[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010086984A1 - Projection display device - Google Patents

Projection display device Download PDF

Info

Publication number
WO2010086984A1
WO2010086984A1 PCT/JP2009/051476 JP2009051476W WO2010086984A1 WO 2010086984 A1 WO2010086984 A1 WO 2010086984A1 JP 2009051476 W JP2009051476 W JP 2009051476W WO 2010086984 A1 WO2010086984 A1 WO 2010086984A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarized light
light
lens array
polarization
light source
Prior art date
Application number
PCT/JP2009/051476
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 斉藤
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to US13/138,278 priority Critical patent/US20110279780A1/en
Priority to PCT/JP2009/051476 priority patent/WO2010086984A1/en
Priority to JP2010548301A priority patent/JP5034132B2/en
Publication of WO2010086984A1 publication Critical patent/WO2010086984A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources

Definitions

  • the present invention relates to a projection display device, and more particularly to an illumination optical system of the projection display device.
  • a projection display device having two or more light source lamps.
  • the configuration of the illumination optical system in such a projection display device will be described with reference to FIG.
  • an elliptical mirror (reflector) and a combining mirror are used to combine the light emitted from each of the two light source lamps 201 and 202.
  • the first reflector 203a and the second reflector 203b are opposed to each other with the combining mirrors 204a and 204b disposed in the vicinity of the second focal point of each reflector.
  • the light emitting part of the first light source lamp 201 is arranged in the vicinity of the first focal point of the first reflector 203a
  • the light emitting part of the second light source lamp 202 is arranged in the vicinity of the first focal point of the second reflector 203b.
  • the light emitted from the first light source lamp 201 and the second light source lamp 202 is bent and combined in the same direction by the combining mirrors 204a and 204b.
  • the light bent in the same direction is made substantially parallel light by the collimator lens 205 and then enters the first lens array 206.
  • the optical axis of the light emitted from the first light source lamp 201 shown in FIG. 6 and the optical axis of the light emitted from the second light source lamp 202 are reflected by the combining mirrors 204a and 204b, and then Each lens array 205 is shifted by d / 2 from the center of the lens array 205.
  • the light incident angle distribution of the plurality of light beams superimposed on the optical component (such as a dichroic mirror LCD and a projection lens) and the second light source lamp 202 radiate the light beam and separate it by the first lens array 206,
  • the light incident angle distribution with respect to optical components (such as a dichroic mirror, LCD, and projection lens) of a plurality of light beams superimposed on the LCD by the lenses arranged after the lens array 207 and the second lens array 207 is different. If the incident angle to the optical component is different, the light transmission characteristic of the optical component changes.
  • the left side of the projected image is bright and the right side is dark as shown in FIG.
  • the illuminance distribution in the optical path of blue light is the same as the illuminance distribution in the optical path of green light.
  • the illuminance distribution in the optical path of red light is inverted by the relay optical system composed of the lenses 208, 209, and 210, and the illuminance distribution as shown in FIG. 8 is obtained. That is, the right side of the projected image is bright and the left side is dark.
  • three colors of light of red / green / blue are combined to display white, color unevenness occurs because red is strong on the right side of the image and red is weak on the left side.
  • the projection display device of the present invention is a projection display device provided with two light source lamps.
  • One of the projection display devices according to the present invention includes a first polarization conversion unit that aligns the polarization direction of the light emitted from the first light source lamp to obtain the first polarized light, and the second light source lamp.
  • a second polarization conversion section that aligns the polarization direction of the emitted light with a direction different from the polarization direction of the first polarization light to make the second polarization light, and the center is on the optical axis of the first light source lamp
  • the first lens array on which the first polarized light emitted from the first polarization conversion unit is incident, the center being on the optical axis of the second light source lamp, and the second polarized light A second lens array on which the second polarized light emitted from the conversion unit enters, and transmits the first polarized light emitted from the first lens array, and from the second lens array. Reflects the emitted second polarized light in the same direction as the transmission direction of the first polarized light.
  • An optical path conversion unit that makes the traveling directions of the first polarized light and the second polarized light the same, and polarization of the first polarized light and the second polarized light emitted from the optical path conversion unit
  • a third polarization converter that converts one of the polarization directions to the same direction as the other polarization direction, and a third light that is incident on the polarized light emitted from the third polarization converter.
  • a lens array The first light source lamp and the second light source lamp are arranged so that their optical axes are parallel to each other and separated by a distance (L) after passing through the optical path changing unit. .
  • the third lens array includes a plurality of lens elements arranged in a matrix, and the arrangement pitch of the lens elements is the same as the distance (L).
  • Another one of the projection display devices according to the present invention includes a first polarization conversion unit configured to align the polarization direction of light emitted from the first light source lamp to be first polarized light, and a second light source lamp.
  • a second polarization conversion unit configured to align the polarization direction of the light emitted from the second polarization light with a direction different from the polarization direction of the first polarization light, and the center is the light of the first light source lamp
  • a first lens array that is on the axis and on which the first polarized light emitted from the first polarization conversion unit is incident; a center that is on the optical axis of the second light source lamp;
  • the second polarized light emitted from the array is in the same direction as the transmission direction of the first polarized light.
  • An optical path conversion unit that makes the traveling directions of the first polarized light and the second polarized light the same, a third lens array into which the polarized light emitted from the optical path conversion unit is incident, A third polarization conversion unit that converts the polarization direction of one of the first polarization light and the second polarization light emitted from the third lens array into the same direction as the other polarization direction;
  • the first light source lamp and the second light source lamp are arranged so that their optical axes are parallel to each other and separated by a distance (L) after passing through the optical path changing unit.
  • the third lens array includes a plurality of lens elements arranged in a matrix, and the arrangement pitch of the lens elements is the same as the distance (L).
  • a two-lamp type projection display device without color unevenness even when one lamp is lit is realized.
  • FIG. 1 is a schematic view showing an example of an embodiment of a projection display device of the present invention.
  • FIG. 2 is a schematic enlarged view showing a configuration in the vicinity of the PBS shown in FIG.
  • FIG. 3 is a diagram showing a result of simulating the illuminance distribution in the optical path of green light when only the first light source lamp 10 shown in FIG. 1 is turned on.
  • FIG. 4 is a diagram showing the result of simulating the illuminance distribution in the optical path of red light when only the first light source lamp 10 shown in FIG. 1 is turned on.
  • FIG. 5 is a schematic enlarged view showing another example of the embodiment of the projection display device of the present invention.
  • FIG. 1 is a schematic view showing an example of an embodiment of a projection display device of the present invention.
  • FIG. 2 is a schematic enlarged view showing a configuration in the vicinity of the PBS shown in FIG.
  • FIG. 3 is a diagram showing a result of simulating the illuminance distribution in the optical path
  • FIG. 6 is a schematic diagram illustrating a configuration example of a projection display device including a two-lamp illumination optical system.
  • FIG. 7 is a diagram showing the result of simulating the illuminance distribution in the optical path of green light when only the first light source lamp 201 shown in FIG. 6 is turned on.
  • FIG. 8 is a diagram showing the result of simulating the illuminance distribution in the optical path of red light when only the first light source lamp 201 shown in FIG. 6 is turned on.
  • FIG. 1 is a schematic diagram showing a configuration of a projection display apparatus according to the present embodiment.
  • the projection display apparatus according to this embodiment includes a two-lamp illumination optical system including a first light source lamp 10 and a second light source lamp 20.
  • a first collimating lens 11 On the optical path of the light emitted from the first light source lamp 10, a first collimating lens 11, a first PS converter 12, and a first lens array 13 are arranged in this order.
  • an optical path conversion reflecting mirror 21, a second collimating lens 22, a second PS converter 23, and a second lens array 24 are provided on the optical path of the light emitted from the second light source lamp 20, on the optical path of the light emitted from the second light source lamp 20, an optical path conversion reflecting mirror 21, a second collimating lens 22, a second PS converter 23, and a second lens array 24 are provided. Are arranged in this order.
  • the light emitted from the first light source lamp 10 passes through the first collimating lens 11 and becomes substantially parallel light.
  • the light that has become substantially parallel light enters the first PS converter 12 and becomes P-polarized light, and then enters the first lens array 13 and is divided into a plurality of light beams.
  • the light emitted from the second light source lamp 20 passes through the second collimating lens 22 and becomes substantially parallel light.
  • the light that has become substantially parallel light enters the second PS converter 23 to become S-polarized light, and then enters the second lens array 24 and is divided into a plurality of light beams.
  • the plurality of light beams emitted from the first lens array 13 and the plurality of light beams emitted from the second lens array 24 are combined by a prism-type polarization beam splitter (PBS) 30.
  • PBS prism-type polarization beam splitter
  • Each of the light source lamps 10 and 20 is an ultra-high pressure mercury lamp having a light bulb 50 as a light emitting unit and a reflector 51 having a reflecting surface.
  • the reflecting surface 52 of the reflector 51 has an elliptical shape having a rotational symmetry axis, and the light valve 50 is disposed in the vicinity of the first focal point on the rotational symmetry axis of the reflecting surface 52.
  • first lamp optical axis the rotational symmetry axis of the reflecting surface 52 of the reflector 51 in the first light source lamp 10
  • the rotationally symmetric axis of the reflecting surface 52 of the reflector 51 in the second light source lamp 20 is referred to as a “second lamp optical axis”.
  • each of the light source lamps 10 and 20 is not limited to an ultrahigh pressure mercury lamp, and may be, for example, a metal halide lamp or a xenon lamp.
  • the light emitted from the light bulb 50 of the first light source lamp 10 is reflected by the reflecting surface 52 of the reflector 51 and condensed near the second focal point of the reflecting surface 52.
  • the light condensed at the second focal point enters the first collimating lens 11 and becomes substantially parallel light.
  • the first collimating lens 11 is a convex lens, and the focal length thereof is the same or substantially the same as the distance between the second focal point of the reflecting surface 52 of the reflector 51 and the first collimating lens 11.
  • the first PS converter 12 into which the light that has been made substantially parallel light by the first collimating lens 11 has a function of converting the incident light into P-polarized light. Specifically, as shown in FIG. 2, the first PS converter 12 transmits the P-polarized light and reflects the S-polarized light, and the S-polarized light reflected by the polarization separating surface 60. Is reflected in the same direction as the P-polarized light transmitted through the polarization separation surface 60, and a half-wave plate 62 that converts the S-polarized light reflected by the reflective surface 61 into P-polarized light. Therefore, all the light emitted from the first PS converter 12 becomes P-polarized light.
  • the light emitted from the light bulb 50 of the second light source lamp 20 is reflected by the reflecting surface 52 and the reflecting mirror 21 of the reflector 51 and is condensed near the second focal point of the reflecting surface 52.
  • the light condensed at the second focal point enters the second collimating lens 22 and becomes substantially parallel light.
  • the second collimating lens 22 is also a convex lens, and its focal length is the same or substantially the same as the distance between the second focal point of the reflecting surface 52 of the reflector 51 and the second collimating lens 22.
  • the second PS converter 23 into which the light that has been made substantially parallel light by the second collimating lens 22 has a function of converting the incident light into S-polarized light. Specifically, as shown in FIG. 2, it has the same polarization separation surface 60, reflection surface 61 and half-wave plate 62 as the first PS converter 12. However, in the second PS converter 23, the half-wave plate 62 is disposed on the optical path of the polarized light that has passed through the polarization separation surface 60. Therefore, all the light emitted from the second PS converter 23 becomes S-polarized light.
  • the polarized light (P-polarized light) emitted from the first PS converter 12 is incident on the first lens array 13, and the polarized light (S-polarized light) emitted from the second PS converter 23 is the second lens.
  • the light enters the array 24 and is condensed near the third lens array 40.
  • the first lens array 13 and the second lens array 24 have the same configuration. Specifically, the first lens array 13 and the second lens array 24 have a plurality of rectangular lens elements arranged in a matrix. In other words, in the first lens array 13 and the second lens array 24, a plurality of rectangular lens elements are arranged in contact with each other vertically and horizontally.
  • the intersection of the vertical (vertical) center line of the first lens array 13 and the second lens array 24 and the horizontal (horizontal) center line is defined as the center of each lens array 13, 24. Call.
  • the number of lens elements arranged in the vertical and horizontal directions may be odd or even.
  • the centers of the lens arrays 13 and 24 may be at the center of a certain lens element or at the boundary between adjacent lens elements.
  • the third lens array 40 is common to the first lens array 13 and the second lens array 24 in that it has a plurality of rectangular lens elements arranged in a matrix.
  • the number of lens elements arranged in the horizontal direction is twice that of the first lens array 13 and the second lens array 24, and the number of lens elements arranged in the vertical direction. Is the same as the first lens array 13 and the second lens array 24.
  • the center of the first collimating lens 11, the center of the first PS converter 12, and the center of the first lens array 13 are on the first lamp optical axis
  • the lamp optical axis is perpendicular to the light incident surface of the PBS 30.
  • the center of the second collimating lens 22, the center of the second PS converter 23, and the center of the second lens array 24 are on the second lamp optical axis
  • the second lamp optical axis is the light of the PBS 30. It is perpendicular to the incident surface.
  • the light propagating on the second lamp optical axis also travels straight after entering the PBS 30, but the light propagating on the second lamp optical axis is S-polarized light and is reflected by the polarization separation film 31.
  • the propagation direction (traveling direction) of the light propagating on the reflected second lamp optical axis is the same direction (parallel) as the propagation direction of the light propagating on the first lamp optical axis. That is, the PBS 30 serves as an optical path changing unit that makes the traveling directions of light propagating on the first lamp optical axis (P-polarized light) and light propagating on the second lamp optical axis (S-polarized light) the same. Function.
  • the light propagating on the first lamp optical axis does not coincide with the light propagating on the second lamp optical axis, and is separated by a distance (L).
  • the first lamp optical axis and the second lamp optical axis are separated by a distance (L).
  • the third lens array 40 a plurality of lens elements are arranged in the horizontal direction at the same interval as the distance (L), that is, at the pitch (L).
  • the half-wave plate 70 has a pitch that is twice (2 ⁇ L) the arrangement pitch of lens elements in the second lens array 40, and the first Are arranged in the vicinity of the condensing point of the light beam emitted from the lens array 13.
  • the P-polarized light emitted from the first lens array 13 is converted into S-polarized light by the half-wave plate 70 disposed between the PBS 30 and the third lens array 40 after passing through the PBS 30. Then, the light enters the third lens array 30.
  • the S-polarized light emitted from the second lens array 24 is reflected by the PBS 30 and then enters the third lens array 40 without being subjected to polarization conversion.
  • the polarization directions of the light emitted from the two light source lamps 10 and 20 are aligned in the same direction after the third lens array 40.
  • the optical system after the third lens array 40 has the same configuration as a general projection display device. That is, the light (S-polarized light) emitted from the third lens array 40 passes through the lens 81 and the lens 82 and enters the dichroic mirror 83.
  • the dichroic mirror 83 reflects blue light and transmits yellow light.
  • the blue light reflected by the dichroic mirror 83 passes through the lens 84, is then reflected by the mirror 85, passes through the lens 86 and other optical elements, and reaches the blue LCD 87.
  • Yellow light that has passed through the dichroic mirror 83 passes through the lens 91 and enters the dichroic mirror 92.
  • the dichroic mirror 92 reflects green light and transmits red light.
  • the green light reflected by the dichroic mirror 92 passes through the lens 93 and other optical elements and reaches the green LCD 94.
  • the red light that has passed through the dichroic mirror 92 passes through the relay lens 101, is reflected by the mirror 102, and passes through the relay lens 103. Further, after being reflected by the mirror 104, the light passes through the lens 105 and other optical elements and reaches the red LCD 106.
  • the blue light, green light, and red light that have reached each LCD are subjected to light modulation in each LCD, and are then synthesized again by the cross dichroic prism 120 and enlarged and projected through the projection lens 130.
  • FIG. 3 shows the result of simulating the illuminance distribution in the optical path of green light when only the first light source lamp 10 shown in FIG. 1 is turned on.
  • FIG. 4 shows a simulation result of the illuminance distribution in the optical path of red light when only the first light source lamp 10 is turned on.
  • 3 and 4 are compared with FIGS. 7 and 8, in the projection display device of the present invention, the uniformity of the illuminance distribution is improved, and the difference in illuminance distribution between the green light path and the red light path is greatly increased. It can be seen that it is getting smaller.
  • the optical path changing unit is not limited to the prism type polarization beam splitter as shown in FIGS.
  • FIG. 5 shows another example of the optical path changing unit.
  • the optical path changing unit shown in FIG. 5 is a planar PBS 82 having a pair of substrate glass 80 and cover glass 81 and a wire grid (not shown) formed between the substrate glass 80 and cover glass 81.
  • the wire grid in the PBS 82 corresponds to the polarization separation film 31 of the PBS 30 shown in FIG.
  • the PBS 82 is disposed with an inclination of 45 degrees with respect to the first lamp optical axis and the second lamp optical axis.
  • the light propagating on the first lamp optical axis (P-polarized light) is transmitted to the first lamp optical axis according to the refractive index difference between the substrate glass 80 and the cover glass 81 and air when passing through the PBS 82. On the other hand, it is shifted by L1.
  • the second lamp optical axis (S-polarized light) is reflected by the PBS 82, the second lamp depends on the refractive index difference between the substrate glass 80 and the cover glass 81 and air. Shift by L2 with respect to the optical axis. At this time, the light propagating on the first lamp optical axis does not coincide with the light propagating on the second lamp optical axis, and is separated by a distance (L).
  • the first light source lamp and the second light source lamp are arranged so that the first lamp optical axis and the second lamp optical axis are separated by a distance (L) after passing through the PBS 82. .
  • the optical path conversion unit is realized by a planar PBS as shown in FIG. 5, the same illuminance distribution as that shown in FIGS. 3 and 4 can be obtained. Furthermore, by changing the prism type PBS to a flat type PBS, the optical path conversion unit can be reduced in size and weight.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

