WO2010084877A1 - Processes for the disposal of arsenic - Google Patents
Processes for the disposal of arsenic Download PDFInfo
- Publication number
- WO2010084877A1 WO2010084877A1 PCT/JP2010/050622 JP2010050622W WO2010084877A1 WO 2010084877 A1 WO2010084877 A1 WO 2010084877A1 JP 2010050622 W JP2010050622 W JP 2010050622W WO 2010084877 A1 WO2010084877 A1 WO 2010084877A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- arsenic
- leaching
- copper
- liquid
- reaction
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G28/00—Compounds of arsenic
- C01G28/02—Arsenates; Arsenites
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D3/00—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
- A62D3/30—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
- A62D3/33—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by chemical fixing the harmful substance, e.g. by chelation or complexation
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D3/00—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
- A62D3/30—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
- A62D3/38—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by oxidation; by combustion
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/0018—Mixed oxides or hydroxides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0026—Pyrometallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B30/00—Obtaining antimony, arsenic or bismuth
- C22B30/04—Obtaining arsenic
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
- C22B7/007—Wet processes by acid leaching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/02—Working-up flue dust
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D2101/00—Harmful chemical substances made harmless, or less harmful, by effecting chemical change
- A62D2101/20—Organic substances
- A62D2101/24—Organic substances containing heavy metals
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D2101/00—Harmful chemical substances made harmless, or less harmful, by effecting chemical change
- A62D2101/40—Inorganic substances
- A62D2101/43—Inorganic substances containing heavy metals, in the bonded or free state
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method for treating arsenic in which arsenic in a smelting intermediate product containing arsenic is extracted out of the system in a stable form.
- Patent Document 1 describes a method for producing scorodite targeting arsenic contained in smelting ash.
- Patent Document 2 describes a method for leaching arsenic sulfide starch by adding alkali while blowing air into a slurry containing arsenic sulfide starch and leaching arsenic while maintaining the pH at 5-8. ing.
- Non-Patent Document 1 reports on the solubility product of iron arsenate, calcium arsenate, and magnesium arsenate. According to the literature, calcium arsenate and magnesium arsenate are stable only in the alkaline region, while iron arsenate is stable in the neutral to acidic region, with a minimal solubility of 20 mg / L at pH 3.2. Has been.
- Non-Patent Document 2 discloses the solubility of iron arsenate and scorodite. According to this document, the solubility of arsenic from scorodite is shown to be two orders of magnitude lower than that of non-condensed iron arsenate in the weakly acidic region, which discloses that scorodite is a stable arsenic compound.
- Non-Patent Document 3 describes a method for generating scorodite targeting arsenic contained in sulfuric acid factory effluent and smelting effluent.
- JP 2005-161123 A Japanese Patent Publication No. 61-24329 Tadahisa Nishimura and Ikko Tozawa: Report of Tohoku University Research Institute of Beneficiation and Refining No. 764, Volume 34, No. 1, 1978. June E. Krause and V. A. Ettel, "Solubilities and Stabilites of Ferric Arsenate Compounds" Hydrometallic, 22, 311-337, (1989) Dimitrios Filippou and George P. Dempoulos, “Arsenic Immobilization by Controlled Scorodite Precipitation”, JOM Dec. , 52-55, (1997)
- pollution that is a concern in non-ferrous smelting includes air pollution by SO 2 gas, soil pollution and drainage pollution by arsenic.
- arsenic content in copper ore will increase in the future, so more thorough countermeasures are required than ever.
- Conventionally, coastal non-ferrous smelters in Japan have been operating without problems by using clean concentrate as a processing raw material.
- arsenic content in copper ore is expected to increase in the future, we thought that it would be necessary to extract arsenic out of the system as a smelting intermediate and to stabilize and store it in some way.
- arsenic sulfide starch which is an intermediate product containing arsenic, and decopperized electrolytic slime will be described.
- arsenic sulfide starch is a non-ferrous smelting intermediate product containing sulfide-type arsenic.
- the arsenic sulfide starch is, for example, a residue generated by reacting a sulfiding agent with smelting process water or wastewater containing arsenic.
- the sulfiding agent include hydrogen sulfide, sodium hydrosulfide, and sodium sulfide.
- the copper removal electrolytic slime is a liquid purification process (a process in which impurities such as arsenic accumulated in the copper electrolytic solution are collected and removed by electrowinning) performed in a copper electrolytic refining plant. It is a deposit generated by electrolytic deposition as a metal.
- the said liquid purification process is the method generally employ
- the present invention has been made under such circumstances, and the problem to be solved is the provision of the above two methods and satisfies the elution standard (according to Environmental Agency Notification No. 13), In addition, the present invention provides a method for easily producing a stable scorodite crystal having excellent filterability without reproducibility and complicated operation.
- the present inventors have determined from the X-ray diffraction results of the copper-free electrolytic slime that the copper-free electrolytic slime is composed of copper in the form of metal, arsenic, and copper arsenide in the form of an intermetallic compound. I came up with it. And from the said knowledge, it turned out that it can naturally apply to the copper arsenide thing which generate
- the present inventors have conducted intensive research to solve the above problems.
- a step of extracting arsenic from the non-ferrous smelting intermediate product containing the arsenic by leaching (leaching step), and then arsenic in the leachate from which the arsenic has been extracted is made pentavalent using an oxidizing agent.
- Step of oxidizing and removing remaining oxidizing agent (liquid adjustment step)
- the inventors have conceived of performing the three steps of (crystallization step).
- the present inventors have made it possible to process from the beginning of the leaching reaction in order to enable processing without requiring that the mixing ratio of both raw materials of arsenic sulfide starch and decopperized electrolytic slime be maintained at a constant ratio.
- Sulfur electrolytic sulfur: S 0
- S 0 mental sulfur
- CuS copper sulfide
- the inventors have made an excessive amount of copper ions present during leaching to convert arsenic to pentavalent arsenic.
- the inventors also conceived of a configuration in which oxidation is promoted, simple sulfur (S 0 ) is added at the end of the reaction, and copper ions dissolved in an appropriate pH region are fixed as copper sulfide (CuS).
- the present inventors added elemental sulfur (S 0 ) from the beginning of the leaching reaction described above, and fixed the dissolved copper ions as copper sulfide (CuS), or caused an excessive amount of copper ions to exist during leaching.
- elemental sulfur (S 0 ) By adopting a configuration that promotes oxidation of arsenic to pentavalent arsenic, adds elemental sulfur (S 0 ) at the end of the reaction, and fixes copper ions dissolved in an appropriate pH range as copper sulfide (CuS) It has been conceived that the copper ions in the leachate can be removed to a concentration or less that does not hinder the crystallization process.
- the scorodite crystals that satisfy the elution standards and that are excellent in filterability and stable can be operated with good reproducibility. I came up with the idea that it can be generated easily without any problems. As a result, the present invention was completed by obtaining completely new knowledge that arsenic contained in the initial non-ferrous smelting intermediate product can be recovered as a stable scorodite having excellent filterability.
- the first invention for solving the above-described problem is A leaching step of oxidizing and leaching a mixed slurry of a non-ferrous smelting intermediate product containing sulfide form arsenic and a non-ferrous smelting intermediate product containing arsenic and metal form copper in an acidic region; A liquid adjustment step of adding an oxidizing agent to the leachate to oxidize arsenic to pentavalent arsenic to obtain an adjusted liquid; A crystallization step of converting the arsenic in the adjusted liquid into scorodite crystals, In the leaching step, single sulfur (S 0 at the beginning of the reaction) is mixed into a mixed slurry of the non-ferrous smelting intermediate product containing arsenic in the sulfide form and the non-ferrous smelting intermediate product containing arsenic and copper in the metal form.
- S 0 at the beginning of the reaction is mixed into a mixed slurry of the non-ferrous smel
- the second invention is wherein the amount of elemental sulfur (S 0) is the single body sulfur (S 0) 1 times mole or more of the total number of moles of copper remaining as ions leaching solution during when leached without the addition of The method for treating arsenic according to the first invention.
- the third invention is A leaching step of oxidizing and leaching a mixed slurry of a non-ferrous smelting intermediate product containing sulfide form arsenic and a non-ferrous smelting intermediate product containing arsenic and metal form copper in an acidic region;
- a crystallization step of converting the arsenic in the adjusted liquid into scorodite crystals,
- the temperature of the non-ferrous smelting intermediate product containing the sulfide form of arsenic and the non-ferrous smelting intermediate product containing the arsenic and metal form of copper is increased while adding an oxidizing agent to the mixed slurry.
- First leaching step in which leaching is performed at a temperature of not less than 0 ° C. and a pH of 1.0 or more and 2.0 or less, and then leaching is performed by adding oxidant to the mixed slurry after the pH is set to 2.0 or more.
- Arsenic characterized in that it has two steps and a third step of leaching after stopping addition of oxidant and adding elemental sulfur (S 0 ) to bring the pH to 2 or less and further stirring It is a processing method.
- the fourth invention is: Wherein the amount of elemental sulfur (S 0) is the single body sulfur (S 0) 2-fold mole or more of the total number of moles of copper remaining as ions leaching solution during when leached without the addition of The method for treating arsenic according to the third aspect of the present invention.
- the fifth invention is: A leaching step of oxidizing and leaching a mixed slurry of a non-ferrous smelting intermediate product containing sulfide form arsenic and a non-ferrous smelting intermediate product containing arsenic and metal form copper in an acidic region; A liquid adjustment step of adding an oxidizing agent to the leachate to oxidize arsenic to pentavalent arsenic to obtain an adjusted liquid; A crystallization step of converting the arsenic in the adjusted liquid into scorodite crystals, In the leaching step, single sulfur (S 0 at the beginning of the reaction) is mixed into a mixed slurry of the non-ferrous smelting intermediate product containing arsenic in the sulfide form and the non-ferrous smelting intermediate product containing arsenic and copper in the metal form.
- S 0 at the beginning of the reaction is mixed into a mixed slurry of the non-ferrous smelting intermediate product containing ars
- Leaching first step in which leaching is performed while adding the oxidizing agent and the temperature is set to 50 ° C. or more, and the pH is set to 1.0 or more and 2.0 or less, and then the pH is set to 2.0 or more,
- the second step of leaching in which oxidant is added to the mixed slurry and then leaching is stopped, and then the addition of the oxidant is stopped and single sulfur (S 0 ) is added to bring the pH to 2 or less, followed by further stirring And a third step of leaching.
- the sixth invention is:
- the non-ferrous smelting intermediate product containing arsenic and metallic copper is decopperized electrolytic slime and / or copper arsenide, according to any one of the first to fifth inventions, This is a method for treating arsenic.
- the seventh invention In the leaching step, after the leaching first step, the pH is set to 2.0 or more, and then the leaching second step is performed while adding the oxidant to the mixed slurry while maintaining the pH unretained.
- the arsenic processing method according to any one of the first, third, and fifth inventions.
- the eighth invention The arsenic treatment method according to any one of the first, third, fifth, and seventh inventions, wherein air and / or oxygen gas blowing is used as the oxidizing agent added to the mixed slurry. .
- the ninth invention In the liquid adjustment step, hydrogen peroxide is added as an oxidant at 40 ° C. or more, and after arsenic is oxidized to pentavalent arsenic to obtain an adjusted liquid, the post-reaction liquid and metal copper are brought into contact with each other to remain.
- Any one of the first to eighth inventions is characterized in that the hydrogen peroxide to be removed is removed, or the post-reaction liquid is further maintained by stirring to remove hydrogen peroxide remaining in the post-adjustment liquid.
- the tenth invention is The first to ninth inventions, wherein the crystallization step is a crystallization step in which ferrous ions coexist in the adjusted solution, and the ferrous ions are oxidized with pentavalent arsenic.
- the arsenic treatment method according to any one of the above.
- the eleventh invention is The arsenic treatment method according to the tenth invention, wherein the oxidation reaction is carried out at a pH of 1 or less.
- the twelfth invention The arsenic treatment method according to the tenth invention, wherein the oxidation reaction is performed at a temperature of 50 ° C. or higher.
- a stable scorodite crystal having excellent filterability and reproducibility could be easily produced without complicated operations. Further, the generated scorodite crystals were able to greatly satisfy the elution standard value (according to Environmental Agency Notification No. 13).
- the embodiment of the arsenic treatment method according to the present invention leaches arsenic in a weakly acidic region from the non-ferrous smelting intermediate product (1) containing arsenic as described in the process flow shown in FIG. First to third leaching steps (2) to (4), a liquid adjusting step (6) for adding oxidant to the leaching solution (5) to oxidize arsenic to pentavalent arsenic, and arsenic in the adjusted solution And a crystallization step (7) for converting to scorodite (8).
- the leaching residue (9) produced in the leaching first to third steps (2) to (4) is returned to the copper smelting (10), and the filtrate (11) produced in the crystallization step (7) is drained. Processing is performed in the processing step (12).
- Non-ferrous smelting intermediate product containing arsenic (1) 2. First to third leaching steps (2) to (4); 3. Liquid adjustment step (6), It demonstrates in order of a crystallization process (7).
- Non-ferrous intermediates containing arsenic (1)
- Non-ferrous smelting intermediate product (1) leaching pulp containing arsenic, which is a raw material, is suitable for smelters that produce a large amount of decoppered electrolytic slime.
- a 2nd process (3) is performed. Further, the third step of leaching, in which the addition of the oxidizing agent is stopped at the end of leaching, and copper ions dissolved in the leaching solution are sulfided with elemental sulfur (S 0 ) contained in the leaching residue and removed as copper sulfide (CuS). Perform 4).
- an alkali for example, sodium hydroxide
- the first leaching step (2) is considered to consist of elementary reactions of the following (formula 1), (formula 2) and (formula 3).
- Cu 0 + 2H + + 1 / 2O 2 Cu 2+ + H 2 O
- As 0 + 3 / 4O 2 + 1 / 2H 2 O HAsO 2
- Cu 2+ + 1 / 3As 2 S 3 + 4 / 3H 2 O CuS + 2 / 3HAsO 2 + 2H + ⁇ ( Equation 3) That is, the reaction of copper (Cu 0 ) and arsenic sulfide (As 2 S 3 ) in the decopperized electrolytic slime is expressed by (Expression 4) below from (Expression 1) + (Expression 3).
- Cu 0 +1/3 As 2 S 3 + 1 / 2O 2 + 1 / 3H 2 O 2/3 HAsO 2 + CuS (Formula 4)
- the pH of raw material mixing pulp is adjusted to the acidic side.
- General-purpose sulfuric acid is suitable as the acid for adjusting the pH.
- the pH value is preferably 1-2. This is presumably because the primary particles of the decoppered electrolytic slime are very fine, 10-30 ⁇ m, and are inherently rich in reactivity.
- the pH at the start of the reaction in the crystallization process which is a subsequent process, is set to 1.
- the pH 1-2 setting in the leaching first process (2) is Convenient.
- Leaching proceeds by setting the temperature during leaching to 50 ° C. or higher. However, the temperature during leaching is preferably determined according to the balance between the amount of copper removal electrolytic slime and the amount of arsenic sulfide starch.
- the leaching second step (3) at the end of the leaching first step (2), after adding alkali (for example, sodium hydroxide) to pH 2 or higher, the pH control of the leachate is not retained, and the pH change is determined.
- alkali for example, sodium hydroxide
- This step is considered to consist of the elementary reactions of the following (formula 5) (formula 6) (formula 7) and the above-described (formula 3).
- the amount of sodium hydroxide to be added is such that the Na concentration in the leachate is 20 g / l or less, preferably 10 g / l or less. This is because if the Na concentration is 20 g / l or less, the viscosity of the reaction pulp in the crystallization step is preferably kept low.
- the temperature of the mixed slurry in the leaching second step (3) is 50 ° C. or more, and leaching proceeds.
- the temperature during leaching is preferably determined according to the balance between the amount of copper removal electrolytic slime and the amount of arsenic sulfide starch.
- the reaction time of the second leaching step (3) is preferably 30 minutes or more, preferably 45 minutes or more from the viewpoint of sufficiently ensuring the progress of the reaction.
- the addition of the oxidizing agent for example, air and / or oxygen gas blowing is preferable
- the oxidizing agent for example, air and / or oxygen gas blowing is preferable
- the copper ions dissolved in the leaching liquid are contained in elemental sulfur ( This is a step of removing as copper sulfide (CuS) by S 0 ).
- the reaction in this step is mainly based on (Expression 7) described above. Accordingly, the higher the leaching temperature is, the higher the reaction, but it is preferable that the leaching temperature is actually determined by the equipment material. Strictly speaking, (Equation 7) is a reaction accompanied by the release of hydrogen ions (H + ), so the pH value slightly shifts to the acidic side.
- This step is mainly to remove copper, but according to the study by the present inventors, elements other than copper that easily form sulfides (for example, Pb, Hg, Bi, Sb, etc.) ), It was found that the same effect can be expected by the dissolved concentration.
- the copper ions dissolved in the crystallization liquid in the crystallization step (7) act as an oxidation catalyst in the scorodite (8) crystallization, in order to make the oxidation conditions in the crystallization step (7) constant, It is necessary to suppress and standardize the copper concentration. From this point of view, when the copper concentration in the leachate (5) is 1 g / l or less, preferably 500 mg / l or less, variation in the oxidization conditions of the crystallization conditions can be suppressed, and the stability of the crystallization step (7) can be suppressed. This is preferable because it leads to Moreover, not leaving copper ions in the leachate (5) leads to avoidance of copper loss, which is preferable from the viewpoint of active recovery of resources.
- the amount of elemental sulfur (S 0 ) added is the total amount of copper remaining as ions in the leachate when leached without adding elemental sulfur (S 0 ), as described in Example 1 described later. If the number of moles is 1.0 times or more, the copper in the leachate (5) can be removed to 1 g / l or less. Similarly, if the total number of moles of copper remaining as ions in the leachate (5) is 1.3 times or more, the copper in the leachate (5) can be removed to 500 mg / l or less.
- the specific addition amount of elemental sulfur (S 0 ) can be obtained by the following calculation. ⁇ Assuming that all arsenic in the arsenic sulfide starch is in the As 2 S 3 form, the amount is obtained. In Equation 4, the amount of Cu 0 that reacts with the amount of As 2 S 3 calculated in 1) above is obtained. ⁇ Assuming that all copper in the copper removal electrolytic slime is in metal form, the amount of copper is determined. The amount of copper dissolved as copper ions in the leachate (5) is determined from the difference between the amount of copper in 3) and the amount of Cu 0 in 2). The amount of elemental sulfur (S 0 ) added is 1.0 mol or more of the total molar amount of copper dissolved in the leachate (5) obtained from 4) above.
- the leaching first step (2) it is desirable to dissolve copper ions (Cu 2+ ) as an arsenic oxidation catalyst, and (Formula 1) is given priority while suppressing (Formula 3) and (Formula 7). From the viewpoint, a lower leaching temperature is more effective. The presence of this copper ion exhibits its effect particularly in the second leaching step (3).
- leaching itself proceeds at a leaching temperature of 50 ° C. or higher, a leaching temperature of 60 to 80 ° C. is preferable in consideration of shortening of the leaching time. As described above, the leaching time is sufficient if it is 30 minutes or longer.
- the pH of the mixed slurry is set to 2.0 or more, and the pH is increased to promote the oxidation of trivalent arsenic to pentavalent arsenic, while unreacted arsenic sulfide.
- the starch can be actively leached.
- the leaching temperature is preferably 70 to 80 ° C., which is slightly higher than the leaching first step (2), and the leaching time is preferably 30 minutes or more, preferably 45 minutes or more. .
- the third leaching step (4) is a step of completing the reaction between copper ions remaining until the end of leaching and elemental sulfur (S 0 ) added at the beginning of leaching, the higher the leaching temperature, the better. C. or higher is preferable.
- the leaching time is preferably 30 minutes or longer.
- the leaching temperature may not be as strict as in the first embodiment. That is, from the viewpoint of actively promoting arsenic oxidation, the leaching temperature can be performed at a high temperature in both the leaching first step (2) and the leaching second step (3). However, considering the material on the actual equipment in actual operation, about 80 ° C. is preferable.
- the addition of the oxidant is stopped (for example, the blowing of air and / or oxygen gas is stopped), then the sulfur (S 0 ) is added, mixed into the leached pulp, and the above-mentioned
- the copper removal reaction based on (Formula 7) is performed.
- the addition amount of elemental sulfur (S 0) is when leached without the addition of elemental sulfur (S 0), there in leachate (5) 2.0 moles or more of the total number of moles of copper remaining as ions in
- the copper in the leachate (5) can be removed to 1 g / l or less.
- the total number of moles of copper remaining as ions in the leachate (5) is 2.5 times or more, the copper in the leachate (5) can be removed to 500 mg / l or less.
- a part of elemental sulfur (S 0 ) is added, and after leaching first step (2) and leaching second step (3), leaching last step leaching third step (4) Stop adding the oxidizer (for example, stop blowing air and / or oxygen gas), add the remainder of the elemental sulfur (S 0 ) to the leached mixed slurry, and finally add excess Cu 0 to copper sulfide (CuS) As leaching residue (9).
- the third embodiment is a leaching method using the advantages of the first and second embodiments described above.
- the first embodiment has an advantage that copper can be removed to a low concentration with a small amount of elemental sulfur (S 0 ) added, and the second embodiment has an arsenic oxidation rate. Has the advantage of extremely high.
- the addition method is a method in which elemental sulfur (S 0 ) is added at the beginning and the latter stage of the leaching first to third steps (2) to (4).
- the addition amount at the beginning of leaching is 1.0 times the total number of moles of copper remaining as ions in the leaching solution when leaching without adding elemental sulfur (S 0 ).
- the copper ion concentration in the leached pulp during leaching can be guaranteed at least 1 g / l.
- the first leaching step (2) and the second leaching step (3) are performed, and the amount of elemental sulfur (S 0 ) added in the leaching third step (4) at the end of leaching is 1 g of the residual copper concentration. Assuming / l, 20 times mole or more of the total number of moles of copper is added. As a result, the remaining copper can be reduced to 500 mg / l or less.
- the leaching time and the leaching temperature may be the same as those in the first embodiment in the above-mentioned “in the case where Cu 0 is abundant” in order to promote the arsenic oxidation by dissolving copper ions as much as possible during the leaching. It should be noted that the amount of elemental sulfur (S 0 ) added separately in the leaching start stage and leaching end stage can be variously changed, and is not necessarily limited to the above-described conditions.
- the compounding amount of arsenic sulfide (As 2 S 3 ) in the arsenic sulfide starch is 1.0 to 1.1 times equivalent of the reaction to the copper (Cu 0 ) of the copper removal electrolytic slime. In the range, practically, copper ions may remain in the final leachate from several hundred mg / l to about 1 g / l.
- the reaction can be easily completed if the blending amount of arsenic sulfide (As 2 S 3 ) is, for example, 2 times equivalent, but it may be difficult to complete the reaction if it is 1.0 to 1.1 times equivalent. Moreover, the difference in activity for each raw material can be considered. From the generation ratio of both raw materials, the first embodiment in “when As 2 S 3 is abundant” can be applied to the processing at the smelter that is forced to perform such raw material blending processing.
- the amount of elemental sulfur (S 0 ) added at the beginning of the leaching is assumed to be a residual copper concentration of 1 g / l. It can always be 100 mg / l or less.
- the leaching time and leaching temperature may be the same as those in the first embodiment described above in the case of “rich Cu 0 ” from the viewpoint of accelerating arsenic oxidation by dissolving copper ions as much as possible during leaching.
- the amount of elemental sulfur (S 0 ) added at the end of leaching is assumed to be a residual copper concentration of 1 g / l. It can always be 100 mg / l or less.
- the leaching time and leaching temperature may be the same as those in the first embodiment described above in the case of “rich Cu 0 ” from the viewpoint of accelerating arsenic oxidation by dissolving copper ions as much as possible during leaching.
- the amount of elemental sulfur (S 0 ) added at the beginning of leaching is the same as the amount of addition described in the first embodiment in the above-mentioned “when As 2 S 3 is abundant”.
- the amount of elemental sulfur (S 0 ) added at the end is also the same as the amount added in the second embodiment in the above “when As 2 S 3 is abundant”.
- the copper ions in the leachate can be removed almost completely to a level of several m / l.
- the leaching time and the leaching temperature in the present embodiment may be the same as those in the first embodiment in the above-described “in the case where Cu 0 is abundant” based on the same idea.
- the present invention discloses the effect of addition of elemental sulfur (S 0 ) in wet processing of non-ferrous smelting intermediate products containing arsenic.
- elemental sulfur S 0
- SO 2 gas sulfite gas
- SO 3 2 ⁇ sulfite ion
- the method for adding elemental sulfur (S 0 ) disclosed in the present invention allows the copper in the leachate (5) to be removed without any problems by setting the above-described blend in (Formula 4) to 1.1 times equivalent or more. Even in the case where the amount of heavy metals other than copper is taken into consideration, the optimum amount of elemental sulfur (S 0 ) is added and leaching is performed in accordance with each embodiment described above. is there.
- the category of the present invention is not limited to the removal of copper in the leachate (5), but can be applied to the control of the elution of many contained heavy metals.
- the first step of leaching that promotes leaching of arsenic sulfide particularly in the form of sulfide, and then the pH control of the leachate is not retained
- CuS copper sulfide
- S 0 elemental sulfur
- This leaching method is also applied to the same raw material system as in the present invention, and is leaching in a weakly acidic region, and a leachate having the same liquid quality is obtained. Therefore, for the crystallization process of generating scorodite by adding the elemental sulfur (S 0 ) according to the present invention at the beginning of leaching, adding at the end of leaching, or adding twice at the beginning and end of leaching. Naturally, the configuration for securing an optimal leaching solution can also be applied to the leaching method.
- Liquid adjustment process (6) In the liquid adjustment step (6), an oxidant is added to the leachate (5) obtained in “1. Leaching first to third steps” to oxidize arsenic dissolved as trivalent to pentavalent arsenic. In this step, an adjusted solution is obtained, and then the oxidant remaining in the adjusted solution is removed.
- the oxidizing agent used in the liquid adjustment step (6) will be described.
- oxidation of trivalent arsenic to pentavalent arsenic is easier in the neutral region than in the acidic region, and in the alkaline region than in the neutral region.
- the leachate according to the present invention is acidic. Therefore, it is conceivable to add alkenyl (for example, sodium hydroxide) to the acidic leachate to make the liquid alkaline, and then oxidize arsenic.
- alkenyl for example, sodium hydroxide
- a large amount of alkali is required for the liquid alkalinization, which is disadvantageous in terms of cost.
- the salt concentration in the liquid is increased, and the scorodite in the subsequent process is increased.
- trivalent arsenic and pentavalent arsenic mean that the ion valence is +3 valent arsenic (plus trivalent) or +5 valent arsenic (plus 5 valent).
- the present inventors examined oxidation of trivalent arsenic using oxygen in a neutral region (pH 6 to 7). However, it has been found that oxidation of trivalent arsenic remains insufficient. Therefore, the use of a copper-based catalyst (in this study, copper arsenate was examined) was also examined, but it did not reach the complete oxidation of trivalent arsenic to pentavalent arsenic.
- the present inventors have conceived that hydrogen peroxide (H 2 O 2 ) is used as an oxidizing agent. Then, when the oxidation of arsenic was examined in the acidic region using the hydrogen peroxide, it was confirmed that the oxidation proceeded sufficiently. However, after the arsenic oxidation reaction, the hydrogen peroxide remaining in the adjusted liquid oxidizes some of the ferrous ions that coexist in the subsequent crystallization step (7). Therefore, in order to accurately manage the ferrous ion concentration, it is desirable to remove the remaining hydrogen peroxide, although it depends on the residual amount of hydrogen peroxide.
- H 2 O 2 hydrogen peroxide
- the addition amount of hydrogen peroxide is preferably 1 to 1.2 times the reaction equivalent based on the trivalent arsenic concentration and (Equation 8) (Equation 9).
- concentration of trivalent arsenic is unknown, it may be taken as a guide that the oxidation-reduction potential of the liquid at a liquid temperature of 80 ° C. has reached 500 mV (Vs; Ag / AgCl) or more after the addition of the hydrogen peroxide.
- the addition time of hydrogen peroxide depends on the concentration of trivalent arsenic to be oxidized.
- the addition time is preferably 5 minutes or more. This is because, by taking sufficient addition time, it is possible to avoid that hydrogen peroxide is partly decomposed rapidly, bubbles are generated, and the addition efficiency is deteriorated. More preferably, the addition time is 10 minutes to 15 minutes.
- the reaction time is preferably 60 minutes or more from the viewpoint of complete oxidation, and is preferably terminated when the oxidation-reduction potential of the liquid becomes 450 mV (Vs; Ag / AgCl) or less.
- the high temperature means a temperature of 70 to 100 ° C.
- stirring of the adjusted liquid is maintained until the liquid potential of the adjusted liquid (potential at 80 ° C., Ag / AgCl electrode standard) reaches a predetermined value.
- the residual hydrogen peroxide will be described.
- the amount of residual hydrogen peroxide in the solution after adjustment cannot be directly quantified. Therefore, the amount of residual hydrogen peroxide was compared according to the concentration of copper eluted by reacting the adjusted solution with copper powder.
- the residual hydrogen peroxide amount is reduced to the residual hydrogen peroxide amount corresponding to 50 mg / l or less as the eluting copper concentration. It was confirmed that it can be removed.
- the potential of 390 mV is a potential that can be reached by stirring for 1 hour at 80 ° C. after the end of oxidation (60 minutes after addition of a predetermined amount of hydrogen peroxide). And it was thought that there was almost no influence of residual hydrogen peroxide considering the eluted copper concentration (36 mg / l).
- trivalent arsenic can be oxidized to pentavalent arsenic without complicated operation even if the leachate (5) is in the acidic region, and arsenic scorodite (8 High conversion rate to) can be maintained.
- Crystallization process (7) is a step of crystallizing the pentavalent arsenic in the adjusted liquid obtained in the “2. Liquid adjustment step (6)” to scorodite (8).
- the arsenic concentration of the adjusted liquid obtained after finishing the liquid adjusting step (6) is preferably a concentrated liquid of 20 g / L or more, preferably 30 g / L or more, considering the productivity of scorodite.
- ferrous ions Fe 2+
- sulfuric acid H 2 SO 4
- ferrous salt ferrous hydroxide (Fe (OH) 2 ) or the like is added to the adjusted solution and dissolved.
- any method is possible, but from the viewpoint of easy pH adjustment and securing a high arsenic concentration, a method of adding and dissolving a ferrous salt is preferable.
- ferrous salt compounds ferrous sulfate is preferred from the viewpoint of the corrosion resistance of the equipment and the availability.
- the addition amount of the ferrous salt is not less than 1 equivalent, preferably 1.5 equivalents of the total molar amount of arsenic to be treated as the pure Fe amount.
- the adjusted solution is heated to a predetermined reaction temperature.
- scorodite (8) can be precipitated.
- the reaction temperature is desirably 90 to 100 ° C.
- the pH, arsenic concentration, and Fe concentration drop rapidly in 2 to 3 hours after the start of the high temperature oxidation reaction.
- the oxidation-reduction potential of the liquid is 400 mV or higher (Vs; Ag / AgCl) at 95 ° C.
- 90% or more of the contained arsenic becomes scorodite (8) crystals.
- the arsenic remaining in the liquid is reduced by a small amount, and the pH and liquid potential are hardly changed.
- it is preferably continued for 5 to 7 hours.
- the reaction operation is simple, and there is no need for pH adjustment during the process, so that the contained arsenic can be reliably converted into scorodite (8) crystals.
- What is necessary is just to process the filtrate (11) to produce
- the obtained scorodite (8) crystals are excellent in sedimentation and filterability, have low adhesion moisture of about 10% after filtration, and have an arsenic grade of 30%, so that volume reduction is achieved and Excellent elution and stable. Therefore, arsenic can be removed and stored in a stable form from the smelting process.
- Example 1 In Example 1, elemental sulfur (S 0 ) was added at the beginning of the reaction in the first leaching step, and the effect of the addition was confirmed.
- Table 1 shows the grade of the arsenic sulfide starch used in the examples
- Table 2 shows the grade of the decoppered electrolytic slime
- Table 3 shows the blending ratio of the arsenic sulfide starch and the decoppered electrolytic slime.
- the M Cu is atomic weight 63.54 of copper
- M S is the atomic weight 32.06 of S.
- Arsenic sulfide starch, decoppered electrolytic slime and 52 g of reagent simple sulfur (S 0 ) shown in Tables 1 to 3 were measured in a 2 liter beaker, and predetermined pure water was added and repulped to prepare pulp. .
- the amount of water contained in the raw material is taken into account, the amount of water in the pulp is 1,550 ml.
- the reaction was carried out at 800 rpm with a 2 liter beaker, 4 baffles, and 2 stage turbine blades. And the said pulp was heated, stirring weakly, and the temperature was 80 degreeC. At this point, the pH was 1.62.
- Table 4 shows the quality of the collected leachate.
- total-As indicates the total amount of arsenic
- pentavalent-As indicates the amount of pentavalent arsenic.
- the pentavalent-As ratio indicates the ratio of the pentavalent arsenic amount in the total amount of arsenic
- Cu indicates the copper concentration of the recovered leachate.
- the recovered leaching residue was 501 wet ⁇ g (water content 50.2%), and the arsenic quality was 2.0%. From this, the leaching rate of arsenic was estimated to be about 93.5%, and the leaching rate was very high. Copper removal was also good.
- the pulp was heated with weak stirring to a temperature of 80 ° C. At this point, the pH was 1.64.
- oxygen gas was started to be blown at 430 cc / min, and the reaction was started with stirring at 800 rpm.
- 30 minutes had passed (80 ° C., pH 1.57)
- 26 ml of a 500 g / l sodium hydroxide solution was added over 5 minutes to 80 ° C. and pH 5.67.
- the reaction was continued, and after 120 minutes had elapsed (80 ° C., pH 1.93), the oxygen gas blowing was stopped, and stirring was continued for another 30 minutes, after which leaching was completed (80 ° C., pH 1.82).
- Table 5 shows the quality of the collected leachate (leaching end point).
- surface is the same as that of Table 4 mentioned above.
- the collected leach residue was 520 wet ⁇ g (water content 48.9%), and the arsenic quality was 2.0%. From this, the leaching rate of arsenic was estimated to be about 93.2%, and the leaching rate was very high. Copper removal was also good.
- elemental sulfur (S 0 ) in an amount of 1.0 times mol or more, preferably 1.3 times mol or more of the total number of moles of remaining copper. Is understood to be added from the beginning of the reaction in the first leaching step.
- Example 2 In Example 2, elemental sulfur (S 0 ) was added at the end of the reaction, which was the third step of leaching, and the effect of the addition was confirmed.
- the arsenic sulfide starch and the decoppered electrolytic slime shown in the raw material preparation tables shown in Tables 1 to 3 of Example 1 were measured in a 2 liter beaker, and predetermined pulp was added to repulp to prepare a pulp. . The pulp was heated with weak agitation to bring the temperature to 80 ° C. At this point, the pH was 1.67.
- Example 1 is a case where 65 g of simple sulfur (S 0 ) of the same amount as in this example was added at the beginning of the reaction in the first leaching process, but the ratio of pentavalent arsenic was 41.3%. there were. In comparison with this, in this example, the ratio of pentavalent arsenic was 83.3%, indicating an oxidation efficiency more than doubled.
- Example 1 Copper removal was also good. However, compared to the method of adding elemental sulfur (S 0 ) from the beginning of leaching shown in Example 1, Example 1 had higher copper removal capability. Therefore, in order to make the residual copper concentration 1 g / l or less, it is preferable to add elemental sulfur (S 0 ) in an amount of 2.0 times or more the total number of moles of remaining copper. However, by adding elemental sulfur (S 0 ) at the end of the reaction, which is the third step of leaching, an excess amount of copper ions can coexist in the leached pulp during the leaching step, so that the arsenic oxidation efficiency is increased. There is.
- Example 2 1,000 ml of the leachate prepared in Example 2 was placed in a 1 (L) beaker and hydrogen peroxide was added.
- the amount of hydrogen peroxide added is 1.05 times equivalent to the amount required to oxidize the trivalent arsenic.
- 12.6 g of 30% H 2 O 2 water was added at the time when the temperature of the solution being raised reached 70 ° C., and the addition was completed in 10 minutes.
- the liquid potential at this time was 521 mV at 81 ° C. (in this example, the liquid potential is the Ag / AgCl electrode reference potential).
- the oxidation reaction started from the end of the addition of hydrogen peroxide.
- the oxidation reaction itself was completed in 60 minutes from the end of hydrogen peroxide addition. However, at this time, stirring was maintained for another 60 minutes so that the temperature did not fall below 80 ° C., and stirring was terminated after a total of 120 minutes had elapsed. In addition, the said stirring was made into the intensity
- the liquid potential at the end of stirring was 378 mV at 81 ° C.
- the solution after adjusting the oxidizing solution was prepared by the above operation.
- the amount of hydrogen peroxide remaining in the solution after the oxidation adjustment was examined. Specifically, 300 mg of copper powder was added to 50 ml of the post-oxidation-adjusted solution, and the mixture was allowed to react for 4 minutes at 40 ° C. with weak stirring that did not involve air, followed by filtration. A stirrer was used for stirring. The copper concentration of the obtained filtrate was 281 mg / l, and an increase in concentration of about 22 mg / l was confirmed. From this result, it was confirmed that most of the residual hydrogen peroxide was decomposed and removed in the solution after oxidation adjustment.
- the arsenic precipitation rate was 97.2%.
- the arsenic precipitation rate is the conversion rate of arsenic in the solution to scorodite, and the elution method for obtaining the elution value was based on the Environmental Agency Notification No. 13 method.
- the liquid after the elution treatment was filtered through a filter made by MCE (Mixed Cellulose Ester) having a pore size of 0.2 ⁇ m.
- the arsenic sulfide starch and the decoppered electrolytic slime shown in the raw material preparation tables shown in Tables 1 to 3 of Example 1 were measured in a 2 liter beaker, and predetermined pure water was added and repulped to prepare pulp. . The pulp was heated with weak agitation to bring the temperature to 80 ° C. At this point, the pH was 1.71.
- the recovered leaching residue was 529 wet ⁇ g (moisture 51.7%), and the arsenic quality was 14.9%. From this, the leaching rate of arsenic was estimated to be about 50.7%, and the leaching rate was very low.
- the inventors consider the following reasons for the very low arsenic leaching rate. That is, in the formulation according to Comparative Example 1, an excessive amount of copper is present in the leachate, and arsenic oxidation is promoted. For this reason, it is considered that pentavalent arsenic and copper ions react to form copper arsenate during the leaching and remain as a residue. That is, it is considered that leaching to obtain an arsenic solution with a high leaching rate and a high concentration is impossible when the amount of copper is excessive as in Comparative Example 1.
- Comparative Example 2 This comparative example is similar to Example 2, an example in which the pH of the reaction elemental sulfur (S 0) after the addition was carried out in 2 or more.
- the raw material blending / operation procedure was the same as in Example 2. Specifically, the same pulp as in Example 2 was similarly heated with weak stirring, and the temperature was set to 80 ° C. At this point, the pH was 1.61. Next, blowing of 430 cc / min of oxygen gas was started from the bottom of the beaker using a glass tube, and the reaction was started with stirring at 800 rpm. When 30 minutes had passed (80 ° C., pH 1.85), 26 ml of a sodium hydroxide solution having a concentration of 500 g / l was added over 5 minutes to 80 ° C. and pH 3.80. Subsequently, the reaction was advanced and oxygen blowing was stopped when 120 minutes had passed (80 ° C., pH 2.12).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Sludge (AREA)
- Compounds Of Iron (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Provided is a process which is intended to be employed in a refinery where decopperizing electrolysis slime and arsenic sulfide sediment are formed as intermediate products of nonferrous refining with the amount of the former being larger than that of the latter, and by which the disposal of arsenic is enabled without requiring that the mixing ratio between both intermediate products is kept at a specific level. Also provided is a process described above, wherein arsenic is converted into pentavalent arsenic in the leaching step, whereby the ratio of leaching of arsenic is enhanced. Specifically disclosed is a process which comprises: a leaching step of subjecting a mixed slurry of the intermediate products of nonferrous refining to oxidative leaching in an acid region to obtain a leach liquor; a liquor regulation step of adding an oxidizing agent to the leach liquor, thereby oxidizing arsenic into pentavalent arsenic, and thus obtaining a regulated liquor; and a crystallization step of converting the arsenic contained in the regulated liquor into scorodite crystals. The leaching step comprises: the first leaching step of adding elemental sulfur (S0) to the mixed slurry at the initiation of the reaction, and then leaching the slurry while adding an oxidizing agent thereto with the temperature raised to 50°C or above and with the pH adjusted to 1.0 to 2.0; the second leaching step of adjusting the pH to 2.0 or above by the addition of an alkali, and then leaching the slurry while adding an oxidizing agent thereto; and the third leaching step of stopping the addition of the oxidizing agent, and then further stirring the slurry.
Description
本発明は、砒素を含有する製錬中間産物中の砒素を、安定な形で系外へ抜き出す砒素の処理方法に関する。
The present invention relates to a method for treating arsenic in which arsenic in a smelting intermediate product containing arsenic is extracted out of the system in a stable form.
砒素を含有する化合物の安定化について、以下の文献が存在する。
特許文献1には、製錬煙灰に含まれる砒素を対象としたスコロダイトの生成方法が記載されている。 The following documents exist regarding the stabilization of compounds containing arsenic.
Patent Document 1 describes a method for producing scorodite targeting arsenic contained in smelting ash.
特許文献1には、製錬煙灰に含まれる砒素を対象としたスコロダイトの生成方法が記載されている。 The following documents exist regarding the stabilization of compounds containing arsenic.
Patent Document 1 describes a method for producing scorodite targeting arsenic contained in smelting ash.
特許文献2には、硫化砒素澱物の浸出法に関し、硫化砒素澱物を含むスラリーに空気を吹き込みながらアルカリを添加し、pHを5~8に保持しながら砒素の浸出を行うことが記載されている。
Patent Document 2 describes a method for leaching arsenic sulfide starch by adding alkali while blowing air into a slurry containing arsenic sulfide starch and leaching arsenic while maintaining the pH at 5-8. ing.
非特許文献1は、砒酸鉄、砒酸カルシウム、砒酸マグネシウムの溶解度積について報告している。当該文献によれば、砒酸カルシウムと砒酸マグネシウムとは、アルカリ領域でのみ安定であり、一方、砒酸鉄は中性から酸性領域で安定であり、極少の溶解度がpH3.2で20mg/Lと報告されている。
Non-Patent Document 1 reports on the solubility product of iron arsenate, calcium arsenate, and magnesium arsenate. According to the literature, calcium arsenate and magnesium arsenate are stable only in the alkaline region, while iron arsenate is stable in the neutral to acidic region, with a minimal solubility of 20 mg / L at pH 3.2. Has been.
非特許文献2には、砒酸鉄とスコロダイトとの溶解度が開示されている。当該文献によれば、弱酸性領域においてスコロダイトからの砒素の溶解度は、非結質の砒酸鉄のそれより2桁低いことが示され、スコロダイトが安定な砒素化合物であることを開示している。
Non-Patent Document 2 discloses the solubility of iron arsenate and scorodite. According to this document, the solubility of arsenic from scorodite is shown to be two orders of magnitude lower than that of non-condensed iron arsenate in the weakly acidic region, which discloses that scorodite is a stable arsenic compound.
非特許文献3では、硫酸工場排水や製錬排水に含まれる砒素を対象としたスコロダイトの生成方法が記載されている。
Non-Patent Document 3 describes a method for generating scorodite targeting arsenic contained in sulfuric acid factory effluent and smelting effluent.
近年、世界的に非鉄製錬を取り巻く鉱石原料確保の環境は、非常に厳しいものがある。特に、銅製錬の分野においては、非鉄メジャーによる寡占化が進み、さらに新興国が新たな消費大国として出現したことにより、需給が逼迫した状況にある。
当該状況下、各国においては公害に対する環境分野への規制が強化され、義務化されつつある。本発明者らは、今後は環境と共存できる鉱山・製錬所が当業界を主導していくものと考えた。 In recent years, the environment for securing ore raw materials surrounding non-ferrous smelting has been extremely severe worldwide. In particular, in the field of copper smelting, the oligopoly by non-ferrous majors has progressed, and the emerging market has emerged as a new consumer power, and the supply and demand situation has become tight.
Under these circumstances, regulations in the environmental field against pollution have been strengthened and become mandatory in each country. The present inventors considered that mining and smelters that can coexist with the environment will lead the industry in the future.
当該状況下、各国においては公害に対する環境分野への規制が強化され、義務化されつつある。本発明者らは、今後は環境と共存できる鉱山・製錬所が当業界を主導していくものと考えた。 In recent years, the environment for securing ore raw materials surrounding non-ferrous smelting has been extremely severe worldwide. In particular, in the field of copper smelting, the oligopoly by non-ferrous majors has progressed, and the emerging market has emerged as a new consumer power, and the supply and demand situation has become tight.
Under these circumstances, regulations in the environmental field against pollution have been strengthened and become mandatory in each country. The present inventors considered that mining and smelters that can coexist with the environment will lead the industry in the future.
ここで、非鉄製錬において懸念される公害には、SO2ガスによる大気汚染や、砒素による土壌汚染や排水汚染が挙げられる。特に砒素に関しては、将来的に銅鉱石中の砒素含有量が増えることになることから、今までにも増して万全の対策が必要となる。
従来、国内の臨海非鉄製錬所では、クリーン精鉱を処理原料とすることで問題なく操業を行ってきた。しかし、今後、銅鉱石中の砒素含有量の増加が予想されることから、砒素を製錬中間産物として系外へ抜き出し、何らかの形で安定化し管理保管することが必要となると考えた。 Here, pollution that is a concern in non-ferrous smelting includes air pollution by SO 2 gas, soil pollution and drainage pollution by arsenic. Especially for arsenic, arsenic content in copper ore will increase in the future, so more thorough countermeasures are required than ever.
Conventionally, coastal non-ferrous smelters in Japan have been operating without problems by using clean concentrate as a processing raw material. However, since arsenic content in copper ore is expected to increase in the future, we thought that it would be necessary to extract arsenic out of the system as a smelting intermediate and to stabilize and store it in some way.
従来、国内の臨海非鉄製錬所では、クリーン精鉱を処理原料とすることで問題なく操業を行ってきた。しかし、今後、銅鉱石中の砒素含有量の増加が予想されることから、砒素を製錬中間産物として系外へ抜き出し、何らかの形で安定化し管理保管することが必要となると考えた。 Here, pollution that is a concern in non-ferrous smelting includes air pollution by SO 2 gas, soil pollution and drainage pollution by arsenic. Especially for arsenic, arsenic content in copper ore will increase in the future, so more thorough countermeasures are required than ever.
Conventionally, coastal non-ferrous smelters in Japan have been operating without problems by using clean concentrate as a processing raw material. However, since arsenic content in copper ore is expected to increase in the future, we thought that it would be necessary to extract arsenic out of the system as a smelting intermediate and to stabilize and store it in some way.
海外では、砒素を、砒酸カルシウムや三酸化二砒素、又は硫化砒素化合物として管理保管している製錬所が数多くある。しかし、本発明者らの考察に拠れば、これらの砒素化合物は自然環境下において完全に安定ではない。
Overseas, there are many smelters that manage and store arsenic as calcium arsenate, diarsenic trioxide, or arsenic sulfide compounds. However, according to the inventors' consideration, these arsenic compounds are not completely stable in the natural environment.
ここで、本発明者らは、上述した文献を検討した。しかし、いずれの方法も、生産性の観点、生成するスコロダイトの安定性の観点、等に課題を残すものであった。
Here, the present inventors examined the above-mentioned literature. However, both methods have problems in terms of productivity, stability of the generated scorodite, and the like.
一方、銅鉱石中の砒素品位は将来的に上昇し、銅製錬においては、排水処理系統で発生する硫化砒素澱物の量が増えるとともに、さらに、銅電解工場への砒素の負荷量も増大していくと考えられる。この結果、銅電解液の浄液工程で発生する、砒素が濃縮した製錬中間産物である脱銅電解スライムの量も増えと考えられる。従って、製錬所内における、これら硫化砒素澱物や脱銅電解スライムという砒素を含む中間産物の繰り返し処理は、困難となっていくと考えられる。
On the other hand, the quality of arsenic in copper ore will increase in the future, and in copper smelting, the amount of arsenic sulfide starch generated in the wastewater treatment system will increase, and the load of arsenic on the copper electrolysis plant will also increase. It is thought to go. As a result, it is thought that the amount of decoppered electrolytic slime, which is a smelting intermediate product enriched in arsenic, generated in the copper electrolyte solution purification process also increases. Therefore, it is considered that it is difficult to repeatedly treat these arsenic sulfide starches and intermediate products containing arsenic such as decopperized electrolytic slime in the smelter.
ここで、砒素を含有する中間産物である硫化砒素澱物と、脱銅電解スライムとについて説明する。
まず、硫化砒素澱物とは、硫化物形態の砒素を含む非鉄製錬中間産物である。当該硫化砒素澱物は、例えば、砒素を含む製錬工程水や排水に硫化剤を反応させることで発生する殿物である。ここで、硫化剤としては、硫化水素、水硫化ソーダ、硫化ソーダ等がある。
次に、脱銅電解スライムとは、銅電解精製工場において実施される浄液工程(銅電解液に蓄積する砒素等の不純物を、電解採取により回収除去する工程)で、銅、砒素等が泥状の金属として電解析出することで発生する殿物である。当該浄液工程は、銅電解精製工場において、一般的に採用されている方法である。従って、当該脱銅電解スライムは、電気銅の品質を確保するために必然的に発生する殿物である。 Here, arsenic sulfide starch, which is an intermediate product containing arsenic, and decopperized electrolytic slime will be described.
First, arsenic sulfide starch is a non-ferrous smelting intermediate product containing sulfide-type arsenic. The arsenic sulfide starch is, for example, a residue generated by reacting a sulfiding agent with smelting process water or wastewater containing arsenic. Here, examples of the sulfiding agent include hydrogen sulfide, sodium hydrosulfide, and sodium sulfide.
Next, the copper removal electrolytic slime is a liquid purification process (a process in which impurities such as arsenic accumulated in the copper electrolytic solution are collected and removed by electrowinning) performed in a copper electrolytic refining plant. It is a deposit generated by electrolytic deposition as a metal. The said liquid purification process is the method generally employ | adopted in the copper electrolytic refinery factory. Therefore, the decoppered electrolytic slime is a deposit inevitably generated in order to ensure the quality of electrolytic copper.
まず、硫化砒素澱物とは、硫化物形態の砒素を含む非鉄製錬中間産物である。当該硫化砒素澱物は、例えば、砒素を含む製錬工程水や排水に硫化剤を反応させることで発生する殿物である。ここで、硫化剤としては、硫化水素、水硫化ソーダ、硫化ソーダ等がある。
次に、脱銅電解スライムとは、銅電解精製工場において実施される浄液工程(銅電解液に蓄積する砒素等の不純物を、電解採取により回収除去する工程)で、銅、砒素等が泥状の金属として電解析出することで発生する殿物である。当該浄液工程は、銅電解精製工場において、一般的に採用されている方法である。従って、当該脱銅電解スライムは、電気銅の品質を確保するために必然的に発生する殿物である。 Here, arsenic sulfide starch, which is an intermediate product containing arsenic, and decopperized electrolytic slime will be described.
First, arsenic sulfide starch is a non-ferrous smelting intermediate product containing sulfide-type arsenic. The arsenic sulfide starch is, for example, a residue generated by reacting a sulfiding agent with smelting process water or wastewater containing arsenic. Here, examples of the sulfiding agent include hydrogen sulfide, sodium hydrosulfide, and sodium sulfide.
Next, the copper removal electrolytic slime is a liquid purification process (a process in which impurities such as arsenic accumulated in the copper electrolytic solution are collected and removed by electrowinning) performed in a copper electrolytic refining plant. It is a deposit generated by electrolytic deposition as a metal. The said liquid purification process is the method generally employ | adopted in the copper electrolytic refinery factory. Therefore, the decoppered electrolytic slime is a deposit inevitably generated in order to ensure the quality of electrolytic copper.
以上のことから、砒素が硫化物形態である硫化砒素澱物と、砒素や銅が金属形態である脱銅電解スライムとを同時に混合処理し、含有する砒素をスコロダイト結晶として転換・安定化する方法は、将来的に非常に重要となる。
しかしながら、硫化砒素澱物と脱銅電解スライムとを同時に処理可能とするためには、両原料をある一定の割合をもって配合することが必要である。例えば、脱銅電解スライムの配合割合が、硫化砒素澱物に比して多い場合は、浸出液中に相当量の銅イオンが残存し、結晶化工程でスコロダイトの結晶成長に悪影響を及ぼすことが懸念される。従って、脱銅電解スライムの発生量が、硫化砒素澱物の発生量より多い製錬所においては、これら両原料の配合割合を一定の割合に保つことを要件とせず、処理を可能にする方法の提供が急務とされている。
さらに、液調整工程での酸化薬剤の使用量を削減し、本方法における処理コストを低減する観点から、浸出工程において、砒素を5価砒素として浸出する割合を高める方法の提供が望まれている。 Based on the above, a method for simultaneously converting and stabilizing arsenic as scorodite crystals by simultaneously mixing arsenic sulfide starch in which arsenic is in sulfide form and decopperized electrolytic slime in which arsenic or copper is in metal form. Will be very important in the future.
However, in order to be able to treat arsenic sulfide starch and decoppered electrolytic slime at the same time, it is necessary to blend both raw materials at a certain ratio. For example, if the proportion of decopperized electrolytic slime is higher than that of arsenic sulfide starch, a considerable amount of copper ions may remain in the leachate, which may adversely affect scorodite crystal growth in the crystallization process. Is done. Therefore, in a smelter where the amount of decopperized electrolytic slime generated is greater than the amount of arsenic sulfide starch generated, it is not a requirement to keep the blending ratio of these two raw materials at a constant ratio, and a method that enables processing. Is urgently needed.
Furthermore, from the viewpoint of reducing the amount of oxidizing agent used in the liquid adjustment step and reducing the processing cost in the present method, it is desired to provide a method for increasing the rate of leaching arsenic as pentavalent arsenic in the leaching step. .
しかしながら、硫化砒素澱物と脱銅電解スライムとを同時に処理可能とするためには、両原料をある一定の割合をもって配合することが必要である。例えば、脱銅電解スライムの配合割合が、硫化砒素澱物に比して多い場合は、浸出液中に相当量の銅イオンが残存し、結晶化工程でスコロダイトの結晶成長に悪影響を及ぼすことが懸念される。従って、脱銅電解スライムの発生量が、硫化砒素澱物の発生量より多い製錬所においては、これら両原料の配合割合を一定の割合に保つことを要件とせず、処理を可能にする方法の提供が急務とされている。
さらに、液調整工程での酸化薬剤の使用量を削減し、本方法における処理コストを低減する観点から、浸出工程において、砒素を5価砒素として浸出する割合を高める方法の提供が望まれている。 Based on the above, a method for simultaneously converting and stabilizing arsenic as scorodite crystals by simultaneously mixing arsenic sulfide starch in which arsenic is in sulfide form and decopperized electrolytic slime in which arsenic or copper is in metal form. Will be very important in the future.
However, in order to be able to treat arsenic sulfide starch and decoppered electrolytic slime at the same time, it is necessary to blend both raw materials at a certain ratio. For example, if the proportion of decopperized electrolytic slime is higher than that of arsenic sulfide starch, a considerable amount of copper ions may remain in the leachate, which may adversely affect scorodite crystal growth in the crystallization process. Is done. Therefore, in a smelter where the amount of decopperized electrolytic slime generated is greater than the amount of arsenic sulfide starch generated, it is not a requirement to keep the blending ratio of these two raw materials at a constant ratio, and a method that enables processing. Is urgently needed.
Furthermore, from the viewpoint of reducing the amount of oxidizing agent used in the liquid adjustment step and reducing the processing cost in the present method, it is desired to provide a method for increasing the rate of leaching arsenic as pentavalent arsenic in the leaching step. .
本発明は、このような状況の下でなされたものであり、その解決しようとする課題は、上記2つの方法の提供であり、且つ、溶出基準(環境庁告示13号準拠)を満足し、且つ、濾過性に優れ且つ安定なスコロダイトの結晶を、再現性良く煩雑な操作なしに簡便に生成する方法の提供である。
The present invention has been made under such circumstances, and the problem to be solved is the provision of the above two methods and satisfies the elution standard (according to Environmental Agency Notification No. 13), In addition, the present invention provides a method for easily producing a stable scorodite crystal having excellent filterability without reproducibility and complicated operation.
ここで、本発明者等は、脱銅電解スライムのX線回折結果から、脱銅電解スライムは金属形態の銅、砒素、及び、金属間化合物形態の砒化銅から構成されるものであることに想到した。そして、当該知見から、本発明においては、脱銅電解スライムに代えて、金属銅は勿論、亜鉛製錬所で発生する砒化銅殿物に適用することが当然可能であることが判明した。
Here, the present inventors have determined from the X-ray diffraction results of the copper-free electrolytic slime that the copper-free electrolytic slime is composed of copper in the form of metal, arsenic, and copper arsenide in the form of an intermetallic compound. I came up with it. And from the said knowledge, it turned out that it can naturally apply to the copper arsenide thing which generate | occur | produces in a zinc smelter as well as metallic copper instead of the copper removal electrolytic slime in this invention. *
本発明者等は、上記課題を解決すべく鋭意研究を行った。その結果、まず、当該砒素を含有する非鉄製錬中間産物から浸出により砒素を抽出する工程(浸出工程)、次に、当該砒素を抽出した浸出液中の砒素を、酸化剤を用いて5価に酸化し、さらに残留する酸化剤を除去する工程(液調整工程)、当該液調整後液に第一鉄イオン(Fe2+)を共存せしめ、酸性下で酸化処理してスコロダイトの結晶を生成させる工程(結晶化工程)の3つの工程を行うことに想到した。
The present inventors have conducted intensive research to solve the above problems. As a result, first, a step of extracting arsenic from the non-ferrous smelting intermediate product containing the arsenic by leaching (leaching step), and then arsenic in the leachate from which the arsenic has been extracted is made pentavalent using an oxidizing agent. Step of oxidizing and removing remaining oxidizing agent (liquid adjustment step), Step of coexisting ferrous ions (Fe 2+ ) in the liquid after liquid adjustment, and oxidizing to generate scorodite crystals under acidic conditions The inventors have conceived of performing the three steps of (crystallization step).
ここで、本発明者等は、硫化砒素澱物と脱銅電解スライムとの両原料の配合割合を、一定の割合に保つことを要件とせずに処理を可能にする為、浸出反応始期から単体硫黄(元素状硫黄:S0)を添加し、溶存する銅イオンを硫化銅(CuS)として固定する構成に想到した。
次に本発明者等は、液調整工程での酸化薬剤の使用量を削減し、本方法における処理コストを低減する為に、浸出中に過量の銅イオンを存在せしめ砒素の5価砒素への酸化を促進し、反応終期に単体硫黄(S0)を添加し、適正なpH領域で溶存する銅イオンを硫化銅(CuS)として固定する構成にも想到した。 Here, the present inventors have made it possible to process from the beginning of the leaching reaction in order to enable processing without requiring that the mixing ratio of both raw materials of arsenic sulfide starch and decopperized electrolytic slime be maintained at a constant ratio. Sulfur (elemental sulfur: S 0 ) was added to arrive at a configuration in which dissolved copper ions were fixed as copper sulfide (CuS).
Next, in order to reduce the amount of oxidizing agent used in the liquid adjustment step and reduce the processing cost in this method, the inventors have made an excessive amount of copper ions present during leaching to convert arsenic to pentavalent arsenic. The inventors also conceived of a configuration in which oxidation is promoted, simple sulfur (S 0 ) is added at the end of the reaction, and copper ions dissolved in an appropriate pH region are fixed as copper sulfide (CuS).
次に本発明者等は、液調整工程での酸化薬剤の使用量を削減し、本方法における処理コストを低減する為に、浸出中に過量の銅イオンを存在せしめ砒素の5価砒素への酸化を促進し、反応終期に単体硫黄(S0)を添加し、適正なpH領域で溶存する銅イオンを硫化銅(CuS)として固定する構成にも想到した。 Here, the present inventors have made it possible to process from the beginning of the leaching reaction in order to enable processing without requiring that the mixing ratio of both raw materials of arsenic sulfide starch and decopperized electrolytic slime be maintained at a constant ratio. Sulfur (elemental sulfur: S 0 ) was added to arrive at a configuration in which dissolved copper ions were fixed as copper sulfide (CuS).
Next, in order to reduce the amount of oxidizing agent used in the liquid adjustment step and reduce the processing cost in this method, the inventors have made an excessive amount of copper ions present during leaching to convert arsenic to pentavalent arsenic. The inventors also conceived of a configuration in which oxidation is promoted, simple sulfur (S 0 ) is added at the end of the reaction, and copper ions dissolved in an appropriate pH region are fixed as copper sulfide (CuS).
そして本発明者等は、上述した浸出反応始期から単体硫黄(S0)を添加し、溶存する銅イオンを硫化銅(CuS)として固定する構成や、浸出中に過量の銅イオンを存在させて砒素の5価砒素への酸化を促進し、反応終期に単体硫黄(S0)を添加し、適正なpH領域で溶存する銅イオンを硫化銅(CuS)として固定する構成、を採用することにより、浸出液中の銅イオンを、結晶化工程で支障が出ない濃度以下まで除去することが可能であることに想到した。そして、浸出液中の銅イオンを結晶化工程で支障が出ない濃度以下まで除去することで、溶出基準を満足し、且つ、濾過性に優れ且つ安定なスコロダイトの結晶を、再現性良く煩雑な操作なしに簡便に生成することが出来ることに想到した。その結果、当初の非鉄製錬中間産物に含有されていた砒素を、濾過性に優れ且つ安定なスコロダイトとして回収することが可能になるとの全く新規な知見を得て本発明を完成した。
And the present inventors added elemental sulfur (S 0 ) from the beginning of the leaching reaction described above, and fixed the dissolved copper ions as copper sulfide (CuS), or caused an excessive amount of copper ions to exist during leaching. By adopting a configuration that promotes oxidation of arsenic to pentavalent arsenic, adds elemental sulfur (S 0 ) at the end of the reaction, and fixes copper ions dissolved in an appropriate pH range as copper sulfide (CuS) It has been conceived that the copper ions in the leachate can be removed to a concentration or less that does not hinder the crystallization process. By removing copper ions in the leachate to a concentration that does not interfere with the crystallization process, the scorodite crystals that satisfy the elution standards and that are excellent in filterability and stable can be operated with good reproducibility. I came up with the idea that it can be generated easily without any problems. As a result, the present invention was completed by obtaining completely new knowledge that arsenic contained in the initial non-ferrous smelting intermediate product can be recovered as a stable scorodite having excellent filterability.
即ち、上述の課題を解決するための第1の発明は、
硫化物形態の砒素を含む非鉄製錬中間産物と、砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーを、酸性領域で酸化浸出し浸出液を得る浸出工程と、
当該浸出液に酸化剤を添加して、砒素を5価砒素へ酸化して調整後液を得る液調整工程と、
当該調整後液中の砒素をスコロダイト結晶へ転換する結晶化工程と、を有し、
前記浸出工程が、前記硫化物形態の砒素を含む非鉄製錬中間産物と、前記砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーへ、反応始期に単体硫黄(S0)を添加し、酸化剤を添加しながら、温度を50℃以上とし、pHを1.0以上2.0以下として浸出を行う浸出第1工程と、次いで、pHを2.0以上とした後、混合スラリーへ酸化剤を添加しながら浸出を行う浸出第2工程と、次いで、酸化剤の添加を停止し、さらに混合スラリーを攪拌する浸出第3工程とを、有することを特徴とする砒素の処理方法である。 That is, the first invention for solving the above-described problem is
A leaching step of oxidizing and leaching a mixed slurry of a non-ferrous smelting intermediate product containing sulfide form arsenic and a non-ferrous smelting intermediate product containing arsenic and metal form copper in an acidic region;
A liquid adjustment step of adding an oxidizing agent to the leachate to oxidize arsenic to pentavalent arsenic to obtain an adjusted liquid;
A crystallization step of converting the arsenic in the adjusted liquid into scorodite crystals,
In the leaching step, single sulfur (S 0 at the beginning of the reaction) is mixed into a mixed slurry of the non-ferrous smelting intermediate product containing arsenic in the sulfide form and the non-ferrous smelting intermediate product containing arsenic and copper in the metal form. ), Leaching first step of leaching at a temperature of 50 ° C. or higher and a pH of 1.0 or more and 2.0 or less while adding an oxidizing agent, and then after the pH is set to 2.0 or more The leaching second step of leaching while adding the oxidant to the mixed slurry, and then the leaching third step of stopping the addition of the oxidant and further stirring the mixed slurry, It is a processing method.
