[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010087078A1 - 回転電機用電機子及びその製造方法 - Google Patents

回転電機用電機子及びその製造方法 Download PDF

Info

Publication number
WO2010087078A1
WO2010087078A1 PCT/JP2009/070762 JP2009070762W WO2010087078A1 WO 2010087078 A1 WO2010087078 A1 WO 2010087078A1 JP 2009070762 W JP2009070762 W JP 2009070762W WO 2010087078 A1 WO2010087078 A1 WO 2010087078A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
slot
circumferential
radial
conductor
Prior art date
Application number
PCT/JP2009/070762
Other languages
English (en)
French (fr)
Inventor
山本義久
大竹新一
篠原敬一
古賀清隆
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to CN2009801372583A priority Critical patent/CN102160266A/zh
Priority to DE112009002227T priority patent/DE112009002227T5/de
Publication of WO2010087078A1 publication Critical patent/WO2010087078A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in the machines
    • H02K15/062Windings in slots; Salient pole windings
    • H02K15/065Windings consisting of complete sections, e.g. coils or waves
    • H02K15/067Windings consisting of complete sections, e.g. coils or waves inserted in parallel to the axis of the slots or inter-polar channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine

Definitions

  • the present invention relates to an armature for a rotating electrical machine including a cylindrical core in which a plurality of slots extending in the axial direction are distributed in the circumferential direction, and a coil wound around the slot, and a method for manufacturing the same.
  • a rotating electrical machine used as a motor (electric motor), a generator (generator) or the like is required to have a smaller physique and a larger output. Therefore, increasing the energy efficiency of the rotating electrical machine is one of important issues.
  • a technique for increasing the energy efficiency of the rotating electrical machine for example, a technique for improving the space factor of the coil in the armature of the rotating electrical machine has been conventionally known.
  • Patent Document 1 is given as a document describing improving the space factor of a coil.
  • the space factor is improved by forming a coil using a rectangular wire conductor having a substantially rectangular cross section, and an ampere turn per unit cross sectional area.
  • the output of the rotating electrical machine is improved by increasing the power.
  • the stator slot is an open slot (the circumferential width of the opening that opens radially inward is equal to or greater than the circumferential width of the portion where the coil is mounted.
  • the coil which is formed into a predetermined shape by continuous winding, is inserted in the radial direction from the opening of the open slot and wound around the slot while being deformed in the circumferential direction and the axial direction.
  • patent document 2 is mentioned as another literature in which improving the space factor of a coil was described.
  • a coil having a predetermined shape is formed by laminating thin wires in the circumferential direction and the radial direction.
  • the thin wires are stacked and bundled so as to have a cross-sectional shape corresponding to the cross-sectional shape of the slot.
  • the slot provided in the stator core is a semi-open slot (the circumferential width of the opening opening radially inward is the circumference of the portion where the coil is mounted).
  • the slot is narrower than the width in the direction).
  • the output of the rotating electrical machine is also improved by increasing the effective magnetic flux acting between the stator and the rotor as the field.
  • the stator of this rotating electric machine as the semi-open slot type core is used, the thin wire is bent radially inward and laminated in the axial direction at the coil end portion on one axial side of the coil. Pre-formed into a different shape. In other words, at the portion where the thin wire constituting the coil extends in the radial direction, the thin wire is not laminated in the circumferential direction so that the circumferential width of the portion is made smaller than the width of the opening on the radially inner side of the slot.
  • the pre-formed coil is inserted in the axial direction from the bent coil end side and wound around the slot of the core.
  • JP 2008-167567 A Japanese Patent No. 3798968
  • a semi-open slot type core as described in Patent Document 2 may be used. Conceivable.
  • a rotating electrical machine is configured using a semi-open slot core and a coil composed of a rectangular wire conductor, the circumferential width of the rectangular wire conductor itself is wider than the circumferential width of the opening of the slot. Therefore, as described in Patent Document 1, the coil cannot be inserted into the slot from the inside in the radial direction.
  • the circumferential width of the rectangular wire conductor itself is wider than the circumferential width of the opening of the slot. It is also not possible to insert the coil axially into the slot as was done.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an armature for a rotating electrical machine capable of reducing eddy current loss while improving the space factor of a coil.
  • a rotating electrical machine comprising a cylindrical core having a plurality of axially extending slots distributed in the circumferential direction according to the present invention, and a coil wound around the slot.
  • the slot is formed such that the circumferential width of the inner circumferential opening that opens radially inward is narrower than the circumferential width of the slot located radially outside of the inner circumferential opening.
  • the circumferential width of the linear conductor constituting the coil is formed wider than the circumferential width of the inner circumferential opening, and the coil is arranged between the coil side portions arranged in different slots.
  • the directions of “axial direction”, “radial direction”, and “circumferential direction” are determined based on a cylindrical core, and “axial direction” is a direction along the central axis of the core.
  • “Radial direction” represents a direction perpendicular to the direction (axial direction) along the central axis of the core
  • “circumferential direction” represents a circumferential direction (or tangential direction) around the central axis of the core.
  • each direction about a coil shall prescribe
  • the “linear conductor” is used as a concept representing a conductor as a single linear member constituting each turn of the coil.
  • the “rotary electric machine” is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator that performs both functions of the motor and the generator as necessary.
  • the narrow recess is formed in the inner circumferential opening of the slot.
  • the coil can be inserted in the axial direction from the end of the bent coil into the slot of the core.
  • the circumferential width of the linear conductor can be freely set within a range in which the coil can be wound around the slot.
  • the space factor of the coil can be improved.
  • the slot of the core is a so-called semi-open slot in which the circumferential width of the inner circumferential opening is smaller than the circumferential width inside the slot.
  • the armature for rotary electric machines which can reduce an eddy current loss can be provided, aiming at the improvement of the space factor of a coil.
  • the narrow concave portion is a compression molded portion formed by compressing the radial conductor portion in the circumferential direction and extending in the axial direction.
  • a compression-molded portion as a narrow concave portion can be easily formed simply by compressing the radial position of the radial conductor portion at the end of the bending coil corresponding to the inner peripheral opening of the slot in the circumferential direction. can do.
  • the linear conductor constituting the coil has a circumferential width that is smaller than that before bending. May be larger. Therefore, in order to ensure that the coil can be inserted into the slot in the axial direction while keeping the coil space factor high, before the coil is inserted into the slot, the circumferentially expanded portion of the bent portion is It is preferable to compress in the direction.
  • a narrow recessed part (compression molding part) can be formed according to compressing the part swelled in the circumferential direction among the bending parts to the circumferential direction, a narrow recessed part (compression molding part) ) Can be formed easily.
  • the cross-sectional area of the surface orthogonal to the energizing direction of the coil can be kept substantially constant over the entire coil.
  • the electrical resistance value in the compression molded part can be made substantially equal to the electrical resistance value in the part other than the compression molded part. Therefore, it is possible to suppress the occurrence of inconveniences such as locally increasing heat generation in the compression molding portion.
  • a direction along the circumferential direction in the slot is a first direction
  • a direction orthogonal to the first direction is a second direction.
  • the linear conductor is formed so that the width in the second direction is narrower than the circumferential width of the inner circumferential opening, and the narrow recess corresponds to the inner circumferential opening in the radial conductor.
  • the portion to be formed is a twist forming portion formed by twisting with respect to other portions of the radial conductor portion so that the second direction is substantially parallel to the circumferential direction.
  • the “width in the second direction” represents the width of the linear conductor when viewed from the direction orthogonal to the second direction in the cross section orthogonal to the extending direction of the linear conductor.
  • a narrow concave portion is provided by twisting a portion corresponding to the inner peripheral opening in the radial conductor portion with respect to the other portions of the radial conductor portion to form a twisted molded portion.
  • the insulating coating covering the linear conductor has a width It is possible to suppress damage by forming the narrow recess.
  • the circumferential width of the inner peripheral opening is under the condition that the inner peripheral opening and the linear conductor do not interfere with each other.
  • the narrow concave portion compresses the radial conductor portion in the circumferential direction and is a compression-molded portion formed by extending in the axial direction, or the narrow concave portion is formed in the radial conductor portion.
  • the coil is the linear shape constituting the coil side portion. A plurality of conductors are arranged side by side in the radial direction in the slot, the linear conductors constituting the bent coil end portions are arranged in the axial direction, and the narrow concave portions are arranged in the axial direction. This is preferable.
  • the narrow concave portions When the narrow concave portions are extended in the axial direction as compression molded portions, by arranging these in parallel in the axial direction, the portions of the compression molded portions extended in the axial direction are in contact with each other in the axial direction. To meet each other.
  • the narrow concave portion is configured as the twist forming portion, the axial height of the linear conductor in the twist forming portion is higher than that of other portions of the radial conductor portion adjacent to the twist forming portion. Get higher. Therefore, by arranging the narrow concave portions (twist forming portions) side by side in the axial direction, the portions having the higher axial height contact with each other in the axial direction.
  • the axial interval between the linear conductors arranged side by side in the axial direction is increased in the portion other than the narrow concave portion at the end of the bending coil.
  • a plurality of coils having different phases are provided, and among the coils of each phase, the linear conductors having different phases constituting the circumferential conductor portion are arranged side by side in the axial direction. .
  • the present invention can be effectively applied to the armature for a rotating electrical machine having the above configuration.
  • an interphase insulating sheet is arranged between the linear conductors of different phases on the radially inner side of the compression molded portion at the bent coil end.
  • the electrical insulation between the phase coils can be more appropriately secured by the interphase insulating sheet.
  • the insulation performance required for the interphase insulating sheet may be reduced. Manufacturing cost can be reduced.
  • the stress applied to the interphase insulating sheet between the linear conductors is reduced, the insulation quality can be stabilized. Therefore, the present invention can be effectively applied to the armature for a rotating electrical machine having the above configuration.
  • the core includes protrusions that protrude on both sides in the circumferential direction to form both side walls in the circumferential direction at the radially inner ends of the teeth located between the slots adjacent to each other, Between the slot and the coil side, an in-slot insulating sheet is disposed so as to cover the inner peripheral opening while circling the coil side, and an end of the in-slot insulating sheet in the circumferential direction is It is preferable that the structure is locked to the protruding portion.
  • the electrical insulation between the core and the coil side can be appropriately ensured by the in-slot insulating sheet.
  • the insulating sheet in the slot is arranged so that the end in the direction of circling the coil side is locked to the protruding portion provided in the core and covers the inner peripheral opening of the slot. Without imparting, it is possible to effectively prevent the coil side portion from coming out radially inward. In addition, electrical insulation between the coil side and the field side can be ensured.
  • a wire comprising a cylindrical core having a plurality of semi-open slot-type slots extending in the axial direction distributed in the circumferential direction and a coil wound around the slot according to the present invention.
  • the circumferential width of the conductor is formed wider than the circumferential width of the inner circumferential opening that opens radially inward of the slot, and the coil is disposed between the coil sides disposed in different slots.
  • a characteristic configuration of a method for manufacturing an armature for a rotating electrical machine having a bent coil end portion that is connected at one end portion in the axial direction and is bent radially inward is a radial direction from the coil side portion at the bent coil end portion.
  • the circumferential width is narrower than the circumferential width of the inner circumferential opening.
  • the radial direction corresponding to the inner peripheral opening of the slot (semi-open slot) in the radial conductor portion by the narrow recess forming step A narrow recess is formed at the position having a shape that is recessed with respect to other portions of the radial conductor portion and whose circumferential width is narrower than the circumferential width of the inner circumferential opening.
  • the narrow recess formed in the previous narrow recess forming step in the insertion step Is passed through the inner peripheral opening of the slot, so that the coil can be inserted into the slot of the core in the axial direction from the bent coil end side.
  • the circumferential width of the linear conductor can be freely set within a range in which the coil can be wound around the slot, the circumferential width of the linear conductor is, for example, substantially equal to the circumferential width inside the slot.
  • the space factor of the coil can be improved.
  • the slot of the core is a semi-open slot, and the circumferential width of the inner circumferential opening is narrower than the circumferential width inside the slot. Therefore, the amount of magnetic flux from a permanent magnet or the like included in the field reaches the surface of the linear conductor constituting the coil can be reduced. Therefore, generation of eddy current can be suppressed and eddy current loss can be reduced. Therefore, according to said characteristic structure, the armature for rotary electric machines which can reduce an eddy current loss can be manufactured, aiming at the improvement of the space factor of a coil.
  • the narrow recess forming step is a compression step of compressing a portion corresponding to the inner peripheral opening in the radial conductor portion in the circumferential direction.
  • the narrow concave portion forming step can be a simple step (compression step) in which a portion corresponding to the inner peripheral opening in the radial conductor portion is compressed in the circumferential direction.
  • a direction along the circumferential direction in the slot is a first direction
  • a direction orthogonal to the first direction is a second direction.
  • the linear conductor is formed such that a width in the second direction is narrower than a circumferential width of the inner circumferential opening, and the narrow recess forming step includes the inner circumferential opening in the radial conductor.
  • the part corresponding to is a twisting process in which the second direction is twisted with respect to other portions of the radial conductor portion so that the second direction is substantially parallel to the circumferential direction.
  • the narrow recessed portion forming step is a simple step (twisting step) in which a portion corresponding to the inner circumferential opening in the radial conductor portion is twisted with respect to the other portions of the radial conductor portion. It can be.
  • the insulating coating covering the linear conductor has a width It is possible to suppress damage by forming the narrow recess.
  • the narrow concave portion forming step is a compression step
  • the compressing step the bent portion of the radial conductor portion constituting the coil is further compressed in the circumferential direction simultaneously with forming the narrow concave portion. It is preferable to adopt a configuration to do so.
  • the linear conductor constituting the coil has a greater width in the circumferential direction at the bent portion than before bending.
  • the circumferentially expanded portion of the bent portion is compressed in the circumferential direction before the insertion process. It is preferable to keep it.
  • the radial conductor portion and the bent portion provided in the vicinity of the same linear conductor can be compressed in the circumferential direction in a single process, so that the manufacturing process is not complicated.
  • the armature for rotating electrical machines according to the invention can be manufactured.
  • the core includes protrusions that protrude on both sides in the circumferential direction to form both side walls in the circumferential direction at the radially inner ends of the teeth positioned between the adjacent slots.
  • the coil is inserted into the slot with the in-slot insulating sheet arranged in the slot extending radially inward from the inner peripheral opening, and the in-slot insulation It is preferable to further include a locking step of locking the end portion extending radially inward of the sheet to the protruding portion after the insertion step.
  • the coil in the inserting step, the coil can be inserted into the slot with the insulating sheet in the slot interposed between the core and the coil, so that the linear conductor constituting the coil is covered.
  • the coil can be inserted into the slot without damaging the insulating coating.
  • the end portion of the insulating sheet in the slot is locked to the protruding portion, thereby covering the inner peripheral opening of the slot without giving a special configuration, and the coil constituting the coil It is possible to effectively prevent the side portion from coming out radially inward. Furthermore, the electrical insulation between the core and the coil side and between the coil side and the field side can be appropriately ensured by the in-slot insulating sheet.
  • FIG. 7 is a sectional view taken along line VII-VII in FIG. 6.
  • FIG. 7 is a sectional view taken along line VIII-VIII in FIG. 6.
  • FIG. 6 is a partial cross-sectional view in the axial direction of a stator according to a second embodiment of the present invention. It is an enlarged view of the twist formation part which concerns on 2nd embodiment of this invention. It is XVI-XVI sectional drawing in FIG. It is XVII-XVII sectional drawing in FIG. It is explanatory drawing of the insertion process for manufacturing the stator which concerns on 2nd embodiment of this invention.
  • FIG. 1 is a cross-sectional view illustrating the overall configuration of the rotating electrical machine 1 according to the present embodiment
  • FIG. 2 is a perspective view illustrating the overall configuration of the stator 2 according to the present embodiment.
  • the stator 2 according to the present embodiment is a combination of the stator core shape and the coil shape so as to reduce the eddy current loss while improving the space factor of the coil 21 in the slot 12 of the stator core 11. It has the characteristics.
  • the configuration of each part of the rotating electrical machine 1 will be described in detail.
  • the rotating electric machine 1 includes a stator 2, a rotor 3, and a case 5.
  • the stator 2 includes a coil 21, and a magnetic field can be generated by passing a current through the coil 21.
  • the stator 2 corresponds to the “armature for rotating electrical machine” in the present invention.
  • the stator 2 is fixed to the inner peripheral surface of the case 5. The configuration of the stator 2 will be described in detail later.
  • a rotor 3 as a magnetic field having a permanent magnet (not shown) is disposed so as to be rotatable relative to the stator 2 with the rotor shaft 4 as a rotation axis. Yes.
  • the rotating electrical machine 1 in this embodiment is an inner rotor type rotating electrical machine including a stator 2 as an armature.
  • the case 5 is formed in a cylindrical shape in which an end wall 5a is provided on one side in the axial direction.
  • the case 5 opens to the other side in the axial direction, and a cover 6 is attached to the case 5 so as to close the opening.
  • the bearing 7 is provided in the radial direction center part of the end wall 5a and the cover 6 of the case 5, and the rotor 3 and the rotor shaft
  • the stator 2 includes a stator core 11 and a coil 21.
  • the stator core 11 is formed by laminating a plurality of annular plate-shaped electromagnetic steel plates, and is formed in a substantially cylindrical shape.
  • a plurality of slots 12 extending in the axial direction L are distributed in the circumferential direction C and provided at predetermined circumferential intervals.
  • the stator core 11 corresponds to a “core” in the present invention.
  • Each slot 12 has the same cross-sectional shape, and has a predetermined width and depth.
  • the stator core 11 is provided with a total of 48 slots 12 on the entire circumference thereof.
  • Each slot 12 includes an inner peripheral opening 13 that opens to the inside in the radial direction R of the stator core 11.
  • teeth 15 are provided between the slots 12 adjacent to each other of the stator core 11.
  • the slot 12 is provided between the teeth 15 adjacent to each other.
  • Protruding portions 16 that protrude in the circumferential direction C are provided on both ends of the teeth 15 in the circumferential direction C at the ends of the teeth 15 on the inner side in the radial direction R.
  • the projecting portion 16 is formed integrally with the teeth 15 so that the cross-sectional shape orthogonal to the axial direction L is substantially rectangular and is continuous in the axial direction L.
  • the inner peripheral opening part 13 is formed between the two protrusion parts 16 provided in each of the adjacent two teeth 15 and facing the circumferential direction C. Further, the space outside the inner circumferential opening 13 in the slot 12 in the radial direction R is the slot interior 14.
  • the slot 12 included in the stator core 11 in the present embodiment is a semi-open slot in which the circumferential width W1 of the inner circumferential opening 13 that opens inward in the radial direction R is narrower than the circumferential width W3 of the slot interior 14. It has become.
  • a linear conductor 31 constituting the coil 21 is disposed inside the slot 14, and the coil 21 is wound around the slot 12. At this time, as will be described in detail later, an in-slot insulating sheet 42 is disposed between the slot 12 and the coil 21.
  • the stator 2 includes a plurality of coils 21 having different phases.
  • the stator 2 is a stator used in the rotating electrical machine 1 driven by a three-phase alternating current, and includes a three-phase coil 21 of U phase, V phase, and W phase.
  • the coil 21 of each phase is formed using a linear conductor 31.
  • the linear conductor 31 is configured by a single rectangular wire having a substantially rectangular cross section. Further, in this example, in order to maximize the space factor of the coil 21 in relation to the size of the slot 12, the circumferential width W5 of the linear conductor 31 is made substantially equal to the circumferential width W3 of the slot interior 14. Is formed.
  • the circumferential width W5 of the linear conductor 31 is determined based on the precondition that the coil 21 formed using the linear conductor 31 can be physically inserted into the slot interior 14. 14 is set to a value substantially equal to the circumferential width W3. Thereby, the energy efficiency of the rotary electric machine 1 is improved by improving the space factor of the coil 21.
  • the slot 12 of the stator core 11 is a semi-open slot, and the circumferential width W1 of the inner circumferential opening 13 is narrower than the circumferential width W3 of the slot interior 14.
  • the circumferential width W5 of the linear conductor 31 having a circumferential width substantially equal to the circumferential width W3 of the slot interior 14 is formed wider than the circumferential width W1 of the inner circumferential opening 13 of the slot 12.
  • the radial conductor portion 25 of the bending coil end portion 24 of each coil 21 has a narrow concave portion whose circumferential width W7 is narrower than the circumferential width W1 of the inner circumferential opening 13 of the slot 12. 32 is provided. Details will be described later.
  • the coil 21 of each phase is formed in a predetermined shape.
  • the coil 21 is formed in a substantially cylindrical corrugated shape as a whole, as shown in FIG. FIG. 4 shows only the U-phase coil 21u.
  • Each coil 21 includes a coil end portion 23 that connects a coil side portion 22 disposed in the slot 12 and a pair of coil side portions 22 disposed in different slots 12 at both ends in the axial direction L of the stator core 11.
  • the coil side portions 22 are linearly formed so as to extend along the axial direction L corresponding to the shape of the slot interior 14.
  • the coil end portion 23 is formed so as to extend along the circumferential direction C by connecting a pair of coil side portions 22 arranged in different slots 12. As shown in FIG.
  • each coil end portion 23 is disposed so as to protrude from both axial end portions of the stator core 11 in the axial direction L of the stator core 11.
  • the coil 21 extends in the axial direction L and is sequentially arranged in the plurality of slots 12, and the coil side portion 22 is connected to the coil end 23 on one side in the axial direction L and the axial direction L.
  • the coil ends 23 are alternately connected to the other coil end 23 to form a waveform that circulates in the circumferential direction C of the stator core 11.
  • the coils 21 of the respective phases are formed in advance so as to have a shape that is wound around the stator core 11 by wave winding in a state in which the coil side portions 22 are respectively disposed in the corresponding slots 12. .
  • the coil 21 is formed as a set of two coil side portions 22 arranged in the same slot 12.
  • the set of two coil side portions 22 is formed by circulating a single continuous linear conductor 31 in the circumferential direction C of the stator core 11.
  • two sets of two coil side portions 22 constituting the in-phase coil 21 are arranged in parallel in the circumferential direction C so as to be arranged in the slots 12 adjacent to each other.
  • the two sets of coil side portions 22 are connected so as to be continuous at a predetermined position of the coil end portion 23. Therefore, the coil 21 shown in FIG. 4 is formed by circulating a single continuous linear conductor 31 in the circumferential direction C of the stator core 11 four times.
  • three sets of coils 21 having substantially the same shape as that shown in FIG. 4 are arranged adjacent to each other in the radial direction R in the same slot 12. Therefore, for each of the two adjacent slots 12, the six coil side portions 22 are arranged in a line in the radial direction R in the slot 12.
  • V-phase coil 21v and the W-phase coil 21w are also configured to have the same shape. Also, three sets of the V-phase coil 21v and the W-phase coil 21w are arranged adjacent to each other in the radial direction R in the same slot 12, and six adjacent coil sides of the same phase are provided for each of the two adjacent slots 12. 22 are aligned in the radial direction R and arranged in a line in the slot 12.
  • the stator core 11 has two U-phase slots 12u adjacent to each other, two V-phase slots 12v adjacent to each other, and two W-phase slots 12w adjacent to each other sequentially. It is formed repeatedly. Then, the coil side portions 22 of the U-phase coil 21u, the V-phase coil 21v, and the W-phase coil 21w having the shapes shown in FIG. 4 are sequentially shifted by two slots in the circumferential direction C, respectively. Arranged in the V-phase slot 12v and the W-phase slot 12w.
  • the coil end 23 on one side in the axial direction L is bent to the inside in the radial direction R.
  • the end 24 is provided.
  • the bent coil end portion 24 is bent inward in the radial direction R at a bent portion 34 at a substantially right angle with respect to the coil side portion 22.
  • the bent coil end portion 24 is more radial than the radial conductor portion 25 extending in the radial direction R from the coil side portion 22 and the inner peripheral opening portion 13 of the slot 12.
  • a circumferential conductor portion 26 that connects the pair of radial conductor portions 25 in the circumferential direction C inside the R.
  • the linear conductor 31 constituting the radial conductor portion 25 is formed so as to be bent inward in the radial direction R after extending in the axial direction L of the stator core 11 from the coil side portion 22. Yes.
  • the radial conductor portion 25 has six wires.
  • the conductors 31 are arranged in an aligned manner so as to be bent inward in the radial direction R from a state substantially parallel to the axial direction L and to be in a state substantially parallel to the radial direction R while maintaining the state of being aligned in a line.
  • the radial direction conductor part 25 becomes the structure arrange
  • the radial conductor portion 25 is at least in the radial outer side of the inner peripheral opening 13 of the slot 12 of the stator core 11 in the radial conductor portion.
  • the portions 25 are arranged without overlapping in the circumferential direction C.
  • the radial conductor portion 25 extends to the inside in the radial direction R at least with respect to the inner peripheral surface of the stator core 11.
  • the linear conductor 31 constituting the circumferential conductor portion 26 extends while bending in the circumferential direction C from the radial conductor portion 25 corresponding to one slot 12 toward the radial conductor portion 25 corresponding to the other slot 12. After being taken out, it is formed to be bent outward in the radial direction R and connected to the radial conductor portion 25 corresponding to the other slot 12. As described above, since the radial conductor portion 25 extends at least inward in the radial direction R with respect to the inner peripheral surface of the stator core 11, the circumferential conductor portion 26 extends radially inward with respect to the inner peripheral surface of the stator core 11. Placed in.
  • the circumferential conductor portion 26 of the six linear conductors 31 arranged in a line in the radial direction R in the slot 12 two linear conductors arranged on the outer peripheral side in the radial direction R.
  • the conductors 31 are arranged side by side in the radial direction R, and a total of four linear conductors 31 are arranged in combination with the two linear conductors 31 arranged on the outer peripheral side of the radial direction R in each of the two adjacent slots 12 of the same phase
  • the conductors 31 are arranged side by side in the radial direction R.
  • the two linear conductors 31 arranged on the inner peripheral side in the radial direction R are arranged in the radial direction R.
  • a total of four linear conductors 31 are arranged in the radial direction R together with the two linear conductors 31 that are arranged side by side and arranged on the inner peripheral side in the radial direction R in each of the two adjacent slots 12 of the same phase.
  • the remaining two linear conductors 31 are arranged side by side in the radial direction R so as to be adjacent to each other.
  • a total of four linear conductors 31 are arranged in the radial direction R together with the remaining two linear conductors 31 in each of the two slots 12.
  • the three sets of four linear conductors 31 arranged side by side in the radial direction R are arranged on the one side in the axial direction L as they are continuous from the coil side portion 22 arranged outside the radial direction R in the slot 12. Has been placed.
  • the linear conductors 31 constituting the coils 21 of different phases are arranged adjacent to each other in the axial direction L in the circumferential conductor portion 26.
  • the linear conductor 31 constituting the U-phase coil 21 u is in the axial direction L with respect to the linear conductor 31 constituting the V-phase coil 21 v and the W-phase coil 21 w. It is arranged adjacent to the side (the right side in FIG. 6).
  • the linear conductor 31 constituting the V-phase coil 21v is disposed adjacent to the one side in the axial direction L with respect to the linear conductor 31 constituting the W-phase coil 21w in an area overlapping with the W-phase coil 21w in the circumferential direction C.
  • the linear conductor 31 constituting the V-phase coil 21v is adjacent to the other side in the axial direction L with respect to the linear conductor 31 constituting the U-phase coil 21u in a region overlapping with the U-phase coil 21u in the circumferential direction C.
  • the linear conductor 31 constituting the W-phase coil 21w is arranged adjacent to the other side in the axial direction L with respect to the linear conductor 31 constituting the U-phase coil 21u and the V-phase coil 21v.
  • an interphase insulating sheet 41 is interposed and arranged.
  • the interphase insulating sheet 41 for example, a sheet formed of a material having high electrical insulation and heat resistance such as a laminate of aramid fiber and polyethylene terephthalate can be used.
  • the radial conductor portion 25 of the bending coil end 24 in each coil 21 will be described.
  • the radial conductor portion 25 includes a narrow recess 32 whose circumferential width W7 is narrower than the circumferential width W1 of the inner circumferential opening 13 of the slot 12.
  • the narrow concave portion 32 is provided at a radial position corresponding to the inner peripheral opening 13 of the slot 12 in the radial conductor portion 25.
  • the circumferential width of the portion other than the narrow recess 32 in the radial conductor portion 25 is equal to the circumferential width W5 of the linear conductor 31 constituting the coil 21, and therefore the circumferential direction of the inner circumferential opening 13 of the slot 12. It is formed wider than the width W1. That is, in the radial conductor portion 25, a narrow concave portion 32 is formed at a radial position corresponding to the inner peripheral opening portion 13 of the slot 12, and is recessed with respect to a portion other than the radial conductor portion 25. Has been.
  • the narrow recess 32 is formed so that its outer shape corresponds to the outer shape of the protruding portion 16 provided at the inner end in the radial direction R of the tooth 15 of the stator core 11 when viewed from the axial direction L. Yes. That is, a narrow recess 32 is formed in the radial conductor portion 25 by recessing only the vicinity of the radial position corresponding to the inner peripheral opening 13 of the slot 12. At this time, the circumferential width W 7 of the narrow recess 32 is formed to be narrower than the circumferential width W 1 of the inner circumferential opening 13 of the slot 12.
  • part of the coil 21 becomes only the site
  • the radial conductor portion 25 includes the narrow concave portion 32 having a shape corresponding to the outer shape of the protruding portion 16 at the radial position corresponding to the inner peripheral opening portion 13 of the slot 12.
  • the protruding portion 16 provided at the inner end in the radial direction R of the tooth 15 and the linear conductor 31 constituting the coil 21 have no overlapping portion. Therefore, as in the present embodiment, a semi-open slot type stator core 11 and a coil 21 constituted by a linear conductor 31 having a circumferential width W5 substantially equal to the circumferential width W3 of the slot inside 14 of the stator core 11 are used.
  • the coil 21 is connected to the bent coil end portion 24 with respect to the slot 12 by passing the narrow recess 32 through the inner peripheral opening 13 of the slot 12 included in the stator core 11. It can be inserted in the axial direction L from the side.
  • the linear conductor 31 is formed of a single rectangular wire, and the circumferential width W5 of the linear conductor 31 is formed to be substantially equal to the circumferential width W3 of the slot interior 14. Therefore, for example, the space factor of the coil 21 in the slot interior 14 is improved as compared with the case where the coil 21 is configured using an aggregate of thin linear conductors configured by bundling a plurality of thin linear conductors. Can be made.
  • the slot 12 of the stator core 11 is a so-called semi-open slot in which the circumferential width W1 of the inner circumferential opening 13 is narrower than the circumferential width W3 of the slot interior 14.
  • the narrow recess 32 is a compression-molded portion 33 formed by compressing a portion extending in the radial direction R of the radial conductor portion 25 in the circumferential direction C.
  • the radial conductor portion 25 is compressed in the circumferential direction C and extended in the axial direction L by the compression molding portion 33.
  • the portions of the compression molding portion 33 that extend in the axial direction L are arranged side by side in the axial direction L. In other words, the narrow recesses 32 are arranged in the axial direction L.
  • the compression molding portion 33 has a cross-sectional area of the cross section perpendicular to the energizing direction of the coil 21 in the compression molding portion 33 in a portion other than the compression molding portion 33 over the entire radial direction R. It is extended in the axial direction L while being compressed in the circumferential direction C so as to be substantially equal to the cross-sectional area of the cross section.
  • the cross-sectional area of the cross section orthogonal to the energizing direction is kept substantially constant over the entire coil 21, the electric resistance value in the compression molding portion 33 is substantially equal to the electric resistance value in a portion other than the compression molding portion 33. Can be equal. Therefore, it is possible to suppress the occurrence of inconveniences such as locally increasing heat generation in the compression molding section 33.
  • the part extended in the axial direction L among the compression molding parts 33 is arranged side by side in the axial direction L, as shown in FIG.
  • the portions of the compression-molded portion 33 extended in the axial direction L are in contact with each other in the axial direction L.
  • the linear conductors 31 adjacent to each other in the axial direction L are provided at portions other than the compression-molded portion of the bending coil end portion 24 without providing a spacer or the like.
  • the axial distance D between them increases.
  • the interphase insulating sheet 41 is interposed between the linear conductors 31 constituting the coils 21 of different phases that are adjacent to each other in the axial direction L at the bending coil end 24. Yes. As shown in FIGS. 5 and 6, the interphase insulating sheet 41 is disposed on the inner side in the radial direction R with respect to the compression-molded portion 33 formed on the radial conductor portion 25. At this time, as described above, the compression molding portion 33 is formed to extend in the axial direction L, and the portions of the compression molding portion 33 that extend in the axial direction L are arranged side by side in the axial direction L, so that the axial direction L The axial distance D between the linear conductors 31 adjacent to each other is increased.
  • required of the phase insulation sheet 41 can be reduced, and manufacturing cost can be reduced.
  • the stress applied to the interphase insulating sheet 41 between the linear conductors 31 in the axial direction L can be reduced, the insulation quality can be stabilized.
  • the stator 2 according to the present embodiment includes a core formation process, a coil preliminary formation process, a compression process, an insertion process, and a locking process, and can be manufactured through these processes. Below, these each process is demonstrated in detail.
  • the core forming step is a step of forming the stator core 11.
  • a plurality of thin electromagnetic steel plates are formed into a predetermined shape in the shape of an annular plate (the shape of the semi-open slot type described above). At this time, each electromagnetic steel plate is formed in the same shape.
  • a plurality of electromagnetic steel plates having the same shape are stacked in the axial direction L, and held and fixed by a cylindrical core holder (not shown). In this way, the stator core 11 is formed.
  • the coil pre-forming step is a step of forming the coils 21 of each phase in advance.
  • each phase of a predetermined shape (the above-described wave winding shape) is obtained by using a single linear conductor 31 composed of rectangular wires and using a predetermined coil forming jig (not shown).
  • the coil 21 is formed.
  • the coil side portion 22 extending in the axial direction L is bent inward in the radial direction R to form the radial conductor portion 25 or outside in the radial direction R.
  • the bent portion 34 connecting the coil side portion 22 and the radial conductor portion 25 of the bent coil end portion 24 is There may be a bulging portion protruding in the direction C.
  • the circumferential width of the bulging portion may be larger than the circumferential width W5 of the linear conductor 31 constituting the coil 21.
  • the coil 21 is used by using a linear conductor 31 having a circumferential width W 5 formed substantially equal to the circumferential width W 3 of the slot interior 14. Such a situation is likely to occur.
  • the compression step is a step in which the linear conductor 31 constituting the coil 21 of each phase formed in advance in the coil preliminary forming step is compressed into a predetermined shape and molded.
  • the radial width of the radial conductor portion 25 extending in the radial direction from the coil side portion 22 in the bent coil end portion 24 is a radial position corresponding to the inner peripheral opening portion 13, and the circumferential width of the inner peripheral opening portion 13.
  • the narrow recess forming step for forming the narrow recess 32 having a shape recessed with respect to the other portion of the radial conductor portion 25 is performed by this compression step so as to be narrower than the circumferential width W1.
  • the bulging portion generated in the bent portion 34 of the coil 21 of each phase is compressed in the circumferential direction C, and is shaped so that the circumferential width is substantially equal to the circumferential width W5 of the linear conductor 31. .
  • the radial direction R position corresponding to the inner circumferential opening 13 of the slot 12 of the stator core 11 in the radial conductor portion 25 is compressed in the circumferential direction C, and the circumferential width W7 thereof is the inner circumferential opening. 13 is formed to be narrower than the circumferential width W1.
  • the portion corresponding to the inner peripheral opening 13 in the radial conductor portion 25 is compressed in the circumferential direction C.
  • the portion corresponding to the inner peripheral opening 13 in the radial conductor portion 25 means “the portion of the radial conductor 25 where the inner peripheral opening 13 corresponds to the radial position”. means. In this way, the compression molding portion 33 as the narrow recess 32 is formed.
  • the bent portion 34 is located at a portion where the coil side portion 22 and the radial conductor portion 25 are connected, and as is apparent from FIGS. 4 and 9, the inner peripheral opening in the radial conductor portion 25.
  • the radial R position corresponding to 13 and the bent portion 34 are located close to each other on the same linear conductor 31. These parts are both compressed and molded in the circumferential direction C. Therefore, in the present embodiment, the bulging portion generated in the bent portion 34 in this compression step is compressed in the circumferential direction C, and at the same time, corresponds to the inner peripheral opening 13 in the radial conductor portion 25.
  • the compression molding part 33 is formed by compressing the radial direction R position in the circumferential direction C as well.
  • the radial direction R position corresponding to the inner circumferential opening 13 in the radial conductor portion 25 is compressed in the circumferential direction C to form the compression molded portion 33, and at the same time, it is generated in the bent portion 34.
  • the bulging portion is also compressed in the circumferential direction C.
  • the radial conductor portion 25 and the bent portion 34 provided close to each other on the same linear conductor 31 can be compressed together in the circumferential direction C in a single work process.
  • the stator 2 can be manufactured without an increase.
  • the protrusions 16 provided on the teeth 15 of the stator core 11 are arranged on the planes facing each other in parallel.
  • a pair of molds (not shown) provided with protrusions corresponding to the cross-sectional shape can be used. That is, by pressing the mold against the linear conductor 31 constituting the radial conductor portion 25 and the bent portion 34 from both sides in the circumferential direction C, the compression molded portion 33 is formed and the bent portion 34 is formed.
  • the circumferential width of can be adjusted.
  • the insertion step is a step of inserting the coils 21 of the respective phases formed into a predetermined shape through the compression step into the slots 12 of the stator core 11 in the axial direction L.
  • the coil 21 is axially moved into the slot 12 from the bent coil end 24 side in a state where the narrow concave portion formed in the narrow concave portion forming step is aligned with the position of the inner peripheral opening 13.
  • It is a process of inserting into L.
  • the compression molding portion 33 is provided in the radial conductor portion 25 and the circumferential width of the bent portion 34 is adjusted to be substantially equal to the circumferential width W5 of the linear conductor 31.
  • the stator core 11 and the linear conductor 31 constituting the coil 21 of each phase are configured so as not to overlap.
  • the compression molding portion 33 as the narrow concave portion 32 in the radial conductor portion 25 and the inner peripheral opening portion 13 of the slot 12 included in the stator core 11 are made to correspond to each other.
  • the coil 21 is inserted into the slot 12 in the axial direction L from the bent coil end 24 side.
  • the coils 21 of each phase are formed in advance so that each coil side portion 22 has a wave shape that can be disposed in the corresponding slot 12.
  • the coils 21 can be easily inserted into the slots 12 in the axial direction L. Therefore, it is possible to reduce the work load when the coils 21 of the respective phases are assembled to the stator core 11.
  • the U-phase, V-phase, and W-phase coils 21 are combined to form one unit, and each coil side portion 22 corresponds to the corresponding slot 12.
  • the unit is integrally inserted into the slot 12 in a state of being aligned so as to be disposed in the slot 12.
  • three subunits are formed by combining the U-phase, V-phase, and W-phase coils 21 having the shape shown in FIG. 4 and arranged at the same position in the radial direction R in the slot 12.
  • the coil side portions 22 may be sequentially inserted integrally into the slots 12 in such a state that the coil side portions 22 are positioned so as to be arranged in the corresponding slots 12 respectively.
  • each coil 21 having the shape shown in FIG. 4 may be sequentially inserted into the slot 12 such that each coil side portion 22 is disposed in the corresponding slot 12.
  • the coil side portion 22 is disposed outside the radial direction R in the slot 12, and the circumferential conductor portion 26 of the bending coil end portion 24 is sequentially inserted from the coil 21 disposed on one side in the axial direction L. .
  • the in-slot insulating sheet 42 disposed in the slot 12 extends to the inside in the radial direction R from the inner peripheral opening 13 of the slot 12 and opens.