A projection display device comprises a first polarization conversion unit (12) for converting light form a first light source lamp into first polarized light, a second polarization conversion unit (23) for converting light from a second light source lamp into second polarized light different from the first polarized light, a first lens array (13), a second lens array (24), a light path conversion unit (30) for making the directions of travel of the first polarized light and the second polarized light the same, a third polarization conversion unit (70) for equalizing the directions of polarization of the first polarized light and the second polarized light emitted from the light path conversion unit (30), and a third lens array (40) which polarized light emitted from the third polarization conversion unit (70) enters. The first light source lamp and the second light source lamp are disposed such that the optical axes thereof are parallel to each other and a distance (L)away from each other after passing through the light path conversion unit. The third lens array (40) includes plural lens elements arranged in a matrix, and the arrangement pitch of the lens elements is the distance (L).

Description

投写型表示装置Projection display
 本発明は、投写型表示装置に関するものであり、特に、投写型表示装置の照明光学系に関するものである。 The present invention relates to a projection display device, and more particularly to an illumination optical system of the projection display device.
 投写映像を高輝度化するために、2灯以上の光源ランプを備えた投写型表示装置がある。かかる投写型表示装置における照明光学系の構成について図6に参照しながら説明する。図6に示す照明光学系では、2灯の光源ランプ201、202のそれぞれから発せられる光を合成するために楕円鏡(リフレクタ)と合成用ミラーとが用いられている。具体的には、第1のリフレクタ203aと第2のリフレクタ203bとが、各リフレクタの第2焦点近傍に配置された合成用ミラー204a、204bを挟んで対向している。さらに、第1の光源ランプ201の発光部は、第1のリフレクタ203aの第1焦点近傍に配置され、第2の光源ランプ202の発光部は、第2のリフレクタ203bの第1焦点近傍に配置されている。結果、第1の光源ランプ201及び第2の光源ランプ202から発せられた光は合成用ミラー204a、204bによって同一方向に曲げられて合成される。同一方向に曲げられた光は、コリメートレンズ205で略平行光とされた後に、第1のレンズアレイ206に入射する。 In order to increase the brightness of the projected image, there is a projection display device having two or more light source lamps. The configuration of the illumination optical system in such a projection display device will be described with reference to FIG. In the illumination optical system shown in FIG. 6, an elliptical mirror (reflector) and a combining mirror are used to combine the light emitted from each of the two light source lamps 201 and 202. Specifically, the first reflector 203a and the second reflector 203b are opposed to each other with the combining mirrors 204a and 204b disposed in the vicinity of the second focal point of each reflector. Further, the light emitting part of the first light source lamp 201 is arranged in the vicinity of the first focal point of the first reflector 203a, and the light emitting part of the second light source lamp 202 is arranged in the vicinity of the first focal point of the second reflector 203b. Has been. As a result, the light emitted from the first light source lamp 201 and the second light source lamp 202 is bent and combined in the same direction by the combining mirrors 204a and 204b. The light bent in the same direction is made substantially parallel light by the collimator lens 205 and then enters the first lens array 206.
 図6に示す第1の光源ランプ201から発せられた光の光軸と、第2の光源ランプ202から発せられた光の光軸とは、合成用ミラー204a、204bで反射された後に、第1のレンズアレイ205の中心に対してそれぞれd/2だけずれている。 The optical axis of the light emitted from the first light source lamp 201 shown in FIG. 6 and the optical axis of the light emitted from the second light source lamp 202 are reflected by the combining mirrors 204a and 204b, and then Each lens array 205 is shifted by d / 2 from the center of the lens array 205.
 このため、第1の光源ランプ201から発せられ、第1のレンズアレイ206によって離散され、第2のレンズアレイ207および第2のレンズアレイ207の後に配置されるレンズによってLCD(Liquid Crystal Display)上で重畳される複数の光束の、光学部品(ダクロイックミラーLCD、投写レンズなど)に対する光線入射角度分布と、第2の光源ランプ202から発せられ、第1のレンズアレイ206によって離散され、第2のレンズアレイ207および第2のレンズアレイ207の後に配置されるレンズによってLCD上で重畳される複数の光束の、光学部品(ダクロイックミラー、LCD、投写レンズなど)に対する光線入射角度分布が異なる。光学部品への入射角度が異なると、光学部品での光透過特性が変化する。 For this reason, the light emitted from the first light source lamp 201, separated by the first lens array 206, and arranged on the LCD (Liquid Crystal Display) by the lenses arranged after the second lens array 207 and the second lens array 207. The light incident angle distribution of the plurality of light beams superimposed on the optical component (such as a dichroic mirror LCD and a projection lens) and the second light source lamp 202 radiate the light beam and separate it by the first lens array 206, The light incident angle distribution with respect to optical components (such as a dichroic mirror, LCD, and projection lens) of a plurality of light beams superimposed on the LCD by the lenses arranged after the lens array 207 and the second lens array 207 is different. If the incident angle to the optical component is different, the light transmission characteristic of the optical component changes.
 結果、第1の光源ランプ201及び第2の光源ランプ202の双方を同時に使用した場合には、第2のレンズアレイ207以降の光学部品における上記入射分布の不均一が概ね打ち消されるが、いずれか1灯のみを使用した場合には打ち消されないので、投写画面の照度分布が不均一になる。 As a result, when both the first light source lamp 201 and the second light source lamp 202 are used at the same time, the non-uniformity of the incident distribution in the optical components after the second lens array 207 is generally canceled. When only one lamp is used, it is not canceled out, so the illuminance distribution on the projection screen becomes non-uniform.
 例えば、1灯点灯時の緑色光の光路における照度分布をシミュレーションすると、図7に示すように、投写映像の左側が明るく、右側が暗くなる。また、青色光の光路における照度分布も、緑色光の光路における照度分布と同様の照度分布となる。一方、赤色光の光路では、レンズ208、209、210からなるリレー光学系により照度分布が反転され、図8に示すような照度分布になる。すなわち、投写画像の右側が明るく、左側が暗くなる。この結果、赤/緑/青の3色の光を合成して白色を表示した場合、映像右側では赤色が強く、左側では赤色が弱いため、色ムラが生じる。 For example, when the illuminance distribution in the light path of green light when one lamp is lit is simulated, the left side of the projected image is bright and the right side is dark as shown in FIG. Further, the illuminance distribution in the optical path of blue light is the same as the illuminance distribution in the optical path of green light. On the other hand, in the optical path of red light, the illuminance distribution is inverted by the relay optical system composed of the lenses 208, 209, and 210, and the illuminance distribution as shown in FIG. 8 is obtained. That is, the right side of the projected image is bright and the left side is dark. As a result, when three colors of light of red / green / blue are combined to display white, color unevenness occurs because red is strong on the right side of the image and red is weak on the left side.
 本発明の投写型表示装置は、2つの光源ランプを備えた投写型表示装置である。本発明の投写型表示装置の一つは、第1の光源ランプから発せられた光の偏光方向を揃えて第1の偏光光とする第1の偏光変換部と、第2の光源ランプから発せられた光の偏光方向を前記第1の偏光光の偏光方向とは異なる方向に揃えて第2の偏光光とする第2の偏光変換部と、中心が前記第1の光源ランプの光軸上にあり、前記第1の偏光変換部から出射された前記第1の偏光光が入射する第1のレンズアレイと、中心が前記第2の光源ランプの光軸上にあり、前記第2の偏光変換部から出射された前記第2の偏光光が入射する第2のレンズアレイと、前記第1のレンズアレイから出射された前記第1の偏光光を透過させるともに、前記第2のレンズアレイから出射された前記第2の偏光光を前記第1の偏光光の透過方向と同一方向に反射して、前記第1の偏光光と前記第2の偏光光の進行方向を同一にする光路変換部と、前記光路変換部から出射された前記第1の偏光光と前記第2の偏光光の偏光方向を揃えるいずれか一方の偏光方向をいずれか他方の偏光方向と同一の方向に変換する第3の偏光変換部と、前記第3の偏光変換部から出射された偏光光が入射する第3のレンズアレイとを有する。前記第1の光源ランプと前記第2の光源ランプとは、それぞれの前記光軸が前記光路変換部を通過した後において互いに平行であって、且つ距離(L)だけ離れるように配置されている。また、前記第3のレンズアレイは、マトリクス状に配列された複数のレンズ要素を備え、それらレンズ要素の配列ピッチが前記距離(L)と同一である。 
 本発明の投写型表示装置の他の一つは、第1の光源ランプから発せられた光の偏光方向を揃えて第1の偏光光とする第1の偏光変換部と、第2の光源ランプから発せられた光の偏光方向を前記第1の偏光光の偏光方向とは異なる方向に揃えて第2の偏光光とする第2の偏光変換部と、中心が前記第1の光源ランプの光軸上にあり、前記第1の偏光変換部から出射された前記第1の偏光光が入射する第1のレンズアレイと、中心が前記第2の光源ランプの光軸上にあり、前記第2の偏光変換部から出射された前記第2の偏光光が入射する第2のレンズアレイと、前記第1のレンズアレイから出射された前記第1の偏光光を透過させるともに、前記第2のレンズアレイから出射された前記第2の偏光光を前記第1の偏光光の透過方向と同一方向に反射して、前記第1の偏光光と前記第2の偏光光の進行方向を同一にする光路変換部と、前記光路変換部から出射された偏光光が入射する第3のレンズアレイと、前記第3のレンズアレイから出射された前記第1の偏光光と前記第2の偏光光のいずれか一方の偏光方向をいずれか他方の偏光方向と同一の方向に変換する第3の偏光変換部とを有する。前記第1の光源ランプと前記第2の光源ランプとは、それぞれの前記光軸が前記光路変換部を通過した後において互いに平行であって、且つ距離(L)だけ離れるように配置されている。また、前記第3のレンズアレイは、マトリクス状に配列された複数のレンズ要素を備え、それらレンズ要素の配列ピッチが前記距離(L)と同一である。
The projection display device of the present invention is a projection display device provided with two light source lamps. One of the projection display devices according to the present invention includes a first polarization conversion unit that aligns the polarization direction of the light emitted from the first light source lamp to obtain the first polarized light, and the second light source lamp. A second polarization conversion section that aligns the polarization direction of the emitted light with a direction different from the polarization direction of the first polarization light to make the second polarization light, and the center is on the optical axis of the first light source lamp The first lens array on which the first polarized light emitted from the first polarization conversion unit is incident, the center being on the optical axis of the second light source lamp, and the second polarized light A second lens array on which the second polarized light emitted from the conversion unit enters, and transmits the first polarized light emitted from the first lens array, and from the second lens array. Reflects the emitted second polarized light in the same direction as the transmission direction of the first polarized light. An optical path conversion unit that makes the traveling directions of the first polarized light and the second polarized light the same, and polarization of the first polarized light and the second polarized light emitted from the optical path conversion unit A third polarization converter that converts one of the polarization directions to the same direction as the other polarization direction, and a third light that is incident on the polarized light emitted from the third polarization converter. And a lens array. The first light source lamp and the second light source lamp are arranged so that their optical axes are parallel to each other and separated by a distance (L) after passing through the optical path changing unit. . The third lens array includes a plurality of lens elements arranged in a matrix, and the arrangement pitch of the lens elements is the same as the distance (L).
Another one of the projection display devices according to the present invention includes a first polarization conversion unit configured to align the polarization direction of light emitted from the first light source lamp to be first polarized light, and a second light source lamp. A second polarization conversion unit configured to align the polarization direction of the light emitted from the second polarization light with a direction different from the polarization direction of the first polarization light, and the center is the light of the first light source lamp A first lens array that is on the axis and on which the first polarized light emitted from the first polarization conversion unit is incident; a center that is on the optical axis of the second light source lamp; A second lens array on which the second polarized light emitted from the polarization conversion unit enters, and transmits the first polarized light emitted from the first lens array, and also transmits the second lens. The second polarized light emitted from the array is in the same direction as the transmission direction of the first polarized light. An optical path conversion unit that makes the traveling directions of the first polarized light and the second polarized light the same, a third lens array into which the polarized light emitted from the optical path conversion unit is incident, A third polarization conversion unit that converts the polarization direction of one of the first polarization light and the second polarization light emitted from the third lens array into the same direction as the other polarization direction; Have The first light source lamp and the second light source lamp are arranged so that their optical axes are parallel to each other and separated by a distance (L) after passing through the optical path changing unit. . The third lens array includes a plurality of lens elements arranged in a matrix, and the arrangement pitch of the lens elements is the same as the distance (L).
 本発明によれば、1灯点灯時でも色ムラがない2灯式の投写型表示装置が実現される。 According to the present invention, a two-lamp type projection display device without color unevenness even when one lamp is lit is realized.
 上記及びそれ以外の本発明の目的、特徴及び利点は、下記の記載及び本発明の一例を示す添付図面の参照によって明らかになる。 The above and other objects, features, and advantages of the present invention will become apparent from the following description and the accompanying drawings showing an example of the present invention.
図1は、本発明の投写型表示装置の実施形態の一例を示す模式図である。FIG. 1 is a schematic view showing an example of an embodiment of a projection display device of the present invention. 図2は、図1に示すPBS近傍の構成を示す模式的拡大図である。FIG. 2 is a schematic enlarged view showing a configuration in the vicinity of the PBS shown in FIG. 図3は、図1に示す第1の光源ランプ10のみを点灯させた場合の緑色光の光路における照度分布をシミュレーションした結果を示す図である。FIG. 3 is a diagram showing a result of simulating the illuminance distribution in the optical path of green light when only the first light source lamp 10 shown in FIG. 1 is turned on. 図4は、図1に示す第1の光源ランプ10のみを点灯させた場合の赤色光の光路における照度分布をシミュレーションした結果を示す図である。FIG. 4 is a diagram showing the result of simulating the illuminance distribution in the optical path of red light when only the first light source lamp 10 shown in FIG. 1 is turned on. 図5は、本発明の投写型表示装置の実施形態の他例を示す模式的拡大図である。FIG. 5 is a schematic enlarged view showing another example of the embodiment of the projection display device of the present invention. 図6は、2灯式の照明光学系を備えた投写型表示装置の構成例を示す模式図である。FIG. 6 is a schematic diagram illustrating a configuration example of a projection display device including a two-lamp illumination optical system. 図7は、図6に示す第1の光源ランプ201のみを点灯させた場合の緑色光の光路における照度分布をシミュレーションした結果を示す図である。FIG. 7 is a diagram showing the result of simulating the illuminance distribution in the optical path of green light when only the first light source lamp 201 shown in FIG. 6 is turned on. 図8は、図6に示す第1の光源ランプ201のみを点灯させた場合の赤色光の光路における照度分布をシミュレーションした結果を示す図である。FIG. 8 is a diagram showing the result of simulating the illuminance distribution in the optical path of red light when only the first light source lamp 201 shown in FIG. 6 is turned on.
(実施形態1)
 以下、本発明の投写型表示装置の実施形態の一例について説明する。図1は、本実施形態に係る投写型表示装置の構成を示す模式図である。図1に示すように、本実施形態に係る投写型表示装置は、第1の光源ランプ10と第2の光源ランプ20を備えた2灯式の照明光学系を有する。
(Embodiment 1)
Hereinafter, an example of the embodiment of the projection display device of the present invention will be described. FIG. 1 is a schematic diagram showing a configuration of a projection display apparatus according to the present embodiment. As shown in FIG. 1, the projection display apparatus according to this embodiment includes a two-lamp illumination optical system including a first light source lamp 10 and a second light source lamp 20.
 第1の光源ランプ10から発せられる光の光路上には、第1のコリメートレンズ11と、第1のPSコンバータ12と、第1のレンズアレイ13とがこの順で配置されている。一方、第2の光源ランプ20から発せられる光の光路上には、光路変換用の反射ミラー21と、第2のコリメートレンズ22と、第2のPSコンバータ23と、第2のレンズアレイ24とがこの順で配置されている。 On the optical path of the light emitted from the first light source lamp 10, a first collimating lens 11, a first PS converter 12, and a first lens array 13 are arranged in this order. On the other hand, on the optical path of the light emitted from the second light source lamp 20, an optical path conversion reflecting mirror 21, a second collimating lens 22, a second PS converter 23, and a second lens array 24 are provided. Are arranged in this order.
 第1の光源ランプ10から発せられた光は、第1のコリメートレンズ11を透過することにより略平行光になる。略平行光となった光は、第1のPSコンバータ12に入射してP偏光光となった後に第1のレンズアレイ13に入射して、複数の光束に分割される。一方、第2の光源ランプ20から発せられた光は、第2のコリメートレンズ22を透過することにより略平行光になる。略平行光となった光は、第2のPSコンバータ23に入射してS偏光光となった後に第2のレンズアレイ24に入射して、複数の光束に分割される。そして、第1のレンズアレイ13から出射された複数の光束と、第2のレンズアレイ24から出射された複数の光束とは、プリズム型の偏光ビームスプリッタ(PBS:Polarizing Beam Splitter)30によって合成され、第3のレンズアレイ40の近傍に集光される。 The light emitted from the first light source lamp 10 passes through the first collimating lens 11 and becomes substantially parallel light. The light that has become substantially parallel light enters the first PS converter 12 and becomes P-polarized light, and then enters the first lens array 13 and is divided into a plurality of light beams. On the other hand, the light emitted from the second light source lamp 20 passes through the second collimating lens 22 and becomes substantially parallel light. The light that has become substantially parallel light enters the second PS converter 23 to become S-polarized light, and then enters the second lens array 24 and is divided into a plurality of light beams. The plurality of light beams emitted from the first lens array 13 and the plurality of light beams emitted from the second lens array 24 are combined by a prism-type polarization beam splitter (PBS) 30. The light is condensed in the vicinity of the third lens array 40.
