WO2010087328A1 - コンデンサー用プロピレン単独重合体 - Google Patents
コンデンサー用プロピレン単独重合体 Download PDFInfo
- Publication number
- WO2010087328A1 WO2010087328A1 PCT/JP2010/050961 JP2010050961W WO2010087328A1 WO 2010087328 A1 WO2010087328 A1 WO 2010087328A1 JP 2010050961 W JP2010050961 W JP 2010050961W WO 2010087328 A1 WO2010087328 A1 WO 2010087328A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- propylene homopolymer
- polymerization
- propylene
- temperature
- measured
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/441—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/04—Monomers containing three or four carbon atoms
- C08F110/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/56—Insulating bodies
Definitions
- the present invention relates to a propylene homopolymer suitable for a capacitor film having excellent voltage resistance and a stretched film for a capacitor obtained therefrom.
- Polypropylene has excellent stretching properties, so it can be made into a uniform thin film, and is widely used in various fields by taking advantage of the excellent properties.
- Polypropylene is widely used for capacitor films because of its excellent electrical properties.
- the demand for capacitor films is increasing in the field of home appliances and automobiles, and there is a demand for further improvement in the withstand voltage of capacitor films obtained from polypropylene.
- polypropylenes have been proposed in order to further improve the withstand voltage of capacitor films obtained from polypropylene.
- polypropylene having an increased stereoregularity by setting the isotactic / pentad fraction of the boiling heptane insoluble part to 0.955 or more see, for example, Patent Document 1
- the ash content is 40 ppm by weight or less
- the chlorine content is 2
- Proposals have been made of polypropylene having a weight ppm or less (for example, see Patent Document 2), polypropylene having a racemic pendart fraction of boiling n-heptane insoluble part of 0.0005 to 0.01 (for example, see Patent Document 3), and the like. ing.
- polypropylene for example, see Patent Document 4 in which the mesopentad fraction and the firing residue are controlled to an optimum amount, the isotactic pentad fraction or the syndiotactic pentad fraction that is soluble in boiling heptane is 0.
- Polypropylene of 5 or more see, for example, Patent Document 5
- a specific metallocene catalyst for example, a pentad fraction of 93 mol% or more, a xylene soluble content of less than 1 wt%, and a recoverable amount of aluminum and chlorine
- Polypropylene for example, refer to Patent Document 6 whose value is less than 25 ppm has been proposed.
- An object of the present invention is to develop a propylene homopolymer capable of obtaining a capacitor film having excellent withstand voltage, particularly a capacitor film having excellent withstand voltage when thinned.
- the present inventors have intensively researched on a propylene homopolymer that can solve the above-described problems and can provide a capacitor film having excellent voltage resistance, and completed the present invention.
- the present invention includes the following matters.
- a stretched film for a capacitor obtained by stretching the propylene homopolymer according to any one of [1] to [3] at a stretched surface ratio (longitudinal x lateral surface ratio) of 30 to 80 times.
- the stretched film obtained from the propylene homopolymer for capacitors of the present invention is excellent in withstand voltage, and is suitable as a film for capacitors.
- the propylene homopolymer for capacitors of the present invention satisfies the following requirements (i) to (v), (ix), and more preferably satisfies the following requirement (vi).
- the melt flow rate (MFR; measured in accordance with ASTM D1238 at 230 ° C. and 2.16 kg load) is 1 to 10 g / 10 min.
- MFR melt flow rate
- the mesopentad fraction (mmmm) measured by 13 C-NMR is 0.940 to 0.995;
- the propylene homopolymer for capacitors of the present invention has an MFR (ASTM D1238, 230 ° C., 2.16 kg load) of 1 to 10 g / 10 min, preferably 1.5 to 8.0 g / 10 min.
- MFR ASTM D1238, 230 ° C., 2.16 kg load
- the MFR is less than 1, it is difficult to form a raw material with an extruder, and the chuck may be detached during stretching, so that a desired stretched film may not be obtained.
- the MFR exceeds 10 g / 10 min, the film productivity may be remarkably lowered, such as frequent film breakage during stretching.
- the propylene homopolymer for capacitors of the present invention has a mesopentad fraction (mmmm) measured by 13 C-NMR of 0.940 to 0.995, preferably 0.945 to 0.990. If the mesopentad fraction (mmmm) measured by 13 C-NMR is less than 0.940, a film having a desired withstand voltage may not be obtained. When the mesopentad fraction (mmmm) measured by 13 C-NMR exceeds 0.995, the stress during stretching becomes extremely high, and a thin film required for a capacitor cannot be obtained, or a uniform film It may be difficult to obtain a film having a thickness distribution.
- the propylene homopolymer for a condenser of the present invention has an integrated elution amount at 90 ° C. of 0.5% by weight or less by a cross fractionation chromatograph (hereinafter also referred to as “CFC”) using o-dichlorobenzene.
- CFC cross fractionation chromatograph
- it is 0.4 weight% or less, More preferably, it is 0.3 weight% or less.
- the propylene homopolymer for condensers of the present invention has an integrated amount of elution at 100 ° C. by CFC of preferably 2.2% by weight or less, more preferably 1.5% by weight or less, still more preferably 1. 0% by weight or less.
- the integrated amount of elution at 100 ° C. by CFC is within the above range, the film obtained from the propylene homopolymer tends to have excellent voltage resistance.
- the propylene homopolymer for condensers of the present invention has a melting point measured by a differential scanning calorimeter (hereinafter also referred to as “DSC”) of 152 ° C. or higher, preferably 153 to 166 ° C.
- DSC differential scanning calorimeter
- the melting point measured by DSC is less than 152 ° C.
- the film breaks due to heat loss at the time of metal deposition applied as a capacitor film, and due to heat shrinkage in the process until the capacitor element is finished and in the environment actually used, There are many adverse effects such as failure to obtain desired capacitor characteristics.
- the melting point measured by DSC exceeds 166 ° C., the stress during stretching becomes remarkably high, and it is difficult to obtain a thin film required for a capacitor or a film having a uniform film thickness distribution. May occur.
- the propylene homopolymer for a capacitor of the present invention has a chlorine content of 2 ppm by weight or less (0 to 2 ppm by weight), preferably 1 ppm by weight or less. If the chlorine content exceeds 2 ppm by weight, the conductive component increases, so that the withstand voltage of the obtained stretched film is lowered, and the long-term capacitor characteristics may be lowered.
- the chlorine may remain in the obtained propylene homopolymer.
- the chlorine content can be controlled within the above range.
- the propylene homopolymer for a capacitor of the present invention is obtained from the 13 C-NMR spectrum, the proportion of the heterogeneous bond based on the 2,1-insertion of the propylene monomer in all propylene structural units, and the heterogeneous bond based on the 1,3-insertion. Is preferably 0.2 mol% or less, more preferably 0.15 mol% or less.
- the propylene homopolymer for capacitors of the present invention preferably has a boiling n-heptane insoluble content (hereinafter also referred to as “HI”) of 98.0 to 99.9 wt%, and 98.5 to 99.9 wt%. % Is more preferable. If the HI is less than 98.0% by weight, a film having a desired withstand voltage may not be obtained. When the HI exceeds 99.9% by weight, the stress during stretching becomes remarkably high, and a thin film required for a capacitor cannot be obtained, or it becomes difficult to obtain a film having a uniform film thickness distribution. Cases arise.
- HI boiling n-heptane insoluble content
- the propylene homopolymer for capacitors of the present invention preferably has a xylene-soluble content (hereinafter also referred to as “CXS”) of 0.1 to 1.0 wt%, preferably 0.1 to 0.8 wt%. More preferably.
- CXS xylene-soluble content
- the propylene homopolymer for capacitors of the present invention has a peak half-value width of the eluted component amount with respect to the elution temperature measured by cross-fractionation chromatography (CFC) using o-dichlorobenzene of 7 ° C. or less, preferably 6.0 ° C. or less. More preferably, it is 4.5 or less, and the peak top temperature is 105 to 130 ° C., preferably 107 to 127 ° C., more preferably 110 to 125 ° C.
- CFC cross-fractionation chromatography
- a half-value width of 7.0 or less is preferable in that a film having an excellent withstand voltage can be obtained, and a peak top temperature of 105 to 125 ° C. is excellent in heat shrinkage and capacitor characteristics, and for capacitors. It is preferable at the point from which the required thin film is obtained.
- the stretched film obtained from the propylene homopolymer for capacitors satisfying (1) at the same time is excellent in productivity, film properties, capacitor characteristics, particularly voltage resistance, and is suitable as a film for capacitors.
- propylene homopolymer for capacitors of the present invention those polymerized using a metallocene catalyst described later are preferable.
- Polymerization using a metallocene catalyst is desirable because a propylene homopolymer having a high mesopentad fraction (mmmm) measured by 13 C-NMR and a small amount of CXS component presumed to have an adverse effect on insulation is easily obtained.
- the method for producing a propylene homopolymer for a capacitor is such that the propylene homopolymer has the above requirements (i) to (v), (ix), more preferably the above requirement (vi), more preferably the above requirement (iii). ', More preferably, as long as the above requirement (vii), particularly preferably the above requirement (viii) is satisfied at the same time, there is no limitation.
- it can be produced by a propylene polymerization method using a propylene polymerization catalyst such as a supported titanium catalyst or a metallocene catalyst described later.
- the supported titanium catalyst includes, for example, a solid titanium catalyst component including titanium, magnesium, halogen, and an internally added electron donating compound, and a metal selected from Group I, Group II, and Group III of the periodic table.
- a polymerization catalyst comprising an organometallic compound and an externally added electron donating compound is preferably used.
- a catalyst used for industrially producing a propylene-based polymer is used as the polymerization catalyst.
- a catalyst used for industrially producing a propylene-based polymer polypropylene
- titanium trichloride or titanium tetrachloride supported on a carrier such as magnesium halide, and an organoaluminum compound are used.
- a catalyst having high activity and originally having a small titanium component it is particularly preferable to use.
- the propylene homopolymer according to the present invention is used for a film for a capacitor, when the amount of polymer produced per unit amount of the catalyst is small, it is necessary to perform post-treatment to remove the catalyst residue. Further, even if the amount of polymer produced is large due to the high activity of the catalyst, it is preferable to carry out post-treatment to remove the catalyst residue.
- the post-treatment method include a method of washing a propylene homopolymer obtained by polymerization with liquid propylene, butane, hexane, heptane or the like.
- water, alcohol compounds, ketone compounds, ether compounds, ester compounds, amine compounds, organic acid compounds or inorganic acid compounds may be added to solubilize catalyst components such as titanium and magnesium, and to facilitate extraction. Good. It is also preferable to wash with a polar compound such as water or alcohol. By performing such post-treatment, the chlorine content in the resulting propylene homopolymer can be reduced.
- a polymerization catalyst containing a metallocene compound having a cyclopentadienyl skeleton in the molecule is preferably used.
- the metallocene compound containing a ligand having a cyclopentadienyl skeleton in the molecule is represented by the metallocene compound (D1) represented by the following general formula [I] and the following general formula [II] from its chemical structure.
- D1 represented by the following general formula [I]
- III the following general formula [II] from its chemical structure.
- Two types of bridged metallocene compounds (D2) can be exemplified. Among these, a bridged metallocene compound (D2) is preferable.
- M represents a titanium atom, a zirconium atom, or a hafnium atom
- Q represents a group that can be coordinated by a halogen atom, a hydrocarbon group, an anionic ligand, or a lone electron pair.
- j is an integer of 1 to 4, and when j is 2 or more, Q may be the same or different from each other, and Cp 1 and Cp 2 are the same or different from each other. It is also a cyclopentadienyl or substituted cyclopentadienyl group that can form a sandwich structure with M.
- the substituted cyclopentadienyl group includes an indenyl group, a fluorenyl group, an azulenyl group, and a group in which these are substituted with one or more hydrocarbyl groups.
- an indenyl group, a fluorenyl group, an azulenyl group A part of the double bond of the unsaturated ring condensed to the cyclopentadienyl group may be hydrogenated.
- Y represents a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, a divalent silicon-containing group, or a divalent germanium.
- R a may be the same or different and are each a hydrocarbon group of 1 to 20 carbon atoms
- a production method using a metallocene catalyst is preferable.
- a production method using a metallocene catalyst is desirable because a propylene homopolymer having a high mesopentad fraction and a low CXS component presumed to have an adverse effect on insulation properties is easily obtained.
- Polymerization catalysts suitably used in the present invention include crosslinkable metallocene compounds represented by the following general formula [III] already published internationally (WO 01/27124) by the applicant of the present application, as well as organometallic compounds, organoaluminum oxy It is preferably a metallocene catalyst comprising at least one compound selected from compounds capable of reacting with a compound and a metallocene compound to form an ion pair, and further, if necessary, a particulate carrier.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 are It is selected from a hydrogen atom, a hydrocarbon group, and a silicon-containing group, and each may be the same or different.
- Such hydrocarbon groups include methyl, ethyl, n-propyl, allyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n- Linear hydrocarbon groups such as nonyl and n-decanyl; isopropyl, tert-butyl, amyl, 3-methylpentyl, 1,1-diethylpropyl, 1,1-dimethylbutyl, 1 -Branched hydrocarbon groups such as methyl-1-propylbutyl, 1,1-propylbutyl, 1,1-dimethyl-2-methylpropyl, 1-methyl-1-isopropyl-2-methylpropyl; Cyclic saturated hydrocarbon groups such as cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, norbornyl group, adamantyl group; phen
- Examples of the silicon-containing group include a trimethylsilyl group, a triethylsilyl group, a dimethylphenylsilyl group, a diphenylmethylsilyl group, and a triphenylsilyl group.
- the adjacent substituents of R 5 to R 12 may be bonded to each other to form a ring.
- substituted fluorenyl groups include benzofluorenyl group, dibenzofluorenyl group, octahydrodibenzofluorenyl group, octamethyloctahydrodibenzofluorenyl group, octamethyltetrahydrodicyclopentafluorenyl group, etc. Can be mentioned.
- R 1 , R 2 , R 3 and R 4 substituted on the cyclopentadienyl ring in the general formula [III] are hydrogen atoms or hydrocarbon groups having 1 to 20 carbon atoms.
- R 2 and R 4 are hydrocarbon groups having 1 to 20 carbon atoms
- R 1 and R 3 are hydrogen atoms
- R 2 and R 4 are 1 to 5 carbon atoms.
- a linear or branched alkyl group is particularly preferred.
- R 5 to R 12 substituted on the fluorene ring are preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
- the hydrocarbon group having 1 to 20 carbon atoms include the aforementioned hydrocarbon groups.
- the adjacent substituents of R 5 to R 12 may be bonded to each other to form a ring.
- a preferred embodiment is a fluorene ring in which R 7 and R 11 are not simultaneously hydrogen atoms, and a more preferred embodiment is a fluorene ring in which R 6 , R 7 , R 10 and R 11 are not simultaneously hydrogen atoms.
- Y that bridges the cyclopentadienyl ring and the fluorenyl ring is preferably a Group 14 element, more preferably carbon, silicon, or germanium, Atoms are more preferred.
- R 13 and R 14 substituted on Y may be the same or different from each other, and may be a hydrocarbon group having 1 to 20 carbon atoms that may be bonded to each other to form a ring, preferably 1 carbon atom It is selected from ⁇ 3 alkyl groups or C 6-20 aryl groups. As such a substituent, a methyl group, an ethyl group, a phenyl group, a tolyl group and the like are preferable.
- R 13 and R 14 may be bonded to the adjacent substituents R 5 to R 12 or the adjacent substituents R 1 to R 4 to form a ring.
- M is preferably a Group 4 transition metal, more preferably a titanium atom, a zirconium atom or a hafnium atom.
- Q is selected from the same or different combinations from halogen, a hydrocarbon group, an anionic ligand, or a neutral ligand capable of coordinating with a lone pair of electrons.
- j is an integer of 1 to 4, and when j is 2 or more, Qs may be the same or different from each other.
- the halogen include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom
- specific examples of the hydrocarbon group include the same as described above.
- anionic ligand examples include alkoxy groups such as methoxy, tert-butoxy and phenoxy, carboxylate groups such as acetate and benzoate, and sulfonate groups such as mesylate and tosylate.
- neutral ligands examples include organophosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, diphenylmethylphosphine, tetrahydrofuran, diethyl ether, dioxane, 1,2-dimethoxy. And ethers such as ethane. It is preferable that at least one Q is a halogen or an alkyl group.
- bridged metallocene compound examples include dimethylmethylene (3-tert-butyl-5-methylcyclopentadienyl) (3,6-ditert-butylfluorenyl) zirconium dichloride, 1-phenylethylidene (4-tert -Butyl-2-methylcyclopentadienyl) (octamethyloctahydrodibenzofluorenyl) zirconium dichloride, [3- (1 ′, 1 ′, 4 ′, 4 ′, 7 ′, 7 ′, 10 ′, 10 '-Octamethyloctahydrodibenzo [b, h] fluorenyl) (1,1,3-trimethyl-5-tert-butyl-1,2,3,3a-tetrahydropentalene)] zirconium dichloride, dimethylmethylene (3- tert-butyl-5-methylcyclopentadienyl) (1,1,4,4,7
- the metallocene catalyst used in the present invention is selected from an organometallic compound, an organoaluminum oxy compound, and a compound that forms an ion pair by reacting with the metallocene compound used together with the metallocene compound represented by the general formula [III].
- the compounds disclosed in the above-mentioned publications (WO01 / 27124) and JP-A-11-315109 by the present applicant are used. Can be used without restriction.
- Propylene homopolymer is the above requirements (i) to (v), (ix), more preferably the above requirement (vi), more preferably the above requirement (iii) ′, further preferably the above requirement (vii), particularly preferably
- a method for controlling to satisfy the above requirement (viii) at the same time for example, a method for setting a suitable polymerization condition such as a polymerization temperature using a catalyst as described above can be mentioned.
- the catalyst species is dimethylmethylene (3-t-butyl-5-methylcyclopentadienyl) (3,6-di-t-butylfluorenyl) zirconium dichloride and the polymerization temperature is 50 to 90 ° C.
- the temperature is 60 to 80 ° C.
- hydrogen is supplied together with the raw material, and the hydrogen supply amount is 0.03 to 0.3 mol%, preferably 0.06 to 0.21 mol%, more preferably 0.07.
- An example is a method of 0.18 mol%.
- R 1 and R 3 are hydrogen atoms
- R 2 is a tert-butyl group
- R 4 is a methyl group
- R 7 and R 10 are tert-butyl groups
- R 5 , R 6 , R 8 , R 9 , R 11 , R 12 are hydrogen atoms
- Y is a carbon atom
- R 13 and R 14 are methyl
- the propylene homopolymer is stretched at a stretching ratio (longitudinal x lateral surface ratio) of 30 to 80 times, preferably 35 to 75 times, more preferably 40 to 70 times. It is a film.
- the propylene homopolymer is highly crystallized, and a stretched film having a higher dielectric breakdown strength can be obtained.
- the stretched film for a capacitor of the present invention is excellent in withstand voltage.
- the withstand voltage is preferably 650 V / ⁇ m or more, more preferably 660 V / ⁇ m or more, and particularly preferably 670 V / ⁇ m or more in a stretched film having a thickness of about 14 ⁇ m.
- the withstand voltage is a value obtained by a measurement method in an example described later.
- the withstand voltage of the stretched film for capacitors tends to decrease as the use temperature increases.
- the stretched film for capacitors in the present invention uses a propylene homopolymer having high stereoregularity and high molecular weight.
- the withstand voltage can be maintained in a high state even when the use temperature is high.
- the thickness of the stretched film for capacitors of the present invention is usually in the range of 1 to 50 ⁇ m, preferably in the range of 1.5 to 30 ⁇ m.
- the stretched film for a capacitor of the present invention uses a propylene homopolymer having a high stereoregularity and a high molecular weight, so that a particularly remarkable effect is obtained in the case of a thin film having a thickness of 15 ⁇ m or less. It is expected.
- the stretched film for a capacitor of the present invention can be produced by a biaxially stretched film production method such as a known simultaneous biaxial stretching method or a sequential biaxial stretching method.
- the conditions for biaxial stretching are known OPP film and capacitor film manufacturing conditions, for example, in the sequential biaxial stretching method, the longitudinal stretching temperature is 125 to 145 ° C., the stretching ratio is 4.5 to 9 times, and the transverse stretching is performed.
- the temperature may be in the range of 150 to 190 ° C. and the draw ratio in the range of 7 to 11 times.
- a sheet having a thickness of 100 to 1200 ⁇ m is manufactured at a die temperature of 200 to 250 ° C. and a chill roll temperature of 70 to 90 ° C.
- the obtained sheet was preheated at 154 to 158 ° C. for 1 minute, and stretched 5 to 9 times in the longitudinal direction and 7 to 9 times in the transverse direction at 154 to 158 ° C. at a stretching speed of 6 m / sec.
- a stretched film of ⁇ 15 ⁇ m is obtained.
- melt flow rate The melt flow rate (MFR) of the propylene homopolymer was measured at 230 ° C. and a 2.16 kg load according to ASTM D1238.
- the elution temperature was divided into 25 to 35 fractions from 0 to 135 ° C., particularly in the vicinity of the elution peak. All temperature indications are integers. For example, an elution fraction at 120 ° C. indicates a component eluted at 118 to 120 ° C.
- the integrated amount of elution at 90 ° C. by CFC was the sum of the elution fractions from 0 to 90 ° C.
- the integrated amount of elution at 100 ° C. by CFC was the sum of the elution fractions from 0 to 100 ° C.
- the molecular weight of the components that were not coated even at 0 ° C. and the fraction eluted at each temperature were measured, and the molecular weight in terms of PP was determined using a general calibration curve.
- injection position 3.0 ml
- data sampling time 0.50 seconds.
- the sample concentration may be less than 0.15 wt / vol%.
- Data processing was performed with the analysis program “CFC data processing (version 1.50)” attached to the apparatus.
- the cross-fractionation (CFC) itself is said to be an analytical method that reproduces the result with high analytical accuracy if the measurement conditions are exactly the same, but in the embodiment of the present invention, the measurement is 1
- the values at times are listed.
- the peak half-value width was determined by defining the elution temperature width at the half of the maximum elution amount, and the peak top temperature as the temperature at which the elution amount was maximum.
- Tm Melting point
- Approx. 5 mg of hot-pressed sample was placed in an aluminum perforated sample pan with an internal volume of 30 ⁇ l, and measurement was performed with an aluminum lid.
- First step The temperature is raised to 230 ° C. at 500 ° C./min and held for 10 minutes.
- 2nd step The temperature is lowered to 30 ° C. at 10 ° C./min and held for 1 min.
- 3rd step The temperature is raised to 230 ° C. at 10 ° C./min.
- Chlorine content (Cl) The chlorine content in the propylene homopolymer was measured as follows.
- a 0.8 g sample was burned at 400-900 ° C. in an argon / oxygen stream using a combustion apparatus manufactured by Mitsubishi Kasei Co., Ltd., and the combustion gas was captured with ultrapure water.
- the measurement was performed using a DIONEX-DX300 type ion chromatograph and an anion column AS4A-SC (Dioneck).
- Boiling n-heptane insoluble matter (HI) HI in the propylene homopolymer was measured as follows.
- a 5 g sample of a weighed propylene homopolymer was completely dissolved in 500 ml of boiling xylene and then allowed to stand until the liquid temperature reached 20 ° C. After the liquid temperature reached 20 ° C., the mixture was allowed to stand for 30 minutes, and then the precipitate was filtered. The filtrate was concentrated and dried, and further dried at 60 ° C. and 160 mmHg for 6 hours, and the weight of the residue was weighed. The ratio of the weight of the used sample and the weight of the xylene eluate was calculated as the amount of CXS.
- Example 1 [Production of propylene homopolymer (PP1)] (1) Production of Solid Catalyst Support 300 g of SiO 2 (Sunsphere H121 manufactured by AGC S-Itech) was sampled in a 1 L branch flask, and 800 mL of toluene was added to make a slurry. Next, the solution was transferred to a 5 L four-necked flask, and 260 mL of toluene was added. 2830 mL of methylaluminoxane (hereinafter MAO) -toluene solution (10 wt% solution) was introduced. The mixture was stirred for 30 minutes while remaining at room temperature. The temperature was raised to 110 ° C. over 1 hour, and the reaction was carried out for 4 hours. After completion of the reaction, it was cooled to room temperature. After cooling, the supernatant toluene was extracted and replaced with fresh toluene until the replacement rate reached 95%.
- MAO methylaluminoxane
- the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 L, and further polymerized.
- propylene was supplied at 50 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.12 mol%.
- Polymerization was performed at a polymerization temperature of 70 ° C. and a pressure of 3.0 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 15 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.12 mol%.
- Polymerization was performed at a polymerization temperature of 69 ° C. and a pressure of 2.9 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 12 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.12 mol%.
- Polymerization was performed at a polymerization temperature of 68 ° C. and a pressure of 2.9 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 13 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.12 mol%.
- Polymerization was performed at a polymerization temperature of 67 ° C. and a pressure of 2.9 MPa / G.
- propylene homopolymer (PP1) was obtained at 40 kg / h.
- the propylene homopolymer (PP1) was vacuum dried at 80 ° C.
- Stretching device KAROIV manufactured by Bruckner Preheating temperature: 154 ° C Preheating time: 60 seconds Stretch ratio: 5 ⁇ 7 times (MD direction 5 times, TD direction 7 times) Sequential biaxial stretching Stretching speed: 6 m / min [Example 2] Polymerization was performed as follows, and a stretched film was obtained in the same manner as in Example 1 except that the obtained propylene homopolymer (PP2) was used. The withstand voltage of the obtained stretched film was measured by the above method. The results are shown in Table 1.
- the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 L, and further polymerized.
- propylene was supplied at 50 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.10 mol%.
- Polymerization was performed at a polymerization temperature of 70 ° C. and a pressure of 3.0 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 15 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.10 mol%.
- Polymerization was performed at a polymerization temperature of 69 ° C. and a pressure of 2.9 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 12 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.10 mol%.
- Polymerization was performed at a polymerization temperature of 68 ° C. and a pressure of 2.9 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 13 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.10 mol%.
- Polymerization was performed at a polymerization temperature of 67 ° C. and a pressure of 2.9 MPa / G.
- PP2 propylene homopolymer
- PP2 propylene homopolymer
- a propylene homopolymer (PP2) was obtained at 40 kg / h.
- the propylene homopolymer (PP2) was vacuum dried at 80 ° C.
- Example 3 Polymerization was performed as follows, and a stretched film was obtained in the same manner as in Example 1 except that the obtained propylene homopolymer (PP3) was used. The withstand voltage of the obtained stretched film was measured by the above method. The results are shown in Table 1.
- the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 L, and further polymerized.
- propylene was supplied at 50 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.12 mol%.
- Polymerization was performed at a polymerization temperature of 70 ° C. and a pressure of 3.0 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 15 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.12 mol%.
- Polymerization was performed at a polymerization temperature of 69 ° C. and a pressure of 2.9 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 12 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.12 mol%.
- Polymerization was performed at a polymerization temperature of 68 ° C. and a pressure of 2.9 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 13 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.12 mol%.
- Polymerization was performed at a polymerization temperature of 67 ° C. and a pressure of 2.9 MPa / G.
- PP3 propylene homopolymer
- a propylene homopolymer (PP3) was obtained at 40 kg / h.
- the propylene homopolymer (PP3) was vacuum dried at 80 ° C.
- the resulting diphenylmethylene (3-tert-butyl-5-methylcyclopentadienyl) (2,7-tert-butylfluorenyl) zirconium dichloride / MAO / SiO 2 / toluene slurry was 99% in n-heptane. Substitution was performed and the final slurry volume was 4.5 liters. This operation was performed at room temperature.
- the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 L, and further polymerized.
- propylene was supplied at 50 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.06 mol%.
- Polymerization was performed at a polymerization temperature of 70 ° C. and a pressure of 3.0 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- Propylene was supplied to the polymerization vessel at 15 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.06 mol%.
- Polymerization was performed at a polymerization temperature of 69 ° C. and a pressure of 2.9 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 12 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.06 mol%.
- Polymerization was performed at a polymerization temperature of 68 ° C. and a pressure of 2.9 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 13 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.06 mol%.
- Polymerization was performed at a polymerization temperature of 67 ° C. and a pressure of 2.9 MPa / G.
- PP4 propylene homopolymer
- a propylene homopolymer (PP4) was obtained at 40 kg / h.
- the propylene homopolymer (PP4) was vacuum dried at 80 ° C.
- the resulting dimethylsilylene bis- (2-methyl-4-phenylindenyl) zirconium dichloride / MAO / SiO 2 / toluene slurry was 99% substituted with n-heptane and the final slurry volume was 4.5 liters. It was. This operation was performed at room temperature.
- An internal capacity 58L jacketed circulation type tubular polymerizer is 30 kg / hour of propylene, 5 NL / hour of hydrogen, 1.7 g / hour of the catalyst slurry produced in the above (3) as a solid catalyst component, triethyl Aluminum was supplied continuously at 1.0 ml / hour and polymerized in a full liquid state without a gas phase.
- the temperature of the tubular polymerizer was 30 ° C., and the pressure was 3.1 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 L, and further polymerized.
- propylene was supplied at 50 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.30 mol%.
- Polymerization was performed at a polymerization temperature of 70 ° C. and a pressure of 3.0 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 15 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.30 mol%.
- Polymerization was performed at a polymerization temperature of 69 ° C. and a pressure of 2.9 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 12 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.30 mol%.
- Polymerization was performed at a polymerization temperature of 68 ° C. and a pressure of 2.9 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 13 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.30 mol%.
- Polymerization was performed at a polymerization temperature of 67 ° C. and a pressure of 2.9 MPa / G.
- a propylene homopolymer (PP5) was obtained at 40 kg / h.
- the propylene homopolymer (PP5) was vacuum dried at 80 ° C.
- the solid titanium catalyst component thus prepared is stored as a hexane slurry. A portion of this hexane slurry was dried and the catalyst composition was examined.
- the solid titanium catalyst component contained 2% by weight of titanium, 57% by weight of chlorine, 21% by weight of magnesium and 20% by weight of DIBP. It was.
- prepolymerization catalyst 120 g of solid titanium catalyst component prepared in (1) above 20.5 mL of triethylaluminum and 120 L of heptane were placed in an autoclave equipped with a stirrer with an internal volume of 200 L, while maintaining the internal temperature at 5 ° C. 720g was added and reacted with stirring for 60 minutes. After completion of the polymerization, the solid component was precipitated, and the supernatant was removed and washed with heptane twice. The obtained prepolymerized catalyst was resuspended in purified heptane to obtain a slurry of the prepolymerized catalyst having a solid titanium catalyst component concentration of 1 g / L. This prepolymerized catalyst contained 6 g of a propylene homopolymer per 1 g of the solid titanium catalyst component.
- prepolymerization catalyst 101 g of the solid catalyst component prepared in (2) above 111 mL of triethylaluminum, and 80 L of heptane were inserted into an autoclave equipped with a stirrer with an internal volume of 200 L, and the internal temperature was maintained at 15 to 20 ° C. and 303 g of ethylene was inserted. And allowed to react with stirring for 180 minutes. After completion of the polymerization, the solid component was precipitated, and the supernatant was removed and washed with heptane twice. The resulting prepolymerized catalyst was resuspended in purified heptane and adjusted with heptane so that the solid catalyst component concentration would be 1 g / L. This prepolymerized catalyst contained 3 g of polyethylene per 1 g of the solid catalyst component.
- An internal volume 58L jacketed circulation tubular polymerizer is 30 kg / hour of propylene, 5 NL / hour of hydrogen, 2.6 g / hour of the catalyst slurry produced in the above (3) as a solid catalyst component, triethyl Aluminum was supplied continuously at 1.0 ml / hour and polymerized in a full liquid state without a gas phase.
- the temperature of the tubular polymerizer was 30 ° C., and the pressure was 2.6 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 L, and further polymerized.
- propylene was supplied at 50 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.19 mol%.
- Polymerization was performed at a polymerization temperature of 60 ° C. and a pressure of 2.5 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 15 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.19 mol%.
- Polymerization was performed at a polymerization temperature of 59 ° C. and a pressure of 2.5 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 12 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.19 mol%.
- Polymerization was performed at a polymerization temperature of 58 ° C. and a pressure of 2.5 MPa / G.
- the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 L and further polymerized.
- propylene was supplied at 13 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.19 mol%.
- Polymerization was performed at a polymerization temperature of 57 ° C. and a pressure of 2.4 MPa / G.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
(i)メルトフローレート(MFR; ASTM D1238に準拠し、230℃、2.16kg荷重で測定)が1~10g/10分であること、
(ii)13C-NMRで測定したメソペンタッド分率(mmmm)が0.940~0.995であること、
(iii)o-ジクロロベンゼンを用いたクロス分別クロマトグラフ(CFC)による90℃での溶出積分量が0.5重量%以下であること、
(iv)示差走査熱量計(DSC)で測定した融点が152℃以上であること、
(v)塩素含量が2重量ppm以下であること、
(ix)o-ジクロロベンゼンを用いたクロス分別クロマトグラフ(CFC)により測定した溶出温度に対する溶出成分量のピーク半値幅が7.0℃以下であり、ピークトップ温度が105~130℃であること。
(vi)13C-NMRスペクトルから求められる、全プロピレン構成単位中のプロピレンモノマーの2,1-挿入に基づく異種結合の割合および1,3-挿入に基づく異種結合の割合の和が0.2mol%以下であること。
本発明のコンデンサー用プロピレン単独重合体は、下記要件(i)~(v),(ix)を満たし、さらに好ましくは下記要件(vi)を満たすことを特徴としている。
(i)メルトフローレート(MFR; ASTM D1238に準拠し、230℃、2.16kg荷重で測定)が1~10g/10分であること、
(ii)13C-NMRで測定したメソペンタッド分率(mmmm)が0.940~0.995であること、
(iii)o-ジクロロベンゼンを用いたクロス分別クロマトグラフ(CFC)による90℃での溶出積分量が0.5重量%以下であること、
(iv)示差走査熱量計(DSC)で測定した融点が152℃以上であること、
(v)塩素含量が2重量ppm以下であること、
(ix)o-ジクロロベンゼンを用いたクロス分別クロマトグラフ(CFC)により測定した溶出温度に対する溶出成分量のピーク半値幅が7.0℃以下であり、ピークトップ温度が105~130℃であること、
(vi)13C-NMRスペクトルから求められる、全プロピレン構成単位中のプロピレンモノマーの2,1-挿入に基づく異種結合の割合および1,3-挿入に基づく異種結合の割合の和が0.2mol%以下であること。
本発明のコンデンサー用プロピレン単独重合体は、MFR(ASTM D1238、230℃、2.16kg荷重)が1~10g/10分であり、好ましくは1.5~8.0g/10分である。MFRが1未満では押出機での原反成形が困難であり、また延伸時にチャック外れ等が生じ、所望の延伸フィルムが得られないことがある。またMFRが10g/10分を超えると延伸時にフィルム破断が多発する等、フィルムの生産性が著しく低下することがある。
本発明のコンデンサー用プロピレン単独重合体は、13C-NMRで測定したメソペンタッド分率(mmmm)が、0.940~0.995であり、好ましくは0.945~0.990である。13C-NMRで測定したメソペンタッド分率(mmmm)が0.940未満では所望の耐電圧を有するフィルムが得られないことがある。13C-NMRで測定したメソペンタッド分率(mmmm)が0.995を超えると、延伸時の応力が著しく高くなり、コンデンサー用に必要とされる薄膜のフィルムが得られない場合や、均一な膜厚分布のフィルムにすることが困難となる場合が生じる。
本発明のコンデンサー用プロピレン単独重合体は、o-ジクロロベンゼンを用いたクロス分別クロマトグラフ(以下「CFC」とも記す。)による90℃での溶出積分量が、0.5重量%以下であり、好ましくは0.4重量%以下であり、更に好ましくは0.3重量%以下である。CFCによる90℃での溶出積分量が0.5重量%を超えると、後述する耐電圧測定条件下において所望の耐電圧が得られないことがある。
本発明のコンデンサー用プロピレン単独重合体は、CFCによる100℃での溶出積分量が、好ましくは2.2重量%以下であり、より好ましくは1.5重量%以下であり、更に好ましくは1.0重量%以下である。CFCによる100℃での溶出積分量が前記範囲内であると、該プロピレン単独重合体から得られるフィルムは、耐電圧性に優れる傾向がある。
本発明のコンデンサー用プロピレン単独重合体は、示差走査熱量計(以下「DSC」とも記す。)で測定した融点が152℃以上であり、好ましくは153~166℃である。DSCで測定した融点が152℃未満では、コンデンサーフィルム用として施される金属蒸着時に熱負けによるフィルムの破断が生じ、コンデンサー素子に仕上げるまでの工程や実際に使用される環境下で熱収縮により、所望のコンデンサー特性が得られないなどの弊害が多くなる。DSCで測定した融点が166℃を超えると、延伸時の応力が著しく高くなり、コンデンサー用に必要とされる薄膜のフィルムが得られない場合や、均一な膜厚分布のフィルムにすることが困難となる場合が生じる。
本発明のコンデンサー用プロピレン単独重合体は、塩素含量が、2重量ppm以下(0~2重量ppm)であり、好ましくは1重量ppm以下である。塩素含量が2重量ppmを超えると、導電成分が増加するため、得られる延伸フィルムの耐電圧が低下し、長期的なコンデンサー特性が低下する場合がある。
本発明のコンデンサー用プロピレン単独重合体は、13C-NMRスペクトルから求められる、全プロピレン構成単位中のプロピレンモノマーの2,1-挿入に基づく異種結合の割合および1,3-挿入に基づく異種結合の割合の和が、好ましくは0.2mol%以下であり、より好ましくは0.15mol%以下である。13C-NMRスペクトルから求められる、全プロピレン構成単位中のプロピレンモノマーの2,1-挿入および1,3-挿入に基づく異種結合の割合の和が、0.2mol%を超えると、プロピレン単独重合体の結晶の乱れが多くなるため、該プロピレン単独重合体から得られる延伸フィルムにおける結晶化成分が少なくなり、耐電圧の低下や熱収縮率の増大を招くおそれがある。
本発明のコンデンサー用プロピレン単独重合体は、沸騰n-ヘプタン不溶分(以下「HI」とも記す。)が98.0~99.9重量%であることが好ましく、98.5~99.9重量%であることがより好ましい。HIが98.0重量%未満では所望の耐電圧を有するフィルムが得られないことがある。HIが99.9重量%を超えると延伸時の応力が著しく高くなり、コンデンサー用に必要とされる薄膜のフィルムが得られない場合や、均一な膜厚分布のフィルムにすることが困難となる場合が生じる。
本発明のコンデンサー用プロピレン単独重合体は、キシレン可溶分量(以下「CXS」とも記す。)が0.1~1.0重量%であることが好ましく、0.1~0.8重量%であることがより好ましい。CXSが0.1重量%未満では延伸時の応力が著しく高くなり、コンデンサー用に必要とされる薄膜のフィルムが得られない場合や、均一な膜厚分布のフィルムにすることが困難となる場合が生じる。CXSが1.0重量%を超えると所望の耐電圧を有するフィルムが得られないことがある。
本発明のコンデンサー用プロピレン単独重合体は、o-ジクロロベンゼンを用いたクロス分別クロマトグラフ(CFC)により測定した溶出温度に対する溶出成分量のピーク半値幅が7℃以下、好ましくは6.0℃以下、さらに好ましくは4.5以下であるとともに、ピークトップ温度が105~130℃、好ましくは107~127℃、さらに好ましくは110~125℃である。
上記コンデンサー用プロピレン単独重合体の製造方法は、該プロピレン単独重合体が上記要件(i)~(v),(ix)、さらに、好ましくは上記要件(vi)、より好ましくは上記要件(iii)’、さらに好ましくは上記要件(vii)、特に好ましくは上記要件(viii)を同時に満たす限りにおいて何ら限定されるものではない。例えば、後述する担持型チタン触媒、メタロセン触媒などのプロピレン重合用触媒を用いたプロピレンの重合方法により製造し得る。
上記コンデンサー用プロピレン単独重合体の製造方法としては、上記のプロピレン重合用触媒の中でも、メタロセン触媒を用いた製造方法が好ましい。メタロセン触媒を用いた製造方法であると、メソペンタッド分率が高く、かつ絶縁性に悪影響を及ぼすと推察されるCXS成分が少ないプロピレン単独重合体が得られやすいため望ましい。
本発明のコンデンサー用延伸フィルムは、前記プロピレン単独重合体を、延伸倍率(縦×横の面倍率)30~80倍で、好ましくは35~75倍で、より好ましくは40~70倍で延伸してなるフィルムである。延伸倍率を高くすることにより、プロピレン単独重合体が高結晶化し、より高い絶縁破壊強度を有する延伸フィルムを得ることができる。
プロピレン単独重合体のメルトフローレート(MFR)を、ASTM D1238に準拠し、230℃、2.16kg荷重で測定した。
プロピレン単独重合体のメソペンタッド分率(mmmm)は、A.zambelliらのMacromolecules,8,687(1975)に示された帰属により定められた値であり、13C-NMRにより、下記条件で測定し、メソペンタッド分率=(21.7ppmでのピーク面積)/(19~23ppmでのピーク面積)とした。
種類 JNM-Lambada400(日本電子(株)社製)
分解能 400MHz
測定温度 125℃
溶媒 1,2,4-トリクロロベンゼン/重水素化ベンゼン=7/4
パルス幅 7.8μsec
パルス間隔 5sec
積算回数 2000回
シフト基準 TMS=0ppm
モード シングルパルスブロードバンドデカップリング
(3)CFCにより測定した昇温時の100℃までの溶出積分量、CFCにより測定したピーク半値幅およびピークトップ温度
プロピレン単独重合体の溶出積分量を、三菱油化社製CFC T-150A型を用い以下のようにして測定した。
プロピレン単独重合体の融点(Tm)を、示差走査熱量計(DSC、パーキンエルマー社製)を用いて以下のとおり測定した。ここで測定した第3stepにおける吸熱ピークを融点(Tm)と定義した。
サンプル作製条件:230℃で2分間プレスした後、1分間放熱板上にて冷却させ、0.1mmから0.4mm厚のサンプルシートを作成した。
プロピレン単独重合体における塩素含量を以下のとおり測定した。
13C-NMRを用いて、特開平7-145212号公報に記載された方法に従って、全プロピレン構成単位中のプロピレンモノマーの2,1-挿入の割合、1,3-挿入の割合を測定した。
プロピレン単独重合体におけるHIを以下のとおり測定した。
プロピレン単独重合体におけるCXSを以下のとおり算出した。
得られた延伸フィルムのBDVを80℃においてJIS-C2330に準拠して測定した。
〔プロピレン単独重合体(PP1)の製造〕
(1)固体触媒担体の製造
1L枝付フラスコにSiO2(AGCエスアイテック製サンスフェアH121)300gをサンプリングし、トルエン800mLを入れ、スラリー化した。次に5L4つ口フラスコへ移液をし、トルエン260mLを加えた。メチルアルミノキサン(以下、MAO)-トルエン溶液(10wt%溶液)を2830mL導入した。室温のままで、30分間攪拌した。1時間で110℃に昇温し、4時間反応を行った。反応終了後、室温まで冷却した。冷却後、上澄みトルエンを抜き出し、フレッシュなトルエンで、置換率が95%になるまで、置換を行った。
グローブボックス内にて、5L4つ口フラスコにジメチルメチレン(3-t-ブチル-5-メチルシクロペンタジエニル)(3、6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリドを1.0g秤取った。フラスコを外へ出し、トルエン0.5Lおよび前記(1)で調製したMAO/SiO2/トルエンスラリー2.0L(固体成分として100g)を窒素下で加え、30分間攪拌し担持を行った。得られたジメチルメチレン(3-t-ブチル-5-メチルシクロペンタジエニル)(3、6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド/MAO/SiO2/トルエンスラリーはn-ヘプタンにて99%置換を行い、最終的なスラリー量を4.5リットルとした。この操作は、室温で行った。
前記(2)で調製した固体触媒成分101g、トリエチルアルミニウム111mL、ヘプタン80Lを内容量200Lの攪拌機付きオートクレーブに挿入し、内温15~20℃に保ちエチレンを303g挿入し、180分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた前重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で1g/Lとなるよう、ヘプタンにより調整を行った。この前重合触媒は固体触媒成分1g当りポリエチレンを3g含んでいた。
内容量58Lのジャケット付循環式管状重合器にプロピレンを30kg/時間、水素を5NL/時間、前記(3)で製造した触媒スラリーを固体触媒成分として3.2g/時間、トリエチルアルミニウム1.0ml/時間を連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は30℃であり、圧力は3.1MPa/Gであった。
得られたプロピレン単独重合体(PP1)100重量部に対して、酸化防止剤として3,5-ジ-tert-ブチル-4-ヒドロキシトルエンを0.2重量部、酸化防止剤としてテトラキス[メチレン-3(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンを0.2重量部、中和剤としてステアリン酸カルシウム 0.01重量部を配合し、単軸押出機を用いて、樹脂温度230℃で溶融混練してプロピレン単独重合体(PP1)のペレット化を行った。造粒機は(株)ジーエムエンジニアリング製GMZ50-32(L/D=32、50mmφ単軸)を使用した。
上記で得られたプロピレン単独重合体(PP1)のペレットを(株)ジーエムエンジニアリング製30mmφのTダイで250℃に溶融後に押出し、30℃の温度に保持された1個の冷却ロールにより、引張り速度1.0m/分で冷却し、厚さが0.5mmのシートを得た。
上記で得られたシートを85mm×85mmにカットし、次の条件で二軸延伸し厚さ14μmの二軸延伸フィルムを得た。得られた延伸フィルムの耐電圧を上記方法により測定した。結果を表1に示す。
予熱温度:154℃
予熱時間:60秒
延伸倍率:5×7倍(MD方向5倍、TD方向7倍)の逐次二軸延伸
延伸速度:6m/分
[実施例2]
重合を下記のとおり行い、得られたプロピレン単独重合体(PP2)を用いた以外は、実施例1と同様にして延伸フィルムを得た。得られた延伸フィルムの耐電圧を上記方法により測定した。結果を表1に示す。
(1)固体触媒担体の製造
1L枝付フラスコにSiO2(AGCエスアイテック製サンスフェアH121)300gをサンプリングし、トルエン800mLを入れ、スラリー化した。次に5L4つ口フラスコへ移液をし、トルエン260mLを加えた。メチルアルミノキサン(以下、MAO)-トルエン溶液(10wt%溶液)を2830mL導入した。室温のままで、30分間攪拌した。1時間で110℃に昇温し、4時間反応を行った。反応終了後、室温まで冷却した。冷却後、上澄みトルエンを抜き出し、フレッシュなトルエンで、置換率が95%になるまで、置換を行った。
グローブボックス内にて、5L4つ口フラスコに[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレニル)(1,1,3-トリメチル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライドを1.0g秤取った。フラスコを外へ出し、トルエン0.5Lおよび前記(1)で調製したMAO/SiO2/トルエンスラリー2.0L(固体成分として100g)を窒素下で加え、30分間攪拌し担持を行った。得られた[3-(1’,1’,4’,4’,7’,7’,10’,10’-オクタメチルオクタヒドロジベンゾ[b,h]フルオレニル)(1,1,3-トリメチル-5-tert-ブチル-1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド/MAO/SiO2/トルエンスラリーはn-ヘプタンにて99%置換を行い、最終的なスラリー量を4.5リットルとした。この操作は、室温で行った。
前記(2)で調製した固体触媒成分101g、トリエチルアルミニウム111mL、ヘプタン80Lを内容量200Lの攪拌機付きオートクレーブに挿入し、内温15~20℃に保ちエチレンを303g挿入し、180分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた前重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で1g/Lとなるよう、ヘプタンにより調整を行った。この前重合触媒は固体触媒成分1g当りポリエチレンを3g含んでいた。
内容量58Lのジャケット付循環式管状重合器にプロピレンを30kg/時間、水素を5NL/時間、前記(3)で製造した触媒スラリーを固体触媒成分として3.2g/時間、トリエチルアルミニウム1.0ml/時間を連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は30℃であり、圧力は3.1MPa/Gであった。
重合を下記のとおり行い、得られたプロピレン単独重合体(PP3)を用いた以外は、実施例1と同様にして延伸フィルムを得た。得られた延伸フィルムの耐電圧を上記方法により測定した。結果を表1に示す。
(1)固体触媒担体の製造
1L枝付フラスコにSiO2(AGCエスアイテック製サンスフェアH121)300gをサンプリングし、トルエン800mLを入れ、スラリー化した。次に5L4つ口フラスコへ移液をし、トルエン260mLを加えた。メチルアルミノキサン(以下、MAO)-トルエン溶液(10wt%溶液)を2830mL導入した。室温のままで、30分間攪拌した。1時間で110℃に昇温し、4時間反応を行った。反応終了後、室温まで冷却した。冷却後、上澄みトルエンを抜き出し、フレッシュなトルエンで、置換率が95%になるまで、置換を行った。
グローブボックス内にて、5L4つ口フラスコにジメチルメチレン(3-tert-ブチル-5-メチルシクロペンタジエニル)(1,1,4,4,7,7,10,10-オクタメチルオクタヒドロジベンゾ[b,h]フルオレニル)ジルコニウムジクロリドを1.0g秤取った。フラスコを外へ出し、トルエン0.5Lおよび前記(1)で調製したMAO/SiO2/トルエンスラリー2.0L(固体成分として100g)を窒素下で加え、30分間攪拌し担持を行った。得られたジメチルメチレン(3-tert-ブチル-5-メチルシクロペンタジエニル)(1,1,4,4,7,7,10,10-オクタメチルオクタヒドロジベンゾ[b,h]フルオレニル)ジルコニウムジクロリド/MAO/SiO2/トルエンスラリーはn-ヘプタンにて99%置換を行い、最終的なスラリー量を4.5リットルとした。この操作は、室温で行った。
前記(2)で調製した固体触媒成分101g、トリエチルアルミニウム111mL、ヘプタン80Lを内容量200Lの攪拌機付きオートクレーブに挿入し、内温15~20℃に保ちエチレンを303g挿入し、180分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた前重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で1g/Lとなるよう、ヘプタンにより調整を行った。この前重合触媒は固体触媒成分1g当りポリエチレンを3g含んでいた。
内容量58Lのジャケット付循環式管状重合器にプロピレンを30kg/時間、水素を5NL/時間、前記(3)で製造した触媒スラリーを固体触媒成分として3.2g/時間、トリエチルアルミニウム1.0ml/時間を連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は30℃であり、圧力は3.1MPa/Gであった。
重合を下記のとおり行い、得られたプロピレン単独重合体(PP4)を用いた以外は、実施例1と同様にして延伸フィルムを得た。得られた延伸フィルムの耐電圧を上記方法により測定した。結果を表1に示す。
(1)固体触媒担体の製造
1L枝付フラスコにSiO2(AGCエスアイテック製サンスフェアH121)300gをサンプリングし、トルエン800mLを入れ、スラリー化した。次に5L4つ口フラスコへ移液をし、トルエン260mLを加えた。メチルアルミノキサン(以下、MAO)-トルエン溶液(10wt%溶液)を2830mL導入した。室温のままで、30分間攪拌した。1時間で110℃に昇温し、4時間反応を行った。反応終了後、室温まで冷却した。冷却後、上澄みトルエンを抜き出し、フレッシュなトルエンで、置換率が95%になるまで、置換を行った。
グローブボックス内にて、5L4つ口フラスコにジフェニルメチレン(3-t-ブチル-5-メチルシクロペンタジエニル)(2,7-t-ブチルフルオレニル)ジルコニウムジクロリドを1.0g秤取った。フラスコを外へ出し、トルエン0.5Lおよび前記(1)で調製したMAO/SiO2/トルエンスラリー2.0L(固体成分として100g)を窒素下で加え、30分間攪拌し担持を行った。得られたジフェニルメチレン(3-t-ブチル-5-メチルシクロペンタジエニル)(2,7-t-ブチルフルオレニル)ジルコニウムジクロリド/MAO/SiO2/トルエンスラリーはn-ヘプタンにて99%置換を行い、最終的なスラリー量を4.5リットルとした。この操作は、室温で行った。
前記(2)で調製した固体触媒成分101g、トリエチルアルミニウム111mL、ヘプタン80Lを内容量200Lの攪拌機付きオートクレーブに挿入し、内温15~20℃に保ちエチレンを303g挿入し、180分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた前重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で1g/Lとなるよう、ヘプタンにより調整を行った。この前重合触媒は固体触媒成分1g当りポリエチレンを3g含んでいた。
内容量58Lのジャケット付循環式管状重合器にプロピレンを30kg/時間、水素を5NL/時間、前記(3)で製造した触媒スラリーを固体触媒成分として4.4g/時間、トリエチルアルミニウム1.0ml/時間を連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は30℃であり、圧力は3.1MPa/Gであった。
重合を下記のとおり行い、得られたプロピレン単独重合体(PP5)を用いた以外は、実施例1と同様にして延伸フィルムを得た。得られた延伸フィルムの耐電圧を上記方法により測定した。結果を表1に示す。
(1)固体触媒担体の製造
1L枝付フラスコにSiO2(AGCエスアイテック製サンスフェアH121)300gをサンプリングし、トルエン800mLを入れ、スラリー化した。次に5L4つ口フラスコへ移液をし、トルエン260mLを加えた。メチルアルミノキサン(以下、MAO)-トルエン溶液(10wt%溶液)を2830mL導入した。室温のままで、30分間攪拌した。1時間で110℃に昇温し、4時間反応を行った。反応終了後、室温まで冷却した。冷却後、上澄みトルエンを抜き出し、フレッシュなトルエンで、置換率が95%になるまで、置換を行った。
グローブボックス内にて、5L4つ口フラスコにジメチルシリレンビス-(2-メチル-4-フェニルインデニル)ジルコニウムジクロリドを1.0g秤取った。フラスコを外へ出し、トルエン0.5Lおよび前記(1)で調製したMAO/SiO2/トルエンスラリー2.0L(固体成分として100g)を窒素下で加え、30分間攪拌し担持を行った。得られたジメチルシリレンビス-(2-メチル-4-フェニルインデニル)ジルコニウムジクロリド/MAO/SiO2/トルエンスラリーはn-ヘプタンにて99%置換を行い、最終的なスラリー量を4.5リットルとした。この操作は、室温で行った。
前記(2)で調製した固体触媒成分101g、トリエチルアルミニウム111mL、ヘプタン80Lを内容量200Lの攪拌機付きオートクレーブに挿入し、内温15~20℃に保ちエチレンを303g挿入し、180分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた前重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で1g/Lとなるよう、ヘプタンにより調整を行った。この前重合触媒は固体触媒成分1g当りポリエチレンを3g含んでいた。
内容量58Lのジャケット付循環式管状重合器にプロピレンを30kg/時間、水素を5NL/時間、前記(3)で製造した触媒スラリーを固体触媒成分として1.7g/時間、トリエチルアルミニウム1.0ml/時間を連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は30℃であり、圧力は3.1MPa/Gであった。
重合を下記のとおり行い、得られたプロピレン単独重合体(PP6)を用いた以外は、実施例1と同様にして延伸フィルムを得た。得られた延伸フィルムの耐電圧を上記方法により測定した。結果を表1に示す。
(1)固体状チタン触媒成分の調製
無水塩化マグネシウム952g、デカン4420mLおよび2-エチルヘキシルアルコール3906gを、130℃で2時間加熱して均一溶液とした。この溶液中に無水フタル酸213gを添加し、130℃でさらに1時間攪拌混合を行って無水フタル酸を溶解させた。得られた均一溶液を23℃まで冷却した後、この均一溶液750mLを、-20℃に保持された四塩化チタン2000mL中に1時間かけて滴下した。滴下後、得られた混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)52.2gを加え、同温度で2時間加熱した。次いで、熱時濾過にて固体部を採取し、この固体部を2750mLの四塩化チタンに再懸濁させた後、再び110℃で2時間加熱した。加熱終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンを用いて、洗浄液中にチタン化合物が検出されなくなるまで洗浄した。このようにして調製された固体状チタン触媒成分は、ヘキサンスラリーとして保存される。このヘキサンスラリーの一部を乾燥して触媒組成を調べたところ、固体状チタン触媒成分は、チタンを2重量%、塩素を57重量%、マグネシウムを21重量%およびDIBPを20重量%含有していた。
前記(1)で調製した固体状チタン触媒成分120g、トリエチルアルミニウム20.5mLおよびヘプタン120Lを内容量200Lの攪拌機付きオートクレーブに入れ、内温5℃に保ちながら、プロピレンを720g加え、60分間攪拌して反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた前重合触媒を精製ヘプタンに再懸濁して、固体状チタン触媒成分濃度で1g/Lの前重合触媒のスラリーを得た。この前重合触媒は固体状チタン触媒成分1g当たり、プロピレン単独重合体を6g含んでいた。
内容量100Lの攪拌器付きベッセル重合器に、プロピレンを110kg/時間、前記(2)で調製した前重合触媒のスラリーを9.8g/時間、トリエチルアルミニウムを5.8mL/時間およびジシクロペンチルジメトキシシランを2.6mL/時間、連続的に供給し、水素を、気相部の水素濃度が0.9mol%になるように供給した。重合温度73℃および圧力3.2MPa/Gで重合を行った。得られたスラリーを内容量1000Lの攪拌機付きベッセル重合器に送り、さらに重合を行った。プロピレンを30kg/時間および水素を、気相部の水素濃度が1.3mol%になるように重合器に供給した。重合温度71℃および圧力3.0MPa/Gで重合を行った。得られたスラリーを内容量500Lの攪拌機付きベッセル重合器に送り、さらに重合を行った。プロピレンを46kg/時間および水素を、気相部の水素濃度が1.3mol%になるように重合器に供給した。重合温度69℃、圧力2.9MPa/Gで重合を行った。得られたスラリーを失活させた後、液体プロピレンによる洗浄槽に送り、プロピレン単独重合体パウダーを洗浄した。このスラリーを気化させた後、気固分離し、プロピレン単独重合体を得た。得られたプロピレン単独重合体を、コニカル乾燥機に導入して、80℃で真空乾燥した。次いで、この生成物100キログラムに対し、純水35.9グラムおよびプロピレンオキサイド0.63リットルを加え、90℃で2時間脱塩素処理を行った後に、80℃で真空乾燥を行うと、プロピレン単独重合体(PP6)が得られた。
重合を下記のとおり行い、得られたプロピレン単独重合体(PP7)を用いた以外は、実施例1と同様にして延伸フィルムを得た。得られた延伸フィルムの耐電圧を上記方法により測定した。結果を表1に示す。
(1)固体触媒担体の製造
1L枝付フラスコにSiO2(AGCエスアイテック製サンスフェアH121)300gをサンプリングし、トルエン800mLを入れ、スラリー化した。次に5L4つ口フラスコへ移液をし、トルエン260mLを加えた。メチルアルミノキサン(以下、MAO)-トルエン溶液(10wt%溶液)を2830mL導入した。室温のままで、30分間攪拌した。1時間で110℃に昇温し、4時間反応を行った。反応終了後、室温まで冷却した。冷却後、上澄みトルエンを抜き出し、フレッシュなトルエンで、置換率が95%になるまで、置換を行った。
グローブボックス内にて、5L4つ口フラスコに(フェニル)(メチル)メチレン(3-t-ブチル-5-メチルシクロペンタジエニル)(1,1,3,6,8,8-ヘキサメチル-1H,8H-ジシクロペンタ[b,h]フルオレニル)ジルコニウムジクロリドを1.0g秤取った。フラスコを外へ出し、トルエン0.5Lおよび前記(1)で調製したMAO/SiO2/トルエンスラリー2.0L(固体成分として100g)を窒素下で加え、30分間攪拌し担持を行った。得られた(フェニル)(メチル)メチレン(3-t-ブチル-5-メチルシクロペンタジエニル)(1,1,3,6,8,8-ヘキサメチル-1H,8H-ジシクロペンタ[b,h]フルオレニル)ジルコニウムジクロリド/MAO/SiO2/トルエンスラリーはn-ヘプタンにて99%置換を行い、最終的なスラリー量を4.5リットルとした。この操作は、室温で行った。
前記(2)で調製した固体触媒成分101g、トリエチルアルミニウム111mL、ヘプタン80Lを内容量200Lの攪拌機付きオートクレーブに挿入し、内温15~20℃に保ちエチレンを303g挿入し、180分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた前重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で1g/Lとなるよう、ヘプタンにより調整を行った。この前重合触媒は固体触媒成分1g当りポリエチレンを3g含んでいた。
内容量58Lのジャケット付循環式管状重合器にプロピレンを30kg/時間、水素を5NL/時間、前記(3)で製造した触媒スラリーを固体触媒成分として2.6g/時間、トリエチルアルミニウム1.0ml/時間を連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は30℃であり、圧力は2.6MPa/Gであった。
Claims (4)
- 下記要件(i)~(v),(ix)を満たすコンデンサー用プロピレン単独重合体;
(i)メルトフローレート(MFR; ASTM D1238に準拠し、230℃、2.16kg荷重で測定)が1~10g/10分であること、
(ii)13C-NMRで測定したメソペンタッド分率(mmmm)が0.940~0.995であること、
(iii)o-ジクロロベンゼンを用いたクロス分別クロマトグラフ(CFC)による90℃での溶出積分量が0.5重量%以下であること、
(iv)示差走査熱量計(DSC)で測定した融点が152℃以上であること、
(v)塩素含量が2重量ppm以下であること、
(ix)o-ジクロロベンゼンを用いたクロス分別クロマトグラフ(CFC)により測定した溶出温度に対する溶出成分量のピーク半値幅が7.0℃以下であり、ピークトップ温度が105~130℃であること。 - さらに下記要件(vi)を満たす請求項1記載のコンデンサー用プロピレン単独重合体;
(vi)13C-NMRスペクトルから求められる、全プロピレン構成単位中のプロピレンモノマーの2,1-挿入に基づく異種結合の割合および1,3-挿入に基づく異種結合の割合の和が0.2mol%以下であること。 - メタロセン触媒を用いて重合された請求項1または2記載のコンデンサー用プロピレン単独重合体。
- 請求項1~3のいずれか記載のプロピレン単独重合体を延伸面倍率(縦×横の面倍率)30~80倍で延伸させてなるコンデンサー用延伸フィルム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/146,378 US8288495B2 (en) | 2009-01-27 | 2010-01-26 | Propylene homopolymer for capacitors |
CN2010800056153A CN102292361B (zh) | 2009-01-27 | 2010-01-26 | 电容器用丙烯均聚物 |
JP2010548512A JP5506701B2 (ja) | 2009-01-27 | 2010-01-26 | コンデンサー用プロピレン単独重合体 |
EP10735796.4A EP2383300B1 (en) | 2009-01-27 | 2010-01-26 | Propylene homopolymer for condensers |
KR1020117018741A KR101356883B1 (ko) | 2009-01-27 | 2010-01-26 | 콘덴서용 프로필렌 단독중합체 |
SG2011054228A SG173156A1 (en) | 2009-01-27 | 2010-01-26 | Propylene homopolymer for condensers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009015053 | 2009-01-27 | ||
JP2009-015053 | 2009-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010087328A1 true WO2010087328A1 (ja) | 2010-08-05 |
Family
ID=42395589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/050961 WO2010087328A1 (ja) | 2009-01-27 | 2010-01-26 | コンデンサー用プロピレン単独重合体 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8288495B2 (ja) |
EP (1) | EP2383300B1 (ja) |
JP (1) | JP5506701B2 (ja) |
KR (1) | KR101356883B1 (ja) |
CN (1) | CN102292361B (ja) |
SG (1) | SG173156A1 (ja) |
WO (1) | WO2010087328A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014531480A (ja) * | 2011-08-30 | 2014-11-27 | ボレアリス・アクチェンゲゼルシャフトBorealis Ag | キャパシタフィルムの製造方法 |
KR20170012350A (ko) | 2014-07-31 | 2017-02-02 | 미쓰이 가가쿠 가부시키가이샤 | 콘덴서 필름용 프로필렌 단독중합체 조성물 및 그의 제조 방법, 및 콘덴서 필름 |
KR20170012349A (ko) | 2014-07-31 | 2017-02-02 | 미쓰이 가가쿠 가부시키가이샤 | 콘덴서 필름용 프로필렌 단독중합체 조성물 및 그의 제조 방법, 및 콘덴서 필름 |
JP2020105356A (ja) * | 2018-12-27 | 2020-07-09 | 株式会社プライムポリマー | コンデンサフィルムおよびその製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG11201502294RA (en) * | 2012-09-25 | 2015-05-28 | Mitsui Chemicals Inc | Transition Metal Compound, Olefin Polymerization Catalyst, And Olefin Polymer Production Process |
US10256041B2 (en) * | 2015-03-31 | 2019-04-09 | Prime Polymer Co., Ltd. | Polypropylene for film capacitor, biaxially stretched film for film capacitor, film capacitor, and process for producing the same |
JP2022083825A (ja) * | 2020-11-25 | 2022-06-06 | 住友化学株式会社 | プロピレン重合体組成物、および、フィルム |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56131921A (en) | 1980-03-19 | 1981-10-15 | Sumitomo Chemical Co | Oil-immersed electric device |
JPH06236709A (ja) | 1992-06-15 | 1994-08-23 | Mitsui Toatsu Chem Inc | 高分子絶縁材料およびそれを用いた成形体 |
JPH07145212A (ja) | 1993-11-22 | 1995-06-06 | Mitsui Petrochem Ind Ltd | プロピレン系重合体 |
JPH091652A (ja) * | 1995-05-31 | 1997-01-07 | Hoechst Ag | 向上した水蒸気および酸素遮断性を有する二軸延伸ポリプロピレンフィルム |
JPH09302036A (ja) | 1996-05-20 | 1997-11-25 | Mitsui Toatsu Chem Inc | ポリプロピレンおよびそれを用いた延伸フィルム |
JPH11315109A (ja) | 1997-04-25 | 1999-11-16 | Mitsui Chem Inc | オレフィン重合用触媒、遷移金属化合物、オレフィンの重合方法およびα−オレフィン・共役ジエン共重合体 |
WO2001027124A1 (fr) | 1999-10-08 | 2001-04-19 | Mitsui Chemicals, Inc. | Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine |
JP2004506788A (ja) | 2000-08-22 | 2004-03-04 | エクソンモービル・ケミカル・パテンツ・インク | ポリプロピレンポリマー |
JP3618130B2 (ja) | 1994-12-02 | 2005-02-09 | 三井化学株式会社 | ポリプロピレン延伸フィルム |
JP2006143975A (ja) | 2004-11-25 | 2006-06-08 | Prime Polymer:Kk | ポリプロピレン及び該ポリプロピレンの電気材料への応用 |
WO2007134837A1 (en) * | 2006-05-22 | 2007-11-29 | Borealis Technology Oy | A process to produce polyolefins with extra low impurity content |
WO2008006529A1 (en) * | 2006-07-10 | 2008-01-17 | Borealis Technology Oy | Electrical insulation film |
JP4083820B2 (ja) * | 1997-08-05 | 2008-04-30 | 株式会社プライムポリマー | ポリプロピレン樹脂組成物およびその用途 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1984002983A1 (en) | 1983-01-21 | 1984-08-02 | Frederick James Primus | Specific cea-family antigens, antibodies specific thereto and their methods of use |
JPH0483820A (ja) | 1990-07-25 | 1992-03-17 | Matsushita Electric Works Ltd | 機構部品の製造方法 |
US5476709A (en) | 1992-06-15 | 1995-12-19 | Mitsui Toatsu Chemicals, Inc. | Polymeric insulating material and formed article making use of the material |
DE69431222T2 (de) | 1993-06-07 | 2003-04-17 | Mitsui Chemicals, Inc. | Übergangsmetallverbindung, und diese enthaltender Polymerisationkatalysator |
EP0745638A1 (de) * | 1995-05-31 | 1996-12-04 | Hoechst Aktiengesellschaft | Biaxial orientierte Polypropylenfolie mit verbessertem Weiterreisswiderstand |
EP0745637A1 (de) | 1995-05-31 | 1996-12-04 | Hoechst Aktiengesellschaft | Biaxial orientierte Polypropylenfolie mit hohem Flächenmodul |
EP0755779B1 (de) | 1995-05-31 | 2000-08-09 | Hoechst Aktiengesellschaft | Biaxial orientierte Polypropylenfolie mit erhöhter Dimensionsstabilität |
EP0745477A1 (de) | 1995-05-31 | 1996-12-04 | Hoechst Aktiengesellschaft | Biaxial orientierte Polypropylenfolie mit verbessertem Migrationswiderstand |
JPH0952917A (ja) * | 1995-08-10 | 1997-02-25 | Mitsui Toatsu Chem Inc | ポリプロピレンおよびそれを用いた延伸フィルム |
TWI246520B (en) | 1997-04-25 | 2006-01-01 | Mitsui Chemicals Inc | Processes for olefin polymerization |
JPH11302436A (ja) * | 1998-04-20 | 1999-11-02 | Mitsui Chem Inc | 多孔フィルムおよび電池用セパレータフィルム |
US7098277B2 (en) | 2000-08-22 | 2006-08-29 | Exxonmobil Chemical Patents Inc. | Polypropylene films |
JP2004161799A (ja) * | 2002-11-08 | 2004-06-10 | Toray Ind Inc | 二軸延伸ポリプロピレンフィルム |
US6855783B2 (en) * | 2003-04-11 | 2005-02-15 | Fina Technology, Inc. | Supported metallocene catalysts |
JP4804828B2 (ja) * | 2004-08-13 | 2011-11-02 | 三井化学株式会社 | 電池用セパレータおよびそれを用いたリチウムイオン電池 |
WO2006057066A1 (ja) * | 2004-11-25 | 2006-06-01 | Prime Polymer Co., Ltd. | ポリプロピレン及び該ポリプロピレンの電気材料への応用 |
CA2625083C (en) * | 2005-10-18 | 2013-06-18 | Toray Industries, Inc. | Microporous film for electric storage device separator and electric storage device separator using the same |
US7473751B2 (en) * | 2007-01-22 | 2009-01-06 | Fina Technology, Inc. | Biaxially-oriented metallocene-based polypropylene films having reduced thickness |
JP5194476B2 (ja) * | 2007-02-16 | 2013-05-08 | 東レ株式会社 | 多孔性ポリプロピレンフィルム |
-
2010
- 2010-01-26 WO PCT/JP2010/050961 patent/WO2010087328A1/ja active Application Filing
- 2010-01-26 SG SG2011054228A patent/SG173156A1/en unknown
- 2010-01-26 EP EP10735796.4A patent/EP2383300B1/en active Active
- 2010-01-26 KR KR1020117018741A patent/KR101356883B1/ko active IP Right Grant
- 2010-01-26 US US13/146,378 patent/US8288495B2/en active Active
- 2010-01-26 CN CN2010800056153A patent/CN102292361B/zh active Active
- 2010-01-26 JP JP2010548512A patent/JP5506701B2/ja active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56131921A (en) | 1980-03-19 | 1981-10-15 | Sumitomo Chemical Co | Oil-immersed electric device |
JPH06236709A (ja) | 1992-06-15 | 1994-08-23 | Mitsui Toatsu Chem Inc | 高分子絶縁材料およびそれを用いた成形体 |
JPH07145212A (ja) | 1993-11-22 | 1995-06-06 | Mitsui Petrochem Ind Ltd | プロピレン系重合体 |
JP3618130B2 (ja) | 1994-12-02 | 2005-02-09 | 三井化学株式会社 | ポリプロピレン延伸フィルム |
JPH091652A (ja) * | 1995-05-31 | 1997-01-07 | Hoechst Ag | 向上した水蒸気および酸素遮断性を有する二軸延伸ポリプロピレンフィルム |
JPH09302036A (ja) | 1996-05-20 | 1997-11-25 | Mitsui Toatsu Chem Inc | ポリプロピレンおよびそれを用いた延伸フィルム |
JPH11315109A (ja) | 1997-04-25 | 1999-11-16 | Mitsui Chem Inc | オレフィン重合用触媒、遷移金属化合物、オレフィンの重合方法およびα−オレフィン・共役ジエン共重合体 |
JP4083820B2 (ja) * | 1997-08-05 | 2008-04-30 | 株式会社プライムポリマー | ポリプロピレン樹脂組成物およびその用途 |
WO2001027124A1 (fr) | 1999-10-08 | 2001-04-19 | Mitsui Chemicals, Inc. | Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine |
JP2004506788A (ja) | 2000-08-22 | 2004-03-04 | エクソンモービル・ケミカル・パテンツ・インク | ポリプロピレンポリマー |
JP2006143975A (ja) | 2004-11-25 | 2006-06-08 | Prime Polymer:Kk | ポリプロピレン及び該ポリプロピレンの電気材料への応用 |
WO2007134837A1 (en) * | 2006-05-22 | 2007-11-29 | Borealis Technology Oy | A process to produce polyolefins with extra low impurity content |
WO2008006529A1 (en) * | 2006-07-10 | 2008-01-17 | Borealis Technology Oy | Electrical insulation film |
Non-Patent Citations (2)
Title |
---|
A. ZAMBELLI ET AL., MACROMOLECULES, 1975, pages 8,687 |
See also references of EP2383300A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014531480A (ja) * | 2011-08-30 | 2014-11-27 | ボレアリス・アクチェンゲゼルシャフトBorealis Ag | キャパシタフィルムの製造方法 |
US10253115B2 (en) | 2011-08-30 | 2019-04-09 | Borealis Ag | Process for the manufacture of a capacitor film |
KR20170012350A (ko) | 2014-07-31 | 2017-02-02 | 미쓰이 가가쿠 가부시키가이샤 | 콘덴서 필름용 프로필렌 단독중합체 조성물 및 그의 제조 방법, 및 콘덴서 필름 |
KR20170012349A (ko) | 2014-07-31 | 2017-02-02 | 미쓰이 가가쿠 가부시키가이샤 | 콘덴서 필름용 프로필렌 단독중합체 조성물 및 그의 제조 방법, 및 콘덴서 필름 |
US10793708B2 (en) | 2014-07-31 | 2020-10-06 | Mitsui Chemicals, Inc. | Propylene homopolymer composition for capacitor film, method for producing the same, and capacitor film |
US10800909B2 (en) | 2014-07-31 | 2020-10-13 | Mitsui Chemicals, Inc. | Propylene homopolymer composition for capacitor film, method for producing the same, and capacitor film |
JP2020105356A (ja) * | 2018-12-27 | 2020-07-09 | 株式会社プライムポリマー | コンデンサフィルムおよびその製造方法 |
JP7241532B2 (ja) | 2018-12-27 | 2023-03-17 | 株式会社プライムポリマー | コンデンサフィルムおよびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20110301309A1 (en) | 2011-12-08 |
CN102292361A (zh) | 2011-12-21 |
JPWO2010087328A1 (ja) | 2012-08-02 |
CN102292361B (zh) | 2013-10-30 |
KR101356883B1 (ko) | 2014-01-28 |
EP2383300A4 (en) | 2014-07-30 |
SG173156A1 (en) | 2011-08-29 |
EP2383300B1 (en) | 2016-10-12 |
US8288495B2 (en) | 2012-10-16 |
KR20110110304A (ko) | 2011-10-06 |
EP2383300A1 (en) | 2011-11-02 |
JP5506701B2 (ja) | 2014-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5506701B2 (ja) | コンデンサー用プロピレン単独重合体 | |
RU2077541C1 (ru) | Способ получения синдиотактических полиолефинов и синдиотактический полипропилен | |
JP5026532B2 (ja) | 電気絶縁フィルム | |
EP1054911B1 (de) | Katalysatorsystem, verfahren zu seiner herstellung und seine verwendung zur polymerisation von olefinen | |
JP5653760B2 (ja) | 微多孔膜形成用ポリプロピレン樹脂組成物 | |
NO179950B (no) | Syndiotaktisk polypropylen og fremstilling av dette | |
JP2011500800A (ja) | メタロセン化合物、それを含む触媒、その触媒を使用するオレフィンポリマーの製造プロセス、ならびにオレフィンホモポリマーおよびコポリマー | |
DE19757563A1 (de) | Geträgertes Katalysatorsystem, Verfahren zur Herstellung und seine Verwendung zur Polymerisation von Olefinen | |
EP0859800A2 (de) | Geträgertes katalysatorsystem, verfahren zu seiner herstellung und seine verwendung zur polymerisation von olefinen | |
EP3176214B1 (en) | Propylene homopolymer composition for capacitor film, method for producing same, and capacitor film | |
CN106574092B (zh) | 电容器膜用丙烯均聚物组合物及其制造方法、以及电容器膜 | |
EP1003757B1 (de) | Verfahren zur herstellung von metallocenen | |
JP2024127954A (ja) | コンデンサ用多層ポリプロピレンフィルム | |
JP7241532B2 (ja) | コンデンサフィルムおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080005615.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10735796 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010548512 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13146378 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010735796 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010735796 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117018741 Country of ref document: KR Kind code of ref document: A |