  • the coil 21 is inserted into the slot 12. That is, the in-slot insulating sheet 42 is arranged so that the inside of the slot 12 makes a round along the inner surface of the slot 12 and both end portions 42e thereof protrude inward in the radial direction R from the inner peripheral opening 13. .
  • the inter-slot insulating sheet 42 for example, a sheet formed of a material having high electrical insulation and heat resistance such as a laminate of aramid fiber and polyethylene terephthalate is used for the in-slot insulating sheet 42. it can.
  • the coil 21 is inserted on the inner peripheral side of the in-slot insulating sheet 42 that makes a round along the inner surface of the slot 12.
  • the linear conductor constituting the coil 21 The coil 21 can be inserted into the slot 12 without damaging the insulating coating covering 31.
  • the end portion 42e of the in-slot insulating sheet 42 extending inward in the radial direction R from the inner peripheral opening 13 of the slot 12 is locked to the protruding portion 16 provided in the tooth 15 of the stator core 11. It is a process.
  • the protruding portion 16 having a substantially rectangular cross section is formed integrally with the tooth 15.
  • the projecting portion 16 includes a circumferential wall portion 16c facing the inner circumferential opening 13 of the slot 12, and an outer-diameter side wall portion 16r facing the slot interior 14 located on the outer side in the radial direction R when viewed from the projecting portion 16. It has.
  • the locking step as shown in FIG.
  • the end portions 42 e on both sides of the in-slot insulating sheet 42 are sequentially folded and locked to the outer diameter side wall portion 16 r of the protruding portion 16.
  • the end portion 42e on one side in the circumferential direction C is locked to the outer diameter side wall portion 16r of the protruding portion 16 provided on the tooth 15 on the other side in the circumferential direction C.
  • the other end portion 42e on the other side in the circumferential direction C is locked to the outer diameter side wall portion 16r of the protruding portion 16 provided on the tooth 15 on the one side in the circumferential direction C through the in-slot insulating sheet 42.
  • in-slot insulation is provided between the slot 12 and the coil side 22 disposed in the slot 12 of the coil 21 so as to cover the inner peripheral opening 13 of the slot 12 while circling the coil side 22.
  • the sheet 42 is disposed. Therefore, the insulating sheet 42 in the slot appropriately ensures electrical insulation between the stator core 11 and the coil side 22 constituting the coil 21 and between the coil side 22 and the rotor 3 as a field. be able to.
  • the end portions 42e on both sides of the in-slot insulating sheet 42 are engaged with the outer-diameter side wall portions 16r of the protruding portions 16 provided on the adjacent teeth 15, and the inner peripheral opening 13 of the slot 12 is covered. Further, it is possible to effectively prevent the coil side 22 constituting the coil 21 from coming out inward in the radial direction R. Therefore, it is not necessary to separately provide a member (such as a wedge) that is normally installed to close the inner peripheral opening 13 of the slot 12, and the manufacturing cost can be reduced and the manufacturing process can be simplified. .
  • stator 21 is completed by connecting the coils 21 of the respective phases at predetermined positions by welding or the like.
  • FIG. 13 is a plan view showing a part of the stator 2 according to the present embodiment.
  • the stator core 11 included in the stator 2 has the same configuration as that of the first embodiment, but the configuration of the coil 21 included in the stator 2, specifically, the configuration of the narrow recess 32 included in the coil 21. However, this is different from the first embodiment.
  • the configuration of the armature for a rotating electrical machine according to the present embodiment will be described focusing on differences from the first embodiment with reference to FIGS. 13 to 18 as appropriate. Note that points not particularly described are the same as those in the first embodiment.
  • FIGS. 13, 14, and 18 are drawings corresponding to FIGS. 3B, 6, and 11 referred to in the first embodiment, respectively. .
  • the linear conductor 31 forming the coil 21 is formed by a single rectangular wire having a substantially rectangular cross section, as in the first embodiment.
  • the circumferential width of the linear conductor 31 is formed to be substantially equal to the circumferential width W3 of the slot interior 14 (see FIG. 3A).
  • the “circumferential width of the linear conductor” is a direction along the circumferential direction C in the slot 12 (first direction shown in FIGS. 16 and 17) in a cross section orthogonal to the extending direction of the linear conductor 31. It means the width W8 of the linear conductor 31 of D1).
  • first direction width W8 The width W8 in the first direction of the linear conductor 31 (hereinafter simply referred to as “first direction width W8”) allows the coil 21 formed using the linear conductor 31 to be physically inserted into the slot interior 14. Is set to a value substantially equal to the circumferential width W3 of the slot interior 14. Therefore, the first direction width W8 of the linear conductor 31 is formed wider than the circumferential direction width W1 of the inner peripheral opening 13 of the slot 12.
  • the width W9 of the linear conductor 31 in the direction intersecting the first direction D1 in the slot 12 (second direction D2 shown in FIGS. 16 and 17) (
  • the “second direction width W9” is simply narrower than the circumferential width W1 of the inner circumferential opening 13 (see FIG. 3A).
  • the second direction D2 is a direction orthogonal to the first direction D1.
  • the linear conductor 31 constituting the radial conductor portion 25 extends from the coil side portion 22 in the axial direction L of the stator core 11 as shown in FIG. It is formed to be bent inward in the radial direction R. Therefore, the portion extending in the radial direction R of the radial conductor portion 25 excluding the portion where the narrow recess 32 is formed has a width in the circumferential direction C equal to the first direction width W8 of the linear conductor 31 and the width in the axial direction L. Becomes equal to the second direction width W9 of the linear conductor 31 (see FIG. 17).
  • the narrow recess 32 provided in the radial conductor portion 25 is a portion corresponding to the inner peripheral opening 13 in the radial conductor portion 25, and the second direction D2 is substantially parallel to the circumferential direction C.
  • the narrow recess 32 is formed by extending the portion of the radial conductor portion 25 corresponding to the inner peripheral opening 13 of the linear conductor 31 constituting the radial conductor portion 25.
  • the twist forming portion 35 is formed by twisting a predetermined angle with the direction as an axis.
  • the predetermined angle is 90 degrees.
  • the portion corresponding to the inner circumferential opening 13 in the radial conductor portion 25 means “the portion of the radial conductor portion 25 corresponding to the inner circumferential opening 13 and the radial position”.
  • the circumferential width W 7 of the narrow concave portion 32 is the same as that of the linear conductor 31. It becomes equal to the second direction width W9.
  • the second direction width W9 of the linear conductor 31 is formed to be narrower than the circumferential direction width W1 of the inner peripheral opening 13 of the slot 12. Accordingly, as shown in FIG. 13, when viewed from the axial direction L, the outer shape of the narrow concave portion 32 (twist forming portion 35) is provided at the inner end in the radial direction R of the teeth 15 of the stator core 11. It is formed so as to correspond to the outer shape of the protruding portion 16. In other words, when viewed from the axial direction L, the protruding portion 16 and the linear conductor 31 constituting the radial conductor portion 25 are configured so as not to overlap.
  • the twist forming portion 35 is formed so that the portion in which the circumferential width of the twist forming portion 35 is the narrowest and the circumferential wall portion 16c of the inner peripheral opening 13 overlap in the radial direction R. Has been. Therefore, the coil 21 is inserted into the slot 12 in the axial direction L from the side of the bent coil end 24 while avoiding interference between the radial conductor portion 25 and the inner peripheral opening 13 of the slot 12. Can do.
  • the narrow recess 32 corresponds to the inner peripheral opening 13 in the radial conductor portion 25, and the second conductor D of the radial conductor portion 25 is substantially parallel to the circumferential direction C. Since it is formed by twisting with respect to other portions, the axial height of the narrow concave portion 32 (strictly speaking, the maximum value of the axial height of the narrow concave portion 32) is the first of the linear conductors 31. It becomes equal to the unidirectional width W8 (see FIG. 16). On the other hand, the axial height of the portion extending in the radial direction R of the radial conductor portion 25 excluding the portion where the narrow recess 32 is formed becomes equal to the second direction width W9 of the linear conductor 31 (see FIG.
  • the axial height of the linear conductor 31 in the narrow recess 32 is higher than the axial height of the linear conductor 31 in the other part of the radial conductor 25 adjacent to the narrow recess 32. .
  • the narrow recessed part 32 is arranged in the axial direction L, the parts where the axial direction height of the narrow recessed part 32 is high contact
  • a spacer or the like is not particularly provided as in the first embodiment.
  • the axial distance D between the linear conductors 31 adjacent to each other in the axial direction L increases.
  • the narrow recessed part 32 is the twist formation part 35, naturally the narrow recessed part 32 is the said over the radial direction R like the said 1st embodiment.
  • the cross-sectional area of the cross section perpendicular to the energizing direction of the coil 21 in the narrow concave portion 32 is substantially equal to the cross-sectional area of the cross section in the portion other than the narrow concave portion 32.
  • the inner circumferential opening 13 and the linear conductor 31 interfere with the circumferential width W1 of the inner circumferential opening 13.
  • the linear conductor 31 having a width in the second direction D2 smaller than the circumferential width W1 of the inner circumferential opening 13 The above interference can be avoided.
  • the method for manufacturing the stator 2 according to the present embodiment is basically the same as that of the first embodiment described above, but includes the “twisting step” instead of the “compression step”. It differs from one embodiment. That is, in this embodiment, the narrow recess forming process is performed by a twisting process.
  • the portion corresponding to the inner circumferential opening 13 in the radial conductor portion 25 is set to the other portion of the radial conductor portion 25 so that the second direction D2 is substantially parallel to the circumferential direction C. It is a process of twisting.
  • “the portion corresponding to the inner peripheral opening 13 in the radial conductor portion 25” means “the portion of the radial conductor 25 where the inner peripheral opening 13 corresponds to the radial position”. means.
  • the twist formation part 35 as the narrow recessed part 32 is formed by this twist process.
  • the narrow recess forming process a twisting process, it is not necessary to deform the radial conductor portion 25 locally and it is necessary to apply a large force locally to the radial conductor portion 25. Therefore, the insulating coating (for example, enamel) covering the linear conductor 31 can be prevented from being damaged by forming the narrow recess 32.
  • the insulating coating for example, enamel
  • the twisting process includes, for example, a holding mechanism that holds a portion adjacent to both sides in the extending direction of the linear conductor 31 with respect to a portion where the twist forming portion 35 is formed, and a portion where the twist forming portion 35 is formed. And a rotation mechanism that grips the vicinity of the central portion in the extending direction of the wire and rotates the gripped portion by a predetermined angle (90 degrees in this example) with the extending direction of the linear conductor 31 as an axis.
  • the twist forming part 35 as shown in FIG. 15 can be formed by the mechanism. Also, such a twisting process may be performed on the linear conductor 31 constituting the coil 21 of each phase formed in advance in the coil pre-forming process, similarly to the compression process in the first embodiment. It is good also as a structure performed with respect to the linear conductor 31 before performing a coil preliminary
  • the coil 21 is bent coil end portion 24 in a state where the twist forming portion 35 formed in the twisting step is aligned with the position of the inner peripheral opening 13. This is a step of inserting in the slot 12 from the side in the axial direction L.
  • the narrow recess 32 is formed so that the cross-sectional area of the cross section perpendicular to the energizing direction of the coil 21 is substantially equal to the cross-sectional area of the cross section in the portion other than the compression molding portion 33.
  • the case where the compression molded portion 33 is formed by being expanded in the axial direction L while being compressed in the circumferential direction C has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, for example, it is also one preferred embodiment of the present invention that the narrow concave portion 32 is configured as the compression-molded portion 33 that is compressed only in the circumferential direction C and not extended in the axial direction L.
  • the cross-sectional area of the cross section orthogonal to the energizing direction of the coil 21 is a cross-sectional breakage at a portion other than the compression molded portion 33
  • One of the preferred embodiments of the present invention is to form the narrow concave portion 32 as the compression molding portion 33 formed to have a different area.
  • the linear conductor 31 is configured by a single rectangular wire having a substantially rectangular cross section, and its circumferential width W5 is the circumferential width of the slot interior 14.
  • W5 is the circumferential width of the slot interior 14.
  • the embodiment of the present invention is not limited to this. That is, the circumferential width W5 of the linear conductor 31 only needs to be larger than the circumferential width W1 of the inner circumferential opening 13 of the slot 12, and the circumferential width of the slot inner 14 from the circumferential width W1 of the inner circumferential opening 13 is sufficient. It can be arbitrarily set up to W3.
  • the cross-sectional shape of the linear conductor 31 is not particularly limited, and various shapes such as a round shape and a polygonal shape can be adopted. Further, if the circumferential width W5 is formed wider than the circumferential width W1 of the inner circumferential opening 13, the linear conductor 31 is as if a plurality of conductors are a single conductor. It is also possible to use a conductor made of an aggregate that is configured by being assembled. For example, it is also possible to use a wire conductor or the like in which a plurality of conductors are gathered and formed integrally.
  • the linear conductor 31 is configured by a single rectangular wire having a substantially rectangular cross section, and the first direction width W8 is the circumferential direction of the slot interior 14.
  • the first direction width W8 of the linear conductor 31 only needs to be wider than the circumferential width W1 of the inner circumferential opening 13 of the slot 12, and the circumferential direction of the slot interior 14 from the circumferential width W1 of the inner circumferential opening 13 is sufficient. It can be arbitrarily set up to the width W3.
  • the linear conductor 31 is not limited to one having a substantially rectangular cross-sectional shape.
  • the first direction width W8 is wider than the circumferential width W1 of the inner circumferential opening 13 of the slot 12, and the second direction width W9 is smaller than the circumferential width W1 of the inner circumferential opening 13 of the slot 12.
  • a linear conductor 31 having various shapes of cross sections such as an elliptical shape and a polygonal shape can be employed.
  • the second direction D2 may not be orthogonal to the first direction D1.
  • the second direction D2 is a direction intersecting the first direction D1 and the second direction width W9 is the minimum.
  • a conductor made of an aggregate configured by assembling a plurality of conductors as if they were one conductor can also be used.
  • a wire conductor or the like in which a plurality of conductors are gathered and formed integrally.
  • the linear conductor 31 has a substantially rectangular cross section having a long side and a short side, the first direction D1 is a direction along the long side, and the second direction
  • D2 is the direction along the short side and the second direction D2 is a direction orthogonal to the first direction D1
  • the embodiment of the present invention is not limited to this. That is, when viewed from the axial direction L, it overlaps between the protruding portion 16 provided at the inner end in the radial direction R of the tooth 15 of the stator core 11 and the linear conductor 31 constituting the radial conductor portion 25.
  • the second direction D2 that is substantially parallel to the circumferential direction C in the twist forming portion 35 can be configured to be a direction that does not follow the short side of the substantially rectangular cross section.
  • the second direction D2 can be a direction that intersects the first direction D1 at a predetermined angle that is not 90 degrees (for example, 70 degrees or 80 degrees).
  • the narrow concave portion 32 has the portion corresponding to the inner peripheral opening 13 in the radial conductor portion 25 at the predetermined angle with the extending direction of the linear conductor 31 constituting the radial conductor portion 25 as an axis.
  • the twist forming portion 35 is formed by twisting only.
  • the configuration can be made such that there is no portion, the portion other than the portion where the circumferential width of the twist forming portion 35 is the narrowest and the circumferential wall portion 16c of the inner circumferential opening 13 overlap in the radial direction R.
  • a configuration in which the twist forming part 35 is formed may be employed.
  • the manufacturing method of the stator 2 includes the “twisting step” instead of the “compression step”, that is, the case where the “compression step” is not provided will be described as an example. did.
  • the embodiment of the present invention is not limited to this. That is, the manufacturing method of the stator 2 compresses the bent portion 34 in the coil 21 of each phase in the circumferential direction C in addition to the twisting process, and the circumferential width thereof becomes the first direction width W8 of the linear conductor 31.
  • stator 2 is a stator used in the rotating electrical machine 1 driven by three-phase alternating current
  • embodiments of the present invention are not limited to these. That is, it is one of the preferred embodiments of the present invention that the stator 2 is used in the rotating electrical machine 1 driven by single-phase alternating current.
  • a configuration used for the rotating electrical machine 1 driven by a two-phase or four-phase or more AC power supply is also one of the preferred embodiments of the present invention.
  • the surface of the linear conductor 31 is covered without interposing the interphase insulating sheet 41. This is because it is possible to ensure electrical insulation between the phase coils 21 with only the insulating coating.
  • the projecting portion 16 includes the circumferential wall portion 16c and the outer diameter side wall portion 16r, and the cross-sectional shape thereof is a substantially rectangular shape.
  • embodiments of the present invention are not limited to these. That is, various shapes can be adopted as the protrusions 16, for example, two protrusions that do not include the circumferential wall 16 c and protrude so as to face each other in the circumferential direction C in the adjacent teeth 15.
  • One of the preferred embodiments of the present invention is a configuration in which the circumferential width between the sixteen is widened from the inner circumferential opening 13 toward the outer side in the radial direction R.
  • the slot 42 is formed by sequentially folding the end portions 42e on both sides of the in-slot insulating sheet 42 and engaging with the outer-diameter side wall portion 16r of the protruding portion 16.
  • the case where the inner peripheral opening 13 of the coil 12 is covered and the coil side 22 constituting the coil 21 is prevented from slipping out inward in the radial direction R has been described as an example.
  • embodiments of the present invention are not limited to these. That is, the end portions 42e on both sides of the in-slot insulating sheet 42 are not locked to the outer-diameter side wall portion 16r of the protruding portion 16, or after being locked, a blocking member such as a wedge is provided.
  • a configuration in which the inner peripheral opening 13 of the slot 12 is closed is also one preferred embodiment of the present invention.
  • the bent portion 34 is adapted to compress the radial R position corresponding to the inner circumferential opening 13 in the radial conductor portion 25 in the circumferential direction C. Also, the case where compression is performed in the circumferential direction C has been described as an example. However, the embodiment of the present invention is not limited to this.
  • the bending step 34 in the coil 21 of each phase is compressed in the circumferential direction C, and the circumferential step width is substantially equal to the circumferential width W5 of the linear conductor 31, and the radial conductor portion 25, the radial R position corresponding to the inner circumferential opening 13 of the slot 12 of the stator core 11 is compressed in the circumferential direction C, and the circumferential width W7 is narrower than the circumferential width W1 of the inner circumferential opening 13.
  • the in-slot insulating sheet 42 disposed in the slot 12 is radially inward from the inner peripheral opening 13 of the slot 12 in the insertion step.
  • the case where the coil 21 is inserted into the slot 12 in a state where the coil 21 extends and opens is described.
  • embodiments of the present invention are not limited to these. That is, for example, a configuration in which the coil 21 is inserted into the slot 12 in a state in which the in-slot insulating sheet 42 is preliminarily wound around the coil side portion 22 is also a preferred embodiment of the present invention.
  • the armature for a rotating electrical machine according to the present invention is applied to a stator 2 as a stator of the rotating electrical machine 1, and the rotating electrical machine 1 is The case where the inner rotor type rotating electrical machine including the stator 2 is used as an example has been described. However, embodiments of the present invention are not limited to these. That is, for example, the armature for a rotating electrical machine according to the present invention is applied to the rotor of the rotating electrical machine 1, and the rotating electrical machine 1 can be an outer rotor type rotating electrical machine having a rotor as an armature. This is one of the preferred embodiments.
  • the present invention can be suitably used for an armature for a rotating electrical machine including a cylindrical core in which a plurality of axially extending slots are distributed in the circumferential direction and a coil wound around the slot. it can.
  • Rotating electrical machine Stator (armature) 11 Stator core (core) 12 Slot 13 Inner peripheral opening portion 14 Slot inner portion 15 Teeth 16 Protruding portion 16c Circumferential wall portion 21 Coil 22 Coil side portion 23 Coil end portion 24 Bending coil end portion 25 Radial conductor portion 26 Circumferential conductor portion 31 Linear conductor 32 Narrow recessed part 33 Compression molding part 34 Bending part 35 Twist molding part 41 Interphase insulation sheet 42 Insulation sheet L in slot Axial direction R Radial direction C Circumferential direction D1 First direction D2 Second direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 コイルの占積率の向上を図りつつ、渦電流損を低減することができる回転電機用電機子を提供する。軸方向に延びる複数のスロット12が周方向に分散配置された円筒状のコア11と、スロット12に巻装されるコイル21と、を備えた回転電機用電機子2であって、スロット12は、内周開口部の周方向幅がスロット内部の周方向幅よりも狭く形成されるとともに、コイルを構成する線状導体の周方向幅が内周開口部の周方向幅よりも広く形成され、コイル21のうち軸方向一方側のコイル端部23が径方向導体部25を備え径方向内側へ屈曲形成された屈曲コイル端部24とされ、径方向導体部25における内周開口部に対応する径方向位置に、周方向幅が内周開口部の周方向幅よりも狭くなるように、径方向導体部25の他の部分に対して窪んだ形状の幅狭凹部32を備えた。