 各光源ランプ10、20は、発光部であるライトバルブ50と反射面を備えたリフレクタ51とを有する超高圧水銀ランプである。リフレクタ51の反射面52は、回転対称軸を有する楕円形であって、ライトバルブ50は反射面52の回転対称軸上にある第1焦点近傍に配置されている。以下の説明では、第1の光源ランプ10におけるリフレクタ51の反射面52の回転対称軸を「第1のランプ光軸」と称する。また、第2の光源ランプ20におけるリフレクタ51の反射面52の回転対称軸を「第2のランプ光軸」と称する。もっとも、各光源ランプ10、20は超高圧水銀ランプに限られるものではなく、例えば、メタルハライドランプやキセノンランプであってもよい。 Each of the light source lamps 10 and 20 is an ultra-high pressure mercury lamp having a light bulb 50 as a light emitting unit and a reflector 51 having a reflecting surface. The reflecting surface 52 of the reflector 51 has an elliptical shape having a rotational symmetry axis, and the light valve 50 is disposed in the vicinity of the first focal point on the rotational symmetry axis of the reflecting surface 52. In the following description, the rotational symmetry axis of the reflecting surface 52 of the reflector 51 in the first light source lamp 10 is referred to as “first lamp optical axis”. In addition, the rotationally symmetric axis of the reflecting surface 52 of the reflector 51 in the second light source lamp 20 is referred to as a “second lamp optical axis”. However, each of the light source lamps 10 and 20 is not limited to an ultrahigh pressure mercury lamp, and may be, for example, a metal halide lamp or a xenon lamp.
 第1の光源ランプ10のライトバルブ50から発せられた光は、リフレクタ51の反射面52で反射されて、反射面52の第2焦点近傍に集光される。第2焦点に集光された光は、第1のコリメートレンズ11に入射して略平行光となる。第1のコリメートレンズ11は凸レンズであって、その焦点距離は、リフレクタ51の反射面52の第2焦点と第1のコリメートレンズ11との間の距離と同一または略同一である。 The light emitted from the light bulb 50 of the first light source lamp 10 is reflected by the reflecting surface 52 of the reflector 51 and condensed near the second focal point of the reflecting surface 52. The light condensed at the second focal point enters the first collimating lens 11 and becomes substantially parallel light. The first collimating lens 11 is a convex lens, and the focal length thereof is the same or substantially the same as the distance between the second focal point of the reflecting surface 52 of the reflector 51 and the first collimating lens 11.
 第1のコリメートレンズ11によって略平行光とされた光が入射する第1のPSコンバータ12は、入射した光をP偏光光に変換する機能を有する。具体的には、図2に示すように、第1のPSコンバータ12は、P偏光光を透過させ、S偏光光を反射する偏光分離面60と、偏光分離面60によって反射されたS偏光光を偏光分離面60を透過したP偏光光と同一方向に反射させる反射面61と、反射面61によって反射されたS偏光光をP偏光光に変換する1/2波長板62とを有する。よって、第1のPSコンバータ12から出射される光は、すべてP偏光光となる。 The first PS converter 12 into which the light that has been made substantially parallel light by the first collimating lens 11 has a function of converting the incident light into P-polarized light. Specifically, as shown in FIG. 2, the first PS converter 12 transmits the P-polarized light and reflects the S-polarized light, and the S-polarized light reflected by the polarization separating surface 60. Is reflected in the same direction as the P-polarized light transmitted through the polarization separation surface 60, and a half-wave plate 62 that converts the S-polarized light reflected by the reflective surface 61 into P-polarized light. Therefore, all the light emitted from the first PS converter 12 becomes P-polarized light.
 一方、第2の光源ランプ20のライトバルブ50から発せられた光は、リフレクタ51の反射面52及び反射ミラー21で反射されて、反射面52の第2焦点近傍に集光される。第2焦点に集光された光は、第2のコリメートレンズ22に入射し、略平行光となる。第2のコリメートレンズ22も凸レンズであって、その焦点距離は、リフレクタ51の反射面52の第2焦点と第2のコリメートレンズ22との間の距離と同一または略同一である。 On the other hand, the light emitted from the light bulb 50 of the second light source lamp 20 is reflected by the reflecting surface 52 and the reflecting mirror 21 of the reflector 51 and is condensed near the second focal point of the reflecting surface 52. The light condensed at the second focal point enters the second collimating lens 22 and becomes substantially parallel light. The second collimating lens 22 is also a convex lens, and its focal length is the same or substantially the same as the distance between the second focal point of the reflecting surface 52 of the reflector 51 and the second collimating lens 22.
 第2のコリメートレンズ22によって略平行光とされた光が入射する第2のPSコンバータ23は、入射した光をS偏光光に変換する機能を有する。具体的には、図2に示すように、第1のPSコンバータ12と同一の偏光分離面60、反射面61及び1/2波長板62を有する。但し、第2のPSコンバータ23では、偏光分離面60を透過した偏光光の光路上に1/2波長板62が配置されている。よって、第2のPSコンバータ23から出射される光は、すべてS偏光光となる。 The second PS converter 23 into which the light that has been made substantially parallel light by the second collimating lens 22 has a function of converting the incident light into S-polarized light. Specifically, as shown in FIG. 2, it has the same polarization separation surface 60, reflection surface 61 and half-wave plate 62 as the first PS converter 12. However, in the second PS converter 23, the half-wave plate 62 is disposed on the optical path of the polarized light that has passed through the polarization separation surface 60. Therefore, all the light emitted from the second PS converter 23 becomes S-polarized light.
 第1のPSコンバータ12を出射した偏光光(P偏光光)は、第1のレンズアレイ13に入射し、第2のPSコンバータ23を出射した偏光光(S偏光光)は、第2のレンズアレイ24に入射し、共に第3のレンズアレイ40の近傍に集光される。 The polarized light (P-polarized light) emitted from the first PS converter 12 is incident on the first lens array 13, and the polarized light (S-polarized light) emitted from the second PS converter 23 is the second lens. The light enters the array 24 and is condensed near the third lens array 40.
 ここで、第1のレンズアレイ13及び第2のレンズアレイ24は同一の構成を有する。具体的には、第1のレンズアレイ13及び第2のレンズアレイ24は、マトリクス状に並べられた複数の矩形のレンズ要素を有する。換言すれば、第1のレンズアレイ13及び第2のレンズアレイ24には、複数の矩形のレンズ要素が縦横に互いに接して配置されている。ここで、第1のレンズアレイ13及び第2のレンズアレイ24の鉛直方向(縦方向)の中心線と、水平方向(横方向)の中心線との交点を各レンズアレイ13、24の中心と呼ぶ。レンズ要素の縦方向および横方向における配置数は奇数であっても偶数であってもよい。要するに、各レンズアレイ13、24の中心は、あるレンズ要素の中心にあっても、隣接するレンズ要素間の境目にあってもよい。 Here, the first lens array 13 and the second lens array 24 have the same configuration. Specifically, the first lens array 13 and the second lens array 24 have a plurality of rectangular lens elements arranged in a matrix. In other words, in the first lens array 13 and the second lens array 24, a plurality of rectangular lens elements are arranged in contact with each other vertically and horizontally. Here, the intersection of the vertical (vertical) center line of the first lens array 13 and the second lens array 24 and the horizontal (horizontal) center line is defined as the center of each lens array 13, 24. Call. The number of lens elements arranged in the vertical and horizontal directions may be odd or even. In short, the centers of the lens arrays 13 and 24 may be at the center of a certain lens element or at the boundary between adjacent lens elements.
 一方、第3のレンズアレイ40は、マトリクス状に並べられた複数の矩形のレンズ要素を有する点では、第1のレンズアレイ13及び第2のレンズアレイ24と共通する。しかし、第3のレンズアレイ40では、横方向に配列されたレンズ要素の数は第1のレンズアレイ13及び第2のレンズアレイ24の2倍であり、縦方向に配列されたレンズ要素の数は第1のレンズアレイ13及び第2のレンズアレイ24と同一である。 On the other hand, the third lens array 40 is common to the first lens array 13 and the second lens array 24 in that it has a plurality of rectangular lens elements arranged in a matrix. However, in the third lens array 40, the number of lens elements arranged in the horizontal direction is twice that of the first lens array 13 and the second lens array 24, and the number of lens elements arranged in the vertical direction. Is the same as the first lens array 13 and the second lens array 24.
 また、図1に示すように、第1のコリメートレンズ11の中心、第1のPSコンバータ12の中心、第1のレンズアレイ13の中心は、第1のランプ光軸上にあり、第1のランプ光軸は、PBS30の光入射面と垂直である。一方、第2のコリメートレンズ22の中心、第2のPSコンバータ23の中心、第2のレンズアレイ24の中心は、第2のランプ光軸上にあり、第2のランプ光軸はPBS30の光入射面と垂直である。 In addition, as shown in FIG. 1, the center of the first collimating lens 11, the center of the first PS converter 12, and the center of the first lens array 13 are on the first lamp optical axis, The lamp optical axis is perpendicular to the light incident surface of the PBS 30. On the other hand, the center of the second collimating lens 22, the center of the second PS converter 23, and the center of the second lens array 24 are on the second lamp optical axis, and the second lamp optical axis is the light of the PBS 30. It is perpendicular to the incident surface.
