも一方を取得する構成であり、状況別処理手段(ステップS301~S308を実行する制御部279)により、前記体動情報に基づく活動の強い時間帯を避けた時間帯、または前記食事時間情報に基づく食事後一定時間を避けた時間帯のいずれかの時間帯に取得した体組成情報を出力情報として出力することにより、測定に不適な時間帯に測定されることを防止し、安定した状態での測定を推奨することができる。 As described above, the body composition meter 270 provided with the body composition measuring means (impedance detection unit 283) for measuring the body composition of the living body as the biological information acquisition means is obtained by the biological situation information acquisition means (communication unit 272). It is configured to acquire at least one of body movement information (activity intensity data) related to body movements of the living body and meal time information (meal time data) related to meal times of the living body, and executes processing means for each situation (steps S301 to S308). The body composition acquired by the control unit 279) in any one of a time zone avoiding a strong activity time zone based on the body movement information or a time zone avoiding a certain time after meal based on the meal time information. By outputting information as output information, it is possible to prevent measurement in a time zone unsuitable for measurement and to recommend measurement in a stable state. .
 利用者は、体動検出装置110と体組成計270を利用するだけでよく、体組成計270に活動時間や食事時間を手入力するといった手間が必要ないため、便利に利用することができる。 The user only has to use the body motion detection device 110 and the body composition meter 270, and since there is no need to manually input the activity time and meal time into the body composition meter 270, it can be used conveniently.
 また、体動検出装置110のデータを用いることで、利用者の手入力の場合のように入力漏れが発生することを防止でき、確実性の高い測定推奨時間の算出を行うことができる。 Further, by using the data of the body motion detection device 110, it is possible to prevent the occurrence of input leakage as in the case of manual input by the user, and it is possible to calculate the measurement recommended time with high certainty.
 また、体動検出装置110のデータによって個人の生活リズムから最も頻度の高いパターンを認識し、測定タイミングの指示を行うことができる。ここで、個人の生活リズムは、基本的には同じリズムに近い日々が続くと考えられる。従って、上記パターンを認識することによって、当日の体動検出装置110のデータを入力せずとも過去のデータに基づいて測定に適した推奨時間を指示することができる。 In addition, it is possible to recognize the most frequent pattern from the personal life rhythm based on the data of the body motion detection device 110 and to instruct the measurement timing. Here, it is considered that the life rhythm of an individual basically lasts for days close to the same rhythm. Therefore, by recognizing the pattern, it is possible to instruct a recommended time suitable for measurement based on past data without inputting data of the body motion detection device 110 on that day.
 なお、体動検出装置110の操作部117に食事ボタンを備えず、食事データを記憶しない構成にしてもよい。この場合は、ステップ305~S306を省略し、活動が活発になっている時間帯のみ測定を避ける構成にすればよい。この場合でも、活動を強めている時間帯に体組成を測定することを避けることができるため、生体状況の違いによって体組成の測定に誤差が現れることを抑制できる。 It should be noted that the operation unit 117 of the body motion detection device 110 may not be provided with a meal button and may not be configured to store meal data. In this case, steps 305 to S306 may be omitted and the measurement may be avoided only during the time period when the activity is active. Even in this case, since it is possible to avoid measuring the body composition during a time period in which the activity is strengthened, it is possible to suppress the occurrence of an error in the measurement of the body composition due to the difference in the biological situation.
 次に、生体情報取得装置の一種である体組成計について、目覚まし時計から取得する生活リズムに応じて適切な状態での測定を推奨する実施例5について説明する。 Next, a description will be given of a fifth embodiment in which a body composition meter, which is a type of biological information acquisition device, recommends measurement in an appropriate state according to a life rhythm acquired from an alarm clock.
 従来、利用者の体組成を測定する体組成計が提供されている。この体組成計により測定する体組成は、測定が推奨される条件と、測定精度が低下する条件とがある。詳述すると、例えば食事直後や入浴後、アルコール多飲後などは、利用者の生体状況が平常時とは異なっているため、測定するインピーダンス等に誤差があらわれる。このため、測定する生体状況によっては、体組成が平常時と異なる値に測定される。 Conventionally, a body composition meter for measuring a user's body composition has been provided. The body composition measured by this body composition meter includes a condition where measurement is recommended and a condition where measurement accuracy is lowered. More specifically, for example, immediately after a meal, after bathing, after drinking a lot of alcohol, etc., the user's biological condition is different from normal, and thus there is an error in the impedance to be measured. For this reason, depending on the biological condition to be measured, the body composition is measured to a value different from that in normal times.
 しかし、従来の体組成計は、こういった生体状況で測定されても平常時の体組成と区別することができなかった。このため、平常時と異なる生体状態で体組成を測定し、この体組成を平常時の体組成として扱う可能性があった。 However, the conventional body composition meter could not be distinguished from the normal body composition even when measured in such a biological situation. For this reason, there is a possibility that the body composition is measured in a biological state different from the normal state, and this body composition is handled as the normal body composition.
 これに対し、実施例5の体組成計は、目覚まし時計から利用者の生活リズムを取得し、これをもとに測定に適したタイミングで体組成計を測定することを目的としている。 On the other hand, the body composition meter of Example 5 is intended to obtain a user's life rhythm from an alarm clock and to measure the body composition meter at a timing suitable for the measurement based on this.
 この実施例5では、実施例1で説明した体組成計270と、図示省略する公知の目覚まし時計を通信可能に接続して使用する。この通信は、目覚まし時計と体組成計270とが直接的に通信する構成であってもよく、実施例1で説明したサーバ150などの適宜の装置を介する通信であってもよい。 In the fifth embodiment, the body composition meter 270 described in the first embodiment and a known alarm clock (not shown) are connected so as to be communicable. This communication may be configured such that the alarm clock and the body composition meter 270 communicate directly, or may be communication via an appropriate device such as the server 150 described in the first embodiment.
 また、体組成計270に目覚まし機能を持たせてこの目覚まし機能を利用してもよい。この場合、計時部274により時刻を計時し、操作部275で目覚まし時刻の設定を受け付け、設定された目覚まし時刻になると表示部276の表示や図示省略する音声出力部によるアラーム音の報知等によって知らせる構成にすればよい。 Also, the alarm function may be used by giving the body composition meter 270 an alarm function. In this case, the time is measured by the time measuring unit 274, the setting of the alarm time is received by the operation unit 275, and when the set alarm time is reached, the alarm is notified by the display on the display unit 276, the alarm output not shown or the like. What is necessary is just composition.
 図22は、体組成計270の制御部279が実行する動作のフローチャートである。 
 制御部279は、目覚まし時計と通信し、最新データがあるか否か判定する(ステップS401)。ここで、体組成計270自身の目覚まし機能を利用する場合は、記憶部273に記憶されている目覚まし時間に最新データがあるか否かを判定する。
FIG. 22 is a flowchart of the operation executed by the control unit 279 of the body composition meter 270.
The control unit 279 communicates with the alarm clock and determines whether there is latest data (step S401). Here, when using the alarm function of the body composition meter 270 itself, it is determined whether or not there is the latest data in the alarm time stored in the storage unit 273.
 最新データがあった場合(ステップS401:Yes)、制御部279は、データを取り込み(ステップS402)、推奨測定時間を再推定する(ステップS403)。この推奨測定時間は、蓄積した目覚まし時間のデータから起床時間を確認し、最も起床時間となる可能性の高い時間とすることができる。 If there is the latest data (step S401: Yes), the control unit 279 takes in the data (step S402) and re-estimates the recommended measurement time (step S403). This recommended measurement time can be determined as a time that is most likely to be a wake-up time by confirming the wake-up time from the accumulated wake-up time data.
 このステップS403の後、または目覚まし時計による最新データが無かった場合(ステップS401:No)、制御部279は、推奨時間になるまで待機し、推奨時間になると電源をONにする(ステップS404)。 After this step S403 or when there is no latest data from the alarm clock (step S401: No), the control unit 279 waits until the recommended time is reached, and turns on the power when the recommended time is reached (step S404).
 そして、制御部279は、推奨時間の到来を報知する(ステップS405)。この報知は、表示部276や図示省略するLEDなどによる視覚サインによる報知、アラーム音等の音を出力する音声出力部による聴覚サインの報知、あるいはこれらの両方など、適宜の報知とすることができる。 And the control part 279 alert | reports arrival of recommended time (step S405). This notification can be an appropriate notification such as a notification by a visual sign using the display unit 276 or an LED (not shown), a notification by an audio output unit that outputs a sound such as an alarm sound, or both. .
 以上に説明したように、生体情報取得手段として生体の体組成を測定する体組成測定手段(インピーダンス検知部283)を備えた体組成計270は、体組成の測定を待機していることを報知する報知手段(表示部276、LED、または音声出力部)を備え、生体状況情報取得手段(通信部272または記憶部273)により、生体の起床時間に関する起床時間情報(目覚まし時間)を取得する構成であり、状況別処理手段(ステップS404~S405を実行する制御部279)により、前記起床時間情報に基づく推定起床時間帯(推奨時間)になると体組成の測定を待機していることを前記報知手段により報知し、この推定起床時間帯に取得した体組成情報を出力情報として出力することにより、個人の生活リズムにあった適切なタイミングで体組成の測定を実行することができる。 As described above, the body composition meter 270 provided with the body composition measuring means (impedance detection unit 283) that measures the body composition of the living body as the biological information acquisition means notifies that the body composition measurement is on standby. Configured to acquire the wake-up time information (wake-up time) related to the wake-up time of the living body by the biological state information acquisition means (the communication unit 272 or the storage unit 273). The notification that the body composition measurement is awaited when the estimated wake-up time zone (recommended time) based on the wake-up time information is reached by the situation-specific processing means (the control unit 279 that executes steps S404 to S405) By outputting the body composition information obtained during the estimated wake-up time period as output information, an appropriate pattern suitable for the individual's life rhythm is obtained. It can perform measurements of body composition in timing.
 利用者は、目覚まし時計(または体組成計270の目覚まし機能)と体組成計270を利用するだけでよく、体組成計270に活動時間や食事時間を手入力するといった手間が必要ないため、便利に利用することができる。 The user only needs to use the alarm clock (or the alarm function of the body composition meter 270) and the body composition meter 270, and the user does not have to manually input the activity time and the meal time into the body composition meter 270. Can be used.