Description

回転電機用電機子及びその製造方法
 本発明は、軸方向に延びる複数のスロットが周方向に分散配置された円筒状のコアと、前記スロットに巻装されるコイルと、を備えた回転電機用電機子、及びその製造方法に関する。
 一般に、モータ(電動機)やジェネレータ(発電機)等として用いられる回転電機においては、より小さな体格でより大きな出力が可能であるものが求められる。したがって、回転電機のエネルギ効率を高めることは重要な課題の一つである。ここで、回転電機のエネルギ効率を高めるための技術としては、例えば、回転電機の電機子におけるコイルの占積率を向上させるものが従来から知られている。
 コイルの占積率を向上させることが記載された文献として、以下の特許文献1が挙げられる。この特許文献1に記載された回転電機用電機子としてのステータでは、断面が略矩形状の平角線導体を用いてコイルを構成することで占積率を向上させ、単位断面積当たりのアンペアターンを高めることで、回転電機の出力の向上を図っている。
 なお、この特許文献1に記載された回転電機では、ステータのスロットはオープンスロット(径方向内側に開口する開口部の周方向幅が、コイルが装着される部分の周方向幅と同等以上であるスロット)とされ、連続巻きで所定形状に予備成形されたコイルは、周方向及び軸方向に変形されながら、オープンスロットの開口部から径方向に挿入されてスロットに巻装される。これにより、コイルをスロットに挿入した後において電気的に接続すべき箇所を減らして生産性の向上を図ることが可能とされている。
 また、コイルの占積率を向上させることが記載された別の文献として、以下の特許文献2が挙げられる。この特許文献2に記載された回転電機用電機子としてのステータでは、細線を周方向及び径方向に積層して所定形状のコイルが形成される。このとき、スロット内における占積率を高めるべく、スロットの断面形状に応じた断面形状となるように細線が積層されて束ねられる。
 なお、この特許文献2に記載された回転電機のステータでは、ステータのコアが備えるスロットが、セミオープンスロット(径方向内側に開口する開口部の周方向幅が、コイルが装着される部分の周方向幅よりも狭いスロット)とされている。これにより、ステータと界磁としてのロータとの間に作用する有効磁束の増大を図ることによっても、回転電機の出力の向上を図っている。ここで、この回転電機のステータでは、セミオープンスロット型のコアを用いるのに伴い、コイルが有する軸方向一方側のコイル端部において前記細線が径方向内側に屈曲されるとともに軸方向に積層された形状に予備成形される。つまり、コイルを構成する細線が径方向に延びる部位においては、細線を周方向には積層しない構成とすることで当該部分の周方向幅がスロットの径方向内側の開口部の幅よりも小さくされ、予備形成されたコイルは、屈曲したコイル端部の側から軸方向に挿入されてコアが有するスロットに巻装される。
特開2008-167567号公報 特許第3798968号公報
 しかし、特許文献1に記載された回転電機では、オープンスロットとされているためにスロットの開口部の周方向幅が大きく、かつ、平角線導体のロータ側の表面積が大きい。したがって、ロータが回転したときに永久磁石等からの磁束が前記平角線導体に到達し、そのロータ側の表面に渦電流が発生する。そのため、渦電流損が大きくなり、回転電機のエネルギ効率が却って低下する場合があるという問題があった。
 この点、永久磁石等からの磁束が平角線導体に到達する量を減少させて渦電流損を低減するためには、特許文献2に記載されたようなセミオープンスロット型のコアを用いることも考えられる。しかしながら、セミオープンスロット型のコアと平角線導体により構成されるコイルとを用いて回転電機を構成する場合には、平角線導体の周方向幅自体がスロットの開口部の周方向幅よりも広いため、特許文献1に記載されたようにコイルをスロットに径方向内側から挿入することができない。また、軸方向一方側のコイル端部を径方向内側に屈曲させた構成としても、やはり平角線導体の周方向幅自体がスロットの開口部の周方向幅よりも広いため、特許文献2に記載されたようにコイルをスロットに軸方向に挿入することもできない。
 このように、その製造自体に困難性があるため、セミオープンスロット型のコアと平角線導体で構成されるコイルとを用いて回転電機を構成することはこれまで行われていなかった。つまり、コイルの占積率の向上と渦電流損の低減との両立を可能とする技術は未だ確立していなかった。
 本発明は、上記の課題に鑑みてなされたものであり、コイルの占積率の向上を図りつつ、渦電流損を低減することができる回転電機用電機子を提供することを目的とする。
 この目的を達成するための、本発明に係る軸方向に延びる複数のスロットが周方向に分散配置された円筒状のコアと、前記スロットに巻装されるコイルと、を備えた回転電機用電機子の特徴構成は、前記スロットは、径方向内側に開口する内周開口部の周方向幅が、前記内周開口部よりも径方向外側に位置するスロット内部の周方向幅よりも狭く形成されるとともに、前記コイルを構成する線状導体の周方向幅が前記内周開口部の周方向幅よりも広く形成され、前記コイルは、異なる前記スロット内に配置されるコイル辺部間を前記コアの軸方向両端部において接続するコイル端部を備え、前記スロットの軸方向一方側の前記コイル端部が径方向内側へ屈曲形成された屈曲コイル端部とされ、前記屈曲コイル端部は、前記コイル辺部から径方向に延びる径方向導体部と、前記内周開口部よりも径方向内側で一対の前記径方向導体部間を接続する周方向導体部とを備え、前記径方向導体部における前記内周開口部に対応する径方向位置に、周方向幅が前記内周開口部の周方向幅よりも狭くなるように、前記径方向導体部の他の部分に対して窪んだ形状の幅狭凹部を備えた点にある。
 なお、本願では、「軸方向」、「径方向」及び「周方向」の各方向は、円筒状のコアを基準として定めるものとし、「軸方向」は当該コアの中心軸に沿った方向を、「径方向」はコアの中心軸に沿った方向(軸方向)に対して直交する方向を、「周方向」はコアの中心軸回りの周回方向(又はその接線方向)を表すものとする。このとき、コイルについての各方向は、コイルがスロットに巻装された状態での方向として規定するものとする。
 また、「線状導体」は、コイルの各ターンを構成する1本の線状部材としての導体を表す概念として用いている。
 また、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
 上記の特徴構成によれば、コイルを構成する線状導体の周方向幅がスロットの内周開口部の周方向幅よりも広い場合であっても、幅狭凹部をスロットの内周開口部に通過させることで、コアが有するスロットに対して、コイルを屈曲コイル端部の側から軸方向に挿入することが可能となる。
 このとき、線状導体の周方向幅を、コイルをスロットに巻装可能な範囲内で自由に設定することができるので、線状導体の周方向幅を例えばスロット内部の周方向幅と略等しく設定することで、コイルの占積率の向上を図ることができる。
 また、上記の構成では、コアが有するスロットは、内周開口部の周方向幅がスロット内部の周方向幅よりも狭い、いわゆるセミオープンスロットとなっている。そのため、界磁が備える永久磁石等からの磁束がコイルを構成する線状導体の表面に到達する量を減少させることができる。よって、渦電流の発生を抑制して渦電流損を低減することができる。
 したがって、上記の特徴構成によれば、コイルの占積率の向上を図りつつ、渦電流損を低減することができる回転電機用電機子を提供することができる。
 ここで、前記幅狭凹部は、前記径方向導体部を周方向に圧縮するとともに、軸方向に伸展して形成された圧縮成形部である構成とすると好適である。
 この構成によれば、屈曲コイル端部における径方向導体部の、スロットの内周開口部に対応する径方向位置を周方向に圧縮するだけで、幅狭凹部としての圧縮成形部を容易に形成することができる。なお、軸方向一方側のコイル端部を径方向内側へ屈曲形成して屈曲コイル端部とする際、コイルを構成する線状導体は、その屈曲部において周方向の幅が屈曲前に比べて大きくなる場合がある。そのため、コイルの占積率を高く保ちつつ、コイルをスロットに軸方向に確実に挿入可能とするためには、コイルをスロットに挿入する前に当該屈曲部のうち周方向に膨らんだ部分を周方向に圧縮しておくことが好ましい。上記の構成によれば、屈曲部のうち周方向に膨らんだ部分を周方向に圧縮するのに合わせて幅狭凹部(圧縮成形部)を形成することができるので、幅狭凹部(圧縮成形部)を簡易に形成することができる。
 また、この構成によれば、コイル全体に亘ってコイルの通電方向に直交する面の断面積を略一定に保たせることができる。この場合、圧縮成形部における電気抵抗値を、圧縮成形部以外の部分における電気抵抗値と略等しくすることができる。したがって、圧縮成形部において局所的に発熱量が増大する等の不都合が生じるのを抑制することができる。
 また、上記の特徴構成において、前記線状導体の延在方向に直交する断面において、前記スロット内で周方向に沿う方向を第一方向とするとともに、当該第一方向に直交する方向を第二方向とし、前記線状導体は、前記第二方向の幅が前記内周開口部の周方向幅よりも狭く形成され、前記幅狭凹部は、前記径方向導体部における前記内周開口部に対応する部位を、前記第二方向が周方向と略平行になるように、前記径方向導体部の他の部分に対して捻じって形成した捻じり成形部である構成とすると好適である。
 なお、本願では、「第二方向の幅」は、線状導体の延在方向に直交する断面における第二方向に直交する方向から見たときの当該線状導体の幅を表すものとする。
 この構成によれば、径方向導体部における内周開口部に対応する部位を、径方向導体部の他の部分に対して捻じって捻じり成形部を形成することで、幅狭凹部を設けることができる。この際、径方向導体部を局所的に大きく変形させる必要がなく、径方向導体部に対して局所的に大きな力を加える必要もないため、線状導体を被覆している絶縁被膜が、幅狭凹部を形成することにより損傷を受けることを抑制することができる。
 また、セミオープンスロット型のコアであることの利点をできるだけ大きく享受するためには、内周開口部の周方向幅を、当該内周開口部と線状導体とが干渉しないという条件の下、可能な限り小さくすることが望ましいが、この構成によれば、内周開口部の周方向幅より第二方向の幅が小さい線状導体を採用するだけで、上記の干渉を回避することができる。
 また、この構成においても、コイル全体に亘ってコイルの通電方向に直交する面の断面積を略一定に保たせることができるため、圧縮成形部において局所的に発熱量が増大する等の不都合が生じるのを抑制することができる。
 また、幅狭凹部が、前記径方向導体部を周方向に圧縮するとともに、軸方向に伸展して形成された圧縮成形部である構成、又は、幅狭凹部が、前記径方向導体部における前記内周開口部に対応する部位を、前記径方向導体部の他の部分に対して捻じって形成した捻じり成形部である構成において、前記コイルは、前記コイル辺部を構成する前記線状導体が前記スロット内において径方向に複数本並べて配置されるとともに、前記屈曲コイル端部を構成する前記線状導体が軸方向に並べて配置され、前記幅狭凹部が軸方向に並べて配置された構成とすると好適である。
 幅狭凹部を圧縮成形部として軸方向に伸展させた場合には、これらを軸方向に並べて配置することにより、当該圧縮成形部のうち軸方向に伸展した部分どうしが軸方向に当接して相互に斥け合う。また、幅狭凹部を捻じり成形部として構成した場合には、捻じり成形部における線状導体の軸方向高さは、当該捻じり成形部に隣接する径方向導体部の他の部分よりも高くなる。そのため、幅狭凹部(捻じり成形部)を軸方向に並べて配置することにより、上記の軸方向高さが高くなっている部分どうしが軸方向に当接して相互に斥け合う。その結果、屈曲コイル端部の幅狭凹部以外の部位においては、軸方向に並べて配置される線状導体間の軸方向間隔が大きくなる。これにより、線状導体間に冷媒を流す場合には、当該冷媒が線状導体間を流れやすくなるため冷却効率が向上する。
 また、複数の互いに異なる相のコイルを備え、各相の前記コイルのうち、前記周方向導体部を構成する互いに異なる相の前記線状導体が軸方向に並べて配置された構成とすると好適である。
 この構成によれば、軸方向に並べて配置される線状導体が互いに異なる相のコイルを構成していたとしても、異なる相のコイル間に一定の距離を確保しやすくなるため、絶縁構造を簡素化することができる。また、コイルに流れる電流の最大値やコイルの両端に印加される電圧の最大値等の条件次第では、特別な構成を付与することなく各相コイル間の電気的絶縁性を確保することも可能となる。したがって、上記の構成を備えた回転電機用電機子に、本発明を有効に適用することができる。
 また、前記屈曲コイル端部における前記圧縮成形部の径方向内側において、互いに異なる相の前記線状導体間に、相間絶縁シートが配置された構成とすると好適である。
 この構成によれば、相間絶縁シートにより、より適切に各相コイル間の電気的絶縁性を確保することができる。この際、上記のとおり軸方向に並べて配置される線状導体間の軸方向間隔が大きくなることで一定の距離が確保されているので、相間絶縁シートに要求される絶縁性能を低下させることができ、製造コストを低減することができる。また、線状導体間で相間絶縁シートに加わる応力が低減するので、絶縁品質を安定化させることができる。したがって、上記の構成を備えた回転電機用電機子に、本発明を有効に適用することができる。
 また、前記コアは、互いに隣接する前記スロット間に位置するティースの径方向内側の端部に、周方向両側に突出して前記内周開口部の周方向両側壁を形成する突出部を備え、前記スロットと前記コイル辺部との間に、前記コイル辺部を周回しつつ前記内周開口部を覆うようにスロット内絶縁シートが配置され、前記スロット内絶縁シートの周回方向の端部が、前記突出部に係止されている構成とすると好適である。
 この構成によれば、スロット内絶縁シートにより、コアとコイル辺部との間の電気的絶縁性を適切に確保することができる。また、スロット内絶縁シートは、コイル辺部を周回する方向の端部がコアに設けられた突出部に係止されてスロットの内周開口部を覆うように配置されるので、特別な構成を付与することなく、コイル辺部の径方向内側への抜け出しを有効に抑制することができる。また、コイル辺部と界磁側との間の電気的絶縁性を確保することができる。
 本発明に係る、軸方向に延びる複数のセミオープンスロット型のスロットが周方向に分散配置された円筒状のコアと、前記スロットに巻装されるコイルと、を備え、前記コイルを構成する線状導体の周方向幅が前記スロットの径方向内側に開口する内周開口部の周方向幅よりも広く形成され、前記コイルが、異なる前記スロット内に配置されるコイル辺部間を前記コアの軸方向一端部において接続するとともに径方向内側へ屈曲形成された屈曲コイル端部を備えた回転電機用電機子の製造方法の特徴構成は、前記屈曲コイル端部における前記コイル辺部から径方向に延びる径方向導体部の、前記内周開口部に対応する径方向位置に、周方向幅が前記内周開口部の周方向幅よりも狭くなるように、前記径方向導体部の他の部分に対して窪んだ形状の幅狭凹部を形成する幅狭凹部形成工程と、前記幅狭凹部形成工程で形成された幅狭凹部を前記内周開口部の位置に合わせた状態で、前記コイルを前記屈曲コイル端部の側から前記スロット内に軸方向に挿入する挿入工程と、を有する点にある。
 この特徴構成によれば、軸方向一方側に屈曲コイル端部を備えたコイルにおいて、幅狭凹部形成工程により、径方向導体部におけるスロット(セミオープンスロット)の内周開口部に対応する径方向位置に、径方向導体部の他の部分に対して窪んだ形状を有するとともに、周方向幅が内周開口部の周方向幅よりも狭い幅狭凹部が形成される。そのため、コイルを構成する線状導体の周方向幅がスロットの内周開口部の周方向幅よりも広い場合であっても、挿入工程において先の幅狭凹部形成工程で形成された幅狭凹部をスロットの内周開口部に通過させることで、コアが有するスロットに対して、コイルを屈曲コイル端部の側から軸方向に挿入することが可能となる。
 このとき、線状導体の周方向幅は、コイルをスロットに巻装可能な範囲内で自由に設定することができるので、線状導体の周方向幅を例えばスロット内部の周方向幅と略等しく設定することで、コイルの占積率の向上を図ることができる。
 また、上記の構成では、コアが有するスロットはセミオープンスロットであり、内周開口部の周方向幅がスロット内部の周方向幅よりも狭い。そのため、界磁が備える永久磁石等からの磁束がコイルを構成する線状導体の表面に到達する量を減少させることができる。よって、渦電流の発生を抑制して渦電流損を低減することができる。
 したがって、上記の特徴構成によれば、コイルの占積率の向上を図りつつ、渦電流損を低減することができる回転電機用電機子を製造することができる。
 ここで、前記幅狭凹部形成工程は、前記径方向導体部における前記内周開口部に対応する部位を、周方向に圧縮する圧縮工程である構成とすると好適である。
 この構成によれば、幅狭凹部形成工程を、径方向導体部における内周開口部に対応する部位を周方向に圧縮するという簡素な工程(圧縮工程)とすることができる。
 また、上記の特徴構成において、前記線状導体の延在方向に直交する断面において、前記スロット内で周方向に沿う方向を第一方向とするとともに、当該第一方向に直交する方向を第二方向とし、前記線状導体は、前記第二方向の幅が前記内周開口部の周方向幅よりも狭く形成され、前記幅狭凹部形成工程は、前記径方向導体部における前記内周開口部に対応する部位を、前記第二方向が周方向と略平行になるように、前記径方向導体部の他の部分に対して捻じる捻じり工程である構成とすると好適である。
 この構成によれば、幅狭凹部形成工程を、径方向導体部における内周開口部に対応する部位を、径方向導体部の他の部分に対して捻じるという簡素な工程(捻じり工程)とすることができる。この際、径方向導体部を局所的に大きく変形させる必要がなく、径方向導体部に対して局所的に大きな力を加える必要もないため、線状導体を被覆している絶縁被膜が、幅狭凹部を形成することにより損傷を受けることを抑制することができる。
 また、幅狭凹部形成工程が圧縮工程である構成において、前記圧縮工程では、前記幅狭凹部を形成するのと同時に、前記コイルを構成する前記径方向導体部の屈曲部を更に周方向に圧縮する構成とすると好適である。