 ここでは、説明の便宜上、第1のランプ光軸上を伝播する光および第2のランプ光軸上を伝播する光を仮定する。第1のランプ光軸とPBS30の光入射面とは垂直であるので、第1のランプ光軸上を伝播する光はPBS30に入射後もそのまま直進する。PBS30内部には偏光分離膜31(図2)が形成されており、第1のランプ光軸上を伝播する光(P偏光光)は、偏光分離膜31を透過してそのまま直進する。一方、第2のランプ光軸上を伝播する光もPBS30に入射後はそのまま直進するが、第2のランプ光軸上を伝播する光はS偏光光であるので、偏光分離膜31で反射される。この反射された第2のランプ光軸上を伝播する光の伝播方向(進行方向)は、第1のランプ光軸上を伝播する光の伝播方向と同じ方向(平行)である。すなわち、PBS30は、第1のランプ光軸上を伝播する光(P偏光光)と、第2のランプ光軸上を伝播する光(S偏光光)の進行方向を同一とする光路変換部として機能する。このとき、第1のランプ光軸上を伝播する光と、第2のランプ光軸上を伝播する光とは一致せず、距離(L)だけ離れる。換言すると、図1に示す第1の光源ランプ10と第2の光源ランプ20とは、PBS30を通過した後に、第1のランプ光軸と第2のランプ光軸とが距離(L)だけ離れるように配置されている。 Here, for convenience of explanation, it is assumed that light propagates on the first lamp optical axis and light propagates on the second lamp optical axis. Since the first lamp optical axis and the light incident surface of the PBS 30 are perpendicular to each other, the light propagating on the first lamp optical axis travels straight after being incident on the PBS 30. A polarization separation film 31 (FIG. 2) is formed inside the PBS 30, and light propagating on the first lamp optical axis (P-polarized light) passes through the polarization separation film 31 and travels straight. On the other hand, the light propagating on the second lamp optical axis also travels straight after entering the PBS 30, but the light propagating on the second lamp optical axis is S-polarized light and is reflected by the polarization separation film 31. The The propagation direction (traveling direction) of the light propagating on the reflected second lamp optical axis is the same direction (parallel) as the propagation direction of the light propagating on the first lamp optical axis. That is, the PBS 30 serves as an optical path changing unit that makes the traveling directions of light propagating on the first lamp optical axis (P-polarized light) and light propagating on the second lamp optical axis (S-polarized light) the same. Function. At this time, the light propagating on the first lamp optical axis does not coincide with the light propagating on the second lamp optical axis, and is separated by a distance (L). In other words, after the first light source lamp 10 and the second light source lamp 20 shown in FIG. 1 have passed through the PBS 30, the first lamp optical axis and the second lamp optical axis are separated by a distance (L). Are arranged as follows.
 さらに、図2に示すように、第3のレンズアレイ40では、複数のレンズ要素が距離(L)と同じ間隔で、すなわちピッチ(L)で横方向に配列されている。加えて、PBS30と第2のレンズアレイ40との間には、1/2波長板70が第2のレンズアレイ40におけるレンズ要素の配列ピッチの2倍(2×L)のピッチで、第1のレンズアレイ13を出射した光束の集光点近傍に配置されている。 Furthermore, as shown in FIG. 2, in the third lens array 40, a plurality of lens elements are arranged in the horizontal direction at the same interval as the distance (L), that is, at the pitch (L). In addition, between the PBS 30 and the second lens array 40, the half-wave plate 70 has a pitch that is twice (2 × L) the arrangement pitch of lens elements in the second lens array 40, and the first Are arranged in the vicinity of the condensing point of the light beam emitted from the lens array 13.
 従って、第1のレンズアレイ13から出射されたP偏光光は、PBS30を透過後、PBS30と第3のレンズアレイ40との間に配置された1/2波長板70によってS偏光光に変換されてから第3のレンズアレイ30に入射する。一方、第2のレンズアレイ24から出射されたS偏光光は、PBS30で反射された後、偏光変換されることなく第3のレンズアレイ40に入射する。結果、2つの光源ランプ10、20から発せられた光の偏光方向は、第3のレンズアレイ40以降、同一方向に揃えられる。 Accordingly, the P-polarized light emitted from the first lens array 13 is converted into S-polarized light by the half-wave plate 70 disposed between the PBS 30 and the third lens array 40 after passing through the PBS 30. Then, the light enters the third lens array 30. On the other hand, the S-polarized light emitted from the second lens array 24 is reflected by the PBS 30 and then enters the third lens array 40 without being subjected to polarization conversion. As a result, the polarization directions of the light emitted from the two light source lamps 10 and 20 are aligned in the same direction after the third lens array 40.
 再び図1を参照する。第3のレンズアレイ40以降の光学系は、一般的な投写型表示装置と同様の構成を有する。すなわち、第3のレンズアレイ40を出射した光(S偏光光)は、レンズ81とレンズ82を透過してダイクロイックミラー83に入射する。ダイクロイックミラー83は、青色光を反射し、黄色光を透過させる。ダイクロイックミラー83で反射された青色光は、レンズ84を透過した後に、ミラー85で反射され、レンズ86その他の光学素子を透過して青色用のLCD87に到達する。 Refer to FIG. 1 again. The optical system after the third lens array 40 has the same configuration as a general projection display device. That is, the light (S-polarized light) emitted from the third lens array 40 passes through the lens 81 and the lens 82 and enters the dichroic mirror 83. The dichroic mirror 83 reflects blue light and transmits yellow light. The blue light reflected by the dichroic mirror 83 passes through the lens 84, is then reflected by the mirror 85, passes through the lens 86 and other optical elements, and reaches the blue LCD 87.
 ダイクロイックミラー83を透過した黄色光は、レンズ91を透過してダイクロイックミラー92に入射する。ダイクロイックミラー92は、緑色光を反射し、赤色光を透過させる。ダイクロイックミラー92で反射された緑色光は、レンズ93その他の光学素子を透過して緑色用のLCD94に到達する。 Yellow light that has passed through the dichroic mirror 83 passes through the lens 91 and enters the dichroic mirror 92. The dichroic mirror 92 reflects green light and transmits red light. The green light reflected by the dichroic mirror 92 passes through the lens 93 and other optical elements and reaches the green LCD 94.
 ダイクロイックミラー92を透過した赤色光は、リレーレンズ101を透過した後にミラー102で反射され、リレーレンズ103を透過する。さらに、ミラー104で反射された後にレンズ105その他の光学素子を透過して赤色用のLCD106に到達する。 The red light that has passed through the dichroic mirror 92 passes through the relay lens 101, is reflected by the mirror 102, and passes through the relay lens 103. Further, after being reflected by the mirror 104, the light passes through the lens 105 and other optical elements and reaches the red LCD 106.
 各LCDに到達した青色光、緑色光、赤色光は、それぞれのLCDにおいて光変調を受けた後に、クロスダイクロイックプリズム120で再び合成され、投写レンズ130を介して拡大投影される。 The blue light, green light, and red light that have reached each LCD are subjected to light modulation in each LCD, and are then synthesized again by the cross dichroic prism 120 and enlarged and projected through the projection lens 130.
 図3に、図1に示す第1の光源ランプ10のみを点灯させた場合の緑色光の光路における照度分布をシミュレーションした結果を示す。また、図4に第1の光源ランプ10のみを点灯させた場合の赤色光の光路における照度分布をシミュレーションした結果を示す。図3及び図4と図7及び図8とを比較すると、本発明の投写型表示装置では、照度分布の均一性が向上し、緑色光の光路と赤色光の光路における照度分布の差が大幅に小さくなっていることがわかる。 FIG. 3 shows the result of simulating the illuminance distribution in the optical path of green light when only the first light source lamp 10 shown in FIG. 1 is turned on. FIG. 4 shows a simulation result of the illuminance distribution in the optical path of red light when only the first light source lamp 10 is turned on. 3 and 4 are compared with FIGS. 7 and 8, in the projection display device of the present invention, the uniformity of the illuminance distribution is improved, and the difference in illuminance distribution between the green light path and the red light path is greatly increased. It can be seen that it is getting smaller.
 光路変換部は、図1、図2に示すようなプリズム型の偏光ビームスプリッタに限られない。図5に光路変化部の他の一例を示す。図5に示す光路変換部は、一対の基板ガラス80及びカバーガラス81と、基板ガラス80とカバーガラス81との間に形成されたワイヤーグリッド(不図示)とを有する平面型のPBS82である。ここで、PBS82におけるワイヤーグリッドは、図2に示すPBS30の偏光分離膜31に相当する。PBS82は、第1のランプ光軸及び第2のランプ光軸に対してそれぞれ45度傾けて配置されている。 The optical path changing unit is not limited to the prism type polarization beam splitter as shown in FIGS. FIG. 5 shows another example of the optical path changing unit. The optical path changing unit shown in FIG. 5 is a planar PBS 82 having a pair of substrate glass 80 and cover glass 81 and a wire grid (not shown) formed between the substrate glass 80 and cover glass 81. Here, the wire grid in the PBS 82 corresponds to the polarization separation film 31 of the PBS 30 shown in FIG. The PBS 82 is disposed with an inclination of 45 degrees with respect to the first lamp optical axis and the second lamp optical axis.
 第1のランプ光軸上を伝播する光(P偏光光)は、PBS82を透過する際に、基板ガラス80やカバーガラス81と空気との屈折率差に応じて、第1のランプ光軸に対してL1だけシフトする。一方、第2のランプ光軸上を伝播する光(S偏光光)は、PBS82で反射される際に、基板ガラス80やカバーガラス81と空気との屈折率差に応じて、第2のランプ光軸に対してL2だけシフトする。このとき、第1のランプ光軸上を伝播する光と、第2のランプ光軸上を伝播する光とは一致せず、距離(L)だけ離れる。換言すると、第1の光源ランプと第2の光源ランプとは、PBS82を通過した後に、第1のランプ光軸と第2のランプ光軸とが距離(L)だけ離れるように配置されている。 The light propagating on the first lamp optical axis (P-polarized light) is transmitted to the first lamp optical axis according to the refractive index difference between the substrate glass 80 and the cover glass 81 and air when passing through the PBS 82. On the other hand, it is shifted by L1. On the other hand, when the light propagating on the second lamp optical axis (S-polarized light) is reflected by the PBS 82, the second lamp depends on the refractive index difference between the substrate glass 80 and the cover glass 81 and air. Shift by L2 with respect to the optical axis. At this time, the light propagating on the first lamp optical axis does not coincide with the light propagating on the second lamp optical axis, and is separated by a distance (L). In other words, the first light source lamp and the second light source lamp are arranged so that the first lamp optical axis and the second lamp optical axis are separated by a distance (L) after passing through the PBS 82. .
 光路変換部を図5に示すような平面型のPBSによって実現した場合も図3、図4に示す照度分布と同一の照度分布が得られる。さらには、プリズム型のPBSを平面型のPBSに変えることによって、光路変換部を小型化、軽量化することができる。 Even when the optical path conversion unit is realized by a planar PBS as shown in FIG. 5, the same illuminance distribution as that shown in FIGS. 3 and 4 can be obtained. Furthermore, by changing the prism type PBS to a flat type PBS, the optical path conversion unit can be reduced in size and weight.

Claims (4)

  1.  2つの光源ランプを備えた投写型表示装置であって、
     第1の光源ランプから発せられた光の偏光方向を揃えて第1の偏光光とする第1の偏光変換部と、
     第2の光源ランプから発せられた光の偏光方向を前記第1の偏光光の偏光方向とは異なる方向に揃えて第2の偏光光とする第2の偏光変換部と、
     中心が前記第1の光源ランプの光軸上にあり、前記第1の偏光変換部から出射された前記第1の偏光光が入射する第1のレンズアレイと、
     中心が前記第2の光源ランプの光軸上にあり、前記第2の偏光変換部から出射された前記第2の偏光光が入射する第2のレンズアレイと、
     前記第1のレンズアレイから出射された前記第1の偏光光を透過させるとともに、前記第2のレンズアレイから出射された前記第2の偏光光を前記第1の偏光光の透過方向と同一方向に反射して、前記第1の偏光光と前記第2の偏光光の進行方向を同一にする光路変換部と、
     前記光路変換部から出射された前記第1の偏光光と前記第2の偏光光の偏光方向を揃える第3の偏光変換部と、
     前記第3の偏光変換部から出射された偏光光が入射する第3のレンズアレイとを有し、
     前記第1の光源ランプと前記第2の光源ランプとは、それぞれの前記光軸が前記光路変換部を通過した後において互いに平行であって、且つ距離(L)だけ離れるように配置されており、
     前記第3のレンズアレイは、マトリクス状に配列された複数のレンズ要素を備え、それらレンズ要素の配列ピッチが前記距離(L)と同一であることを特徴とする投写型表示装置。
    A projection display device having two light source lamps,
    A first polarization converter that aligns the polarization direction of the light emitted from the first light source lamp to make the first polarized light;
    A second polarization converter that aligns the polarization direction of the light emitted from the second light source lamp with a direction different from the polarization direction of the first polarized light to make the second polarized light;
    A first lens array having a center on the optical axis of the first light source lamp and receiving the first polarized light emitted from the first polarization converter;
    A second lens array having a center on the optical axis of the second light source lamp and receiving the second polarized light emitted from the second polarization converter;
    Transmitting the first polarized light emitted from the first lens array and transmitting the second polarized light emitted from the second lens array in the same direction as the transmission direction of the first polarized light And an optical path changing unit that makes the traveling directions of the first polarized light and the second polarized light the same,
    A third polarization converter that aligns the polarization directions of the first polarized light and the second polarized light emitted from the optical path converter;
    A third lens array on which the polarized light emitted from the third polarization conversion unit enters,
    The first light source lamp and the second light source lamp are arranged so that the respective optical axes are parallel to each other and separated by a distance (L) after passing through the optical path changing unit. ,
    The third lens array includes a plurality of lens elements arranged in a matrix, and the arrangement pitch of the lens elements is the same as the distance (L).
  2.  2つの光源ランプを備えた投写型表示装置であって、
     第1の光源ランプから発せられた光の偏光方向を揃えて第1の偏光光とする第1の偏光変換部と、
     第2の光源ランプから発せられた光の偏光方向を前記第1の偏光光の偏光方向とは異なる方向に揃えて第2の偏光光とする第2の偏光変換部と、
     中心が前記第1の光源ランプの光軸上にあり、前記第1の偏光変換部から出射された前記第1の偏光光が入射する第1のレンズアレイと、
     中心が前記第2の光源ランプの光軸上にあり、前記第2の偏光変換部から出射された前記第2の偏光光が入射する第2のレンズアレイと、
     前記第1のレンズアレイから出射された前記第1の偏光光を透過させるとともに、前記第2のレンズアレイから出射された前記第2の偏光光を前記第1の偏光光の透過方向と同一方向に反射して、前記第1の偏光光と前記第2の偏光光の進行方向を同一にする光路変換部と、
     前記光路変換部から出射された偏光光が入射する第3のレンズアレイと、
     前記第3のレンズアレイから出射された前記第1の偏光光と前記第2の偏光光の偏光方向を揃える第3の偏光変換部とを有し、
     前記第1の光源ランプと前記第2の光源ランプとは、それぞれの前記光軸が前記光路変換部を通過した後において互いに平行であって、且つ距離(L)だけ離れるように配置されており、
     前記第3のレンズアレイは、マトリクス状に配列された複数のレンズ要素を備え、それらレンズ要素の配列ピッチが前記距離(L)と同一であることを特徴とする投写型表示装置。
    A projection display device having two light source lamps,
    A first polarization converter that aligns the polarization direction of the light emitted from the first light source lamp to make the first polarized light;
    A second polarization converter that aligns the polarization direction of the light emitted from the second light source lamp with a direction different from the polarization direction of the first polarized light to make the second polarized light;
    A first lens array having a center on the optical axis of the first light source lamp and receiving the first polarized light emitted from the first polarization converter;
    A second lens array having a center on the optical axis of the second light source lamp and receiving the second polarized light emitted from the second polarization converter;
    Transmitting the first polarized light emitted from the first lens array and transmitting the second polarized light emitted from the second lens array in the same direction as the transmission direction of the first polarized light And an optical path changing unit that makes the traveling directions of the first polarized light and the second polarized light the same,
    A third lens array on which the polarized light emitted from the optical path changing unit is incident;
    A third polarization converter that aligns the polarization directions of the first polarized light and the second polarized light emitted from the third lens array;
    The first light source lamp and the second light source lamp are arranged so that the respective optical axes are parallel to each other and separated by a distance (L) after passing through the optical path changing unit. ,
    The third lens array includes a plurality of lens elements arranged in a matrix, and the arrangement pitch of the lens elements is the same as the distance (L).
  3.  光路変換部は、
     前記第1のレンズアレイから出射した前記第1の偏光光が入射する第1の光入射面と、
     前記第1の光入射面と直交し、かつ、前記第2のレンズアレイから出射した前記第2の偏光光が入射する第2の光入射面と、
     前記第1の光入射面から入射した前記第1の偏光光を透過させ、且つ前記第2の光入射面から入射した前記第2の偏光光を前記第1の偏光光の透過方向と同一方向に反射する偏光分離膜とを有するプリズム型の偏光ビームスプリッタであることを特徴とする請求の範囲第1項または第2項記載の投写型表示装置。
    The optical path changer
    A first light incident surface on which the first polarized light emitted from the first lens array is incident;
    A second light incident surface that is orthogonal to the first light incident surface and on which the second polarized light emitted from the second lens array is incident;
    Transmitting the first polarized light incident from the first light incident surface and transmitting the second polarized light incident from the second light incident surface in the same direction as the transmission direction of the first polarized light 3. The projection display device according to claim 1, wherein the projection display device is a prism-type polarizing beam splitter having a polarizing separation film that reflects light.
  4.  光路変換部は、
     前記第1のレンズアレイから出射した前記第1の偏光光を入射方向と同一方向に透過させるとともに、前記第2のレンズアレイから出射した前記第2の偏光光を前記第1の偏光光の透過方向と同一方向に反射する平面型の偏光ビームスプリッタであることを特徴とする請求の範囲第1項または第2項記載の投写型表示装置。
    The optical path changer
    The first polarized light emitted from the first lens array is transmitted in the same direction as the incident direction, and the second polarized light emitted from the second lens array is transmitted through the first polarized light. 3. The projection display device according to claim 1, wherein the projection display device is a planar polarizing beam splitter that reflects in the same direction as the direction.
PCT/JP2009/051476 2009-01-29 2009-01-29 Projection display device WO2010086984A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/138,278 US20110279780A1 (en) 2009-01-29 2009-01-29 Projection display device
PCT/JP2009/051476 WO2010086984A1 (en) 2009-01-29 2009-01-29 Projection display device
JP2010548301A JP5034132B2 (en) 2009-01-29 2009-01-29 Projection display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/051476 WO2010086984A1 (en) 2009-01-29 2009-01-29 Projection display device