硫化物形態の砒素を含む非鉄製錬中間産物と、砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーを、酸性領域で酸化浸出し浸出液を得る浸出工程と、
当該浸出液に酸化剤を添加して、砒素を5価砒素へ酸化して調整後液を得る液調整工程と、
当該調整後液中の砒素をスコロダイト結晶へ転換する結晶化工程と、を有し、
前記浸出工程が、前記硫化物形態の砒素を含む非鉄製錬中間産物と、前記砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーへ、反応始期に単体硫黄(S0)を添加し、酸化剤を添加しながら、温度を50℃以上とし、pHを1.0以上2.0以下として浸出を行う浸出第1工程と、次いで、pHを2.0以上とした後、混合スラリーへ酸化剤を添加しながら浸出を行う浸出第2工程と、次いで、酸化剤の添加を停止し、さらに混合スラリーを攪拌する浸出第3工程とを、有することを特徴とする砒素の処理方法である。 That is, the first invention for solving the above-described problem is
A leaching step of oxidizing and leaching a mixed slurry of a non-ferrous smelting intermediate product containing sulfide form arsenic and a non-ferrous smelting intermediate product containing arsenic and metal form copper in an acidic region;
A liquid adjustment step of adding an oxidizing agent to the leachate to oxidize arsenic to pentavalent arsenic to obtain an adjusted liquid;
A crystallization step of converting the arsenic in the adjusted liquid into scorodite crystals,
In the leaching step, single sulfur (S 0 at the beginning of the reaction) is mixed into a mixed slurry of the non-ferrous smelting intermediate product containing arsenic in the sulfide form and the non-ferrous smelting intermediate product containing arsenic and copper in the metal form. ), Leaching first step of leaching at a temperature of 50 ° C. or higher and a pH of 1.0 or more and 2.0 or less while adding an oxidizing agent, and then after the pH is set to 2.0 or more The leaching second step of leaching while adding the oxidant to the mixed slurry, and then the leaching third step of stopping the addition of the oxidant and further stirring the mixed slurry, It is a processing method.
第2の発明は、
前記単体硫黄(S0)の添加量は、該単体硫黄(S0)を添加せずに浸出した際に浸出液中にイオンとして残留する銅の総モル数の1倍モル以上であることを特徴とする第1の発明に記載の砒素の処理方法である。 The second invention is
Wherein the amount of elemental sulfur (S 0) is the single body sulfur (S 0) 1 times mole or more of the total number of moles of copper remaining as ions leaching solution during when leached without the addition of The method for treating arsenic according to the first invention.
前記単体硫黄(S0)の添加量は、該単体硫黄(S0)を添加せずに浸出した際に浸出液中にイオンとして残留する銅の総モル数の1倍モル以上であることを特徴とする第1の発明に記載の砒素の処理方法である。 The second invention is
Wherein the amount of elemental sulfur (S 0) is the single body sulfur (S 0) 1 times mole or more of the total number of moles of copper remaining as ions leaching solution during when leached without the addition of The method for treating arsenic according to the first invention.
第3の発明は、
硫化物形態の砒素を含む非鉄製錬中間産物と、砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーを、酸性領域で酸化浸出し浸出液を得る浸出工程と、
当該浸出液に酸化剤を添加して、砒素を5価砒素へ酸化して調整後液を得る液調整工程と、
当該調整後液中の砒素をスコロダイト結晶へ転換する結晶化工程と、を有し、
前記浸出工程が、前記硫化物形態の砒素を含む非鉄製錬中間産物と、前記砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーへ酸化剤を添加しながら温度を50℃以上とし、pHを1.0以上2.0以下として浸出を行う浸出第1工程と、次いで、pHを2.0以上とした後、混合スラリーへ酸化剤を添加しながら浸出を行う浸出第2工程と、次いで、酸化剤の添加を停止して単体硫黄(S0)を添加し、pHを2以下とした後、さらに攪拌する浸出第3工程とを、有することを特徴とする砒素の処理方法である。 The third invention is
A leaching step of oxidizing and leaching a mixed slurry of a non-ferrous smelting intermediate product containing sulfide form arsenic and a non-ferrous smelting intermediate product containing arsenic and metal form copper in an acidic region;
A liquid adjustment step of adding an oxidizing agent to the leachate to oxidize arsenic to pentavalent arsenic to obtain an adjusted liquid;
A crystallization step of converting the arsenic in the adjusted liquid into scorodite crystals,
In the leaching step, the temperature of the non-ferrous smelting intermediate product containing the sulfide form of arsenic and the non-ferrous smelting intermediate product containing the arsenic and metal form of copper is increased while adding an oxidizing agent to the mixed slurry. First leaching step in which leaching is performed at a temperature of not less than 0 ° C. and a pH of 1.0 or more and 2.0 or less, and then leaching is performed by adding oxidant to the mixed slurry after the pH is set to 2.0 or more. Arsenic, characterized in that it has two steps and a third step of leaching after stopping addition of oxidant and adding elemental sulfur (S 0 ) to bring the pH to 2 or less and further stirring It is a processing method.
硫化物形態の砒素を含む非鉄製錬中間産物と、砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーを、酸性領域で酸化浸出し浸出液を得る浸出工程と、
当該浸出液に酸化剤を添加して、砒素を5価砒素へ酸化して調整後液を得る液調整工程と、
当該調整後液中の砒素をスコロダイト結晶へ転換する結晶化工程と、を有し、
前記浸出工程が、前記硫化物形態の砒素を含む非鉄製錬中間産物と、前記砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーへ酸化剤を添加しながら温度を50℃以上とし、pHを1.0以上2.0以下として浸出を行う浸出第1工程と、次いで、pHを2.0以上とした後、混合スラリーへ酸化剤を添加しながら浸出を行う浸出第2工程と、次いで、酸化剤の添加を停止して単体硫黄(S0)を添加し、pHを2以下とした後、さらに攪拌する浸出第3工程とを、有することを特徴とする砒素の処理方法である。 The third invention is
A leaching step of oxidizing and leaching a mixed slurry of a non-ferrous smelting intermediate product containing sulfide form arsenic and a non-ferrous smelting intermediate product containing arsenic and metal form copper in an acidic region;
A liquid adjustment step of adding an oxidizing agent to the leachate to oxidize arsenic to pentavalent arsenic to obtain an adjusted liquid;
A crystallization step of converting the arsenic in the adjusted liquid into scorodite crystals,
In the leaching step, the temperature of the non-ferrous smelting intermediate product containing the sulfide form of arsenic and the non-ferrous smelting intermediate product containing the arsenic and metal form of copper is increased while adding an oxidizing agent to the mixed slurry. First leaching step in which leaching is performed at a temperature of not less than 0 ° C. and a pH of 1.0 or more and 2.0 or less, and then leaching is performed by adding oxidant to the mixed slurry after the pH is set to 2.0 or more. Arsenic, characterized in that it has two steps and a third step of leaching after stopping addition of oxidant and adding elemental sulfur (S 0 ) to bring the pH to 2 or less and further stirring It is a processing method.
第4の発明は、
前記単体硫黄(S0)の添加量は、該単体硫黄(S0)を添加せずに浸出した際に浸出液中にイオンとして残留する銅の総モル数の2倍モル以上であることを特徴とする第3の発明に記載の砒素の処理方法である。 The fourth invention is:
Wherein the amount of elemental sulfur (S 0) is the single body sulfur (S 0) 2-fold mole or more of the total number of moles of copper remaining as ions leaching solution during when leached without the addition of The method for treating arsenic according to the third aspect of the present invention.
前記単体硫黄(S0)の添加量は、該単体硫黄(S0)を添加せずに浸出した際に浸出液中にイオンとして残留する銅の総モル数の2倍モル以上であることを特徴とする第3の発明に記載の砒素の処理方法である。 The fourth invention is:
Wherein the amount of elemental sulfur (S 0) is the single body sulfur (S 0) 2-fold mole or more of the total number of moles of copper remaining as ions leaching solution during when leached without the addition of The method for treating arsenic according to the third aspect of the present invention.
第5の発明は、
硫化物形態の砒素を含む非鉄製錬中間産物と、砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーを、酸性領域で酸化浸出し浸出液を得る浸出工程と、
当該浸出液に酸化剤を添加して、砒素を5価砒素へ酸化して調整後液を得る液調整工程と、
当該調整後液中の砒素をスコロダイト結晶へ転換する結晶化工程と、を有し、
前記浸出工程が、前記硫化物形態の砒素を含む非鉄製錬中間産物と、前記砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーへ、反応始期に単体硫黄(S0)を添加し、酸化剤を添加しながら温度を50℃以上とし、pHを1.0以上2.0以下として浸出を行う浸出第1工程と、次いで、pHを2.0以上とした後、混合スラリーへ酸化剤を添加しながら、浸出を行う浸出第2工程と、次いで、前記酸化剤の添加を停止して単体硫黄(S0)を添加し、pHを2以下とした後、さらに攪拌する浸出第3工程とを、有することを特徴とする砒素の処理方法である。 The fifth invention is:
A leaching step of oxidizing and leaching a mixed slurry of a non-ferrous smelting intermediate product containing sulfide form arsenic and a non-ferrous smelting intermediate product containing arsenic and metal form copper in an acidic region;
A liquid adjustment step of adding an oxidizing agent to the leachate to oxidize arsenic to pentavalent arsenic to obtain an adjusted liquid;
A crystallization step of converting the arsenic in the adjusted liquid into scorodite crystals,
In the leaching step, single sulfur (S 0 at the beginning of the reaction) is mixed into a mixed slurry of the non-ferrous smelting intermediate product containing arsenic in the sulfide form and the non-ferrous smelting intermediate product containing arsenic and copper in the metal form. ), Leaching first step in which leaching is performed while adding the oxidizing agent and the temperature is set to 50 ° C. or more, and the pH is set to 1.0 or more and 2.0 or less, and then the pH is set to 2.0 or more, The second step of leaching in which oxidant is added to the mixed slurry and then leaching is stopped, and then the addition of the oxidant is stopped and single sulfur (S 0 ) is added to bring the pH to 2 or less, followed by further stirring And a third step of leaching.
硫化物形態の砒素を含む非鉄製錬中間産物と、砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーを、酸性領域で酸化浸出し浸出液を得る浸出工程と、
当該浸出液に酸化剤を添加して、砒素を5価砒素へ酸化して調整後液を得る液調整工程と、
当該調整後液中の砒素をスコロダイト結晶へ転換する結晶化工程と、を有し、
前記浸出工程が、前記硫化物形態の砒素を含む非鉄製錬中間産物と、前記砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーへ、反応始期に単体硫黄(S0)を添加し、酸化剤を添加しながら温度を50℃以上とし、pHを1.0以上2.0以下として浸出を行う浸出第1工程と、次いで、pHを2.0以上とした後、混合スラリーへ酸化剤を添加しながら、浸出を行う浸出第2工程と、次いで、前記酸化剤の添加を停止して単体硫黄(S0)を添加し、pHを2以下とした後、さらに攪拌する浸出第3工程とを、有することを特徴とする砒素の処理方法である。 The fifth invention is:
A leaching step of oxidizing and leaching a mixed slurry of a non-ferrous smelting intermediate product containing sulfide form arsenic and a non-ferrous smelting intermediate product containing arsenic and metal form copper in an acidic region;
A liquid adjustment step of adding an oxidizing agent to the leachate to oxidize arsenic to pentavalent arsenic to obtain an adjusted liquid;
A crystallization step of converting the arsenic in the adjusted liquid into scorodite crystals,
In the leaching step, single sulfur (S 0 at the beginning of the reaction) is mixed into a mixed slurry of the non-ferrous smelting intermediate product containing arsenic in the sulfide form and the non-ferrous smelting intermediate product containing arsenic and copper in the metal form. ), Leaching first step in which leaching is performed while adding the oxidizing agent and the temperature is set to 50 ° C. or more, and the pH is set to 1.0 or more and 2.0 or less, and then the pH is set to 2.0 or more, The second step of leaching in which oxidant is added to the mixed slurry and then leaching is stopped, and then the addition of the oxidant is stopped and single sulfur (S 0 ) is added to bring the pH to 2 or less, followed by further stirring And a third step of leaching.
第6の発明は、
前記砒素と金属形態の銅とを含む非鉄製錬中間産物が、脱銅電解スライム、および/または、砒化銅殿物であることを特徴とする第1から第5の発明のいずれかに記載の砒素の処理方法である。 The sixth invention is:
The non-ferrous smelting intermediate product containing arsenic and metallic copper is decopperized electrolytic slime and / or copper arsenide, according to any one of the first to fifth inventions, This is a method for treating arsenic.
前記砒素と金属形態の銅とを含む非鉄製錬中間産物が、脱銅電解スライム、および/または、砒化銅殿物であることを特徴とする第1から第5の発明のいずれかに記載の砒素の処理方法である。 The sixth invention is:
The non-ferrous smelting intermediate product containing arsenic and metallic copper is decopperized electrolytic slime and / or copper arsenide, according to any one of the first to fifth inventions, This is a method for treating arsenic.
第7の発明は、
前記浸出工程において、浸出第1工程に次いで、pHを2.0以上とした後、pHを非保持のまま、混合スラリーへ酸化剤を添加しながら、浸出第2工程を行うことを特徴とする第1、第3、第5の発明のいずれかに記載の砒素の処理方法である。 The seventh invention
In the leaching step, after the leaching first step, the pH is set to 2.0 or more, and then the leaching second step is performed while adding the oxidant to the mixed slurry while maintaining the pH unretained. The arsenic processing method according to any one of the first, third, and fifth inventions.
前記浸出工程において、浸出第1工程に次いで、pHを2.0以上とした後、pHを非保持のまま、混合スラリーへ酸化剤を添加しながら、浸出第2工程を行うことを特徴とする第1、第3、第5の発明のいずれかに記載の砒素の処理方法である。 The seventh invention
In the leaching step, after the leaching first step, the pH is set to 2.0 or more, and then the leaching second step is performed while adding the oxidant to the mixed slurry while maintaining the pH unretained. The arsenic processing method according to any one of the first, third, and fifth inventions.
第8の発明は、
前記混合スラリーへ添加する酸化剤として、空気および/または酸素ガスの吹き込みを用いることを特徴とする第1、第3、第5、第7の発明のいずれかに記載の砒素の処理方法である。 The eighth invention
The arsenic treatment method according to any one of the first, third, fifth, and seventh inventions, wherein air and / or oxygen gas blowing is used as the oxidizing agent added to the mixed slurry. .
前記混合スラリーへ添加する酸化剤として、空気および/または酸素ガスの吹き込みを用いることを特徴とする第1、第3、第5、第7の発明のいずれかに記載の砒素の処理方法である。 The eighth invention
The arsenic treatment method according to any one of the first, third, fifth, and seventh inventions, wherein air and / or oxygen gas blowing is used as the oxidizing agent added to the mixed slurry. .
第9の発明は、
前記液調整工程において、酸化剤として過酸化水素を40℃以上で添加し、砒素を5価砒素に酸化して調整後液を得た後、当該反応後液と金属銅とを接触させ、残留する過酸化水素を除去するか、または、当該反応後液をさらに攪拌維持して、当該調整後液に残留する過酸化水素を除去することを特徴とする第1から第8の発明のいずれかに記載の砒素の処理方法である。 The ninth invention
In the liquid adjustment step, hydrogen peroxide is added as an oxidant at 40 ° C. or more, and after arsenic is oxidized to pentavalent arsenic to obtain an adjusted liquid, the post-reaction liquid and metal copper are brought into contact with each other to remain. Any one of the first to eighth inventions is characterized in that the hydrogen peroxide to be removed is removed, or the post-reaction liquid is further maintained by stirring to remove hydrogen peroxide remaining in the post-adjustment liquid. The arsenic treatment method described in 1.
前記液調整工程において、酸化剤として過酸化水素を40℃以上で添加し、砒素を5価砒素に酸化して調整後液を得た後、当該反応後液と金属銅とを接触させ、残留する過酸化水素を除去するか、または、当該反応後液をさらに攪拌維持して、当該調整後液に残留する過酸化水素を除去することを特徴とする第1から第8の発明のいずれかに記載の砒素の処理方法である。 The ninth invention
In the liquid adjustment step, hydrogen peroxide is added as an oxidant at 40 ° C. or more, and after arsenic is oxidized to pentavalent arsenic to obtain an adjusted liquid, the post-reaction liquid and metal copper are brought into contact with each other to remain. Any one of the first to eighth inventions is characterized in that the hydrogen peroxide to be removed is removed, or the post-reaction liquid is further maintained by stirring to remove hydrogen peroxide remaining in the post-adjustment liquid. The arsenic treatment method described in 1.
第10の発明は、
前記結晶化工程が、前記調整後液に第一鉄イオンを共存せしめ、当該第一鉄イオンが、5価砒素と酸化反応する結晶化工程であることを特徴とする第1から第9の発明のいずれかに記載の砒素の処理方法である。 The tenth invention is
The first to ninth inventions, wherein the crystallization step is a crystallization step in which ferrous ions coexist in the adjusted solution, and the ferrous ions are oxidized with pentavalent arsenic. The arsenic treatment method according to any one of the above.
前記結晶化工程が、前記調整後液に第一鉄イオンを共存せしめ、当該第一鉄イオンが、5価砒素と酸化反応する結晶化工程であることを特徴とする第1から第9の発明のいずれかに記載の砒素の処理方法である。 The tenth invention is
The first to ninth inventions, wherein the crystallization step is a crystallization step in which ferrous ions coexist in the adjusted solution, and the ferrous ions are oxidized with pentavalent arsenic. The arsenic treatment method according to any one of the above.
第11の発明は、
前記酸化反応を、pH1以下で行うことを特徴とする第10の発明に記載の砒素の処理方法である。 The eleventh invention is
The arsenic treatment method according to the tenth invention, wherein the oxidation reaction is carried out at a pH of 1 or less.
前記酸化反応を、pH1以下で行うことを特徴とする第10の発明に記載の砒素の処理方法である。 The eleventh invention is
The arsenic treatment method according to the tenth invention, wherein the oxidation reaction is carried out at a pH of 1 or less.
第12の発明は、
前記酸化反応を、温度50℃以上で行うことを特徴とする第10の発明に記載の砒素の処理方法である。 The twelfth invention
The arsenic treatment method according to the tenth invention, wherein the oxidation reaction is performed at a temperature of 50 ° C. or higher.
前記酸化反応を、温度50℃以上で行うことを特徴とする第10の発明に記載の砒素の処理方法である。 The twelfth invention
The arsenic treatment method according to the tenth invention, wherein the oxidation reaction is performed at a temperature of 50 ° C. or higher.
第1から第12の発明のいずれかに記載の発明によれば、濾過性に優れ、且つ、安定なスコロダイトの結晶を、再現性良く、煩雑な操作なしに簡便に生成することが出来た。さらに生成したスコロダイトの結晶は、溶出基準値(環境庁告示13号準拠)を大幅に満足することが出来た。
According to the invention described in any one of the first to twelfth inventions, a stable scorodite crystal having excellent filterability and reproducibility could be easily produced without complicated operations. Further, the generated scorodite crystals were able to greatly satisfy the elution standard value (according to Environmental Agency Notification No. 13).
上述したように本発明に係る砒素の処理方法の実施形態は、図1に示す工程フローに記載する様に、砒素を含む非鉄製錬中間産物(1)から、弱酸性領域で砒素を浸出する浸出第1~第3工程(2)~(4)と、当該浸出液(5)に酸化剤を添加して砒素を5価砒素へ酸化する液調整工程(6)と、調整後液中の砒素をスコロダイト(8)へ転換する結晶化工程(7)とを有するものである。尚、浸出第1~第3工程(2)~(4)で生成する浸出残渣(9)は銅製錬(10)へ戻し、結晶化工程(7)で生成するろ液(11)は、排水処理工程(12)にて処理するものである。
As described above, the embodiment of the arsenic treatment method according to the present invention leaches arsenic in a weakly acidic region from the non-ferrous smelting intermediate product (1) containing arsenic as described in the process flow shown in FIG. First to third leaching steps (2) to (4), a liquid adjusting step (6) for adding oxidant to the leaching solution (5) to oxidize arsenic to pentavalent arsenic, and arsenic in the adjusted solution And a crystallization step (7) for converting to scorodite (8). The leaching residue (9) produced in the leaching first to third steps (2) to (4) is returned to the copper smelting (10), and the filtrate (11) produced in the crystallization step (7) is drained. Processing is performed in the processing step (12).
以下、本発明に係る実施形態について、1.砒素を含む非鉄製錬中間産物(1)、2.浸出第1~第3工程(2)~(4)、3.液調整工程(6)、4.結晶化工程(7)、の順で説明する。
Hereinafter, embodiments according to the present invention will be described. 1. Non-ferrous smelting intermediate product containing arsenic (1) 2. First to third leaching steps (2) to (4); 3. Liquid adjustment step (6), It demonstrates in order of a crystallization process (7).
1.砒素を含む非鉄製錬中間産物(1)
原料である砒素を含む非鉄製錬中間産物(1)の浸出パルプの配合には、脱銅電解スライムが多量に発生する製錬所が該当する脱銅電解スライムが硫化砒素澱物に比し多い場合(後述する(式4)において、硫化砒素(As2S3)が脱銅電解スライム(Cu0)に比し、量的に反応当量に満たない場合であり、以下「Cu0が豊富な場合」と記載する。)と、硫化砒素澱物が多量に発生する製錬所が該当する脱銅電解スライムが硫化砒素澱物に比し少ない場合(後述する(式4)において、硫化砒素量(As2S3)が脱銅電解スライム量(Cu0)に比して反応当量以上ある場合であり、以下「As2S3が豊富な場合」と記載する。)との2通りの場合がある。 1. Non-ferrous intermediates containing arsenic (1)
Non-ferrous smelting intermediate product (1) leaching pulp containing arsenic, which is a raw material, is suitable for smelters that produce a large amount of decoppered electrolytic slime. If the (later-described (equation 4), compared to the arsenic sulfide (as 2 S 3) is decoppered electrolytic slime (Cu 0), a case of less than quantitatively reactive equivalent, "Cu 0 rich or less When the amount of de-coppered electrolytic slime in the smelter where a large amount of arsenic sulfide starch is generated is smaller than that of arsenic sulfide starch (in the following (Formula 4), the amount of arsenic sulfide) (As 2 S 3 ) is a case where there is a reaction equivalent or more compared to the amount of copper removal electrolysis slime (Cu 0 ), and is described below as “when As 2 S 3 is abundant”. There is.
原料である砒素を含む非鉄製錬中間産物(1)の浸出パルプの配合には、脱銅電解スライムが多量に発生する製錬所が該当する脱銅電解スライムが硫化砒素澱物に比し多い場合(後述する(式4)において、硫化砒素(As2S3)が脱銅電解スライム(Cu0)に比し、量的に反応当量に満たない場合であり、以下「Cu0が豊富な場合」と記載する。)と、硫化砒素澱物が多量に発生する製錬所が該当する脱銅電解スライムが硫化砒素澱物に比し少ない場合(後述する(式4)において、硫化砒素量(As2S3)が脱銅電解スライム量(Cu0)に比して反応当量以上ある場合であり、以下「As2S3が豊富な場合」と記載する。)との2通りの場合がある。 1. Non-ferrous intermediates containing arsenic (1)
Non-ferrous smelting intermediate product (1) leaching pulp containing arsenic, which is a raw material, is suitable for smelters that produce a large amount of decoppered electrolytic slime. If the (later-described (equation 4), compared to the arsenic sulfide (as 2 S 3) is decoppered electrolytic slime (Cu 0), a case of less than quantitatively reactive equivalent, "Cu 0 rich or less When the amount of de-coppered electrolytic slime in the smelter where a large amount of arsenic sulfide starch is generated is smaller than that of arsenic sulfide starch (in the following (Formula 4), the amount of arsenic sulfide) (As 2 S 3 ) is a case where there is a reaction equivalent or more compared to the amount of copper removal electrolysis slime (Cu 0 ), and is described below as “when As 2 S 3 is abundant”. There is.
2.浸出第1~第3工程(2)~(4)
本発明の実施形態に係る浸出第1~第3工程(2)~(4)には、浸出第1工程(2)の始期(当該始期には、当該浸出第1工程実施の為の原料混合段階も含まれる。)に単体硫黄(S0)を添加する第1の実施形態と、浸出第3工程(4)の終期に単体硫黄(S0)を添加する第2の実施形態、および、浸出第1工程(2)の始期(当該始期には、当該浸出第1工程実施の為の原料混合段階も含まれる。)に単体硫黄(S0)の一部を添加し、浸出第3工程(4)の終期に残部を添加する第3の実施形態とがある。
他方、上述したように、原料である砒素を含む非鉄製錬中間産物(1)の浸出パルプの配合には、「Cu0が豊富な場合」と、「As2S3が豊富な場合」との2通りの場合がある。 2. Leaching first to third steps (2) to (4)
In the leaching first to third steps (2) to (4) according to the embodiment of the present invention, the starting stage of the leaching first step (2) (in the starting stage, the raw material mixing for performing the leaching first step) second embodiment the addition of the first embodiment of adding elemental sulfur (S 0) in step are also included.), elemental sulfur at the end of the leaching third step (4) the (S 0) and, A part of elemental sulfur (S 0 ) is added to the beginning of the first leaching step (2) (including the raw material mixing stage for the first leaching step), and the third leaching step There is a third embodiment in which the remainder is added at the end of (4).
On the other hand, as described above, in the blending of the leached pulp of the non-ferrous smelting intermediate product (1) containing arsenic as the raw material, “when Cu 0 is abundant” and “when As 2 S 3 is abundant” There are two cases.
本発明の実施形態に係る浸出第1~第3工程(2)~(4)には、浸出第1工程(2)の始期(当該始期には、当該浸出第1工程実施の為の原料混合段階も含まれる。)に単体硫黄(S0)を添加する第1の実施形態と、浸出第3工程(4)の終期に単体硫黄(S0)を添加する第2の実施形態、および、浸出第1工程(2)の始期(当該始期には、当該浸出第1工程実施の為の原料混合段階も含まれる。)に単体硫黄(S0)の一部を添加し、浸出第3工程(4)の終期に残部を添加する第3の実施形態とがある。
他方、上述したように、原料である砒素を含む非鉄製錬中間産物(1)の浸出パルプの配合には、「Cu0が豊富な場合」と、「As2S3が豊富な場合」との2通りの場合がある。 2. Leaching first to third steps (2) to (4)
In the leaching first to third steps (2) to (4) according to the embodiment of the present invention, the starting stage of the leaching first step (2) (in the starting stage, the raw material mixing for performing the leaching first step) second embodiment the addition of the first embodiment of adding elemental sulfur (S 0) in step are also included.), elemental sulfur at the end of the leaching third step (4) the (S 0) and, A part of elemental sulfur (S 0 ) is added to the beginning of the first leaching step (2) (including the raw material mixing stage for the first leaching step), and the third leaching step There is a third embodiment in which the remainder is added at the end of (4).
On the other hand, as described above, in the blending of the leached pulp of the non-ferrous smelting intermediate product (1) containing arsenic as the raw material, “when Cu 0 is abundant” and “when As 2 S 3 is abundant” There are two cases.
そこで、初めに、[第1~第3の実施形態に係る浸出第1~第3工程(2)~(4)において共通する反応の基本構成]について説明し、次に、[「Cu0が豊富な場合」における第1~第3の実施形態に係る浸出第1~第3工程(2)~(4)]について説明し、
さらに、[「As2S3が豊富な場合」における第1~第3の実施形態に係る浸出第1~第3工程(2)~(4)]について説明する。 Therefore, first, [the basic structure of the reaction common in the leaching first to third steps (2) to (4) according to the first to third embodiments] will be described, and then [“Cu 0 Explaining the leaching first to third steps (2) to (4) according to the first to third embodiments ”
Further, the leaching first to third steps (2) to (4) according to the first to third embodiments in “when As 2 S 3 is abundant” will be described.
さらに、[「As2S3が豊富な場合」における第1~第3の実施形態に係る浸出第1~第3工程(2)~(4)]について説明する。 Therefore, first, [the basic structure of the reaction common in the leaching first to third steps (2) to (4) according to the first to third embodiments] will be described, and then [“Cu 0 Explaining the leaching first to third steps (2) to (4) according to the first to third embodiments ”
Further, the leaching first to third steps (2) to (4) according to the first to third embodiments in “when As 2 S 3 is abundant” will be described.
[第1~第3の実施形態に係る浸出第1~第3工程(2)~(4)において共通する反応の基本構成]
砒素を含む非鉄製錬中間産物(硫化砒素澱物および脱銅電解スライム)(1)の混合パルプへ、まずは、酸化剤の添加(例えば、空気および/または酸素ガスの吹き込みが好ましい。)を行い、加温下、pHを1~2間とし、特に、金属形態である脱銅電解スライムの浸出を進める浸出第1工程(2)を行う。次いで、アルカリ(例えば水酸化ナトリウム)を添加しpHを2以上とした後、浸出液のpH制御を非保持とし、当該pHの変化を成り行きとしながら主に未反応の硫化砒素澱物を浸出する浸出第2工程(3)を行う。さらに浸出終期に酸化剤の添加を停止し、浸出液中に溶存する銅イオンを浸出残渣中に含有する単体硫黄(S0)にて硫化し、硫化銅(CuS)として除去する浸出第3工程(4)を行う。 [Basic structure of reaction common in leaching first to third steps (2) to (4) according to first to third embodiments]
First, an oxidizing agent is added to the mixed pulp of the non-ferrous smelting intermediate product (arsenic sulfide starch and decopperized electrolytic slime) (1) containing arsenic (for example, air and / or oxygen gas is preferably blown). Then, the first step (2) of leaching is carried out, in which the pH is set between 1 and 2 under heating, and in particular, the leaching of the decoppered electrolytic slime in the metal form is advanced. Next, after adding an alkali (for example, sodium hydroxide) to bring the pH to 2 or more, the pH control of the leaching solution is not maintained, and leaching mainly leaching unreacted arsenic sulfide starch while maintaining the change in pH. A 2nd process (3) is performed. Further, the third step of leaching, in which the addition of the oxidizing agent is stopped at the end of leaching, and copper ions dissolved in the leaching solution are sulfided with elemental sulfur (S 0 ) contained in the leaching residue and removed as copper sulfide (CuS). Perform 4).
砒素を含む非鉄製錬中間産物(硫化砒素澱物および脱銅電解スライム)(1)の混合パルプへ、まずは、酸化剤の添加(例えば、空気および/または酸素ガスの吹き込みが好ましい。)を行い、加温下、pHを1~2間とし、特に、金属形態である脱銅電解スライムの浸出を進める浸出第1工程(2)を行う。次いで、アルカリ(例えば水酸化ナトリウム)を添加しpHを2以上とした後、浸出液のpH制御を非保持とし、当該pHの変化を成り行きとしながら主に未反応の硫化砒素澱物を浸出する浸出第2工程(3)を行う。さらに浸出終期に酸化剤の添加を停止し、浸出液中に溶存する銅イオンを浸出残渣中に含有する単体硫黄(S0)にて硫化し、硫化銅(CuS)として除去する浸出第3工程(4)を行う。 [Basic structure of reaction common in leaching first to third steps (2) to (4) according to first to third embodiments]
First, an oxidizing agent is added to the mixed pulp of the non-ferrous smelting intermediate product (arsenic sulfide starch and decopperized electrolytic slime) (1) containing arsenic (for example, air and / or oxygen gas is preferably blown). Then, the first step (2) of leaching is carried out, in which the pH is set between 1 and 2 under heating, and in particular, the leaching of the decoppered electrolytic slime in the metal form is advanced. Next, after adding an alkali (for example, sodium hydroxide) to bring the pH to 2 or more, the pH control of the leaching solution is not maintained, and leaching mainly leaching unreacted arsenic sulfide starch while maintaining the change in pH. A 2nd process (3) is performed. Further, the third step of leaching, in which the addition of the oxidizing agent is stopped at the end of leaching, and copper ions dissolved in the leaching solution are sulfided with elemental sulfur (S 0 ) contained in the leaching residue and removed as copper sulfide (CuS). Perform 4).