 軸方向一方側のコイル端部を径方向内側へ屈曲形成して屈曲コイル端部とする際、コイルを構成する線状導体は、その屈曲部において周方向の幅が屈曲前に比べて大きくなる場合がある。そのため、コイルの占積率を高く保ちつつ、コイルをスロットに軸方向に確実に挿入可能とするためには、挿入工程の前に当該屈曲部のうち周方向に膨らんだ部分を周方向に圧縮しておくことが好ましい。この構成によれば、同じ線状導体に近接して設けられる径方向導体部及び屈曲部を単一の工程で共に周方向に圧縮することができるので、製造工程の複雑化を伴うことなく本発明に係る回転電機用電機子を製造することができる。
 また、前記コアは、互いに隣接する前記スロット間に位置するティースの径方向内側の端部に、周方向両側に突出して前記内周開口部の周方向両側壁を形成する突出部を備えており、前記挿入工程では、前記スロット内に配置されるスロット内絶縁シートが前記内周開口部よりも径方向内側に延出して開口する状態で、前記スロットに前記コイルが挿入され、前記スロット内絶縁シートの径方向内側に延出した端部を、前記挿入工程後に前記突出部に係止させる係止工程を更に備えた構成とすると好適である。
 この構成によれば、挿入工程において、コアとコイルとの間にスロット内絶縁シートが介挿された状態でスロットにコイルを挿入することができるので、コイルを構成する線状導体を被覆している絶縁被膜を傷つけることなくスロットにコイルを挿入することができる。
 また、挿入工程後の係止工程において、スロット内絶縁シートの端部を突出部に係止させることで、特別な構成を付与することなくスロットの内周開口部を覆い、コイルを構成するコイル辺部の径方向内側への抜け出しを有効に抑制することができる。
 更に、スロット内絶縁シートにより、コアとコイル辺部との間、及びコイル辺部と界磁側との間の電気的絶縁性を適切に確保することができる。
本発明の第一の実施形態に係る回転電機の全体構成を示す断面図である。 本発明の第一の実施形態に係るステータの全体構成を示す斜視図である。 本発明の第一の実施形態に係るステータを示す平面図である。 本発明の第一の実施形態に係るステータのコイルを示す斜視図である。 本発明の第一の実施形態に係るステータの相間絶縁シートを配置した状態での平面図である。 図5におけるVI-VI断面図である。 図6におけるVII-VII断面図である。 図6におけるVIII-VIII断面図である。 本発明の第一の実施形態に係るステータを製造するための圧縮工程を説明するための説明図である。 本発明の第一の実施形態に係るステータを製造するための挿入工程の一態様を示す斜視図である。 図10における部分拡大図である。 本発明の第一の実施形態に係るステータを製造するための係止工程を説明するための説明図である。 本発明の第二の実施形態に係るステータの一部を示す平面図である。 本発明の第二の実施形態に係るステータの軸方向一部断面図である。 本発明の第二の実施形態に係る捻じり成形部の拡大図である。 図14におけるXVI-XVI断面図である。 図14におけるXVII-XVII断面図である。 本発明の第二の実施形態に係るステータを製造するための挿入工程の説明図である。
1.第一の実施形態
 本発明に係る回転電機用電機子の第一の実施形態について、図面を参照して説明する。本実施形態においては、本発明に係る回転電機用電機子を、回転電機1のステータ2に適用した場合を例として説明する。図1は、本実施形態に係る回転電機1の全体構成を示す断面図であり、図2は、本実施形態に係るステータ2の全体構成を示す斜視図である。本実施形態に係るステータ2は、ステータコア11が有するスロット12内におけるコイル21の占積率の向上を図りつつ、渦電流損を低減することを可能とするべく、ステータコア形状とコイル形状との組み合わせに特徴を有する。以下、この回転電機1の各部の構成について詳細に説明する。
1-1.回転電機の全体構成
 図1に示すように、回転電機1は、ステータ2、ロータ3、及びケース5を備えている。ステータ2はコイル21を備えており、当該コイル21に電流を流すことで磁界を発生させることができる。本実施形態においては、このステータ2が本発明における「回転電機用電機子」に相当する。ステータ2は、ケース5の内周面に固定されている。ステータ2の構成については後に詳細に説明する。また、ステータ2の径方向内側には、永久磁石(図示はしていない)を備えた界磁としてのロータ3が、ロータ軸4を回転軸としてステータ2に対して相対回転可能に配置されている。すなわち、本実施形態における回転電機1は、電機子としてのステータ2を備えたインナーロータ型の回転電機とされている。ケース5は、軸方向一方側に端壁5aが設けられた円筒形状に形成されている。ケース5は軸方向他方側に開口しており、当該開口を塞ぐようにケース5にカバー6が取り付けられている。そして、ケース5の端壁5a及びカバー6の径方向中央部に軸受7が設けられており、ロータ3及びロータ軸4は軸受7を介してケース5及びカバー6に対して回転可能に支持されている。
1-2.ステータの構成
 図2に示すように、ステータ2は、ステータコア11及びコイル21を備えている。ステータコア11は、複数枚の円環板状の電磁鋼板を積層して構成されており、略円筒形状に形成されている。ステータコア11の内周面には、その軸方向Lに延びる複数のスロット12が、周方向Cに分散配置されて所定の周方向間隔で設けられている。本実施形態においては、このステータコア11が本発明における「コア」に相当する。各スロット12は互いに同じ断面形状であって、所定の幅及び深さを有している。本実施形態においては、ステータコア11には、その全周で計48個のスロット12が設けられている。各スロット12は、ステータコア11の径方向R内側に開口する内周開口部13を備えて構成されている。
 図3(a)に示すように、ステータコア11の互いに隣接するスロット12間には、ティース15が設けられている。このとき、互いに隣接するティース15間に、スロット12が設けられていることになる。ティース15の径方向R内側の端部には、周方向Cに突出する突出部16がティース15の周方向C両側に設けられている。本例では、突出部16は、軸方向Lに直交する断面の形状が略矩形状であって、軸方向Lに連続するように、ティース15と一体的に形成されている。そして、隣接する2つのティース15のそれぞれに設けられた周方向Cに対向する2つの突出部16間に、内周開口部13が形成されている。また、スロット12における内周開口部13よりも径方向R外側の空間は、スロット内部14とされる。
 上記のとおり、隣接する2つのティース15のそれぞれに設けられた周方向Cに対向する2つの突出部16間に、内周開口部13が形成されている。したがって、本実施形態におけるステータコア11が有するスロット12は、径方向R内側に開口する内周開口部13の周方向幅W1がスロット内部14の周方向幅W3よりも狭く形成されたセミオープンスロットとなっている。スロット内部14にコイル21を構成する線状導体31が配置されて、スロット12にコイル21が巻装される。なお、このとき、詳しくは後述するが、スロット12とコイル21との間にはスロット内絶縁シート42が配置される。
 ステータ2は、複数の互いに異なる相のコイル21を備えている。本実施形態においては、ステータ2は三相交流で駆動される回転電機1に用いられるステータとされており、U相、V相、及びW相の三相のコイル21を備えている。ここで、各相のコイル21は線状導体31を用いて形成されている。本実施形態においては、線状導体31は、その断面が略矩形状の単一の平角線により構成されている。また、本例では、スロット12のサイズとの関係においてコイル21の占積率を最大化させるべく、線状導体31の周方向幅W5はスロット内部14の周方向幅W3と略等しくなるように形成されている。より具体的には、線状導体31の周方向幅W5は、線状導体31を用いて形成されるコイル21が物理的にスロット内部14に挿入可能であるという前提条件の下で、スロット内部14の周方向幅W3と略等しい値に設定される。これにより、コイル21の占積率を向上させることで回転電機1のエネルギ効率の向上が図られている。上記のとおり、本実施形態においては、ステータコア11が有するスロット12はセミオープンスロットとなっており、内周開口部13の周方向幅W1はスロット内部14の周方向幅W3よりも狭い。したがって、スロット内部14の周方向幅W3と略等しい周方向幅を有する線状導体31の周方向幅W5は、スロット12の内周開口部13の周方向幅W1よりも広く形成されることになる。そこで、本実施形態においては、各コイル21における屈曲コイル端部24の径方向導体部25は、その周方向幅W7がスロット12の内周開口部13の周方向幅W1よりも狭い幅狭凹部32を備えた構成とされている。詳細については後述する。
 各相のコイル21は、所定形状に形成されている。本実施形態においては、コイル21は、図4に示すように、全体として略円筒状の波型形状に形成されている。なお、図4にはU相コイル21uのみを示している。それぞれのコイル21は、スロット12内に配置されるコイル辺部22と、異なるスロット12内に配置される一対のコイル辺部22間をステータコア11の軸方向L両端部において接続するコイル端部23と、を備えている。コイル辺部22は、それぞれスロット内部14の形状に対応して軸方向Lに沿って延びるように直線状に形成されている。コイル端部23は、それぞれ異なるスロット12に配置される一対のコイル辺部22間を接続して周方向Cに沿って延びるように形成されている。各コイル端部23は、図2に示すように、ステータコア11の軸方向L両端部からステータコア11の軸方向Lに突出して配置されている。そして、図4に示すように、コイル21は、軸方向Lに延びて複数のスロット12内に順次配置される各コイル辺部22を、軸方向L一方側のコイル端部23と軸方向L他方側のコイル端部23とで交互に接続して、ステータコア11の周方向Cを巡回する波形に形成されている。このように、各相のコイル21は、各コイル辺部22がそれぞれ対応するスロット12内に配置された状態で、ステータコア11に波巻で巻装される形状となるように予め形成されている。
 また、本実施形態においては、コイル21は、同じスロット12内に配置される2本のコイル辺部22を一組として形成されている。2本一組のコイル辺部22は、連続する一本の線状導体31を、ステータコア11の周方向Cに二巡回させて形成されている。また、同相のコイル21を構成する2本一組のコイル辺部22の二組が、互いに隣接するスロット12内に配置されるように周方向Cに並列して配置されている。二組のコイル辺部22は、コイル端部23の所定位置で連続するように接続されている。したがって、図4に示されるコイル21は、連続する一本の線状導体31を、ステータコア11の周方向Cを四巡回させて形成されている。本実施形態においては、図4に示される形状と略同様の形状を有するコイル21が、同じスロット12内に径方向Rに隣接して三組配置される。したがって、隣接する2つのスロット12のそれぞれについて、6本のコイル辺部22がスロット12内において径方向Rに並んで、一列に整列して配置される。
 なお、図4にはU相コイル21uのみが示されているが、V相コイル21v及びW相コイル21wも同様の形状を有して構成されている。また、V相コイル21v及びW相コイル21wも、それぞれ同じスロット12内に径方向Rに隣接して三組配置され、隣接する2つのスロット12のそれぞれについて、同じ相の6本のコイル辺部22が径方向Rに並んで、一列に整列してスロット12内に配置される。
 図3(b)に示すように、ステータコア11には、互いに隣接する2つのU相スロット12uと、互いに隣接する2つのV相スロット12vと、互いに隣接する2つのW相スロット12wとが、順次繰り返して形成されている。そして、図4に示される形状のU相コイル21u、V相コイル21v、及びW相コイル21wの各コイル辺部22が、周方向Cに二スロット分ずつ順次ずれながら、それぞれU相スロット12u、V相スロット12v、及びW相スロット12wに配置される。
 各相コイル21のステータコア11の軸方向L両端部におけるコイル端部23のうち、軸方向L一方側(図2における上側)のコイル端部23は、径方向R内側へ屈曲形成された屈曲コイル端部24とされている。屈曲コイル端部24は、図6に示すように、屈曲部34においてコイル辺部22に対して略直角に径方向R内側へ屈曲している。屈曲コイル端部24は、図3(b)や図4にも示すように、コイル辺部22から径方向Rに延びる径方向導体部25と、スロット12の内周開口部13よりも径方向R内側で一対の径方向導体部25間を周方向Cに接続する周方向導体部26と、を備えている。
 本実施形態においては、径方向導体部25を構成する線状導体31は、コイル辺部22からステータコア11の軸方向Lに延出した後、径方向R内側に屈曲されるように形成されている。上記のとおり、コイル辺部22を構成する6本の線状導体31は、スロット12内において径方向Rに一列に整列して配置されているので、径方向導体部25では、6本の線状導体31は、一列に並んだ状態を保ちながら、軸方向Lに略平行な状態から径方向R内側に屈曲され、径方向Rに略平行な状態になるように整列配置されている。これにより、径方向導体部25は軸方向Lに並べて配置された構成となっている。なお、図2及び図3(b)から明らかなように、径方向導体部25は、少なくともステータコア11のスロット12が有する内周開口部13よりも径方向R外側の部分においては、径方向導体部25どうしが周方向Cに重複することなく配置されている。また、径方向導体部25は、少なくともステータコア11の内周面に対して径方向R内側まで延出している。なお、本実施形態では、屈曲コイル端部24を構成する線状導体31のうち、コイル辺部22と周方向C位置が同じ部分を径方向導体部25としている。
 周方向導体部26を構成する線状導体31は、一方のスロット12に対応する径方向導体部25から他方のスロット12に対応する径方向導体部25へ向かって周方向Cに屈曲しながら延出された後、径方向R外側に屈曲されて他方のスロット12に対応する径方向導体部25につながるように形成されている。上記のとおり、径方向導体部25は少なくともステータコア11の内周面に対して径方向R内側まで延出しているので、周方向導体部26はステータコア11の内周面に対して径方向R内側に配置される。この際、周方向導体部26では、スロット12内において径方向Rに一列に整列配置されている6本の線状導体31のうち、径方向R外周側に配置されている2本の線状導体31が径方向Rに並んで配置され、隣接する同じ相の2つのスロット12のそれぞれにおいて径方向R外周側に配置されている2本の線状導体31を併せて計4本の線状導体31が径方向Rに並んで配置されている。また、スロット12内において径方向Rに一列に整列配置されている6本の線状導体31のうち、径方向R内周側に配置されている2本の線状導体31が径方向Rに並んで配置され、隣接する同じ相の2つのスロット12のそれぞれにおいて径方向R内周側に配置されている2本の線状導体31を併せて計4本の線状導体31が径方向Rに並んで配置されている。また、スロット12内において径方向Rに一列に整列配置されている6本の線状導体31のうち、残余の2本の線状導体31が径方向Rに並んで配置され、隣接する同じ相の2つのスロット12のそれぞれにおける残余の2本の線状導体31を併せて計4本の線状導体31が径方向Rに並んで配置されている。径方向Rに並んで配置されるこれら三組の4本の線状導体31は、スロット12内において径方向R外側に配置されるコイル辺部22から連続するものほど、軸方向L一方側に配置されている。
 また、各相コイル21の屈曲コイル端部24において、互いに異なる相のコイル21を構成する線状導体31は、周方向導体部26において軸方向Lに並び、隣接して配置されている。本例では、図5及び図6に示すように、U相コイル21uを構成する線状導体31は、V相コイル21v及びW相コイル21wを構成する線状導体31に対して軸方向L一方側(図6における右側)に隣接して配置されている。V相コイル21vを構成する線状導体31は、周方向CにおけるW相コイル21wと重複する領域ではW相コイル21wを構成する線状導体31に対して軸方向L一方側に隣接して配置されている。また、V相コイル21vを構成する線状導体31は、周方向CにおけるU相コイル21uと重複する領域ではU相コイル21uを構成する線状導体31に対して軸方向L他方側に隣接して配置されている。W相コイル21wを構成する線状導体31は、U相コイル21u及びV相コイル21vを構成する線状導体31に対して軸方向L他方側に隣接して配置されている。
 屈曲コイル端部24において軸方向Lに隣接する、互いに異なる相のコイル21の周方向導体部26を構成する線状導体31の間には、これらの間での電気的絶縁性を確保するため、図5及び図6に示すように、相間絶縁シート41が介挿されて配置されている。相間絶縁シート41は、例えばアラミド繊維とポリエチレンテレフタラートを貼り合わせたもの等の電気的絶縁性及び耐熱性の高い材料で形成したシート等を用いることができる。
1-3.径方向導体部の構成
 次に、各コイル21における屈曲コイル端部24の径方向導体部25の構成について説明する。図3(b)及び図4に示すように、径方向導体部25は、その周方向幅W7がスロット12の内周開口部13の周方向幅W1よりも狭い幅狭凹部32を備えている。幅狭凹部32は、径方向導体部25におけるスロット12の内周開口部13に対応する径方向位置に設けられている。なお、径方向導体部25における幅狭凹部32以外の部分の周方向幅は、コイル21を構成する線状導体31の周方向幅W5に等しく、したがってスロット12の内周開口部13の周方向幅W1よりも広く形成されている。つまり、径方向導体部25には、スロット12の内周開口部13に対応する径方向位置に、径方向導体部25の当該位置以外の部分に対して窪んだ形状の幅狭凹部32が形成されている。
 この幅狭凹部32は、軸方向Lから見たときに、その外形が、ステータコア11のティース15の径方向R内側の端部に設けられた突出部16の外形に対応するように形成されている。すなわち、径方向導体部25には、スロット12の内周開口部13に対応する径方向位置付近のみを窪ませて幅狭凹部32が形成されている。この際、幅狭凹部32の周方向幅W7は、スロット12の内周開口部13の周方向幅W1よりも狭くなるように形成されている。このようにして、径方向導体部25におけるスロット12の内周開口部13に対応する径方向位置にのみ、周方向幅W7が内周開口部13の周方向幅W1よりも狭い幅狭凹部32が形成されている。なお、径方向導体部25の所定位置のみを幅狭凹部32としているため、コイル21の加工部位が内周開口部13に対応する部位のみとなり、加工が容易となる。