 また、目覚まし時間によって個人の生活リズムとして最も頻度の高い起床時間を認識し、測定タイミングの指示を行うことができる。ここで、個人の生活リズムは、基本的には同じリズムに近い日々が続くと考えられる。従って、上記起床時間を認識することによって、当日の起床時間のデータを入力せずとも過去のデータに基づいて測定に適した推奨時間を指示することができる。 Also, it is possible to recognize the wake-up time that is the most frequent as an individual life rhythm based on the wake-up time and to instruct the measurement timing. Here, it is considered that the life rhythm of an individual basically lasts for days close to the same rhythm. Therefore, by recognizing the wake-up time, it is possible to instruct a recommended time suitable for measurement based on past data without inputting the data of the wake-up time of the day.
 次に、生体情報取得装置の一種である血圧計について、利用者の生活パターンより循環器系疾患リスクを算出する実施例6について説明する。 Next, a sixth embodiment in which a sphygmomanometer, which is a type of biological information acquisition device, is used to calculate a cardiovascular disease risk from a user's life pattern will be described.
 血圧は、循環器疾患を解析する指標の一つである。血圧に基づいてリスク解析を行うことは、たとえば脳卒中や心不全や心筋梗塞などの心血管系の疾患の予防に有効である。特に、早朝に血圧が上昇する早朝高血圧は、心臓病や脳卒中などに関係している。さらに、早朝高血圧の中でも、モーニングサージと呼ばれる起床後1時間から1時間半ぐらいの間に急激に血圧が上昇する症状は、脳卒中と因果関係があることが判明している。 Blood pressure is one of the indices for analyzing cardiovascular diseases. Performing risk analysis based on blood pressure is effective in preventing cardiovascular diseases such as stroke, heart failure and myocardial infarction. In particular, early morning hypertension, in which blood pressure rises in the early morning, is related to heart disease and stroke. Furthermore, it has been found that, among early morning hypertension, a symptom of a sudden rise in blood pressure between 1 hour and 1.5 hours after waking up, called morning surge, has a causal relationship with stroke.
 そこで、時間(生活習慣)と血圧変化の相互関係を把握することが、心血管系の疾患のリスク解析に有用である。 Therefore, grasping the correlation between time (lifestyle) and blood pressure change is useful for risk analysis of cardiovascular diseases.
 出願人は、時間(生活習慣)と血圧を関連づけて記憶し、朝・夜の特定の時間帯での血圧値よりリスク指標を算出・表示する血圧計を、既に発明している(特許第4025220号、特開2006-158879号)。 The applicant has already invented a sphygmomanometer that stores time (lifestyle) and blood pressure in association with each other, and calculates and displays a risk index from the blood pressure value in a specific morning / night time zone (Patent No. 4025220). No. 2006-158879).
 前者の特許第4025220号では、血圧計に内蔵された時計により血圧が測定された時間を取得し、血圧と測定時間を関連づけて記憶している。そして、記憶された血圧値より所定の時間帯(朝・夜)に測定された血圧値を抽出し、その差によりリスク指標を算出している。 In the former patent No. 4025220, the time when the blood pressure is measured by a clock built in the sphygmomanometer is acquired, and the blood pressure and the measurement time are associated and stored. A blood pressure value measured in a predetermined time zone (morning / night) is extracted from the stored blood pressure value, and a risk index is calculated based on the difference.
 この算出方法は、血圧計の時計が正確に設定されていることが、正しくリスク指標を算出するための前提となる。したがって時計の設定が間違っている場合、正しいリスク指標が算出されないことになる。 This calculation method assumes that the sphygmomanometer clock is set correctly to correctly calculate the risk index. Therefore, if the clock setting is incorrect, the correct risk index will not be calculated.
 また、リスク指標算出に用いる血圧値の抽出を時刻で行っているため、たとえばシフトワーカーのように一般的な人と生活パターンが異なる人を測定した場合、時計が正しく設定されていたとしても正しいリスク指標が算出されないことになる。 In addition, blood pressure values used for risk index calculation are extracted at time, so when measuring people with different life patterns from general people, such as shift workers, even if the clock is set correctly Risk indicators will not be calculated.
 これに対し、後者の特開2006-158879号では、血圧測定開始スイッチを「起床後」「就寝前」など測定条件ごとに特化したスイッチを複数設けることで、上述した問題の解決を図っている。しかし、このスイッチを用いる方法は、利用者が測定条件と異なる測定スイッチを押して測定してしまうというヒューマンエラーを防止できない。このため、正しいリスク指標が算出されないことが発生するという問題点がある。 On the other hand, in the latter Japanese Patent Application Laid-Open No. 2006-158879, the blood pressure measurement start switch is provided with a plurality of switches specialized for each measurement condition such as “after waking up” and “before going to bed” to solve the above-described problem. Yes. However, the method using this switch cannot prevent the human error that the user performs measurement by pressing a measurement switch different from the measurement condition. For this reason, there is a problem that a correct risk index may not be calculated.
 このような問題点に対し、実施例6の血圧計240は、歩数計などのデータに基づいてユーザの生活パターンを解析し、生活パターンに基づいて特定の条件(起床後・就寝前など)で測定された血圧値を抽出し、リスク指標を算出することで、上記問題点を解決することを目的としている。 For such problems, the sphygmomanometer 240 according to the sixth embodiment analyzes a user's life pattern based on data such as a pedometer, and based on the life pattern under specific conditions (after waking up, before going to bed, etc.). The object is to solve the above problems by extracting the measured blood pressure value and calculating the risk index.
 図23は、血圧計240のブロック図である。 
 この血圧計240は、実施例1で説明した血圧計240と同一であり、図23には構成をより詳細に図示している。
FIG. 23 is a block diagram of the sphygmomanometer 240.
The sphygmomanometer 240 is the same as the sphygmomanometer 240 described in the first embodiment, and FIG. 23 shows the configuration in more detail.
 操作部254は、電源スイッチ254a、測定スイッチ254b、指標スイッチ254c、記録呼び出しスイッチ254d、使用者選択スイッチ254eを備えている。 The operation unit 254 includes a power switch 254a, a measurement switch 254b, an index switch 254c, a record call switch 254d, and a user selection switch 254e.
 電源スイッチ254aは、電源のON/OFF操作を受け付ける。 
 測定スイッチ254bは、測定開始操作を受け付け、この操作がされると血圧測定を開始するスイッチである。
The power switch 254a accepts a power ON / OFF operation.
The measurement switch 254b is a switch that accepts a measurement start operation and starts blood pressure measurement when this operation is performed.
 指標スイッチ254cは、操作されると体動検出装置110から指標となるデータを取得するなど適宜の動作を実行するスイッチである。 
 記録呼び出しスイッチ254dは、過去の測定記録を記録用メモリ253から呼び出して表示部251に表示する動作を実行するスイッチである。
The index switch 254c is a switch that performs an appropriate operation such as obtaining data serving as an index from the body movement detection device 110 when operated.
The recording call switch 254d is a switch that executes an operation of calling a past measurement record from the recording memory 253 and displaying it on the display unit 251.
 使用者選択スイッチ254eは、複数の利用者が登録されている場合に、これから測定する利用者が誰であるかを選択させるためのスイッチである。 
 また、制御部250に接続して、外部メモリ257とデータを送受信するインターフェース256を備えている。
The user selection switch 254e is a switch for selecting a user to be measured from now on when a plurality of users are registered.
In addition, an interface 256 that is connected to the control unit 250 and transmits / receives data to / from the external memory 257 is provided.
 その他の構成は、実施例1の血圧計240と同一であるので、その詳細な説明を省略する。 Other configurations are the same as those of the sphygmomanometer 240 of the first embodiment, and thus detailed description thereof is omitted.
 図24は、システム構成の説明図である。この実施例6では、上述した血圧計240と、実施例1で説明したサーバ150と、体動検出装置110とを用いる。 
 図24(A)は、循環器系疾患リスク算出システム500Aのシステム構成図である。
FIG. 24 is an explanatory diagram of a system configuration. In the sixth embodiment, the above-described blood pressure monitor 240, the server 150 described in the first embodiment, and the body motion detection device 110 are used.
FIG. 24A is a system configuration diagram of a cardiovascular disease risk calculation system 500A.
 循環器系疾患リスク算出システム500Aは、血圧計240に対して、インターネット501を通じてサーバ150が接続され、また体動検出装置110が接続されている。体動検出装置110は、実施例1で説明したものと同一であるので、その詳細な説明を省略する。 In the circulatory system disease risk calculation system 500A, a server 150 is connected to the sphygmomanometer 240 through the Internet 501, and a body motion detection device 110 is connected. Since the body movement detection device 110 is the same as that described in the first embodiment, a detailed description thereof will be omitted.
 サーバ150の記憶部154(実施例1の図11参照)は、体動検出装置110で測定された体動検出データ等が記憶されている。 The storage unit 154 (see FIG. 11 of the first embodiment) of the server 150 stores body motion detection data and the like measured by the body motion detection device 110.
 なお、循環器系疾患リスク算出システム500Aの構成に限らず、図24(B)に示すように、パーソナルコンピュータ550を用いた循環器系疾患リスク算出システム500Bの構成としてもよい。この場合、パーソナルコンピュータ550に対して、サーバ150から体動検出データを送信し、血圧計240から血圧データを送信し、体動検出装置110から体動検出データを送信して、パーソナルコンピュータ550が循環器系疾患リスクを算出する構成にすればよい。 Note that the configuration of the cardiovascular disease risk calculation system 500B is not limited to the configuration of the cardiovascular disease risk calculation system 500A, and a configuration of a cardiovascular disease risk calculation system 500B using a personal computer 550 may be used as shown in FIG. In this case, body motion detection data is transmitted from the server 150 to the personal computer 550, blood pressure data is transmitted from the sphygmomanometer 240, body motion detection data is transmitted from the body motion detection device 110, and the personal computer 550 What is necessary is just to set it as the structure which calculates a cardiovascular disease risk.
 図25は、血圧計240の制御部279が実行する全体動作のフローチャートである。 
 血圧計240の電源スイッチ254aが押下されると(ステップS501)、血圧計240の制御部250は、処理用メモリ252を初期化し、圧力センサ242の0mmHg調整を行う(ステップS502)。
FIG. 25 is a flowchart of the overall operation executed by the control unit 279 of the sphygmomanometer 240.
When the power switch 254a of the sphygmomanometer 240 is pressed (step S501), the control unit 250 of the sphygmomanometer 240 initializes the processing memory 252 and performs 0 mmHg adjustment of the pressure sensor 242 (step S502).
 制御部250は、血圧計240の利用者を使用者選択スイッチ254eで選択させる(ステップS503)。 
 利用者が選択された後、測定スイッチ254bが押下されると(ステップS504:=測定スイッチ)、制御部250は、後述の血圧測定処理を行う(ステップS505)。
The control unit 250 causes the user of the sphygmomanometer 240 to be selected with the user selection switch 254e (step S503).
When the measurement switch 254b is pressed after the user is selected (step S504: = measurement switch), the control unit 250 performs a blood pressure measurement process described later (step S505).
 指標スイッチ254cが押下されると(ステップS504:=指標スイッチ)、制御部250は、後述のリスク指標表示処理を行う(ステップS506)。 When the index switch 254c is pressed (step S504: = index switch), the control unit 250 performs a risk index display process described later (step S506).
 電源スイッチ254aが押下されると(ステップS504:=電源スイッチ)、制御部250は、血圧計240の電源をOFFして処理を終了する。 When the power switch 254a is pressed (step S504: power switch), the control unit 250 turns off the power to the sphygmomanometer 240 and ends the process.
 図26は、血圧測定処理を実行する制御部250の動作を示すフローチャートである。 FIG. 26 is a flowchart showing the operation of the control unit 250 that executes the blood pressure measurement process.
 血圧計240の測定スイッチ254bが押下されると、制御部250は、弁244を閉鎖し、ポンプ243によりカフ241のカフ圧を加圧する(ステップS511)。 When the measurement switch 254b of the sphygmomanometer 240 is pressed, the control unit 250 closes the valve 244 and pressurizes the cuff 241 with the pump 243 (step S511).
 制御部250は、カフ圧が所定圧となるまで加圧を継続し(ステップS512:<所定圧)、所定圧に到達すると(ステップS512:≧所定圧)、ポンプ243の駆動を停止し、弁244により徐々にカフ圧を減圧していく(ステップS513)。 The controller 250 continues the pressurization until the cuff pressure becomes a predetermined pressure (step S512: <predetermined pressure), and when the predetermined pressure is reached (step S512: ≧ predetermined pressure), stops the driving of the pump 243, and the valve The cuff pressure is gradually reduced by 244 (step S513).
 ここで所定圧は、あらかじめ設定された圧力(たとえば160mmHgなど)とすれば良い。あるいは、加圧中に測定者の血圧を推定し、推定された収縮期血圧に所定の圧力(たとえば40mmHgなど)を加算した圧力としても良い。 Here, the predetermined pressure may be a preset pressure (for example, 160 mmHg). Alternatively, it may be a pressure obtained by estimating the blood pressure of the measurer during pressurization and adding a predetermined pressure (for example, 40 mmHg) to the estimated systolic blood pressure.
 制御部250は、減圧中に得られるカフ圧に重畳した動脈の容積変化に伴う振動成分を抽出し、所定の演算により血圧値を算出する(ステップS514)。 
 血圧値を算出すると(ステップS515:YES)、弁244を開放し、カフ241内の空気を排気する(ステップS516)。
The control unit 250 extracts a vibration component accompanying the arterial volume change superimposed on the cuff pressure obtained during decompression, and calculates a blood pressure value by a predetermined calculation (step S514).
When the blood pressure value is calculated (step S515: YES), the valve 244 is opened and the air in the cuff 241 is exhausted (step S516).
 制御部250は、算出した血圧値を表示部251に表示し(ステップS517)、測定日時・利用者と関連づけて記録用メモリ253に記録する(ステップS518)。 The control unit 250 displays the calculated blood pressure value on the display unit 251 (step S517), and records it in the recording memory 253 in association with the measurement date / time (step S518).
 図27は、リスク指標表示処理を実行する制御部250の動作を示すフローチャートである。 FIG. 27 is a flowchart showing the operation of the control unit 250 that executes the risk index display process.
 血圧計240の指標スイッチ254cが押下されると、制御部250は、通信部255を介して血圧計240に接続された体動検出装置110より体動検出データ(歩数データ)を取り込む(ステップS521)。そして、制御部250は、体動検出データより生活パターンを解析し、起床および就寝の時刻を抽出する(ステップS522)。 When the index switch 254c of the sphygmomanometer 240 is pressed, the control unit 250 takes in body motion detection data (step count data) from the body motion detection device 110 connected to the sphygmomanometer 240 via the communication unit 255 (step S521). ). And the control part 250 analyzes a life pattern from body movement detection data, and extracts the time of waking up and going to bed (step S522).
 ここで、生活パターンの解析は、図28に示す1日の歩数データを1時間ごとの度数分布で表したグラフから求めることができる。 
 すなわち、1日の中で歩数データが計数され始めた時刻を起床時刻とし、逆に歩数データが計数されなくなった時刻を就寝時刻として解析することが可能である。
Here, the life pattern analysis can be obtained from a graph representing the daily step count data shown in FIG. 28 as a frequency distribution for each hour.
That is, it is possible to analyze the time when the step count data starts to be counted in the day as the wake-up time, and conversely the time when the step count data is not counted as the bedtime.
 このようにして起床および就寝の時刻を抽出したあと、制御部250は、各々の時刻の近傍で測定された血圧値を記録用メモリ253に記憶されているデータから抽出する(ステップS523)。 After extracting the time of getting up and going to bed in this way, the control unit 250 extracts the blood pressure value measured in the vicinity of each time from the data stored in the recording memory 253 (step S523).
 抽出された血圧値のデータ数がリスク指標算出に十分である場合(ステップS524:満足)、制御部250は、リスク指標の算出を行う(ステップS525)。 If the number of extracted blood pressure values is sufficient for risk index calculation (step S524: satisfied), the control unit 250 calculates the risk index (step S525).
 このリスク指標の算出は、次のようにして行うことができる。 
 例えば、1週間分の起床後に最初に測定した血圧値のデータが抽出されたとし、そのデータ数をmとすると、次の式1、式2により起床後測定SBP(Systolic blood pressure:収縮期血圧)平均および起床後測定DBP(Diastolic blood pressure:拡張期血圧)平均を求めることができる。
This risk index can be calculated as follows.
For example, if the data of blood pressure values measured for the first time after getting up for one week are extracted, and the number of data is m, the SBP (systolic blood pressure: systolic blood pressure) is measured by the following formulas 1 and 2. ) Average and post-wake measurement DBP (Diastolic blood pressure) average can be determined.
(式1)
 起床後測定SBP平均=
  (起床後測定収縮期血圧データSBP1
   +起床後測定収縮期血圧データSBP2
   +…+起床後測定収縮期血圧データSBPm)/m
                ※ただし、m=1,2,3,…
(Formula 1)
Measured SBP average after getting up =
(Post-wake measurement systolic blood pressure data SBP1
+ Post-wake measurement systolic blood pressure data SBP2
+ ... + Post-wake measurement systolic blood pressure data SBPm) / m
* However, m = 1, 2, 3, ...
(式2)
 起床後測定DBP平均=
  (起床後測定拡張期血圧データDBP1
   +起床後測定拡張期血圧データDBP2
   +…+起床後測定拡張期血圧データDBPm)/m
                ※ただし、m=1,2,3,…
(Formula 2)
DBP average after waking up =
(After wake-up measurement diastolic blood pressure data DBP1
+ Post-wake measurement diastolic blood pressure data DBP2
+ ... + diastolic blood pressure data DBPm after waking up) / m
* However, m = 1, 2, 3, ...
 ここで、起床後測定SBP平均>135mmHg、または、起床後測定DBP平均>85mmHgのとき、早朝高血圧であるとのリスクを判定することができる。なお、リスク判定の基準値は、たとえば、米国の血圧合同委員会の基準または日本高血圧学会の家庭血圧の血圧基準によるものであり、SBP(収縮期血圧)の基準は135mmHgおよびDBP(拡張期血圧)の基準は85mmHgである。 Here, when the measured SBP average after waking up> 135 mmHg, or the measured DBP average after waking up> 85 mmHg, the risk of early morning hypertension can be determined. The standard value for risk determination is based on, for example, the standard of the US Blood Pressure Joint Committee or the home blood pressure standard of the Japanese Society of Hypertension, and the standard of SBP (systolic blood pressure) is 135 mmHg and DBP (diastolic blood pressure). ) Is 85 mmHg.
 同様に、1週間分の就寝前の最後に測定した血圧値のデータを抽出し、就寝前測定SBP平均、就寝前測定DBP平均を算出することも可能である。また、脈拍数についても同様に算出することが可能である。 Similarly, it is also possible to extract blood pressure data measured at the end of one week before going to bed and calculate the measured SBP average before bedtime and the measured DBP average before bedtime. The pulse rate can be calculated in the same manner.
 また、以下の式3、式4に従い、就寝前の時間帯と起床直後の時間帯とに測定した血圧値の平均値(ME平均値)と、両者の差(ME差)とを算出することも可能である。 Moreover, according to the following formula | equation 3 and formula 4, the average value (ME average value) of the blood pressure value measured in the time slot | zone before bedtime and the time slot | zone immediately after getting up, and the difference (ME difference) of both are calculated. Is also possible.
(式3)
 ME平均=(起床後測定SBP平均+就寝前測定SBP平均)/2
(式4)
 ME差=起床後測定SBP平均-就寝前測定SBP平均
(Formula 3)
ME average = (measured SBP average after waking up + measured SBP average before going to bed) / 2
(Formula 4)
ME difference = average SBP measured after getting up-average SBP measured before going to bed
 例えば、ME差>20mmHgかつME平均>135mmHgのとき、早朝高血圧のうち特にモーニングサージが見られると判定することができる。 For example, when ME difference> 20 mmHg and ME average> 135 mmHg, it can be determined that morning surge is particularly observed in early morning hypertension.
