WO2010093040A1 - モーションブラー制御装置、方法、及びプログラム - Google Patents
モーションブラー制御装置、方法、及びプログラム Download PDFInfo
- Publication number
- WO2010093040A1 WO2010093040A1 PCT/JP2010/052209 JP2010052209W WO2010093040A1 WO 2010093040 A1 WO2010093040 A1 WO 2010093040A1 JP 2010052209 W JP2010052209 W JP 2010052209W WO 2010093040 A1 WO2010093040 A1 WO 2010093040A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motion blur
- frame
- inter
- blur
- amount
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 23
- 238000011156 evaluation Methods 0.000 claims abstract description 53
- 238000012937 correction Methods 0.000 claims abstract description 26
- 238000012545 processing Methods 0.000 claims description 25
- 230000009466 transformation Effects 0.000 claims description 6
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 5
- 230000006870 function Effects 0.000 description 25
- 238000004364 calculation method Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000003702 image correction Methods 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 230000010365 information processing Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
- G06T5/75—Unsharp masking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/681—Motion detection
- H04N23/6811—Motion detection based on the image signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/682—Vibration or motion blur correction
- H04N23/683—Vibration or motion blur correction performed by a processor, e.g. controlling the readout of an image memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20201—Motion blur correction
Definitions
- the present invention relates to an apparatus, method, and program for controlling motion blur in moving images.
- GPU Graphics Processing Unit
- the GPU is also mounted on a general PC and can perform high-speed computation by parallel processing.
- the processing performance of the GPU, particularly the floating point arithmetic performance, may be 10 times or more that of the CPU.
- Non-Patent Document 1 “The stabilization of video images using a GPU” is disclosed as a blur correction technique using a GPU by the present inventors (see Non-Patent Document 1).
- the technique described in Non-Patent Document 1 uses the BFGS (quasi-Newton) algorithm to estimate video motion based on the estimated global motion when estimating global motion using affine transformation. To do.
- BFGS quadsi-Newton
- a patent application for Japanese Patent Application No. 2008-162477 (filed on Jun. 20, 2008) has been filed as an improvement technique for global motion estimation using the BFGS method.
- Motion blur is “smear” that occurs based on the movement of the camera within the exposure time, and is based on the amount of movement within one frame and cannot be removed by global motion correction.
- the frame interval is constant, but the exposure time (charge accumulation time) varies depending on the brightness of the shooting area. For example, the exposure time is short when it is bright, and the exposure time is long when it is dark. Therefore, the exposure time changes for each frame according to the brightness. Since the amount of motion blur depends on the exposure time, the amount of motion blur is not constant even if the shooting area moves at a constant speed.
- the present invention solves the above-described problems, and provides a motion blur control technology that performs high-speed and accurate control and reduction of motion blur of each frame in a moving image based on the moving direction calculated by global motion estimation.
- the purpose is to provide.
- a motion blur control device is a motion blur control device that controls motion blur of a predetermined frame image among a plurality of frame images acquired at predetermined time intervals, Inter-frame movement calculating means for calculating an inter-frame movement direction and an inter-frame movement amount from a plurality of frame images acquired at predetermined time intervals, a blur amount set within a range not exceeding the inter-frame movement amount, and the frame Based on the movement direction, motion blur correction means for correcting a motion blur of the predetermined frame image among the plurality of frame images to generate a corrected frame image, and evaluating the corrected frame image by a motion blur evaluation function And the motion blur evaluation function satisfies a predetermined condition. And controlling the blur amount as.
- the motion blur control method is a motion blur control method for controlling motion blur of a predetermined frame image among a plurality of frame images acquired at a predetermined time interval, and is acquired at a predetermined time interval. Based on the step of calculating the inter-frame movement direction and the inter-frame movement amount from a plurality of frame images, the blur amount set within a range not exceeding the inter-frame movement amount, and the inter-frame movement direction. Correcting a motion blur of the predetermined frame image of the frame image to generate a corrected frame image; and evaluating the corrected frame image with a motion blur evaluation function, wherein the motion blur evaluation function is a predetermined The blur amount is controlled so as to satisfy the following condition.
- the motion blur control program is a motion blur control program for controlling motion blur of a predetermined frame image among a plurality of frame images acquired at a predetermined time interval.