以下、浸出第1~3工程を、化学反応式を基に具体的に説明する。尚、脱銅電解スライム中の銅および砒素は金属形態であるので、便宜上、各々Cu0、As0と表現する。
Hereinafter, the leaching first to third steps will be specifically described based on the chemical reaction formula. Since copper and arsenic in the copper removal electrolytic slime are in a metal form, they are expressed as Cu 0 and As 0 for convenience.
浸出第1工程(2)は、下記(式1)(式2)(式3)の素反応から成ると考えられる。
Cu0+2H++1/2O2=Cu2++H2O・・・(式1)
As0+3/4O2+1/2H2O=HAsO2・・・(式2)
Cu2++1/3As2S3+4/3H2O=CuS+2/3HAsO2+2H+・・・(式3)
つまり、脱銅電解スライム中の銅(Cu0)と硫化砒素(As2S3)との反応は(式1)+(式3)より下記(式4)にて示される。
Cu0+1/3As2S3+1/2O2+1/3H2O=2/3HAsO2+CuS・・・(式4) The first leaching step (2) is considered to consist of elementary reactions of the following (formula 1), (formula 2) and (formula 3).
Cu 0 + 2H + + 1 / 2O 2 = Cu 2+ + H 2 O (Formula 1)
As 0 + 3 / 4O 2 + 1 / 2H 2 O = HAsO 2 (Formula 2)
Cu 2+ + 1 / 3As 2 S 3 + 4 / 3H 2 O = CuS + 2 / 3HAsO 2 + 2H + ··· ( Equation 3)
That is, the reaction of copper (Cu 0 ) and arsenic sulfide (As 2 S 3 ) in the decopperized electrolytic slime is expressed by (Expression 4) below from (Expression 1) + (Expression 3).
Cu 0 +1/3 As 2 S 3 + 1 / 2O 2 + 1 / 3H 2 O = 2/3 HAsO 2 + CuS (Formula 4)
Cu0+2H++1/2O2=Cu2++H2O・・・(式1)
As0+3/4O2+1/2H2O=HAsO2・・・(式2)
Cu2++1/3As2S3+4/3H2O=CuS+2/3HAsO2+2H+・・・(式3)
つまり、脱銅電解スライム中の銅(Cu0)と硫化砒素(As2S3)との反応は(式1)+(式3)より下記(式4)にて示される。
Cu0+1/3As2S3+1/2O2+1/3H2O=2/3HAsO2+CuS・・・(式4) The first leaching step (2) is considered to consist of elementary reactions of the following (formula 1), (formula 2) and (formula 3).
Cu 0 + 2H + + 1 / 2O 2 = Cu 2+ + H 2 O (Formula 1)
As 0 + 3 / 4O 2 + 1 / 2H 2 O = HAsO 2 (Formula 2)
Cu 2+ + 1 / 3As 2 S 3 + 4 / 3H 2 O = CuS + 2 / 3HAsO 2 + 2H + ··· ( Equation 3)
That is, the reaction of copper (Cu 0 ) and arsenic sulfide (As 2 S 3 ) in the decopperized electrolytic slime is expressed by (Expression 4) below from (Expression 1) + (Expression 3).
Cu 0 +1/3 As 2 S 3 + 1 / 2O 2 + 1 / 3H 2 O = 2/3 HAsO 2 + CuS (Formula 4)
当該浸出第1工程(2)においては、金属形態にある脱銅電解スライムの浸出を主に進めるため、原料混合パルプのpHを酸性側に調整する。pH調整用の酸には汎用的な硫酸が好適である。
ここで、一般的には、金属形態の脱銅電解スライムを酸化浸出する為、pHは低い程好ましいと考えられている。しかし、本発明者等の検討によれば、当該pH値は1~2が良いと知見された。これは、脱銅電解スライムの1次粒子が10~30μmと非常に細かく、元来、反応性に富んでいるからではないかと推定している。また、後工程である結晶化工程の反応開始のpHを1としており、浸出第2工程でのアルカリの使用量を抑える観点からも、当該浸出第1工程(2)におけるpH1~2の設定は好都合である。 In the said leaching 1st process (2), in order to mainly advance the leaching of the copper removal electrolytic slime in a metal form, the pH of raw material mixing pulp is adjusted to the acidic side. General-purpose sulfuric acid is suitable as the acid for adjusting the pH.
Here, it is generally considered that the lower the pH is, the better, in order to oxidize and leach copper-type electrolytic copper slime in metal form. However, according to studies by the present inventors, it has been found that the pH value is preferably 1-2. This is presumably because the primary particles of the decoppered electrolytic slime are very fine, 10-30 μm, and are inherently rich in reactivity. In addition, the pH at the start of the reaction in the crystallization process, which is a subsequent process, is set to 1. From the viewpoint of reducing the amount of alkali used in the second leaching process, the pH 1-2 setting in the leaching first process (2) is Convenient.
ここで、一般的には、金属形態の脱銅電解スライムを酸化浸出する為、pHは低い程好ましいと考えられている。しかし、本発明者等の検討によれば、当該pH値は1~2が良いと知見された。これは、脱銅電解スライムの1次粒子が10~30μmと非常に細かく、元来、反応性に富んでいるからではないかと推定している。また、後工程である結晶化工程の反応開始のpHを1としており、浸出第2工程でのアルカリの使用量を抑える観点からも、当該浸出第1工程(2)におけるpH1~2の設定は好都合である。 In the said leaching 1st process (2), in order to mainly advance the leaching of the copper removal electrolytic slime in a metal form, the pH of raw material mixing pulp is adjusted to the acidic side. General-purpose sulfuric acid is suitable as the acid for adjusting the pH.
Here, it is generally considered that the lower the pH is, the better, in order to oxidize and leach copper-type electrolytic copper slime in metal form. However, according to studies by the present inventors, it has been found that the pH value is preferably 1-2. This is presumably because the primary particles of the decoppered electrolytic slime are very fine, 10-30 μm, and are inherently rich in reactivity. In addition, the pH at the start of the reaction in the crystallization process, which is a subsequent process, is set to 1. From the viewpoint of reducing the amount of alkali used in the second leaching process, the pH 1-2 setting in the leaching first process (2) is Convenient.
また、当該浸出第1工程(2)での浸出時間は30分間以上行えば良い。上述したように反応性が良いからである。
浸出時の温度を50℃以上とすることで、浸出は進む。しかし、浸出時の温度は、脱銅電解スライム量と硫化砒素澱物量とのバランスに応じて定めることが好ましい。 Moreover, what is necessary is just to perform the leaching time in the said leaching 1st process (2) for 30 minutes or more. This is because the reactivity is good as described above.
Leaching proceeds by setting the temperature during leaching to 50 ° C. or higher. However, the temperature during leaching is preferably determined according to the balance between the amount of copper removal electrolytic slime and the amount of arsenic sulfide starch.
浸出時の温度を50℃以上とすることで、浸出は進む。しかし、浸出時の温度は、脱銅電解スライム量と硫化砒素澱物量とのバランスに応じて定めることが好ましい。 Moreover, what is necessary is just to perform the leaching time in the said leaching 1st process (2) for 30 minutes or more. This is because the reactivity is good as described above.
Leaching proceeds by setting the temperature during leaching to 50 ° C. or higher. However, the temperature during leaching is preferably determined according to the balance between the amount of copper removal electrolytic slime and the amount of arsenic sulfide starch.
浸出第2工程(3)は、浸出第1工程(2)終了時に、アルカリ(例えば水酸化ナトリウム)を添加してpH2以上とした後、浸出液のpH制御を非保持とし、当該pHの変化を成り行きとしながら浸出を進める工程である。
本工程は、下記(式5)(式6)(式7)および上述した(式3)の素反応から成ると考えられる。
As2S3+3/2O2+H2O=2HAsO2+3S0・・・・・(式5)
HAsO2+1/2O2+H2O=H2AsO4 -+H+・・・・・・(式6)
Cu2++S0→ CuS・・・・・・(式7)
硫化砒素澱物は酸性側より中性側で溶解が進み易く、浸出第1工程(2)において未浸出の硫化砒素が(式5)により溶解するものと考えられる。同時に(式6)(式7)および(式3)にて水素イオン(H+)の放出が起き、pHは自然に低下する挙動をとる。これは、結晶化開始のpHが1であることから、酸を添加せずとも酸性側に移行するので好都合と考えられる。
尚、添加する水酸化ナトリウムの量は、浸出液中のNa濃度が20g/l以下、好ましくは10g/l以下となる範囲で使用する。なぜなら、Na濃度が20g/l以下であれば、結晶化工程での反応パルプの粘性が低く保たれ、好ましいからである。 In the leaching second step (3), at the end of the leaching first step (2), after adding alkali (for example, sodium hydroxide) to pH 2 or higher, the pH control of the leachate is not retained, and the pH change is determined. This is a process of leaching while proceeding.
This step is considered to consist of the elementary reactions of the following (formula 5) (formula 6) (formula 7) and the above-described (formula 3).
As 2 S 3 + 3 / 2O 2 + H 2 O = 2HAsO 2 + 3S 0 (formula 5)
HAsO 2 + 1 / 2O 2 + H 2 O = H 2 AsO 4 − + H + (formula 6)
Cu 2+ + S 0 → CuS (formula 7)
Arsenic sulfide starch is more likely to dissolve on the neutral side than on the acidic side, and it is considered that unleached arsenic sulfide is dissolved by (Equation 5) in the first leaching step (2). At the same time, hydrogen ions (H + ) are released in (Expression 6), (Expression 7), and (Expression 3), and the pH is naturally lowered. This is considered convenient because the pH at the start of crystallization is 1, and the acid side is shifted to without adding an acid.
The amount of sodium hydroxide to be added is such that the Na concentration in the leachate is 20 g / l or less, preferably 10 g / l or less. This is because if the Na concentration is 20 g / l or less, the viscosity of the reaction pulp in the crystallization step is preferably kept low.
本工程は、下記(式5)(式6)(式7)および上述した(式3)の素反応から成ると考えられる。
As2S3+3/2O2+H2O=2HAsO2+3S0・・・・・(式5)
HAsO2+1/2O2+H2O=H2AsO4 -+H+・・・・・・(式6)
Cu2++S0→ CuS・・・・・・(式7)
硫化砒素澱物は酸性側より中性側で溶解が進み易く、浸出第1工程(2)において未浸出の硫化砒素が(式5)により溶解するものと考えられる。同時に(式6)(式7)および(式3)にて水素イオン(H+)の放出が起き、pHは自然に低下する挙動をとる。これは、結晶化開始のpHが1であることから、酸を添加せずとも酸性側に移行するので好都合と考えられる。
尚、添加する水酸化ナトリウムの量は、浸出液中のNa濃度が20g/l以下、好ましくは10g/l以下となる範囲で使用する。なぜなら、Na濃度が20g/l以下であれば、結晶化工程での反応パルプの粘性が低く保たれ、好ましいからである。 In the leaching second step (3), at the end of the leaching first step (2), after adding alkali (for example, sodium hydroxide) to pH 2 or higher, the pH control of the leachate is not retained, and the pH change is determined. This is a process of leaching while proceeding.
This step is considered to consist of the elementary reactions of the following (formula 5) (formula 6) (formula 7) and the above-described (formula 3).
As 2 S 3 + 3 / 2O 2 + H 2 O = 2HAsO 2 + 3S 0 (formula 5)
HAsO 2 + 1 / 2O 2 + H 2 O = H 2 AsO 4 − + H + (formula 6)
Cu 2+ + S 0 → CuS (formula 7)
Arsenic sulfide starch is more likely to dissolve on the neutral side than on the acidic side, and it is considered that unleached arsenic sulfide is dissolved by (Equation 5) in the first leaching step (2). At the same time, hydrogen ions (H + ) are released in (Expression 6), (Expression 7), and (Expression 3), and the pH is naturally lowered. This is considered convenient because the pH at the start of crystallization is 1, and the acid side is shifted to without adding an acid.
The amount of sodium hydroxide to be added is such that the Na concentration in the leachate is 20 g / l or less, preferably 10 g / l or less. This is because if the Na concentration is 20 g / l or less, the viscosity of the reaction pulp in the crystallization step is preferably kept low.
浸出第2工程(3)における混合スラリーの温度は、浸出第1工程(2)と同様に、50℃以上とすることで浸出は進む。しかし、浸出時の温度は、脱銅電解スライム量と硫化砒素澱物量とのバランスに応じて定めることが好ましい。ただし、未反応の硫化砒素澱物を積極的に浸出する目的から、浸出第1工程(2)より高目に設定することが好ましい。
また、浸出第2工程(3)の反応時間は、反応の進行を十分に担保する観点から30分間以上、好ましくは45分間以上行うことが好ましい。 Like the leaching first step (2), the temperature of the mixed slurry in the leaching second step (3) is 50 ° C. or more, and leaching proceeds. However, the temperature during leaching is preferably determined according to the balance between the amount of copper removal electrolytic slime and the amount of arsenic sulfide starch. However, for the purpose of positively leaching unreacted arsenic sulfide starch, it is preferably set higher than the first leaching step (2).
Further, the reaction time of the second leaching step (3) is preferably 30 minutes or more, preferably 45 minutes or more from the viewpoint of sufficiently ensuring the progress of the reaction.
また、浸出第2工程(3)の反応時間は、反応の進行を十分に担保する観点から30分間以上、好ましくは45分間以上行うことが好ましい。 Like the leaching first step (2), the temperature of the mixed slurry in the leaching second step (3) is 50 ° C. or more, and leaching proceeds. However, the temperature during leaching is preferably determined according to the balance between the amount of copper removal electrolytic slime and the amount of arsenic sulfide starch. However, for the purpose of positively leaching unreacted arsenic sulfide starch, it is preferably set higher than the first leaching step (2).
Further, the reaction time of the second leaching step (3) is preferably 30 minutes or more, preferably 45 minutes or more from the viewpoint of sufficiently ensuring the progress of the reaction.
浸出第3工程(4)は、酸化剤の添加(例えば、空気および/または酸素ガスの吹き込みが好ましい。)を停止し、浸出液中に溶存した銅イオンを、浸出残渣中に含有する単体硫黄(S0)によって、硫化銅(CuS)として除去する工程である。
本工程の反応は、上述した(式7)が主となる。従って、浸出温度は反応上高ければ高い程好ましいが、実際的には設備材質によって決定すれば良い。
尚(式7)は、厳密には水素イオン(H+)の放出を伴う反応であるため、pH値は、酸性側へ若干移行する。
尚、本工程の目的は主に銅の除去であるが、本発明者等の検討によると、銅以外であっても硫化物を形成し易い元素(例えば、Pb、Hg、Bi、Sb、等)であれば、その溶存濃度により、同様の効果が期待出来るものであることを知見した。 In the leaching third step (4), the addition of the oxidizing agent (for example, air and / or oxygen gas blowing is preferable) is stopped, and the copper ions dissolved in the leaching liquid are contained in elemental sulfur ( This is a step of removing as copper sulfide (CuS) by S 0 ).
The reaction in this step is mainly based on (Expression 7) described above. Accordingly, the higher the leaching temperature is, the higher the reaction, but it is preferable that the leaching temperature is actually determined by the equipment material.
Strictly speaking, (Equation 7) is a reaction accompanied by the release of hydrogen ions (H + ), so the pH value slightly shifts to the acidic side.
The purpose of this step is mainly to remove copper, but according to the study by the present inventors, elements other than copper that easily form sulfides (for example, Pb, Hg, Bi, Sb, etc.) ), It was found that the same effect can be expected by the dissolved concentration.
本工程の反応は、上述した(式7)が主となる。従って、浸出温度は反応上高ければ高い程好ましいが、実際的には設備材質によって決定すれば良い。
尚(式7)は、厳密には水素イオン(H+)の放出を伴う反応であるため、pH値は、酸性側へ若干移行する。
尚、本工程の目的は主に銅の除去であるが、本発明者等の検討によると、銅以外であっても硫化物を形成し易い元素(例えば、Pb、Hg、Bi、Sb、等)であれば、その溶存濃度により、同様の効果が期待出来るものであることを知見した。 In the leaching third step (4), the addition of the oxidizing agent (for example, air and / or oxygen gas blowing is preferable) is stopped, and the copper ions dissolved in the leaching liquid are contained in elemental sulfur ( This is a step of removing as copper sulfide (CuS) by S 0 ).
The reaction in this step is mainly based on (Expression 7) described above. Accordingly, the higher the leaching temperature is, the higher the reaction, but it is preferable that the leaching temperature is actually determined by the equipment material.
Strictly speaking, (Equation 7) is a reaction accompanied by the release of hydrogen ions (H + ), so the pH value slightly shifts to the acidic side.
The purpose of this step is mainly to remove copper, but according to the study by the present inventors, elements other than copper that easily form sulfides (for example, Pb, Hg, Bi, Sb, etc.) ), It was found that the same effect can be expected by the dissolved concentration.
[「Cu0が豊富な場合」における第1~第3の実施形態に係る浸出第1~第3工程(2)~(4)]
ここで「Cu0が豊富な場合」とは、上述した(式4)において、硫化砒素澱物が脱銅電解スライム(Cu0)に比し、量的に反応当量に満たない場合である。
この場合には、配合されたCu0を硫化するに足りるAs2S3が不足する為、浸出第1~第3工程(2)~(4)終了時には、浸出液(5)中に過剰のCu0が銅イオン(Cu2+)として残留し、結晶化工程(7)まで持ち込まれることになる。
結晶化工程(7)で結晶化元液中に溶存する銅イオンは、スコロダイト(8)結晶化において酸化触媒として作用するため、結晶化工程(7)の酸化条件を一定にするためには、銅濃度を抑制し標準化する必要がある。この観点から、浸出液(5)中の銅濃度は1g/l以下、好ましくは500mg/l以下であると、結晶化条件の酸化条件のバラツキを抑えることが出来、結晶化工程(7)の安定化につながり、好ましい。また、浸出液(5)へ銅イオンを残留させないことは、銅のロス回避につながり、資源の積極回収の観点からも好ましい。 [Leaching First to Third Steps (2) to (4) according to First to Third Embodiments in “Abundant Cu 0 ”]
Here, “the case where Cu 0 is abundant” is a case where the arsenic sulfide starch is less than the reaction equivalent in terms of quantity as compared with the copper removal electrolytic slime (Cu 0 ) in the above-described (Formula 4).
In this case, since As 2 S 3 sufficient to sulfidize the blended Cu 0 is insufficient, excess Cu is contained in the leachate (5) at the end of the first to third steps (2) to (4). 0 remains as copper ions (Cu 2+ ) and is brought to the crystallization step (7).
Since the copper ions dissolved in the crystallization liquid in the crystallization step (7) act as an oxidation catalyst in the scorodite (8) crystallization, in order to make the oxidation conditions in the crystallization step (7) constant, It is necessary to suppress and standardize the copper concentration. From this point of view, when the copper concentration in the leachate (5) is 1 g / l or less, preferably 500 mg / l or less, variation in the oxidization conditions of the crystallization conditions can be suppressed, and the stability of the crystallization step (7) can be suppressed. This is preferable because it leads to Moreover, not leaving copper ions in the leachate (5) leads to avoidance of copper loss, which is preferable from the viewpoint of active recovery of resources.
ここで「Cu0が豊富な場合」とは、上述した(式4)において、硫化砒素澱物が脱銅電解スライム(Cu0)に比し、量的に反応当量に満たない場合である。
この場合には、配合されたCu0を硫化するに足りるAs2S3が不足する為、浸出第1~第3工程(2)~(4)終了時には、浸出液(5)中に過剰のCu0が銅イオン(Cu2+)として残留し、結晶化工程(7)まで持ち込まれることになる。
結晶化工程(7)で結晶化元液中に溶存する銅イオンは、スコロダイト(8)結晶化において酸化触媒として作用するため、結晶化工程(7)の酸化条件を一定にするためには、銅濃度を抑制し標準化する必要がある。この観点から、浸出液(5)中の銅濃度は1g/l以下、好ましくは500mg/l以下であると、結晶化条件の酸化条件のバラツキを抑えることが出来、結晶化工程(7)の安定化につながり、好ましい。また、浸出液(5)へ銅イオンを残留させないことは、銅のロス回避につながり、資源の積極回収の観点からも好ましい。 [Leaching First to Third Steps (2) to (4) according to First to Third Embodiments in “Abundant Cu 0 ”]
Here, “the case where Cu 0 is abundant” is a case where the arsenic sulfide starch is less than the reaction equivalent in terms of quantity as compared with the copper removal electrolytic slime (Cu 0 ) in the above-described (Formula 4).
In this case, since As 2 S 3 sufficient to sulfidize the blended Cu 0 is insufficient, excess Cu is contained in the leachate (5) at the end of the first to third steps (2) to (4). 0 remains as copper ions (Cu 2+ ) and is brought to the crystallization step (7).
Since the copper ions dissolved in the crystallization liquid in the crystallization step (7) act as an oxidation catalyst in the scorodite (8) crystallization, in order to make the oxidation conditions in the crystallization step (7) constant, It is necessary to suppress and standardize the copper concentration. From this point of view, when the copper concentration in the leachate (5) is 1 g / l or less, preferably 500 mg / l or less, variation in the oxidization conditions of the crystallization conditions can be suppressed, and the stability of the crystallization step (7) can be suppressed. This is preferable because it leads to Moreover, not leaving copper ions in the leachate (5) leads to avoidance of copper loss, which is preferable from the viewpoint of active recovery of resources.
以下、第1~第3の実施形態に係る具体的な操作方法について説明する。
《「Cu0が豊富な場合」における第1の実施形態に係る浸出第1~第3工程(2)~(4)》
第1の実施形態においては、浸出第1工程(2)にて単体硫黄(S0)を添加し、浸出液(5)中の過剰なCu0を最終的に硫化銅(CuS)とし、浸出残渣(9)とするものである。
浸出第1工程(2)における単体硫黄(S0)の添加のタイミングについては、酸化剤の添加(例えば、空気および/または酸素ガスの吹き込みが好ましい。)開始前が良い。尤も、ハンドリング性を考慮すれば、原料調合時に、単体硫黄(S0)と、硫化砒素澱物と、脱銅電解スライムとを同時に調合リパルプするのが良い。 Hereinafter, specific operation methods according to the first to third embodiments will be described.
<< Leaching first to third steps (2) to (4) according to the first embodiment in "when Cu 0 is abundant">>
In the first embodiment, elemental sulfur (S 0 ) is added in the leaching first step (2), and excess Cu 0 in the leaching solution (5) is finally converted to copper sulfide (CuS), thereby leaching residue. (9).
Regarding the timing of addition of elemental sulfur (S 0 ) in the first leaching step (2), it is preferable to start the addition of an oxidizing agent (for example, air and / or oxygen gas is preferably blown). However, in consideration of handling properties, it is better to prepare and repulse simple sulfur (S 0 ), arsenic sulfide starch, and decopperized electrolytic slime at the same time when preparing the raw material.
《「Cu0が豊富な場合」における第1の実施形態に係る浸出第1~第3工程(2)~(4)》
第1の実施形態においては、浸出第1工程(2)にて単体硫黄(S0)を添加し、浸出液(5)中の過剰なCu0を最終的に硫化銅(CuS)とし、浸出残渣(9)とするものである。
浸出第1工程(2)における単体硫黄(S0)の添加のタイミングについては、酸化剤の添加(例えば、空気および/または酸素ガスの吹き込みが好ましい。)開始前が良い。尤も、ハンドリング性を考慮すれば、原料調合時に、単体硫黄(S0)と、硫化砒素澱物と、脱銅電解スライムとを同時に調合リパルプするのが良い。 Hereinafter, specific operation methods according to the first to third embodiments will be described.
<< Leaching first to third steps (2) to (4) according to the first embodiment in "when Cu 0 is abundant">>
In the first embodiment, elemental sulfur (S 0 ) is added in the leaching first step (2), and excess Cu 0 in the leaching solution (5) is finally converted to copper sulfide (CuS), thereby leaching residue. (9).
Regarding the timing of addition of elemental sulfur (S 0 ) in the first leaching step (2), it is preferable to start the addition of an oxidizing agent (for example, air and / or oxygen gas is preferably blown). However, in consideration of handling properties, it is better to prepare and repulse simple sulfur (S 0 ), arsenic sulfide starch, and decopperized electrolytic slime at the same time when preparing the raw material.
ここで、単体硫黄(S0)の添加量は、後述する実施例1に記載する様に、単体硫黄(S0)を添加せずに浸出した際に浸出液中にイオンとして残留する銅の総モル数の1.0倍モル以上であれば、浸出液(5)中の銅を1g/l以下にまで除去が可能である。同様に、浸出液(5)中にイオンとして残留する銅の総モル数の1.3倍モル以上であれば、浸出液(5)中の銅を、500mg/l以下にまで除去が可能である。
Here, the amount of elemental sulfur (S 0 ) added is the total amount of copper remaining as ions in the leachate when leached without adding elemental sulfur (S 0 ), as described in Example 1 described later. If the number of moles is 1.0 times or more, the copper in the leachate (5) can be removed to 1 g / l or less. Similarly, if the total number of moles of copper remaining as ions in the leachate (5) is 1.3 times or more, the copper in the leachate (5) can be removed to 500 mg / l or less.
ここで単体硫黄(S0)の、具体的な添加量は、以下の計算にて求めることが出来る。
・ 硫化砒素澱物中の砒素が、全てAs2S3形態であると仮定し、その量を求める。
・ (式4)にて、上記1)で算出したAs2S3量と反応するCu0量を求める。
・ 脱銅電解スライム中の銅を全て金属形態と仮定し、当該銅量を求める。
・ 浸出液(5)中に銅イオンとして溶存する銅量を、上記3)の銅量と、2)のCu0量との差から求める。
・ 単体硫黄(S0)の添加量は、上記4)から求めた浸出液(5)中に溶存する銅量の総モル量の1.0倍モル以上の量とする。 Here, the specific addition amount of elemental sulfur (S 0 ) can be obtained by the following calculation.
・ Assuming that all arsenic in the arsenic sulfide starch is in the As 2 S 3 form, the amount is obtained.
In Equation 4, the amount of Cu 0 that reacts with the amount of As 2 S 3 calculated in 1) above is obtained.
・ Assuming that all copper in the copper removal electrolytic slime is in metal form, the amount of copper is determined.
The amount of copper dissolved as copper ions in the leachate (5) is determined from the difference between the amount of copper in 3) and the amount of Cu 0 in 2).
The amount of elemental sulfur (S 0 ) added is 1.0 mol or more of the total molar amount of copper dissolved in the leachate (5) obtained from 4) above.
・ 硫化砒素澱物中の砒素が、全てAs2S3形態であると仮定し、その量を求める。
・ (式4)にて、上記1)で算出したAs2S3量と反応するCu0量を求める。
・ 脱銅電解スライム中の銅を全て金属形態と仮定し、当該銅量を求める。
・ 浸出液(5)中に銅イオンとして溶存する銅量を、上記3)の銅量と、2)のCu0量との差から求める。
・ 単体硫黄(S0)の添加量は、上記4)から求めた浸出液(5)中に溶存する銅量の総モル量の1.0倍モル以上の量とする。 Here, the specific addition amount of elemental sulfur (S 0 ) can be obtained by the following calculation.
・ Assuming that all arsenic in the arsenic sulfide starch is in the As 2 S 3 form, the amount is obtained.
In Equation 4, the amount of Cu 0 that reacts with the amount of As 2 S 3 calculated in 1) above is obtained.
・ Assuming that all copper in the copper removal electrolytic slime is in metal form, the amount of copper is determined.
The amount of copper dissolved as copper ions in the leachate (5) is determined from the difference between the amount of copper in 3) and the amount of Cu 0 in 2).
The amount of elemental sulfur (S 0 ) added is 1.0 mol or more of the total molar amount of copper dissolved in the leachate (5) obtained from 4) above.
尚、浸出第1工程(2)においては、砒素の酸化触媒としての銅イオン(Cu2+)を溶存させることが望ましく、(式3)及び(式7)を抑えつつ(式1)を優先する観点からは、浸出温度は低い方が有効である。この銅イオンの存在は、特に、浸出第2工程(3)でその効果を発揮するものである。浸出自体は、浸出温度50℃以上で進むものの、浸出時間の短縮をも考慮し浸出温度60~80℃が好ましい。浸出時間は、上述したように30分間以上であれば十分である。
In the leaching first step (2), it is desirable to dissolve copper ions (Cu 2+ ) as an arsenic oxidation catalyst, and (Formula 1) is given priority while suppressing (Formula 3) and (Formula 7). From the viewpoint, a lower leaching temperature is more effective. The presence of this copper ion exhibits its effect particularly in the second leaching step (3). Although leaching itself proceeds at a leaching temperature of 50 ° C. or higher, a leaching temperature of 60 to 80 ° C. is preferable in consideration of shortening of the leaching time. As described above, the leaching time is sufficient if it is 30 minutes or longer.
続く、浸出第2工程(3)では、当該混合スラリーのpHを2.0以上とし、pHを上昇させることにより、3価砒素の5価砒素への酸化を促進しつつ、未反応の硫化砒素澱物を積極的に浸出することが出来る。これら二つの目的を確保する意味から、浸出温度は浸出第1工程(2)より若干高目の70~80℃か好ましく、浸出時間も30分間以上、好ましくは45分間以上、実施することが好ましい。
In the subsequent leaching second step (3), the pH of the mixed slurry is set to 2.0 or more, and the pH is increased to promote the oxidation of trivalent arsenic to pentavalent arsenic, while unreacted arsenic sulfide. The starch can be actively leached. In order to ensure these two purposes, the leaching temperature is preferably 70 to 80 ° C., which is slightly higher than the leaching first step (2), and the leaching time is preferably 30 minutes or more, preferably 45 minutes or more. .
さらに最終の当該浸出第3工程(4)では、浸出終期に酸化剤を添加停止(例えば、空気および/または酸素ガスを吹き込み停止)する。当該浸出第3工程(4)は、浸出終期まで残留した銅イオンと浸出始期に添加した単体硫黄(S0)との反応を完了させる工程であるので、浸出温度は高い程良好であり、80℃以上が好ましい。ただし、実操業では実際の設備上の材質等を考慮すれば80℃前後でも十分可能である。浸出時間も、30分間以上実施することが好ましい。
Further, in the final leaching third step (4), addition of the oxidizing agent is stopped at the end of leaching (for example, blowing of air and / or oxygen gas is stopped). Since the third leaching step (4) is a step of completing the reaction between copper ions remaining until the end of leaching and elemental sulfur (S 0 ) added at the beginning of leaching, the higher the leaching temperature, the better. C. or higher is preferable. However, in actual operation, even if the material on the actual equipment is taken into consideration, it is possible even at around 80 ° C. The leaching time is preferably 30 minutes or longer.
《「Cu0が豊富な場合」における第2の実施形態に係る浸出第1~第3工程(2)~(4)》
Cu0が豊富な場合における第2の実施形態は、浸出終期に酸化剤を添加停止(例えば、空気および/または酸素ガスを吹き込み停止)し、単体硫黄(S0)を添加し、過剰のCu0を最終的に硫化銅(CuS)として変換し浸出残渣(9)とするものである。第2の実施形態における浸出第1工程(2)と浸出第2工程(3)とは、基本的には上述した第1の実施形態に準ずるものである。しかし、単体硫黄(S0)を添加する浸出終期まで銅イオンが潤沢に溶存しており、基本的には3価砒素が5価砒素へ酸化されやすい条件が整っている。従って、浸出温度に関しては、第1の実施形態の場合程、厳密でなくても良い。すなわち、砒素の酸化を積極的に進める観点から、浸出温度は浸出第1工程(2)および浸出第2工程(3)とも高温で行うことが出来る。尤も、実操業での実際の設備上の材質等を考慮すれば80℃前後が好ましい。 << Leaching first to third steps (2) to (4) according to the second embodiment in "when Cu 0 is abundant">>
In a second embodiment where Cu 0 is abundant, the addition of oxidant is stopped at the end of leaching (eg, blowing off air and / or oxygen gas), elemental sulfur (S 0 ) is added, and excess Cu is added. 0 is finally converted into copper sulfide (CuS) to form a leaching residue (9). The leaching first step (2) and the leaching second step (3) in the second embodiment are basically the same as those in the first embodiment described above. However, copper ions are sufficiently dissolved up to the end of leaching when elemental sulfur (S 0 ) is added, and basically conditions for easily oxidizing trivalent arsenic to pentavalent arsenic are prepared. Accordingly, the leaching temperature may not be as strict as in the first embodiment. That is, from the viewpoint of actively promoting arsenic oxidation, the leaching temperature can be performed at a high temperature in both the leaching first step (2) and the leaching second step (3). However, considering the material on the actual equipment in actual operation, about 80 ° C. is preferable.