 制御部250は、このようにして算出されたリスク指標を表示部251に表示し(ステップS526)、記録用メモリ253に記憶する(ステップS527)。 
 ここで表示または記憶するリスク指標は、図29(A)の画面構成図に示すように上述した起床後測定SBP平均などの指標値そのものとする、図29(B)の画面構成図に示すように判定基準との比較結果とする、あるいはその両方とすることができる。
The control unit 250 displays the risk index calculated in this way on the display unit 251 (step S526) and stores it in the recording memory 253 (step S527).
As shown in the screen configuration diagram of FIG. 29B, the risk index to be displayed or stored here is the index value itself such as the average SBP after waking up as described above as shown in the screen configuration diagram of FIG. 29A. The comparison result with the determination criterion can be used, or both.
 図29(A)に示すように指標値を表示する場合、表示部251には、朝の測定値の平均であることを示す朝平均マーク554、起床後測定SPB平均551、起床後測定DBP平均552、脈拍平均553、および測定日時556を表示するとよい。 
 また、図29(B)に示すように比較結果を表示する場合、さらにリスク表示マーク555を表示し、早朝高血圧であること等のリスクを記号や数値等でリスク判定結果として示すとよい。
When the index value is displayed as shown in FIG. 29A, the display unit 251 displays the morning average mark 554 indicating the average of morning measurement values, the SPB average 551 after waking up, and the DBP average after waking up. 552, pulse average 553, and measurement date 556 may be displayed.
When the comparison result is displayed as shown in FIG. 29B, a risk display mark 555 may be further displayed, and the risk such as early morning hypertension may be indicated as a risk determination result by a symbol or a numerical value.
 これらのリスク指標の算出には、複数のデータ(たとえば3データ以上)より算出することで、より正確なリスク判定が可能となる。そこで、リスク指標算出に必要なデータ数をあらかじめ決定しておき、抽出されたデータ数がそれに満たない場合(ステップS524:不足)、制御部250は、リスク指標を算出せず、リスク指標を算出できないメッセージを表示部251に表示する(ステップS528)。 These risk indicators can be calculated from a plurality of data (for example, three or more data), thereby enabling more accurate risk judgment. Therefore, the number of data necessary for calculating the risk index is determined in advance, and when the number of extracted data is less than that (step S524: insufficient), the control unit 250 calculates the risk index without calculating the risk index. A message that cannot be displayed is displayed on the display unit 251 (step S528).
 以上に説明したように、生体情報取得手段として生体の血圧を測定する血圧測定手段(血圧測定処理を行う制御部250)を備えた血圧計240は、生体状況情報取得手段としての体動情報取得手段(通信部255)により、別途の体動検出装置(体動検出装置110)により測定された体動情報(歩数データ)を取得する構成であり、状況別処理手段(ステップS521~S528を実行する制御部250)により、前記体動情報が所定条件を満たすとき(歩数データが計数され始めた時刻と計数されなくなった時刻)に測定した血圧値(起床時刻の血圧値と就寝時刻の血圧値)に基づいて疾患リスクに関連のある疾患リスク関連情報(起床後測定SBP平均、起床後測定DBP平均、早朝高血圧)を算出し該疾患リスク関連情報を前記出力情報として出力することにより、リスク指標を高精度で確実に算出することができる。 As described above, the sphygmomanometer 240 including the blood pressure measurement unit (the control unit 250 that performs the blood pressure measurement process) that measures the blood pressure of the living body as the biological information acquisition unit acquires the body motion information as the biological state information acquisition unit. The means (communication unit 255) obtains the body motion information (step count data) measured by the separate body motion detection device (body motion detection device 110), and executes the processing means according to the situation (steps S521 to S528). Blood pressure values measured when the body movement information satisfies a predetermined condition (the time when the step count data starts to be counted and the time when the step count data is not counted) (the blood pressure value at the rising time and the blood pressure value at the sleeping time). ) Based on the disease risk related information (post-wake-up measurement SBP average, post-wake-up measurement DBP average, early morning hypertension) By outputting the force information can be reliably calculated risk measures with high precision.
 利用者は、体動検出装置110のデータを利用するだけで、起床時の測定や就寝時の測定といったことを血圧計240に手入力する必要がないため、ヒューマンエラーを防止して生活パターンに応じた疾患リスクの判定を確実に行うことができる。 The user only needs to use the data of the body motion detection device 110 and does not need to manually input the measurement at the time of wakeup or the measurement at the time of going to the sphygmomanometer 240. It is possible to reliably determine the risk of the disease.
 なお、本実施例は血圧計240本体により生活パターンの解析およびリスク指標を算出するとしたが、これらの処理を血圧計240や体動検出装置110を接続可能なパーソナルコンピュータ550またはインターネット501等を介したサーバ150等のホストコンピュータで行ってもよい。この場合、パーソナルコンピュータ550上にリスク指標を表示する、あるいは血圧計240や体動検出装置110にリスク指標をダウンロードして血圧計240や体動検出装置110で表示するなど、適宜の方法でリスク指標を表示すると良い。 In this embodiment, the life pattern analysis and the risk index are calculated by the main body of the sphygmomanometer 240, but these processes are performed via the personal computer 550 or the Internet 501 that can be connected to the sphygmomanometer 240 and the body motion detection device 110. The host computer such as the server 150 may be used. In this case, the risk index is displayed on the personal computer 550, or the risk index is downloaded to the sphygmomanometer 240 or the body motion detection device 110 and displayed on the sphygmomanometer 240 or the body motion detection device 110. It is good to display an indicator.
 また、生活パターンの解析に用いるデータは、歩数データに限らず、活動量計としての体動検出装置110によって計測された活動量データや、サーバ150に保存されている個人のバイタルデータとしてもよい。この場合でも、生活パターンを解析することができ、ヒューマンエラーを防止した確実な疾患リスクの判定を行うことができる。 Further, the data used for the analysis of the life pattern is not limited to the step count data, but may be activity amount data measured by the body motion detection device 110 as an activity amount meter, or personal vital data stored in the server 150. . Even in this case, life patterns can be analyzed, and a reliable determination of disease risk can be performed while preventing human error.
 また、解析する生活パターンは、起床後、就寝前、またはこの両方としたが、これに限らず、運動、安静、またはこの両方とするなど、適宜のパターンとすることができる。 In addition, although the life pattern to be analyzed is set to be after waking up, before going to bed, or both, it is not limited thereto, and may be an appropriate pattern such as exercise, rest, or both.
 次に、生体情報取得装置の一種である血圧計について、利用者が血圧測定した場所毎に測定結果を比較して疾患リスクを算出する実施例7について説明する。 Next, for a sphygmomanometer, which is a type of biological information acquisition device, a description will be given of a seventh embodiment in which a disease risk is calculated by comparing measurement results for each place where a user measures blood pressure.
 血圧は、循環器疾患を解析する指標の一つである。血圧に基づいてリスク解析を行うことは、たとえば脳卒中や心不全や心筋梗塞などの心血管系の疾患の予防に有効である。特に、早朝に血圧が上昇する早朝高血圧は、心臓病や脳卒中などに関係している。 Blood pressure is one of the indices for analyzing cardiovascular diseases. Performing risk analysis based on blood pressure is effective in preventing cardiovascular diseases such as stroke, heart failure and myocardial infarction. In particular, early morning hypertension, in which blood pressure rises in the early morning, is related to heart disease and stroke.
 血圧は常に変動しており、その要因の一つとして精神的緊張がある。例えば、家庭で測定した血圧(家庭血圧)より医療機関で測定した血圧(診察室血圧)が高く測定される現象がある(白衣効果)。この白衣効果のなかでも、家庭血圧が正常値で診察室血圧が高血圧基準値以上となる現象は、白衣高血圧と分類される。白衣高血圧の患者は、診察室血圧によって降圧薬などの治療が行われるため、家庭で血圧が下がりすぎ、生活の質(QOL:Quality of Life)が低下することがある。 Blood pressure is constantly changing, and one of the factors is mental tension. For example, there is a phenomenon in which the blood pressure measured at a medical institution (examination room blood pressure) is measured higher than the blood pressure measured at home (home blood pressure) (white coat effect). Among these white coat effects, a phenomenon in which the home blood pressure is normal and the examination room blood pressure exceeds the hypertension reference value is classified as white coat hypertension. Since patients with white coat hypertension are treated with antihypertensive drugs by the examination room blood pressure, the blood pressure may drop too much at home, and the quality of life (QOL) may decrease.
 逆に、家庭血圧が高血圧基準値以上で診察室血圧が正常値となる現象は、仮面高血圧と分類される。仮面高血圧の患者は、診察室血圧が正常値となるために治療が行われず、高血圧が進行してしまうことがある。 Conversely, the phenomenon in which the home blood pressure is higher than the hypertension reference value and the examination room blood pressure is normal is classified as masked hypertension. Patients with masked hypertension may not be treated because the examination room blood pressure is normal, and hypertension may progress.
 また、家庭血圧が正常値で職場等のストレス下で測定した血圧が高血圧基準値以上となる現象は、ストレス下高血圧と分類される。このストレス下高血圧は、例えば職場の血圧が高い場合、職場高血圧とも呼ばれる。 In addition, a phenomenon in which the blood pressure measured under stress at the workplace or the like when the home blood pressure is normal is equal to or higher than the hypertension reference value is classified as hypertension under stress. This hypertension under stress is also referred to as workplace hypertension when, for example, the blood pressure at the workplace is high.
 これらの白衣高血圧、仮面高血圧、ストレス下高血圧は、後に循環器系疾患に発展することが判明している。 It has been found that these white coat hypertension, masked hypertension, and stressed hypertension develop later into cardiovascular diseases.
 したがって、家庭血圧、診察室血圧、ストレス下血圧をそれぞれ個々に判定することにあわせ、相互に比較することが重要である。 Therefore, it is important to compare the home blood pressure, the examination room blood pressure, and the blood pressure under stress individually with each other as well.
 従来は、家庭で測定した血圧を紙などに記載し、それを通院時に持参し、診察室血圧を比較するという手法がとられてきた。この場合、利用者が血圧計の値を間違えて記載する、血圧値が低くなるまで測定しその結果を記載する、などの要因によって、必ずしも正確な診断が行えないという問題があった(参考文献:「自己血圧測定値の信頼性」、大久保具明他、第18回血圧管理研究会抄録集、P.31、2006年)。 Conventionally, a method has been used in which blood pressure measured at home is recorded on paper, etc., brought to the hospital, and the blood pressure in the examination room is compared. In this case, there has been a problem that accurate diagnosis cannot always be performed due to factors such as the user incorrectly entering the value of the sphygmomanometer, measuring until the blood pressure value becomes low, and describing the result (references). : "Reliability of self-blood pressure measurement values", Tomoaki Okubo et al., 18th Blood Pressure Management Study Group Abstracts, P. 31, 2006).