 このように、径方向導体部25が、スロット12の内周開口部13に対応する径方向位置に、突出部16の外形に対応する形状の幅狭凹部32を備えているため、ステータコア11のティース15の径方向R内側の端部に設けられた突出部16と、コイル21を構成する線状導体31とは、軸方向Lから見たときに重複部分がない構成となる。したがって、本実施形態のように、セミオープンスロット型のステータコア11と、ステータコア11のスロット内部14の周方向幅W3と略等しい周方向幅W5を有する線状導体31で構成したコイル21とを用いてステータ2を構成する場合であっても、幅狭凹部32をステータコア11が有するスロット12の内周開口部13を通過させることで、スロット12に対して、コイル21を屈曲コイル端部24の側から軸方向Lに挿入することが可能となっている。
 ここで、本実施形態においては、線状導体31が単一の平角線で構成されるとともに、線状導体31の周方向幅W5がスロット内部14の周方向幅W3と略等しくなるように形成されているので、例えば複数本の細線状導体を束ねて構成される細線状導体の集合体を用いてコイル21を構成する場合と比較して、スロット内部14におけるコイル21の占積率を向上させることができる。
 また、本実施形態では、ステータコア11が有するスロット12は、内周開口部13の周方向幅W1がスロット内部14の周方向幅W3よりも狭い、いわゆるセミオープンスロットとなっている。そのため、ロータ3が回転したときに、ロータ3が備える永久磁石からの磁束がコイル21を構成する線状導体31の表面に到達する量を減少させることができる。よって、線状導体31の表面における渦電流の発生を抑制して、渦電流損を低減することができる。
 したがって、本実施形態に係るステータ2の構成によれば、コイルの占積率の向上と渦電流損の低減との両立が可能となっている。
 ここで、本実施形態においては、幅狭凹部32は、径方向導体部25のうち径方向Rに延びる部分を周方向Cに圧縮して形成された圧縮成形部33とされている。径方向導体部25は、図4及び図6に示すように、圧縮成形部33において周方向Cに圧縮されるとともに軸方向Lに伸展されている。圧縮成形部33のうち軸方向Lに伸展した部分は、軸方向Lに並べて配置されている。言い換えれば、幅狭凹部32が軸方向Lに並べて配置されている。本実施形態においては、圧縮成形部33は、その径方向Rの全体に亘って、当該圧縮成形部33におけるコイル21の通電方向に直交する断面の断面積が、圧縮成形部33以外の部位における断面の断面積と略等しくなるように、周方向Cに圧縮されつつ軸方向Lに伸展されている。これにより、コイル21全体に亘って通電方向に直交する断面の断面積が略一定に保たれるので、圧縮成形部33における電気抵抗値を、圧縮成形部33以外の部位における電気抵抗値と略等しくすることができる。したがって、圧縮成形部33において局所的に発熱量が増大する等の不都合が生じるのを抑制することができる。
 また、圧縮成形部33が軸方向Lに伸展されて形成されるとともに、圧縮成形部33のうち軸方向Lに伸展した部分が軸方向Lに並べて配置されることにより、図6に示すように、当該圧縮成形部33のうち軸方向Lに伸展した部分どうしが軸方向Lに当接して相互に斥け合う。その結果、図7~図9を参照して理解できるように、屈曲コイル端部24の圧縮成形部以外の部位においては、特にスペーサ等を設けなくても軸方向Lに隣接する線状導体31間の軸方向間隔Dが大きくなる。これにより、例えば屈曲コイル端部24を冷却するために線状導体31間に冷媒を流す場合には、当該冷媒が線状導体31間を流れやすくなって熱交換効率が高まるため、冷却効率が向上する。
 上述したように、屈曲コイル端部24において軸方向Lに並んで隣接する、互いに異なる相のコイル21を構成する線状導体31の間には、相間絶縁シート41が介挿されて配置されている。図5及び図6に示すように、相間絶縁シート41は、径方向導体部25に形成された圧縮成形部33に対して、径方向R内側に配置されている。このとき、上記のとおり圧縮成形部33が軸方向Lに伸展されて形成されるとともに、圧縮成形部33のうち軸方向Lに伸展した部分が軸方向Lに並べて配置されることで軸方向Lに並んで隣接する線状導体31間の軸方向間隔Dが大きくなっている。よって、相間絶縁シート41に要求される絶縁性能を低下させることができ、製造コストを低減することができる。また、軸方向Lにおける線状導体31間で相間絶縁シート41に加わる応力を低減させることができるので、絶縁品質を安定化させることができる。
1-4.ステータの製造方法
 次に、本実施形態に係るステータ2の製造方法について説明する。本実施形態に係るステータ2は、コア形成工程、コイル予備形成工程、圧縮工程、挿入工程、及び係止工程を有し、これらの工程を経て製造することができる。以下では、これらの各工程について詳細に説明する。
 コア形成工程は、ステータコア11を形成する工程である。コア形成工程では、まず薄板形状の複数枚の電磁鋼板を円環板状の所定形状(上述したセミオープンスロット型の形状)に形成する。このとき、それぞれの電磁鋼板は、同一形状に形成される。同一形状の複数枚の電磁鋼板は軸方向Lに積層され、円筒状のコアホルダ(不図示)に保持されて固定される。このようにしてステータコア11が形成される。
 コイル予備形成工程は、各相のコイル21を予め形成する工程である。コイル予備形成工程では、平角線により構成される一本の線状導体31を用い、所定のコイル形成用治具(不図示)を利用して、所定形状(上述した波巻形状)の各相のコイル21を形成する。なお、このコイル予備形成工程で形成された各相のコイル21においては、軸方向Lに延びるコイル辺部22を径方向R内側に屈曲させて径方向導体部25とし、或いは、径方向R外側に延びる径方向導体部25を軸方向Lに屈曲させてコイル辺部22とする際に、コイル辺部22と屈曲コイル端部24の径方向導体部25とを接続する屈曲部34に、周方向Cに突出する膨出部ができる場合がある。この場合、当該膨出部の周方向幅がコイル21を構成する線状導体31の周方向幅W5よりも大きくなる場合がある。特に本実施形態のように、スロット内部14におけるコイル21の占積率を高めるため、周方向幅W5がスロット内部14の周方向幅W3と略等しく形成された線状導体31を用いてコイル21を構成する場合には、そのような事態が生じやすい。
 圧縮工程は、コイル予備形成工程において予め形成された各相のコイル21を構成する線状導体31を、所定形状に圧縮して成形する工程である。本実施形態では、屈曲コイル端部24におけるコイル辺部22から径方向に延びる径方向導体部25の、内周開口部13に対応する径方向位置に、周方向幅が内周開口部13の周方向幅W1よりも狭くなるように、径方向導体部25の他の部分に対して窪んだ形状の幅狭凹部32を形成する幅狭凹部形成工程を、この圧縮工程により行っている。圧縮工程では、各相のコイル21における屈曲部34に生成した膨出部を周方向Cに圧縮して、その周方向幅が線状導体31の周方向幅W5に略等しくなるように成形する。また、圧縮工程では、径方向導体部25におけるステータコア11が有するスロット12の内周開口部13に対応する径方向R位置を周方向Cに圧縮して、その周方向幅W7が内周開口部13の周方向幅W1よりも狭くなるように成形する。言い換えれば、圧縮工程では、径方向導体部25における内周開口部13に対応する部位を、周方向Cに圧縮する。ここで、「径方向導体部25における内周開口部13に対応する部位」とは、「径方向導体部25の部位であって、内周開口部13と径方向位置が対応する部位」を意味する。なお、これにより幅狭凹部32としての圧縮成形部33が形成される。
 ここで、屈曲部34はコイル辺部22と径方向導体部25とを接続する部位に位置しており、図4や図9からも明らかなように、径方向導体部25における内周開口部13に対応する径方向R位置と屈曲部34とは、同じ線状導体31上において互いに近接して位置している。また、これらの部位はともに周方向Cに圧縮して成形される。そこで、本実施形態においては、この圧縮工程において屈曲部34に生成した膨出部を周方向Cに圧縮するのに合わせて、これと同時に径方向導体部25における内周開口部13に対応する径方向R位置も周方向Cに圧縮して圧縮成形部33を形成する。言い換えれば、径方向導体部25における内周開口部13に対応する径方向R位置を周方向Cに圧縮して圧縮成形部33を形成するのに合わせて、これと同時に屈曲部34に生成した膨出部も周方向Cに圧縮する。このようにすれば、同じ線状導体31上に近接して設けられる径方向導体部25及び屈曲部34を単一の作業工程でともに周方向Cに圧縮することができるので、作業工程数の増加を伴うことなくステータ2を製造することができる。
 なお、径方向導体部25及び屈曲部34を周方向Cに圧縮して成形する際には、例えば互いに平行に対向することになる平面に、ステータコア11のティース15に設けられた突出部16の断面形状に対応した突起が設けられた一対の型(不図示)を用いることができる。すなわち、径方向導体部25及び屈曲部34を構成する線状導体31に対して、周方向C両側から当該型を押し当てて加圧することにより、圧縮成形部33を形成するとともに、屈曲部34の周方向幅を調整することができる。
 挿入工程は、圧縮工程を経て所定形状に成形された各相のコイル21を、ステータコア11が有するスロット12内に軸方向Lに挿入する工程である。言い換えれば、挿入工程は、幅狭凹部形成工程で形成された幅狭凹部を内周開口部13の位置に合わせた状態で、コイル21を屈曲コイル端部24の側からスロット12内に軸方向Lに挿入する工程である。ここで、圧縮工程が終了した段階では、径方向導体部25に圧縮成形部33が設けられるとともに屈曲部34の周方向幅が線状導体31の周方向幅W5に略等しくなるように調整されているので、ステータコア11と各相のコイル21を構成する線状導体31とは、軸方向Lから見たときに重複部分がない構成となっている。この挿入工程では、図10及び図11に示すように、径方向導体部25における幅狭凹部32としての圧縮成形部33と、ステータコア11が有するスロット12の内周開口部13とを対応させた状態で、コイル21を屈曲コイル端部24の側からスロット12内に軸方向Lに挿入する。
 なお、上記のとおり本実施形態では、各相のコイル21は、各コイル辺部22がそれぞれ対応するスロット12内に配置可能な波巻形状となるように予め形成されている。このように、各相のコイル21を所定形状に予め形成しておくことで、コイル21をスロット12に軸方向Lに容易に挿入することができる。したがって、各相のコイル21をステータコア11に組み付ける際の作業負荷の低減を図ることができる。
 このとき、本実施形態においては、図10に示すように、U相、V相、及びW相の各コイル21を組み合わせて一つのユニットを形成し、各コイル辺部22がそれぞれ対応するスロット12に配置されるように位置合わせした状態で、当該ユニットを一体的にスロット12内に挿入する。なお、図4に示される形状を有し、スロット12内において互いに径方向Rの同じ位置に配置されるU相、V相、及びW相の各相のコイル21どうしを組み合わせて三つのサブユニットを形成し、各コイル辺部22がそれぞれ対応するスロット12に配置されるように位置合わせした状態で、順次それぞれ一体的にスロット12内に挿入しても良い。この場合、スロット12内において径方向R外側に配置されるサブユニットから順次挿入される。或いは、図4に示される形状のコイル21毎に、各コイル辺部22がそれぞれ対応するスロット12に配置されるように順次スロット12内に挿入しても良い。この場合には、コイル辺部22がスロット12内において径方向R外側に配置され、屈曲コイル端部24の周方向導体部26が軸方向L一方側に配置されるコイル21から順次挿入される。
 また、本実施形態においては、図11及び図12に示すように、スロット12内に配置されるスロット内絶縁シート42がスロット12の内周開口部13よりも径方向R内側に延出して開口する状態で、スロット12内にコイル21が挿入される。すなわち、スロット12内をスロット12の内面に沿って一巡するとともに、その両側の端部42eがともに内周開口部13よりも径方向R内側に突出するようにスロット内絶縁シート42が配置される。なお、スロット内絶縁シート42は、相間絶縁シート41と同様に、例えばアラミド繊維とポリエチレンテレフタラートを貼り合わせたもの等の電気的絶縁性及び耐熱性の高い材料で形成したシート等を用いることができる。そしてその状態で、スロット12の内面に沿って一巡するスロット内絶縁シート42における内周側に、コイル21が挿入される。このようにすれば、挿入工程においてステータコア11とコイル21との間にスロット内絶縁シート42が介挿された状態でスロット12内にコイル21が挿入されるので、コイル21を構成する線状導体31を被覆している絶縁被膜を傷つけることなくスロット12内にコイル21を挿入することができる。
 係止工程は、スロット12の内周開口部13よりも径方向R内側に延出するスロット内絶縁シート42の端部42eを、ステータコア11のティース15に設けられた突出部16に係止させる工程である。本実施形態においては、上記のとおり断面略矩形状の突出部16がティース15と一体的に形成されている。そして、突出部16はスロット12の内周開口部13に面する周方向壁部16cと、当該突出部16から見て径方向R外側に位置するスロット内部14に面する外径側壁部16rとを備えている。係止工程では、図12に示すように、スロット内絶縁シート42の両側の端部42eは順次折り畳まれて、突出部16の外径側壁部16rに係止される。このとき、周方向C一方側の端部42eは、周方向C他方側のティース15に設けられた突出部16の外径側壁部16rに係止される。また、周方向C他方側の端部42eは、周方向C一方側のティース15に設けられた突出部16の外径側壁部16rに、スロット内絶縁シート42を介して係止される。なお、端部42eを折り畳む際の作業性を良好なものとするため、スロット内絶縁シート42には予め所定の位置に軸方向Lに沿った折り目をつけておくと好適である。
 これにより、スロット12と、コイル21のうちスロット12内に配置されるコイル辺部22との間に、コイル辺部22を周回しつつスロット12の内周開口部13を覆うようにスロット内絶縁シート42が配置されることになる。したがって、スロット内絶縁シート42により、ステータコア11とコイル21を構成するコイル辺部22との間、及びコイル辺部22と界磁としてのロータ3との間の電気的絶縁性を適切に確保することができる。
 また、互いに隣接するティース15に設けられた突出部16の外径側壁部16rにスロット内絶縁シート42の両側の端部42eが係止されて、スロット12の内周開口部13が覆われるので、コイル21を構成するコイル辺部22の径方向R内側への抜け出しを有効に抑制することができる。したがって、スロット12の内周開口部13を閉塞するために通常設置される部材(ウエッジ等)を別途設ける必要がなくなり、製造コストを低く抑えることができるとともに、製造工程を簡素化することができる。
 その後、溶接等により各相のコイル21をそれぞれ所定位置で接続することにより、本実施形態に係るステータ2が完成する。
2.第二の実施形態
 次に、本発明に係る回転電機用電機子の第二の実施形態について説明する。図13は、本実施形態に係るステータ2の一部を示す平面図である。このステータ2が備えるステータコア11は、上記第一の実施形態と同様の構成を有しているが、ステータ2が備えるコイル21の構成、具体的には、コイル21が備える幅狭凹部32の構成が、上記第一の実施形態とは異なっている。以下では、本実施形態に係る回転電機用電機子の構成について、図13~図18を適宜参照しながら、上記第一の実施形態との相違点を中心に説明する。なお、特に説明しない点については、上記第一の実施形態と同様とする。また、以下の説明で参照する図面のうち、図13、図14、図18は、それぞれ、上記第一の実施形態で参照した図3(b)、図6、図11に対応する図面である。
2-1.径方向導体部の構成
 図13に示すように、本実施形態では上記第一の実施形態と同様、コイル21を形成する線状導体31は、その断面が略矩形状の単一の平角線により構成されており、線状導体31の周方向幅は、スロット内部14の周方向幅W3(図3(a)参照)と略等しくなるように形成されている。ここで、「線状導体の周方向幅」とは、線状導体31の延在方向に直交する断面において、スロット12内で周方向Cに沿う方向(図16、図17に示す第一方向D1)の線状導体31の幅W8を意味する。この線状導体31の第一方向の幅W8(以下、単に「第一方向幅W8」という。)は、線状導体31を用いて形成されるコイル21が物理的にスロット内部14に挿入可能であるという前提条件の下で、スロット内部14の周方向幅W3と略等しい値に設定される。したがって、線状導体31の第一方向幅W8は、スロット12の内周開口部13の周方向幅W1よりも広く形成されることになる。
 一方、線状導体31の延在方向に直交する断面において、スロット12内で第一方向D1に交差する方向(図16、図17に示す第二方向D2)の線状導体31の幅W9(以下、単に「第二方向幅W9」という。)は、内周開口部13の周方向幅W1(図3(a)参照)よりも狭く形成されている。なお、図16、図17より明らかなように、本実施形態では、第二方向D2は第一方向D1に直交する方向とされている。
 上記の第一の実施形態と同様に、径方向導体部25を構成する線状導体31は、図14にも示すように、コイル辺部22からステータコア11の軸方向Lに延出した後、径方向R内側に屈曲されるように形成されている。そのため、幅狭凹部32の形成箇所を除く径方向導体部25の径方向Rに延びる部分は、周方向Cの幅が線状導体31の第一方向幅W8と等しくなり、軸方向Lの幅が線状導体31の第二方向幅W9と等しくなる(図17参照)。
 そして、本実施形態では、径方向導体部25が備える幅狭凹部32は、径方向導体部25における内周開口部13に対応する部位を、第二方向D2が周方向Cと略平行になるように、径方向導体部25の他の部分に対して捻じって形成した捻じり成形部35とされている。具体的には、図15に示すように、幅狭凹部32は、径方向導体部25における内周開口部13に対応する部位を、径方向導体部25を構成する線状導体31の延在方向を軸心として所定の角度だけ捻じって形成された捻じり成形部35とされている。なお、上記のように、本実施形態では、第二方向D2は第一方向D1に直交する方向であるため、上記の所定の角度は90度となる。また、「径方向導体部25における内周開口部13に対応する部位」とは、「径方向導体部25の部位であって、内周開口部13と径方向位置が対応する部位」を意味する。幅狭凹部32をこのように捻じり成形部35とすることで、幅狭凹部32の周方向幅W7(厳密には、幅狭凹部32の周方向幅の最小値)は線状導体31の第二方向幅W9と等しくなる。
 ここで、上記のように、線状導体31の第二方向幅W9は、スロット12の内周開口部13の周方向幅W1よりも狭く形成されている。これにより、図13に示すように、軸方向Lから見たときに、幅狭凹部32(捻じり成形部35)の外形が、ステータコア11のティース15の径方向R内側の端部に設けられた突出部16の外形に対応するように形成される。言い換えれば、軸方向Lから見たときに、突出部16と、径方向導体部25を構成する線状導体31とは、重複部分がない構成となる。本例では、捻じり成形部35の周方向幅が最も狭くなっている部分と、内周開口部13の周方向壁部16cとが、径方向Rに重なるように捻じり成形部35が形成されている。従って、径方向導体部25とスロット12の内周開口部13とが干渉することを回避しつつ、スロット12に対して、コイル21を屈曲コイル端部24の側から軸方向Lに挿入することができる。
 本実施形態では、幅狭凹部32が、径方向導体部25における内周開口部13に対応する部位を、第二方向D2が周方向Cと略平行になるように、径方向導体部25の他の部分に対して捻じって形成されているため、幅狭凹部32の軸方向高さ(厳密には、幅狭凹部32の軸方向高さの最大値)は、線状導体31の第一方向幅W8と等しくなる(図16参照)。一方、幅狭凹部32の形成箇所を除く径方向導体部25の径方向Rに延びる部分の軸方向高さは、線状導体31の第二方向幅W9と等しくなる(図17参照)。すなわち、幅狭凹部32における線状導体31の軸方向高さは、当該幅狭凹部32に隣接する径方向導体部25の他の部分における線状導体31の軸方向高さよりも高くなっている。そして、図14に示すように、幅狭凹部32は、軸方向Lに並べて配置されているため、幅狭凹部32の軸方向高さが高くなっている部分どうしが軸方向Lに当接して相互に斥け合う。その結果、図14、図16、図17より理解できるように、屈曲コイル端部24の捻じり成形部35以外の部位においては、上記第一の実施形態と同様、特にスペーサ等を設けなくても軸方向Lに隣接する線状導体31間の軸方向間隔Dが大きくなる。
 また、本実施形態においては、幅狭凹部32が捻じり成形部35であるため、当然ながら上記第一の実施形態と同様、幅狭凹部32は、その径方向Rの全体に亘って、当該幅狭凹部32におけるコイル21の通電方向に直交する断面の断面積が、幅狭凹部32以外の部位における断面の断面積と略等しくなっている。
 ところで、ステータコア11がセミオープンスロット型のコアであることの利点をできるだけ大きく享受するためには、内周開口部13の周方向幅W1を、内周開口部13と線状導体31とが干渉しないという条件の下、可能な限り小さくすることが望ましいが、本実施形態では、内周開口部13の周方向幅W1より第二方向D2の幅が小さい線状導体31を採用するだけで、上記の干渉を回避することが可能となっている。
2-2.ステータの製造方法
 本実施形態に係るステータ2の製造方法は、基本的に上記第一の実施形態と同様であるが、「圧縮工程」に替えて「捻じり工程」を備える点で、上記第一の実施形態と相違する。すなわち、本実施形態では、幅狭凹部形成工程を捻じり工程により行っている。
 捻じり工程は、径方向導体部25における内周開口部13に対応する部位を、第二方向D2が周方向Cと略平行になるように、径方向導体部25の他の部分に対して捻じる工程である。ここで、「径方向導体部25における内周開口部13に対応する部位」とは、「径方向導体部25の部位であって、内周開口部13と径方向位置が対応する部位」を意味する。そして、この捻じり工程により、幅狭凹部32としての捻じり成形部35が形成される。このように、幅狭凹部形成工程を捻じり工程とすることで、径方向導体部25を局所的に大きく変形させる必要がなく、径方向導体部25に対して局所的に大きな力を加える必要もないため、線状導体31を被覆している絶縁被膜(例えば、エナメル等)が、幅狭凹部32を形成することにより損傷を受けることを抑制することができる。
 なお、捻じり工程は、例えば、捻じり成形部35を形成する部位に対して線状導体31の延在方向両側に隣接する部位を保持する保持機構と、捻じり成形部35を形成する部位の延在方向における中心部近傍を把持するとともに、把持した部位を線状導体31の延在方向を軸心として所定の角度(本例では90度)だけ回転させる回転機構と、を備える捻じり機構により実行され、図15に示すような捻じり成形部35を形成することができる。また、このような捻じり工程は、上記第一の実施形態における圧縮工程と同様、コイル予備形成工程において予め形成された各相のコイル21を構成する線状導体31に対して行う構成としても良いし、又は、コイル予備形成工程を実行する前の線状導体31に対して行う構成としても良い。
 挿入工程は、本実施形態では、図18に示すように、捻じり工程で形成された捻じり成形部35を内周開口部13の位置に合わせた状態で、コイル21を屈曲コイル端部24の側からスロット12内に軸方向Lに挿入する工程である。
〔その他の実施形態〕
(1)上記の第一の実施形態においては、幅狭凹部32を、径方向導体部25を周方向Cに圧縮して形成した圧縮成形部33とした場合を例として説明した。また、上記の第二の実施形態では、幅狭凹部32を、捻じり成形部35とした場合を例として説明した。しかし、本発明の実施形態はこれらに限定されない。すなわち、幅狭凹部32はその周方向幅W7がスロット12の内周開口部13の周方向幅W1よりも狭くなるように形成されていれば良く、例えば切削加工等により形成した幅狭溝部として幅狭凹部32を構成することも、本発明の好適な実施形態の一つである。
(2)上記の第一の実施形態においては、幅狭凹部32を、コイル21の通電方向に直交する断面の断面積が圧縮成形部33以外の部位における断面の断面積と略等しくなるように、周方向Cに圧縮されつつ軸方向Lに伸展されて形成された圧縮成形部33とした場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば周方向Cにのみ圧縮され軸方向Lには伸展されていない圧縮成形部33として幅狭凹部32を構成することも、本発明の好適な実施形態の一つである。また、周方向Cに圧縮されつつ軸方向Lに伸展させて圧縮成形部33を形成する場合において、コイル21の通電方向に直交する断面の断面積が圧縮成形部33以外の部位における断面の断面積とは異なるように形成された圧縮成形部33として幅狭凹部32を構成することも、本発明の好適な実施形態の一つである。
(3)上記の第一の実施形態においては、線状導体31は、その断面が略矩形状の単一の平角線により構成されており、その周方向幅W5がスロット内部14の周方向幅W3と略等しくなるように形成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、線状導体31の周方向幅W5は、スロット12の内周開口部13の周方向幅W1よりも広ければ良く、内周開口部13の周方向幅W1からスロット内部14の周方向幅W3までの間で任意に設定することができる。また、線状導体31の断面形状についても特に限定されず、例えば丸型、多角形型等、種々の形状を採用することができる。また、その周方向幅W5が内周開口部13の周方向幅W1よりも広く形成されたものであれば、線状導体31として、複数本の導体があたかも一本の導体であるかのように集合されて構成される、集合体からなる導体を用いることもできる。例えば、複数本の導体が縒り集まって一体的に形成される縒線導体等を用いることも可能である。
(4)上記の第二の実施形態においては、線状導体31は、その断面が略矩形状の単一の平角線により構成されており、その第一方向幅W8がスロット内部14の周方向幅W3と略等しくなるように形成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、線状導体31の第一方向幅W8は、スロット12の内周開口部13の周方向幅W1よりも広ければ良く、内周開口部13の周方向幅W1からスロット内部14の周方向幅W3までの間で任意に設定することができる。また、線状導体31は、断面形状が略矩形状のものに限定されない。すなわち、第一方向幅W8がスロット12の内周開口部13の周方向幅W1よりも広く、第二方向幅W9がスロット12の内周開口部13の周方向幅W1よりも狭くなるのであれば、例えば楕円型、多角形型等、種々の形状の断面をもつ線状導体31を採用することができる。この場合において、第二方向D2が第一方向D1に直交しない構成としても良い。例えば、第二方向D2を、第一方向D1に交差する方向であって、第二方向幅W9が最小になる方向とすると好適である。また、線状導体31として、複数本の導体があたかも一本の導体であるかのように集合されて構成される、集合体からなる導体を用いることもできる。例えば、複数本の導体が縒り集まって一体的に形成される縒線導体等を用いることも可能である。
(5)上記の第二の実施形態においては、線状導体31が長辺と短辺を有する略矩形状の断面を有し、第一方向D1が長辺に沿う方向であり、第二方向D2が短辺に沿う方向であり、これにより、第二方向D2が第一方向D1に直交する方向である場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。すなわち、軸方向Lから見たときに、ステータコア11のティース15の径方向R内側の端部に設けられた突出部16と、径方向導体部25を構成する線状導体31との間に重複部分がない構成とできるのであれば、捻じり成形部35において周方向Cに略平行とされる第二方向D2が、略矩形状断面の短辺に沿わない方向である構成とすることができる。例えば、第二方向D2を、第一方向D1に対して90度ではない所定の角度(例えば、70度や80度等)で交差する方向とすることができる。この場合、幅狭凹部32は、径方向導体部25における内周開口部13に対応する部位を、径方向導体部25を構成する線状導体31の延在方向を軸心として上記所定の角度だけ捻じって形成された捻じり成形部35となる。
(6)上記の第二の実施形態においては、捻じり成形部35の周方向幅が最も狭くなっている部分と、内周開口部13の周方向壁部16cとが、径方向Rに重なるように捻じり成形部35が形成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。すなわち、軸方向Lから見たときに、ステータコア11のティース15の径方向R内側の端部に設けられた突出部16と、径方向導体部25を構成する線状導体31との間に重複部分がない構成とできるのであれば、捻じり成形部35の周方向幅が最も狭くなっている部分以外の部分と、内周開口部13の周方向壁部16cとが、径方向Rに重なるように捻じり成形部35が形成されている構成とすることもできる。
(7)上記の第二の実施形態においては、ステータ2の製造方法が、「圧縮工程」に替えて「捻じり工程」を備える場合、すなわち、「圧縮工程」を備えない場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。すなわち、ステータ2の製造方法が、捻じり工程の他に、各相のコイル21における屈曲部34を周方向Cに圧縮して、その周方向幅が線状導体31の第一方向幅W8に略等しくなるように成形するための圧縮工程を更に備える構成とすることも、本発明の好適な実施形態の一つである。この実施形態は、コイル辺部22と屈曲コイル端部24の径方向導体部25とを接続する屈曲部34に、周方向Cに突出する膨出部ができる場合に好適に実施できる。
(8)上記の第一の実施形態及び第二の実施形態においては、ステータ2が三相交流で駆動される回転電機1に用いられるステータとされている場合を例として説明した。しかし、本発明の実施形態はこれらに限定されない。すなわち、ステータ2が単相交流で駆動される回転電機1に用いられる構成とすることも、本発明の好適な実施形態の一つである。或いは、二相或いは四相以上の交流電源で駆動される回転電機1に用いられる構成とすることも、本発明の好適な実施形態の一つである。
(9)上記の第一の実施形態及び第二の実施形態においては、図4に示されるような形状を有するコイル21を同じスロット12内に径方向Rに隣接して三組配置し、一スロット当たり6本のコイル辺部22が径方向Rに一列に整列してスロット12内に配置される場合を例として説明した。しかし、本発明の実施形態はこれらに限定されない。すなわち、径方向Rに一列に整列して配置される一スロット当たりのコイル辺部22の本数は適宜変更することが可能である。また、図4に示される、予め予備形成されるコイル21の形状はあくまで一例であり、種々の形状を採用することができる。
(10)上記の第一の実施形態及び第二の実施形態においては、屈曲コイル端部24において軸方向Lに並んで隣接する互いに異なる相のコイル21を構成する線状導体31の間に、相間絶縁シート41が介挿されて配置されている場合を例として説明した。しかし、本発明の実施形態はこれらに限定されない。すなわち、使用条件によってはこのような相間絶縁シート41を設けない構成とすることも、本発明の好適な実施形態の一つである。上述したように、上記の第一の実施形態及び第二の実施形態では、屈曲コイル端部24において軸方向Lに隣接する線状導体31間の軸方向間隔Dが大きくなっている。したがって、コイル21に流れる電流の最大値やコイル21の両端に印加される電圧の最大値等の条件次第では、相間絶縁シート41を介挿させずに線状導体31の表面を被覆している絶縁被膜のみで各相コイル21間の電気的絶縁性を確保することも可能となるからである。
(11)上記の第一の実施形態及び第二の実施形態においては、突出部16が周方向壁部16cと外径側壁部16rとを備え、その断面形状が略矩形状である場合を例として説明した。しかし、本発明の実施形態はこれらに限定されない。すなわち、突出部16としては種々の形状を採用することが可能であり、例えば、周方向壁部16cを備えず、隣接するティース15において互いに周方向Cに対向するように突出する2つの突出部16間の周方向幅が、内周開口部13から径方向R外側に向かうにしたがって広くなるような、断面略三角形状となっている構成とすることも、本発明の好適な実施形態の一つである。
(12)上記の第一の実施形態及び第二の実施形態においては、スロット内絶縁シート42の両側の端部42eを順次折り畳んで突出部16の外径側壁部16rに係止することによりスロット12の内周開口部13を覆い、コイル21を構成するコイル辺部22の径方向R内側への抜け出しを防止している場合を例として説明した。しかし、本発明の実施形態はこれらに限定されない。すなわち、スロット内絶縁シート42の両側の端部42eを突出部16の外径側壁部16rに係止させずに、或いは係止させた上でこれとは別に、ウェッジ等の閉塞部材を設け、スロット12の内周開口部13を閉塞する構成とすることも、本発明の好適な実施形態の一つである。
(13)上記の第一の実施形態においては、圧縮工程において、径方向導体部25における内周開口部13に対応する径方向R位置を周方向Cに圧縮するのに合わせて、屈曲部34も周方向Cに圧縮する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、各相のコイル21における屈曲部34を周方向Cに圧縮して、その周方向幅が線状導体31の周方向幅W5に略等しくなるように成形する作業工程と、径方向導体部25におけるステータコア11が有するスロット12の内周開口部13に対応する径方向R位置を周方向Cに圧縮して、その周方向幅W7が内周開口部13の周方向幅W1よりも狭くなるように成形する作業工程とを、それぞれ別に行う構成とすることも、本発明の好適な実施形態の一つである。この際、後者の作業工程を、コイル予備形成工程前の線状導体31に対して行う構成としても好適である。
(14)上記の第一の実施形態及び第二の実施形態においては、挿入工程において、スロット12内に配置されるスロット内絶縁シート42がスロット12の内周開口部13よりも径方向R内側に延出して開口する状態で、スロット12内にコイル21が挿入される場合を例として説明した。しかし、本発明の実施形態はこれらに限定されない。すなわち、例えばスロット内絶縁シート42を予めコイル辺部22に周回させた状態で、スロット12内にコイル21を挿入する構成とすることも、本発明の好適な実施形態の一つである。
(15)上記の第一の実施形態及び第二の実施形態においては、本発明に係る回転電機用電機子を回転電機1の固定子としてのステータ2に適用し、回転電機1を、電機子としてのステータ2を備えたインナーロータ型の回転電機とした場合を例として説明した。しかし、本発明の実施形態はこれらに限定されない。すなわち、例えば本発明に係る回転電機用電機子を回転電機1の回転子に適用し、回転電機1を、電機子としての回転子を備えたアウターロータ型の回転電機とすることも、本発明の好適な実施形態の一つである。
 本発明は、軸方向に延びる複数のスロットが周方向に分散配置された円筒状のコアと、前記スロットに巻装されるコイルと、を備えた回転電機用電機子に好適に利用することができる。
1    回転電機
2    ステータ(電機子)
11   ステータコア(コア)
12   スロット
13   内周開口部
14   スロット内部
15   ティース
16   突出部
16c  周方向壁部
21   コイル
22   コイル辺部
23   コイル端部
24   屈曲コイル端部
25   径方向導体部
26   周方向導体部
31   線状導体
32   幅狭凹部
33   圧縮成形部
34   屈曲部
35   捻じり成形部
41   相間絶縁シート
42   スロット内絶縁シート
L    軸方向
R    径方向
C    周方向
D1   第一方向
D2   第二方向

Claims (12)

  1.  軸方向に延びる複数のスロットが周方向に分散配置された円筒状のコアと、前記スロットに巻装されるコイルと、を備えた回転電機用電機子であって、
     前記スロットは、径方向内側に開口する内周開口部の周方向幅が、前記内周開口部よりも径方向外側に位置するスロット内部の周方向幅よりも狭く形成されるとともに、前記コイルを構成する線状導体の周方向幅が前記内周開口部の周方向幅よりも広く形成され、
     前記コイルは、異なる前記スロット内に配置されるコイル辺部間を前記コアの軸方向両端部において接続するコイル端部を備え、前記スロットの軸方向一方側の前記コイル端部が径方向内側へ屈曲形成された屈曲コイル端部とされ、
     前記屈曲コイル端部は、前記コイル辺部から径方向に延びる径方向導体部と、前記内周開口部よりも径方向内側で一対の前記径方向導体部間を接続する周方向導体部とを備え、
     前記径方向導体部における前記内周開口部に対応する径方向位置に、周方向幅が前記内周開口部の周方向幅よりも狭くなるように、前記径方向導体部の他の部分に対して窪んだ形状の幅狭凹部を備えた回転電機用電機子。
  2.  前記幅狭凹部は、前記径方向導体部を周方向に圧縮するとともに、軸方向に伸展して形成された圧縮成形部である請求項1に記載の回転電機用電機子。
  3.  前記線状導体の延在方向に直交する断面において、前記スロット内で周方向に沿う方向を第一方向とするとともに、当該第一方向に直交する方向を第二方向とし、
     前記線状導体は、前記第二方向の幅が前記内周開口部の周方向幅よりも狭く形成され、
     前記幅狭凹部は、前記径方向導体部における前記内周開口部に対応する部位を、前記第二方向が周方向と略平行になるように、前記径方向導体部の他の部分に対して捻じって形成した捻じり成形部である請求項1に記載の回転電機用電機子。
  4.  前記コイルは、前記コイル辺部を構成する前記線状導体が前記スロット内において径方向に複数本並べて配置されるとともに、前記屈曲コイル端部を構成する前記線状導体が軸方向に並べて配置され、
     前記幅狭凹部が軸方向に並べて配置された請求項2又は3に記載の回転電機用電機子。
  5.  複数の互いに異なる相のコイルを備え、
     各相の前記コイルのうち、前記周方向導体部を構成する互いに異なる相の前記線状導体が軸方向に並べて配置された請求項4に記載の回転電機用電機子。
  6.  前記屈曲コイル端部における前記圧縮成形部の径方向内側において、互いに異なる相の前記線状導体間に、相間絶縁シートが配置された請求項5に記載の回転電機用電機子。
  7.  前記コアは、互いに隣接する前記スロット間に位置するティースの径方向内側の端部に、周方向両側に突出して前記内周開口部の周方向両側壁を形成する突出部を備え、
     前記スロットと前記コイル辺部との間に、前記コイル辺部を周回しつつ前記内周開口部を覆うようにスロット内絶縁シートが配置され、
     前記スロット内絶縁シートの周回方向の端部が、前記突出部に係止されている請求項1から6のいずれか一項に記載の回転電機用電機子。
  8.  軸方向に延びる複数のセミオープンスロット型のスロットが周方向に分散配置された円筒状のコアと、前記スロットに巻装されるコイルと、を備え、
     前記コイルを構成する線状導体の周方向幅が前記スロットの径方向内側に開口する内周開口部の周方向幅よりも広く形成され、
     前記コイルが、異なる前記スロット内に配置されるコイル辺部間を前記コアの軸方向一端部において接続するとともに径方向内側へ屈曲形成された屈曲コイル端部を備えた回転電機用電機子の製造方法であって、
     前記屈曲コイル端部における前記コイル辺部から径方向に延びる径方向導体部の、前記内周開口部に対応する径方向位置に、周方向幅が前記内周開口部の周方向幅よりも狭くなるように、前記径方向導体部の他の部分に対して窪んだ形状の幅狭凹部を形成する幅狭凹部形成工程と、
     前記幅狭凹部形成工程で形成された幅狭凹部を前記内周開口部の位置に合わせた状態で、前記コイルを前記屈曲コイル端部の側から前記スロット内に軸方向に挿入する挿入工程と、を有する回転電機用電機子の製造方法。
  9.  前記幅狭凹部形成工程は、前記径方向導体部における前記内周開口部に対応する部位を、周方向に圧縮する圧縮工程である請求項8に記載の回転電機用電機子の製造方法。
  10.  前記線状導体の延在方向に直交する断面において、前記スロット内で周方向に沿う方向を第一方向とするとともに、当該第一方向に直交する方向を第二方向とし、
     前記線状導体は、前記第二方向の幅が前記内周開口部の周方向幅よりも狭く形成され、
     前記幅狭凹部形成工程は、前記径方向導体部における前記内周開口部に対応する部位を、前記第二方向が周方向と略平行になるように、前記径方向導体部の他の部分に対して捻じる捻じり工程である請求項8に記載の回転電機用電機子の製造方法。
  11.  前記圧縮工程では、前記幅狭凹部を形成するのと同時に、前記コイルを構成する前記径方向導体部の屈曲部を更に周方向に圧縮する請求項9に記載の回転電機用電機子の製造方法。
  12.  前記コアは、互いに隣接する前記スロット間に位置するティースの径方向内側の端部に、周方向両側に突出して前記内周開口部の周方向両側壁を形成する突出部を備えており、
     前記挿入工程では、前記スロット内に配置されるスロット内絶縁シートが前記内周開口部よりも径方向内側に延出して開口する状態で、前記スロットに前記コイルが挿入され、
     前記スロット内絶縁シートの径方向内側に延出した端部を、前記挿入工程後に前記突出部に係止させる係止工程を更に備えた請求項8から11のいずれか一項に記載の回転電機用電機子の製造方法。
PCT/JP2009/070762 2009-01-28 2009-12-11 回転電機用電機子及びその製造方法 WO2010087078A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801372583A CN102160266A (zh) 2009-01-28 2009-12-11 旋转电机用电枢及其制造方法
DE112009002227T DE112009002227T5 (de) 2009-01-28 2009-12-11 Anker für eine drehende Elektromaschine und dessen Herstellungsverfahren

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-016854 2009-01-28
JP2009016854 2009-01-28
JP2009189463A JP2010200596A (ja) 2009-01-28 2009-08-18 回転電機用電機子及びその製造方法
JP2009-189463 2009-08-18

Publications (1)

Publication Number Publication Date
WO2010087078A1 true WO2010087078A1 (ja) 2010-08-05

Family

ID=42353600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070762 WO2010087078A1 (ja) 2009-01-28 2009-12-11 回転電機用電機子及びその製造方法

Country Status (5)

Country Link
US (1) US8164229B2 (ja)
JP (1) JP2010200596A (ja)
CN (1) CN102160266A (ja)
DE (1) DE112009002227T5 (ja)
WO (1) WO2010087078A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195637A1 (ja) * 2016-05-13 2017-11-16 三菱電機株式会社 電機子の製造方法、回転電機の製造方法、電機子、回転電機、および電機子の製造装置
US10819175B2 (en) 2015-05-22 2020-10-27 Mitsubishi Electric Corporation Rotating electric machine and rotating electric machine manufacturing method

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4461399B2 (ja) * 2008-03-05 2010-05-12 株式会社デンソー 回転電機用コイル組立体の編込み機
JP4577588B2 (ja) * 2008-04-18 2010-11-10 株式会社デンソー 回転電機のコイル組立体製造方法
JP4600508B2 (ja) * 2008-04-21 2010-12-15 株式会社デンソー インナーロータ型回転電機のステータ製造方法
JP4600580B2 (ja) * 2008-04-21 2010-12-15 株式会社デンソー 固定子コイルの製造方法
JP5167939B2 (ja) * 2008-05-12 2013-03-21 株式会社デンソー 回転電機のコイル組立体製造方法
FR2947968A1 (fr) * 2009-07-09 2011-01-14 Valeo Equip Electr Moteur Bobinage d'une machine electrique tournante
JP5363403B2 (ja) * 2010-04-19 2013-12-11 トヨタ自動車株式会社 モータ
JP5292360B2 (ja) * 2010-06-10 2013-09-18 トヨタ自動車株式会社 モータ
US8664817B2 (en) * 2010-09-13 2014-03-04 Baker Hughes Incorporated Electrical submersible pump system having high temperature insulation materials and buffered lubricant
JP5560176B2 (ja) * 2010-12-08 2014-07-23 トヨタ自動車株式会社 モータ及びモータ製造方法
JP5641341B2 (ja) * 2011-03-07 2014-12-17 株式会社デンソー 電機子
JP5839851B2 (ja) * 2011-06-23 2016-01-06 日立オートモティブシステムズ株式会社 回転電機
JP5801621B2 (ja) * 2011-06-27 2015-10-28 アスモ株式会社 ステータの製造方法、ステータ及びモータ
CN102437661A (zh) * 2011-12-23 2012-05-02 宁波韵升股份有限公司 车辆用交流发电机的定子铁芯
JP5909790B2 (ja) * 2012-06-01 2016-04-27 株式会社安川電機 回転電機、回転電機用ステータおよび車両
JP5979786B2 (ja) * 2012-09-20 2016-08-31 日特エンジニアリング株式会社 巻線装置及び巻線方法
JP5920259B2 (ja) * 2013-03-19 2016-05-18 株式会社安川電機 コイル、回転電機および回転電機の製造方法
JP5850878B2 (ja) * 2013-05-16 2016-02-03 本田技研工業株式会社 セグメントコンダクタ型の回転電機のステータ及びその製造方法
EP2963773B1 (en) * 2014-07-01 2019-10-02 Victory Industrial Corporation Vehicle alternating-current generator
US10020694B2 (en) * 2014-12-04 2018-07-10 Ja Choon JUNG Electric apparatus including rotor, stator, and shaft
DE102015201630A1 (de) * 2014-12-19 2016-06-23 Volkswagen Aktiengesellschaft Wicklungsanordnung und elektrische Maschine mit einer derartigen Wicklungsanordnung
CN107005135B (zh) * 2014-12-26 2019-06-21 爱信艾达株式会社 定子制造方法以及线圈
JP6642494B2 (ja) * 2017-03-10 2020-02-05 トヨタ自動車株式会社 回転電機のステータの製造装置
US11108307B2 (en) 2017-09-29 2021-08-31 Honda Motor Co., Ltd. Coil for rotary electric machine and insertion method
JP6986475B2 (ja) * 2017-09-29 2021-12-22 本田技研工業株式会社 回転電機用のコイル及びその挿入方法
JP6591574B2 (ja) * 2018-01-15 2019-10-16 本田技研工業株式会社 波巻コイルの保持装置、保持方法及び挿入方法
JP7066466B2 (ja) * 2018-03-22 2022-05-13 本田技研工業株式会社 捻り曲げ装置
JP6996407B2 (ja) * 2018-04-19 2022-01-17 スズキ株式会社 固定子コイル及びこれを備えた固定子
DE102018207231A1 (de) * 2018-05-09 2019-11-14 Volkswagen Aktiengesellschaft Stator für eine elektrische Maschine, elektrische Maschine und Herstellungsverfahren für einen Stator für eine elektrische Maschine
CN113632343B (zh) * 2019-03-29 2024-08-16 日本电产株式会社 定子、定子的制造方法、马达
JP6794590B1 (ja) * 2020-03-05 2020-12-02 株式会社東芝 回転電機の固定子および回転電機
JP7505453B2 (ja) * 2021-06-22 2024-06-25 トヨタ自動車株式会社 冷却システム、及び回転電機のステータ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278903A (ja) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd 電動機及びその製造方法
JP2003088021A (ja) * 2001-09-17 2003-03-20 Mitsubishi Electric Corp 交流発電機の固定子およびその製造方法
JP2007325472A (ja) * 2006-06-05 2007-12-13 Toyota Industries Corp モータ
JP2008125328A (ja) * 2006-11-15 2008-05-29 Aisin Aw Co Ltd 3相モータ用のステータ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732573B2 (ja) * 1987-06-03 1995-04-10 株式会社日立製作所 回転電機子の製造方法
WO1992001327A1 (de) 1990-07-07 1992-01-23 Zahnradfabrik Friedrichshafen Ag Verfahren zur herstellung einer statorwicklung mit profilleitern für elektrische maschinen
JP3798968B2 (ja) 2001-11-08 2006-07-19 三菱電機株式会社 回転電機の固定子の製造方法
CN1669201B (zh) * 2002-12-26 2010-04-14 三菱电机株式会社 旋转电机的定子及该定子线圈的制造方法
JP4319961B2 (ja) * 2004-09-30 2009-08-26 株式会社日立製作所 回転電機及び電機巻線
JP4341603B2 (ja) * 2005-10-05 2009-10-07 アイシン・エィ・ダブリュ株式会社 相間絶縁紙の製造方法
JP5040303B2 (ja) * 2006-12-28 2012-10-03 株式会社日立製作所 回転電機
CN101330239B (zh) * 2007-06-19 2012-09-05 三菱电机株式会社 车辆用交流发电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278903A (ja) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd 電動機及びその製造方法
JP2003088021A (ja) * 2001-09-17 2003-03-20 Mitsubishi Electric Corp 交流発電機の固定子およびその製造方法
JP2007325472A (ja) * 2006-06-05 2007-12-13 Toyota Industries Corp モータ
JP2008125328A (ja) * 2006-11-15 2008-05-29 Aisin Aw Co Ltd 3相モータ用のステータ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10819175B2 (en) 2015-05-22 2020-10-27 Mitsubishi Electric Corporation Rotating electric machine and rotating electric machine manufacturing method
WO2017195637A1 (ja) * 2016-05-13 2017-11-16 三菱電機株式会社 電機子の製造方法、回転電機の製造方法、電機子、回転電機、および電機子の製造装置
JPWO2017195637A1 (ja) * 2016-05-13 2018-09-06 三菱電機株式会社 電機子の製造方法、回転電機の製造方法、電機子、回転電機、および電機子の製造装置
US11088601B2 (en) 2016-05-13 2021-08-10 Mitsubishi Electric Corporation Method for producing armature, method for producing dynamo-electric machine, armature, dynamo-electric machine, and device for producing armature

Also Published As

Publication number Publication date
JP2010200596A (ja) 2010-09-09
CN102160266A (zh) 2011-08-17
DE112009002227T5 (de) 2011-07-28
US8164229B2 (en) 2012-04-24
US20100187938A1 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
WO2010087078A1 (ja) 回転電機用電機子及びその製造方法
JP6072238B2 (ja) 回転電機の製造方法
US8384263B2 (en) Rotating electrical machine having a compact stator
JP3752431B2 (ja) 回転電機及びその製造方法
EP1120881B1 (en) Manufacturing method for slotted stator
US8704420B2 (en) Stator for electric machine
WO2012137306A1 (ja) ステータ及びステータ製造方法
JP5083329B2 (ja) ステータ及びこれを用いた回転電機
US20080201935A1 (en) Manufacturing Method for Rotary Electric Machine and Stator
US12062962B2 (en) Stator for a rotating electrical machine
WO2013042478A1 (ja) 回転電機および回転電機の製造方法
JP5460884B2 (ja) 車両用回転電機およびそれに用いられる巻線アッセンブリの製造方法
KR20120041127A (ko) 고정자, 브러시리스 모터 및 이의 제조방법
JP2010239740A (ja) 回転電機用電機子
WO2014034712A1 (ja) 回転電機
JP2012110077A (ja) 固定子及び固定子構造
JP5392546B2 (ja) 相間絶縁シート
JP2010142019A (ja) 回転電機の多相波巻き巻線およびその製造方法
CN112531933A (zh) 一种电机定子及电机
JP2010124577A (ja) モータ
JP2010239741A (ja) 回転電機用電機子
CN216121947U (zh) 一种电机定子及电机
US20240322630A1 (en) Motor, stator, and manufacturing method of stator
WO2021256178A1 (ja) 成形コイル、ステータ及び回転電機
CN215498455U (zh) 一种定子及其具有的电机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137258.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839265

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 09839265

Country of ref document: EP

Kind code of ref document: A1