[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010090123A1 - 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ - Google Patents

有機光電変換素子、それを用いた太陽電池、及び光センサアレイ Download PDF

Info

Publication number
WO2010090123A1
WO2010090123A1 PCT/JP2010/051119 JP2010051119W WO2010090123A1 WO 2010090123 A1 WO2010090123 A1 WO 2010090123A1 JP 2010051119 W JP2010051119 W JP 2010051119W WO 2010090123 A1 WO2010090123 A1 WO 2010090123A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
photoelectric conversion
organic photoelectric
general formula
substituted
Prior art date
Application number
PCT/JP2010/051119
Other languages
English (en)
French (fr)
Inventor
大久保 康
野島 隆彦
伊東 宏明
晃矢子 和地
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2010549446A priority Critical patent/JPWO2010090123A1/ja
Publication of WO2010090123A1 publication Critical patent/WO2010090123A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic photoelectric conversion element, a solar cell, and an optical sensor array, and more particularly, to a bulk heterojunction type organic photoelectric conversion element, a solar cell using the organic photoelectric conversion element, and an optical array sensor.
  • These bulk heterojunction solar cells are formed by a coating process except for the anode and cathode, and are expected to be able to be manufactured at high speed and at low cost. There is. Furthermore, unlike the Si solar cells, compound semiconductor solar cells, and dye-sensitized solar cells described above, there is no process at a temperature higher than 160 ° C., so it can be formed on a cheap and lightweight plastic substrate. Is done.
  • Non-Patent Document 1 in order to efficiently absorb the solar spectrum, a long wavelength is used. By using an organic polymer capable of absorbing up to 5%, conversion efficiency exceeding 5% has been achieved.
  • the photoelectric conversion efficiency is calculated by the product of short-circuit current density (Jsc) ⁇ open-circuit voltage (Voc) ⁇ curve factor (FF), and generally includes organic photoelectric conversion including high-efficiency organic thin-film solar cells as described above.
  • the device has only a low fill factor of about 0.55, and if these can be improved to values comparable to silicon solar cells (0.65 to 0.75), further photoelectric conversion efficiency is expected.
  • the curve factor is closely related to the internal resistance of the photoelectric conversion element, and it is known that lowering the resistance of the organic thin film and improving the charge separation efficiency (improving rectification) are effective for improving the curve factor. Yes.
  • the charge separation efficiency can be improved and the photoelectric conversion efficiency can be improved by inserting a hole blocking layer made of bathocuproine (BCP) as in the organic EL element (see, for example, Patent Document 1). Since these materials have high crystallinity and low solubility, there is a problem that it is difficult to apply them to a coating method with high productivity.
  • BCP bathocuproine
  • a TiOx layer is disclosed as a hole blocking layer that can be produced by a coating process (see, for example, Non-Patent Document 2), in order to form a TiOx layer, it is necessary to react moisture with titanium alkoxides. An organic photoelectric conversion element that is deteriorated by moisture is not a preferable manufacturing method, and has a problem in durability.
  • a carboline derivative or a diazacarbazole derivative is used for the hole blocking layer in order to improve the light emission efficiency.
  • a hole blocking layer functions as a hole blocking layer is determined by the relationship with the HOMO level of an adjacent layer.
  • any block layer is not necessarily applicable to an organic photoelectric conversion element, and in particular, since the HOMO and LUMO of a fullerene derivative which is an n-type semiconductor contained in a bulk heterojunction layer are relatively deep, the organic photoelectric conversion element The development of a hole blocking layer that can be effectively formed by a non-aqueous coating method is also awaited. It had.
  • the open-circuit voltage is a HOMO level of a p-type semiconductor material used for a bulk heterojunction layer and an n-type semiconductor. It is said that there is a correlation with the difference from the LUMO level of the material, and it is considered that the higher this value, the higher the open circuit voltage.
  • Non-Patent Document 3 proposes an organic photoelectric conversion element using a carbazole derivative in a bulk heterojunction layer, and an open circuit voltage as high as 0.89 V is obtained.
  • the compound of Non-Patent Document 4 having a structure in which the carbazole structure is converted into a thiophenecarbazole derivative has been able to absorb a longer wave wavelength by reducing the band gap, but the HOMO level has become shallower.
  • the open circuit voltage is reduced by 0.52 V, and the photoelectric conversion efficiency is low.
  • an azacarbazole derivative which is a nitrogen-containing aromatic six-membered ring having a deep HOMO level as in the present invention can be used as a semiconductor material for a bulk heterojunction layer, higher open-circuit voltage and photoelectric conversion efficiency can be obtained. It is estimated to be.
  • An object of the present invention is to provide an organic thin-film solar cell having high fill factor, open-circuit voltage, photoelectric conversion efficiency, and durability, and an organic semiconductor material constituting the organic thin-film solar cell.
  • An organic photoelectric conversion element having a cathode, an anode, and a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are mixed, and is represented by at least the following general formula (1) between the cathode and the anode.
  • An organic photoelectric conversion device comprising a layer containing a compound having a partial structure.
  • Z 1 represents a substituted or unsubstituted nitrogen-containing aromatic 6-membered ring
  • Z 2 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • R 1 represents a hydrogen atom, halogen, This represents a substituent selected from an atom, a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • X 1 to X 4 represent a substituted or unsubstituted carbon atom or a nitrogen atom.
  • Z 3 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • R 2 represents a hydrogen atom, It represents a substituent selected from a halogen atom, a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • R 3 represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group.
  • X 5 to X 8 are substituted or unsubstituted. Represents a carbon atom or a nitrogen atom.
  • R 4 to R 10 represent a substituent selected from a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • R 4 to R 10 represent a substituent selected from a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • R 11 to R 13 represent a substituent selected from a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • Z 4 represents a substituted or unsubstituted group.
  • a nitrogen-containing aromatic ring, Z 5 represents a substituted or unsubstituted aromatic ring and a heteroaromatic ring, p represents an integer of 0 to 4 and q represents an integer of 2 to 6) 10.
  • the compound having a partial structure represented by the general formula (1), (2a), (2b), (3a), (3b), (4) or (5) is a low molecular weight compound having a molecular weight of less than 5000. 10.
  • R 14 to R 16 represent a substituent selected from a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • Z 6 represents a substituted or unsubstituted group.
  • a nitrogen-containing aromatic ring, Z 7 represents a substituted or unsubstituted aromatic ring and a heteroaromatic ring, r represents an integer of 0 to 4, and s represents an integer of 2 to 10,000) 12 12.
  • the organic photoelectric conversion device as described in 11 above, wherein the compound having a partial structure represented by the general formula (6) is a polymer compound having a molecular weight of 5000 or more.
  • An optical sensor array comprising the organic photoelectric conversion elements according to any one of 1 to 13 arranged in an array.
  • an organic thin-film solar cell material that can achieve a high photoelectric conversion efficiency, has high durability, and can be applied to a coating process that enables inexpensive manufacturing can be provided.
  • FIG. 1 is a cross-sectional view showing a solar cell composed of an organic photoelectric conversion element including a photoelectric conversion layer having a three-layer structure of pin. It is sectional drawing which shows the solar cell which consists of an organic photoelectric conversion element provided with a tandem-type bulk heterojunction layer. It is a figure which shows the structure of an optical sensor array.
  • the present inventors can achieve the above-mentioned problems because the layer containing the compound represented by the general formula (1) exists between the cathode and the anode. I found. Furthermore, the effect appears more remarkably when a layer containing the compound represented by the general formula (2) or (3) is present between the bulk heterojunction layer and the cathode.
  • FIG. 1 is a cross-sectional view showing an example of a solar cell composed of a bulk heterojunction organic photoelectric conversion element.
  • a bulk heterojunction type organic photoelectric conversion element 10 includes a transparent electrode (generally an anode) 12, a hole transport layer 17, a bulk heterojunction layer photoelectric conversion unit 14, and an electron transport layer 18 on one surface of a substrate 11.
  • a counter electrode (generally a cathode) 13 are sequentially stacked.
  • the substrate 11 is a member that holds the transparent electrode 12, the photoelectric conversion unit 14, and the counter electrode 13 that are sequentially stacked. In the present embodiment, since light that is photoelectrically converted enters from the substrate 11 side, the substrate 11 can transmit the light that is photoelectrically converted, that is, with respect to the wavelength of the light to be photoelectrically converted. It is a transparent member.
  • the substrate 11 for example, a glass substrate or a resin substrate is used.
  • the substrate 11 is not essential.
  • the bulk heterojunction type organic photoelectric conversion element 10 may be configured by forming the transparent electrode 12 and the counter electrode 13 on both surfaces of the photoelectric conversion unit 14.
  • the photoelectric conversion unit 14 is a layer that converts light energy into electric energy, and includes a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed.
  • the p-type semiconductor material functions relatively as an electron donor (donor)
  • the n-type semiconductor material functions relatively as an electron acceptor (acceptor).
  • the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”.
  • an electron acceptor which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.
  • FIG. 1 light incident from the transparent electrode 12 through the substrate 11 is absorbed by the electron acceptor or electron donor in the bulk heterojunction layer of the photoelectric conversion unit 14, and electrons move from the electron donor to the electron acceptor.
  • a hole-electron pair charge separation state
  • the generated electric charge is caused by an internal electric field, for example, when the work functions of the transparent electrode 12 and the counter electrode 13 are different, the electrons pass between the electron acceptors due to the potential difference between the transparent electrode 12 and the counter electrode 13, and the holes are The photocurrent is detected as it passes between the donors and is carried to different electrodes.
  • the transport direction of electrons and holes can be controlled.
  • a hole blocking layer such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer may be included.
  • the photoelectric conversion unit 14 has a so-called pin three-layer structure (FIG. 2).
  • a normal bulk heterojunction layer is a 14i layer composed of a mixture of a p-type semiconductor material and an n-type semiconductor layer, but a 14p layer composed of a single p-type semiconductor material and a 14n layer composed of a single n-type semiconductor material.
  • FIG. 3 is a cross-sectional view showing a solar cell composed of an organic photoelectric conversion element including a tandem bulk heterojunction layer.
  • the transparent electrode 12 and the first photoelectric conversion unit 14 ′ are sequentially stacked on the substrate 11, the charge recombination layer 15 is stacked, the second photoelectric conversion unit 16, and then the counter electrode.
  • stacking 13 a tandem configuration can be obtained.
  • the second photoelectric conversion unit 16 may be a layer that absorbs the same spectrum as the absorption spectrum of the first photoelectric conversion unit 14 'or may be a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum. is there. Further, both the first photoelectric conversion unit 14 ′ and the second photoelectric conversion unit 16 may have the above-described three-layer structure of pin.
  • the compound having the partial structure represented by the general formula (1) is included between the cathode and the anode.
  • the layer containing the partial structure represented by the general formula (1) is preferably a bulk heterojunction layer.
  • the layer containing the partial structure represented by the general formula (1) is also preferably an electron transport layer.
  • Examples of the p-type semiconductor material used for the bulk heterojunction layer of the present invention include various condensed polycyclic aromatic low molecular compounds and conjugated polymers.
  • condensed polycyclic aromatic low molecular weight compound examples include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumanthanthene, bisanthene, zeslene.
  • Examples of the derivative having the above condensed polycycle include WO 03/16599 pamphlet, WO 03/28125 pamphlet, US Pat. No. 6,690,029, JP 2004-107216 A.
  • conjugated polymer for example, a polythiophene such as poly-3-hexylthiophene (P3HT) and an oligomer thereof, or a technical group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Polythiophene, Nature Material, (2006) vol. 5, p328, a polythiophene-thienothiophene copolymer described in WO2008000664, a polythiophene-diketopyrrolopyrrole copolymer described in WO2008000664, a polythiophene-thiazolothiazole copolymer described in Adv Mater, 2007p4160, Nature Mat. vol.
  • P3HT poly-3-hexylthiophene
  • polypyrrole and its oligomer polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, Examples thereof include polymer materials such as ⁇ -conjugated polymers such as polysilane and polygermane.
  • oligomeric materials not polymer materials, include thiophene hexamer ⁇ -seccithiophene ⁇ , ⁇ -dihexyl- ⁇ -sexualthiophene, ⁇ , ⁇ -dihexyl- ⁇ -kinkethiophene, ⁇ , ⁇ -bis (3 Oligomers such as -butoxypropyl) - ⁇ -sexithiophene can be preferably used.
  • compounds that are highly soluble in an organic solvent to the extent that a solution process can be performed, can form a crystalline thin film after drying, and can achieve high mobility are preferable. More preferably, it is a compound (a compound capable of forming an appropriate phase separation structure) having appropriate compatibility with the fullerene derivative which is the n-type organic semiconductor material of the present invention.
  • Such materials include materials that can be insolubilized by polymerizing the coating film after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Or a material in which soluble substituents react and become insoluble (pigmented) by applying energy such as heat, as described in US Patent Application Publication No. 2003/136964, and Japanese Patent Application Laid-Open No. 2008-16834 And so on.
  • Z 1 represents a substituted or unsubstituted nitrogen-containing aromatic 6-membered ring
  • Z 2 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • R 1 represents a substituent selected from a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • the structure represented by the general formula (1) has a deep HOMO level, and an element having a high open-circuit voltage can be obtained. Among them, a material having a plurality of these structures is effective.
  • the nitrogen-containing aromatic six-membered ring represented by Z 1 in the general formula (1) preferably has a nitrogen atom number range of 1 to 3, but in order to obtain a high open circuit voltage, a carbon atom of the carbazole ring A higher open circuit voltage can be obtained by substituting with more nitrogen atoms.
  • a heteroaromatic ring containing one nitrogen atom for each of the aromatic rings of Z 1 and Z 2 is used. It is preferable.
  • the position occupied by the nitrogen atom in Z 1 of the general formula (1) is a deep HOMO quasi-state when the ⁇ -position, ⁇ -position, ⁇ -position, and ⁇ -position from the side close to the nitrogen atom of the central nitrogen-containing 5-membered ring.
  • the ⁇ -position and the ⁇ -position are preferable, and thus a structure represented by the general formula (2a) or (2b) is more preferable.
  • X 1 to X 4 each represent a substituted or unsubstituted carbon atom or nitrogen atom.
  • R 2 represents a substituent selected from a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • Z 3 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • the aromatic ring represented by Z 3 is also preferably an aromatic 6-membered ring capable of forming a symmetric structure in order to make the obtained p-type semiconductor material highly crystalline and to have a high mobility. And more preferably a nitrogen-containing aromatic 6-membered ring.
  • the ⁇ -position and the ⁇ -position are preferred as the position where the nitrogen atom is substituted, but in particular, the structure is such that the nitrogen atom is substituted at the ⁇ -position or ⁇ -position of both aromatic rings represented by Z 1 and Z 2. Things are preferable.
  • Z 1 and Z 2 have the same and symmetrical structure. That is, a compound represented by the general formula (3a) or (3b) is preferable.
  • R 3 represents a substituent selected from a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • X 5 to X 8 each represents a substituted or unsubstituted carbon atom or nitrogen atom.
  • the p-type semiconductor material has a diazacarbazole structure in which nitrogen is located at the ⁇ -position where the compound has high symmetry and stability, and the HOMO level is deep and the open circuit voltage (Voc) can be improved. 4).
  • R 4 to R 10 represent a substituent selected from a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • the p-type semiconductor material is more preferably a compound that can absorb a long wavelength of about 800 to 1200 nm so that a wider sunlight spectrum can be used, and therefore has a structure in which the conjugate length of ⁇ electrons is as long as possible. It is preferable. That is, the compound represented by the general formula (6) is preferable.
  • R 14 to R 16 represent a substituent selected from a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • Z 6 represents a substituted or unsubstituted nitrogen-containing aromatic ring
  • Z 7 represents a substituted or unsubstituted aromatic ring or heteroaromatic ring.
  • r represents an integer of 0 to 4, and s represents an integer of 2 to 10,000.
  • n 10 to 100.
  • the bulk heterojunction layer increases the interface area between the p-type semiconductor material and the n-type semiconductor material as much as possible so that the charge separation efficiency is sufficiently high, while the holes and electrons generated at the interface are reduced. It is necessary to have a continuous phase separation structure so that the extraction electrode can be extracted.
  • the p-type semiconductor material is preferably a polymer compound.
  • the low molecular weight compound means a single molecule having no distribution in the molecular weight of the compound.
  • the polymer compound means an aggregate of compounds having a certain molecular weight distribution by reacting a predetermined monomer.
  • a compound having a molecular weight of 5000 or more is classified as a polymer compound. More preferably, it is 10,000 or more, More preferably, it is 30000 or more.
  • the solubility decreases as the molecular weight increases, the molecular weight is preferably 1,000,000 or less, more preferably 100,000 or less.
  • the molecular weight can be measured by gel permeation chromatography (GPC).
  • the n-type semiconductor material used in the bulk heterojunction layer of the present invention is not particularly limited.
  • a perfluoro compound perfluoro compound in which hydrogen atoms of a p-type semiconductor such as fullerene and octaazaporphyrin are substituted with fluorine atoms. Pentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide and other aromatic carboxylic acid anhydrides and imidized compounds thereof. Examples thereof include molecular compounds.
  • fullerene derivatives that can perform charge separation with various p-type semiconductor materials at high speed (up to 50 fs) and efficiently are preferable.
  • Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc.
  • PCBM [6,6] -phenyl C61-butyric acid methyl ester
  • PCBnB [6,6] -phenyl C61-butyric acid-n-butyl ester
  • PCBiB [6,6] -phenyl C61-buty Rick acid-isobutyl ester
  • PCBH [6,6] -phenyl C61-butyric acid-n-hexyl ester
  • Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed include a vapor deposition method and a coating method (including a casting method and a spin coating method).
  • the coating method is preferable in order to increase the area of the interface where charges and electrons are separated from each other as described above and to produce a device having high photoelectric conversion efficiency.
  • the coating method is also excellent in production speed.
  • annealing is performed at a predetermined temperature during the manufacturing process, a part of the particles is microscopically aggregated or crystallized, and the bulk heterojunction layer can have an appropriate phase separation structure. As a result, the carrier mobility of the bulk heterojunction layer is improved and high efficiency can be obtained.
  • the photoelectric conversion part (bulk heterojunction layer) 14 may be composed of a single layer in which the electron acceptor and the electron donor are uniformly mixed, but a plurality of the mixture ratios of the electron acceptor and the electron donor are changed. It may consist of layers. In this case, it can be formed by using a material that can be insolubilized after coating as described above.
  • the organic photoelectric conversion element 10 of the present invention can extract charges generated in the bulk heterojunction layer more efficiently by forming the electron transport layer 18 between the bulk heterojunction layer and the cathode. Therefore, it is preferable to have these layers.
  • the electron transport layer is a layer that is located between the cathode and the bulk heterojunction layer and can transfer electrons between the bulk heterojunction layer and the electrode more efficiently. is there. More specifically, a compound having an LUMO level intermediate between the LUMO level of the n-type semiconductor material of the bulk hetero junction layer and the work function of the cathode is suitable as the electron transporting layer. More preferably, it is a compound having an electron mobility of 10 ⁇ 4 or more.
  • the electron transport layer As the electron transport layer (hole blocking layer) 18, octaazaporphyrin and a p-type semiconductor perfluoro compound (perfluoropentacene, perfluorophthalocyanine, etc.) can be used.
  • the electron transport layer having a HOMO level deeper than the HOMO level of the p-type semiconductor material used has a rectifying effect that prevents holes generated in the bulk heterojunction layer from flowing to the cathode side. Block function is added.
  • Such an electron transport layer is also referred to as a hole blocking layer. More preferably, a material deeper than the HOMO level of the n-type semiconductor is used as the electron transport layer.
  • n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide.
  • N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
  • a layer made of a single n-type semiconductor material used for the bulk heterojunction layer can also be used.
  • the HOMO level is deep and the electron mobility is high, and the general formulas (1), (2a), (2b), (3a), (3b), (4), and (6) of the present invention are used.
  • the compound to be used as an electron transporting layer also serving as a hole blocking layer
  • effects such as an improvement in fill factor and photoelectric conversion efficiency can be obtained.
  • the structure is represented by the general formula (5).
  • it can design to the compound which has the above LUMO levels and HOMO levels, and can be set as a more efficient organic thin-film solar cell.
  • R 11 to R 13 represent a substituent selected from a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • Z 4 represents a substituted or unsubstituted nitrogen-containing aromatic ring.
  • Z 5 represents a substituted or unsubstituted aromatic ring and heteroaromatic ring.
  • p represents an integer of 0 to 4
  • q represents an integer of 2 to 6.
  • the nitrogen-containing heterocycle represented by Z 4 is more preferably a substituted or unsubstituted imidazole, pyrazole, triazole, oxazole, thiazole, oxadiazole, thiadiazole, benzimidazole, benzooxadiazole, benzothiadiazole.
  • a substituent having a strong electron-withdrawing property having a plurality of nitrogen atoms is preferable, and among them, benzoxadiazole, benzothiadiazole, pyridothiadiazole, thienopyrazine, and the like are preferable. Most preferred are benzoxadiazole and benzothiadiazole.
  • the electron transport layer is a layer of a single electron transport material, and there is no need to consider the morphology of the mixed state.
  • the electron transport material is preferably a low molecular compound.
  • the low molecular weight compound means a single molecule having no distribution in the molecular weight of the compound.
  • the polymer compound means an aggregate of compounds having a certain molecular weight distribution by reacting a predetermined monomer.
  • a compound having a molecular weight of less than 5000 is classified as a low molecular weight compound. More preferably, it is 3000 or less, More preferably, it is 1500 or less.
  • the molecular weight can be measured by gel permeation chromatography (GPC).
  • the means for forming these layers may be either a vacuum vapor deposition method or a solution coating method, but is preferably a solution coating method.
  • the hole transport layer 17 is provided between the bulk heterojunction layer and the anode, and charges generated in the bulk heterojunction layer can be taken out more efficiently. It is preferable to have these layers.
  • PEDOT such as trade name BaytronP, polyaniline and its doped material, cyan compounds described in WO2006019270, etc. Can be used.
  • An electronic block function having a rectifying effect is provided.
  • Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
  • unit used for the bulk heterojunction layer can also be used.
  • the means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method. Forming the coating film in the lower layer before forming the bulk heterojunction layer is preferable because it has the effect of leveling the coating surface and reduces the influence of leakage and the like.
  • the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
  • the photoelectric conversion element according to the present invention has at least an anode and a cathode. Further, when a tandem configuration is adopted, the tandem configuration can be achieved by using an intermediate electrode.
  • an electrode through which holes mainly flow is called an anode
  • an electrode through which electrons mainly flow is called a cathode.
  • a translucent electrode is referred to as a transparent electrode and a non-translucent electrode is referred to as a counter electrode because of the function of whether or not it has translucency.
  • the anode is a translucent transparent electrode
  • the cathode is a non-translucent counter electrode.
  • the anode of the present invention is preferably an electrode that transmits light of 380 to 800 nm.
  • the material for example, transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 and ZnO, metal thin films such as gold, silver and platinum, metal nanowires and carbon nanotubes can be used.
  • a conductive material selected from the group consisting of polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaphthene, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polyphenylacetylene, polydiacetylene and polynaphthalene.
  • a functional polymer can also be used. Further, a plurality of these conductive compounds can be combined to form an anode.
  • the cathode may be a single layer of a conductive material, but in addition to a conductive material, a resin that holds these may be used in combination.
  • a conductive material for the cathode a material having a work function (4 eV or less) metal, alloy, electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of these metals and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, magnesium / Aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light coming to the cathode side is reflected and reflected to the first electrode side, and this light can be reused and absorbed again by the photoelectric conversion layer, further improving the photoelectric conversion efficiency. It is preferable.
  • the cathode 13 may be a metal (for example, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.), a nanoparticle made of carbon, a nanowire, or a nanostructure.
  • a dispersion is preferable because a transparent and highly conductive cathode can be formed by a coating method.
  • the cathode side is made light transmissive, for example, a conductive material suitable for the cathode such as aluminum and aluminum alloy, silver and silver compound is made thin with a film thickness of about 1 to 20 nm, and then the anode By providing a film of the conductive light-transmitting material mentioned in the description, a light-transmitting cathode can be obtained.
  • a conductive material suitable for the cathode such as aluminum and aluminum alloy
  • silver and silver compound is made thin with a film thickness of about 1 to 20 nm
  • the intermediate electrode material required in the case of the tandem structure as shown in FIG. 3 is preferably a layer using a compound having both transparency and conductivity.
  • Transparent metal oxides such as ITO, AZO, FTO and titanium oxide, very thin metal layers such as Ag, Al and Au, or layers containing nanoparticles / nanowires, conductive polymer materials such as PEDOT: PSS and polyaniline Etc.
  • PEDOT: PSS and polyaniline Etc. conductive polymer materials
  • the substrate is preferably a member that can transmit the light that is photoelectrically converted, that is, a member that is transparent to the wavelength of the light to be photoelectrically converted.
  • a transparent resin film from the viewpoint of light weight and flexibility.
  • the material, a shape, a structure, thickness, etc. can be suitably selected from well-known things.
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, polyolefin resins such as cyclic olefin resin Film, vinyl resin film such as polyvinyl chloride, polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, A polyamide resin film, a polyimide resin film, an acrylic resin film, a triacetyl cellulose (TAC) resin film, and the like can be given.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PE polyethylene
  • PP polypropylene
  • polystyrene resin film polyolefin resins such as cyclic olefin resin Film
  • the resin film transmittance of 80% or more in ⁇ 800 nm can be preferably applied to a transparent resin film according to the present invention.
  • a transparent resin film according to the present invention it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched.
  • a polyethylene terephthalate film and a biaxially stretched polyethylene naphthalate film are more preferable.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
  • a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred. Good.
  • the organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight.
  • a light condensing layer such as an antireflection film or a microlens array, or a light diffusion layer that can scatter light reflected by the cathode and enter the power generation layer again may be provided. .
  • the antireflection layer can be provided as the antireflection layer.
  • the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ⁇ 1.63 because the transmittance can be improved by reducing the interface reflection between the film substrate and the easy adhesion layer.
  • the method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • the condensing layer for example, it is processed so as to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m. If it is smaller than this, the effect of diffraction is generated and colored.
  • examples of the light scattering layer include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
  • the method and process for patterning the electrode, the power generation layer, the hole transport layer, the electron transport layer, and the like according to the present invention are not particularly limited, and known methods can be appropriately applied.
  • the electrode can be patterned by a known method such as mask vapor deposition during vacuum deposition or etching or lift-off.
  • the pattern may be formed by transferring a pattern formed on another substrate.
  • the produced organic photoelectric conversion element 10 is not deteriorated by oxygen, moisture, or the like in the environment, it is preferable to seal not only the organic photoelectric conversion element but also an organic electroluminescence element by a known method.
  • optical sensor array Next, an optical sensor array to which the bulk heterojunction type organic photoelectric conversion element 10 described above is applied will be described in detail.
  • the optical sensor array is produced by arranging the photoelectric conversion elements in a fine pixel form by utilizing the fact that the bulk heterojunction type organic photoelectric conversion elements generate a current upon receiving light, and projected onto the optical sensor array.
  • FIG. 4 is a diagram showing the configuration of the optical sensor array. 4A is a top view, and FIG. 4B is a cross-sectional view taken along line A-A ′ of FIG. 4A.
  • an optical sensor array 20 is paired with an anode 22 as a lower electrode, a photoelectric conversion unit 24 for converting light energy into electrical energy, and an anode 22 on a substrate 21 as a holding member.
  • the cathode 23 is sequentially laminated.
  • the photoelectric conversion unit 24 includes two layers, a photoelectric conversion layer 24b having a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed, and a buffer layer 24a. In the example shown in FIG. 4, six bulk heterojunction type organic photoelectric conversion elements are formed.
  • the substrate 21, the anode 22, the photoelectric conversion layer 24b, and the cathode 23 have the same configuration and role as the anode 12, the photoelectric conversion unit 14, and the cathode 13 in the bulk heterojunction photoelectric conversion element 10 described above.
  • the buffer layer 24a is made of PEDOT (poly-3,4-ethylenedioxythiophene) -PSS (polystyrene sulfonic acid) conductive polymer (trade name BaytronP, manufactured by Stark Vitec).
  • PEDOT poly-3,4-ethylenedioxythiophene
  • PSS polystyrene sulfonic acid
  • Such an optical sensor array 20 was manufactured as follows.
  • An ITO film was formed on the glass substrate by sputtering and processed into a predetermined pattern shape by photolithography.
  • the thickness of the glass substrate was 0.7 mm
  • the thickness of the ITO film was 200 nm
  • the measurement area (light receiving area) of the ITO film after photolithography was 0.5 mm ⁇ 0.5 mm.
  • P3HT and PCBM were mixed with a chlorobenzene solvent in a ratio of 1: 1, and a mixture obtained by stirring (5 minutes) was used.
  • annealing was performed by heating in an oven at 180 ° C. for 30 minutes in a nitrogen gas atmosphere.
  • the thickness of the mixed film of P3HT and PCBM after the annealing treatment was 70 nm.
  • the optical sensor array 20 was produced as described above.
  • Example 1 (use as a hole blocking layer) ⁇ Preparation of Comparative Organic Photoelectric Conversion Element 1> The transparent electrode patterned on the glass substrate was cleaned in the order of ultrasonic cleaning with surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally UV ozone cleaning. .
  • Baytron P4083 manufactured by Starck Vitec, which is a conductive polymer, was spin-coated with a film thickness of 30 nm, and then heat-dried at 140 ° C. for 10 minutes in the air.
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • the substrate was heat-treated at 140 ° C. for 3 minutes in a nitrogen atmosphere.
  • a solution was prepared by dissolving 1.5 mass% of plexcores OS2100 manufactured by Plextronics as a p-type semiconductor material and 1.5 mass% of E100 (PCBM) manufactured by Frontier Carbon as an n-type semiconductor material in chlorobenzene. While being filtered through a .45 ⁇ m filter, spin coating was performed at 500 rpm for 60 seconds, then at 2200 rpm for 1 second, and left at room temperature for 30 minutes.
  • the substrate on which the series of organic layers was formed was placed in a vacuum deposition apparatus without being exposed to the atmosphere.
  • the element was set so that the shadow mask with a width of 2 mm was orthogonal to the transparent electrode, and the inside of the vacuum deposition apparatus was depressurized to 10 ⁇ 3 Pa or less, and then 100 nm of Al was deposited.
  • the heating for 30 minutes was performed at 120 degreeC, and the comparative organic photoelectric conversion element 1 was obtained.
  • the vapor deposition rate was 2 nm / second, and the size was 2 mm square.
  • the obtained organic photoelectric conversion element 1 was sealed using an aluminum cap and a UV curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1) in a nitrogen atmosphere, and then taken out into the atmosphere.
  • a UV curable resin manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1
  • Comparative Organic Photoelectric Conversion Element 2 In the comparative organic photoelectric conversion element 1, instead of 0.5% 2,2,3,3-tetrafluoro-1-propanol solution of batocuproine as a hole blocking layer, Ti-isopropoxide was added to ethanol at 25 mmol / l. After the electrode portion was masked and spin-coated at 2000 rpm, it was taken out into the atmosphere and left for 60 minutes to hydrolyze Ti-isopropoxide, thereby obtaining a film thickness of 10 nm. A comparative organic photoelectric conversion element 2 was produced in the same manner except that a TiOx layer was formed and a hole blocking layer was formed.
  • Photoelectric conversion elements prepared above was irradiated with light having an intensity of 100 mW / cm 2 solar simulator (AM1.5G filter), a superposed mask in which the effective area 4.0 mm 2 on the light receiving portion, the short circuit current density Jsc ( The four light-receiving portions formed on the same element were measured for mA / cm 2 ), open-circuit voltage Voc (V), and fill factor (fill factor) FF, and the average value was obtained. Further, energy conversion efficiency ⁇ (%) was obtained from Jsc, Voc, and FF according to Equation 1.
  • Relative reduction efficiency (%) (1 ⁇ conversion efficiency after exposure / conversion efficiency before exposure) ⁇ 100 (Durability evaluation 2)
  • the conversion efficiency after storage for 300 hours under the condition of 65 degrees and 85% humidity was evaluated, and the relative reduction efficiency was calculated.
  • Relative reduction efficiency (%) (conversion efficiency after 1-300 hours storage / conversion efficiency before storage) ⁇ 100
  • the substrate was similarly brought into the glove box and operated in a nitrogen atmosphere.
  • the substrate was heat-treated at 140 ° C. for 3 minutes in a nitrogen atmosphere.
  • a liquid was prepared by dissolving 0.5% by mass of the comparative p-type semiconductor material 1 and 2.0% by mass of Frontier Carbon E100 (PCBM) as an n-type semiconductor material, While being filtered with a 0.45 ⁇ m filter, spin coating was performed at 2000 rpm for 60 seconds, followed by heating at 50 ° C. for 10 minutes, and then standing at room temperature for 12 hours.
  • PCBM Frontier Carbon E100
  • the substrate on which the series of organic layers was formed was placed in a vacuum deposition apparatus without being exposed to the atmosphere.
  • the element was set so that the shadow mask with a width of 2 mm was orthogonal to the transparent electrode, and the inside of the vacuum deposition apparatus was depressurized to 10 ⁇ 3 Pa or less, and then 0.6 nm of lithium fluoride and 100 nm of Al were evaporated.
  • the heating for 30 minutes was performed at 120 degreeC, and the comparative organic photoelectric conversion element 21 was obtained.
  • the vapor deposition rate was 2 nm / second, and the size was 2 mm square.
  • the obtained organic photoelectric conversion element 21 was sealed using an aluminum cap and a UV curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1) in a nitrogen atmosphere, and then taken out into the atmosphere. The following conversion efficiency and open circuit voltage were evaluated.
  • a UV curable resin manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1
  • the p-type semiconductor material was replaced with the compound of the present invention described in Table 2 below in place of the comparative compound 1, which was the comparative p-type semiconductor material.
  • the conversion efficiency and the open circuit voltage were similarly evaluated.
  • the p-type semiconductor material is a polymer
  • purification is performed by the same reprecipitation and Soxhlet extraction method as in the comparative p-type semiconductor material 1, and in the case of a low molecular material, silica gel column chromatography and gel permeation chromatography are performed. Purification was performed using The number average molecular weights of the exemplary compounds 102 and 104 used in the organic photoelectric conversion elements 22, 23, and 26 were 7000 to 8000.
  • the said exemplary compounds 16 and 44 are made into 2 in the ratio of 0.5 mass%.
  • a solution mixed with 2,3,3-tetrafluoro-1-propanol was spin-coated at 1500 rpm to form a 10 nm-thick hole blocking layer.
  • the organic photoelectric conversion elements 25 and 26 were produced in the same manner as the organic photoelectric conversion element 23, and the conversion efficiency was evaluated in the same manner as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明の目的は光吸収率を向上しうるような厚膜を塗布プロセスによって形成可能な高い溶解性を有し、かつ厚膜化した際にも十分なキャリア輸送能を有する有機薄膜太陽電池材料を提供することである。この有機薄膜太陽電池材料は、陰極と陽極の間に、少なくとも下記一般式(1)で表される部分構造を有する化合物を含有することを特徴とする 。(式中、Zは置換または無置換の芳香族複素環を表し、Zは置換または無置換の芳香族炭化水素環または芳香族複素環を表す。Rは水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。)

Description

有機光電変換素子、それを用いた太陽電池、及び光センサアレイ
 本発明は、有機光電変換素子、太陽電池及び光センサアレイに関し、さらに詳しくは、バルクへテロジャンクション型の有機光電変換素子、この有機光電変換素子を用いた太陽電池、および光アレイセンサに関する。
 近年の化石エネルギーの高騰によって、自然エネルギーから直接電力を発電できるシステムが求められており、単結晶・多結晶・アモルファスのSiを用いた太陽電池、GaAsやCIGSなどの化合物系の太陽電池、あるいは色素増感型光電変換素子(グレッツェルセル)などが提案・実用化されている。
 しかしながら、これらの太陽電池で発電するコストは未だ化石燃料を用いて発電・送電される電気の価格よりも高いものとなっており、普及の妨げとなっていた。また、基板に重いガラスを用いなければならないため、設置時に補強工事が必要であり、これらも発電コストが高くなる一因であった。
 このような状況に対し、化石燃料による発電コストよりも低コストな発電コストを達成しうる太陽電池として、陽極と陰極との間に電子供与体層(p型半導体層)と電子受容体層(n型半導体層)とが混合されたバルクへテロジャンクション層を挟んだバルクへテロジャンクション型光電変換素子が提案されて(例えば、非特許文献1参照)いる。
 これらのバルクへテロジャンクション型太陽電池においては、陽極・陰極以外は塗布プロセスで形成されているため、高速かつ安価な製造が可能であると期待され、前述の発電コストの課題を解決できる可能性がある。さらに、上記のSi系太陽電池・化合物半導体系太陽電池・色素増感太陽電池などと異なり、160℃より高温のプロセスがないため、安価かつ軽量なプラスチック基板上への形成も可能であると期待される。
 なお発電コストには、初期の製造コスト以外にも発電効率及び素子の耐久性も含めて算出されなければならないが、前記非特許文献1では、太陽光スペクトルを効率よく吸収するために、長波長まで吸収可能な有機高分子を用いることによって、5%を超える変換効率を達成するにいたっている。
 なお光電変換効率は、短絡電流密度(Jsc)×開放電圧(Voc)×曲線因子(FF)の積で算出されるが、上記のような高効率の有機薄膜太陽電池を含めて一般に有機光電変換素子は曲線因子が0.55程度と低いものに留まっており、これらをシリコン系太陽電池並みの値(0.65~0.75)に向上できれば一層の光電変換効率を得られるものと期待される。
 曲線因子は光電変換素子の内部抵抗と密接に関わっており、曲線因子向上のためには有機薄膜の低抵抗化、電荷分離効率の向上(整流性の向上)が有効であることが知られている。
 有機EL素子と同様にバソキュプロイン(BCP)からなる正孔ブロック層を挿入することで電荷の分離効率が向上し、光電変換効率を向上できるとの開示があるが(例えば、特許文献1参照)、これらの材料は結晶性が高く溶解性が低いため、生産性の高い塗布方式に適用することは困難であるといった課題を有していた。
 また、塗布プロセスで作製できる正孔ブロック層としてTiOx層が開示されているが(例えば、非特許文献2参照)、TiOx層を形成するためには水分とチタニウムアルコキシド類を反応させる必要があり、水分によって劣化が起きる有機光電変換素子においては好ましい作製法であるとは言えず、耐久性において課題を有している。
 また、類似の構成を有しながら、逆の機能を有する有機エレクトロルミネッセンス素子(OLED)においては、同様に発光効率向上のために、カルボリン誘導体やジアザカルバゾール誘導体を正孔ブロック層に用いるとの開示があるが(例えば、特許文献2、3参照)、一般に正孔ブロック層が正孔ブロック層として機能するかどうかは隣接する層のHOMOレベルとの関係で決まるため、OLEDにおいて用いられる正孔ブロック層がどのようなものでも有機光電変換素子に適用できるとは限らず、特にバルクへテロジャンクション層に含まれるn型半導体であるフラーレン誘導体のHOMOおよびLUMOが比較的深いため、有機光電変換素子にも効果的に非水系の塗布法で形成することのできる正孔ブロック層の開発が待ち望まれていた。
 また曲線因子だけでなく、高い光電変換効率を得るためには高い開放電圧も得る必要があるが、一般に開放電圧はバルクへテロジャンクション層に用いられるp型半導体材料のHOMO準位とn型半導体材料のLUMO準位との差分と相関があるといわれ、この値が大きいほど高い開放電圧が得られると考えられている。
 たとえば非特許文献3において、カルバゾール誘導体をバルクへテロジャンクション層に用いた有機光電変換素子が提案され、開放電圧が0.89Vと非常に高い開放電圧が得られている。他方でカルバゾール構造を含チオフェンカルバゾール誘導体へと変換した構造を有する非特許文献4の化合物では、バンドギャップが低減してより長波の波長まで吸収できるようになったものの、HOMO準位が浅くなったために開放電圧が0.52V低下し、光電変換効率も低いものとなっている。
 したがって、本発明のようなHOMO準位の深い含窒素芳香族6員環であるアザカルバゾール誘導体をバルクへテロジャンクション層の半導体材料として用いることができれば、一層高い開放電圧及び光電変換効率が得られると推定される。
米国特許第6580027B2号明細書 国際公開第2004-053019号 国際公開第2004-095889号
A.Heeger:Nature Mat.;vol.6(2007),p497 A.Heeger:Science;vol.317(2007),p222 Adv.Mater.,vol.19(2007)p2295 Macromol.,vol.41(2008)p8302
 本発明の目的は、高い曲線因子、開放電圧、および光電変換効率を有し、かつ耐久性を有する有機薄膜太陽電池、およびそれを構成する有機半導体材料を提供することにある。
 本発明の上記目的は、以下の構成により達成することができる。
 1.陰極、陽極、およびp型半導体材料とn型半導体材料が混合されたバルクへテロジャンクション層を有する有機光電変換素子であって、前記陰極と陽極の間に、少なくとも下記一般式(1)で表される部分構造を有する化合物を含有する層を有することを特徴とする有機光電変換素子。
Figure JPOXMLDOC01-appb-C000007
 (式中、Zは置換または無置換の含窒素芳香族6員環を表し、Zは置換または無置換の芳香族炭化水素環または芳香族複素環を表す。Rは水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。)
 2.前記一般式(1)で表される部分構造を有する化合物を含有する層が、前記バルクへテロジャンクション層と前記陰極の間に存在していることを特徴とする前記1に記載の有機光電変換素子。
 3.前記一般式(1)で表される部分構造を有する化合物を含有する層が、バルクへテロジャンクション層であることを特徴とする前記1に記載の有機光電変換素子。
 4.前記一般式(1)で表される部分構造を、分子内に2つ以上有している化合物を含有することを特徴とする前記1~3のいずれか1項に記載の有機光電変換素子。
 5.前記一般式(1)で表される部分構造を有する化合物が、下記一般式(2a)または(2b)で表される部分構造を有する化合物であることを特徴とする前記1~4のいずれか1項に記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000008
 (式中、X~Xは置換または無置換の炭素原子または窒素原子を表す。Zは置換または無置換の芳香族炭化水素環または芳香族複素環を表す。Rは水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。)
 6.前記一般式(1)中、Zで表される芳香族複素環が、含窒素芳香族6員環であることを特徴とする、前記1~5のいずれか1項に記載の有機光電変換素子。
 7.前記一般式(1)で表される部分構造を有する化合物が、下記一般式(3a)または(3b)で表される部分構造を有する化合物であることを特徴とする前記1~6のいずれか1項に記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000009
 (式中、Rは水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。X~Xは置換または無置換の炭素原子または窒素原子を表す。)
 8.前記一般式(1)で表される部分構造を有する化合物が、下記一般式(4)で表される部分構造を有する化合物であることを特徴とする前記1~7のいずれか1項に記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000010
 (式中、R~R10は水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。)
 9.前記一般式(1)で表される部分構造を有する化合物が、下記一般式(5)で表される部分構造を有する化合物であることを特徴とする前記1~8のいずれか1項に記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000011
 (式中、R11~R13は水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。Zは置換または無置換の含窒素芳香族環を表す。Zは置換または無置換の芳香族環および複素芳香族環を表す。pは0~4の整数を、qは2~6の整数を表す)
 10.前記一般式(1)、(2a)、(2b)、(3a)、(3b)、(4)または(5)で表される部分構造を有する化合物が、分子量5000未満の低分子化合物であることを特徴とする前記1~9のいずれか1項に記載の有機光電変換素子。
 11.前記一般式(1)で表される部分構造を有する化合物が、下記一般式(6)で表される部分構造を有する化合物であることを特徴とする前記1~10のいずれか1項に記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000012
 (式中、R14~R16は水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。Zは置換または無置換の含窒素芳香族環を表し、Zは置換または無置換の芳香族環および複素芳香族環を表す。rは0~4の整数を、sは2~10000の整数を表す)
 12.前記一般式(6)で表される部分構造を有する化合物が、分子量5000以上の高分子化合物であることを特徴とする前記11に記載の有機光電変換素子。
 13.前記一般式(1)、(2a)、(2b)、(3a)、(3b)、(4)、(5)、または(6)で表される部分構造を有する化合物を含有する層が、溶液塗布法によって作製されたことを特徴とする前記1~12のいずれか1項に記載の有機光電変換素子。
 14.前記1~13のいずれか1項に記載の有機光電変換素子を用いたことを特徴とする太陽電池。
 15.前記1~13のいずれか1項に記載の有機光電変換素子がアレイ状に配置されてなることを特徴とする光センサアレイ。
 本発明により、高い光電変換効率を達成可能で、耐久性が高く、安価な製造を可能とする塗布プロセスに対応可能な有機薄膜太陽電池材料を提供することができた。
バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池を示す断面図である。 p-i-nの三層構成の光電変換層を備える有機光電変換素子からなる太陽電池を示す断面図である。 タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池を示す断面図である。 光センサアレイの構成を示す図である。
 本発明者らは、上記課題に対して鋭意検討したところ、前記一般式(1)で表される化合物を含有する層が、陰極と陽極の間に存在していることで上記課題を達成できることを見出した。更に、バルクへテロジャンクション層と陰極の間に前記一般式(2)又は(3)で表される化合物を含有する層を存在させることで、より効果が顕著に表れる。
 以下、本発明を更に詳しく説明する。
 (有機光電変換素子および太陽電池の構成)
 図1は、バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池の一例を示す断面図である。図1において、バルクヘテロジャンクション型の有機光電変換素子10は、基板11の一方面上に、透明電極(一般に陽極)12、正孔輸送層17、バルクヘテロジャンクション層の光電変換部14、電子輸送層18及び対極(一般に陰極)13が順次積層されている。
 基板11は、順次積層された透明電極12、光電変換部14及び対極13を保持する部材である。本実施形態では、基板11側から光電変換される光が入射するので、基板11は、この光電変換される光を透過させることが可能な、すなわち、この光電変換すべき光の波長に対して透明な部材である。基板11は、例えば、ガラス基板や樹脂基板等が用いられる。この基板11は、必須ではなく、例えば、光電変換部14の両面に透明電極12及び対極13を形成することでバルクヘテロジャンクション型の有機光電変換素子10が構成されてもよい。
 光電変換部14は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプタ)として機能する。ここで、電子供与体及び電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与あるいは受容するものではなく、光反応によって、電子を供与あるいは受容するものである。
 図1において、基板11を介して透明電極12から入射された光は、光電変換部14のバルクヘテロジャンクション層における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。発生した電荷は、内部電界、例えば、透明電極12と対極13の仕事関数が異なる場合では透明電極12と対極13との電位差によって、電子は、電子受容体間を通り、また正孔は、電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。例えば、透明電極12の仕事関数が対極13の仕事関数よりも大きい場合では、電子は、透明電極12へ、正孔は、対極13へ輸送される。なお、仕事関数の大小が逆転すれば電子と正孔は、これとは逆方向に輸送される。また、透明電極12と対極13との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。
 なお図1には記載していないが、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、あるいは平滑化層等の他の層を有していてもよい。
 さらに好ましい構成としては、前記光電変換部14が、いわゆるp-i-nの三層構成となっている構成(図2)である。通常のバルクへテロジャンクション層は、p型半導体材料とn型半導体層が混合した、14i層単体であるが、p型半導体材料単体からなる14p層、およびn型半導体材料単体からなる14n層で挟むことにより、正孔及び電子の整流性がより高くなり、電荷分離した正孔・電子の再結合等によるロスが低減され、一層高い光電変換効率を得ることができる。
 さらに、太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成としてもよい。図3は、タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池を示す断面図である。タンデム型構成の場合、基板11上に、順次透明電極12、第1の光電変換部14′を積層した後、電荷再結合層15を積層した後、第2の光電変換部16、次いで対電極13を積層することで、タンデム型の構成とすることができる。第2の光電変換部16は、第1の光電変換部14′の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。また第1の光電変換部14′、第2の光電変換部16がともに前述のp-i-nの三層構成であってもよい。
 以下に、これらの層を構成する材料について述べる。本発明において、前記一般式(1)で表される部分構造を有する化合物は前記陰極と陽極の間に、含まれる。一般式(1)で表される部分構造を含有する層は、バルクヘテロジャンクション層が好ましい。また一般式(1)で表される部分構造を含有する層は、電子輸送層も好ましい。
 〔p型半導体材料〕
 本発明のバルクへテロジャンクション層に用いられるp型半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマーが挙げられる。
 縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、へプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)-テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、及びこれらの誘導体や前駆体が挙げられる。
 また上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004-107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。
 共役系ポリマーとしては、例えば、ポリ3-ヘキシルチオフェン(P3HT)等のポリチオフェン及びそのオリゴマー、またはTechnical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン-チエノチオフェン共重合体、WO2008000664に記載のポリチオフェン-ジケトピロロピロール共重合体、Adv Mater,2007p4160に記載のポリチオフェン-チアゾロチアゾール共重合体,Nature Mat.vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー、等のポリマー材料が挙げられる。
 また、ポリマー材料ではなくオリゴマー材料としては、チオフェン6量体であるα-セクシチオフェンα,ω-ジヘキシル-α-セクシチオフェン、α,ω-ジヘキシル-α-キンケチオフェン、α,ω-ビス(3-ブトキシプロピル)-α-セクシチオフェン、等のオリゴマーが好適に用いることができる。
 これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は結晶性薄膜を形成し、高い移動度を達成することが可能な化合物が好ましい。より好ましくは、本発明のn型有機半導体材料であるフラーレン誘導体と適度な相溶性を有するような化合物(適度な相分離構造形成し得る化合物)であることが好ましい。
 またバルクへテロジャンクション層上にさらに溶液プロセスで電子輸送層や正孔ブロック層を形成する際には、一度塗布した層の上にさらに塗布することができれば、容易に積層することができるが、通常溶解性の良い材料からなる層の上にさらに層を溶液プロセスによって積層使用とすると、下地の層を溶かしてしまうために積層することができないという課題を有していた。したがって、溶液プロセスで塗布した後に不溶化できるような材料が好ましい。
 このような材料としては、Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225に記載の重合性基を有するようなポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、または米国特許出願公開第2003/136964号、および特開2008-16834等に記載されているような、熱等のエネルギーを加えることによって可溶性置換基が反応して不溶化する(顔料化する)材料などを挙げることができる。
 これらの中でも、前記一般式(1)で表される部分構造を有する化合物を本発明では用いる。
 一般式(1)において、Zは置換または無置換の含窒素芳香族6員環を表し、Zは置換または無置換の芳香族炭化水素環または芳香族複素環を表す。Rは水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。
 前記一般式(1)で表される構造は深いHOMO準位を有しており、高い開放電圧を有する素子を得ることができる。中でも、これらの構造を複数有する材料が効果的である。
 一般式(1)中のZで表される含窒素芳香族6員環としては、窒素原子数が1~3の範囲が好ましいが、高い開放電圧を得るためには、カルバゾール環の炭素原子を多数の窒素原子で置換するほど高い開放電圧が得られる。他方で化合物の安定性が低下するため、高い開放電圧と化合物の安定性を両立するためにはZとZの芳香族環にそれぞれ1つずつ窒素原子を含有した複素芳香族環とすることが好ましい。また一般式(1)のZにおいて窒素原子が占める位置としては、中央の含窒素5員環の窒素原子に近い側からα位、β位、γ位、δ位とした場合、深いHOMO準位の化合物を得る観点からγ位およびδ位であることが好ましいため、より好ましくは一般式(2a)または(2b)で表されるような構造である。
 一般式(2a)または(2b)において、X~Xは置換または無置換の炭素原子または窒素原子を表す。Rは水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。Zは置換または無置換の芳香族炭化水素環または芳香族複素環を表す。
 Zで表される芳香族環も、得られるp型半導体材料の結晶性を高いものとし、高い移動度の材料とするためには、好ましくは対称な構造を形成しうる芳香族6員環であることが好ましく、より好ましくは含窒素芳香族6員環である。この場合も窒素原子が置換する位置としてはγ位とδ位が好ましいが、中でもZおよびZで表される芳香族環双方のγ位またはδ位を窒素原子が置換された構造である事が好ましい。さらには、ZおよびZが同一で対称的な構造となることが好ましい。すなわち一般式(3a)または(3b)で表されるような化合物が好ましい。
 一般式(3a)または(3b)において、Rは水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。X~Xは置換または無置換の炭素原子または窒素原子を表す。
 p型半導体材料としてより好ましくは、化合物の対称性および安定性が高く、かつHOMO準位が深く開放電圧(Voc)の向上が期待できるγ位を窒素が占めるジアザカルバゾール構造、すなわち一般式(4)のような構造である。
 一般式(4)において、R~R10は水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。
 p型半導体材料としてさらに好ましくは、より幅広い太陽光スペクトルを利用できるように800~1200nm程度の長波長まで吸収可能な化合物であることが好ましいため、なるべくπ電子の共役長が長くなる構造であることが好ましい。すなわち一般式(6)で表される化合物であることが好ましい。
 一般式(6)において、R14~R16は水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。Zは置換または無置換の含窒素芳香族環を表し、Zは置換または無置換の芳香族環および複素芳香族環を表す。rは0~4の整数を、sは2~10000の整数を表す。
 以下、本発明の一般式(1)、(2a)、(2b)、(3a)、(3b)、(4)、(5)および(6)で表される化合物の具体例を挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 上記化合物29、30及び101~117において、nは10~100を表す。
 また本発明においては、バルクへテロジャンクション層は電荷分離の効率が十分高くなるようにp型半導体材料とn型半導体材料の界面面積をなるべく大きくする一方で、界面で生成した正孔および電子を取り出し電極まで取り出せるよう連続的な相分離構造とさせる必要がある。このような適切な相分離構造を簡便に塗布するだけで形成するためには、p型半導体材料は高分子化合物であることが好ましい。
 なお、本発明において低分子化合物とは、化合物の分子量に分布のない、単一分子であることを意味する。他方、高分子化合物とは、所定のモノマーを反応させることによって一定の分子量分布を有する化合物の集合体であることを意味する。しかし、実用上分子量によって定義をする際には、分子量が5000以上の化合物を高分子化合物と区分する。より好ましくは10000以上、さらに好ましくは30000以上である。他方、高分子量になるほど溶解性が低下するため、分子量は100万以下、より好ましくは10万以下であることが好ましい。なお、分子量はゲルパーミエーションクロマトグラフィー(GPC)で測定することができる。
 本発明の係るこのような構造を有する化合物は、前記特許文献1および2、又は、Tetrahedron vol.51,No.44(1995)、p12127等を参考として合成することができる。
 [n型半導体材料]
 本発明のバルクへテロジャンクション層に用いられるn型半導体材料としては、特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型半導体の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
 しかし、各種のp型半導体材料と高速(~50fs)かつ効率的に電荷分離を行うことができる、フラーレン誘導体が好ましい。フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、およびこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。
 中でも[6,6]-フェニルC61-ブチリックアシッドメチルエステル(略称PCBM)、[6,6]-フェニルC61-ブチリックアシッド-nブチルエステル(PCBnB)、[6,6]-フェニルC61-ブチリックアシッド-イソブチルエステル(PCBiB)、[6,6]-フェニルC61-ブチリックアシッド-nヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis-PCBM、特開2006-199674号公報等のアミノ化フラーレン、特開2008-130889号公報等のメタロセン化フラーレン、米国特許第7329709号明細書等の環状エーテル基を有するフラーレン等のような、置換基を有してより溶解性が向上したフラーレン誘導体を用いることが好ましい。
 〔バルクヘテロジャンクション層の形成方法〕
 電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また塗布法は、製造速度にも優れている。
 塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集または結晶化が促進され、バルクヘテロジャンクション層を適切な相分離構造とすることができる。その結果、バルクへテロジャンクション層のキャリア移動度が向上し、高い効率を得ることができるようになる。
 光電変換部(バルクヘテロジャンクション層)14は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。この場合、前述したような塗布後に不溶化できるような材料を用いることで形成することが可能となる。
 〔電子輸送層(正孔ブロック層)〕
 本発明の有機光電変換素子10は、バルクへテロジャンクション層と陰極との中間に電子輸送層18を形成することで、バルクへテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
 電子輸送層とは、このように陰極とバルクへテロジャンクション層の中間に位置して、バルクへテロジャンクション層と電極との間で電子の授受をより効率的にすることのできる層のことである。より具体的には、バルクへテロジャンクション層のn型半導体材料のLUMO準位と陰極の仕事関数との中間のLUMO準位を有する化合物が電子輸送層として適切である。より好ましくは、電子移動度が10-4以上の化合物である。
 電子輸送層(正孔ブロック層)18としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)を用いることができるが、同様に、バルクへテロジャンクション層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、バルクへテロジャンクション層で生成した正孔を陰極側には流さないような整流効果を有する、正孔ブロック機能が付与される。このような電子輸送層は、正孔ブロック層とも呼ばれる。より好ましくは、n型半導体のHOMO準位よりも深い材料を電子輸送層として用いることである。また、電子を輸送する特性から、電子移動度の高い化合物を用いることが好ましい。
 このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、バルクへテロジャンクション層に用いたn型半導体材料単体からなる層を用いることもできる。
 本発明においては、前記HOMO準位が深く電子移動度の高い本発明の一般式(1)、(2a)、(2b)、(3a)、(3b)、(4)、(6)で表される化合物を電子輸送層(兼正孔ブロック層)として用いることで、曲線因子および光電変換効率の向上といった効果を得ることができる。
 より好ましくは、前記一般式(5)で表されるような構造である。このような構造の化合物とすることで、前述のようなLUMO準位およびHOMO準位を有する化合物に設計することができ、より高効率の有機薄膜太陽電池とすることができる。
 前記一般式(5)において、R11~R13は水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。Zは置換または無置換の含窒素芳香族環を表す。Zは置換または無置換の芳香族環および複素芳香族環を表す。pは0~4の整数を、qは2~6の整数を表す。
 なおZで表される含窒素複素環しては、より好ましくは、置換または無置換のイミダゾール、ピラゾール、トリアゾール、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、ベンゾイミダゾール、ベンゾオキサジアゾール、ベンゾチアジアゾール、ベンゾトリアゾール、ピリドチアジアゾール、チエノピラジン、ピロロピラジン、チアゾロチアゾール、ピリダジン、ピリミジン、ピラジン、トリアジン、キノリン、キノキサリンなどを挙げることができる。
 これらの中でも好ましくは窒素原子を複数有する電子吸引性の強い置換基であり、中でもベンゾオキサジアゾール、ベンゾチアジアゾール、ピリドチアジアゾール、チエノピラジン、などであることが好ましい。もっとも好ましくはベンゾオキサジアゾールおよびベンゾチアジアゾールである。
 また電子輸送層においては、バルクへテロジャンクションそうと異なり電子輸送材料単体の層であり、混合された状態のモルホロジー等を考慮する必要がないため、高純度の精製が可能な点と、高い移動度の薄膜が得られるといった観点から、電子輸送材料は低分子化合物であることが好ましい。なお、本発明において低分子化合物とは、化合物の分子量に分布のない、単一分子であることを意味する。他方、高分子化合物とは、所定のモノマーを反応させることによって一定の分子量分布を有する化合物の集合体であることを意味する。しかし、実用上分子量によって定義をする際には、分子量が5000未満の化合物を低分子化合物と区分する。より好ましくは3000以下、さらに好ましくは1500以下である化合物である。なお、分子量はゲルパーミエーションクロマトグラフィー(GPC)で測定することができる。
 これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。
 〔正孔輸送層(電子ブロック層)〕
 本発明の有機光電変換素子10は、バルクへテロジャンクション層と陽極との中間には正孔輸送層17を、バルクへテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
 これらの層を構成する材料としては、例えば、正孔輸送層17としては、スタルクヴイテック社製、商品名BaytronP等のPEDOT、ポリアニリン及びそのドープ材料、WO2006019270号公報等に記載のシアン化合物、などを用いることができる。なお、バルクへテロジャンクション層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、バルクへテロジャンクション層で生成した電子を陽極側には流さないような整流効果を有する、電子ブロック機能が付与される。このような正孔輸送層は、電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用するほうが好ましい。このような材料としては、特開平5-271166号公報等に記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。また、バルクへテロジャンクション層に用いたp型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。バルクヘテロジャンクション層を形成する前に、下層に塗布膜を形成すると塗布面をレベリングする効果があり、リーク等の影響が低減するため好ましい。
 〔その他の層〕
 エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層などを挙げることができる。
 〈電極〉
 本発明に関わる光電変換素子においては、少なくとも陽極と陰極とを有する。また、タンデム構成をとる場合には中間電極を用いることでタンデム構成を達成することができる。なお本発明においては主に正孔が流れる電極を陽極と呼び、主に電子が流れる電極を陰極と呼ぶ。
 また透光性があるかどうかといった機能から、透光性のある電極を透明電極と呼び、透光性のない電極を対電極を呼び分ける場合がある。通常、陽極は透光性のある透明電極であり、陰極は透光性のない対電極である。
 〔陽極〕
 本発明の陽極は、好ましくは380~800nmの光を透過する電極である。材料としては、例えば、インジウムチンオキシド(ITO)、SnO、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、金属ナノワイヤー、カーボンナノチューブ用いることができる。
 またポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせて陽極とすることもできる。
 〔陰極〕
 陰極は導電材単独層であっても良いが、導電性を有する材料に加えて、これらを保持する樹脂を併用しても良い。陰極の導電材としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子の取り出し性能及び酸化等に対する耐久性の点から、これら金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
 陰極の導電材として金属材料を用いれば陰極側に来た光は反射されて第1電極側に反射され、この光が再利用可能となり、光電変換層で再度吸収され、より光電変換効率が向上し好ましい。
 また、陰極13は、金属(例えば金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、炭素からなるナノ粒子、ナノワイヤー、ナノ構造体であってもよく、ナノワイヤーの分散物であれば、透明で導電性の高い陰極を塗布法により形成でき好ましい。
 また、陰極側を光透過性とする場合は、例えば、アルミニウム及びアルミニウム合金、銀及び銀化合物等の陰極に適した導電性材料を薄く1~20nm程度の膜厚で作製した後、上記陽極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性陰極とすることができる。
 〔中間電極〕
 また、前記図3のようなタンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記陽極で用いたような材料(ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層またはナノ粒子・ナノワイヤーを含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
 なお前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると1層形成する工程を省くことができ好ましい。
 〔基板〕
 基板側から光電変換される光が入射する場合、基板はこの光電変換される光を透過させることが可能な、即ちこの光電変換すべき光の波長に対して透明な部材であることが好ましい。基板は、例えば、ガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380~800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。
 本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。
 また、酸素及び水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。
 〔光学機能層〕
 本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していて良い。光学機能層としては、たとえば、反射防止膜、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層などを設けても良い。
 反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57~1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。
 集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。
 また光散乱層としては、各種のアンチグレア層、金属または各種無機酸化物などのナノ粒子・ナノワイヤー等を無色透明なポリマーに分散した層などを挙げることができる。
 〔パターニング〕
 本発明に係る電極、発電層、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
 バルクへテロジャンクション層、輸送層等の可溶性の材料であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取っても良いし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしても良い。
 電極材料などの不溶性の材料の場合は、電極を真空堆積時にマスク蒸着を行ったり、エッチング又はリフトオフ等の公知の方法によってパターニングすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成しても良い。
 (封止)
 また、作製した有機光電変換素子10が環境中の酸素、水分等で劣化しないために、有機光電変換素子だけでなく有機エレクトロルミネッセンス素子などで公知の手法によって封止することが好ましい。例えば、アルミまたはガラスでできたキャップを接着剤によって接着することによって封止する手法、アルミニウム、酸化ケイ素、酸化アルミニウム等のガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上10を接着剤で貼合する手法、ガスバリア性の高い有機高分子材料(ポリビニルアルコール等)をスピンコートする方法、ガスバリア性の高い無機薄膜(酸化ケイ素、酸化アルミニウム等)または有機膜(パリレン等)を真空下で堆積する方法、及びこれらを複合的に積層する方法等を挙げることができる。
 (光センサアレイ)
 次に、以上説明したバルクヘテロジャンクション型の有機光電変換素子10を応用した光センサアレイについて詳細に説明する。光センサアレイは、前記のバルクヘテロジャンクション型の有機光電変換素子が受光によって電流を発生することを利用して、前記の光電変換素子を細かく画素状に並べて作製し、光センサアレイ上に投影された画像を電気的な信号に変換する効果を有するセンサである。
 図4は、光センサアレイの構成を示す図である。図4(a)は、上面図であり、図4(b)は、図4(a)のA-A’線断面図である。
 図4において、光センサアレイ20は、保持部材としての基板21上に、下部電極としての陽極22、光エネルギーを電気エネルギーに変換する光電変換部24及び陽極22と対をなし、上部電極としての陰極23が順次積層されたものである。光電変換部24は、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有してなる光電変換層24bと、バッファ層24aとの2層で構成される。図4に示す例では、6個のバルクヘテロジャンクション型の有機光電変換素子が形成されている。
 これら基板21、陽極22、光電変換層24b及び陰極23は、前述したバルクヘテロジャンクション型の光電変換素子10における陽極12、光電変換部14及び陰極13と同等の構成及び役割を示すものである。
 基板21には、例えば、ガラスが用いられ、陽極22には、例えば、ITOが用いられ、陰極23には、例えば、アルミニウムが用いられる。そして、光電変換層24bのp型半導体材料には、例えば、前記BP-1前駆体が用いられ、n型半導体材料には、例えば、前記例示化合物13が用いられる。また、バッファ層24aには、PEDOT(ポリ-3,4-エチレンジオキシチオフェン)-PSS(ポリスチレンスルホン酸)導電性高分子(スタルクヴイテック社製、商品名BaytronP)が用いられる。このような光センサアレイ20は、次のようにして製作された。
 ガラス基板上にスパッタリングによりITO膜を形成し、フォトリソグラフィにより所定のパターン形状に加工した。ガラス基板の厚さは、0.7mm、ITO膜の厚さは、200nm、フォトリソグラフィ後のITO膜における測定部面積(受光面積)は、0.5mm×0.5mmであった。次に、このガラス基板21上に、スピンコート法(条件;回転数=1000rpm、フィルター径=1.2μm)によりPEDOT-PSS膜を形成した。その後、該基板を、オーブンで140℃、10分加熱し、乾燥させた。乾燥後のPEDOT-PSS膜の厚さは30nmであった。
 次に、上記PEDOT-PSS膜の上に、P3HT(ポリ-3ヘキシルチオフェン)とPCBMの1:1混合膜を、スピンコート法(条件;回転数=3300rpm、フィルター径=0.8μm)により形成した。このスピンコートに際しては、P3HTおよびPCBMをクロロベンゼン溶媒に=1:1で混合し、これを攪拌(5分)して得た混合液を用いた。P3HTとPCBMの混合膜の形成後、窒素ガス雰囲気下においてオーブンで180℃、30分加熱しアニール処理を施した。アニール処理後のP3HTとPCBMの混合膜の厚さは70nmであった。
 その後、所定のパターン開口を備えたメタルマスクを用い、P3HTとPCBMの混合膜の上に、電子輸送層として本発明の化合物16を5nm蒸着し、ついで陰極としてのアルミニウム層を蒸着法により形成(厚さ=10nm)した。その後、PVA(polyvinyl alcohol)をスピンコートで1μm形成し、150℃で焼成することで図略のパッシベーション層を作製した。以上により、光センサアレイ20が作製された。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 実施例1(正孔ブロック層としての利用)
 <比較の有機光電変換素子1の作製>
 ガラス基板上にパターン形成した透明電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行なった。
 この透明基板上に、導電性高分子であるBaytron P4083(スタルクヴィテック社製)を30nmの膜厚でスピンコートした後、140℃で大気中10分間加熱乾燥した。
 これ以降は、基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。まず、窒素雰囲気下で上記基板を140℃で3分間加熱処理した。クロロベンゼンにp型半導体材料として、プレクストロニクス社製プレックスコアOS2100を1.5質量%、n型半導体材料としてフロンティアカーボン社製E100(PCBM)を1.5質量%を溶解した液を作製し、0.45μmのフィルタでろ過をかけながら500rpmで60秒、ついで2200rpmで1秒間のスピンコートを行い、室温で30分放置した。
 次にアルドリッチ社製バトクプロイン(BCP)を0.5質量%の比率で2,2,3,3-テトラフルオロ-1-プロパノールと混合した溶液を1500rpmでスピンコートし、膜厚10nmの正孔ブロック層を形成した。
 次に、上記一連の有機層を成膜した基板を大気に晒すことなく真空蒸着装置内に設置した。2mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまでに真空蒸着機内を減圧した後、Alを100nmを蒸着した。最後に120℃で30分間の加熱を行い、比較の有機光電変換素子1を得た。なお蒸着速度は2nm/秒で蒸着し、2mm角のサイズとした。
 得られた有機光電変換素子1は、窒素雰囲気下でアルミニウムキャップとUV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて封止を行った後に大気下に取り出した。
 〈比較の有機光電変換素子2の作製〉
 比較の有機光電変換素子1において、正孔ブロック層としてバトクプロインの0.5%2,2,3,3-テトラフルオロ-1-プロパノール溶液に代えて、エタノールにTi-イソプロポキシドを25mmol/lになるように溶解した液を調製し、取り出し電極部をマスキングした後に2000rpmでスピンコートした後、大気中に取り出して60分間放置してTi-イソプロポキシドを加水分解することによって、膜厚10nmのTiOx層を形成し、正孔ブロック層とした以外は同様にして、比較の有機光電変換素子2を作製した。
 <本発明の有機光電変換素子3~11の作製>
 比較の有機光電変換素子1において、正孔ブロック層をバトクプロインに代えて、下記表1記載の本発明の化合物に変更した以外は同様にして、本発明の有機光電変換素子3~11を作製した。
 得られた、有機光電変換素子1~11について、下記の変換効率と曲線因子の評価、および耐久性評価を行った。
 (変換効率および曲線因子の評価)
 上記作製した光電変換素子に、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を4.0mmにしたマスクを受光部に重ね、短絡電流密度Jsc(mA/cm)及び開放電圧Voc(V)、曲線因子(フィルファクター)FFを、同素子上に形成した4箇所の受光部をそれぞれ測定し、平均値を求めた。またJsc、Voc、FFから式1に従ってエネルギー変換効率η(%)を求めた。
 式1   Jsc(mA/cm)×Voc(V)×FF=η(%)
 (耐久性評価1)
 ソーラシュミレーター(AM1.5G)の光を100mW/cmの照射強度で照射して、電圧-電流特性を測定し、初期の変換効率を測定した。さらに、この時の初期変換効率を100とし、陽極と陰極の間に抵抗を接続したまま100mW/cmの照射強度で100h照射し続けた後の変換効率を評価し、相対低下効率を算出した。
 式2 相対低下効率(%)=(1-暴露後の変換効率/暴露前の変換効率)×100
 (耐久性評価2)
 長期保存性を評価する目的で、65度85%湿度の条件で300h保管した後の変換効率を評価し、相対低下効率を算出した。
 式2 相対低下効率(%)=(1-300h保管後の変換効率/保管前の変換効率)×100
Figure JPOXMLDOC01-appb-T000026
 表1から、本発明の正孔ブロック層を利用した方が曲線因子が向上し、変換効率も高いものが得られることがわかる。また、耐久性を示す相対低下効率も低く、耐久性が高いことがわかる。
 実施例2(p型半導体としての利用)
 <比較の有機光電変換素子21の作製>
 比較のp型半導体材料として、比較化合物1を前記非特許文献3を参考として合成した。合成後、メタノール:純水=10:1溶液で再沈殿を行い、ついでアセトン・ヘキサン・ジクロロメタン・クロロホルムの順でソックスレー抽出を行い、再びクロロホルム溶解成分をメタノール:純水=10:1溶液に再沈殿を行うことで精製した。比較化合物1の数平均分子量は37000であった。
 ついで前記有機光電変換素子1と同様にしてPEDOT:PSS層まで設けた後、同様に基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。まず、窒素雰囲気下で上記基板を140℃で3分間加熱処理した。クロロベンゼンにp型半導体材料として、前記比較のp型半導体材料1を0.5質量%、n型半導体材料としてフロンティアカーボン社製E100(PCBM)を2.0質量%を溶解した液を作製し、0.45μmのフィルタでろ過をかけながら2000rpmで60秒間のスピンコートを行い50℃で10分間加熱した後、室温で12時間放置した。
Figure JPOXMLDOC01-appb-C000027
 次に、上記一連の有機層を成膜した基板を大気に晒すことなく真空蒸着装置内に設置した。2mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまでに真空蒸着機内を減圧した後、フッ化リチウムを0.6nm、およびAlを100nmを蒸着した。最後に120℃で30分間の加熱を行い、比較の有機光電変換素子21を得た。なお蒸着速度は2nm/秒で蒸着し、2mm角のサイズとした。
 得られた有機光電変換素子21は、窒素雰囲気下でアルミニウムキャップとUV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて封止を行った後に大気下に取り出した後、下記の変換効率と開放電圧の評価を行った。
 <本発明の有機光電変換素子22~26の作製>
 比較の有機光電変換素子21において、p型半導体材料を前記比較のp型半導体材料である、比較化合物1に代えて、下記表2記載の本発明の化合物に変更した以外は同様にして、本発明の有機光電変換素子22~24を作製した後、同様に変換効率と開放電圧の評価を行った。なおp型半導体材料がポリマーの場合は、前記比較のp型半導体材料1と同様の再沈殿およびソックスレー抽出法によって精製を行い、低分子材料の場合にはシリカゲルカラムクロマトグラフィーおよびゲルパーミエーションクロマトグラフィーをもちいて精製を行った。有機光電変換素子22、23、および26に用いた例示化合物102及び104の数平均分子量は7000~8000であった。
 さらに本発明の有機光電変換素子25および26として、バルクへテロジャンクション層を有機光電変換素子24および23と同様に形成した後、前記例示化合物16および44を0.5質量%の比率で2,2,3,3-テトラフルオロ-1-プロパノールと混合した溶液を1500rpmでスピンコートし、膜厚10nmの正孔ブロック層を形成した。それ以降は有機光電変換素子23と同様にして有機光電変換素子25および26を作製した後、実施例1と同様に変換効率の評価を行った。
Figure JPOXMLDOC01-appb-T000028
 表2より、本発明のp型半導体材料を用いることで、高い開放電圧と光電変換効率が得られることが明らかである。また、本発明の材料からなる正孔ブロック層を設けることで、より高い光電変換効率が得られることもわかる。
 10 バルクヘテロジャンクション型の有機光電変換素子
 11 基板
 12 陽極
 13 陰極
 14 光電変換部(バルクヘテロジャンクション層)
 14p p層
 14i i層
 14n n層
 14′ 第1の光電変換部
 15 電荷再結合層
 16 第2の光電変換部
 17 正孔輸送層
 18 電子輸送層
 20 光センサアレイ
 21 基板
 22 陽極
 23 陰極
 24 光電変換部
 24a 正孔輸送層
 24b 光電変換層

Claims (15)

  1.  陰極、陽極、およびp型半導体材料とn型半導体材料が混合されたバルクへテロジャンクション層を有する有機光電変換素子であって、前記陰極と陽極の間に、少なくとも下記一般式(1)で表される部分構造を有する化合物を含有する層を有することを特徴とする有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000001

     (式中、Zは置換または無置換の含窒素芳香族6員環を表し、Zは置換または無置換の芳香族炭化水素環または芳香族複素環を表す。Rは水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。)
  2.  前記一般式(1)で表される部分構造を有する化合物を含有する層が、前記バルクへテロジャンクション層と前記陰極の間に存在していることを特徴とする請求項1に記載の有機光電変換素子。
  3.  前記一般式(1)で表される部分構造を有する化合物を含有する層が、バルクへテロジャンクション層であることを特徴とする請求項1に記載の有機光電変換素子。
  4.  前記一般式(1)で表される部分構造を、分子内に2つ以上有している化合物を含有することを特徴とする請求項1~3のいずれか1項に記載の有機光電変換素子。
  5.  前記一般式(1)で表される部分構造を有する化合物が、下記一般式(2a)または(2b)で表される部分構造を有する化合物であることを特徴とする請求項1~4のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000002
     (式中、X~Xは置換または無置換の炭素原子または窒素原子を表す。Zは置換または無置換の芳香族炭化水素環または芳香族複素環を表す。Rは水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。)
  6.  前記一般式(1)中、Zで表される芳香族複素環が、含窒素芳香族6員環であることを特徴とする、請求項1~5のいずれか1項に記載の有機光電変換素子。
  7.  前記一般式(1)で表される部分構造を有する化合物が、下記一般式(3a)または(3b)で表される部分構造を有する化合物であることを特徴とする請求項1~6のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
     (式中、Rは水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。X~Xは置換または無置換の炭素原子または窒素原子を表す。)
  8.  前記一般式(1)で表される部分構造を有する化合物が、下記一般式(4)で表される部分構造を有する化合物であることを特徴とする請求項1~7のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000004
     (式中、R~R10は水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。)
  9.  前記一般式(1)で表される部分構造を有する化合物が、下記一般式(5)で表される部分構造を有する化合物であることを特徴とする請求項1~8のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000005
     (式中、R11~R13は水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。Zは置換または無置換の含窒素芳香族環を表す。Zは置換または無置換の芳香族環および複素芳香族環を表す。pは0~4の整数を、qは2~6の整数を表す)
  10.  前記一般式(1)、(2a)、(2b)、(3a)、(3b)、(4)または(5)で表される部分構造を有する化合物が、分子量5000未満の低分子化合物であることを特徴とする請求項1~9のいずれか1項に記載の有機光電変換素子。
  11.  前記一般式(1)で表される部分構造を有する化合物が、下記一般式(6)で表される部分構造を有する化合物であることを特徴とする請求項1~10のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000006
     (式中、R14~R16は水素原子、ハロゲン原子、置換または無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基から選ばれる置換基を表す。Zは置換または無置換の含窒素芳香族環を表し、Zは置換または無置換の芳香族環および複素芳香族環を表す。rは0~4の整数を、sは2~10000の整数を表す)
  12.  前記一般式(6)で表される部分構造を有する化合物が、分子量5000以上の高分子化合物であることを特徴とする請求項11に記載の有機光電変換素子。
  13.  前記一般式(1)、(2a)、(2b)、(3a)、(3b)、(4)、(5)、または(6)で表される部分構造を有する化合物を含有する層が、溶液塗布法によって作製されたことを特徴とする請求項1~12のいずれか1項に記載の有機光電変換素子。
  14.  請求項1~13のいずれか1項に記載の有機光電変換素子を用いたことを特徴とする太陽電池。
  15.  請求項1~13のいずれか1項に記載の有機光電変換素子がアレイ状に配置されてなることを特徴とする光センサアレイ。
PCT/JP2010/051119 2009-02-04 2010-01-28 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ WO2010090123A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010549446A JPWO2010090123A1 (ja) 2009-02-04 2010-01-28 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009023486 2009-02-04
JP2009-023486 2009-02-04

Publications (1)

Publication Number Publication Date
WO2010090123A1 true WO2010090123A1 (ja) 2010-08-12

Family

ID=42542021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051119 WO2010090123A1 (ja) 2009-02-04 2010-01-28 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ

Country Status (2)

Country Link
JP (1) JPWO2010090123A1 (ja)
WO (1) WO2010090123A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186343A (ja) * 2011-03-07 2012-09-27 Kyushu Univ 有機薄膜太陽電池
WO2013151141A1 (ja) * 2012-04-04 2013-10-10 コニカミノルタ株式会社 有機光電変換素子およびこれを用いた太陽電池
US20140167002A1 (en) * 2010-11-22 2014-06-19 The Regents Of The University Of California Organic small molecule semiconducting chromophores for use in organic electronic devices
CN103896931A (zh) * 2012-12-27 2014-07-02 海洋王照明科技股份有限公司 一种有机半导体材料、制备方法和电致发光器件
CN104098591A (zh) * 2013-04-09 2014-10-15 河南师范大学 两个小分子有机半导体材料合成方法
US20150221793A1 (en) * 2012-09-07 2015-08-06 Konica Minolta, Inc. Solar cell and transparent electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006114966A1 (ja) * 2005-04-18 2006-11-02 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007029750A1 (ja) * 2005-09-06 2007-03-15 Kyoto University 有機薄膜光電変換素子及びその製造方法
JP2007123392A (ja) * 2005-10-26 2007-05-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008152889A1 (ja) * 2007-06-11 2008-12-18 Konica Minolta Holdings, Inc. 光電変換素子、光電変換素子の製造方法、イメージセンサおよび放射線画像検出器
WO2009063850A1 (ja) * 2007-11-12 2009-05-22 Konica Minolta Holdings, Inc. 有機エレクトロニクス素子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635870B2 (ja) * 2003-04-23 2011-02-23 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2008016834A (ja) * 2006-06-09 2008-01-24 Mitsubishi Chemicals Corp 有機光電変換素子の製造方法及び有機光電変換素子
JP5369384B2 (ja) * 2007-03-29 2013-12-18 住友化学株式会社 有機光電変換素子及びその製造に有用な重合体
JP5050625B2 (ja) * 2007-04-20 2012-10-17 住友化学株式会社 共重合体およびそれを用いた有機光電変換素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006114966A1 (ja) * 2005-04-18 2006-11-02 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007029750A1 (ja) * 2005-09-06 2007-03-15 Kyoto University 有機薄膜光電変換素子及びその製造方法
JP2007123392A (ja) * 2005-10-26 2007-05-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008152889A1 (ja) * 2007-06-11 2008-12-18 Konica Minolta Holdings, Inc. 光電変換素子、光電変換素子の製造方法、イメージセンサおよび放射線画像検出器
WO2009063850A1 (ja) * 2007-11-12 2009-05-22 Konica Minolta Holdings, Inc. 有機エレクトロニクス素子の製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140167002A1 (en) * 2010-11-22 2014-06-19 The Regents Of The University Of California Organic small molecule semiconducting chromophores for use in organic electronic devices
US10892421B2 (en) 2010-11-22 2021-01-12 The Regents Of The University Of California Organic small molecule semiconducting chromophores for use in organic electronic devices
US9893294B2 (en) * 2010-11-22 2018-02-13 The Regents Of The University Of California Organic small molecule semiconducting chromophores for use in organic electronic devices
JP2012186343A (ja) * 2011-03-07 2012-09-27 Kyushu Univ 有機薄膜太陽電池
WO2013151141A1 (ja) * 2012-04-04 2013-10-10 コニカミノルタ株式会社 有機光電変換素子およびこれを用いた太陽電池
US9941422B2 (en) 2012-04-04 2018-04-10 Konica Minolta, Inc. Organic photoelectric conversion element and solar cell using the same
JPWO2013151141A1 (ja) * 2012-04-04 2015-12-17 コニカミノルタ株式会社 有機光電変換素子およびこれを用いた太陽電池
JP2017118151A (ja) * 2012-09-07 2017-06-29 コニカミノルタ株式会社 太陽電池
JPWO2014038567A1 (ja) * 2012-09-07 2016-08-12 コニカミノルタ株式会社 太陽電池および透明電極
US9882072B2 (en) 2012-09-07 2018-01-30 Konica Minolta, Inc. Solar cell and transparent electrode
US20150221793A1 (en) * 2012-09-07 2015-08-06 Konica Minolta, Inc. Solar cell and transparent electrode
CN103896931A (zh) * 2012-12-27 2014-07-02 海洋王照明科技股份有限公司 一种有机半导体材料、制备方法和电致发光器件
CN104098591B (zh) * 2013-04-09 2017-05-24 河南师范大学 两个小分子有机半导体材料合成方法
CN104098591A (zh) * 2013-04-09 2014-10-15 河南师范大学 两个小分子有机半导体材料合成方法

Also Published As

Publication number Publication date
JPWO2010090123A1 (ja) 2012-08-09

Similar Documents

Publication Publication Date Title
JP5447521B2 (ja) 有機光電変換素子、それを用いた太陽電池および光センサアレイ
JP5655568B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5494651B2 (ja) 有機光電変換素子、それを用いた太陽電池および光センサアレイ
JP5573841B2 (ja) タンデム型有機光電変換素子、および太陽電池
JP5573066B2 (ja) 有機光電変換素子と、それを用いた太陽電池及び光センサアレイ
JP5648641B2 (ja) 有機光電変換素子
JP5493465B2 (ja) 有機薄膜太陽電池
WO2011148717A1 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5699524B2 (ja) 有機光電変換素子および太陽電池
JP5476969B2 (ja) 有機光電変換素子、太陽電池、及び光センサアレイ
JP5493496B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
WO2010090123A1 (ja) 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ
JP5447513B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP2012049352A (ja) 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ
JP2010283003A (ja) 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ
JP5568972B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP5944120B2 (ja) 有機光電変換素子とその製造方法、およびそれを用いた有機太陽電池
JP5413055B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP5691810B2 (ja) 共役系高分子およびこれを用いた有機光電変換素子
JP5440208B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP2011124469A (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP5447089B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5445086B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP5737377B2 (ja) 有機薄膜太陽電池
JP2011119382A (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738457

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010549446

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738457

Country of ref document: EP

Kind code of ref document: A1