 そこで、家庭血圧計に印字機能を搭載したものや(実開平4-60201)、血圧値の記憶部および表示部が血圧計本体から分離し、それを医療機関へ持参可能とする機能(特3832473号)などが発明されている。 Therefore, a home blood pressure monitor equipped with a printing function (Japanese Utility Model Laid-Open No. 4-60201), a blood pressure value storage unit and a display unit are separated from the main body of the blood pressure monitor and can be brought to a medical institution (Japanese Patent No. 3832473). No.) has been invented.
 しかし、これらの発明は、医療機関でなければ白衣効果、白衣高血圧、仮面高血圧を診断できないという欠点があった。 However, these inventions have the disadvantage that the lab coat effect, lab coat hypertension, and masked hypertension can only be diagnosed by a medical institution.
 また、職場などの外出先では持参しやすい手首式血圧計などの小型の血圧計で測定し、家庭では医療機関が推奨する上腕式血圧計で測定するといった血圧計の使い分けが行われることが良くある。 In addition, it is often used in different ways, such as measuring with a small sphygmomanometer such as a wrist sphygmomanometer that is easy to bring when going out of the office, etc., and measuring with a brachial sphygmomanometer recommended by medical institutions at home. is there.
 しかし、これらの血圧値により職場高血圧を診断するためには、2つの血圧計の記憶値を比較する必要があり、わずらわしい操作が必要であった。 However, in order to diagnose workplace hypertension using these blood pressure values, it was necessary to compare the memory values of the two sphygmomanometers, which required troublesome operations.
 このような問題点に対し、実施例7の血圧計240は、血圧を測定した時刻に利用者がいた場所(位置情報)を取得し、測定場所ごとの血圧値を比較表示することで上記問題点を解決することを目的としている。 For such a problem, the sphygmomanometer 240 according to the seventh embodiment acquires the place (position information) where the user was present at the time when the blood pressure was measured, and compares and displays the blood pressure value at each measurement place. The purpose is to solve the problem.
 図30は、システム構成の説明図である。この実施例7では、実施例6で説明した血圧計240およびサーバ150と、GPS装置602とを用いる。血圧計240およびサーバ150は、実施例6と同一であるため、その詳細な説明を省略する。 
 図30(A)は、循環器系疾患リスク算出システム600Aのシステム構成図である。
FIG. 30 is an explanatory diagram of a system configuration. In the seventh embodiment, the sphygmomanometer 240 and the server 150 described in the sixth embodiment and the GPS device 602 are used. Since the sphygmomanometer 240 and the server 150 are the same as those of the sixth embodiment, detailed description thereof is omitted.
FIG. 30A is a system configuration diagram of a cardiovascular disease risk calculation system 600A.
 循環器系疾患リスク算出システム600Aは、血圧計240に対して、インターネット501を通じてサーバ150が接続され、またGPS装置602が接続されている。GPS装置602は、図示省略するGPS衛星と通信して自己の位置情報を取得し、この位置情報データを血圧計240に送信する。 In the cardiovascular disease risk calculation system 600A, a server 150 is connected to the blood pressure monitor 240 through the Internet 501, and a GPS device 602 is connected. The GPS device 602 communicates with a GPS satellite (not shown) to acquire its own location information, and transmits this location information data to the sphygmomanometer 240.
 サーバ150の記憶部154(実施例1の図11参照)は、GPS装置602で測定された位置情報データ等が記憶されている。 The storage unit 154 (see FIG. 11 of the first embodiment) of the server 150 stores position information data and the like measured by the GPS device 602.
 なお、循環器系疾患リスク算出システム600Aの構成に限らず、図30(B)に示すように、パーソナルコンピュータ550を用いた循環器系疾患リスク算出システム600Bの構成としてもよい。この場合、パーソナルコンピュータ550に対して、サーバ150から位置情報データを送信し、血圧計240から血圧データを送信し、GPS装置602から位置情報データを送信して、パーソナルコンピュータ550が循環器系疾患リスクを算出する構成にすればよい。 Note that the configuration of the cardiovascular disease risk calculation system 600B is not limited to the configuration of the cardiovascular disease risk calculation system 600A, and a configuration of a cardiovascular disease risk calculation system 600B using a personal computer 550 may be used as shown in FIG. In this case, the position information data is transmitted from the server 150 to the personal computer 550, the blood pressure data is transmitted from the sphygmomanometer 240, the position information data is transmitted from the GPS device 602, and the personal computer 550 receives the cardiovascular disease. What is necessary is just to make the structure which calculates a risk.
 図31は、リスク指標表示処理を実行する制御部250の動作を示すフローチャートである。 
 なお、実施例7の制御部250は、実施例6で説明した全体動作(図25のステップS501~S506)、および血圧測定処理(図26のステップS511~S518)を実行するが、同一動作であるのでその詳細な説明を省略する。
FIG. 31 is a flowchart showing the operation of the control unit 250 that executes the risk index display process.
The control unit 250 of the seventh embodiment executes the overall operation described in the sixth embodiment (steps S501 to S506 in FIG. 25) and the blood pressure measurement process (steps S511 to S518 in FIG. 26). Therefore, detailed description thereof is omitted.
 制御部250は、血圧計240の指標スイッチ254cが押下されると、血圧計240に接続されたGPS装置602から利用者の位置情報データを取り込む(ステップS621)。 When the index switch 254c of the sphygmomanometer 240 is pressed, the control unit 250 takes in the user location information data from the GPS device 602 connected to the sphygmomanometer 240 (step S621).
 制御部250は、取得した位置情報データから、利用者が特定の場所にいた時間を抽出する(ステップS622)。この処理は次のようにして行う。 
 まず、本実施例では、特定の場所を医療機関および自宅とする。GPS装置602の位置情報は、時刻と経度・緯度が関連づけて記憶されている。そこで、この経度・緯度情報を元に利用者が医療機関または自宅にいた時刻を抽出する。経度・緯度よりその場所を特定するには、一般に公開されている地図情報により行えばよい。
The control unit 250 extracts the time that the user has been at a specific location from the acquired position information data (step S622). This process is performed as follows.
First, in this embodiment, a specific place is a medical institution and a home. The position information of the GPS device 602 is stored in association with time and longitude / latitude. Therefore, the time when the user was at the medical institution or home is extracted based on the longitude / latitude information. In order to identify the location based on the longitude and latitude, it is only necessary to use publicly available map information.
 制御部250は、特定の場所にいた時刻を抽出した後、各々の時刻で測定された血圧値を記録用メモリ253のデータから抽出する(ステップS623)。ここで、医療機関で測定された血圧値は、サーバ150等の所定のサーバに記録されており、このサーバから事前に血圧計240にダウンロードされて記録用メモリ253に記憶されている。 The control unit 250 extracts the blood pressure value measured at each time from the data in the recording memory 253 after extracting the time at the specific place (step S623). Here, the blood pressure value measured by the medical institution is recorded in a predetermined server such as the server 150, downloaded from the server in advance to the sphygmomanometer 240 and stored in the recording memory 253.
 抽出した血圧値のデータ数がリスク指標算出に十分である場合(ステップS624:満足)、制御部250は、リスク指標の算出を行う(ステップS625)。 
 このリスク指標は、図32のグラフに示すように分類する。
When the number of extracted blood pressure values is sufficient for calculating the risk index (Step S624: Satisfaction), the control unit 250 calculates the risk index (Step S625).
This risk index is classified as shown in the graph of FIG.
 詳述すると、家庭血圧の収縮期血圧をSBPhome、拡張期血圧をDBPhomeとし、診察室血圧の収縮期血圧をSBPoffice、拡張期血圧をDBPofficeとすると、白衣高血圧および仮面高血圧を次の式5、式6に示す条件により判定できる。 More specifically, assuming that the systolic blood pressure of the home blood pressure is SBPhome, the diastolic blood pressure is DBPhome, the systolic blood pressure of the examination room blood pressure is SBPoffice, and the diastolic blood pressure is DBPoffice, It can be determined according to the conditions shown in FIG.
(式5)
 白衣高血圧:
  [SBPhome<135mmHg]And[SBPoffice≧140mmHg],
   Or,[DBPhome<85mmHg]And[DBPoffice≧90mmHg]
(式6)
 仮面高血圧:
  [SBPhome≧135mmHg]And[SBPoffice<140mmHg],
   Or,[DBPhome≧85mmHg]And[DBPoffice<90mmHg]
(Formula 5)
White coat hypertension:
[SBPhome <135mmHg] And [SBPoffice ≧ 140mmHg],
Or, [DBPhome <85mmHg] And [DBPoffice ≧ 90mmHg]
(Formula 6)
Masked hypertension:
[SBPhome ≧ 135mmHg] And [SBPoffice <140mmHg],
Or, [DBPhome ≧ 85mmHg] And [DBPoffice <90mmHg]
 この判断基準は、「高血圧治療ガイドライン2009」(日本高血圧学会)に基づいている。 This criterion is based on “High Blood Pressure Treatment Guidelines 2009” (Japan Hypertension Society).
 白衣高血圧は、収縮期血圧が家庭測定時に135mmHgより低く診療室測定時に140mmHg以上である場合か、拡張期血圧が家庭測定時に85mmHgより低く診療室測定時に90mmHg以上である場合が該当する。 White coat hypertension corresponds to the case where the systolic blood pressure is lower than 135 mmHg at home measurement and 140 mmHg or higher at the clinic measurement, or the diastolic blood pressure is lower than 85 mmHg at home measurement and 90 mmHg or higher at the clinic measurement.
 仮面高血圧は、収縮期血圧が家庭測定時に135mmHg以上で診療室測定時に140mmHgより低い場合か、拡張期血圧が家庭測定時に85mmHg以上で診療室測定時に90mmHgより低い場合が該当する。 Masked hypertension corresponds to cases where the systolic blood pressure is 135 mmHg or higher at home measurement and lower than 140 mmHg at the clinic measurement, or diastolic blood pressure is 85 mmHg or higher at home measurement and lower than 90 mmHg at the clinic measurement.