Cu0が豊富な場合における第2の実施形態は、浸出終期に酸化剤を添加停止(例えば、空気および/または酸素ガスを吹き込み停止)し、単体硫黄(S0)を添加し、過剰のCu0を最終的に硫化銅(CuS)として変換し浸出残渣(9)とするものである。第2の実施形態における浸出第1工程(2)と浸出第2工程(3)とは、基本的には上述した第1の実施形態に準ずるものである。しかし、単体硫黄(S0)を添加する浸出終期まで銅イオンが潤沢に溶存しており、基本的には3価砒素が5価砒素へ酸化されやすい条件が整っている。従って、浸出温度に関しては、第1の実施形態の場合程、厳密でなくても良い。すなわち、砒素の酸化を積極的に進める観点から、浸出温度は浸出第1工程(2)および浸出第2工程(3)とも高温で行うことが出来る。尤も、実操業での実際の設備上の材質等を考慮すれば80℃前後が好ましい。 << Leaching first to third steps (2) to (4) according to the second embodiment in "when Cu 0 is abundant">>
In a second embodiment where Cu 0 is abundant, the addition of oxidant is stopped at the end of leaching (eg, blowing off air and / or oxygen gas), elemental sulfur (S 0 ) is added, and excess Cu is added. 0 is finally converted into copper sulfide (CuS) to form a leaching residue (9). The leaching first step (2) and the leaching second step (3) in the second embodiment are basically the same as those in the first embodiment described above. However, copper ions are sufficiently dissolved up to the end of leaching when elemental sulfur (S 0 ) is added, and basically conditions for easily oxidizing trivalent arsenic to pentavalent arsenic are prepared. Accordingly, the leaching temperature may not be as strict as in the first embodiment. That is, from the viewpoint of actively promoting arsenic oxidation, the leaching temperature can be performed at a high temperature in both the leaching first step (2) and the leaching second step (3). However, considering the material on the actual equipment in actual operation, about 80 ° C. is preferable.
最終の浸出第3工程(4)では、酸化剤を添加停止(例えば、空気および/または酸素ガスを吹き込み停止)し、次いで単体硫黄(S0)の添加を行い、浸出パルプへ混合後、上述した(式7)に基づく脱銅反応を行う。
単体硫黄(S0)の添加量は、単体硫黄(S0)を添加せずに浸出した際、浸出液(5)中にイオンとして残留する銅の総モル数の2.0倍モル以上であれば、浸出液(5)中の銅を1g/l以下にまで除去可能である。同様に、浸出液(5)中にイオンとして残留する銅の総モル数の2.5倍モル以上であれば、浸出液(5)中の銅を、500mg/l以下にまで除去可能である。 In the final leaching third step (4), the addition of the oxidant is stopped (for example, the blowing of air and / or oxygen gas is stopped), then the sulfur (S 0 ) is added, mixed into the leached pulp, and the above-mentioned The copper removal reaction based on (Formula 7) is performed.
The addition amount of elemental sulfur (S 0) is when leached without the addition of elemental sulfur (S 0), there in leachate (5) 2.0 moles or more of the total number of moles of copper remaining as ions in For example, the copper in the leachate (5) can be removed to 1 g / l or less. Similarly, if the total number of moles of copper remaining as ions in the leachate (5) is 2.5 times or more, the copper in the leachate (5) can be removed to 500 mg / l or less.
単体硫黄(S0)の添加量は、単体硫黄(S0)を添加せずに浸出した際、浸出液(5)中にイオンとして残留する銅の総モル数の2.0倍モル以上であれば、浸出液(5)中の銅を1g/l以下にまで除去可能である。同様に、浸出液(5)中にイオンとして残留する銅の総モル数の2.5倍モル以上であれば、浸出液(5)中の銅を、500mg/l以下にまで除去可能である。 In the final leaching third step (4), the addition of the oxidant is stopped (for example, the blowing of air and / or oxygen gas is stopped), then the sulfur (S 0 ) is added, mixed into the leached pulp, and the above-mentioned The copper removal reaction based on (Formula 7) is performed.
The addition amount of elemental sulfur (S 0) is when leached without the addition of elemental sulfur (S 0), there in leachate (5) 2.0 moles or more of the total number of moles of copper remaining as ions in For example, the copper in the leachate (5) can be removed to 1 g / l or less. Similarly, if the total number of moles of copper remaining as ions in the leachate (5) is 2.5 times or more, the copper in the leachate (5) can be removed to 500 mg / l or less.
さらに、浸出反応のpHに関し、本発明者等が鋭意研究した結果、単体硫黄(S0)と銅イオンとの反応性が著しくpHに依存することを知見した。具体的には、実施例2および比較例2にて記載するが、単体硫黄(S0)の反応pHが2以上であれば、(式7)に示す反応が非常に遅くなり、且つ、脱銅能力が不完全となる。一方pHが2以下であれば、(式7)に示す反応が急速に進むものである。
当該現象の明確な理由は不明であるが、本発明者等は、浸出液中の砒素の相当量が5価砒素まで酸化されており、これら5価砒素がpHが2以上で砒酸銅を形成し(式7)の進行に支障をきたすものと推定している。従って、浸出パルプのpHが2以下まで低下していなければ、単体硫黄(S0)添加後に硫酸等の添加によりpHを2以下に調整する。
浸出時間に関しては、上述した「Cu0が豊富な場合」における第1の実施形態の場合と同様で良い。 Furthermore, as a result of intensive studies by the present inventors regarding the pH of the leaching reaction, it has been found that the reactivity between elemental sulfur (S 0 ) and copper ions remarkably depends on the pH. Specifically, as described in Example 2 and Comparative Example 2, when the reaction pH of elemental sulfur (S 0 ) is 2 or more, the reaction shown in (Equation 7) becomes very slow and Copper capacity is incomplete. On the other hand, if the pH is 2 or less, the reaction shown in (Formula 7) proceeds rapidly.
Although the clear reason for this phenomenon is unknown, the present inventors have found that a considerable amount of arsenic in the leachate has been oxidized to pentavalent arsenic, and these pentavalent arsenic forms copper arsenate when the pH is 2 or more. It is presumed that this will hinder the progression of (Equation 7). Therefore, if the pH of the leached pulp is not lowered to 2 or less, the pH is adjusted to 2 or less by adding sulfuric acid or the like after the addition of elemental sulfur (S 0 ).
The leaching time may be the same as in the case of the first embodiment in the above “in the case where Cu 0 is abundant”.
当該現象の明確な理由は不明であるが、本発明者等は、浸出液中の砒素の相当量が5価砒素まで酸化されており、これら5価砒素がpHが2以上で砒酸銅を形成し(式7)の進行に支障をきたすものと推定している。従って、浸出パルプのpHが2以下まで低下していなければ、単体硫黄(S0)添加後に硫酸等の添加によりpHを2以下に調整する。
浸出時間に関しては、上述した「Cu0が豊富な場合」における第1の実施形態の場合と同様で良い。 Furthermore, as a result of intensive studies by the present inventors regarding the pH of the leaching reaction, it has been found that the reactivity between elemental sulfur (S 0 ) and copper ions remarkably depends on the pH. Specifically, as described in Example 2 and Comparative Example 2, when the reaction pH of elemental sulfur (S 0 ) is 2 or more, the reaction shown in (Equation 7) becomes very slow and Copper capacity is incomplete. On the other hand, if the pH is 2 or less, the reaction shown in (Formula 7) proceeds rapidly.
Although the clear reason for this phenomenon is unknown, the present inventors have found that a considerable amount of arsenic in the leachate has been oxidized to pentavalent arsenic, and these pentavalent arsenic forms copper arsenate when the pH is 2 or more. It is presumed that this will hinder the progression of (Equation 7). Therefore, if the pH of the leached pulp is not lowered to 2 or less, the pH is adjusted to 2 or less by adding sulfuric acid or the like after the addition of elemental sulfur (S 0 ).
The leaching time may be the same as in the case of the first embodiment in the above “in the case where Cu 0 is abundant”.
《「Cu0が豊富な場合」における第3の実施形態に係る浸出第1~第3工程(2)~(4)》
浸出始期に、単体硫黄(S0)の一部を添加し、浸出第1工程(2)、および、浸出第2工程(3)を行った後、浸出終期の浸出第3工程(4)にて酸化剤を添加停止(例えば、空気および/または酸素ガスを吹き込み停止)し、浸出混合スラリーへ単体硫黄(S0)の残部を添加し、過剰のCu0を最終的に硫化銅(CuS)として浸出残渣(9)とするものである。当該第3の実施形態は、上述した第1および第2の実施形態のそれぞれの利点を利用した浸出方法である。 << Leaching first to third steps (2) to (4) according to the third embodiment in "when Cu 0 is abundant">>
At the beginning of leaching, a part of elemental sulfur (S 0 ) is added, and after leaching first step (2) and leaching second step (3), leaching last step leaching third step (4) Stop adding the oxidizer (for example, stop blowing air and / or oxygen gas), add the remainder of the elemental sulfur (S 0 ) to the leached mixed slurry, and finally add excess Cu 0 to copper sulfide (CuS) As leaching residue (9). The third embodiment is a leaching method using the advantages of the first and second embodiments described above.
浸出始期に、単体硫黄(S0)の一部を添加し、浸出第1工程(2)、および、浸出第2工程(3)を行った後、浸出終期の浸出第3工程(4)にて酸化剤を添加停止(例えば、空気および/または酸素ガスを吹き込み停止)し、浸出混合スラリーへ単体硫黄(S0)の残部を添加し、過剰のCu0を最終的に硫化銅(CuS)として浸出残渣(9)とするものである。当該第3の実施形態は、上述した第1および第2の実施形態のそれぞれの利点を利用した浸出方法である。 << Leaching first to third steps (2) to (4) according to the third embodiment in "when Cu 0 is abundant">>
At the beginning of leaching, a part of elemental sulfur (S 0 ) is added, and after leaching first step (2) and leaching second step (3), leaching last step leaching third step (4) Stop adding the oxidizer (for example, stop blowing air and / or oxygen gas), add the remainder of the elemental sulfur (S 0 ) to the leached mixed slurry, and finally add excess Cu 0 to copper sulfide (CuS) As leaching residue (9). The third embodiment is a leaching method using the advantages of the first and second embodiments described above.
すなわち、第1の実施形態は、少ない単体硫黄(S0)添加量で、銅を低濃度まで除去することが可能であるとの利点を有し、第2の実施形態は、砒素の酸化率が極めて高いという利点を有するものである。
That is, the first embodiment has an advantage that copper can be removed to a low concentration with a small amount of elemental sulfur (S 0 ) added, and the second embodiment has an arsenic oxidation rate. Has the advantage of extremely high.
ここで、第1および第2の実施形態の利点を活かすことの出来る単体硫黄(S0)の添加方法について説明する。
当該添加方法とは、浸出第1~第3工程(2)~(4)の始期と後期とに単体硫黄(S0)の添加する方法である。
先ず、浸出始期の添加量は、単体硫黄(S0)を添加せずに浸出した際に浸出液中にイオンとして残留する銅の総モル数の1.0倍モルとする。当該残留する銅の総モル数の1.0倍モルの添加により、浸出中の浸出パルプ中の銅イオン濃度を、最低でも1g/l以上を担保することが出来る。そして、浸出第1工程(2)および浸出第2工程(3)を行い、浸出終期である浸出第3工程(4)での単体硫黄(S0)の添加量は、残留する銅濃度を1g/lと仮定し、この銅の総モル数の20倍モル以上を添加する。この結果、残留する銅を500mg/l以下にすることが出来る。
浸出時間、浸出温度に関しては、浸出中に出来るだけ銅イオンを溶存させ砒素の酸化を促進させる意味から、上述した「Cu0が豊富な場合」における第1の実施形態と同様で良い。
尚、浸出始期と浸出終期とに、分割して添加する単体硫黄(S0)の添加量は、種々変更が可能であり、従って必ずしも上述の条件に限定されるものではない。 Here, a method for adding elemental sulfur (S 0 ) capable of utilizing the advantages of the first and second embodiments will be described.
The addition method is a method in which elemental sulfur (S 0 ) is added at the beginning and the latter stage of the leaching first to third steps (2) to (4).
First, the addition amount at the beginning of leaching is 1.0 times the total number of moles of copper remaining as ions in the leaching solution when leaching without adding elemental sulfur (S 0 ). By adding 1.0 times the total number of moles of the remaining copper, the copper ion concentration in the leached pulp during leaching can be guaranteed at least 1 g / l. Then, the first leaching step (2) and the second leaching step (3) are performed, and the amount of elemental sulfur (S 0 ) added in the leaching third step (4) at the end of leaching is 1 g of the residual copper concentration. Assuming / l, 20 times mole or more of the total number of moles of copper is added. As a result, the remaining copper can be reduced to 500 mg / l or less.
The leaching time and the leaching temperature may be the same as those in the first embodiment in the above-mentioned “in the case where Cu 0 is abundant” in order to promote the arsenic oxidation by dissolving copper ions as much as possible during the leaching.
It should be noted that the amount of elemental sulfur (S 0 ) added separately in the leaching start stage and leaching end stage can be variously changed, and is not necessarily limited to the above-described conditions.
当該添加方法とは、浸出第1~第3工程(2)~(4)の始期と後期とに単体硫黄(S0)の添加する方法である。
先ず、浸出始期の添加量は、単体硫黄(S0)を添加せずに浸出した際に浸出液中にイオンとして残留する銅の総モル数の1.0倍モルとする。当該残留する銅の総モル数の1.0倍モルの添加により、浸出中の浸出パルプ中の銅イオン濃度を、最低でも1g/l以上を担保することが出来る。そして、浸出第1工程(2)および浸出第2工程(3)を行い、浸出終期である浸出第3工程(4)での単体硫黄(S0)の添加量は、残留する銅濃度を1g/lと仮定し、この銅の総モル数の20倍モル以上を添加する。この結果、残留する銅を500mg/l以下にすることが出来る。
浸出時間、浸出温度に関しては、浸出中に出来るだけ銅イオンを溶存させ砒素の酸化を促進させる意味から、上述した「Cu0が豊富な場合」における第1の実施形態と同様で良い。
尚、浸出始期と浸出終期とに、分割して添加する単体硫黄(S0)の添加量は、種々変更が可能であり、従って必ずしも上述の条件に限定されるものではない。 Here, a method for adding elemental sulfur (S 0 ) capable of utilizing the advantages of the first and second embodiments will be described.
The addition method is a method in which elemental sulfur (S 0 ) is added at the beginning and the latter stage of the leaching first to third steps (2) to (4).
First, the addition amount at the beginning of leaching is 1.0 times the total number of moles of copper remaining as ions in the leaching solution when leaching without adding elemental sulfur (S 0 ). By adding 1.0 times the total number of moles of the remaining copper, the copper ion concentration in the leached pulp during leaching can be guaranteed at least 1 g / l. Then, the first leaching step (2) and the second leaching step (3) are performed, and the amount of elemental sulfur (S 0 ) added in the leaching third step (4) at the end of leaching is 1 g of the residual copper concentration. Assuming / l, 20 times mole or more of the total number of moles of copper is added. As a result, the remaining copper can be reduced to 500 mg / l or less.
The leaching time and the leaching temperature may be the same as those in the first embodiment in the above-mentioned “in the case where Cu 0 is abundant” in order to promote the arsenic oxidation by dissolving copper ions as much as possible during the leaching.
It should be noted that the amount of elemental sulfur (S 0 ) added separately in the leaching start stage and leaching end stage can be variously changed, and is not necessarily limited to the above-described conditions.
《「As2S3が豊富な場合」における第1の実施形態に係る浸出第1~第3工程(2)~(4)》
上記(式4)にて、脱銅電解スライムの銅(Cu0)に対し硫化砒素澱物中の硫化砒素(As2S3)の配合量が反応の1.0~1.1倍当量の範囲では、実際的には最終浸出液中に銅イオンが数100mg/lから1g/l程度残留する場合がある。この原因として、硫化砒素(As2S3)の配合量が、例えば2倍当量あれば反応が容易に完結するところ、1.0~1.1倍当量では反応の完結が困難な場合が考えられ、また、原料毎の活性度の違いが考えられる。
両原料の発生割合から、このような原料配合処理を強いられる製錬所での処理においては、「As2S3が豊富な場合」における第1の実施形態を適用することが出来る。 << Leaching first to third steps (2) to (4) according to the first embodiment in "when As 2 S 3 is abundant">>
In the above (Formula 4), the compounding amount of arsenic sulfide (As 2 S 3 ) in the arsenic sulfide starch is 1.0 to 1.1 times equivalent of the reaction to the copper (Cu 0 ) of the copper removal electrolytic slime. In the range, practically, copper ions may remain in the final leachate from several hundred mg / l to about 1 g / l. As a cause of this, the reaction can be easily completed if the blending amount of arsenic sulfide (As 2 S 3 ) is, for example, 2 times equivalent, but it may be difficult to complete the reaction if it is 1.0 to 1.1 times equivalent. Moreover, the difference in activity for each raw material can be considered.
From the generation ratio of both raw materials, the first embodiment in “when As 2 S 3 is abundant” can be applied to the processing at the smelter that is forced to perform such raw material blending processing.
上記(式4)にて、脱銅電解スライムの銅(Cu0)に対し硫化砒素澱物中の硫化砒素(As2S3)の配合量が反応の1.0~1.1倍当量の範囲では、実際的には最終浸出液中に銅イオンが数100mg/lから1g/l程度残留する場合がある。この原因として、硫化砒素(As2S3)の配合量が、例えば2倍当量あれば反応が容易に完結するところ、1.0~1.1倍当量では反応の完結が困難な場合が考えられ、また、原料毎の活性度の違いが考えられる。
両原料の発生割合から、このような原料配合処理を強いられる製錬所での処理においては、「As2S3が豊富な場合」における第1の実施形態を適用することが出来る。 << Leaching first to third steps (2) to (4) according to the first embodiment in "when As 2 S 3 is abundant">>
In the above (Formula 4), the compounding amount of arsenic sulfide (As 2 S 3 ) in the arsenic sulfide starch is 1.0 to 1.1 times equivalent of the reaction to the copper (Cu 0 ) of the copper removal electrolytic slime. In the range, practically, copper ions may remain in the final leachate from several hundred mg / l to about 1 g / l. As a cause of this, the reaction can be easily completed if the blending amount of arsenic sulfide (As 2 S 3 ) is, for example, 2 times equivalent, but it may be difficult to complete the reaction if it is 1.0 to 1.1 times equivalent. Moreover, the difference in activity for each raw material can be considered.
From the generation ratio of both raw materials, the first embodiment in “when As 2 S 3 is abundant” can be applied to the processing at the smelter that is forced to perform such raw material blending processing.
本実施例において、浸出始期に添加する単体硫黄(S0)の量は、残留する銅濃度を1g/lと仮定し、この銅の総モル数の8倍モル以上であれば残留する銅を常に100mg/l以下にすることが出来る。
浸出時間、浸出温度に関しては、浸出中に出来るだけ銅イオンを溶存させ砒素の酸化を促進させる観点から、上述した「Cu0が豊富な場合」における第1の実施形態と同様で良い。 In this example, the amount of elemental sulfur (S 0 ) added at the beginning of the leaching is assumed to be a residual copper concentration of 1 g / l. It can always be 100 mg / l or less.
The leaching time and leaching temperature may be the same as those in the first embodiment described above in the case of “rich Cu 0 ” from the viewpoint of accelerating arsenic oxidation by dissolving copper ions as much as possible during leaching.
浸出時間、浸出温度に関しては、浸出中に出来るだけ銅イオンを溶存させ砒素の酸化を促進させる観点から、上述した「Cu0が豊富な場合」における第1の実施形態と同様で良い。 In this example, the amount of elemental sulfur (S 0 ) added at the beginning of the leaching is assumed to be a residual copper concentration of 1 g / l. It can always be 100 mg / l or less.
The leaching time and leaching temperature may be the same as those in the first embodiment described above in the case of “rich Cu 0 ” from the viewpoint of accelerating arsenic oxidation by dissolving copper ions as much as possible during leaching.
《「As2S3が豊富な場合」における第2の実施形態に係る浸出第1~第3工程(2)~(4)》
本実施形態も、上述した「As2S3が豊富な場合」における第1の実施形態と同様、脱銅電解スライムの銅(Cu0)に対し、硫化砒素澱物中の硫化砒・BR>F(As2S3)の配合量が反応の1.0~1.1倍当量である場合に適用出来るものである。 << Leaching first to third steps (2) to (4) according to the second embodiment in "when As 2 S 3 is abundant">>
In the present embodiment as well, as in the first embodiment described above, “when As 2 S 3 is abundant”, the copper (Cu 0 ) of the decopperized electrolytic slime is compared with arsenic sulfide in the arsenic sulfide starch. This is applicable when the blending amount of F (As 2 S 3 ) is 1.0 to 1.1 times the equivalent of the reaction.
本実施形態も、上述した「As2S3が豊富な場合」における第1の実施形態と同様、脱銅電解スライムの銅(Cu0)に対し、硫化砒素澱物中の硫化砒・BR>F(As2S3)の配合量が反応の1.0~1.1倍当量である場合に適用出来るものである。 << Leaching first to third steps (2) to (4) according to the second embodiment in "when As 2 S 3 is abundant">>
In the present embodiment as well, as in the first embodiment described above, “when As 2 S 3 is abundant”, the copper (Cu 0 ) of the decopperized electrolytic slime is compared with arsenic sulfide in the arsenic sulfide starch. This is applicable when the blending amount of F (As 2 S 3 ) is 1.0 to 1.1 times the equivalent of the reaction.
本実施例において、浸出終期に添加する単体硫黄(S0)の量は、残留する銅濃度を1g/lと仮定し、この銅の総モル数の15倍モル以上であれば残留する銅を常に100mg/l以下にすることが出来る。
浸出時間、浸出温度に関しては、浸出中に出来るだけ銅イオンを溶存させ砒素の酸化を促進させる観点から、上述した「Cu0が豊富な場合」における第1の実施形態と同様で良い。 In this example, the amount of elemental sulfur (S 0 ) added at the end of leaching is assumed to be a residual copper concentration of 1 g / l. It can always be 100 mg / l or less.
The leaching time and leaching temperature may be the same as those in the first embodiment described above in the case of “rich Cu 0 ” from the viewpoint of accelerating arsenic oxidation by dissolving copper ions as much as possible during leaching.
浸出時間、浸出温度に関しては、浸出中に出来るだけ銅イオンを溶存させ砒素の酸化を促進させる観点から、上述した「Cu0が豊富な場合」における第1の実施形態と同様で良い。 In this example, the amount of elemental sulfur (S 0 ) added at the end of leaching is assumed to be a residual copper concentration of 1 g / l. It can always be 100 mg / l or less.
The leaching time and leaching temperature may be the same as those in the first embodiment described above in the case of “rich Cu 0 ” from the viewpoint of accelerating arsenic oxidation by dissolving copper ions as much as possible during leaching.
《「As2S3が豊富な場合」における第3の実施形態に係る浸出第1~第3工程(2)~(4)》
本実施形態も、上述した「As2S3が豊富な場合」における第1および第2の実施形態と同様、脱銅電解スライムの銅(Cu0)に対し硫化砒素澱物中の硫化砒素(As2S3)の配合量が反応の1.0~1.1倍当量の場合に適用出来るものである。 << Leaching first to third steps (2) to (4) according to the third embodiment in "when As 2 S 3 is abundant">>
In the present embodiment, similarly to the first and second embodiments in the above-mentioned “when As 2 S 3 is abundant”, arsenic sulfide in the arsenic sulfide starch (Cu 0 ) in the copper removal electrolytic slime ( This can be applied when the amount of As 2 S 3 ) is 1.0 to 1.1 times the equivalent of the reaction.
本実施形態も、上述した「As2S3が豊富な場合」における第1および第2の実施形態と同様、脱銅電解スライムの銅(Cu0)に対し硫化砒素澱物中の硫化砒素(As2S3)の配合量が反応の1.0~1.1倍当量の場合に適用出来るものである。 << Leaching first to third steps (2) to (4) according to the third embodiment in "when As 2 S 3 is abundant">>
In the present embodiment, similarly to the first and second embodiments in the above-mentioned “when As 2 S 3 is abundant”, arsenic sulfide in the arsenic sulfide starch (Cu 0 ) in the copper removal electrolytic slime ( This can be applied when the amount of As 2 S 3 ) is 1.0 to 1.1 times the equivalent of the reaction.
本施例において、浸出始期に添加する単体硫黄(S0)の量は、上述した「As2S3が豊富な場合」における第1の実施形態で説明した添加量と同様とし、次いで、浸出終期に添加する単体硫黄(S0)の量も、上記「As2S3が豊富な場合」における第2の実施形態での添加量と同様とする。すると、浸出液中の銅イオンを数m/lの水準まで、ほぼ完全に除去することが出来る。
本実施形態における浸出時間、浸出温度に関しても、同様の考えから上述した「Cu0が豊富な場合」における第1の実施形態と同様で良い。 In this example, the amount of elemental sulfur (S 0 ) added at the beginning of leaching is the same as the amount of addition described in the first embodiment in the above-mentioned “when As 2 S 3 is abundant”. The amount of elemental sulfur (S 0 ) added at the end is also the same as the amount added in the second embodiment in the above “when As 2 S 3 is abundant”. Then, the copper ions in the leachate can be removed almost completely to a level of several m / l.
The leaching time and the leaching temperature in the present embodiment may be the same as those in the first embodiment in the above-described “in the case where Cu 0 is abundant” based on the same idea.
本実施形態における浸出時間、浸出温度に関しても、同様の考えから上述した「Cu0が豊富な場合」における第1の実施形態と同様で良い。 In this example, the amount of elemental sulfur (S 0 ) added at the beginning of leaching is the same as the amount of addition described in the first embodiment in the above-mentioned “when As 2 S 3 is abundant”. The amount of elemental sulfur (S 0 ) added at the end is also the same as the amount added in the second embodiment in the above “when As 2 S 3 is abundant”. Then, the copper ions in the leachate can be removed almost completely to a level of several m / l.
The leaching time and the leaching temperature in the present embodiment may be the same as those in the first embodiment in the above-described “in the case where Cu 0 is abundant” based on the same idea.
以上、本発明では、砒素を含む非鉄製錬中間産物の湿式処理における、単体硫黄(S0)の添加の効用を開示したものである。そして、単体硫黄(S0)の添加を用いた硫化反応時には、亜硫酸ガス(SO2ガス)や亜硫酸イオン(SO3
2-)の共存がその反応を促進する触媒として作用することが知られており、本発明においてこれらを併用することは、当然可能である。
As described above, the present invention discloses the effect of addition of elemental sulfur (S 0 ) in wet processing of non-ferrous smelting intermediate products containing arsenic. In addition, it is known that coexistence of sulfite gas (SO 2 gas) and sulfite ion (SO 3 2− ) acts as a catalyst for promoting the reaction during the sulfurization reaction using addition of elemental sulfur (S 0 ). Of course, it is possible to use them together in the present invention.
また、銅以外の多くの重金属類(例えばPb、Hg、Bi、Sb等他)も、硫黄と親和力が強く硫化物を形成する能力を有するものである。従って、本発明で開示した単体硫黄(S0)の添加手法は、上述した(式4)における配合を1.1倍当量以上とすることで、浸出液(5)中の銅が問題なく除去される場合においても、銅以外の重金属類の存在と含有量とを考慮に入れ、上述した各実施形態に準じ、最適量の単体硫黄(S0)を添加し、浸出を行うことも好ましい構成である。
In addition, many heavy metals other than copper (for example, Pb, Hg, Bi, Sb, etc.) also have the ability to form sulfides with a strong affinity for sulfur. Therefore, the method for adding elemental sulfur (S 0 ) disclosed in the present invention allows the copper in the leachate (5) to be removed without any problems by setting the above-described blend in (Formula 4) to 1.1 times equivalent or more. Even in the case where the amount of heavy metals other than copper is taken into consideration, the optimum amount of elemental sulfur (S 0 ) is added and leaching is performed in accordance with each embodiment described above. is there.
さらに、本発明の範疇は、浸出液(5)中の銅除去のみに限定されるものではなく、多くの含有重金属類の溶出の制御にも適用されるものである。
Furthermore, the category of the present invention is not limited to the removal of copper in the leachate (5), but can be applied to the control of the elution of many contained heavy metals.
尚、硫化砒素澱物および脱銅電解スライムの混合パルプの浸出には、他に以下の方法がある。
硫化砒素澱物および脱銅電解スライムの混合スラリーへ、酸化剤の添加(例えば、空気および/または酸素ガスの吹き込みが好ましい。)を行いながら、加温下、アルカリ(例えば水酸化ナトリウム)添加によりpHを4.0以上、6.5以下に保持しながら、特に硫化物形態である硫化砒素澱物の浸出を進める浸出第1工程と、次いで、浸出液のpH制御を非保持とし、当該pHの変化を成り行きとしながら脱銅電解スライムと未反応の硫化砒素澱物とを浸出する浸出第2工程と、さらに浸出終期に酸化剤の添加を停止し、浸出液中に溶存した銅イオンを浸出残渣中に含有する単体硫黄(S0)にて硫化銅(CuS)として除去する浸出第3工程とを有する浸出方法である。
当該浸出方法も、本発明と同じ原料系に適用され、且つ、弱酸性領域での浸出であり、同様の液質を有する浸出液が得られる。従って、本発明に係る単体硫黄(S0)の浸出始期での添加、または、浸出終期での添加、または、浸出始期と終期とでの2回の添加により、スコロダイトを生成する結晶化工程にとって最適な浸出液を確保すると言う構成は、当該浸出方法においても当然に適用可能である。 There are other methods for leaching the mixed pulp of arsenic sulfide starch and decoppered electrolytic slime.
While adding an oxidizing agent (for example, air and / or oxygen gas is preferably blown) to the mixed slurry of arsenic sulfide starch and decopperized electrolytic slime, by adding alkali (for example, sodium hydroxide) under heating. While maintaining the pH at 4.0 or more and 6.5 or less, the first step of leaching that promotes leaching of arsenic sulfide particularly in the form of sulfide, and then the pH control of the leachate is not retained, The leaching second step of leaching the decoppered electrolytic slime and unreacted arsenic sulfide starch in the course of change, and the addition of the oxidizing agent was stopped at the end of leaching, and the copper ions dissolved in the leaching solution were dissolved in the leaching residue. And leaching third step for removing copper sulfide (CuS) with elemental sulfur (S 0 ) contained in the leaching method.
This leaching method is also applied to the same raw material system as in the present invention, and is leaching in a weakly acidic region, and a leachate having the same liquid quality is obtained. Therefore, for the crystallization process of generating scorodite by adding the elemental sulfur (S 0 ) according to the present invention at the beginning of leaching, adding at the end of leaching, or adding twice at the beginning and end of leaching. Naturally, the configuration for securing an optimal leaching solution can also be applied to the leaching method.
硫化砒素澱物および脱銅電解スライムの混合スラリーへ、酸化剤の添加(例えば、空気および/または酸素ガスの吹き込みが好ましい。)を行いながら、加温下、アルカリ(例えば水酸化ナトリウム)添加によりpHを4.0以上、6.5以下に保持しながら、特に硫化物形態である硫化砒素澱物の浸出を進める浸出第1工程と、次いで、浸出液のpH制御を非保持とし、当該pHの変化を成り行きとしながら脱銅電解スライムと未反応の硫化砒素澱物とを浸出する浸出第2工程と、さらに浸出終期に酸化剤の添加を停止し、浸出液中に溶存した銅イオンを浸出残渣中に含有する単体硫黄(S0)にて硫化銅(CuS)として除去する浸出第3工程とを有する浸出方法である。
当該浸出方法も、本発明と同じ原料系に適用され、且つ、弱酸性領域での浸出であり、同様の液質を有する浸出液が得られる。従って、本発明に係る単体硫黄(S0)の浸出始期での添加、または、浸出終期での添加、または、浸出始期と終期とでの2回の添加により、スコロダイトを生成する結晶化工程にとって最適な浸出液を確保すると言う構成は、当該浸出方法においても当然に適用可能である。 There are other methods for leaching the mixed pulp of arsenic sulfide starch and decoppered electrolytic slime.
While adding an oxidizing agent (for example, air and / or oxygen gas is preferably blown) to the mixed slurry of arsenic sulfide starch and decopperized electrolytic slime, by adding alkali (for example, sodium hydroxide) under heating. While maintaining the pH at 4.0 or more and 6.5 or less, the first step of leaching that promotes leaching of arsenic sulfide particularly in the form of sulfide, and then the pH control of the leachate is not retained, The leaching second step of leaching the decoppered electrolytic slime and unreacted arsenic sulfide starch in the course of change, and the addition of the oxidizing agent was stopped at the end of leaching, and the copper ions dissolved in the leaching solution were dissolved in the leaching residue. And leaching third step for removing copper sulfide (CuS) with elemental sulfur (S 0 ) contained in the leaching method.
This leaching method is also applied to the same raw material system as in the present invention, and is leaching in a weakly acidic region, and a leachate having the same liquid quality is obtained. Therefore, for the crystallization process of generating scorodite by adding the elemental sulfur (S 0 ) according to the present invention at the beginning of leaching, adding at the end of leaching, or adding twice at the beginning and end of leaching. Naturally, the configuration for securing an optimal leaching solution can also be applied to the leaching method.
3.液調整工程(6)
液調整工程(6)は、上記「1.浸出第1~第3工程」で得られた浸出液(5)へ、酸化剤を添加し3価として溶解している砒素を5価砒素に酸化して調整後液を得、次に、当該調整後液中に残留する酸化剤を除去する工程である。 3. Liquid adjustment process (6)
In the liquid adjustment step (6), an oxidant is added to the leachate (5) obtained in “1. Leaching first to third steps” to oxidize arsenic dissolved as trivalent to pentavalent arsenic. In this step, an adjusted solution is obtained, and then the oxidant remaining in the adjusted solution is removed.
液調整工程(6)は、上記「1.浸出第1~第3工程」で得られた浸出液(5)へ、酸化剤を添加し3価として溶解している砒素を5価砒素に酸化して調整後液を得、次に、当該調整後液中に残留する酸化剤を除去する工程である。 3. Liquid adjustment process (6)
In the liquid adjustment step (6), an oxidant is added to the leachate (5) obtained in “1. Leaching first to third steps” to oxidize arsenic dissolved as trivalent to pentavalent arsenic. In this step, an adjusted solution is obtained, and then the oxidant remaining in the adjusted solution is removed.
まず、当該液調整工程(6)で用いる酸化剤について説明する。
一般に、3価砒素を5価砒素へ酸化するのは、酸性領域より中性領域、さらに中性領域よりアルカリ性領域の方が容易である。しかし、本発明に係る浸出液は酸性である。そこで、当該酸性の浸出液にアルカリ(例えば、水酸化ナトリウム)添加を行い、液性をアルカリ性とした上で、砒素の酸化を行うことが考えられる。ところが、本発明者らの検討によると、当該液性のアルカリ化には多量のアルカリ添加が必要で、コスト的に不利であることに加え、液中の塩類濃度が増加し、後工程のスコロダイト(8)生成に悪影響を及ぼすことに想到した。なお、3価砒素、5価砒素とあるのは、イオン価数が+3価砒素(プラス3価)、または+5価砒素(プラス5価)のことを称している。 First, the oxidizing agent used in the liquid adjustment step (6) will be described.
In general, oxidation of trivalent arsenic to pentavalent arsenic is easier in the neutral region than in the acidic region, and in the alkaline region than in the neutral region. However, the leachate according to the present invention is acidic. Therefore, it is conceivable to add alkenyl (for example, sodium hydroxide) to the acidic leachate to make the liquid alkaline, and then oxidize arsenic. However, according to the study by the present inventors, a large amount of alkali is required for the liquid alkalinization, which is disadvantageous in terms of cost. In addition, the salt concentration in the liquid is increased, and the scorodite in the subsequent process is increased. (8) It came up with an adverse effect on generation. Note that trivalent arsenic and pentavalent arsenic mean that the ion valence is +3 valent arsenic (plus trivalent) or +5 valent arsenic (plus 5 valent).
一般に、3価砒素を5価砒素へ酸化するのは、酸性領域より中性領域、さらに中性領域よりアルカリ性領域の方が容易である。しかし、本発明に係る浸出液は酸性である。そこで、当該酸性の浸出液にアルカリ(例えば、水酸化ナトリウム)添加を行い、液性をアルカリ性とした上で、砒素の酸化を行うことが考えられる。ところが、本発明者らの検討によると、当該液性のアルカリ化には多量のアルカリ添加が必要で、コスト的に不利であることに加え、液中の塩類濃度が増加し、後工程のスコロダイト(8)生成に悪影響を及ぼすことに想到した。なお、3価砒素、5価砒素とあるのは、イオン価数が+3価砒素(プラス3価)、または+5価砒素(プラス5価)のことを称している。 First, the oxidizing agent used in the liquid adjustment step (6) will be described.
In general, oxidation of trivalent arsenic to pentavalent arsenic is easier in the neutral region than in the acidic region, and in the alkaline region than in the neutral region. However, the leachate according to the present invention is acidic. Therefore, it is conceivable to add alkenyl (for example, sodium hydroxide) to the acidic leachate to make the liquid alkaline, and then oxidize arsenic. However, according to the study by the present inventors, a large amount of alkali is required for the liquid alkalinization, which is disadvantageous in terms of cost. In addition, the salt concentration in the liquid is increased, and the scorodite in the subsequent process is increased. (8) It came up with an adverse effect on generation. Note that trivalent arsenic and pentavalent arsenic mean that the ion valence is +3 valent arsenic (plus trivalent) or +5 valent arsenic (plus 5 valent).
まず本発明者らは、中性領域(pH6~7)における、酸素を用いた3価砒素の酸化を検討した。しかし、3価砒素の酸化は不十分なものに留まることが判明した。そこで、銅系触媒(本研究では、砒酸銅を検討した。)の使用も検討したが、3価砒素の5価砒素への完全酸化までには至らなかった。
First, the present inventors examined oxidation of trivalent arsenic using oxygen in a neutral region (pH 6 to 7). However, it has been found that oxidation of trivalent arsenic remains insufficient. Therefore, the use of a copper-based catalyst (in this study, copper arsenate was examined) was also examined, but it did not reach the complete oxidation of trivalent arsenic to pentavalent arsenic.
ここで本発明者らは酸化剤として、過酸化水素(H2O2)を用いることに想到した。そこで、当該過酸化水素を用い、酸性領域下で砒素の酸化を検討したところ当該酸化が十分に進行することを確認した。
ところが、当該砒素の酸化反応後に、調整後液中に残留する過酸化水素は、後工程の結晶化工程(7)において共存せしめられる第一鉄イオンの一部を酸化する。そこで、第一鉄イオン濃度を正確に管理するためには、過酸化水素の残留量にもよるが、当該残留する過酸化水素を除去しておくことが望ましい。 Here, the present inventors have conceived that hydrogen peroxide (H 2 O 2 ) is used as an oxidizing agent. Then, when the oxidation of arsenic was examined in the acidic region using the hydrogen peroxide, it was confirmed that the oxidation proceeded sufficiently.
However, after the arsenic oxidation reaction, the hydrogen peroxide remaining in the adjusted liquid oxidizes some of the ferrous ions that coexist in the subsequent crystallization step (7). Therefore, in order to accurately manage the ferrous ion concentration, it is desirable to remove the remaining hydrogen peroxide, although it depends on the residual amount of hydrogen peroxide.
ところが、当該砒素の酸化反応後に、調整後液中に残留する過酸化水素は、後工程の結晶化工程(7)において共存せしめられる第一鉄イオンの一部を酸化する。そこで、第一鉄イオン濃度を正確に管理するためには、過酸化水素の残留量にもよるが、当該残留する過酸化水素を除去しておくことが望ましい。 Here, the present inventors have conceived that hydrogen peroxide (H 2 O 2 ) is used as an oxidizing agent. Then, when the oxidation of arsenic was examined in the acidic region using the hydrogen peroxide, it was confirmed that the oxidation proceeded sufficiently.
However, after the arsenic oxidation reaction, the hydrogen peroxide remaining in the adjusted liquid oxidizes some of the ferrous ions that coexist in the subsequent crystallization step (7). Therefore, in order to accurately manage the ferrous ion concentration, it is desirable to remove the remaining hydrogen peroxide, although it depends on the residual amount of hydrogen peroxide.
以下、具体的に説明する。
まず、用いる過酸化水素は、濃度30~35%の汎用品で良い。
酸性領域下における3価砒素の5価砒素への酸化は、下記(式8)、(式9)により進行すると考えられる。
HAsO2+H2O2=H3AsO4・・・・・・・(式8)
HAsO2+H2O2=H2AsO4 -+H+・・・・(式9) This will be specifically described below.
First, the hydrogen peroxide used may be a general-purpose product having a concentration of 30 to 35%.
It is considered that oxidation of trivalent arsenic to pentavalent arsenic under an acidic region proceeds according to the following (formula 8) and (formula 9).
HAsO 2 + H 2 O 2 = H 3 AsO 4 (Equation 8)
HAsO 2 + H 2 O 2 = H 2 AsO 4 − + H + ... (Formula 9)
まず、用いる過酸化水素は、濃度30~35%の汎用品で良い。
酸性領域下における3価砒素の5価砒素への酸化は、下記(式8)、(式9)により進行すると考えられる。
HAsO2+H2O2=H3AsO4・・・・・・・(式8)
HAsO2+H2O2=H2AsO4 -+H+・・・・(式9) This will be specifically described below.
First, the hydrogen peroxide used may be a general-purpose product having a concentration of 30 to 35%.
It is considered that oxidation of trivalent arsenic to pentavalent arsenic under an acidic region proceeds according to the following (formula 8) and (formula 9).
HAsO 2 + H 2 O 2 = H 3 AsO 4 (Equation 8)
HAsO 2 + H 2 O 2 = H 2 AsO 4 − + H + ... (Formula 9)
過酸化水素の添加量は、3価砒素濃度と、(式8)(式9)とに基づき、反応当量の1~1.2倍量を添加することが好ましい。尤も、3価砒素濃度不明の場合は、当該過酸化水素添加後、液温80℃における液の酸化還元電位が500mV(Vs;Ag/AgCl)以上に達していることを目安としても良い。
The addition amount of hydrogen peroxide is preferably 1 to 1.2 times the reaction equivalent based on the trivalent arsenic concentration and (Equation 8) (Equation 9). However, when the concentration of trivalent arsenic is unknown, it may be taken as a guide that the oxidation-reduction potential of the liquid at a liquid temperature of 80 ° C. has reached 500 mV (Vs; Ag / AgCl) or more after the addition of the hydrogen peroxide.
過酸化水素の添加時間は、酸化される3価砒素濃度による。例えば、濃度20g/Lの3価砒素を酸化する場合、添加時間を5分間以上とすることが好ましい。添加時間を十分にとることで、過酸化水素の一部が急速に分解し、気泡の発生が多くなり添加効率が悪化することを回避出来るからである。さらに好ましくは、添加時間を10分間~15分間とする。
The addition time of hydrogen peroxide depends on the concentration of trivalent arsenic to be oxidized. For example, when oxidizing trivalent arsenic with a concentration of 20 g / L, the addition time is preferably 5 minutes or more. This is because, by taking sufficient addition time, it is possible to avoid that hydrogen peroxide is partly decomposed rapidly, bubbles are generated, and the addition efficiency is deteriorated. More preferably, the addition time is 10 minutes to 15 minutes.
過酸化水素添加による3価砒素の5価砒素への酸化は非常に早く、pHの低下と反応熱による液温の上昇が観察される。尤も、反応時間は、酸化を完全に行う観点から60分間以上が好ましく、液の酸化還元電位が450mV(Vs;Ag/AgCl)以下となった時点で終了することが望ましい。
Oxidation of trivalent arsenic to pentavalent arsenic by addition of hydrogen peroxide is very fast, and a decrease in pH and an increase in liquid temperature due to reaction heat are observed. However, the reaction time is preferably 60 minutes or more from the viewpoint of complete oxidation, and is preferably terminated when the oxidation-reduction potential of the liquid becomes 450 mV (Vs; Ag / AgCl) or less.
ここで、当該調整後液中に残留する過酸化水素の処理方法について説明する。
当該残留する過酸化水素の処理方法には、以下の2通りの方法がある。
1)残留過酸化水素を、金属銅と接触させて消費による除去を行う方法
2)高温下における調整後液の攪拌維持により、残留過酸化水素の自然分解を行う方法 Here, a method for treating hydrogen peroxide remaining in the solution after adjustment will be described.
There are the following two methods for treating the residual hydrogen peroxide.
1) Method of removing residual hydrogen peroxide by contacting it with metallic copper 2) Method of spontaneously decomposing residual hydrogen peroxide by maintaining stirring of the adjusted liquid at high temperature
当該残留する過酸化水素の処理方法には、以下の2通りの方法がある。
1)残留過酸化水素を、金属銅と接触させて消費による除去を行う方法
2)高温下における調整後液の攪拌維持により、残留過酸化水素の自然分解を行う方法 Here, a method for treating hydrogen peroxide remaining in the solution after adjustment will be described.
There are the following two methods for treating the residual hydrogen peroxide.
1) Method of removing residual hydrogen peroxide by contacting it with metallic copper 2) Method of spontaneously decomposing residual hydrogen peroxide by maintaining stirring of the adjusted liquid at high temperature
1)残留過酸化水素を、金属銅と接触させて消費による除去を行う方法:
当該砒素の酸化反応後、調整後液に残留する過酸化水素は、金属銅を接触させることで除去が可能となる。
具体的には、当該調整後液へ銅粉を添加し攪拌して反応させる方法が一般的である。尤も、実際のプラント操業においては簡便化を図る目的で、銅板や銅屑を充填したカラムを通液することでも目的は達成される。
調整後液の液温度は、反応を完結させるため、40℃以上とすることが好ましい。
当該除去反応は、下記(式10)のように進むと考えられる。
Cu0+H2O2+H2SO4=CuSO4+2H2O・・・・(式10)
この結果、当該除去反応はpHの上昇を伴うので、pHが一定値を示した時点で終了と判断出来る。 1) Method for removing residual hydrogen peroxide by contact with metallic copper by consumption:
After the arsenic oxidation reaction, the hydrogen peroxide remaining in the adjusted solution can be removed by contacting with metallic copper.
Specifically, a method is generally used in which copper powder is added to the adjusted solution and stirred to react. However, in an actual plant operation, the object can be achieved by passing through a column filled with copper plate or copper scrap for the purpose of simplification.
The liquid temperature of the liquid after adjustment is preferably 40 ° C. or higher in order to complete the reaction.
The removal reaction is considered to proceed as shown below (Formula 10).
Cu 0 + H 2 O 2 + H 2 SO 4 = CuSO 4 + 2H 2 O (formula 10)
As a result, since the removal reaction is accompanied by an increase in pH, it can be determined that the removal is complete when the pH shows a constant value.
当該砒素の酸化反応後、調整後液に残留する過酸化水素は、金属銅を接触させることで除去が可能となる。
具体的には、当該調整後液へ銅粉を添加し攪拌して反応させる方法が一般的である。尤も、実際のプラント操業においては簡便化を図る目的で、銅板や銅屑を充填したカラムを通液することでも目的は達成される。
調整後液の液温度は、反応を完結させるため、40℃以上とすることが好ましい。
当該除去反応は、下記(式10)のように進むと考えられる。
Cu0+H2O2+H2SO4=CuSO4+2H2O・・・・(式10)
この結果、当該除去反応はpHの上昇を伴うので、pHが一定値を示した時点で終了と判断出来る。 1) Method for removing residual hydrogen peroxide by contact with metallic copper by consumption:
After the arsenic oxidation reaction, the hydrogen peroxide remaining in the adjusted solution can be removed by contacting with metallic copper.
Specifically, a method is generally used in which copper powder is added to the adjusted solution and stirred to react. However, in an actual plant operation, the object can be achieved by passing through a column filled with copper plate or copper scrap for the purpose of simplification.
The liquid temperature of the liquid after adjustment is preferably 40 ° C. or higher in order to complete the reaction.
The removal reaction is considered to proceed as shown below (Formula 10).
Cu 0 + H 2 O 2 + H 2 SO 4 = CuSO 4 + 2H 2 O (formula 10)
As a result, since the removal reaction is accompanied by an increase in pH, it can be determined that the removal is complete when the pH shows a constant value.
2)高温下における調整後液の攪拌維持により、残留過酸化水素の自然分解を行う方法:
ここで高温とは70~100℃の温度のことである。
一例として、実際の設備材質等を考慮した80℃において、調整後液の液電位(80℃での電位、Ag/AgCl電極基準)が所定の値になる迄、調整後液の攪拌維持を行った場合の、残留過酸化水素について説明する。尚、調整後液中の残留過酸化水素量は、直接の定量が出来ない。そこで、調整後液と、銅粉とを反応させ溶出した銅濃度によって、残留過酸化水素量を比較した。
その結果
420mV → 溶出銅濃度=144mg/l
410mV → 溶出銅濃度=107mg/l
400mV → 溶出銅濃度= 66mg/l
390mV → 溶出銅濃度= 36mg/l、となった。 2) Method for spontaneous decomposition of residual hydrogen peroxide by maintaining stirring of the adjusted solution at high temperature:
Here, the high temperature means a temperature of 70 to 100 ° C.
As an example, at 80 ° C. considering actual equipment materials, etc., stirring of the adjusted liquid is maintained until the liquid potential of the adjusted liquid (potential at 80 ° C., Ag / AgCl electrode standard) reaches a predetermined value. The residual hydrogen peroxide will be described. The amount of residual hydrogen peroxide in the solution after adjustment cannot be directly quantified. Therefore, the amount of residual hydrogen peroxide was compared according to the concentration of copper eluted by reacting the adjusted solution with copper powder.
As a result, 420 mV → eluting copper concentration = 144 mg / l
410 mV → eluted copper concentration = 107 mg / l
400 mV → eluted copper concentration = 66 mg / l
390 mV → eluting copper concentration = 36 mg / l.
ここで高温とは70~100℃の温度のことである。
一例として、実際の設備材質等を考慮した80℃において、調整後液の液電位(80℃での電位、Ag/AgCl電極基準)が所定の値になる迄、調整後液の攪拌維持を行った場合の、残留過酸化水素について説明する。尚、調整後液中の残留過酸化水素量は、直接の定量が出来ない。そこで、調整後液と、銅粉とを反応させ溶出した銅濃度によって、残留過酸化水素量を比較した。
その結果
420mV → 溶出銅濃度=144mg/l
410mV → 溶出銅濃度=107mg/l
400mV → 溶出銅濃度= 66mg/l
390mV → 溶出銅濃度= 36mg/l、となった。 2) Method for spontaneous decomposition of residual hydrogen peroxide by maintaining stirring of the adjusted solution at high temperature:
Here, the high temperature means a temperature of 70 to 100 ° C.
As an example, at 80 ° C. considering actual equipment materials, etc., stirring of the adjusted liquid is maintained until the liquid potential of the adjusted liquid (potential at 80 ° C., Ag / AgCl electrode standard) reaches a predetermined value. The residual hydrogen peroxide will be described. The amount of residual hydrogen peroxide in the solution after adjustment cannot be directly quantified. Therefore, the amount of residual hydrogen peroxide was compared according to the concentration of copper eluted by reacting the adjusted solution with copper powder.
As a result, 420 mV → eluting copper concentration = 144 mg / l
410 mV → eluted copper concentration = 107 mg / l
400 mV → eluted copper concentration = 66 mg / l
390 mV → eluting copper concentration = 36 mg / l.
以上の結果から、調整後液の液電位が390mV以下になる迄、80℃にて攪拌維持することで、溶出銅濃度として50mg/l以下に相当する残留過酸化水素量迄、残留過酸化水素の除去が出来る事を確認した。当該390mVの電位は、酸化終了(所定量の過酸化水素の添加60分間後)から、さらに80℃で1時間攪拌保持すれば到達できる電位である。そして、溶出銅濃度(36mg/l)から考えて、残留過酸化水素の影響は殆ど無いものと考えられた。
From the above results, by maintaining the stirring at 80 ° C. until the liquid potential of the adjusted liquid becomes 390 mV or less, the residual hydrogen peroxide amount is reduced to the residual hydrogen peroxide amount corresponding to 50 mg / l or less as the eluting copper concentration. It was confirmed that it can be removed. The potential of 390 mV is a potential that can be reached by stirring for 1 hour at 80 ° C. after the end of oxidation (60 minutes after addition of a predetermined amount of hydrogen peroxide). And it was thought that there was almost no influence of residual hydrogen peroxide considering the eluted copper concentration (36 mg / l).
以上、説明したように、調整後液の残留過酸化水素の除去方法には、2通りが考えられる。ここで、金属銅を使い残留過酸化水素を消費させる方法は、短時間で除去が可能であるが操作としては若干煩雑になる。一方、高温下における調整後液の攪拌維持による自然分解方法は、操作は簡便であるが、金属銅を使い残留過酸化水素を消費させる方法に比して反応時間が長く、その分酸化槽の稼動率を低下させることになる。従って、双方の特徴を考慮して、工程に適する方法を決定すべきである。
As described above, there are two possible methods for removing residual hydrogen peroxide from the adjusted solution. Here, the method of consuming residual hydrogen peroxide using metallic copper can be removed in a short time, but the operation is somewhat complicated. On the other hand, the natural decomposition method by maintaining stirring of the adjusted liquid at high temperature is easy to operate, but the reaction time is longer than the method of consuming residual hydrogen peroxide using metallic copper, The operating rate will be reduced. Therefore, a method suitable for the process should be determined in consideration of both characteristics.
本発明に係る液調整工程(6)によれば、浸出液(5)が酸性領域であっても、煩雑な操作もなく3価砒素を5価砒素に酸化出来、後工程における砒素のスコロダイト(8)への高変換率を維持出来る。
According to the liquid adjustment step (6) according to the present invention, trivalent arsenic can be oxidized to pentavalent arsenic without complicated operation even if the leachate (5) is in the acidic region, and arsenic scorodite (8 High conversion rate to) can be maintained.
4.結晶化工程(7)
結晶化工程(7)は、上記「2.液調整工程(6)」で得られた調整後液中の5価砒素を、スコロダイト(8)へと結晶化する工程である。
前記液調整工程(6)を終えて得られる調整後液の砒素濃度は、スコロダイトの生産性を考えた場合、20g/L以上、好ましくは30g/L以上の濃厚液であることが好ましい。
まず、当該調整後液に対し第一鉄イオン(Fe2+)を共存せしめ、次いで、室温にて硫酸(H2SO4)を添加しpH1に調整する。
ここで、当該調整後液に第一鉄イオン(Fe2+)を共存せしめるには、当該調整後液へ、第一鉄塩や水酸化第一鉄(Fe(OH)2)等を添加し溶解させる方法や、第一鉄イオン(Fe2+)の濃厚液の混合による方法がある。本発明においては、いずれの方法も可能であるが、pH調整の容易性や、高砒素濃度を確保する観点からは、第一鉄塩を添加し溶解させる方法が好ましい。尚、第一鉄塩の化合物は種々あるが、設備の耐腐食性の観点および入手の容易性の観点から、硫酸第一鉄が好ましい。
第一鉄塩の添加量は、Fe純分量として被処理砒素総モル量の1倍当量以上、好ましくは1.5倍当量である。 4). Crystallization process (7)
The crystallization step (7) is a step of crystallizing the pentavalent arsenic in the adjusted liquid obtained in the “2. Liquid adjustment step (6)” to scorodite (8).
The arsenic concentration of the adjusted liquid obtained after finishing the liquid adjusting step (6) is preferably a concentrated liquid of 20 g / L or more, preferably 30 g / L or more, considering the productivity of scorodite.
First, ferrous ions (Fe 2+ ) are allowed to coexist with the adjusted solution, and then sulfuric acid (H 2 SO 4 ) is added to adjust the pH to 1 at room temperature.
Here, in order to allow ferrous ions (Fe 2+ ) to coexist in the adjusted solution, ferrous salt, ferrous hydroxide (Fe (OH) 2 ) or the like is added to the adjusted solution and dissolved. And a method of mixing a concentrated liquid of ferrous ions (Fe 2+ ). In the present invention, any method is possible, but from the viewpoint of easy pH adjustment and securing a high arsenic concentration, a method of adding and dissolving a ferrous salt is preferable. Although there are various ferrous salt compounds, ferrous sulfate is preferred from the viewpoint of the corrosion resistance of the equipment and the availability.
The addition amount of the ferrous salt is not less than 1 equivalent, preferably 1.5 equivalents of the total molar amount of arsenic to be treated as the pure Fe amount.
結晶化工程(7)は、上記「2.液調整工程(6)」で得られた調整後液中の5価砒素を、スコロダイト(8)へと結晶化する工程である。
前記液調整工程(6)を終えて得られる調整後液の砒素濃度は、スコロダイトの生産性を考えた場合、20g/L以上、好ましくは30g/L以上の濃厚液であることが好ましい。
まず、当該調整後液に対し第一鉄イオン(Fe2+)を共存せしめ、次いで、室温にて硫酸(H2SO4)を添加しpH1に調整する。
ここで、当該調整後液に第一鉄イオン(Fe2+)を共存せしめるには、当該調整後液へ、第一鉄塩や水酸化第一鉄(Fe(OH)2)等を添加し溶解させる方法や、第一鉄イオン(Fe2+)の濃厚液の混合による方法がある。本発明においては、いずれの方法も可能であるが、pH調整の容易性や、高砒素濃度を確保する観点からは、第一鉄塩を添加し溶解させる方法が好ましい。尚、第一鉄塩の化合物は種々あるが、設備の耐腐食性の観点および入手の容易性の観点から、硫酸第一鉄が好ましい。
第一鉄塩の添加量は、Fe純分量として被処理砒素総モル量の1倍当量以上、好ましくは1.5倍当量である。 4). Crystallization process (7)
The crystallization step (7) is a step of crystallizing the pentavalent arsenic in the adjusted liquid obtained in the “2. Liquid adjustment step (6)” to scorodite (8).
The arsenic concentration of the adjusted liquid obtained after finishing the liquid adjusting step (6) is preferably a concentrated liquid of 20 g / L or more, preferably 30 g / L or more, considering the productivity of scorodite.
First, ferrous ions (Fe 2+ ) are allowed to coexist with the adjusted solution, and then sulfuric acid (H 2 SO 4 ) is added to adjust the pH to 1 at room temperature.
Here, in order to allow ferrous ions (Fe 2+ ) to coexist in the adjusted solution, ferrous salt, ferrous hydroxide (Fe (OH) 2 ) or the like is added to the adjusted solution and dissolved. And a method of mixing a concentrated liquid of ferrous ions (Fe 2+ ). In the present invention, any method is possible, but from the viewpoint of easy pH adjustment and securing a high arsenic concentration, a method of adding and dissolving a ferrous salt is preferable. Although there are various ferrous salt compounds, ferrous sulfate is preferred from the viewpoint of the corrosion resistance of the equipment and the availability.
The addition amount of the ferrous salt is not less than 1 equivalent, preferably 1.5 equivalents of the total molar amount of arsenic to be treated as the pure Fe amount.
第一鉄塩を添加し溶解させた後、pH調整を終えたら、当該調整後液を所定の反応温度まで昇温する。
ここで反応温度は、50℃以上であればスコロダイト(8)が析出可能である。しかし、スコロダイトの粒径を大きくする観点からは、反応温度が高い程、好ましい。尤も、大気雰囲気下での反応を可能とする観点からは、反応温度を90~100℃とすることが望ましい。 After the pH adjustment is completed after adding and dissolving the ferrous salt, the adjusted solution is heated to a predetermined reaction temperature.
Here, when the reaction temperature is 50 ° C. or higher, scorodite (8) can be precipitated. However, from the viewpoint of increasing the particle size of scorodite, the higher the reaction temperature, the better. However, from the viewpoint of enabling the reaction in an air atmosphere, the reaction temperature is desirably 90 to 100 ° C.
ここで反応温度は、50℃以上であればスコロダイト(8)が析出可能である。しかし、スコロダイトの粒径を大きくする観点からは、反応温度が高い程、好ましい。尤も、大気雰囲気下での反応を可能とする観点からは、反応温度を90~100℃とすることが望ましい。 After the pH adjustment is completed after adding and dissolving the ferrous salt, the adjusted solution is heated to a predetermined reaction temperature.
Here, when the reaction temperature is 50 ° C. or higher, scorodite (8) can be precipitated. However, from the viewpoint of increasing the particle size of scorodite, the higher the reaction temperature, the better. However, from the viewpoint of enabling the reaction in an air atmosphere, the reaction temperature is desirably 90 to 100 ° C.
当該調整後液が、所定の反応温度に到達したら、酸化剤の添加(例えば、空気および/または酸素ガスの吹き込みが好ましい。)を開始し、強攪拌を行って気液混合状態をつくり、所定の反応温度を保ちながら高温酸化反応を進める。
当該高温酸化反応は、下記(式11)~(式16)の様に進行すると考えられる。
(反応の前半)
2FeSO4+1/2O2+H2SO4=Fe2(SO4)3+H2O・・・(式11)
2H3AsO4+Fe2(SO4)3+4H2O=2FeAsO4・2H2O+3H2SO4・・・・(式12)
(全反応式(式11+式12)を、下記(式13)に示す。)
2H3AsO4+2FeSO4+1/2O2+3H2O=2FeAsO4・2H2O+2H2SO4・・・・(式13)
(砒素濃度が低下した反応後半)
2FeSO4+1/2O2+H2SO4=Fe2(SO4)3+H2O・・・・(式14)
2/3H3AsO4+1/3Fe2(SO4)3+4/3H2O=2/3FeAsO4・2H2O+H2SO4・・・・(式15)
(全反応式(式14+式15)を、下記(式16)に示す。)
2/3H3AsO4+2FeSO4+1/2O2+4/3H2O=2/3FeAsO4・2H2O+2/3Fe2(SO4)3・・・・(式16) When the adjusted liquid reaches a predetermined reaction temperature, addition of an oxidant (for example, air and / or oxygen gas blowing is preferable) is started, and strong mixing is performed to create a gas-liquid mixed state. The high-temperature oxidation reaction proceeds while maintaining the reaction temperature.
The high temperature oxidation reaction is considered to proceed as in the following (formula 11) to (formula 16).
(First half of the reaction)
2FeSO 4 + 1 / 2O 2 + H 2 SO 4 = Fe 2 (SO 4 ) 3 + H 2 O (formula 11)
2H 3 AsO 4 + Fe 2 (SO 4 ) 3 + 4H 2 O = 2FeAsO 4 .2H 2 O + 3H 2 SO 4 ... (Formula 12)
(All reaction formulas (Formula 11 + Formula 12) are shown in the following (Formula 13).)
2H 3 AsO 4 + 2FeSO 4 + 1 / 2O 2 + 3H 2 O = 2FeAsO 4 .2H 2 O + 2H 2 SO 4 ... (Formula 13)
(Second half of reaction when arsenic concentration decreased)
2FeSO 4 + 1 / 2O 2 + H 2 SO 4 = Fe 2 (SO 4 ) 3 + H 2 O (formula 14)
2 / 3H 3 AsO 4 + 1 / 3Fe 2 (SO 4 ) 3 + 4 / 3H 2 O = 2 / 3FeAsO 4 .2H 2 O + H 2 SO 4 ... (Formula 15)
(The entire reaction formula (Formula 14 + Formula 15) is shown in the following (Formula 16).)
2 / 3H 3 AsO 4 + 2FeSO 4 + 1 / 2O 2 + 4 / 3H 2 O = 2 / 3FeAsO 4 .2H 2 O + 2 / 3Fe 2 (SO 4 ) 3 ... (Formula 16)
当該高温酸化反応は、下記(式11)~(式16)の様に進行すると考えられる。
(反応の前半)
2FeSO4+1/2O2+H2SO4=Fe2(SO4)3+H2O・・・(式11)
2H3AsO4+Fe2(SO4)3+4H2O=2FeAsO4・2H2O+3H2SO4・・・・(式12)
(全反応式(式11+式12)を、下記(式13)に示す。)
2H3AsO4+2FeSO4+1/2O2+3H2O=2FeAsO4・2H2O+2H2SO4・・・・(式13)
(砒素濃度が低下した反応後半)
2FeSO4+1/2O2+H2SO4=Fe2(SO4)3+H2O・・・・(式14)
2/3H3AsO4+1/3Fe2(SO4)3+4/3H2O=2/3FeAsO4・2H2O+H2SO4・・・・(式15)
(全反応式(式14+式15)を、下記(式16)に示す。)
2/3H3AsO4+2FeSO4+1/2O2+4/3H2O=2/3FeAsO4・2H2O+2/3Fe2(SO4)3・・・・(式16) When the adjusted liquid reaches a predetermined reaction temperature, addition of an oxidant (for example, air and / or oxygen gas blowing is preferable) is started, and strong mixing is performed to create a gas-liquid mixed state. The high-temperature oxidation reaction proceeds while maintaining the reaction temperature.
The high temperature oxidation reaction is considered to proceed as in the following (formula 11) to (formula 16).
(First half of the reaction)
2FeSO 4 + 1 / 2O 2 + H 2 SO 4 = Fe 2 (SO 4 ) 3 + H 2 O (formula 11)
2H 3 AsO 4 + Fe 2 (SO 4 ) 3 + 4H 2 O = 2FeAsO 4 .2H 2 O + 3H 2 SO 4 ... (Formula 12)
(All reaction formulas (Formula 11 + Formula 12) are shown in the following (Formula 13).)
2H 3 AsO 4 + 2FeSO 4 + 1 / 2O 2 + 3H 2 O = 2FeAsO 4 .2H 2 O + 2H 2 SO 4 ... (Formula 13)
(Second half of reaction when arsenic concentration decreased)
2FeSO 4 + 1 / 2O 2 + H 2 SO 4 = Fe 2 (SO 4 ) 3 + H 2 O (formula 14)
2 / 3H 3 AsO 4 + 1 / 3Fe 2 (SO 4 ) 3 + 4 / 3H 2 O = 2 / 3FeAsO 4 .2H 2 O + H 2 SO 4 ... (Formula 15)
(The entire reaction formula (Formula 14 + Formula 15) is shown in the following (Formula 16).)
2 / 3H 3 AsO 4 + 2FeSO 4 + 1 / 2O 2 + 4 / 3H 2 O = 2 / 3FeAsO 4 .2H 2 O + 2 / 3Fe 2 (SO 4 ) 3 ... (Formula 16)
酸化方法にもよるが、当該高温酸化反応開始後、2時間~3時間で、pH、砒素濃、Fe濃度が急激に低下する。当該段階において、液の酸化還元電位は95℃で400mV以上(Vs;Ag/AgCl)を示す。そして、含有されている砒素の90%以上がスコロダイト(8)の結晶となる。当該高温酸化反応開始後、3時間以降は、液中に残留する砒素が少量低下するのみで、pHや液電位は殆ど変化しない。尚、当該高温酸化反応を完全に平衡状態で終えるには、好ましくは5時間~7時間の継続を行う。
Depending on the oxidation method, the pH, arsenic concentration, and Fe concentration drop rapidly in 2 to 3 hours after the start of the high temperature oxidation reaction. In this stage, the oxidation-reduction potential of the liquid is 400 mV or higher (Vs; Ag / AgCl) at 95 ° C. And 90% or more of the contained arsenic becomes scorodite (8) crystals. After 3 hours from the start of the high-temperature oxidation reaction, the arsenic remaining in the liquid is reduced by a small amount, and the pH and liquid potential are hardly changed. In order to complete the high temperature oxidation reaction in a completely equilibrium state, it is preferably continued for 5 to 7 hours.
上述した本発明に係る結晶化工程(7)によれば、反応操作が簡単であり、途中pH調整の必要もなく、含有される砒素を確実にスコロダイト(8)の結晶へ変換可能である。生成するろ液(11)は、排水処理工程(12)にて処理すればよい。得られるスコロダイト(8)の結晶は、沈降性、濾過性に優れ、濾過後の付着水分が10%前後と低く、さらに砒素品位が30%にも及ぶので減容化が達成され、かつ、耐溶出性に優れ安定である。従って、砒素を、製錬工程から安定な形として除去し保管可能となる。
According to the crystallization step (7) according to the present invention described above, the reaction operation is simple, and there is no need for pH adjustment during the process, so that the contained arsenic can be reliably converted into scorodite (8) crystals. What is necessary is just to process the filtrate (11) to produce | generate at a waste_water | drain process process (12). The obtained scorodite (8) crystals are excellent in sedimentation and filterability, have low adhesion moisture of about 10% after filtration, and have an arsenic grade of 30%, so that volume reduction is achieved and Excellent elution and stable. Therefore, arsenic can be removed and stored in a stable form from the smelting process.
(実施例1)
実施例1においては、浸出第1工程の反応始期に単体硫黄(S0)を添加し、その添加効果を確認した。 Example 1
In Example 1, elemental sulfur (S 0 ) was added at the beginning of the reaction in the first leaching step, and the effect of the addition was confirmed.
実施例1においては、浸出第1工程の反応始期に単体硫黄(S0)を添加し、その添加効果を確認した。 Example 1
In Example 1, elemental sulfur (S 0 ) was added at the beginning of the reaction in the first leaching step, and the effect of the addition was confirmed.
実施例に用いた原料品位について説明する。
実施例に用いた硫化砒素澱物の品位を表1に、脱銅電解スライムの品位を表2に、当該硫化砒素澱物と脱銅電解スライムとの配合比を表3に示す。 The raw material quality used in the examples will be described.
Table 1 shows the grade of the arsenic sulfide starch used in the examples, Table 2 shows the grade of the decoppered electrolytic slime, and Table 3 shows the blending ratio of the arsenic sulfide starch and the decoppered electrolytic slime.
実施例に用いた硫化砒素澱物の品位を表1に、脱銅電解スライムの品位を表2に、当該硫化砒素澱物と脱銅電解スライムとの配合比を表3に示す。 The raw material quality used in the examples will be described.
Table 1 shows the grade of the arsenic sulfide starch used in the examples, Table 2 shows the grade of the decoppered electrolytic slime, and Table 3 shows the blending ratio of the arsenic sulfide starch and the decoppered electrolytic slime.
上記表3に示す配合は、(式4)で説明したように、硫化砒素澱物中の硫化砒素(As2S3)量が、脱銅電解スライムの中の銅(Cu0)を硫化するに必要な 0.5倍当量となるものである。すなわち、上述した「Cu0が豊富な場合」に該当する配合である。
(Cu0)+1/3As2S3+1/2O2+1/3H2O=2/3HAsO2+CuS・・・(式4) In the formulation shown in Table 3 above, as described in (Equation 4), the amount of arsenic sulfide (As 2 S 3 ) in the arsenic sulfide starch sulfidizes copper (Cu 0 ) in the copper removal electrolytic slime. The equivalent of 0.5 times equivalent to the above. That is, it is a composition corresponding to the above-mentioned “when Cu 0 is abundant”.
(Cu 0 ) + 1 / 3As 2 S 3 + 1 / 2O 2 + 1 / 3H 2 O = 2 / 3HAsO 2 + CuS (Formula 4)
(Cu0)+1/3As2S3+1/2O2+1/3H2O=2/3HAsO2+CuS・・・(式4) In the formulation shown in Table 3 above, as described in (Equation 4), the amount of arsenic sulfide (As 2 S 3 ) in the arsenic sulfide starch sulfidizes copper (Cu 0 ) in the copper removal electrolytic slime. The equivalent of 0.5 times equivalent to the above. That is, it is a composition corresponding to the above-mentioned “when Cu 0 is abundant”.
(Cu 0 ) + 1 / 3As 2 S 3 + 1 / 2O 2 + 1 / 3H 2 O = 2 / 3HAsO 2 + CuS (Formula 4)
すなわち、上記配合と(式4)とから、脱銅電解スライム中に含有される銅(Cu0)のうち、硫化されない銅(Cu0)量は51.2gと算出される。当該硫化されない銅が、浸出最終時に銅イオンとして残留することになる。
That is, since the formulation and (Equation 4), of copper (Cu 0) contained in the decoppered electrolytic slime, copper (Cu 0) amount not sulfided is calculated to be 51.2 g. The unsulfurized copper will remain as copper ions at the end of leaching.
単体硫黄(S0)の添加量は、残留する銅イオンの総モル数の2倍モルとする。
2倍モルの単体硫黄(S0)量=51.2÷MCu×MS×2=52g
ここでMCuとは銅の原子量63.54であり、MSとはSの原子量32.06である。 The amount of elemental sulfur (S 0 ) added is twice the total number of moles of remaining copper ions.
Double mole amount of elemental sulfur (S 0 ) = 51.2 ÷ M Cu × M S × 2 = 52 g
Here, the M Cu is atomic weight 63.54 of copper, and M S is the atomic weight 32.06 of S.
2倍モルの単体硫黄(S0)量=51.2÷MCu×MS×2=52g
ここでMCuとは銅の原子量63.54であり、MSとはSの原子量32.06である。 The amount of elemental sulfur (S 0 ) added is twice the total number of moles of remaining copper ions.
Double mole amount of elemental sulfur (S 0 ) = 51.2 ÷ M Cu × M S × 2 = 52 g
Here, the M Cu is atomic weight 63.54 of copper, and M S is the atomic weight 32.06 of S.
表1~表3に示す硫化砒素澱物と脱銅電解スライムと、試薬の単体硫黄(S0)52gとを、2リットルビーカーに測り取り、所定の純水を加えてリパルプしパルプを調製した。尚、本調合においては、原料中に含まれる水分量を加味すれば、本パルプ中の水量は1,550mlである。反応は2リットルビーカー、4枚邪魔板、2段タービン羽で800rpmとした。
そして、当該パルプを弱攪拌しながら加温し、温度を80℃にした。この時点でpHは1.62を示した。 Arsenic sulfide starch, decoppered electrolytic slime and 52 g of reagent simple sulfur (S 0 ) shown in Tables 1 to 3 were measured in a 2 liter beaker, and predetermined pure water was added and repulped to prepare pulp. . In this preparation, if the amount of water contained in the raw material is taken into account, the amount of water in the pulp is 1,550 ml. The reaction was carried out at 800 rpm with a 2 liter beaker, 4 baffles, and 2 stage turbine blades.
And the said pulp was heated, stirring weakly, and the temperature was 80 degreeC. At this point, the pH was 1.62.
そして、当該パルプを弱攪拌しながら加温し、温度を80℃にした。この時点でpHは1.62を示した。 Arsenic sulfide starch, decoppered electrolytic slime and 52 g of reagent simple sulfur (S 0 ) shown in Tables 1 to 3 were measured in a 2 liter beaker, and predetermined pure water was added and repulped to prepare pulp. . In this preparation, if the amount of water contained in the raw material is taken into account, the amount of water in the pulp is 1,550 ml. The reaction was carried out at 800 rpm with a 2 liter beaker, 4 baffles, and 2 stage turbine blades.
And the said pulp was heated, stirring weakly, and the temperature was 80 degreeC. At this point, the pH was 1.62.
次いで、ビーカー底部よりガラス管を用いて酸素ガスの430cc/分の吹き込みを開始し、攪拌を800rpmとし反応を開始した。
30分間経過時点(80℃、pH1.55)で、500g/l濃度の水酸化ナトリウム溶液26mlを5分間で添加し、80℃、pH4.86とした。この後、引き続き反応を進め、120分間経過時点(80℃、pH1.85)で酸素ガス吹き込みを停止し、さらに30分間攪拌維持した後、浸出終了(80℃、pH1.72)とした。 Next, blowing of oxygen gas at 430 cc / min was started from the bottom of the beaker using a glass tube, and stirring was performed at 800 rpm to start the reaction.
When 30 minutes had elapsed (80 ° C., pH 1.55), 26 ml of a 500 g / l sodium hydroxide solution was added over 5 minutes to 80 ° C. and pH 4.86. Thereafter, the reaction was continued, and after 120 minutes had elapsed (80 ° C., pH 1.85), the oxygen gas blowing was stopped, and stirring was further maintained for 30 minutes, and then leaching was completed (80 ° C., pH 1.72).
30分間経過時点(80℃、pH1.55)で、500g/l濃度の水酸化ナトリウム溶液26mlを5分間で添加し、80℃、pH4.86とした。この後、引き続き反応を進め、120分間経過時点(80℃、pH1.85)で酸素ガス吹き込みを停止し、さらに30分間攪拌維持した後、浸出終了(80℃、pH1.72)とした。 Next, blowing of oxygen gas at 430 cc / min was started from the bottom of the beaker using a glass tube, and stirring was performed at 800 rpm to start the reaction.
When 30 minutes had elapsed (80 ° C., pH 1.55), 26 ml of a 500 g / l sodium hydroxide solution was added over 5 minutes to 80 ° C. and pH 4.86. Thereafter, the reaction was continued, and after 120 minutes had elapsed (80 ° C., pH 1.85), the oxygen gas blowing was stopped, and stirring was further maintained for 30 minutes, and then leaching was completed (80 ° C., pH 1.72).
回収した浸出液の品位を表4に示す。尚、表4においてtotal-Asは砒素の全量、5価-Asは5価の砒素量を示す。そして、5価-As比率は、砒素の全量中における5価の砒素量の比率を示し、Cuは回収した浸出液の銅濃度を示す。
Table 4 shows the quality of the collected leachate. In Table 4, total-As indicates the total amount of arsenic, and pentavalent-As indicates the amount of pentavalent arsenic. The pentavalent-As ratio indicates the ratio of the pentavalent arsenic amount in the total amount of arsenic, and Cu indicates the copper concentration of the recovered leachate.
回収した浸出残渣は501wet・g(水分50.2%)であり、砒素品位は2.0%であった。これより砒素の浸出率は約93.5%と推算され、浸出率としては非常に高い結果となった。銅の除去も良好であった。
The recovered leaching residue was 501 wet · g (water content 50.2%), and the arsenic quality was 2.0%. From this, the leaching rate of arsenic was estimated to be about 93.5%, and the leaching rate was very high. Copper removal was also good.
さらに、2.5倍モルの単体硫黄(S0)を反応始期に添加した以外は、同様の条件及び手順で、単体硫黄(S0)の添加効果を確認した。
2.5倍モルの単体硫黄(S0)量=51.2÷MCu×MS×2.5=65g
表1~表3に示す硫化砒素澱物と脱銅電解スライムと、試薬の単体硫黄(S0)65gとを、2リットルビーカーに測り取り所定の純水リパルプしパルプを調整した。 Furthermore, the addition effect of elemental sulfur (S 0 ) was confirmed under the same conditions and procedures except that 2.5 moles of elemental sulfur (S 0 ) was added at the beginning of the reaction.
2.5 mole mol of elemental sulfur (S 0 ) = 51.2 ÷ M Cu × M S × 2.5 = 65 g
Arsenic sulfide starch, decopperized electrolytic slime and 65 g of reagent simple sulfur (S 0 ) shown in Tables 1 to 3 were measured in a 2 liter beaker and repulped with pure water to prepare a pulp.
2.5倍モルの単体硫黄(S0)量=51.2÷MCu×MS×2.5=65g
表1~表3に示す硫化砒素澱物と脱銅電解スライムと、試薬の単体硫黄(S0)65gとを、2リットルビーカーに測り取り所定の純水リパルプしパルプを調整した。 Furthermore, the addition effect of elemental sulfur (S 0 ) was confirmed under the same conditions and procedures except that 2.5 moles of elemental sulfur (S 0 ) was added at the beginning of the reaction.
2.5 mole mol of elemental sulfur (S 0 ) = 51.2 ÷ M Cu × M S × 2.5 = 65 g
Arsenic sulfide starch, decopperized electrolytic slime and 65 g of reagent simple sulfur (S 0 ) shown in Tables 1 to 3 were measured in a 2 liter beaker and repulped with pure water to prepare a pulp.
先ず、上記パルプを弱攪拌しながら加温し、温度を80℃にした。この時点でpHは1.64を示した。
次いで、ビーカー底部よりガラス管を用い酸素ガスを430cc/分で吹き込みを開始し、攪拌を800rpmとし反応を開始した。
30分間経過時点(80℃、pH1.57)で、500g/l濃度の水酸化ナトリウム溶液26mlを5分間で添加し、80℃、pH5.67とした。この後、引き続き反応を進め、120分間経過時点(80℃、pH1.93)で酸素ガス吹き込みを停止し、さらに30分間、攪拌維持した後、浸出終了(80℃、pH1.82)とした。 First, the pulp was heated with weak stirring to a temperature of 80 ° C. At this point, the pH was 1.64.
Next, using a glass tube from the bottom of the beaker, oxygen gas was started to be blown at 430 cc / min, and the reaction was started with stirring at 800 rpm.
When 30 minutes had passed (80 ° C., pH 1.57), 26 ml of a 500 g / l sodium hydroxide solution was added over 5 minutes to 80 ° C. and pH 5.67. Thereafter, the reaction was continued, and after 120 minutes had elapsed (80 ° C., pH 1.93), the oxygen gas blowing was stopped, and stirring was continued for another 30 minutes, after which leaching was completed (80 ° C., pH 1.82).
次いで、ビーカー底部よりガラス管を用い酸素ガスを430cc/分で吹き込みを開始し、攪拌を800rpmとし反応を開始した。
30分間経過時点(80℃、pH1.57)で、500g/l濃度の水酸化ナトリウム溶液26mlを5分間で添加し、80℃、pH5.67とした。この後、引き続き反応を進め、120分間経過時点(80℃、pH1.93)で酸素ガス吹き込みを停止し、さらに30分間、攪拌維持した後、浸出終了(80℃、pH1.82)とした。 First, the pulp was heated with weak stirring to a temperature of 80 ° C. At this point, the pH was 1.64.
Next, using a glass tube from the bottom of the beaker, oxygen gas was started to be blown at 430 cc / min, and the reaction was started with stirring at 800 rpm.
When 30 minutes had passed (80 ° C., pH 1.57), 26 ml of a 500 g / l sodium hydroxide solution was added over 5 minutes to 80 ° C. and pH 5.67. Thereafter, the reaction was continued, and after 120 minutes had elapsed (80 ° C., pH 1.93), the oxygen gas blowing was stopped, and stirring was continued for another 30 minutes, after which leaching was completed (80 ° C., pH 1.82).
回収した浸出液(浸出終了時点)の品位を表5に示す。尚、表の表記は上述した表4と同様である。
Table 5 shows the quality of the collected leachate (leaching end point). In addition, the notation of a table | surface is the same as that of Table 4 mentioned above.
回収した浸出残渣は520wet・g(水分48.9%)であり、砒素品位は2.0%であった。これより砒素の浸出率は約93.2%と推算され、浸出率としては非常に高い結果となった。銅の除去も良好であった。
The collected leach residue was 520 wet · g (water content 48.9%), and the arsenic quality was 2.0%. From this, the leaching rate of arsenic was estimated to be about 93.2%, and the leaching rate was very high. Copper removal was also good.
以下、同様の操作手順にて、残留する銅(Cu0)量に対して、0.4倍モル、1.0倍モル、1.3倍モルの単体硫黄(S0)を反応始期に添加した以外は、同様の条件及び手順で、単体硫黄(S0)の添加効果を確認した。
そして、当該条件により単体硫黄を反応始期に添加した場合の、残留銅濃度の結果を表6に示した。 Thereafter, in the same operation procedure, 0.4 times mole, 1.0 times mole and 1.3 times mole of elemental sulfur (S 0 ) are added at the beginning of the reaction with respect to the amount of remaining copper (Cu 0 ) Except for the above, the effect of adding elemental sulfur (S 0 ) was confirmed under the same conditions and procedures.
Table 6 shows the results of residual copper concentration when elemental sulfur was added at the beginning of the reaction under the above conditions.
そして、当該条件により単体硫黄を反応始期に添加した場合の、残留銅濃度の結果を表6に示した。 Thereafter, in the same operation procedure, 0.4 times mole, 1.0 times mole and 1.3 times mole of elemental sulfur (S 0 ) are added at the beginning of the reaction with respect to the amount of remaining copper (Cu 0 ) Except for the above, the effect of adding elemental sulfur (S 0 ) was confirmed under the same conditions and procedures.
Table 6 shows the results of residual copper concentration when elemental sulfur was added at the beginning of the reaction under the above conditions.
以上の結果より、残留銅濃度を1g/l以下にするためには、残留する銅の総モル数の1.0倍モル以上好ましくは1.3倍モル以上の量の単体硫黄(S0)を、浸出第1工程の反応始期から添加すれば良いことが理解される。
From the above results, in order to reduce the residual copper concentration to 1 g / l or less, elemental sulfur (S 0 ) in an amount of 1.0 times mol or more, preferably 1.3 times mol or more of the total number of moles of remaining copper. Is understood to be added from the beginning of the reaction in the first leaching step.
(実施例2)
実施例2においては、浸出第3工程である反応終期に単体硫黄(S0)を添加し、その添加効果を確認した。 (Example 2)
In Example 2, elemental sulfur (S 0 ) was added at the end of the reaction, which was the third step of leaching, and the effect of the addition was confirmed.
実施例2においては、浸出第3工程である反応終期に単体硫黄(S0)を添加し、その添加効果を確認した。 (Example 2)
In Example 2, elemental sulfur (S 0 ) was added at the end of the reaction, which was the third step of leaching, and the effect of the addition was confirmed.
実施例1の表1~表3に示した原料調合表に示す硫化砒素澱物と脱銅電解スライムとを、2リットルビーカーに測り取り、所定の純水を添加してリパルプしパルプを調整した。当該パルプを弱攪拌しながら加温し、温度を80℃にした。この時点でpHは1.67を示した。
The arsenic sulfide starch and the decoppered electrolytic slime shown in the raw material preparation tables shown in Tables 1 to 3 of Example 1 were measured in a 2 liter beaker, and predetermined pulp was added to repulp to prepare a pulp. . The pulp was heated with weak agitation to bring the temperature to 80 ° C. At this point, the pH was 1.67.
次いで、ガラス管を用い、ビーカー底部より酸素ガスの430cc/分の吹き込みを開始し、攪拌を800rpmとし反応を開始した。
30分間経過時点(80℃、pH1.89)で、500g/l濃度の水酸化ナトリウム溶液26mlを5分間で添加し、80℃、pH3.89とした。この後、引き続き反応を進め、120分間経過時点(80℃、pH2.15)で酸素吹き込みを停止した。 Next, using a glass tube, 430 cc / min of oxygen gas was started from the bottom of the beaker, and the reaction was started with stirring at 800 rpm.
When 30 minutes had passed (80 ° C., pH 1.89), 26 ml of a 500 g / l sodium hydroxide solution was added over 5 minutes to 80 ° C. and pH 3.89. Thereafter, the reaction was continued, and oxygen blowing was stopped when 120 minutes had passed (80 ° C., pH 2.15).
30分間経過時点(80℃、pH1.89)で、500g/l濃度の水酸化ナトリウム溶液26mlを5分間で添加し、80℃、pH3.89とした。この後、引き続き反応を進め、120分間経過時点(80℃、pH2.15)で酸素吹き込みを停止した。 Next, using a glass tube, 430 cc / min of oxygen gas was started from the bottom of the beaker, and the reaction was started with stirring at 800 rpm.
When 30 minutes had passed (80 ° C., pH 1.89), 26 ml of a 500 g / l sodium hydroxide solution was added over 5 minutes to 80 ° C. and pH 3.89. Thereafter, the reaction was continued, and oxygen blowing was stopped when 120 minutes had passed (80 ° C., pH 2.15).
少量サンプリングの結果、残留する銅量は3,750mg/lであった。そこで、単体硫黄(S0)65gを添加し、パルプと10分間攪拌混合した後(80℃、pH2.14)、95%硫酸を添加してpH1.85(80℃)へ下げ、ここからさらに30分間攪拌維持した後、浸出を終了(80℃、pH1.52)した。
回収した浸出液(浸出終了時点)の品位を表7に示す。尚、表の表記は上述した表4と同様である。 As a result of a small amount of sampling, the amount of remaining copper was 3,750 mg / l. Therefore, after adding 65 g of simple sulfur (S 0 ) and stirring and mixing with the pulp for 10 minutes (80 ° C., pH 2.14), 95% sulfuric acid was added to lower the pH to 1.85 (80 ° C.). After stirring for 30 minutes, leaching was completed (80 ° C., pH 1.52).
Table 7 shows the quality of the collected leachate (leaching end point). In addition, the notation of a table | surface is the same as that of Table 4 mentioned above.
回収した浸出液(浸出終了時点)の品位を表7に示す。尚、表の表記は上述した表4と同様である。 As a result of a small amount of sampling, the amount of remaining copper was 3,750 mg / l. Therefore, after adding 65 g of simple sulfur (S 0 ) and stirring and mixing with the pulp for 10 minutes (80 ° C., pH 2.14), 95% sulfuric acid was added to lower the pH to 1.85 (80 ° C.). After stirring for 30 minutes, leaching was completed (80 ° C., pH 1.52).
Table 7 shows the quality of the collected leachate (leaching end point). In addition, the notation of a table | surface is the same as that of Table 4 mentioned above.
回収した浸出残渣は552wet・g(水分48.6 %)であり、砒素品位は2.7%であり、これより砒素の浸出率は約90.2%と推算された。浸出率としては、浸出始期から単体硫黄(S0)を添加する方法より低い結果となったが、砒素の酸化効率は格段に向上した。具体的には、実施例1は本実施例と同量の65g単体硫黄(S0)を浸出第1工程の反応始期に添加した場合であるが、5価砒素の比率は41.3%であった。これに比し、本実施例では5価砒素の比率が83.3%と2倍以上の酸化効率を示した。
The recovered leaching residue was 552 wet · g (water content 48.6%), the arsenic quality was 2.7%, and the arsenic leaching rate was estimated to be about 90.2%. Although the leaching rate was lower than the method of adding elemental sulfur (S 0 ) from the beginning of leaching, the arsenic oxidation efficiency was remarkably improved. Specifically, Example 1 is a case where 65 g of simple sulfur (S 0 ) of the same amount as in this example was added at the beginning of the reaction in the first leaching process, but the ratio of pentavalent arsenic was 41.3%. there were. In comparison with this, in this example, the ratio of pentavalent arsenic was 83.3%, indicating an oxidation efficiency more than doubled.
銅の除去も良好であった。但し、実施例1に示した浸出始期から単体硫黄(S0)を添加する方法に比べると、実施例1の方が、脱銅能力は高かった。
従って、残留銅濃度を1g/l以下にする為、好ましくは、残留する銅の総モル数の2.0倍モル以上の量の単体硫黄(S0)を添加することが求められる。
しかしながら、浸出第3工程となる反応終期に単体硫黄(S0)を添加することで、浸出工程進行中の浸出パルプには過量の銅イオンが共存出来るため、砒素の酸化効率が高くなるというメリットがある。 Copper removal was also good. However, compared to the method of adding elemental sulfur (S 0 ) from the beginning of leaching shown in Example 1, Example 1 had higher copper removal capability.
Therefore, in order to make the residual copper concentration 1 g / l or less, it is preferable to add elemental sulfur (S 0 ) in an amount of 2.0 times or more the total number of moles of remaining copper.
However, by adding elemental sulfur (S 0 ) at the end of the reaction, which is the third step of leaching, an excess amount of copper ions can coexist in the leached pulp during the leaching step, so that the arsenic oxidation efficiency is increased. There is.
従って、残留銅濃度を1g/l以下にする為、好ましくは、残留する銅の総モル数の2.0倍モル以上の量の単体硫黄(S0)を添加することが求められる。
しかしながら、浸出第3工程となる反応終期に単体硫黄(S0)を添加することで、浸出工程進行中の浸出パルプには過量の銅イオンが共存出来るため、砒素の酸化効率が高くなるというメリットがある。 Copper removal was also good. However, compared to the method of adding elemental sulfur (S 0 ) from the beginning of leaching shown in Example 1, Example 1 had higher copper removal capability.
Therefore, in order to make the residual copper concentration 1 g / l or less, it is preferable to add elemental sulfur (S 0 ) in an amount of 2.0 times or more the total number of moles of remaining copper.
However, by adding elemental sulfur (S 0 ) at the end of the reaction, which is the third step of leaching, an excess amount of copper ions can coexist in the leached pulp during the leaching step, so that the arsenic oxidation efficiency is increased. There is.
実施例2で調製された浸出液1,000mlを1(L)ビーカーに取り、過酸化水素を添加した。当該過酸化水素の添加量は、上記3価砒素を酸化するのに必要な量の1.05倍当量である。具体的には、30%H2O2水12.6gを、昇温中の当該溶液が70℃となった時点から添加を開始し10分間で添加終了した。この時の液電位は81℃で521mV(本実施例において、液電位はAg/AgCl電極基準電位である。)であった。
1,000 ml of the leachate prepared in Example 2 was placed in a 1 (L) beaker and hydrogen peroxide was added. The amount of hydrogen peroxide added is 1.05 times equivalent to the amount required to oxidize the trivalent arsenic. Specifically, 12.6 g of 30% H 2 O 2 water was added at the time when the temperature of the solution being raised reached 70 ° C., and the addition was completed in 10 minutes. The liquid potential at this time was 521 mV at 81 ° C. (in this example, the liquid potential is the Ag / AgCl electrode reference potential).
過酸化水素の添加終了時から、酸化反応開始とした。
尚、酸化反応自体は過酸化水素添加終了時から60分間で終了とした。しかし、この時点では、温度が80℃を割らない様にして、さらに60分間攪拌維持し、合計120分間経過後に攪拌終了とした。
尚、当該攪拌は空気を巻き込まない程度の強度とした。撹拌終了時の液電位は81℃で378mVであった。 The oxidation reaction started from the end of the addition of hydrogen peroxide.
The oxidation reaction itself was completed in 60 minutes from the end of hydrogen peroxide addition. However, at this time, stirring was maintained for another 60 minutes so that the temperature did not fall below 80 ° C., and stirring was terminated after a total of 120 minutes had elapsed.
In addition, the said stirring was made into the intensity | strength of the grade which does not involve air. The liquid potential at the end of stirring was 378 mV at 81 ° C.
尚、酸化反応自体は過酸化水素添加終了時から60分間で終了とした。しかし、この時点では、温度が80℃を割らない様にして、さらに60分間攪拌維持し、合計120分間経過後に攪拌終了とした。
尚、当該攪拌は空気を巻き込まない程度の強度とした。撹拌終了時の液電位は81℃で378mVであった。 The oxidation reaction started from the end of the addition of hydrogen peroxide.
The oxidation reaction itself was completed in 60 minutes from the end of hydrogen peroxide addition. However, at this time, stirring was maintained for another 60 minutes so that the temperature did not fall below 80 ° C., and stirring was terminated after a total of 120 minutes had elapsed.
In addition, the said stirring was made into the intensity | strength of the grade which does not involve air. The liquid potential at the end of stirring was 378 mV at 81 ° C.
反応終了後液は、水分が若干蒸発し液量が減少していたので、純水を添加し反応前の1000mlとし、これを終液とした。以上の操作により酸化液調整後液を調製した。
After completion of the reaction, the water was slightly evaporated and the amount of the liquid was reduced, so pure water was added to make 1000 ml before the reaction, and this was the final solution. The solution after adjusting the oxidizing solution was prepared by the above operation.
当該酸化調整後液中に残留する過酸化水素量を調べた。具体的には、当該酸化調整後液50mlに銅粉を300mgを添加し、40℃にて、空気を巻き込まない程度の弱攪拌にて4分間攪拌反応させた後、濾過を行った。尚、攪拌にはスターラーを用いた。
得られた濾液の銅濃度は281mg/lであり、約22mg/lの濃度上昇を確認した。この結果から、当該酸化調整後液中に残留過酸化水素は、殆どが分解・除去されていることが確認された。 The amount of hydrogen peroxide remaining in the solution after the oxidation adjustment was examined. Specifically, 300 mg of copper powder was added to 50 ml of the post-oxidation-adjusted solution, and the mixture was allowed to react for 4 minutes at 40 ° C. with weak stirring that did not involve air, followed by filtration. A stirrer was used for stirring.
The copper concentration of the obtained filtrate was 281 mg / l, and an increase in concentration of about 22 mg / l was confirmed. From this result, it was confirmed that most of the residual hydrogen peroxide was decomposed and removed in the solution after oxidation adjustment.
得られた濾液の銅濃度は281mg/lであり、約22mg/lの濃度上昇を確認した。この結果から、当該酸化調整後液中に残留過酸化水素は、殆どが分解・除去されていることが確認された。 The amount of hydrogen peroxide remaining in the solution after the oxidation adjustment was examined. Specifically, 300 mg of copper powder was added to 50 ml of the post-oxidation-adjusted solution, and the mixture was allowed to react for 4 minutes at 40 ° C. with weak stirring that did not involve air, followed by filtration. A stirrer was used for stirring.
The copper concentration of the obtained filtrate was 281 mg / l, and an increase in concentration of about 22 mg / l was confirmed. From this result, it was confirmed that most of the residual hydrogen peroxide was decomposed and removed in the solution after oxidation adjustment.
当該酸化調整後液中に含まれる砒素の結晶化について説明する。
1)当該酸化調整後液を純水で希釈し、砒素濃度を45g/lに調整した。
2)砒素濃度を調整した酸化調整後液800ccを2Lビーカーに移し、95%硫酸を添加してpH1.15へ調整した。
3)当該酸化調整後液に含まれる砒素モル量の1.5倍モル量の第一鉄(Fe2+)を、酸化調整後液に加えた。具体的には、試薬1級の硫酸第一鉄(FeSO4・7H2O)を200g測り取り、該調整後液へ溶解し、さらに95%硫酸を添加して30℃でpH1.0へ調整した。
4)上記3)の溶液を加熱して95℃へ昇温し、次いで、ガラス管を用いビーカー底部より酸素ガスを400cc/分で吹き込みを開始し、強攪拌下、気液混合状態で7時間高温酸化反応した。当該高温酸化反応後の調整後液の分析結果を以下の表8に示す。 The crystallization of arsenic contained in the post-oxidation adjusted solution will be described.
1) The solution after oxidation adjustment was diluted with pure water to adjust the arsenic concentration to 45 g / l.
2) 800 cc of the solution after oxidation adjustment with adjusted arsenic concentration was transferred to a 2 L beaker, and 95% sulfuric acid was added to adjust to pH 1.15.
3) 1.5 times the molar amount of ferrous iron (Fe 2+ ) contained in the oxidation-adjusted solution was added to the oxidation-adjusted solution. Specifically, 200 g of reagent grade ferrous sulfate (FeSO 4 · 7H 2 O) was weighed and dissolved in the adjusted solution, and 95% sulfuric acid was added to adjust the pH to 1.0 at 30 ° C. did.
4) Heat the solution of 3) above to 95 ° C., then start blowing oxygen gas at 400 cc / min from the bottom of the beaker using a glass tube, and in a gas-liquid mixed state for 7 hours under strong stirring High temperature oxidation reaction. The analysis results of the adjusted solution after the high temperature oxidation reaction are shown in Table 8 below.
1)当該酸化調整後液を純水で希釈し、砒素濃度を45g/lに調整した。
2)砒素濃度を調整した酸化調整後液800ccを2Lビーカーに移し、95%硫酸を添加してpH1.15へ調整した。
3)当該酸化調整後液に含まれる砒素モル量の1.5倍モル量の第一鉄(Fe2+)を、酸化調整後液に加えた。具体的には、試薬1級の硫酸第一鉄(FeSO4・7H2O)を200g測り取り、該調整後液へ溶解し、さらに95%硫酸を添加して30℃でpH1.0へ調整した。
4)上記3)の溶液を加熱して95℃へ昇温し、次いで、ガラス管を用いビーカー底部より酸素ガスを400cc/分で吹き込みを開始し、強攪拌下、気液混合状態で7時間高温酸化反応した。当該高温酸化反応後の調整後液の分析結果を以下の表8に示す。 The crystallization of arsenic contained in the post-oxidation adjusted solution will be described.
1) The solution after oxidation adjustment was diluted with pure water to adjust the arsenic concentration to 45 g / l.
2) 800 cc of the solution after oxidation adjustment with adjusted arsenic concentration was transferred to a 2 L beaker, and 95% sulfuric acid was added to adjust to pH 1.15.
3) 1.5 times the molar amount of ferrous iron (Fe 2+ ) contained in the oxidation-adjusted solution was added to the oxidation-adjusted solution. Specifically, 200 g of reagent grade ferrous sulfate (FeSO 4 · 7H 2 O) was weighed and dissolved in the adjusted solution, and 95% sulfuric acid was added to adjust the pH to 1.0 at 30 ° C. did.
4) Heat the solution of 3) above to 95 ° C., then start blowing oxygen gas at 400 cc / min from the bottom of the beaker using a glass tube, and in a gas-liquid mixed state for 7 hours under strong stirring High temperature oxidation reaction. The analysis results of the adjusted solution after the high temperature oxidation reaction are shown in Table 8 below.
砒素沈殿率は、97.2%であった。
尚、砒素沈殿率とは液中の砒素のスコロダイトへの転換率であり、溶出値を求める為の溶出方法は環境庁告示13号法に準拠した。溶出処理後の液の濾過は、孔径0.2μmのMCE(Mixed Cellulose Ester)製のフィルターを介して行った。 The arsenic precipitation rate was 97.2%.
The arsenic precipitation rate is the conversion rate of arsenic in the solution to scorodite, and the elution method for obtaining the elution value was based on the Environmental Agency Notification No. 13 method. The liquid after the elution treatment was filtered through a filter made by MCE (Mixed Cellulose Ester) having a pore size of 0.2 μm.
尚、砒素沈殿率とは液中の砒素のスコロダイトへの転換率であり、溶出値を求める為の溶出方法は環境庁告示13号法に準拠した。溶出処理後の液の濾過は、孔径0.2μmのMCE(Mixed Cellulose Ester)製のフィルターを介して行った。 The arsenic precipitation rate was 97.2%.
The arsenic precipitation rate is the conversion rate of arsenic in the solution to scorodite, and the elution method for obtaining the elution value was based on the Environmental Agency Notification No. 13 method. The liquid after the elution treatment was filtered through a filter made by MCE (Mixed Cellulose Ester) having a pore size of 0.2 μm.
(比較例1)
本比較例は、浸出工程にて単体硫黄(S0)を添加しない場合における砒素の浸出について測定したものである。 (Comparative Example 1)
In this comparative example, arsenic leaching was measured when no elemental sulfur (S 0 ) was added in the leaching step.
本比較例は、浸出工程にて単体硫黄(S0)を添加しない場合における砒素の浸出について測定したものである。 (Comparative Example 1)
In this comparative example, arsenic leaching was measured when no elemental sulfur (S 0 ) was added in the leaching step.
実施例1の表1~表3に示した原料調合表に示す硫化砒素澱物と脱銅電解スライムとを、2リットルビーカーに測り取り、所定の純水を添加してリパルプしパルプを調整した。
当該パルプを弱攪拌しながら加温し、温度を80℃にした。この時点でpHは1.71を示した。 The arsenic sulfide starch and the decoppered electrolytic slime shown in the raw material preparation tables shown in Tables 1 to 3 of Example 1 were measured in a 2 liter beaker, and predetermined pure water was added and repulped to prepare pulp. .
The pulp was heated with weak agitation to bring the temperature to 80 ° C. At this point, the pH was 1.71.
当該パルプを弱攪拌しながら加温し、温度を80℃にした。この時点でpHは1.71を示した。 The arsenic sulfide starch and the decoppered electrolytic slime shown in the raw material preparation tables shown in Tables 1 to 3 of Example 1 were measured in a 2 liter beaker, and predetermined pure water was added and repulped to prepare pulp. .
The pulp was heated with weak agitation to bring the temperature to 80 ° C. At this point, the pH was 1.71.
ガラス管を用い、ビーカー底部より酸素ガスを430cc/分で吹き込みを開始し、攪拌を800rpmとして反応を開始した。30分間経過時点(80℃、pH1.95)にて、500g/l濃度の水酸化ナトリウム溶液を26ml(液中Na濃度が4.8g/l相当となる量。)を5分間で添加し、80℃、pH3.70とした。ここで、少量サンプリングした後、引き続き反応を進め120分間経過時点(80℃、pH2.11)で酸素吹き込みを停止した。ここから、さらに30分間攪拌を維持した後、浸出終了(80℃、pH2.07)とした。回収した浸出液の、水酸化ナトリウム溶液の添加終了直後の品位を表9に、浸出終時点の品位を表10に示す。尚、表の表記は上述した表4と同様である。
Using a glass tube, oxygen gas was started to be blown from the bottom of the beaker at 430 cc / min, and the reaction was started with stirring at 800 rpm. When 30 minutes have elapsed (80 ° C., pH 1.95), 26 ml of a 500 g / l sodium hydroxide solution (an amount corresponding to a Na concentration in the liquid corresponding to 4.8 g / l) is added over 5 minutes. The temperature was set to 80 ° C. and pH 3.70. Here, after sampling a small amount, the reaction was continued and oxygen blowing was stopped when 120 minutes had passed (80 ° C., pH 2.11). From here, stirring was further maintained for 30 minutes, and then leaching was completed (80 ° C., pH 2.07). Table 9 shows the quality of the recovered leachate immediately after the addition of the sodium hydroxide solution, and Table 10 shows the quality at the end of the leaching. In addition, the notation of a table | surface is the same as that of Table 4 mentioned above.
回収した浸出残渣は529wet・g(水分51.7%)であり、砒素品位は14.9%であった。これより、砒素の浸出率は約50.7%と推算され、浸出率としては非常に低い結果となった。
The recovered leaching residue was 529 wet · g (moisture 51.7%), and the arsenic quality was 14.9%. From this, the leaching rate of arsenic was estimated to be about 50.7%, and the leaching rate was very low.
当該比較例1において、砒素の浸出率が非常に低い結果となったことに関して、本発明者等は以下の様な理由を考えている。
すなわち、比較例1に係る配合では、浸出液中に銅が過量に存在しており、且つ砒素の酸化が促進される。このため、浸出の途中で5価砒素と銅イオンとが反応して砒酸銅を形成してしまい、残渣となって残留してしまうものと考えられる。つまり、当該比較例1の様な銅が過量の配合では、高浸出率で、且つ高濃度の砒素溶液を得る浸出は不可能であると考えられる。 In the comparative example 1, the inventors consider the following reasons for the very low arsenic leaching rate.
That is, in the formulation according to Comparative Example 1, an excessive amount of copper is present in the leachate, and arsenic oxidation is promoted. For this reason, it is considered that pentavalent arsenic and copper ions react to form copper arsenate during the leaching and remain as a residue. That is, it is considered that leaching to obtain an arsenic solution with a high leaching rate and a high concentration is impossible when the amount of copper is excessive as in Comparative Example 1.
すなわち、比較例1に係る配合では、浸出液中に銅が過量に存在しており、且つ砒素の酸化が促進される。このため、浸出の途中で5価砒素と銅イオンとが反応して砒酸銅を形成してしまい、残渣となって残留してしまうものと考えられる。つまり、当該比較例1の様な銅が過量の配合では、高浸出率で、且つ高濃度の砒素溶液を得る浸出は不可能であると考えられる。 In the comparative example 1, the inventors consider the following reasons for the very low arsenic leaching rate.
That is, in the formulation according to Comparative Example 1, an excessive amount of copper is present in the leachate, and arsenic oxidation is promoted. For this reason, it is considered that pentavalent arsenic and copper ions react to form copper arsenate during the leaching and remain as a residue. That is, it is considered that leaching to obtain an arsenic solution with a high leaching rate and a high concentration is impossible when the amount of copper is excessive as in Comparative Example 1.
(比較例2)
本比較例は、実施例2と同様であるが、単体硫黄(S0)添加後の反応pHを2以上で行った場合の例である。 (Comparative Example 2)
This comparative example is similar to Example 2, an example in which the pH of the reaction elemental sulfur (S 0) after the addition was carried out in 2 or more.
本比較例は、実施例2と同様であるが、単体硫黄(S0)添加後の反応pHを2以上で行った場合の例である。 (Comparative Example 2)
This comparative example is similar to Example 2, an example in which the pH of the reaction elemental sulfur (S 0) after the addition was carried out in 2 or more.
原料配合・操作手順は、実施例2と同様に行った。具体的には、実施例2と同様のパルプを、同様に弱攪拌しながら加温し、温度を80℃にした。この時点でpHは1.61を示した。
次に、ガラス管を用いビーカー底部より酸素ガスの430cc/分の吹き込みを開始し、攪拌を800rpmとして反応を開始した。30分間経過時点(80℃、pH1.85)で、濃度500g/lの水酸化ナトリウム溶液26mlを5分間で添加し、80℃、pH3.80とした。引き続き、反応を進め120分間経過時点(80℃、pH2.12)で酸素吹き込みを停止した。少量サンプリング(結果:残留銅3,849mg/l)した後、単体硫黄(S0)65gを添加し、当該パルプと10分間攪拌混合した後(80℃、pH2.11)、さらに30分間攪拌を維持した。ここで(80℃、pH2.09)少量サンプリング(結果:残留銅3,566mg/l)した後、さらに攪拌を維持して30分間後(80℃、pH2.08)に少量サンプリング(結果:残留銅3,429mg/l)して浸出終了とした。 The raw material blending / operation procedure was the same as in Example 2. Specifically, the same pulp as in Example 2 was similarly heated with weak stirring, and the temperature was set to 80 ° C. At this point, the pH was 1.61.
Next, blowing of 430 cc / min of oxygen gas was started from the bottom of the beaker using a glass tube, and the reaction was started with stirring at 800 rpm. When 30 minutes had passed (80 ° C., pH 1.85), 26 ml of a sodium hydroxide solution having a concentration of 500 g / l was added over 5 minutes to 80 ° C. and pH 3.80. Subsequently, the reaction was advanced and oxygen blowing was stopped when 120 minutes had passed (80 ° C., pH 2.12). After sampling a small amount (result: residual copper 3,849 mg / l), 65 g of elemental sulfur (S 0 ) was added, and after stirring and mixing with the pulp for 10 minutes (80 ° C., pH 2.11), stirring was further performed for 30 minutes. Maintained. Here (80 ° C., pH 2.09) a small amount of sampling (result: residual copper 3,566 mg / l), and further stirring was continued and after 30 minutes (80 ° C., pH 2.08), a small amount of sampling (result: residual) The leaching was completed with copper (429 mg / l).
次に、ガラス管を用いビーカー底部より酸素ガスの430cc/分の吹き込みを開始し、攪拌を800rpmとして反応を開始した。30分間経過時点(80℃、pH1.85)で、濃度500g/lの水酸化ナトリウム溶液26mlを5分間で添加し、80℃、pH3.80とした。引き続き、反応を進め120分間経過時点(80℃、pH2.12)で酸素吹き込みを停止した。少量サンプリング(結果:残留銅3,849mg/l)した後、単体硫黄(S0)65gを添加し、当該パルプと10分間攪拌混合した後(80℃、pH2.11)、さらに30分間攪拌を維持した。ここで(80℃、pH2.09)少量サンプリング(結果:残留銅3,566mg/l)した後、さらに攪拌を維持して30分間後(80℃、pH2.08)に少量サンプリング(結果:残留銅3,429mg/l)して浸出終了とした。 The raw material blending / operation procedure was the same as in Example 2. Specifically, the same pulp as in Example 2 was similarly heated with weak stirring, and the temperature was set to 80 ° C. At this point, the pH was 1.61.
Next, blowing of 430 cc / min of oxygen gas was started from the bottom of the beaker using a glass tube, and the reaction was started with stirring at 800 rpm. When 30 minutes had passed (80 ° C., pH 1.85), 26 ml of a sodium hydroxide solution having a concentration of 500 g / l was added over 5 minutes to 80 ° C. and pH 3.80. Subsequently, the reaction was advanced and oxygen blowing was stopped when 120 minutes had passed (80 ° C., pH 2.12). After sampling a small amount (result: residual copper 3,849 mg / l), 65 g of elemental sulfur (S 0 ) was added, and after stirring and mixing with the pulp for 10 minutes (80 ° C., pH 2.11), stirring was further performed for 30 minutes. Maintained. Here (80 ° C., pH 2.09) a small amount of sampling (result: residual copper 3,566 mg / l), and further stirring was continued and after 30 minutes (80 ° C., pH 2.08), a small amount of sampling (result: residual) The leaching was completed with copper (429 mg / l).
以上の結果から、実施例2に比しpHが高い(pHが2以上)、比較例2に係る領域においては、単体硫黄(S0)と銅イオンとの反応性が非常に緩慢であることが判明した。従って、比較例2に係る領域においては、銅の除去が不十分であることも判明した。
From the above results, the pH is higher than that of Example 2 (pH is 2 or more), and in the region according to Comparative Example 2, the reactivity between elemental sulfur (S 0 ) and copper ions is very slow. There was found. Therefore, it was also found that copper removal was insufficient in the region according to Comparative Example 2.
Claims (12)
- 硫化物形態の砒素を含む非鉄製錬中間産物と、砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーを、酸性領域で酸化浸出し浸出液を得る浸出工程と、
当該浸出液に酸化剤を添加して、砒素を5価砒素へ酸化して調整後液を得る液調整工程と、
当該調整後液中の砒素をスコロダイト結晶へ転換する結晶化工程と、を有し、
前記浸出工程が、前記硫化物形態の砒素を含む非鉄製錬中間産物と、前記砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーへ、反応始期に単体硫黄(S0)を添加し、酸化剤を添加しながら、温度を50℃以上とし、pHを1.0以上2.0以下として浸出を行う浸出第1工程と、次いで、pHを2.0以上とした後、混合スラリーへ酸化剤を添加しながら浸出を行う浸出第2工程と、次いで、酸化剤の添加を停止し、さらに混合スラリーを攪拌する浸出第3工程とを、有することを特徴とする砒素の処理方法。 A leaching step of oxidizing and leaching a mixed slurry of a non-ferrous smelting intermediate product containing sulfide form arsenic and a non-ferrous smelting intermediate product containing arsenic and metal form copper in an acidic region;
A liquid adjustment step of adding an oxidizing agent to the leachate to oxidize arsenic to pentavalent arsenic to obtain an adjusted liquid;
A crystallization step of converting the arsenic in the adjusted liquid into scorodite crystals,
In the leaching step, single sulfur (S 0 at the beginning of the reaction) is mixed into a mixed slurry of the non-ferrous smelting intermediate product containing arsenic in the sulfide form and the non-ferrous smelting intermediate product containing arsenic and copper in the metal form. ), Leaching first step of leaching at a temperature of 50 ° C. or higher and a pH of 1.0 or more and 2.0 or less while adding an oxidizing agent, and then after the pH is set to 2.0 or more The leaching second step of leaching while adding the oxidant to the mixed slurry, and then the leaching third step of stopping the addition of the oxidant and further stirring the mixed slurry, Processing method. - 前記単体硫黄(S0)の添加量は、該単体硫黄(S0)を添加せずに浸出した際に浸出液中にイオンとして残留する銅の総モル数の1倍モル以上であることを特徴とする請求項1に記載の砒素の処理方法。 Wherein the amount of elemental sulfur (S 0) is the single body sulfur (S 0) 1 times mole or more of the total number of moles of copper remaining as ions leaching solution during when leached without the addition of The method for treating arsenic according to claim 1.
- 硫化物形態の砒素を含む非鉄製錬中間産物と、砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーを、酸性領域で酸化浸出し浸出液を得る浸出工程と、
当該浸出液に酸化剤を添加して、砒素を5価砒素へ酸化して調整後液を得る液調整工程と、
当該調整後液中の砒素をスコロダイト結晶へ転換する結晶化工程と、を有し、
前記浸出工程が、前記硫化物形態の砒素を含む非鉄製錬中間産物と、前記砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーへ酸化剤を添加しながら温度を50℃以上とし、pHを1.0以上2.0以下として浸出を行う浸出第1工程と、次いで、pHを2.0以上とした後、混合スラリーへ酸化剤を添加しながら浸出を行う浸出第2工程と、次いで、酸化剤の添加を停止して単体硫黄(S0)を添加し、pHを2以下とした後、さらに攪拌する浸出第3工程とを、有することを特徴とする砒素の処理方法。 A leaching step of oxidizing and leaching a mixed slurry of a non-ferrous smelting intermediate product containing sulfide form arsenic and a non-ferrous smelting intermediate product containing arsenic and metal form copper in an acidic region;
A liquid adjustment step of adding an oxidizing agent to the leachate to oxidize arsenic to pentavalent arsenic to obtain an adjusted liquid;
A crystallization step of converting the arsenic in the adjusted liquid into scorodite crystals,
In the leaching step, the temperature of the non-ferrous smelting intermediate product containing the sulfide form of arsenic and the non-ferrous smelting intermediate product containing the arsenic and metal form of copper is increased while adding an oxidizing agent to the mixed slurry. First leaching step in which leaching is performed at a temperature of not less than 0 ° C. and a pH of 1.0 or more and 2.0 or less, and then leaching is performed by adding oxidant to the mixed slurry after the pH is set to 2.0 or more. Arsenic, characterized in that it has two steps and a third step of leaching after stopping addition of oxidant and adding elemental sulfur (S 0 ) to bring the pH to 2 or less and further stirring Processing method. - 前記単体硫黄(S0)の添加量は、該単体硫黄(S0)を添加せずに浸出した際に浸出液中にイオンとして残留する銅の総モル数の2倍モル以上であることを特徴とする請求項3に記載の砒素の処理方法。 Wherein the amount of elemental sulfur (S 0) is the single body sulfur (S 0) 2-fold mole or more of the total number of moles of copper remaining as ions leaching solution during when leached without the addition of The method for treating arsenic according to claim 3.
- 硫化物形態の砒素を含む非鉄製錬中間産物と、砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーを、酸性領域で酸化浸出し浸出液を得る浸出工程と、
当該浸出液に酸化剤を添加して、砒素を5価砒素へ酸化して調整後液を得る液調整工程と、
当該調整後液中の砒素をスコロダイト結晶へ転換する結晶化工程と、を有し、
前記浸出工程が、前記硫化物形態の砒素を含む非鉄製錬中間産物と、前記砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーへ、反応始期に単体硫黄(S0)を添加し、酸化剤を添加しながら温度を50℃以上とし、pHを1.0以上2.0以下として浸出を行う浸出第1工程と、次いで、pHを2.0以上とした後、混合スラリーへ酸化剤を添加しながら、浸出を行う浸出第2工程と、次いで、前記酸化剤の添加を停止して単体硫黄(S0)を添加し、pHを2以下とした後、さらに攪拌する浸出第3工程とを、有することを特徴とする砒素の処理方法。 A leaching step of oxidizing and leaching a mixed slurry of a non-ferrous smelting intermediate product containing sulfide form arsenic and a non-ferrous smelting intermediate product containing arsenic and metal form copper in an acidic region;
A liquid adjustment step of adding an oxidizing agent to the leachate to oxidize arsenic to pentavalent arsenic to obtain an adjusted liquid;
A crystallization step of converting the arsenic in the adjusted liquid into scorodite crystals,
In the leaching step, single sulfur (S 0 at the beginning of the reaction) is mixed into a mixed slurry of the non-ferrous smelting intermediate product containing arsenic in the sulfide form and the non-ferrous smelting intermediate product containing arsenic and copper in the metal form. ), Leaching first step in which leaching is performed while adding the oxidizing agent and the temperature is set to 50 ° C. or more, and the pH is set to 1.0 or more and 2.0 or less, and then the pH is set to 2.0 or more, The second step of leaching in which oxidant is added to the mixed slurry and then leaching is stopped, and then the addition of the oxidant is stopped and single sulfur (S 0 ) is added to bring the pH to 2 or less, followed by further stirring And a third step of leaching. - 前記砒素と金属形態の銅とを含む非鉄製錬中間産物が、脱銅電解スライム、および/または、砒化銅殿物であることを特徴とする請求項1から5のいずれかに記載の砒素の処理方法。 The non-ferrous smelting intermediate product containing arsenic and copper in a metal form is a decopperized electrolytic slime and / or a copper arsenide deposit, according to any one of claims 1 to 5, Processing method.
- 前記浸出工程において、浸出第1工程に次いで、pHを2.0以上とした後、pHを非保持のまま、混合スラリーへ酸化剤を添加しながら、浸出第2工程を行うことを特徴とする請求項1、3、5のいずれかに記載の砒素の処理方法。 In the leaching step, after the leaching first step, the pH is set to 2.0 or more, and then the leaching second step is performed while adding the oxidant to the mixed slurry while maintaining the pH unretained. The method for treating arsenic according to claim 1. *
- 前記混合スラリーへ添加する酸化剤として、空気および/または酸素ガスの吹き込みを用いることを特徴とする請求項1、3、5、7のいずれかに記載の砒素の処理方法。 The method for treating arsenic according to any one of claims 1, 3, 5, and 7, wherein air and / or oxygen gas blowing is used as an oxidant added to the mixed slurry. *
- 前記液調整工程において、酸化剤として過酸化水素を40℃以上で添加し、砒素を5価砒素に酸化して調整後液を得た後、当該反応後液と金属銅とを接触させ、残留する過酸化水素を除去するか、または、当該反応後液をさらに攪拌維持して、当該調整後液に残留する過酸化水素を除去することを特徴とする請求項1から8のいずれかに記載の砒素の処理方法。 In the liquid adjustment step, hydrogen peroxide is added as an oxidant at 40 ° C. or more, and after arsenic is oxidized to pentavalent arsenic to obtain an adjusted liquid, the post-reaction liquid and metal copper are brought into contact with each other to remain. The hydrogen peroxide remaining is removed, or the post-reaction liquid is further maintained by stirring to remove hydrogen peroxide remaining in the post-adjustment liquid. Arsenic treatment method. *
- 前記結晶化工程が、前記調整後液に第一鉄イオンを共存せしめ、当該第一鉄イオンが、5価砒素と酸化反応する結晶化工程であることを特徴とする請求項1から9のいずれかに記載の砒素の処理方法。 10. The crystallization process according to claim 1, wherein the crystallization process is a crystallization process in which ferrous ions coexist in the adjusted solution, and the ferrous ions are oxidized with pentavalent arsenic. A method for treating arsenic according to claim 1.
- 前記酸化反応を、pH1以下で行うことを特徴とする請求項10に記載の砒素の処理方法。 11. The arsenic treatment method according to claim 10, wherein the oxidation reaction is performed at a pH of 1 or less.
- 前記酸化反応を、温度50℃以上で行うことを特徴とする請求項10に記載の砒素の処理方法。 The arsenic treatment method according to claim 10, wherein the oxidation reaction is performed at a temperature of 50 ° C. or higher.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009011283A JP2010168237A (en) | 2009-01-21 | 2009-01-21 | Method for treating arsenic |
JP2009-011283 | 2009-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010084877A1 true WO2010084877A1 (en) | 2010-07-29 |
Family
ID=42355929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/050622 WO2010084877A1 (en) | 2009-01-21 | 2010-01-20 | Processes for the disposal of arsenic |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010168237A (en) |
WO (1) | WO2010084877A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012067361A (en) * | 2010-09-24 | 2012-04-05 | Dowa Metals & Mining Co Ltd | Method of separating copper and arsenic from nonferrous smelting intermediary product containing copper and arsenic |
CN105601013A (en) * | 2015-12-24 | 2016-05-25 | 南京格洛特环境工程股份有限公司 | Zero emission and recycling co-treatment method for copper smelting dirty acid water and magnesium desulfurization sludge |
CN112811465A (en) * | 2020-12-31 | 2021-05-18 | 沈阳化工大学 | Method for preparing magnesium arsenate by leaching arsenic sulfide mud paste with NaOH |
CN112850786A (en) * | 2020-12-31 | 2021-05-28 | 沈阳化工大学 | Na2CO3Method for preparing magnesium arsenate by leaching arsenic sulfide mud paste |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011161386A (en) * | 2010-02-10 | 2011-08-25 | Akita Univ | Method for treating thioarsenite |
JP5762799B2 (en) * | 2011-03-31 | 2015-08-12 | Dowaメタルマイン株式会社 | Method for separating and recovering As and Cu from non-ferrous smelting intermediate products |
WO2013061848A1 (en) * | 2011-10-24 | 2013-05-02 | 住友金属鉱山株式会社 | Method for producing high-purity cobalt sulfate aqueous solution |
JP5840920B2 (en) * | 2011-11-02 | 2016-01-06 | Dowaメタルマイン株式会社 | Recovery method of arsenic from non-ferrous smelting ash |
JP5889603B2 (en) * | 2011-11-02 | 2016-03-22 | Dowaメタルマイン株式会社 | Arsenic leaching method from non-ferrous smelting ash |
CN105600982B (en) * | 2015-12-24 | 2018-05-18 | 南京格洛特环境工程股份有限公司 | A kind of technique using calcium, magnesium processes desulfurization sludge processing Copper making waste acid water |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008150659A (en) * | 2006-12-15 | 2008-07-03 | Dowa Metals & Mining Co Ltd | Method for producing arsenic liquid from copper-arsenic compound |
JP2008150658A (en) * | 2006-12-15 | 2008-07-03 | Dowa Metals & Mining Co Ltd | Method for producing arsenic liquid |
JP2008239412A (en) * | 2007-03-27 | 2008-10-09 | Dowa Metals & Mining Co Ltd | Method for producing pentavalent arsenic-containing solution |
WO2009011316A1 (en) * | 2007-07-13 | 2009-01-22 | Dowa Metals & Mining Co., Ltd. | Method of treating copper-arsenic compound |
WO2009011075A1 (en) * | 2007-07-13 | 2009-01-22 | Dowa Metals & Mining Co., Ltd. | Method of treating copper-arsenic compound |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008200635A (en) * | 2007-02-21 | 2008-09-04 | Dowa Metals & Mining Co Ltd | Method for treating liquid after iron-arsenic reaction |
JP5102519B2 (en) * | 2007-03-15 | 2012-12-19 | Dowaメタルマイン株式会社 | Arsenic-containing solid and its production method |
-
2009
- 2009-01-21 JP JP2009011283A patent/JP2010168237A/en active Pending
-
2010
- 2010-01-20 WO PCT/JP2010/050622 patent/WO2010084877A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008150659A (en) * | 2006-12-15 | 2008-07-03 | Dowa Metals & Mining Co Ltd | Method for producing arsenic liquid from copper-arsenic compound |
JP2008150658A (en) * | 2006-12-15 | 2008-07-03 | Dowa Metals & Mining Co Ltd | Method for producing arsenic liquid |
JP2008239412A (en) * | 2007-03-27 | 2008-10-09 | Dowa Metals & Mining Co Ltd | Method for producing pentavalent arsenic-containing solution |
WO2009011316A1 (en) * | 2007-07-13 | 2009-01-22 | Dowa Metals & Mining Co., Ltd. | Method of treating copper-arsenic compound |
WO2009011075A1 (en) * | 2007-07-13 | 2009-01-22 | Dowa Metals & Mining Co., Ltd. | Method of treating copper-arsenic compound |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012067361A (en) * | 2010-09-24 | 2012-04-05 | Dowa Metals & Mining Co Ltd | Method of separating copper and arsenic from nonferrous smelting intermediary product containing copper and arsenic |
CN105601013A (en) * | 2015-12-24 | 2016-05-25 | 南京格洛特环境工程股份有限公司 | Zero emission and recycling co-treatment method for copper smelting dirty acid water and magnesium desulfurization sludge |
CN112811465A (en) * | 2020-12-31 | 2021-05-18 | 沈阳化工大学 | Method for preparing magnesium arsenate by leaching arsenic sulfide mud paste with NaOH |
CN112850786A (en) * | 2020-12-31 | 2021-05-28 | 沈阳化工大学 | Na2CO3Method for preparing magnesium arsenate by leaching arsenic sulfide mud paste |
Also Published As
Publication number | Publication date |
---|---|
JP2010168237A (en) | 2010-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010084877A1 (en) | Processes for the disposal of arsenic | |
JP5188298B2 (en) | Method for processing non-ferrous smelting intermediates containing arsenic | |
JP5188297B2 (en) | Method for processing non-ferrous smelting intermediates containing arsenic | |
JP5188296B2 (en) | Method for treating copper arsenic compound | |
US8147779B2 (en) | Method of alkali processing substance containing arsenic | |
US8097228B2 (en) | Method of processing diarsenic trioxide | |
JP4960686B2 (en) | Arsenic-containing liquid treatment method | |
JP6139990B2 (en) | Arsenic solution treatment method | |
JP4822445B2 (en) | Arsenic treatment method with seed crystals added | |
JP4902450B2 (en) | Arsenic treatment method | |
JP5571517B2 (en) | Separation of copper and arsenic from non-ferrous smelting intermediates containing copper and arsenic | |
JP4913649B2 (en) | Method for producing pentavalent arsenic-containing liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10733484 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10733484 Country of ref document: EP Kind code of ref document: A1 |