- An inter-frame movement calculating means for calculating an inter-frame movement direction and an inter-frame movement amount from a plurality of acquired frame images, a blur amount set within a range not exceeding the inter-frame movement amount, and the inter-frame movement direction Based on the motion blur correction means for correcting a motion blur of the predetermined frame image among the plurality of frame images to generate a corrected frame image, and an evaluation means for evaluating the corrected frame image by a motion blur evaluation function.
- the motion blur evaluation function is predetermined A motion blur control program and controls the blur amount to satisfy the condition.
- the motion blur correction means comprises an unsharp mask setting means for setting an unsharp mask based on a blur amount set in a range not exceeding the inter-frame movement amount and the inter-frame movement direction, An unsharp processing means for generating a corrected frame image by correcting motion blur of the predetermined frame image based on the unsharp mask may be provided.
- the motion blur correction unit performs a deconvolution operation based on a blur amount set within a range not exceeding the inter-frame movement amount and the inter-frame movement direction, thereby performing motion of the predetermined frame image. It is possible to correct the blur and generate a corrected frame image.
- the inter-frame movement calculating means estimates a global motion between the plurality of frame images based on an affine transformation parameter including a parallel movement amount and a rotational movement amount, and calculates the inter-frame movement direction and the The amount of movement between frames can be calculated.
- the above affine transformation parameters can further include image magnification.
- the plurality of frame images according to the present invention can be frame images constituting a moving image.
- the blur amount is changed, the correction by the motion blur correction unit and the evaluation by the evaluation unit are repeated, and the motion blur of the predetermined frame image is repeated. Can be reduced.
- the correction by the motion blur correction unit and the evaluation by the evaluation unit can be repeated until the motion blur evaluation function reaches the maximum value or the minimum value.
- the motion blur evaluation function E according to the present invention can be given by the following equation.
- I (x, y) is the pixel value of the coordinates (x, y) of the evaluation target image.
- the present invention can control and reduce motion blur at a high speed and with the above configuration.
- the movement direction (parallel movement, rotational movement) between frames can be calculated by the global motion estimation technique which is the conventional technique of the present inventor.
- the present invention can estimate the direction of motion blur within a frame by using this inter-frame movement direction, and can efficiently control motion blur within a frame by using this information.
- the global motion estimation technology can also calculate the amount of movement between frames, the motion blur within one frame is determined by the exposure time of one frame, so there is little correlation between the amount of movement between frames and the amount of motion blur within one frame. . Therefore, until the motion blur evaluation function satisfies the specified condition, the blur amount set within the range that does not exceed the amount of movement between frames is changed, and motion blur correction and evaluation using the motion blur evaluation function are repeated to optimize It is necessary to calculate the amount of motion blur.
- the blur amount (movement distance) L is a one-dimensional amount.
- the time interval between the plurality of frame images in the present invention is arbitrary, but is preferably an adjacent frame in a moving image.
- the present invention is not limited to moving images, and can be applied to a plurality of frame images taken at a predetermined time interval.
- motion blur can be reduced by acquiring a plurality of frame images for one shutter operation with a digital camera or the like.
- program according to the present invention can be provided by being stored in a computer-readable recording medium.
- the present invention can control and reduce motion blur of each frame in a moving image with high speed and accuracy based on the moving direction calculated by global motion estimation.
- FIG. 1 is a block diagram of an image correction apparatus according to an embodiment of the present invention. It is explanatory drawing of an unsharp mask. It is a figure which shows the example of the unsharp mask in 9 pixels. It is a figure which shows the example of the unsharp mask in 9 pixels. It is a figure which shows the example of the kernel H of an unsharp mask. It is explanatory drawing of the global motion estimation between frames. It is explanatory drawing of the global motion estimation between frames. It is a figure which shows the example of the line drawing by the algorithm of XiaolinuWu. It is a flowchart of motion blur removal. It is a figure which shows a motion blur removal result (left figure: before removal, right figure: after removal). It is a figure which shows the blur removal result by a deconvolution calculation.
- FIG. 1 is a block diagram showing a configuration of an image correction apparatus according to an embodiment of the present invention.
- the image correction apparatus includes a camera 10 that captures an image of a subject and generates an image, and an image processing apparatus 20 that performs image processing so as to eliminate blurring of the image generated by the camera 10.
- the image processing apparatus 20 includes an input / output port 21 that exchanges signals with the camera 10, an arithmetic processing circuit 22 that performs arithmetic processing, a hard disk drive 23 that stores images and other data, and an arithmetic processing circuit 22.
- a ROM (Read Only Memory) 24 that stores the control program
- a RAM (Random Access Memory) 25 that is a data work area.
- the arithmetic processing circuit 22 When the arithmetic processing circuit 22 receives a moving image from the camera 10 via the input / output port 21, the arithmetic processing circuit 22 determines the moving direction and moving amount (global motion) of the camera 10 for each frame from each frame image constituting the moving image. Ask. The arithmetic processing circuit 22 performs vibration correction of each frame image based on the global motion between frames, and controls and removes motion blur based on the movement direction between frames.
- the calculation of the evaluation function, the deconvolution calculation, the unsharp mask generation, and the like in this embodiment are suitable for parallel calculation, and a part of the calculation is speeded up by calculating with a GPU (graphic processor). be able to.
- ⁇ Motion blur removal> Methods for removing motion blur in an image include deconvolution using Fourier transform, sharpening using an unsharp mask, and the like. Both methods remove motion blur by knowing the camera movement during the exposure time.
- ⁇ is a convolution operator.
- G (u) is the discrete Fourier transform of the blur-added image g (x)
- F (u) is the discrete Fourier transform of the blur-removed image f (x)
- the discrete Fourier is PSF (PointhSpread Function) h (x)
- Deconvolution The simplest method is to perform conditional branching when A is an arbitrary constant and the denominator is 0, and use the following formula.
- the calculation formula is simple and can be calculated relatively quickly, but A is an arbitrary constant, and the calculation may be inaccurate.
- Wiener filter Wiener filter is a technique for avoiding the denominator becoming zero by putting a very small value in the denominator. Using the appropriate constant ⁇ (noise), calculate with the following formula.
- H (u) bar (the one with a bar above H) is a complex conjugate of H (u).
- Wiener filter has a simple calculation formula and can be calculated relatively quickly. However, it is assumed that the noise ⁇ is constant, and the calculation may become unstable.
- Richardson-Lucy Deconvolution uses Bayes' theorem and calculates with the following formula.
- Iterative Back Projection eliminates division from the calculation formula and uses the following formula.
- the unsharp mask is a sharpening filter for obtaining a difference between an original image and an unsharp (smoothed) image.
- an unsharp mask using nine peripheral pixels is shown in FIGS. 3A and 3B.
- sharpening corresponding to the motion blur direction is performed by giving directionality to the unsharp and as shown in FIG. 3B.
- the mask used for PSF or unsharp mask is kernel H
- the kernel is as shown in FIG. 4, for example.
- the moving direction of the camera is a straight line or a curve from the global motion that has already been obtained, and the speed is increased by iteratively estimating only one variable for the moving distance (blur amount) L of the camera.
- the moving distance L of the camera is the length of the white line.
- the linear movement direction of the camera or, in order to assume a curve in the moving image, a previous frame image I n-1, the current frame image I n, one after the frame image as I n + 1, with estimates the motion between I n-1 and I n, and estimates the motion between I n and I n + 1. From these two motion, it can be estimated motion when the I n, thereby blur direction estimation in the current frame image I n independent in all pixels. (See FIGS. 5 and 6)
- the Xiaolin Wu algorithm that can perform anti-aliasing is used to create lines (straight lines, curves) that indicate the direction of camera movement. If a line is created on an image having pixels of a finite size, jaggedness (jaggy) due to the size of the pixel occurs. In order to reduce the influence of this jaggy, the value of the pixel located in the jagged (jaggy) portion around the line is set to an intermediate gradation corresponding to the distance from the center of the line. This is called “anti-aliasing” (see FIG. 7). By doing this, it is possible to perform the calculation smoothly even with respect to the calculation below the pixel size.
- I n (x, y) is the x in the frame image, the pixel values in the y-coordinate (luminance value).
- a correction frame image I ′ n (x, y, L n ) is generated by performing the above-described convolution calculation and unsharp masking according to the blur amount (movement distance) L n , and the following (1) Evaluation is performed by a motion blur evaluation function E expressed by an expression.
- This motion blur evaluation function E calculates the third-order difference in the X direction and Y direction of a certain pixel for the evaluation target image I (x, y) and integrates it over the entire image.
- Is a function that represents w and h are the width and height (number of pixels) of the motion blur evaluation range of the image to be evaluated, respectively.
- the motion blur evaluation range may be the entire image or only a part of the image.
- the final value is obtained by repeatedly estimating the blur amount L n.
- Optimal L n can be obtained.
- the blur amount L n is normalized so that the frame interval time is 1, and is repeatedly estimated in the range of 0 to 1.
- the iterative estimation of the blur amount L n does not need to be continued until E reaches the maximum value, and may be stopped when an appropriate condition is satisfied.
- the unsharp mask is not required to be as accurate as the PSF of the deconvolution operation.
- the Brent method that can limit the search range with one variable is used.
- the Brent method is described in “Numerical Recipes in C ++”, Cambridge University Press, W.H.Press, S.A.Teukolsky and W. T. Vetterling and B. P.Flannery, 2002.
- evaluation function of the above formula (1) is not limited to a moving image. Further, the evaluation function of the above expression (1) can be used alone for searching without limiting the search range using global motion.
- motion blur removal which is a feature of the present invention is then performed.
- Figure 9 shows the flow chart for motion blur removal.
- L is a ratio of the amount of motion blur to the amount of movement between frames, and corresponds to (1 frame exposure time) / (interframe time).
- the initial value to be set is not particularly limited. However, since the exposure time does not change greatly from frame to frame, L obtained by removing motion blur from the previous frame is preferably used as the initial value.
- the motion blur corresponding to the blur amount L is removed using the above-described deconvolution calculation or unsharp mask.
- Fig. 10 shows the result of blur removal by the deconvolution operation.
- the left figure in FIG. 10 is an image before removing motion blur
- the right figure in FIG. 10 is an image after removing motion blur.
- the present invention is not limited to this. Depending on the application, it may be better to leave a little motion blur, so the blur amount L may be set to a value shifted from the optimum value. In that case, the motion blur evaluation function E is used to determine the blur amount L at which E deviates from the maximum value by a predetermined percentage. This can be used when motion blur is added to emphasize the movement.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Studio Devices (AREA)
- Image Processing (AREA)
Abstract
Description
図1は、本発明の実施の形態に係る画像補正装置の構成を示すブロック図である。画像補正装置は、被写体を撮像して画像を生成するカメラ10と、カメラ10で生成された画像のぶれをなくすように画像処理を行う画像処理装置20と、を備えている。
画像内のモーションブラーを除去する手法としては、フーリエ変換を使用した逆畳み込み演算や、アンシャープマスクなどを使用した先鋭化などがある。いずれの手法も、露光時間中のカメラの動きを知ることによってモーションブラーを除去する。
g(x)をブラー付加画像、f(x)をブラー除去画像、h(x)をPSF(Point Spread Function)とすると、ブラーのない画像から得られるブラー付加画像は
もっとも単純な手法としては、Aを任意の定数として分母が0になる場合は条件分岐を行い、以下の式を用いる。
Wiener filterとは、分母に非常に小さい値を入れて分母が0になることを回避する手法である。適切な定数Γ(ノイズ)を用いて、以下の式で計算する。
Richardson-Lucy Deconvolutionは、ベイズの定理を用い、以下の式で計算する。
Iterative Back Projectionは、計算式内から除算を排除し、以下の式を用いる。
アンシャープマスクは図2のように、元映像とアンシャープ(平滑化した)な画像との差分を求める先鋭化フィルタである。例として、周辺9ピクセルを利用したアンシャープマスクを図3A、図3Bに示した。
モーションブラーを除去のためには、逆畳み込み演算に使用するPSFや、アンシャープマスクに使用する平滑化画像を、最適に作成する必要がある。
すでに求められているグローバルモーションから、カメラの移動方向を直線、または、曲線であるものと仮定し、カメラの移動距離(ブラー量)Lについての1変数のみの反復推定を行うことで、高速化、高精度化を図る。カーネルH(図4)において、カメラの移動距離Lは白線の長さとなる。
n番目のフレーム画像の元の画像をIn(x,y)とする。ここで、In(x,y)は、フレーム画像中のx,y座標における画素値(輝度値等)である。これに、ブラー量(移動距離)Lnに応じた上述の畳み込み演算やアンシャープマスクを行うことにより、補正フレーム画像I’n(x,y,Ln)を生成し、以下の(1)式で表されるモーションブラー評価関数Eにより評価を行う。
全体のフロー図を図8に示す。
上記の実施形態では、ブラー量Lの最適値を求めて、モーションブラーを低減・除去する実施形態について説明したが、これに限定されるものではない。用途によってはモーションブラーを少し残しておいた方が良いことがあるので、ブラー量Lを最適値からずらした値に設定しても良い。その場合には、モーションブラー評価関数Eを用いて、Eが最大値から所定割合ずれた値になるブラー量Lを求める。動きを強調するためにあえてモーションブラーを付与するような場合に用いることができる。
Claims (11)
- 所定時間間隔で取得された複数のフレーム画像の中の所定フレーム画像のモーションブラーを制御するモーションブラー制御装置であって、
所定時間間隔で取得された複数のフレーム画像からフレーム間移動方向及びフレーム間移動量を算出するフレーム間移動算出手段と、
前記フレーム間移動量を超えない範囲で設定されたブラー量と、前記フレーム間移動方向とに基づいて、前記複数のフレーム画像のうち前記所定フレーム画像のモーションブラーを補正して補正フレーム画像を生成するモーションブラー補正手段と、
前記補正フレーム画像をモーションブラー評価関数により評価する評価手段と、を有し、
前記モーションブラー評価関数が所定の条件を満たすように前記ブラー量を制御する、
ことを特徴とするモーションブラー制御装置。 - 前記モーションブラー補正手段は、
前記フレーム間移動量を超えない範囲で設定されたブラー量と、前記フレーム間移動方向とに基づいて、アンシャープマスクを設定するアンシャープマスク設定手段と、
前記アンシャープマスクに基づいて、前記所定フレーム画像のモーションブラーを補正して補正フレーム画像を生成するアンシャープ処理手段と、を有する
ことを特徴とする請求項1記載のモーションブラー制御装置。 - 前記モーションブラー補正手段は、
前記フレーム間移動量を超えない範囲で設定されたブラー量と、前記フレーム間移動方向とに基づいて、逆畳み込み演算を行うことにより前記所定フレーム画像のモーションブラーを補正して補正フレーム画像を生成する、
ことを特徴とする請求項1記載のモーションブラー制御装置。 - 前記フレーム間移動算出手段は、平行移動量と回転移動量とを含んだアフィン変換パラメータに基づいて、前記複数のフレーム画像間のグローバルモーションを推定して、前記フレーム間移動方向と前記フレーム間移動量とを算出する、
ことを特徴とする請求項1~3いずれか記載のモーションブラー制御装置。 - 前記アフィン変換パラメータは、画像の倍率を更に含んでいる、
ことを特徴とする請求項4記載のモーションブラー制御装置。 - 前記複数のフレーム画像は、動画像を構成するフレーム画像である、
ことを特徴とする請求項1~5いずれか記載のモーションブラー制御装置。 - 前記モーションブラー評価関数が前記所定の条件を満たすまで、前記ブラー量を変化させて、前記モーションブラー補正手段による補正と前記評価手段による評価とを繰り返して、前記所定フレーム画像のモーションブラーを低減する、
ことを特徴とする請求項1~6いずれか記載のモーションブラー制御装置。 - 前記モーションブラー評価関数が最大値または最小値になるまで前記モーションブラー補正手段による補正と前記評価手段による評価とを繰り返す、
ことを特徴とする請求項7記載のモーションブラー制御装置。 - 所定時間間隔で取得された複数のフレーム画像の中の所定フレーム画像のモーションブラーを制御するモーションブラー制御方法であって、
所定時間間隔で取得された複数のフレーム画像からフレーム間移動方向及びフレーム間移動量を算出するステップと、
前記フレーム間移動量を超えない範囲で設定されたブラー量と、前記フレーム間移動方向とに基づいて、前記複数のフレーム画像のうち前記所定フレーム画像のモーションブラーを補正して補正フレーム画像を生成するステップと、
前記補正フレーム画像をモーションブラー評価関数により評価するステップと、を有し、
前記モーションブラー評価関数が所定の条件を満たすように前記ブラー量を制御する、
ことを特徴とするモーションブラー制御方法。 - 所定時間間隔で取得された複数のフレーム画像の中の所定フレーム画像のモーションブラーを制御するモーションブラー制御プログラムであって、
コンピュータを、
所定時間間隔で取得された複数のフレーム画像からフレーム間移動方向及びフレーム間移動量を算出するフレーム間移動算出手段、
前記フレーム間移動量を超えない範囲で設定されたブラー量と、前記フレーム間移動方向とに基づいて、前記複数のフレーム画像のうち前記所定フレーム画像のモーションブラーを補正して補正フレーム画像を生成するモーションブラー補正手段、及び
前記補正フレーム画像をモーションブラー評価関数により評価する評価手段
として機能させ、
前記モーションブラー評価関数が所定の条件を満たすように前記ブラー量を制御する、
ことを特徴とするモーションブラー制御プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010550568A JP5388072B2 (ja) | 2009-02-13 | 2010-02-15 | モーションブラー制御装置、方法、及びプログラム |
US13/201,439 US8620100B2 (en) | 2009-02-13 | 2010-02-15 | Motion blur device, method and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-031418 | 2009-02-13 | ||
JP2009031418 | 2009-02-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010093040A1 true WO2010093040A1 (ja) | 2010-08-19 |
Family
ID=42561881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/052209 WO2010093040A1 (ja) | 2009-02-13 | 2010-02-15 | モーションブラー制御装置、方法、及びプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US8620100B2 (ja) |
JP (1) | JP5388072B2 (ja) |
WO (1) | WO2010093040A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021039842A1 (ja) * | 2019-08-28 | 2021-03-04 | 株式会社朋栄 | 映像の安定化及びモーションブラー除去処理方法とその装置 |
JPWO2021106499A1 (ja) * | 2019-11-29 | 2021-06-03 | ||
JP2021528795A (ja) * | 2019-04-22 | 2021-10-21 | シェンチェン センスタイム テクノロジー カンパニー リミテッドShenzhen Sensetime Technology Co.,Ltd | ビデオ画像処理方法及び装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8428390B2 (en) * | 2010-06-14 | 2013-04-23 | Microsoft Corporation | Generating sharp images, panoramas, and videos from motion-blurred videos |
US9036936B2 (en) * | 2011-06-20 | 2015-05-19 | Fujifilm Corporation | Image processing device, image processing method, and image processing program |
KR101804215B1 (ko) * | 2012-03-06 | 2017-12-05 | 삼성전자주식회사 | 강건하게 비균일 모션 블러를 추정하는 방법 및 장치 |
CN107623816A (zh) * | 2013-10-09 | 2018-01-23 | 佳能株式会社 | 图像处理设备、图像拾取设备以及图像处理方法 |
KR102328029B1 (ko) * | 2021-06-02 | 2021-11-17 | 아주대학교산학협력단 | 블러 이미지 처리 방법 및 장치 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007183842A (ja) * | 2006-01-10 | 2007-07-19 | Tokyo Institute Of Technology | 画像復元フィルタ及びそれを用いた画像復元方法 |
JP2007305113A (ja) * | 2006-04-11 | 2007-11-22 | Matsushita Electric Ind Co Ltd | 画像処理方法および画像処理装置 |
WO2009019848A1 (ja) * | 2007-08-03 | 2009-02-12 | Panasonic Corporation | 撮影装置、撮影方法、およびプログラム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6847406B2 (en) * | 2000-12-06 | 2005-01-25 | Koninklijke Philips Electronics N.V. | High quality, cost-effective film-to-video converter for high definition television |
US8233710B2 (en) * | 2005-07-14 | 2012-07-31 | Nikon Corporation | Image processing device and image processing method |
US7957610B2 (en) | 2006-04-11 | 2011-06-07 | Panasonic Corporation | Image processing method and image processing device for enhancing the resolution of a picture by using multiple input low-resolution pictures |
JP5213670B2 (ja) * | 2008-01-16 | 2013-06-19 | 三洋電機株式会社 | 撮像装置及びぶれ補正方法 |
US20110135206A1 (en) | 2008-06-20 | 2011-06-09 | National University Corporation Shizuoka Universit | Motion Extraction Device and Program, Image Correction Device and Program, and Recording Medium |
-
2010
- 2010-02-15 US US13/201,439 patent/US8620100B2/en not_active Expired - Fee Related
- 2010-02-15 WO PCT/JP2010/052209 patent/WO2010093040A1/ja active Application Filing
- 2010-02-15 JP JP2010550568A patent/JP5388072B2/ja not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007183842A (ja) * | 2006-01-10 | 2007-07-19 | Tokyo Institute Of Technology | 画像復元フィルタ及びそれを用いた画像復元方法 |
JP2007305113A (ja) * | 2006-04-11 | 2007-11-22 | Matsushita Electric Ind Co Ltd | 画像処理方法および画像処理装置 |
WO2009019848A1 (ja) * | 2007-08-03 | 2009-02-12 | Panasonic Corporation | 撮影装置、撮影方法、およびプログラム |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021528795A (ja) * | 2019-04-22 | 2021-10-21 | シェンチェン センスタイム テクノロジー カンパニー リミテッドShenzhen Sensetime Technology Co.,Ltd | ビデオ画像処理方法及び装置 |
JP7123256B2 (ja) | 2019-04-22 | 2022-08-22 | シェンチェン センスタイム テクノロジー カンパニー リミテッド | ビデオ画像処理方法及び装置 |
WO2021039842A1 (ja) * | 2019-08-28 | 2021-03-04 | 株式会社朋栄 | 映像の安定化及びモーションブラー除去処理方法とその装置 |
JPWO2021039842A1 (ja) * | 2019-08-28 | 2021-03-04 | ||
JPWO2021106499A1 (ja) * | 2019-11-29 | 2021-06-03 | ||
WO2021106499A1 (ja) * | 2019-11-29 | 2021-06-03 | 株式会社朋栄 | ローリングシャッター映像の安定化及びモーションブラー除去処理方法とその装置 |
Also Published As
Publication number | Publication date |
---|---|
US20110299793A1 (en) | 2011-12-08 |
JPWO2010093040A1 (ja) | 2012-08-16 |
JP5388072B2 (ja) | 2014-01-15 |
US8620100B2 (en) | 2013-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5388072B2 (ja) | モーションブラー制御装置、方法、及びプログラム | |
EP2574038B1 (en) | Image capturing apparatus, image processing apparatus, image processing method, and image processing program | |
JP5651118B2 (ja) | 画像処理装置および画像処理方法 | |
US10007990B2 (en) | Generating composite images using estimated blur kernel size | |
US11188777B2 (en) | Image processing method, image processing apparatus, learnt model manufacturing method, and image processing system | |
JP4799428B2 (ja) | 画像処理装置及び方法 | |
US8600187B2 (en) | Image restoration apparatus and image restoration method | |
JP5331816B2 (ja) | 画像補正装置及び画像補正方法 | |
JP5499050B2 (ja) | 画像処理装置、撮像装置、及び画像処理方法 | |
JP2007188493A (ja) | 動きボケ画像中の動きボケを減らす方法、それぞれが各自のボケ・パラメータを持つ複数の動きボケ画像を用いて動きボケの減らされた画像を生成する方法、動きボケ画像中の動きボケを減らす装置、およびそれぞれが各自のボケ・パラメータを持つ複数の動きボケ画像を用いて動きボケの減らされた画像を生成する装置 | |
US8698905B2 (en) | Estimation of point spread functions from motion-blurred images | |
JP4958806B2 (ja) | ぶれ検出装置、ぶれ補正装置及び撮像装置 | |
JP2017010095A (ja) | 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体 | |
JP5184574B2 (ja) | 撮像装置、画像処理装置、および画像処理方法 | |
JP4342493B2 (ja) | 手ぶれ補正装置 | |
JP2015177528A (ja) | 画像処理装置、画像処理方法、及びプログラム | |
JP2012085205A (ja) | 画像処理装置、撮像装置、画像処理方法および画像処理プログラム | |
US20240169498A1 (en) | Joint Video Stabilization and Motion Deblurring | |
Albu et al. | Adaptive recovery of motion blur point spread function from differently exposed images | |
CN117917685A (zh) | 图像处理方法、装置、电子设备和计算机可读存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10741317 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010550568 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13201439 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10741317 Country of ref document: EP Kind code of ref document: A1 |