Publications (1)

Publication Number Publication Date
WO2010086984A1 true WO2010086984A1 (en) 2010-08-05

Family

ID=42395254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051476 WO2010086984A1 (en) 2009-01-29 2009-01-29 Projection display device

Country Status (3)

Country Link
US (1) US20110279780A1 (en)
JP (1) JP5034132B2 (en)
WO (1) WO2010086984A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108153092A (en) * 2018-01-03 2018-06-12 京东方科技集团股份有限公司 Reflection type optical modulation device, projecting apparatus and AR/VR displays
CN108303842A (en) * 2017-01-12 2018-07-20 深圳市光峰光电技术有限公司 Projection display system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140204459A1 (en) * 2013-01-22 2014-07-24 Cynosure Photonics Corp. High efficiency light combination module of projection system
US9594295B2 (en) * 2014-03-26 2017-03-14 Seiko Epson Corporation Projector with a light modulator controlled based on a viewing angle characteristic of the light modulator
CN114868080A (en) * 2019-12-25 2022-08-05 索尼集团公司 Illumination device and display apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264697A (en) * 2000-03-17 2001-09-26 Fujitsu General Ltd Projector device
JP2003066374A (en) * 2001-08-23 2003-03-05 Fuji Photo Film Co Ltd Lighting system
JP2003075911A (en) * 2001-09-05 2003-03-12 Fujitsu General Ltd Liquid crystal projector by light-source switching system
JP2007108625A (en) * 2004-12-07 2007-04-26 Seiko Epson Corp Illuminating apparatus and projector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244282A (en) * 1994-03-04 1995-09-19 Canon Inc Illuminator and projecting device using the same
US7628494B2 (en) * 2004-12-07 2009-12-08 Seiko Epson Corporation Illuminating apparatus and projector
JP4961167B2 (en) * 2005-07-15 2012-06-27 三洋電機株式会社 Illumination device and projection display device
TWI292051B (en) * 2006-01-19 2008-01-01 Coretronic Corp Illumination system and projection apparatus
JP2007256422A (en) * 2006-03-22 2007-10-04 Seiko Epson Corp Illuminating apparatus and projector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264697A (en) * 2000-03-17 2001-09-26 Fujitsu General Ltd Projector device
JP2003066374A (en) * 2001-08-23 2003-03-05 Fuji Photo Film Co Ltd Lighting system
JP2003075911A (en) * 2001-09-05 2003-03-12 Fujitsu General Ltd Liquid crystal projector by light-source switching system
JP2007108625A (en) * 2004-12-07 2007-04-26 Seiko Epson Corp Illuminating apparatus and projector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108303842A (en) * 2017-01-12 2018-07-20 深圳市光峰光电技术有限公司 Projection display system
CN108303842B (en) * 2017-01-12 2020-09-15 深圳光峰科技股份有限公司 Projection display system
CN108153092A (en) * 2018-01-03 2018-06-12 京东方科技集团股份有限公司 Reflection type optical modulation device, projecting apparatus and AR/VR displays

Also Published As

Publication number Publication date
JP5034132B2 (en) 2012-09-26
US20110279780A1 (en) 2011-11-17
JPWO2010086984A1 (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5446591B2 (en) projector
US9016865B2 (en) Illumination device and projection type display device using the same
JPWO2002101457A1 (en) Illumination device and projection type video display device
JP5034132B2 (en) Projection display
US6987618B2 (en) Polarization converting device, illumination optical system and projector
JP2015222418A (en) Color separating/combining system, and color separating/combining device using the same, and image display device
JP2010224160A (en) Optical element, illumination apparatus, and projection display apparatus
US7528359B2 (en) Projector
JP2004233442A (en) Illuminator and projector
WO2011027428A1 (en) Illuminating device and projection display device using same
JP2014085570A (en) Projection type display device
WO2011033627A1 (en) Illumination device and projection type display device using the same
EP2233972B1 (en) Projector and illumination system therefore
JP4572347B2 (en) projector
JPH0772428A (en) Polarization light source device for projection type liquid crystal display device
JP4572358B2 (en) projector
JP2007264245A (en) Image projector
JP2016164665A (en) Projection device
JP2004226813A (en) Illuminator and projector provided with the same
JP2005284307A (en) Image display device
JP2010217652A (en) Projector
JP5266619B2 (en) projector
JP2014095911A (en) Projector
JP2009192669A (en) Projector
WO2017068676A1 (en) Projection-type video display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839176

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010548301

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13138278

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839176

Country of ref document: EP

Kind code of ref document: A1