 このように家庭血圧と診療室血圧との比較によって判定したリスク指標を、制御部250は、図33に示すように表示部251に表示し(ステップS626)、記録用メモリ253に記憶する(ステップS627)。 The control unit 250 displays the risk index determined by comparing the home blood pressure and the clinic blood pressure in this way on the display unit 251 as shown in FIG. 33 (step S626), and stores it in the recording memory 253 (step S626). S627).
 ここで表示部251に表示する内容は、図33(A)に示すようにリスク指標メッセージ656を表示する、あるいは図33(B)に示すようにリスク指標マーク654を表示するなど、適宜の方法により行うことができる。 Here, the content displayed on the display unit 251 is an appropriate method such as displaying the risk index message 656 as shown in FIG. 33A or displaying the risk index mark 654 as shown in FIG. Can be performed.
 なお、表示部251には、図示するように収縮期血圧(最高血圧)651、拡張期血圧(最低血圧)652、脈拍653、および測定日時655も表示するとよい。 The display unit 251 may also display a systolic blood pressure (maximum blood pressure) 651, a diastolic blood pressure (minimum blood pressure) 652, a pulse 653, and a measurement date 655 as shown in the figure.
 これらのリスク指標の算出には、複数のデータ(たとえば3データ以上)から算出することでより正確なリスク判定が可能となる。そこで、リスク指標算出に必要なデータ数をあらかじめ決定しておき、抽出されたデータ数がそれに満たない場合(ステップS624:不足)、制御部250は、リスク指標を算出せず、リスク指標を算出できないメッセージを表示する(ステップS628)。 In calculating these risk indicators, more accurate risk judgment can be made by calculating from a plurality of data (for example, three or more data). Therefore, the number of data necessary for calculating the risk index is determined in advance, and when the number of extracted data is less than that (step S624: insufficient), the control unit 250 calculates the risk index without calculating the risk index. A message that cannot be displayed is displayed (step S628).
 ここで、血圧値は、一日の中、曜日、季節などにより変動しているため、リスク指標算出に使用する血圧値は可能な限り近接した時刻のデータを使用することが望ましい。 Here, since the blood pressure value fluctuates depending on the day of the week, the day of the week, the season, etc., it is desirable to use data at times as close as possible for the blood pressure value used for risk index calculation.
 以上に説明したように、生体情報取得手段として生体の血圧を測定する血圧測定手段(血圧測定処理を行う制御部250)を備えた血圧計240は、生体状況情報取得手段としての位置情報取得手段(通信部255)により、血圧測定時の位置情報を取得し、状況別処理手段(ステップS621~S628を実行する制御部250)により、測定された複数の血圧情報を前記位置情報に基づく所定条件別(家庭血圧と診療室血圧)に分類し、該分類別に前記血圧情報を比較した結果に基づいて疾患リスクに関連のある疾患リスク関連情報(仮面高血圧および白衣高血圧)を算出し、該疾患リスク関連情報を出力情報として出力することにより、白衣高血圧や仮面高血圧といった循環器系疾患を確実に判定することができる。 As described above, the sphygmomanometer 240 including the blood pressure measurement unit (the control unit 250 that performs the blood pressure measurement process) that measures the blood pressure of the living body as the biological information acquisition unit is the position information acquisition unit as the biological state information acquisition unit. (Communication unit 255) acquires position information at the time of blood pressure measurement, and a plurality of pieces of blood pressure information measured by the situation-specific processing means (control unit 250 that executes steps S621 to S628) are determined based on the position information. Categorized into different categories (home blood pressure and clinic blood pressure) and calculated disease risk related information (masked hypertension and white coat hypertension) related to the disease risk based on the result of comparing the blood pressure information according to the category, and the disease risk By outputting the related information as output information, it is possible to reliably determine cardiovascular diseases such as white coat hypertension and masked hypertension.
 特に、位置情報を用いて測定環境(家庭や診療所や職場など)を自動判別し、血圧情報を測定環境別に自動分類できるため、手間がかからず正確に循環器系疾患を判定することができる。 In particular, the measurement environment (home, clinic, workplace, etc.) can be automatically identified using location information, and blood pressure information can be automatically classified by measurement environment, making it possible to accurately determine circulatory diseases without much effort. it can.
 なお、本実施例は血圧計240本体により特定の場所にいた時刻の抽出およびリスク指標を算出する構成としたが、これらの処理を血圧計240やGPS装置602を接続可能なパーソナルコンピュータ550またはインターネット501等を介したサーバ150等のホストコンピュータで行ってもよい。この場合、パーソナルコンピュータ550上にリスク指標を表示する、あるいは血圧計240やGPS装置602にリスク指標をダウンロードして血圧計240やGPS装置602で表示するなど、適宜の方法でリスク指標を表示すると良い。 In this embodiment, the sphygmomanometer 240 is configured to extract the time at a specific place and calculate the risk index. However, these processes are performed by a personal computer 550 to which the sphygmomanometer 240 or the GPS device 602 can be connected or the Internet. You may perform by host computers, such as the server 150 via 501 grade | etc.,. In this case, displaying the risk index on the personal computer 550 or downloading the risk index to the sphygmomanometer 240 or the GPS device 602 and displaying it on the sphygmomanometer 240 or the GPS device 602 will display the risk index by an appropriate method. good.
 また、位置情報の取得手段としてGPS装置602を用いたが、GPS装置602そのものとすることに限らず、GPS機能が組み込まれた体動検出装置110(歩数計や活動量計)などを用いてもよい。 Further, although the GPS device 602 is used as the position information acquisition means, the present invention is not limited to the GPS device 602 itself, and a body motion detection device 110 (pedometer or activity meter) incorporating a GPS function is used. Also good.
 また、携帯電話機220やPHSを位置情報取得手段とすることも可能である。携帯電話機220やPHSは、電源ONの状態で常に微小な電波を発信している。従って、この電波強度が最も強い基地局より位置情報を取得することも可能である。 Also, the mobile phone 220 or PHS can be used as the location information acquisition means. The mobile phone 220 and the PHS always transmit minute radio waves when the power is on. Therefore, it is possible to acquire position information from the base station having the strongest radio field intensity.
 また、職場での勤務時間情報、通院時のカルテ情報、交通機関の定期券・ICカードの利用情報などを元に位置情報を取得することも可能である。 It is also possible to obtain location information based on working hours information at work, medical chart information during hospital visits, transportation commuter pass / IC card usage information, etc.
 この発明の構成と、上述の実施形態との対応において、
この発明の体動測定装置は、実施形態の体動検出装置110に対応し、
以下同様に、
体動検出手段は、加速度検知部112に対応し、
体動測定時刻取得手段は、計時部119に対応し、
通信手段は、通信部134、通信部165、通信部255、および通信部272に対応し、
サーバ装置は、サーバ150に対応し、
体動情報取得手段および生体情報取得手段は、通信部155に対応し、
血糖測定装置は、血糖計160に対応し、
生体情報検出手段は、血糖測定部164、圧力センサ242、およびインピーダンス検知部283に対応し、
生体情報測定時刻取得手段は、計時部167、時計248、および計時部274に対応し、
血圧測定装置は、血圧計240に対応し、
体組成測定装置は、体組成計270に対応し、
生体情報測定装置は、生体情報測定装置H、血糖計160、血圧計240、体組成計270に対応し、
相対時刻調整手段は、ステップS6を実行する制御部161、制御部250、制御部279、およびステップS16を実行する制御部151に対応し、
属性判定手段は、ステップS8を実行する制御部161、制御部250、制御部279、およびステップS19を実行する制御部151に対応し、
体動情報は、体動検出装置データD1の加速度に対応し、
体動測定時刻情報は、体動検出装置データD1の測定時刻に対応し、
種類情報は、体動検出装置データD1、血糖計データD2、体組成計データD3、および血圧計データD4の機器種別情報に対応し、
生体情報測定時刻情報は、血糖計データD2、体組成計データD3、および血圧計データD4の測定時刻に対応し、
生体情報は、血糖、体組成、血圧に対応し、
生体情報の属性は、適切属性、不適切属性、早朝高血圧属性、白衣高血圧属性、および仮面高血圧属性に対応するが、
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
In correspondence between the configuration of the present invention and the above-described embodiment,
The body motion measuring device of the present invention corresponds to the body motion detecting device 110 of the embodiment,
Similarly,
The body motion detection means corresponds to the acceleration detection unit 112,
The body movement measurement time acquisition means corresponds to the timer unit 119,
The communication means corresponds to the communication unit 134, the communication unit 165, the communication unit 255, and the communication unit 272,
The server device corresponds to the server 150,
The body movement information acquisition unit and the biological information acquisition unit correspond to the communication unit 155,
The blood glucose measuring device corresponds to the blood glucose meter 160,
The biological information detection means corresponds to the blood glucose measurement unit 164, the pressure sensor 242, and the impedance detection unit 283,
The biological information measurement time acquisition unit corresponds to the timer unit 167, the clock 248, and the timer unit 274,
The blood pressure measurement device corresponds to the sphygmomanometer 240,
The body composition measuring device corresponds to the body composition meter 270,
The biological information measuring device corresponds to the biological information measuring device H, blood glucose meter 160, blood pressure meter 240, body composition meter 270,
The relative time adjusting means corresponds to the control unit 161 that executes step S6, the control unit 250, the control unit 279, and the control unit 151 that executes step S16.
The attribute determination unit corresponds to the control unit 161 that executes step S8, the control unit 250, the control unit 279, and the control unit 151 that executes step S19.
The body motion information corresponds to the acceleration of the body motion detection device data D1,
The body movement measurement time information corresponds to the measurement time of the body movement detection device data D1,
The type information corresponds to the device type information of body movement detection device data D1, blood glucose meter data D2, body composition meter data D3, and sphygmomanometer data D4,
The biological information measurement time information corresponds to the measurement time of the blood glucose meter data D2, the body composition meter data D3, and the sphygmomanometer data D4,
Biometric information corresponds to blood sugar, body composition, blood pressure,
The attributes of biometric information correspond to the appropriate attribute, inappropriate attribute, early morning hypertension attribute, white coat hypertension attribute, and masked hypertension attribute.
The present invention is not limited only to the configuration of the above-described embodiment, and many embodiments can be obtained.
 この発明は、歩数計、活動量計、血糖計、体組成計、および血圧計など、生体情報を取得する装置を用いる分野で用いることができる。例えば、家庭での健康管理、病院などの医療施設での健康管理、スポーツジムなどの健康施設での健康管理、リハビリテーション施設での健康管理、あるいは保育園や老人ホームなどの施設での健康管理など、様々な分野で用いることができる。 The present invention can be used in the field using a device for acquiring biological information, such as a pedometer, activity meter, blood glucose meter, body composition meter, and blood pressure meter. For example, health management at home, health management at a medical facility such as a hospital, health management at a health facility such as a gym, health management at a rehabilitation facility, or health management at a facility such as a nursery school or a nursing home, etc. It can be used in various fields.
1…生体情報測定システム、110…体動検出装置、112…加速度検知部、116…記憶部、119…計時部、134…通信部、150…サーバ、151…制御部、154…記憶部、155…通信部、160…血糖計、161…制御部、164…血糖測定部、165…通信部、166…記憶部、167…計時部、240…血圧計、242…圧力センサ、248…時計、250…制御部、253…記録用メモリ、255…通信部、270…体組成計、272…通信部、273…記憶部、274…計時部、279…制御部、283…インピーダンス検知部、H…生体情報測定装置、D1…体動検出装置データ、D2…血糖計データ、D3…体組成計データ、D4…血圧計データ DESCRIPTION OF SYMBOLS 1 ... Living body information measurement system, 110 ... Body motion detection apparatus, 112 ... Acceleration detection part, 116 ... Memory | storage part, 119 ... Time measuring part, 134 ... Communication part, 150 ... Server, 151 ... Control part, 154 ... Memory | storage part, 155 ... Communication unit 160 ... Blood glucose meter 161 ... Control unit 164 ... Blood glucose measurement unit 165 ... Communication unit 166 ... Storage unit 167 ... Timekeeping unit 240 ... Blood pressure monitor 242 ... Pressure sensor 248 ... Clock 250 ... Control part, 253 ... Recording memory, 255 ... Communication part, 270 ... Body composition meter, 272 ... Communication part, 273 ... Storage part, 274 ... Timer part, 279 ... Control part, 283 ... Impedance detection part, H ... Biological body Information measuring device, D1 ... body movement detecting device data, D2 ... blood glucose meter data, D3 ... body composition meter data, D4 ... sphygmomanometer data

Claims (13)

  1.  生体の体動に関する体動情報を取得する体動情報取得手段と、
    前記生体の生体情報を取得する生体情報取得手段と、
    前記体動情報に基づいて前記生体情報の属性を判定する属性判定手段とを備えた
    生体情報取得装置。
    Body movement information acquisition means for acquiring body movement information relating to body movement of a living body;
    Biological information acquisition means for acquiring biological information of the biological body;
    A biological information acquisition apparatus comprising: an attribute determination unit that determines an attribute of the biological information based on the body motion information.
  2.  前記体動を測定した時刻である体動測定時刻情報を取得する体動測定時刻取得手段と、
    前記生体情報を測定した時刻である生体情報測定時刻情報を取得する生体情報測定時刻取得手段とを備え、
    前記属性判定手段は、前記生体情報測定前の所定時間の体動情報が所定基準を満たすか否かにより前記生体情報の属性を判定する構成である
    請求項1記載の生体情報取得装置。
    Body movement measurement time acquisition means for acquiring body movement measurement time information which is a time when the body movement is measured;
    Biological information measurement time acquisition means for acquiring biological information measurement time information that is the time when the biological information was measured,
    The biological information acquisition apparatus according to claim 1, wherein the attribute determination unit is configured to determine an attribute of the biological information based on whether or not body motion information for a predetermined time before the biological information measurement satisfies a predetermined criterion.
  3.  前記体動測定時刻情報と、前記生体情報測定時刻情報とにズレがある場合、該ズレの時間分だけ前記体動情報測定時刻と生体情報測定時刻との相対時刻を調整して時間軸を一致させる相対時刻調整手段を備え、
    前記属性判定手段は、前記相対時刻調整手段により時間軸を一致させた上で前記体動情報に基づいて前記生体情報の属性を判定する構成である
    請求項2記載の生体情報取得装置。
    If there is a discrepancy between the body motion measurement time information and the biological information measurement time information, the relative time between the body motion information measurement time and the biological information measurement time is adjusted by the time of the discrepancy to match the time axes. A relative time adjusting means for
    The biological information acquisition apparatus according to claim 2, wherein the attribute determination unit is configured to determine an attribute of the biological information based on the body movement information after the time axes are matched by the relative time adjustment unit.
  4.  請求項1、2、または3記載の生体情報取得装置としてのサーバ装置と、
    生体の体動情報を検出する体動検出手段と該体動情報を送信する通信手段とを有する体動測定装置と、
    前記生体の生体情報を検出する生体情報検出手段と該生体情報を送信する通信手段とを有する複数種類の生体情報測定装置とを備えた生体情報取得システムであって、
    前記体動情報取得手段および前記生体情報取得手段は、前記サーバ装置に設けられて前記体動測定装置から前記体動情報を取得し前記生体情報測定装置から前記生体情報を取得する通信手段で構成され、
    前記属性判定手段は、
    前記生体情報測定装置の種類別に異なる属性判定条件が設定されている
    生体情報取得システム。
    A server device as the biological information acquisition device according to claim 1, 2, or 3;
    A body motion measuring device having body motion detecting means for detecting body motion information of a living body and communication means for transmitting the body motion information;
    A biological information acquisition system comprising a plurality of types of biological information measuring devices having biological information detecting means for detecting biological information of the biological body and communication means for transmitting the biological information,
    The body motion information acquisition unit and the biological information acquisition unit are configured by a communication unit that is provided in the server device and acquires the body motion information from the body motion measurement device and acquires the biological information from the body information measurement device. And
    The attribute determination means includes
    A biological information acquisition system in which different attribute determination conditions are set for each type of the biological information measuring device.
  5.  前記属性判定手段は、
    前記生体情報が体組成である場合、前記体動に基づいて判定する所定量以上の運動終了から所定時刻が経過していなければ当該生体情報が不適切属性であると判定する構成であり、
    前記生体情報が血圧である場合、前記体動に基づいて判定する所定量以上の運動終了から所定時刻が経過していなければ当該生体情報が不適切属性であると判定する構成であり、
    前記生体情報が血糖である場合、前記体動に基づいて判定する食事タイミングから所定時刻が経過していなければ当該生体情報が不適切属性であると判定する構成である
    請求項4記載の生体情報取得システム。
    The attribute determination means includes
    When the biometric information is a body composition, the biometric information is determined to be an inappropriate attribute if a predetermined time has not elapsed since the end of exercise of a predetermined amount or more determined based on the body motion.
    When the biological information is blood pressure, the biological information is determined to be an inappropriate attribute if a predetermined time has not elapsed since the end of the predetermined amount of exercise determined based on the body movement.
    The biometric information according to claim 4, wherein when the biometric information is blood glucose, the biometric information is determined to be an inappropriate attribute if a predetermined time has not elapsed since a meal timing determined based on the body movement. Acquisition system.
  6.  前記生体情報が血圧である場合、前記体動に基づいて家庭で測定した家庭血圧属性か、診療室で測定した診療室血圧属性かをさらに判定する構成である
    請求項4記載の生体情報取得システム。
    The biometric information acquisition system according to claim 4, wherein when the biometric information is blood pressure, the biometric information acquisition system is further configured to determine whether it is a home blood pressure attribute measured at home or a clinic blood pressure attribute measured in a clinic based on the body movement. .
  7.  前記生体情報が血圧である場合、前記生体情報が体組成である場合よりも小さい値の差で前記属性判定の結果が異なる構成である
    請求項6記載の生体情報取得システム。
    The biometric information acquisition system according to claim 6, wherein when the biometric information is blood pressure, the result of the attribute determination is different with a difference in value smaller than when the biometric information is body composition.
  8.  生体の体動に関する体動情報を取得する体動情報取得ステップと、
    前記生体の生体情報を取得する生体情報取得ステップと、
    前記体動情報に基づいて前記生体情報の属性を判定する属性判定ステップとを備えた
    生体情報取得方法。
    A body motion information acquisition step for acquiring body motion information relating to a body motion of a living body;
    A biological information acquisition step of acquiring biological information of the biological body;
    A biological information acquisition method comprising: an attribute determination step of determining an attribute of the biological information based on the body motion information.
  9.  生体の体動に関する体動情報を取得する体動情報取得ステップと、
    前記生体の生体情報を取得する生体情報取得ステップと、
    前記体動情報に基づいて前記生体情報の属性を判定する属性判定ステップと、
    判定した属性と前記生体情報とを表示する表示ステップとを備えた
    生体情報表示方法。
    A body motion information acquisition step for acquiring body motion information relating to a body motion of a living body;
    A biological information acquisition step of acquiring biological information of the biological body;
    An attribute determination step for determining an attribute of the biological information based on the body movement information;
    A biometric information display method comprising a display step of displaying the determined attribute and the biometric information.
  10.  生体の体動に関する体動情報を取得する体動情報取得手段と、
    前記生体の生体情報を取得する生体情報取得手段と、
    前記体動情報に基づいて前記生体情報の属性を判定する属性判定手段と、
    判定した属性と前記生体情報とを表示する表示手段とを備えた
    生体情報表示装置。
    Body movement information acquisition means for acquiring body movement information relating to body movement of a living body;
    Biological information acquisition means for acquiring biological information of the biological body;
    Attribute determination means for determining an attribute of the biological information based on the body movement information;
    A biological information display device comprising display means for displaying the determined attribute and the biological information.
  11.  生体の血糖値を検出する血糖検出手段と、該血糖値の血糖情報を記憶する記憶手段とを備えた血糖計であって、
    前記生体の体動情報を取得する体動情報取得手段と、
    前記体動情報が所定体動条件を満たすか否かによって前記血糖値の属性を判定する属性判定手段を備えた
    血糖計。
    A blood glucose meter comprising blood glucose detection means for detecting a blood glucose level of a living body and storage means for storing blood glucose information of the blood glucose level;
    Body movement information acquisition means for acquiring body movement information of the living body;
    A blood glucose meter comprising an attribute determination unit that determines an attribute of the blood glucose level based on whether or not the body motion information satisfies a predetermined body motion condition.
  12.  生体の体組成値を検出する体組成検出手段と、該体組成値の体組成情報を記憶する記憶手段とを備えた体組成計であって、
    前記生体の体動情報を取得する体動情報取得手段と、
    前記体動情報が所定体動条件を満たすか否かによって前記体組成値の属性を判定する属性判定手段を備えた
    体組成計。
    A body composition meter comprising body composition detection means for detecting a body composition value of a living body and storage means for storing body composition information of the body composition value,
    Body movement information acquisition means for acquiring body movement information of the living body;
    A body composition meter provided with attribute determination means for determining an attribute of the body composition value based on whether or not the body motion information satisfies a predetermined body motion condition.
  13.  生体の血圧値を検出する血圧検出手段と、該血圧値の血圧情報を記憶する記憶手段とを備えた血圧計であって、
    前記生体の体動情報を取得する体動情報取得手段と、
    前記体動情報が所定体動条件を満たすか否かによって前記血圧値の属性を判定する属性判定手段を備えた
    血圧計。
    A sphygmomanometer comprising blood pressure detection means for detecting a blood pressure value of a living body and storage means for storing blood pressure information of the blood pressure value;
    Body movement information acquisition means for acquiring body movement information of the living body;
    A sphygmomanometer comprising attribute determining means for determining an attribute of the blood pressure value based on whether or not the body motion information satisfies a predetermined body motion condition.
PCT/JP2010/052419 2009-02-19 2010-02-18 System for measuring biological information, method for measuring biological information, blood sugar meter, body composition meter and sphygmomanometer WO2010095675A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009036952 2009-02-19
JP2009-036952 2009-02-19

Publications (1)

Publication Number Publication Date
WO2010095675A1 true WO2010095675A1 (en) 2010-08-26

Family

ID=42633955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052419 WO2010095675A1 (en) 2009-02-19 2010-02-18 System for measuring biological information, method for measuring biological information, blood sugar meter, body composition meter and sphygmomanometer

Country Status (1)

Country Link
WO (1) WO2010095675A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121907A1 (en) * 2010-03-30 2011-10-06 テルモ株式会社 Blood glucose monitoring device and blood glucose monitoring method
JP2013217883A (en) * 2012-04-12 2013-10-24 Azbil Corp Detection result recording system of particle detector and detection result recording method of particle detector
JP2013236690A (en) * 2012-05-14 2013-11-28 Life Interface:Kk Extremity-attachable type biological information measuring device
WO2015174336A1 (en) * 2014-05-14 2015-11-19 オムロンヘルスケア株式会社 Blood pressure-related information display device and program
JP2017038844A (en) * 2015-08-21 2017-02-23 オムロンヘルスケア株式会社 Medical examination support device, medical examination support method, medical examination support program, and biological information measurement device
JP2019117599A (en) * 2017-12-27 2019-07-18 オムロンヘルスケア株式会社 Biological information processing device and processing method and processing program
CN111511277A (en) * 2017-12-27 2020-08-07 欧姆龙健康医疗事业株式会社 Information processing apparatus, information processing method, and information processing program
JPWO2020079784A1 (en) * 2018-10-17 2021-09-24 日本電気株式会社 Measuring equipment, control methods, and programs
JP6970481B1 (en) * 2021-09-04 2021-11-24 株式会社Arblet Information processing system, server, information processing method and program
WO2023190629A1 (en) * 2022-03-31 2023-10-05 株式会社タニタ Measurement system, measurement method, measurement program, and computer-readable non-transitory storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11221197A (en) * 1998-02-05 1999-08-17 Matsushita Electric Ind Co Ltd Hemadynamometer
JP2003061919A (en) * 2001-08-27 2003-03-04 Omron Corp Electronic sphygmomanometer and blood pressure measurement data processing system
JP2006122144A (en) * 2004-10-26 2006-05-18 Matsushita Electric Works Ltd Blood pressure measuring apparatus
JP2006239250A (en) * 2005-03-04 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> Sphygmomanometer and control method of sphygmomanometer
WO2007049174A1 (en) * 2005-10-24 2007-05-03 Philips Intellectual Property & Standards Gmbh System and method for determining the blood pressure of a patient
JP2007117434A (en) * 2005-10-28 2007-05-17 Matsushita Electric Ind Co Ltd Biological signal measurement evaluation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11221197A (en) * 1998-02-05 1999-08-17 Matsushita Electric Ind Co Ltd Hemadynamometer
JP2003061919A (en) * 2001-08-27 2003-03-04 Omron Corp Electronic sphygmomanometer and blood pressure measurement data processing system
JP2006122144A (en) * 2004-10-26 2006-05-18 Matsushita Electric Works Ltd Blood pressure measuring apparatus
JP2006239250A (en) * 2005-03-04 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> Sphygmomanometer and control method of sphygmomanometer
WO2007049174A1 (en) * 2005-10-24 2007-05-03 Philips Intellectual Property & Standards Gmbh System and method for determining the blood pressure of a patient
JP2007117434A (en) * 2005-10-28 2007-05-17 Matsushita Electric Ind Co Ltd Biological signal measurement evaluation system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206485A (en) * 2010-03-30 2011-10-20 Terumo Corp Blood glucose measuring device and blood glucose measuring method
WO2011121907A1 (en) * 2010-03-30 2011-10-06 テルモ株式会社 Blood glucose monitoring device and blood glucose monitoring method
JP2013217883A (en) * 2012-04-12 2013-10-24 Azbil Corp Detection result recording system of particle detector and detection result recording method of particle detector
JP2013236690A (en) * 2012-05-14 2013-11-28 Life Interface:Kk Extremity-attachable type biological information measuring device
WO2015174336A1 (en) * 2014-05-14 2015-11-19 オムロンヘルスケア株式会社 Blood pressure-related information display device and program
CN106572805A (en) * 2014-05-14 2017-04-19 欧姆龙健康医疗事业株式会社 Blood pressure-related information display device and program
CN108289608B (en) * 2015-08-21 2021-06-04 欧姆龙健康医疗事业株式会社 Diagnosis and treatment support device, biological information measurement method, recording medium, and biological information measurement device
JP2017038844A (en) * 2015-08-21 2017-02-23 オムロンヘルスケア株式会社 Medical examination support device, medical examination support method, medical examination support program, and biological information measurement device
WO2017033608A1 (en) * 2015-08-21 2017-03-02 オムロンヘルスケア株式会社 Diagnosis and treatment assistance device, diagnosis and treatment assistance method, diagnosis and treatment assistance program, and biological information measurement device
CN108289608A (en) * 2015-08-21 2018-07-17 欧姆龙健康医疗事业株式会社 Diagnosis and treatment auxiliary device, diagnosis and treatment householder method, diagnosis and treatment auxiliary program, biological information measurement device
US11694808B2 (en) 2015-08-21 2023-07-04 Omron Healthcare Co., Ltd. Diagnosis assistance apparatus, diagnosis assistance method, diagnosis assistance program, bodily information measurement apparatus
CN111511277A (en) * 2017-12-27 2020-08-07 欧姆龙健康医疗事业株式会社 Information processing apparatus, information processing method, and information processing program
JP7003654B2 (en) 2017-12-27 2022-02-10 オムロンヘルスケア株式会社 Biometric information processing equipment, processing methods, and processing programs
CN111511277B (en) * 2017-12-27 2023-04-18 欧姆龙健康医疗事业株式会社 Information processing apparatus, information processing method, and information processing program
JP2019117599A (en) * 2017-12-27 2019-07-18 オムロンヘルスケア株式会社 Biological information processing device and processing method and processing program
JPWO2020079784A1 (en) * 2018-10-17 2021-09-24 日本電気株式会社 Measuring equipment, control methods, and programs
JP7218759B2 (en) 2018-10-17 2023-02-07 日本電気株式会社 Measuring device, control method and program
JP6970481B1 (en) * 2021-09-04 2021-11-24 株式会社Arblet Information processing system, server, information processing method and program
JP2023037657A (en) * 2021-09-04 2023-03-16 株式会社Arblet Information processing system, server, information processing method, and program
WO2023190629A1 (en) * 2022-03-31 2023-10-05 株式会社タニタ Measurement system, measurement method, measurement program, and computer-readable non-transitory storage medium

Similar Documents

Publication Publication Date Title
WO2010095675A1 (en) System for measuring biological information, method for measuring biological information, blood sugar meter, body composition meter and sphygmomanometer
Mohammed et al. Systems and WBANs for controlling obesity
US10105101B2 (en) Methods, systems, and devices for optimal positioning of sensors
US11317814B2 (en) Systems and methods for collecting physiological information of a user
US20140142396A1 (en) Health Measurement Systems
CN104181809B (en) Intelligent wristwatch integrating pedometer function, electrocardiogram function and blood oxygen function
WO2016044685A1 (en) Cardiovascular monitoring device
US20090070046A1 (en) Method of measuring daily urinary excretion and apparatus for measuring daily urinary excretion
FI127952B (en) System and method for heart rate monitoring of an object
US20140324443A1 (en) Health Scoring Systems and Methods
EP4140402A1 (en) Blood pressure measurement method and electronic device
JP2014007533A (en) Wanderer position management system
WO2009147837A1 (en) Health management apparatus
CN115295141A (en) Chronic disease management service system
JP6142266B2 (en) Health management system and activity meter
US20190038174A1 (en) Device for detecting body fluid balance and/or electrolyte balance
JP3768436B2 (en) Blood glucose level measuring device
Vashist et al. Wearable technologies for personalized mobile healthcare monitoring and management
JP2005342121A (en) Measurement informing system, biometric device, and mobile terminal
EP3549519A1 (en) Method and apparatus for monitoring a subject
KR20160080810A (en) Personalized calorie management system
WO2013163627A1 (en) Health measurement systems
CN110167435B (en) User terminal device and data transmission method
JP2022011919A (en) Biological information providing device, biological information providing method, and biological information providing program
US20210196206A1 (en) Systems and methods for sepsis risk evaluation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP