[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010089872A1 - アルコール濃度センサ - Google Patents

アルコール濃度センサ Download PDF

Info

Publication number
WO2010089872A1
WO2010089872A1 PCT/JP2009/051977 JP2009051977W WO2010089872A1 WO 2010089872 A1 WO2010089872 A1 WO 2010089872A1 JP 2009051977 W JP2009051977 W JP 2009051977W WO 2010089872 A1 WO2010089872 A1 WO 2010089872A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
alcohol
scatterer
intensity
alcohol concentration
Prior art date
Application number
PCT/JP2009/051977
Other languages
English (en)
French (fr)
Inventor
和義 上松
峰夫 佐藤
健司 戸田
起男 前野
由 長谷川
Original Assignee
国立大学法人 新潟大学
根本特殊化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 新潟大学, 根本特殊化学株式会社 filed Critical 国立大学法人 新潟大学
Priority to PCT/JP2009/051977 priority Critical patent/WO2010089872A1/ja
Publication of WO2010089872A1 publication Critical patent/WO2010089872A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2852Alcohol in fuels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • H01M8/04194Concentration measuring cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0221Portable; cableless; compact; hand-held
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an alcohol concentration sensor, and more particularly to an alcohol concentration sensor for a direct fuel cell.
  • Patent Document 1 As a conventional method for measuring the alcohol concentration in a solution, a method using a refractive index, a method using a crystal resonator (see, for example, Patent Document 1), a method using a transmission speed of ultrasonic waves (eg, a patent) A method using a difference in infrared absorption (see, for example, Patent Documents 3 to 5) is known.
  • Japanese Patent Laid-Open No. 6-18394 JP 11-23541 A JP 2006-292474 A JP-A-5-223733 Japanese Patent Laid-Open No. 1-112137
  • the method using the refractive index is a method of collecting a small amount of a test solution and measuring the alcohol concentration with a refractometer, and is the most accurate method, but continuous measurement is difficult.
  • the method using the transmission speed of ultrasonic waves is a method using the fact that the transmission speed of ultrasonic waves in a liquid differs depending on the composition of the liquid. This method has a disadvantage that the ultrasonic oscillation / reception element and the measurement circuit are special and expensive.
  • the method using the difference in infrared absorption is a method using the difference in infrared absorption between water and methanol.
  • the infrared absorption of methanol is in the region of several micrometers, the optical element in that wavelength region becomes expensive, and the electronic circuit for measurement also has a drawback of requiring high accuracy.
  • an object of the present invention is to provide a small and low-priced alcohol concentration sensor that can be used in a direct fuel cell for mounting on a portable electronic device.
  • the alcohol concentration sensor according to the present invention is in contact with an alcohol aqueous solution, scatters light that passes through the alcohol aqueous solution, scatters light, irradiates light to the light scatterer, and transmits or reflects the light scatterer.
  • a light intensity detecting means for detecting the light intensity is provided.
  • the light scattering means is a porous body having translucency.
  • the light scattering means is a glass powder sintered body.
  • the alcohol concentration sensor of the present invention utilizes the fact that the refractive index of the alcohol aqueous solution is slightly different depending on the alcohol concentration, and the light scattering means in contact with the alcohol aqueous solution is irradiated with light and transmitted through the light scattering means. The intensity of the reflected light is detected. Even if the refractive index of the alcohol aqueous solution is a slight difference, the intensity of the transmitted or reflected light appears as a large difference, so that the alcohol is accurately based on the intensity of the transmitted or reflected light in spite of a very simple configuration. The concentration can be calculated.
  • FIG. 1 shows the configuration of the alcohol concentration sensor in this embodiment.
  • Reference numeral 1 denotes a flow path through which an aqueous alcohol solution to be measured flows, and a scatterer 2 as a light scattering means is disposed inside the flow path 1.
  • light irradiation means 3 for irradiating light to the scatterer 2 so as to sandwich both sides of the scatterer 2
  • light intensity detection means 4 for detecting the intensity of light transmitted through the scatterer 2.
  • a pump (not shown) is provided connected to the flow path 1.
  • the flow path 1 is composed of, for example, a transparent glass tube.
  • this flow path 1 is formed of a glass tube, in order to increase the detection accuracy in the light intensity detection means 4, the portions facing the light irradiation means 3 and the light intensity detection means 4 are flat glass tubes, that is, face each other. It is preferable to use a glass tube made of a glass plate having two parallel surfaces. Note that a glass tube whose two surfaces are not flat may be used, but in that case, the light intensity incident from the light irradiation means 3 and the light intensity detection means 4 are detected by the influence of the curved surface. The intensity of light decreases, and the detection accuracy in the light intensity detection means 4 decreases.
  • the scatterer 2 is formed of a transparent glass powder sintered body as a porous body having translucency.
  • the scatterer 2 is composed of a glass powder sintered body, for example, glass particles having a particle diameter of 10 to 100 ⁇ m, which are baked and hardened so as not to crush the pores, can be used. Depending on the situation, it can be changed appropriately. In the case of using a commercially available glass powder sintered body, for example, one used for a glass filter can be processed and used.
  • the light irradiation means 3 and the light intensity detection means 4 may be separately configured using a light emitting diode, a phototransistor, or the like, but can be integrally configured by, for example, a transmissive photo interrupter.
  • a photo interrupter By using a photo interrupter, the alcohol concentration sensor can be easily downsized.
  • the photo interrupter is an electronic component that is composed of a light emitting unit corresponding to the light irradiating unit 3 and a light receiving unit corresponding to the light intensity detecting unit 4, and is used to determine the presence or absence and position of an object.
  • the light-receiving unit is configured so that the light-receiving unit detects light from the light-emitting unit.
  • an infrared light emitting diode is preferably used as a measure against disturbance light.
  • a phototransistor or a photo IC is used as the light receiving element of the light receiving unit.
  • the alcohol concentration sensor of the present embodiment can be configured by arranging a portion where the scatterer 2 of the flow path 1 is provided between the light-emitting portion and the light-receiving portion of the photo interrupter.
  • FIG. 2 shows an example of an electric circuit of the alcohol concentration sensor in the present embodiment.
  • a constant current power source 6 is connected to the light emitting diode 5 of the light irradiation means 3 so that light of a certain intensity is irradiated.
  • a resistor 8 and a constant voltage power source 9 are connected in series to the phototransistor 7 of the light intensity detection means 4. Since the output voltage Vout across the resistor 8 changes in accordance with the change in the current of the phototransistor 7, that is, the intensity of light detected by the phototransistor 7, the scatterer 2 is detected by detecting the output voltage Vout. The intensity of the light transmitted through can be measured.
  • the aqueous alcohol solution As a measurement target is supplied to the flow channel 1 by a pump (not shown), the aqueous alcohol solution flows inside the scatterer 2 disposed in the flow channel 1.
  • the light irradiated to the scatterer 2 from the light irradiating means 3 is repeatedly refracted and reflected repeatedly at the interface between the scatterer 2 and the alcohol aqueous solution, and a part of the light passes through the scatterer 2 and the light intensity on the opposite side.
  • the detection means 4 is reached.
  • the intensity of the light reaching the light intensity detecting means 4 Decrease. That is, the intensity of the light reaching the light intensity detecting means 4 changes corresponding to the change in the refractive index of the alcohol aqueous solution. Therefore, the alcohol concentration of the alcohol aqueous solution can be obtained by measuring the intensity of the light reaching the light intensity detecting means 4 based on the fact that the refractive index of the alcohol aqueous solution varies depending on the alcohol concentration.
  • Table 1 shows refractive indexes of water, methanol, ethanol, representative transparent materials that can be used as materials of formic acid, acetaldehyde, and scatterer 2 which are by-products during power generation of the direct fuel cell.
  • a methanol aqueous solution was used as the alcohol aqueous solution, and the methanol concentration was gradually changed from 0% to 100% every 10% by mass to measure the response characteristics of the output voltage Vout .
  • the result is shown in FIG. It was confirmed that the output voltage responded promptly according to the change in methanol concentration.
  • FIG. 6 shows the relationship between the methanol concentration measured with a refractometer and the refractive index.
  • the output voltage curve shown in FIG. 4 and the refractive index curve shown in FIG. 6 have similar shapes, and it was confirmed that the output voltage changes according to the change in the refractive index of the aqueous methanol solution.
  • the output voltage showed a change of 91 mV. Therefore, it was confirmed that a change in the concentration of methanol of about 0.1% by mass can be detected sufficiently.
  • the alcohol concentration sensor of this embodiment when used for a direct fuel cell, the influence of by-products during power generation becomes a problem. Therefore, the influence of formic acid considered as a by-product during power generation of the direct fuel cell was examined.
  • the alcohol concentration sensor of the present embodiment includes the scatterer 2 that contacts the aqueous alcohol solution and scatters the light that passes through the aqueous alcohol solution, the light irradiation means 3 that irradiates the scatterer 2 with light, and the scattering.
  • Light intensity detecting means 4 for detecting the intensity of light transmitted through the body 2 is provided.
  • the fact that the refractive index of the alcohol aqueous solution is slightly different depending on the alcohol concentration is utilized, and the scatterer 2 in contact with the alcohol aqueous solution is irradiated with light and transmitted through the scatterer 2. The intensity of the light is detected.
  • the scatterer 2 is a porous body having translucency, the light irradiated from the light irradiating means 3 is refracted at the interface between the aqueous alcohol solution and the scatterer 2 before passing through the scatterer 2.
  • the number of reflections can be extremely increased, and as a result, the alcohol concentration can be accurately calculated.
  • the scatterer 2 is a glass powder sintered body, it is easy to obtain materials for forming the scatterer 2, and the manufacture of the scatterer 2 is easy, so an alcohol concentration sensor is provided at a low price. can do.
  • the alcohol concentration sensor of this embodiment by attaching the alcohol concentration sensor of this embodiment to the fuel supply flow path of the direct type fuel cell, it becomes possible to keep the alcohol concentration constant while constantly monitoring the alcohol concentration in the supplied fuel. .
  • the valve of the storage tank containing high concentration alcohol is opened, and when the target concentration is reached, the valve is closed.
  • the alcohol concentration can be kept within a certain range.
  • the alcohol concentration sensor of this embodiment can be used not only for direct fuel cells but also for fuel cells using alcohol as fuel and internal combustion engines in general.
  • FIG. 7 shows the configuration of the alcohol concentration sensor in this embodiment.
  • symbol is attached
  • the arrangement of the light irradiation means 3 and the light intensity detection means 4 is different from that in the first embodiment.
  • light irradiation means 3 for irradiating the scatterer 2 with light and light intensity detection means 4 for detecting the intensity of the light reflected from the scatterer 2 are arranged on one side of the scatterer 2. Yes.
  • the flow path 1 is formed of a glass tube
  • a glass tube having a flat portion facing the light irradiation means 3 and the light intensity detection means 4 in order to increase the detection accuracy of the light intensity detection means 4.
  • a glass tube having a non-flat portion may be used.
  • the intensity of light incident from the light irradiation means 3 and the light detected by the light intensity detection means 4 are affected by the curved surface. The intensity decreases, and the detection accuracy in the light intensity detection means 4 decreases.
  • the light irradiation means 3 and the light intensity detection means 4 may be separately configured using light emitting diodes, phototransistors, or the like.
  • the light irradiation means 3 and the light intensity detection means 4 can be integrally configured by a reflective photo interrupter, that is, a photo reflector. .
  • a photo reflector By using a photo reflector, the alcohol concentration sensor can be easily downsized.
  • the photo reflector is an electronic component that is composed of a light emitting unit corresponding to the light irradiating unit 3 and a light receiving unit corresponding to the light intensity detecting unit 4, and is used to determine the presence or absence and position of an object.
  • the light receiving unit is arranged adjacent to each other in the same direction, and is configured such that light from the light emitting unit is applied to the object and the reflected light is detected by the light receiving unit.
  • the electric circuit in the present embodiment can be configured in the same manner as in the first embodiment.
  • the intensity of the light reflected from the scatterer 2 can be measured by detecting the output voltage Vout .
  • the light irradiated to the scatterer 2 from the light irradiating means 3 advances in a repetitive manner by refraction and reflection at the interface between the scatterer 2 and the alcohol aqueous solution, and a part of the light is reflected from the scatterer 2 and the light intensity detecting means 4.
  • the greater the difference in refractive index between the alcohol aqueous solution and the scatterer 2 the greater the amount of light that is refracted, reflected and scattered at the interface between the scatterer 2 and the alcohol aqueous solution, so the intensity of the light reaching the light intensity detecting means 4 Will increase. Therefore, the alcohol concentration of the alcohol aqueous solution can be obtained by measuring the intensity of the light reaching the light intensity detecting means 4 based on the fact that the refractive index of the alcohol aqueous solution varies depending on the alcohol concentration.
  • the alcohol concentration sensor of the present embodiment has a smaller output voltage than that of the first embodiment, but the light irradiation means 3 and the light intensity detection means 4 can be integrally formed on one side of the flow path 1 and thus can be easily downsized. Has the advantage of being.
  • the alcohol concentration sensor of the present embodiment includes the scatterer 2 that contacts the aqueous alcohol solution and scatters the light that passes through the aqueous alcohol solution, the light irradiation means 3 that irradiates the scatterer 2 with light, and the scattering.
  • a light intensity detecting means 4 for detecting the intensity of light reflected from the body 2 is provided.
  • the fact that the refractive index of the alcohol aqueous solution is slightly different depending on the alcohol concentration is utilized. Light is applied to the scatterer 2 in contact with the alcohol aqueous solution, and the scatterer 2 is reflected. The intensity of the light is detected.
  • the material of the scatterer 2 various transparent plastics can be used in addition to glass. Further, not only the powder sintered body but also a chip-like, plate-like, or rod-like material can be used. In the case of a plate shape, the refraction and reflection of light can be adjusted by adjusting the angle of the plate with respect to the optical path. Furthermore, the scatterer 2 can be substituted by making the inner surface of the flow channel 1 rough, for example, ground glass.
  • a visible light emitting diode such as red or blue or a laser diode can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fuel Cell (AREA)

Abstract

携帯電子機器搭載用のダイレクト型燃料電池に用いることができる、小型かつ低価格のアルコール濃度センサを提供する。アルコール水溶液に接し、アルコール水溶液を透過する光を散乱させる散乱体2と、散乱体2に光を照射する光照射手段3と、散乱体2を透過した光の強度を検出する光強度検出手段4を備えている。アルコール濃度によってアルコール水溶液の屈折率が僅かに異なることを利用するものであり、アルコール水溶液に接する散乱体2に光を照射して、散乱体2を透過した光の強度を検出する。アルコール水溶液の屈折率が僅かな差であっても、透過した光の強度は大きな差として現れるため、極めて簡単な構成にもかかわらず、透過した光の強度に基づいて正確にアルコール濃度を算出することができる。

Description

アルコール濃度センサ
 本発明は、アルコール濃度センサに関し、特にダイレクト型燃料電池用のアルコール濃度センサに関する。
 携帯電子機器への搭載を目指して、ダイレクト型燃料電池の開発が進められている。ダイレクト型アルコール燃料電池では、燃料であるアルコールが電解質膜を透過して空気極側に漏れる現象であるクロスオーバーを防ぐため、アルコール濃度が10~20%程度になるように常に制御する必要がある。つまり、発電に伴いアルコール濃度が低下した場合には、それを検知して、貯蔵タンクのバルブを開けて濃度の高いアルコールを添加する必要がある。このため、ダイレクト型アルコール燃料電池を携帯電子機器への搭載するに際して、燃料水溶液中のアルコールの濃度測定は必須であり、そのためのセンサ素子の小型化、低価格化が求められている。
 従来の溶液中のアルコール濃度の測定法としては、屈折率を利用する方法、水晶振動子を利用する方法(例えば、特許文献1を参照)、超音波の伝達速度を利用する方法(例えば、特許文献2を参照)、赤外線吸収の違いを利用する方法(例えば、特許文献3~5を参照)などが知られている。
特開平6-18394号公報 特開平11-23541号公報 特開2006-292474号公報 特開平5-223733号公報 特開平1-112137号公報
 屈折率を利用する方法は、被検溶液を少量採取して屈折率計でアルコール濃度を測定する方法であり、最も精度が高い方法であるが、連続測定は困難である。
 水晶振動子を利用する方法(例えば、特許文献1を参照)は、被検液に浸漬した水晶振動子の共振周波数が、水晶振動子を取り巻く被検液の密度や粘度の違いに応じて変化することを利用した方法である。この方法では、水晶振動子部分の加工に専門技術を要し、容易に作成することが困難であり、計測部も高精度で高価なものが必要であるという欠点があった。
 超音波の伝達速度を利用する方法(例えば、特許文献2を参照)は、液体中の超音波の伝達速度が液体の組成により異なることを利用した方法である。この方法では、超音波の発振・受信素子及び計測回路が特殊であり、高価であるという欠点があった。
 赤外線吸収の違いを利用する方法(例えば、特許文献3~5を参照)は、水とメタノールの赤外線の吸収の違いを利用した方法である。この方法では、メタノールの赤外線吸収は波長が数マイクロメートルの領域にあるため、その波長域での光学素子が高価なものとなり、計測のための電子回路も高精度を要するという欠点があった。
 そこで、本発明は、携帯電子機器搭載用のダイレクト型燃料電池に用いることができる、小型かつ低価格のアルコール濃度センサを提供することを目的とする。
 本発明のアルコール濃度センサは、アルコール水溶液に接し、アルコール水溶液を透過する光を散乱させる光散乱手段と、この光散乱手段に光を照射する光照射手段と、前記光散乱手段を透過又は反射した光の強度を検出する光強度検出手段を備えたことを特徴とする。
 また、前記光散乱手段は、透光性を有する多孔質体であることを特徴とする。
 また、前記光散乱手段は、ガラス粉末焼結体であることを特徴とする。
 本発明のアルコール濃度センサによれば、アルコール濃度によってアルコール水溶液の屈折率が僅かに異なることを利用するものであり、アルコール水溶液に接する光散乱手段に光を照射して、光散乱手段を透過又は反射した光の強度を検出する。アルコール水溶液の屈折率が僅かな差であっても、透過又は反射した光の強度は大きな差として現れるため、極めて簡単な構成にもかかわらず、透過又は反射した光の強度に基づいて正確にアルコール濃度を算出することができる。
 したがって、携帯電子機器搭載用のダイレクト型燃料電池に用いることができる、小型かつ低価格のアルコール濃度センサを提供することができる。
本発明の実施例1におけるアルコール濃度センサの構成を示す模式図である。 同上、電気回路例を示す回路図である。 同上、出力電圧の応答特性を示すグラフである。 同上、メタノール濃度と出力電圧の関係を示すグラフである。 同上、出力電圧へのギ酸濃度依存性を示すグラフである。 メタノール濃度と屈折率の関係を示すグラフである。 本発明の実施例2におけるアルコール濃度センサの構成を示す模式図である。 同上、メタノール濃度と出力電圧の関係を示すグラフである。
 以下、本発明のアルコール濃度センサの実施例について、添付した図面を参照しながら説明する。
 図1に本実施例におけるアルコール濃度センサの構成を示す。1は測定対象となるアルコール水溶液が流れる流路であり、この流路1の内部には、光散乱手段としての散乱体2が配置されている。また、流路1の外部には、散乱体2の両側を挟むようにして、散乱体2に光を照射する光照射手段3と、散乱体2を透過した光の強度を検出する光強度検出手段4が配置されている。また、流路1にアルコール溶液を供給するために、図示しないポンプが流路1に接続して設けられている。
 流路1は、例えば、透明なガラス管から構成されている。この流路1をガラス管から構成する場合は、光強度検出手段4における検出精度を高くするために、光照射手段3と光強度検出手段4が面した部分が平坦なガラス管、すなわち、向かい合う二面が平行なガラス板からなるガラス管を用いるのが好ましい。なお、これらの二面が平坦でないガラス管を用いてもよいが、その場合は、曲面の影響を受けて、光照射手段3から入射する光の強度と、光強度検出手段4において検出される光の強度が低下して、光強度検出手段4における検出精度が低下する。
 散乱体2は、透光性を有する多孔質体として、透明なガラス粉末焼結体から構成されている。この散乱体2をガラス粉末焼結体から構成する場合は、例えば、粒子径は10~100μmのガラス粒子を孔が潰れない程度に焼き固めたものを用いることができ、この粒子径は、必要に応じて、適宜変更することができる。市販のガラス粉末焼結体を用いる場合は、例えば、ガラスフィルターに用いられるものを加工して使用することができる。
 光照射手段3と光強度検出手段4は、それぞれ発光ダイオードやフォトトランジスタなどを用いて別々に構成してもよいが、例えば、透過型のフォトインタラプタにより一体に構成することができる。フォトインタラプタを用いることによって、アルコール濃度センサの小型化が容易となる。なお、フォトインタラプタは、光照射手段3に相当する発光部と、光強度検出手段4に相当する受光部から構成され、物体の有無や位置を判定するために用いられる電子部品であって、発光部と受光部が対向し、発光部からの光を受光部で検出するように構成されている。発光部の発光素子としては、外乱光対策として、赤外発光型の発光ダイオードが好ましく用いられる。受光部の受光素子としては、フォトトランジスタやフォトICが用いられる。このフォトインタラプタの発光部と受光部の間に流路1の散乱体2が設けられた部分を配置することによって、本実施例のアルコール濃度センサを構成することができる。
 図2に本実施例におけるアルコール濃度センサの電気回路例を示す。光照射手段3の発光ダイオード5には、定電流電源6が接続しており、一定の強度の光が照射されるようになっている。また、光強度検出手段4のフォトトランジスタ7には、抵抗器8と定電圧電源9が直列に接続している。抵抗器8の両端の出力電圧Voutは、フォトトランジスタ7の電流の変化、すなわちフォトトランジスタ7により検出された光の強度に応じて変化するため、出力電圧Voutを検出することにより散乱体2を透過した光の強度を測定することができる。
 つぎに、本実施例のアルコール濃度センサの動作について説明する。
 図示しないポンプによって、流路1に測定対象としてのアルコール水溶液を供給すると、流路1に配置された散乱体2の内部をアルコール水溶液が流れる。光照射手段3から散乱体2に照射された光は、散乱体2とアルコール水溶液の界面で屈折と反射を多重に繰り返して進み、その一部は散乱体2を透過して反対側の光強度検出手段4に到達する。アルコール水溶液と散乱体2の屈折率の違いが大きいほど、散乱体2とアルコール水溶液の界面で屈折、反射して散乱する光の量が大きくなるため、光強度検出手段4に到達する光の強度は減少する。つまり、アルコール水溶液の屈折率の変化に対応して、光強度検出手段4に到達する光の強度が変化する。したがって、アルコール濃度によってアルコール水溶液の屈折率が異なることに基づいて、光強度検出手段4に到達する光の強度を測定することによって、アルコール水溶液のアルコール濃度を求めることができる。
 表1に水、メタノール、エタノール、ダイレクト型燃料電池の発電時の副生成物であるギ酸、アセトアルデヒド、及び散乱体2の材料として用いることのできる代表的な透明材料の屈折率を示した。
Figure JPOXMLDOC01-appb-T000001
 つぎに、実際の測定例について説明する。
 アルコール水溶液としてメタノール水溶液を用い、メタノール濃度を0%から100%まで10質量%ごとに段階的に変化させて出力電圧Voutの応答特性を測定した。その結果を図3に示す。メタノール濃度の変化に応じて出力電圧が速やかに応答することが確認された。
 この結果を基に、メタノール濃度と出力電圧の関係を図4にまとめた。また、屈折率計で測定したメタノール濃度と屈折率の関係を図6に示す。図4に示す出力電圧の曲線と図6に示す屈折率の曲線がよく似た形状を示し、メタノール水溶液の屈折率の変化に応じて出力電圧が変化することが確認された。また、メタノール濃度が10質量%から20質量%に変化したときに、出力電圧は91mVの変化を示した。したがって、0.1質量%程度のメタノールの濃度変化を十分検出できることが確認された。
 なお、比較例として、散乱体2を設けずに同様に測定したところ、出力電圧の変化は35mVであり、本実施例の場合よりも小さい値であった。
 また、本実施例のアルコール濃度センサをダイレクト型燃料電池に用いる場合は、発電時の副生成物による影響が問題となる。そこで、ダイレクト型燃料電池の発電時の副生成物として考えられるギ酸の影響を検討した。
 20質量%のメタノール溶液において、ギ酸濃度を0.1質量%(1000ppm)、1質量%(10000ppm)と段階的に変化させて出力電圧へのギ酸濃度依存性を測定した。その結果を図5に示す。ギ酸濃度が0.1質量%のときまでは、出力電圧の変化はほとんど見られず、ギ酸の影響はほとんどなく、ダイレクト型燃料電池のアルコールセンサとして、問題なく使用できることを確認した。なお、ギ酸濃度を1質量%としたときは出力電圧の上昇が見られたが、実際のダイレクト型燃料電池ではこのような高濃度のギ酸の生成は考えられないので、実用上は問題にはならない。
 以上のように、本実施例のアルコール濃度センサは、アルコール水溶液に接し、アルコール水溶液を透過する光を散乱させる散乱体2と、この散乱体2に光を照射する光照射手段3と、前記散乱体2を透過した光の強度を検出する光強度検出手段4を備えている。本実施例のアルコール濃度センサによれば、アルコール濃度によってアルコール水溶液の屈折率が僅かに異なることを利用するものであり、アルコール水溶液に接する散乱体2に光を照射して、散乱体2を透過した光の強度を検出する。アルコール水溶液の屈折率が僅かな差であっても、透過した光の強度は大きな差として現れるため、極めて簡単な構成にもかかわらず、透過した光の強度に基づいて正確にアルコール濃度を算出することができる。したがって、携帯電子機器搭載用のダイレクト型燃料電池に用いることができる、小型かつ低価格のアルコール濃度センサを提供することができる。
 また、前記散乱体2は、透光性を有する多孔質体であるので、光照射手段3から照射された光が散乱体2を透過するまでに、アルコール水溶液と散乱体2の界面で屈折、反射する回数を極めて多くすることができ、その結果、正確にアルコール濃度を算出することができる。
 また、前記散乱体2は、ガラス粉末焼結体であるので、散乱体2を形成する材料の入手が容易であり、散乱体2の製造も容易であるので、低価格でアルコール濃度センサを提供することができる。
 また、本実施例のアルコール濃度センサをダイレクト型燃料電池の燃料供給流路に取り付けることにより、常時、供給される燃料中のアルコール濃度をモニターしながら、アルコール濃度を一定に保つことが可能となる。つまり、発電の進行によりアルコールが消費されて濃度が低下したときには、それを検出して濃度の高いアルコールの入った貯蔵タンクのバルブを開け、目的濃度に達したらバルブを閉じるように構成することにより、アルコール濃度を一定の範囲内に保つことができる。
 なお、本実施例のアルコール濃度センサは、ダイレクト型燃料電池のほか、アルコールを燃料とする燃料電池や内燃機関全般にも用いることができる。
 図7に本実施例におけるアルコール濃度センサの構成を示す。なお、実施例1と同様の部分には同じ符号を付し、その詳細な説明を省略する。
 本実施例では、光照射手段3と光強度検出手段4の配置が実施例1と異なる。流路1の外部には、散乱体2の片側に、散乱体2に光を照射する光照射手段3と、散乱体2を反射した光の強度を検出する光強度検出手段4が配置されている。
 流路1をガラス管から構成する場合は、光強度検出手段4における検出精度を高くするために、光照射手段3と光強度検出手段4が面した部分が平坦なガラス管を用いるのが好ましい。なお、この部分が平坦でないガラス管を用いてもよいが、その場合は、曲面の影響を受けて、光照射手段3から入射する光の強度と、光強度検出手段4において検出される光の強度が低下して、光強度検出手段4における検出精度が低下する。
 光照射手段3と光強度検出手段4は、それぞれ発光ダイオードやフォトトランジスタなどを用いて別々に構成してもよいが、例えば、反射型のフォトインタラプタ、すなわちフォトリフレクタにより一体に構成することができる。フォトリフレクタを用いることによって、アルコール濃度センサの小型化が容易となる。なお、フォトリフレクタは、光照射手段3に相当する発光部と、光強度検出手段4に相当する受光部から構成され、物体の有無や位置を判定するために用いられる電子部品であって、発光部と受光部が隣接して同じ向きに配置され、発光部からの光を物体に当てて、反射してきた光を受光部で検出するように構成されている。
 本実施例における電気回路は、実施例1と同様に構成することができる。そして、本実施例においては、出力電圧Voutを検出することにより散乱体2を反射した光の強度を測定することができる。
 つぎに、本実施例のアルコール濃度センサの動作について説明する。
 光照射手段3から散乱体2に照射された光は、散乱体2とアルコール水溶液の界面で屈折と反射を多重に繰り返して進み、その一部は散乱体2を反射して光強度検出手段4に到達する。アルコール水溶液と散乱体2の屈折率の違いが大きいほど、散乱体2とアルコール水溶液の界面で屈折、反射して散乱する光の量が大きくなるため、光強度検出手段4に到達する光の強度は増大する。したがって、アルコール濃度によってアルコール水溶液の屈折率が異なることに基づいて、光強度検出手段4に到達する光の強度を測定することによって、アルコール水溶液のアルコール濃度を求めることができる。
 つぎに、実際の測定例について説明する。
 アルコール水溶液としてメタノール水溶液を用い、メタノール濃度を0%から100%まで10質量%ごとに段階的に変化させて出力電圧Voutを測定し、メタノール濃度と出力電圧の関係を図8にまとめた。メタノール水溶液の屈折率の変化に応じて出力電圧が変化することが確認された。なお、本実施例のアルコール濃度センサは、実施例1と比較すると出力電圧が小さいものの、光照射手段3と光強度検出手段4を流路1の片側に一体に形成できるため小型化が容易であるという利点を有する。
 以上のように、本実施例のアルコール濃度センサは、アルコール水溶液に接し、アルコール水溶液を透過する光を散乱させる散乱体2と、この散乱体2に光を照射する光照射手段3と、前記散乱体2を反射した光の強度を検出する光強度検出手段4を備えている。本実施例のアルコール濃度センサによれば、アルコール濃度によってアルコール水溶液の屈折率が僅かに異なることを利用するものであり、アルコール水溶液に接する散乱体2に光を照射して、散乱体2を反射した光の強度を検出する。アルコール水溶液の屈折率が僅かな差であっても、反射した光の強度は大きな差として現れるため、極めて簡単な構成にもかかわらず、反射した光の強度に基づいて正確にアルコール濃度を算出することができる。
 なお、本発明は上記各実施例に限定されるものではなく、種々の変形実施が可能である。
 例えば、散乱体2の材質としては、ガラスのほかにも、透光性のある各種プラスチックを用いることができる。また、その形態も粉末焼結体だけではなく、チップ状や板状、棒状の材料も用いることができる。板状の場合は、光路に対する板の角度を調整することにより、光の屈折、反射を調整することができる。さらに、流路1の内面を粗面、例えば、すりガラス状にすることにより、散乱体2の代用とすることができる。
 また、光照射手段3の発光素子としては、赤外発光型の発光ダイオードのほかにも、赤や青色などの可視発光型の発光ダイオードやレーザーダイオードを用いることができる。

Claims (3)

  1. アルコール水溶液に接し、アルコール水溶液を透過する光を散乱させる光散乱手段と、この光散乱手段に光を照射する光照射手段と、前記光散乱手段を透過又は反射した光の強度を検出する光強度検出手段を備えたことを特徴とするアルコール濃度センサ。
  2. 前記光散乱手段は、透光性を有する多孔質体であることを特徴とする請求の範囲第1項記載のアルコール濃度センサ。
  3. 前記光散乱手段は、ガラス粉末焼結体であることを特徴とする請求の範囲第1項又は第2項に記載のアルコール濃度センサ。
PCT/JP2009/051977 2009-02-05 2009-02-05 アルコール濃度センサ WO2010089872A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/051977 WO2010089872A1 (ja) 2009-02-05 2009-02-05 アルコール濃度センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/051977 WO2010089872A1 (ja) 2009-02-05 2009-02-05 アルコール濃度センサ

Publications (1)

Publication Number Publication Date
WO2010089872A1 true WO2010089872A1 (ja) 2010-08-12

Family

ID=42541794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051977 WO2010089872A1 (ja) 2009-02-05 2009-02-05 アルコール濃度センサ

Country Status (1)

Country Link
WO (1) WO2010089872A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630513A (zh) * 2013-11-01 2014-03-12 刘星铄 一种用于瓶装酒酒精浓度测量的装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298237A (ja) * 1985-10-25 1987-05-07 Nippon Telegr & Teleph Corp <Ntt> 多孔質ガラス焼結体のカサ密度測定方法及び測定装置
JPH05223733A (ja) * 1992-02-10 1993-08-31 Japan Electron Control Syst Co Ltd 光学式アルコール濃度測定装置
JP2007024868A (ja) * 2005-06-15 2007-02-01 Fujifilm Corp 流体分析デバイス及び流体分析装置
JP2009079974A (ja) * 2007-09-26 2009-04-16 Niigata Univ アルコール濃度センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298237A (ja) * 1985-10-25 1987-05-07 Nippon Telegr & Teleph Corp <Ntt> 多孔質ガラス焼結体のカサ密度測定方法及び測定装置
JPH05223733A (ja) * 1992-02-10 1993-08-31 Japan Electron Control Syst Co Ltd 光学式アルコール濃度測定装置
JP2007024868A (ja) * 2005-06-15 2007-02-01 Fujifilm Corp 流体分析デバイス及び流体分析装置
JP2009079974A (ja) * 2007-09-26 2009-04-16 Niigata Univ アルコール濃度センサ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAUSHEV V N ET AL.: "Dispersion scatterer based on a porous matrix", OPTICS AND SPECTROSCOPY, vol. 50, no. 5, May 1981 (1981-05-01), pages 548 - 549 *
KAZUYOSHI UEMATSU ET AL.: "Chokusetsu Methanol-gata Nenryo Denchi-yo Kogata Alcohol Nodo Sensor no Kaihatsu", NEN (HEISEI 20 NEN) SHUKI DAI 69 KAI EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, vol. 1, 2 September 2008 (2008-09-02), pages 133 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630513A (zh) * 2013-11-01 2014-03-12 刘星铄 一种用于瓶装酒酒精浓度测量的装置
CN103630513B (zh) * 2013-11-01 2017-02-01 刘星铄 一种用于瓶装酒酒精浓度测量的装置

Similar Documents

Publication Publication Date Title
US11394175B2 (en) VCSEL narrow divergence proximity sensor
JP2005156415A (ja) 表面プラズモン共鳴センサ
JP2008107098A (ja) 燃料性状検出装置
US20190323939A1 (en) Fine particle counter
JP2008286531A (ja) 燃料性状検出装置
CN101634627A (zh) 一种微型防爆非色散红外气体传感器
KR100866743B1 (ko) 혼합비 검출 장치 및 이를 탑재한 연료 전지 시스템
CN109946266A (zh) 一种提高石英光热光谱气体浓度检测灵敏度的装置及方法
EP0797091A1 (en) Surface plasmon resonance sensor with interchangable optical element
JP5092161B2 (ja) アルコール濃度センサ
WO2010089872A1 (ja) アルコール濃度センサ
JP4216272B2 (ja) 生体情報測定用光学部材、および生体情報算出装置
CN203443879U (zh) 油液颗粒污染度检测传感器
JP2011232132A (ja) 自動分析装置
CN101074922B (zh) 光学基甲醇传感器的流动装置
RU157412U1 (ru) Автоматический цифровой рефрактометр для определения показателя преломления жидкостей
US20220283081A1 (en) Density measurement device
JP2004053551A (ja) 屈折率測定方法及びこれに用いられる光導波路型sprセンサ
CN103267744A (zh) 基于直角棱镜的浊度光学检测装置
JP2012093232A (ja) フォトセンサ及びレベルセンサ
RU2006127766A (ru) Способ и устройство дя измерения плотности электролита в свинцовых аккумуляторах
JP6599675B2 (ja) 光学式センサ
JP2011080881A (ja) 液位検出装置
CN210665490U (zh) 一种对射式红外气体传感器
JP2004309451A (ja) 濃度測定装置および濃度測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP