[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010084769A1 - 補聴装置 - Google Patents

補聴装置 Download PDF

Info

Publication number
WO2010084769A1
WO2010084769A1 PCT/JP2010/000381 JP2010000381W WO2010084769A1 WO 2010084769 A1 WO2010084769 A1 WO 2010084769A1 JP 2010000381 W JP2010000381 W JP 2010000381W WO 2010084769 A1 WO2010084769 A1 WO 2010084769A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound source
hearing aid
sound
unit
binaural
Prior art date
Application number
PCT/JP2010/000381
Other languages
English (en)
French (fr)
Inventor
遠藤充
水島考一郎
金森丈郎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/145,415 priority Critical patent/US8670583B2/en
Priority to JP2010547444A priority patent/JP5409656B2/ja
Publication of WO2010084769A1 publication Critical patent/WO2010084769A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0272Voice signal separating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/552Binaural
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/06Transformation of speech into a non-audible representation, e.g. speech visualisation or speech processing for tactile aids
    • G10L2021/065Aids for the handicapped in understanding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/554Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired using a wireless connection, e.g. between microphone and amplifier or using Tcoils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/558Remote control, e.g. of amplification, frequency

Definitions

  • the present invention relates to a hearing aid device.
  • Patent Document 1 discloses a hearing aid device that directs the direction of a microphone array in the direction of a speaker to clarify the sound collected by the microphone.
  • Patent Document 2 and Patent Document 3 the rotation angle of the head of the headphone wearer is detected by a sensor such as a digital vibration gyroscope or a camera, and a virtual sound image is generated even if the head of the headphone wearer rotates.
  • Patent Document 4 also discloses a method for detecting the rotation angle of the head using a head tracker.
  • FIG. 10 is a block diagram showing a configuration of a conventional hearing aid device.
  • the conventional hearing aid apparatus shown in FIG. 10 includes an external microphone array 900 and a hearing aid 800.
  • the hearing aid 800 includes a binaural speaker 801, a virtual sound image rotation unit 803, an inverse mapping rule storage unit 805, a direction reference setting unit 809, a head rotation angle sensor 811, and a direction estimation unit 813.
  • the head rotation angle sensor 811 is composed of, for example, a digital vibration gyro and detects the rotation angle of the head of the person wearing the hearing aid.
  • the direction reference setting unit 809 includes a direction reference setting switch.
  • the direction reference setting unit 809 may set a reference direction that determines the direction of the virtual sound source or reset the head rotation angle sensor 811 by operating a direction reference setting switch by a person wearing the hearing aid 800. it can.
  • the head rotation angle sensor 811 detects the rotation of the head of the wearer of the hearing aid 800.
  • the direction estimation unit 813 integrates the rotation angle detected by the head rotation angle sensor 811 in the reverse direction, and determines the direction of the virtual sound source to be localized as the angle from the reference direction set by the direction reference setting switch.
  • the inverse mapping rule storage unit 805 stores an inverse mapping rule for converting the angle determined by the direction estimation unit 813 into a directional component.
  • the virtual sound image rotation unit 803 refers to the inverse mapping rule and rotates the sound image of the voice of the speaker separated by the sound source separation unit 902 described later in the direction determined by the direction estimation unit 813.
  • the binaural speaker 801 expresses the sound image of the voice of the speaker rotated by the virtual sound image rotating unit 803 and the virtual sound image rotating unit 803 as an acoustic signal for the left ear and an acoustic signal for the right ear, and outputs them.
  • the external microphone array 900 includes a sound source input unit 901 and a sound source separation unit 902.
  • the sound source input unit 901 is composed of a plurality of microphones arranged in a predetermined arrangement, and takes in sound from the outside in multiple channels.
  • the sound source separation unit 902 separates the voice of the speaker by directing the directivity of the external microphone array 900 toward the speaker. The separated voice of the speaker is transferred to the virtual sound image rotating unit 803 described above.
  • a reverse mapping rule for converting the angle determined by the direction estimation unit 813 into a directional component is stored in advance, and the wearer is referred to by referring to the reverse mapping rule.
  • the direction of the sound image of the speaker's voice can be determined.
  • An object of the present invention is to provide a hearing aid device that can improve the clarity of the voice uttered by the speaker while reproducing the direction in which the voice uttered by the speaker arrives without using the reverse mapping rule. It is.
  • a sound source input unit that inputs sound coming from a sound source and converts the sound into a first sound signal
  • the first sound signal converted by the sound source input unit is separated into sound source signals corresponding to each sound source.
  • a sound source separation unit a binaural microphone that is arranged at the left and right ears, inputs the sound coming from the sound source and converts it into a second acoustic signal, and the left and right second acoustic signals converted by the binaural microphone
  • a directional component calculating unit that calculates a directional component representing a directional sense of the sound source with the binaural microphone as a base point, and generating left and right output acoustic signals based on the sound source signal and the directional component.
  • a hearing aid device comprising: an output signal generation unit; and a binaural speaker that outputs the left and right output acoustic signals generated by the output signal generation unit.
  • the hearing aid device of the present invention it is possible to improve the clarity of the speech uttered by the speaker while reproducing the direction in which the speech uttered by the speaker arrives without using the reverse mapping rule.
  • the directional component calculation unit calculates, for each sound source, at least one of the interaural time difference and the interaural volume difference from the left and right second acoustic signals, and the interaural time difference and both At least one of the interaural volume differences is defined as the directional component.
  • the hearing aid device of the present invention it is possible to improve the clarity of the speech uttered by the speaker while reproducing the direction in which the speech uttered by the speaker arrives without using the reverse mapping rule.
  • the directional component calculation unit may calculate, for each sound source, a transfer characteristic between the sound source signal from the sound source separation unit and the left and right second acoustic signals from the binaural microphone. Calculated as a directional component.
  • the directional component calculation unit detects an utterance interval for each sound source from the sound source signal acquired from the sound source separation unit, and the directional component calculation unit simultaneously determines the utterance intervals of a plurality of sound sources. When detected, the previous value is used as the transfer characteristic.
  • the directional component calculation unit estimates a position of each sound source based on the transfer characteristics, and the directional component calculation unit estimates that the wearer of the binaural microphone is the position of the sound source.
  • the output signal generator outputs the second acoustic signal to the binaural speaker.
  • the sound signal from the binaural microphone closer to the sound source is output, so that the voice of the hearing aid wearer's confidence can be heard clearly.
  • the hearing aid device of the present invention it is possible to improve the clarity of the speech uttered by the speaker while reproducing the direction in which the speech uttered by the speaker arrives without using the reverse mapping rule.
  • FIG. 3 is a block diagram showing a configuration of the hearing aid device according to the first embodiment.
  • the block diagram which shows the structure of the hearing aid apparatus of Embodiment 1 in detail
  • FIG. The figure which shows the usage example 2 of the hearing aid apparatus of Embodiment 1.
  • the block diagram which shows the structure of the hearing aid apparatus of Embodiment 2 in detail
  • FIG. 1 is a block diagram illustrating a configuration of the hearing aid device according to the first embodiment.
  • the hearing aid device of the first embodiment includes a hearing aid 100 and an external microphone array 300.
  • FIG. 3 is a diagram illustrating a usage example 1 of the hearing aid device according to the first embodiment
  • FIG. 4 is a diagram illustrating a usage example 2 of the hearing aid device according to the first embodiment.
  • FIG. 2 is a block diagram showing in detail the configuration of the hearing aid apparatus shown in FIG. 2, the same reference numerals as those in FIG. 1 are given the same functions as those in FIG.
  • the hearing aid 100 which comprises a part of hearing aid apparatus of Embodiment 1 is demonstrated.
  • the hearing aid 100 includes a right unit worn on the right ear and a left unit worn on the left ear.
  • Each of the left and right units includes a microphone for each ear of the binaural microphone 101, a direction sense component calculation unit 103, an output signal generation unit 105, and a speaker for each ear of the binaural speaker 107.
  • the left and right units of the hearing aid 100 communicate wirelessly. Note that the left and right units of the hearing aid 100 may be configured to communicate with each other by wire.
  • the binaural microphone 101 includes a right ear microphone 101A that constitutes a part of the right unit and a left ear microphone 101B that constitutes a part of the left unit.
  • the binaural microphone 101 inputs sound coming from the sound source to the wearer of the hearing aid 100 at the left and right ears of the wearer of the hearing aid 100 and converts it into an acoustic signal.
  • the directional component calculation unit 103 calculates the interaural time difference and the interaural volume difference from the acoustic signal converted by the binaural microphone 101, and the arrival direction of the sound coming from the sound source to the wearer of the binaural microphone. This is calculated as a directional component felt by the wearer of the hearing aid 100. That is, the direction sense component represents the direction sense of the sound source based on the wearer of the binaural microphone 101.
  • the direction component calculation unit 103 calculates the time of the right acoustic signal converted by the right ear microphone 101A and the time of the left acoustic signal converted by the left ear microphone 101B. The cross-correlation value is calculated while shifting. Then, the time at which the cross-correlation value is maximized is defined as the interaural time difference.
  • the directional component calculation unit 103 uses the time of the right acoustic signal converted by the right ear microphone 101A and the left ear microphone 101B by the amount of the interaural time difference. The power ratio of the left and right acoustic signals is obtained by shifting the converted left acoustic signal. Then, the directional component calculation unit 103 sets the power ratio of the left and right acoustic signals as a binaural volume difference.
  • the directional component calculation unit 103 calculates the directional component of the sound arriving from the sound source directly from the sound reaching the binaural microphone 101 from the sound source. Therefore, the hearing aid device of Embodiment 1 can faithfully reproduce the direction of the sound coming from the sound source.
  • the directional component calculation unit 103 may calculate either the interaural time difference or the interaural volume difference as the directional component, or both the interaural time difference and the interaural volume difference as directions. It may be calculated as a sensitive component.
  • the output signal generation unit 105 generates left and right acoustic signals to be output from the left and right speakers from the direction sense component calculated by the direction sense component calculation unit 103 and the sound source signal received from the external microphone array 300 described later. Generate. The output signal generation unit 105 determines which unit of the left unit and the right unit is away from the sound source from the interaural time difference that is one of the directional components.
  • the output signal generation unit 105 delays the sound source signal received from the sound source separation unit 303 of the external microphone array 300, which will be described later, by the time difference between both ears for units that are further away from the sound source. Furthermore, the output signal generation unit 105 controls the unit farther away from the sound source so as to reduce the volume of the binaural speaker 107 of the unit by the amount of the binaural volume difference.
  • the output signal generation unit 105 outputs the sound source signal received from the sound source separation unit 303 to the binaural speaker 107 as it is for a unit close to the sound source among the left and right units.
  • the binaural speaker 107 includes a right ear speaker 107A that constitutes a part of the right unit and a left ear speaker 107B that constitutes a part of the left unit.
  • the binaural speaker 107 outputs the sound source signal generated by the output signal generation unit 105 as the left and right acoustic signals at the left and right ears of the wearer of the hearing aid 100.
  • the external microphone array 300 includes a sound source input unit 301 and a sound source separation unit 303.
  • the external microphone array 300 is installed in a place closer to the binaural microphone 101 of the hearing aid 100.
  • the external microphone array 300 communicates wirelessly with the left and right units of the hearing aid 100.
  • the external microphone array 300 may be configured to communicate with the left and right units of the hearing aid 100 by wire.
  • the sound source input unit 301 inputs sound coming from the sound source to the external microphone array 300 and converts it into an acoustic signal.
  • the sound source input unit 301 includes a plurality of microphones. The sound signal of each microphone converted by the sound source input unit 301 is transferred to the sound source separation unit 303.
  • the sound source separation unit 303 detects the direction of the sound source with the external microphone array 300 as a base point by using the difference in arrival time of the sound coming from the sound source to each microphone.
  • the sound source separation unit 303 takes into account the delay time of the sound for each microphone based on the spatial arrangement of each microphone and adds the sound signals of each microphone, so that the sound source separation unit 303 uses the external microphone array 300 as a base point.
  • a sound source signal that has undergone directivity processing in the direction of the sound source is generated and transmitted to the output signal generation unit 105 of the hearing aid 100 wirelessly.
  • the sound source signal generated by the sound source separation unit 303 has the sound coming from the target sound source emphasized (directivity processing) with the external microphone array 300 as a base point. Therefore, in the sound source signal generated by the sound source separation unit 303, sounds other than the sound of the target sound source are suppressed, and the sound of the target sound source is clear. Note that when the position of the external microphone array 300 is closer to the position of the sound source than the position of the binaural microphone 101, the sound source signal generated by the sound source separation unit 303 further makes the sound of the target sound source clear.
  • the sound uttered by the person B is input from two microphone systems and converted into an acoustic signal.
  • the first microphone system is a plurality of microphones constituting the sound source input unit 301 of the external microphone array 300
  • the second microphone system is the binaural microphone 101 of the hearing aid 100.
  • a sound (arrow 1) arriving at the external microphone array 300 from the person B who speaks is input and converted into an acoustic signal.
  • Each of the plurality of microphones constituting the sound source input unit 301 of the external microphone array 300 collects the sound of the utterance of the person B coming from the person B as the sound source.
  • the acoustic signal converted by the sound source input unit 301 is transferred to the sound source separation unit 303.
  • the sound source separation unit 303 detects the sound source direction indicating the direction of the sound source with the external microphone array 300 as a base point using the difference in arrival time of the sound of the speech of the person B arriving at each microphone.
  • the acoustic signals of the microphones are added in consideration of the sound delay time for each microphone based on the spatial arrangement of each microphone, and directivity processing is performed in the direction of the sound source with the external microphone array 300 as the base point. Is done.
  • the directivity-processed acoustic signal is wirelessly transmitted to the output signal generation unit 105 of the hearing aid 100 as a sound source signal subjected to directivity processing in the direction of the sound source with the external microphone array 300 as a base point.
  • the left and right acoustic signals respectively converted by the right ear microphone 101A and the left ear microphone 101B are transferred to the direction sense component calculation unit 103.
  • the directional component calculation unit 103 At least one of the interaural time difference and the interaural volume difference is based on the wearer of the binaural microphone 101 from the left and right acoustic signals converted by the binaural microphone 101. It is calculated as a directional component indicating the direction of the sound source.
  • the binaural time difference based on the right ear microphone 101A is a positive value and the binaural volume difference (power ratio). Becomes a value of 1 or less (arrow 2B is longer than arrow 2A).
  • the direction sense component calculated by the direction sense component calculation unit 103 is transferred to the output signal generation unit 105.
  • the output signal generation unit 105 outputs from the binaural speaker 107 from the direction sense component calculated by the direction sense component calculation unit 103 and the sound source signal subjected to directivity processing in the direction of the sound source based on the external microphone array 300. Left and right acoustic signals are generated.
  • the left ear of the person A is farther from the person B than the right ear of the person A. Therefore, in the output signal generation unit 105, the left acoustic signal output from the left ear speaker 107B of the person A is delayed by the time difference between both ears which is a direction sense component.
  • the left ear speaker 107B is controlled so that the volume of the left ear speaker 107B for outputting the left acoustic signal is reduced by the volume difference between both ears.
  • the sound source signal received from the sound source separation unit 303 is transferred to the right ear speaker 107A for output from the right ear speaker 107A as a right acoustic signal.
  • the directional component calculation unit 103 calculates the direction in which the sound of the person B, who is the sound source, and (2) directivity processing in the direction of the sound source with the external microphone array 300 as a base point.
  • the clarity of the speech of the person B who is the sound source is enhanced by the sound source signal thus generated.
  • the first microphone system is a plurality of microphones constituting the sound source input unit of the external microphone array 300
  • the second microphone system is the binaural microphone 101 of the hearing aid 100.
  • a sound arriving at the external microphone array 300 from the uttered person C (arrow 3) is input and converted into an acoustic signal.
  • Each of the plurality of microphones constituting the sound source input unit 301 of the external microphone array 300 collects the sound of the utterance of the person C coming from the person C as a sound source.
  • the sound source separation unit 303 detects the sound source direction indicating the direction of the sound source with the external microphone array 300 as a base point using the difference in arrival time of the sounds of the utterance of the person C arriving at each microphone.
  • the sound signals of the respective microphones are added in consideration of the delay time of the sound for each microphone based on the spatial arrangement of each microphone, and directivity in the direction of the sound source with the external microphone array 300 as a base point is added. It is processed. Then, the directivity-processed acoustic signal is wirelessly transmitted to the output signal generation unit 105 of the hearing aid 100 as a sound source signal that has been directivity-processed in the direction of the sound source with the external microphone array 300 as a base point.
  • the sound (arrow 4A and arrow 4B) arriving at the binaural microphone 101 from the uttering person C is input and is input to the acoustic signal. Converted.
  • the left and right acoustic signals respectively converted by the right ear microphone 101 ⁇ / b> A and the left ear microphone 101 ⁇ / b> B are transferred to the direction sense component calculation unit 103.
  • the directional component calculation unit 103 At least one of the interaural time difference and the interaural volume difference is based on the wearer of the binaural microphone 101 from the left and right acoustic signals converted by the binaural microphone 101. It is calculated as a directional component representing the sense of direction of the sound source.
  • the person A turns from the direction in which the person C is viewed to the left to the direction in which the person C is viewed in the front, so that the binaural time difference is positive when the left ear microphone 101B is used as a reference.
  • the binaural volume difference (power ratio) is changed from a value smaller than 1 to 1 (values of arrows 4A and 4B are equal).
  • the direction sense component calculated by the direction sense component calculation unit 103 is transferred to the output signal generation unit 105.
  • the output signal generation unit 105 outputs from the binaural speaker 107 from the direction sense component calculated by the direction sense component calculation unit 103 and the sound source signal subjected to directivity processing in the direction of the sound source based on the external microphone array 300. Left and right acoustic signals are generated.
  • the left and right acoustic signals synthesized by the output signal generation unit 105 are output from the left ear speaker 107B and the right ear speaker 107A of the binaural speaker 107.
  • the output signal generation unit 105 performs the interaural time difference that is a directional component. Changes from the value calculated from the measured value to zero. Further, the output signal generation unit 105 controls the right ear speaker 107A so that the volume of the right ear speaker 107A is reduced by the volume difference between both ears, and gradually makes it equal to the left. Therefore, when the person A is looking at the external microphone array 300 in front, the right ear speaker 107A outputs a small sound with a delayed utterance of the person C compared to the left ear speaker 107B of the left ear. .
  • the utterance of the person C is not delayed not only from the left ear speaker 107B but also from the right ear speaker 107A. It changes so that the sound of the same magnitude is output.
  • the person A views the person C from the front, the person A can hear the utterance of the person C from the front.
  • the sound image of the utterance of the person C with respect to the person A does not move according to the movement of the person A who is wearing the hearing aid 100.
  • the sound image of the person C speaking to the person A does not move according to the movement of the person A wearing the hearing aid 100.
  • the direction sense component calculation unit 103 calculates the sound source based on the wearer of the binaural microphone 101.
  • the direction sense component indicating the direction faithfully reproduces the direction in which the voice of the person C, who is the sound source, arrives, and (2) the sound source signal subjected to directivity processing in the direction of the sound source with the external microphone array 300 as a base point
  • the hearing aid device of the first embodiment can improve the clarity of the voice uttered by the speaker while reproducing the direction in which the voice uttered by the speaker arrives.
  • FIG. 5 shows a configuration diagram of the hearing aid device of the first embodiment and a configuration diagram of a conference system using the hearing aid device.
  • the hearing aid device includes a hearing aid 100 and an external microphone array 300.
  • the hearing aid 100 includes a hearing aid main body 110, a right ear microphone 101A and a right ear speaker 107A, and a left ear microphone 101B and a left ear speaker 107B, which are connected to each other by wire.
  • the external microphone array 300 includes a speakerphone main body 310 and two external microphones 320, and the two external microphones 320 and the speakerphone main body 310 are connected by a wire L1.
  • the speakerphone main body 310 includes four built-in microphones 330.
  • the hearing aid main body 110 included in the hearing aid 100 and the speakerphone main body 310 included in the external microphone array 300 are connected by a wire L2.
  • the hearing aid main body 110 and the speakerphone main body 310 each include a power source, a DSP (Digital Signal Processor), a communication unit, a storage unit, and a control unit.
  • DSP Digital Signal Processor
  • the conference system using the hearing aid device includes a hearing aid device, a desk 710, and a plurality of chairs 720.
  • the plurality of chairs 720 are installed around the desk 710.
  • the voice of the speaker sitting on the chair 720 is input to the external microphone array 300, the right ear microphone 101A, and the left ear microphone 101B.
  • the voice of the speaker is output to the binaural speaker 107 as a highly clear voice component via the external microphone array 300.
  • the voice of the speaker is output to the binaural speaker 107 as a direction sense component via the right ear microphone 101A and the left ear microphone 101B.
  • the user of the hearing aid device can hear the speaker's voice clearly and perceiving the direction of arrival based on the voice component and direction sense component with high clarity.
  • each unit is connected by the wires L1 and L2, but each unit may be connected wirelessly.
  • an external microphone array 300 are connected to a power source, a DSP, It may include a communication unit, a storage unit, a control unit, etc., and communicate with each other wirelessly.
  • a remote control unit 130 may be added to the hearing aid 100 in the conference system using the hearing aid device shown in FIG.
  • the portion that communicates wirelessly is indicated by a broken line.
  • the remote control unit 130 is basically controlled by the user, such as changing the output volume of the hearing aid 100, but can be used as an external microphone array 300 by mounting a microphone array composed of four microphones 131. become.
  • the remote control unit 130 can be mounted on the mobile phone 150, for example.
  • the information processing in the hearing aid device takes into account the processing delay due to communication, power consumption, etc. It is desirable that the plurality of units included in the hearing aid 100 and the external microphone array 300 are appropriately distributed.
  • the DSP built in the speakerphone main body 310 may perform sound source input processing and sound source separation processing, and the DSP built in the hearing aid main body 110 may perform other processing.
  • the communication signal between the external microphone array 300 and the hearing aid 100 only needs to include the separated audio signal, and the communication capacity can be reduced.
  • the speakerphone main body 310 that can use an AC adapter there is an effect that the power consumption of the hearing aid main body 110 can be suppressed.
  • the processing delay associated with wireless communication becomes more prominent than with wired communication, so it is better to consider the amount of communication.
  • the volume of the left and right output signals can be determined using the difference between the left and right volume and a predetermined reference volume. As a result, there is no processing delay due to the transmission of signals from the left and right units of the hearing aid main body 110 to the remote control unit 130, so that the directional component is kept natural. Furthermore, since a direct comparison of the left and right volume is not necessary, a right output signal is generated in the right unit of the hearing aid main body 110, a left output signal is generated in the left unit of the hearing aid main body 110, and the left and right are processed independently. Therefore, there is an effect that the processing delay associated with the left and right communication does not occur.
  • the shape of the hearing aid 100 of the hearing aid device according to the first embodiment is not particularly limited. However, for example, if the shape of the hearing aid 100 of the hearing aid device according to the first embodiment is made a canal type, the hearing aid device according to the first embodiment is not limited to the direction of the head of the wearer of the binaural microphone 101 but also the hearing aid It is possible to generate a directional component that reflects the influence of reflection depending on the size and shape of each part (auricle, shoulder, trunk) of 100 wearers.
  • the external microphone array 300 is installed near the center of the round table 700, but the present invention is not limited to this.
  • Each speaker may wear a headset type external microphone array 300.
  • the external microphone array includes the sound source input unit 301 and the sound source separation unit 303 is not necessary.
  • the binaural speaker 107 may be incorporated in, for example, headphones.
  • the binaural microphone 101 may be incorporated in, for example, headphones.
  • the sound source input unit 301 of the external microphone array 300 may be configured by a single microphone, and the external microphone array 300 may be disposed closer to the sound source than the binaural microphone 101. .
  • FIG. 7 is a block diagram illustrating a configuration of the hearing aid device according to the second embodiment.
  • FIG. 8 is a block diagram showing in detail the configuration of the hearing aid device of the second embodiment.
  • the hearing aid device of the second embodiment includes a hearing aid 200 and an external microphone array 400.
  • FIG. 9 is a diagram illustrating a usage example of the hearing aid device according to the second embodiment.
  • FIG. 7 a configuration of a hearing aid 200 that constitutes a part of the hearing aid device of the second embodiment will be described.
  • the binaural microphone and the binaural speaker of the hearing aid of Embodiment 2 have the same configuration as the binaural microphone 101 and binaural speaker 107 of Embodiment 1. Therefore, the same reference numbers as those in FIG.
  • the hearing aid 200 includes a right unit worn on the right ear and a left unit worn on the left ear.
  • Each of the left and right units includes a binaural microphone 101, an output signal generation unit 205, a binaural transfer characteristic measurement unit 207, a sound source position estimation unit 209, a binaural speaker 107, and a sound detection unit 211.
  • the left and right units of the hearing aid 200 communicate wirelessly. Note that the left and right units of the hearing aid 100 may be configured to communicate with each other by wire.
  • the binaural microphone 101 includes a right ear microphone 101A that constitutes a part of the right unit and a left ear microphone 101B that constitutes a part of the left unit.
  • the binaural microphone 101 inputs sound coming from the sound source to the wearer of the hearing aid 200 at the left and right ears of the wearer of the hearing aid 200 and converts it into an acoustic signal. Then, the converted acoustic signal is transferred to the binaural transfer characteristic measurement unit 207 in order to obtain transfer functions of the left and right ears of the hearing aid 200 wearer.
  • the voice detection unit 211 receives each sound source signal separated by the sound source separation unit 403 of the external microphone array 400 and detects the voice of the person who is speaking from the sound source signal.
  • the sound detection unit 211 obtains power in a predetermined time interval for each sound source signal separated for each sound source. Then, a sound source whose power in a predetermined time interval is equal to or greater than a threshold is detected as the voice of the person who is speaking.
  • the voice detection unit 211 uses a parameter representing a harmonic structure as an element of a sound source signal used when detecting the voice of a speaking person (for example, power by a comb filter assuming a pitch). And the ratio of broadband power) may be used.
  • the binaural transfer characteristic measuring unit 207 is a space between a sound source signal (hereinafter referred to as an audio signal) detected by the audio detecting unit 211 as the voice of the person who is speaking and a right acoustic signal obtained from the right ear microphone 101A.
  • the transfer function (hereinafter referred to as transfer characteristic on the right) is obtained.
  • the binaural transfer characteristic measurement unit 207 obtains a transfer function (hereinafter referred to as the left transfer characteristic) between the audio signal and the left acoustic signal obtained from the left ear microphone 101B.
  • the binaural transfer characteristic measuring unit 207 associates the transfer characteristic of each ear with a direction (hereinafter referred to as a sound source direction) indicating the direction of the sound source with the external microphone array 400 as a base point. Therefore, even when there are a plurality of audio signals detected as sound, the binaural transfer characteristic measuring unit 207 can express the sound source direction of each sound source.
  • a sound source direction a direction indicating the direction of the sound source with the external microphone array 400 as a base point. Therefore, even when there are a plurality of audio signals detected as sound, the binaural transfer characteristic measuring unit 207 can express the sound source direction of each sound source.
  • the direction sense component in the first embodiment corresponds to the transmission characteristics of each ear obtained by the binaural transmission characteristics measuring unit 207.
  • the binaural transfer characteristic measurement unit 207 Stop measuring the ear transfer function. In that case, the sense of sound source direction of each person can be maintained by using the transfer function immediately before stopping the measurement of the transfer function of each ear.
  • the sound source position estimation unit 209 can estimate the position of each sound source based on the transfer functions of the left and right ears associated with the sound source direction obtained by the binaural transfer characteristic measurement unit 207.
  • the sound source position estimation unit 209 determines the sound arrival time from the external microphone array 400 to the binaural microphone 101 from the time having the first peak on the impulse response of the transfer function of each ear associated with the sound source direction. Ask for. From this arrival time, the perspective of each sound source from the wearer of the hearing aid 200 can be estimated. Further, the sound source position estimation unit 209 calculates the cross-correlation value while shifting the time from the impulse response of the transfer function of the left and right ears, and obtains the time when the cross-correlation value is maximum as the interaural time difference.
  • the sound source position estimation unit 209 sets a sound source having a minimum arrival time and a time difference between both ears close to 0 among a plurality of sound sources as an utterance of the hearing aid 200 itself. Therefore, the sound source position estimation unit 209 can estimate the position of each sound source based on the transfer functions of the left and right ears associated with the sound source direction obtained by the binaural transfer characteristic measurement unit 207. Then, the output signal generation unit 205 refers to the estimation result of the sound source position estimation unit 209. As described above, in the hearing aid device according to the second embodiment, the sound detection unit 211, the binaural transfer characteristic measurement unit 207, and the sound source position estimation unit 209 have the same functions as the directional component calculation unit according to the first embodiment. It has.
  • the output signal generation unit 205 outputs the right and left transfer characteristics measured by the binaural transfer characteristic measurement unit 207 and the left and right audio signals from the right ear speaker 107A and the left ear speaker 107B of the binaural speaker 107, respectively. Left and right acoustic signals are generated.
  • the output signal generation unit 205 convolves the sound signal of the first microphone system with the impulse response of the transfer function representing the left and right transfer characteristics to generate the left and right acoustic signals.
  • the output signal generation unit 205 refers to the estimation result of the sound source position estimation unit 209 as necessary, and determines whether the sound source of the left and right audio signals is the wearer himself / herself.
  • the output signal generation unit 205 does not output the audio signal of the first microphone system to the binaural speaker 107, but the second microphone system. Are output to the binaural speaker 107. As a result, the voice of the wearer can be heard clearly and with little time delay.
  • the binaural speaker 107 includes a right ear speaker 107A that constitutes a part of the right unit and a left ear speaker 107B that constitutes a part of the left unit.
  • the binaural speaker 107 outputs the sound source signal generated by the output signal generation unit 205 as the left and right acoustic signals at the left and right ears of the wearer of the hearing aid 200.
  • the configuration of the external microphone array 400 that constitutes a part of the hearing aid device of Embodiment 2 will be described with reference to FIGS.
  • the sound source input unit 301 of the external microphone array has the same configuration as the sound source input unit of the external microphone array of the first embodiment. Therefore, the same reference numbers as those in FIG.
  • the external microphone array 400 includes a sound source input 301 and a sound source separation unit 403.
  • the external microphone array 400 is installed at a place closer to the speakers B and C than the binaural microphone 101 of the hearing aid 200.
  • the external microphone array 400 communicates wirelessly with the left and right units of the hearing aid 200.
  • the external microphone array 400 may be configured to communicate with the left and right units of the hearing aid 200 by wire.
  • the sound source input unit 301 inputs sound coming from the sound source to the external microphone array 400 and converts it into a sound signal.
  • the sound source input unit 301 includes a plurality of microphones. The sound signal of each microphone converted by the sound source input unit 301 is transferred to the sound source separation unit 303.
  • the sound source separation unit 303 detects the direction of the sound source with the external microphone array 400 as a base point, using the difference in arrival time of the sound coming from the sound source to each microphone.
  • the sound source separation unit 303 adds the sound signal of each microphone, taking into account the delay time of the sound for each microphone, based on the spatial arrangement of each microphone. Then, the sound source separation unit 303 generates a sound source signal that has been subjected to directivity processing in the direction of the sound source with the external microphone array 400 as a base point, and transmits the sound source signal to the sound detection unit 211 of the hearing aid 200 wirelessly.
  • the sound source signal generated by the sound source separation unit 303 has the sound coming from the target sound source as emphasized (directivity processing) with the external microphone array 400 as a base point. Therefore, in the sound source signal generated by the sound source separation unit 303, sounds other than the sound of the target sound source are suppressed, and the sound of the target sound source is clear.
  • the sound source signal generated by the sound source separation unit 303 further makes the sound of the target sound source clear.
  • the sound source separation unit 303 may perform sound source separation by independent component analysis. At this time, in order to use power in the voice detection unit 211, power information is restored by multiplying each independent component by a diagonal element of an inverse matrix of the separation matrix.
  • FIG. 9 As shown in FIG. 9, it is assumed that a person A, a person B, and a person C wearing the hearing aid 200 are having a meeting surrounding a round table 700 in which an external microphone array 400 is installed near the center. In FIG. 9, while the person B and the person C are speaking, the person A looks at the person B in front and listens to the person B.
  • Speech sounds of person B, person C, and person A are input from the two microphone systems and converted into left and right acoustic signals.
  • the first microphone system is a plurality of microphones constituting the sound source input unit of the external microphone array 400
  • the second microphone system is the binaural microphone 101 of the hearing aid 200.
  • the sound (arrow 5) arriving at the external microphone array 400 from the person B is input and converted into an acoustic signal.
  • the sound (arrow 7) that arrives at the external microphone array 400 from the person C is converted into an acoustic signal.
  • the sound (arrow 9) that reaches the external microphone array 400 from the person A is also converted into an acoustic signal.
  • Each of the plurality of microphones constituting the sound source input unit 301 of the external microphone array 400 collects utterance sounds coming from the person B, person C, and person A, which are sound sources.
  • the sound signal converted into the sound signal by the sound source input unit 301 is transferred to the sound source separation unit 303.
  • the sound source separation unit 403 detects the sound source direction indicating the direction of the sound source with the external microphone array 400 as a base point using, for example, the difference in arrival time of the utterance sound of the person B arriving at each microphone.
  • the sound signals of the respective microphones are added in consideration of the sound delay time for each microphone based on the spatial arrangement of each microphone, and directivity processing is performed in the direction of the sound source with the external microphone array 400 as a base point. Is done.
  • the sound signal subjected to directivity processing is wirelessly transmitted to the sound detection unit 211 of the hearing aid 200 as a sound source signal subjected to directivity processing in the direction of the sound source with the external microphone array 400 as a base point.
  • the utterance sound (arrow 6A, arrow 8A, arrow 10A, arrow 6B) of each person (person B, person C or person A) arriving from each sound source, Arrows 8B and 10B) are input and converted into acoustic signals, respectively.
  • the converted acoustic signals of the sound sources are transferred from the microphones 101A and 101B to the binaural transfer characteristic measuring unit 207.
  • the voice detection unit 211 detects the voices of the persons B, C, and A from the sound source signals received from the sound source separation unit 403 of the external microphone array 400.
  • the voice detection unit 211 obtains power in a predetermined time interval for each sound source signal separated for each sound source. Then, a sound source whose power in a predetermined time interval is equal to or greater than a threshold is detected as the voice of the person who is speaking. Since the detected voice of the talking person is detected from the sound source signal subjected to the directivity processing by the sound source separation unit 403, it is very clear.
  • Each sound source signal (hereinafter referred to as an audio signal) in which the voice of the person who is speaking is detected is transferred to the binaural transfer characteristic measuring unit 207.
  • the binaural transfer characteristic measuring unit 207 transmission between each audio signal of each sound source (person B, person C, or person A) transferred from the sound detection unit 211 and the acoustic signal transferred from the right ear microphone 101A. A function is required. Similarly, in the binaural transfer characteristic measurement unit 207, transmission between each of the sound signals of each sound source (person B or person C) transferred from the sound detection unit 211 and the acoustic signal transferred from the left ear microphone 101B. A function is required.
  • the binaural transfer characteristic measuring unit 207 associates the transfer characteristics of each ear (person B, person C, person A) of each sound source with the sound source direction indicating the direction of the sound source based on the external microphone array 400. It has been.
  • the binaural transfer characteristic measurement unit 207 stops measuring the transfer function of each ear. In that case, the transfer function immediately before stopping the measurement of the transfer function of each ear is used.
  • the transfer characteristics of each ear of each sound source associated with the sound source direction are transferred to the output signal generation unit 205 and the sound source position estimation unit 209.
  • each sound source is determined based on the transfer functions of the left and right ears associated with the sound source direction indicating the direction of the sound source with the external microphone array 400 as a base point, which is obtained by the binaural transfer characteristic measurement unit 207. Can be estimated.
  • the utterance of the person A who is wearing the hearing aid 200 has a minimum arrival time among a plurality of sound sources (the difference between the lengths of the arrows 10B and 9 is indicated by the arrows 6B and 9). 5 and smaller than the lengths of the arrows 8B and 7), and the interaural time difference is close to 0 (the lengths of the arrows 10A and 10B are substantially equal).
  • the output signal generation unit 205 convolves the left and right audio signals of each sound source with the impulse response of the transfer function representing the transfer characteristic of each ear of each sound source associated with the sound source direction, and The left and right acoustic signals are synthesized for output from the right ear speaker 107A and the left ear speaker 107B.
  • the output signal generation unit 205 outputs the audio signal of the second microphone system to the binaural speaker 107. To do.
  • the left and right acoustic signals synthesized by the output signal generation unit 205 are output from the right ear speaker 107A and the left ear speaker 107B, respectively.
  • the hearing aid device of the second embodiment the left and right audio signals in which the sound of each sound source processed by the external microphone array 400 is clear and the binaural transfer characteristic measurement unit 207 of the hearing aid 200 are obtained.
  • the left and right acoustic signals generated from the left and right transfer functions associated with the sound source directions are output from the binaural speaker 107. Therefore, the hearing aid device of the second embodiment can improve the clarity of the voice uttered by the speaker while reproducing the direction in which the voice uttered by the speaker arrives.
  • the shape of the hearing aid 200 is not particularly limited.
  • the left and right acoustic signals synthesized by the output signal generation unit 205 are speaking.
  • the left and right transfer characteristics include the effect of reflection from the size and shape of each part (auricle, shoulder, torso) of the person speaking, as well as the direction of the head on which the person wears the hearing aid 200. Therefore, in the hearing aid device of the second embodiment, the wearer of the hearing aid 200 can feel the sense of direction of the sound output from the binaural speaker 107 in real time.
  • the hearing aid according to the present invention has an effect of improving the clarity of the speech uttered by the speaker while reproducing the direction in which the speech uttered by the speaker arrives without using the inverse mapping rule. It is useful as a hearing aid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Neurosurgery (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Multimedia (AREA)
  • Computational Linguistics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Human Computer Interaction (AREA)
  • Stereophonic System (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

 逆写像ルールを用いずに、話者の発話する音声が到来する方向を再現しつつ、当該話者の発話する音声の明瞭性を高める補聴装置を提供すること。本発明の補聴装置は、音源から到来する音を入力して第1音響信号に変換する音源入力部と、前記音源入力部で変換された前記第1音響信号を、各音源に対応した音源信号に分離する音源分離部と、左右の耳元に配置され、前記音源から到来する前記音を入力して第2音響信号に変換する両耳マイクと、前記両耳マイクで変換された左右の前記第2音響信号から、前記両耳マイクを基点とした前記音源の方向感を表す方向感成分を算出する方向感成分算出部と、前記音源信号及び前記方向感成分に基づいて、左右の出力音響信号を生成する出力信号生成部と、前記出力信号生成部で生成された前記左右の出力音響信号を出力する両耳スピーカーと、を備える。

Description

補聴装置
 本発明は、補聴装置に関する。
 特許文献1では、発話者の方向にマイクアレーの指向性を向けて、マイクで収音する音を明瞭にする補聴装置が開示されている。また、特許文献2及び特許文献3では、ヘッドホン装着者の頭部の回転角度を、デジタル振動ジャイロやカメラなどのセンサで検出し、ヘッドホン装着者の頭部が回転しても仮想的な音像が動かない音像定位技術が開示されている。特許文献4においても、ヘッドトラッカにより頭部の回転角度を検出する方法が開示されている。
 特許文献2に開示されている音像定位技術と、特許文献1に開示されている補聴装置を組み合わせた場合、例えば、図10に示すような補聴装置が実現できる。図10は、従来の補聴装置の構成を示すブロック図である。図10に示す従来の補聴装置は、外部マイクアレー900と、補聴器800と、を備える。
 補聴器800は、両耳スピーカー801と、仮想音像回転部803と、逆写像ルール記憶部805と、方向基準設定部809と、頭部回転角度センサ811と、方向推定部813とを、備える。
 頭部回転角度センサ811は、例えば、デジタル振動ジャイロで構成され、補聴装置を装着する者の頭部の回転角度を検知する。
 方向基準設定部809は、方向基準設定スイッチを備える。方向基準設定部809は、補聴器800を装着する者が方向基準設定スイッチを操作することで、仮想音源の方向を定める基準方向を設定したり、頭部回転角度センサ811をリセットしたりすることができる。
 頭部回転角度センサ811は、補聴器800の装着者の頭部の回転を検知する。
 方向推定部813は、頭部回転角度センサ811が検知する回転角度を逆方向に積分し、定位させたい仮想音源の方向を、方向基準設定スイッチで設定された基準方向からの角度として決定する。
 逆写像ルール記憶部805は、方向推定部813で決定された角度を方向感成分に変換するための逆写像ルールが記憶されている。
 仮想音像回転部803は、逆写像ルールを参照して、後述する音源分離部902によって分離された発話者の音声の音像を、方向推定部813で決定された方向に回転させる。
 両耳スピーカー801は、仮想音像回転部803と、仮想音像回転部803で回転した発話者の音声の音像を、左耳用の音響信号と右耳用の音響信号として表現しそれぞれ出力する。
 外部マイクアレー900は、音源入力部901と、音源分離部902と、を備える。
 音源入力部901は、所定の配置に並べられた複数のマイクから構成され、外部からの音を多チャンネルで取り込む。
 音源分離部902は、発話者の方向に外部マイクアレー900の指向性を向けて発話者の音声を分離する。分離された発話者の音声は、上述した仮想音像回転部803へ転送される。
 上述のような従来の補聴装置では、方向推定部813で決定された角度を方向感成分に変換するための逆写像ルールを予め保持しておき、この逆写像ルールを参照することで、装着者に対する発話者の音声の音像の方向を決定することができる。
日本国特開平9-140000号公報 日本国特開平8-9490号公報 日本国特開2004-23180号公報 日本国特表2006-503526号公報
 上述のような従来の補聴装置では、人が音の到来方向を知覚する際に手がかりとする方向感成分として、伝達関数で表現される周波数特性や両耳間音量差や両耳間時間差と、人が知覚する音の到来方向との写像関係を予め求めておき、その逆写像から音像を定位させる必要があった。
 本発明の目的は、逆写像ルールを用いずに、話者の発話する音声が到来する方向を再現しつつ、当該話者の発話する音声の明瞭性を高めることができる補聴装置を提供することである。
 本発明は、音源から到来する音を入力して第1音響信号に変換する音源入力部と、前記音源入力部で変換された前記第1音響信号を、各音源に対応した音源信号に分離する音源分離部と、左右の耳元に配置され、前記音源から到来する前記音を入力して第2音響信号に変換する両耳マイクと、前記両耳マイクで変換された左右の前記第2音響信号から、前記両耳マイクを基点とした前記音源の方向感を表す方向感成分を算出する方向感成分算出部と、前記音源信号及び前記方向感成分に基づいて、左右の出力音響信号を生成する出力信号生成部と、前記出力信号生成部で生成された前記左右の出力音響信号を出力する両耳スピーカーと、を備える補聴装置を提供する。
 本発明の補聴装置によれば、逆写像ルールを用いずに、話者の発話する音声が到来する方向を再現しつつ、当該話者の発話する音声の明瞭性を高めることができる。
 上記補聴装置において、前記方向感成分算出部は、前記音源毎に、左右の前記第2音響信号から両耳間時間差及び両耳間音量差の少なくとも一方を算出し、当該両耳間時間差及び両耳間音量差の少なくとも一方を、前記方向感成分とする。
 本発明の補聴装置によれば、逆写像ルールを用いずに、話者の発話する音声が到来する方向を再現しつつ、当該話者の発話する音声の明瞭性を高めることができる。
 上記補聴装置において、前記方向感成分算出部は、前記音源毎に、前記音源分離部からの前記音源信号と前記両耳マイクからの左右の前記第2音響信号との間の伝達特性を、前記方向感成分として算出する。
 上記構成によれば、伝達特性に含まれる周波数特性を考慮した両耳信号差を生成でき、リアルな方向感を実現できる。
 上記補聴装置において、前記方向感成分算出部は、前記音源分離部から取得した音源信号から、音源毎に発話区間を検出し、前記方向感成分算出部が、複数の音源の前記発話区間を同時に検出すると、前記伝達特性として直前の値を利用する。
 上記構成によれば、同時発話により伝達特性の推定誤差が大きい場合に明瞭性が低下するのを防止できる。
 上記補聴装置において、前記方向感成分算出部は、前記伝達特性に基づいて各音源の位置を推定し、前記方向感成分算出部により前記両耳マイクの装着者自身が前記音源の位置と推定された場合、前記出力信号生成部は、前記第2の音響信号を前記両耳スピーカーへ出力する。
 上記構成によれば、音源が補聴器の装着自身と判断された場合、より音源に近い両耳マイクからの音響信号を出力するので、補聴器装着者自信の声も明瞭に聞くことができる。
 本発明に係る補聴装置によれば、逆写像ルールを用いずに、話者の発話する音声が到来する方向を再現しつつ、当該話者の発話する音声の明瞭性を高めることができる。
実施の形態1の補聴装置の構成を示すブロック図 実施の形態1の補聴装置の構成を、詳細に示すブロック図 実施の形態1の補聴装置の使用例1を示す図 実施の形態1の補聴装置の使用例2を示す図 本実施の形態1の補聴装置の構成図、及び補聴装置を用いた会議システムの構成図 図5に示す補聴器100の変形例 実施の形態2の補聴装置の構成を示すブロック図 実施の形態2の補聴装置の構成を、詳細に示すブロック図 実施の形態2の補聴装置の使用例を示す図 従来の補聴装置の構成を示すブロック図
 以下、本発明の実施の形態について、図面を参照して説明する。
(実施の形態1)
 図1は、実施の形態1の補聴装置の構成を示すブロック図である。図1に示すように、第1の実施の形態の補聴装置は、補聴器100と、外部マイクアレー300と、を備える。図3は、実施の形態1の補聴装置の使用例1を示す図であり、図4は、実施の形態1の補聴装置の使用例2を示す図である。
 図2は、図1に示す補聴装置の構成を、詳細に示すブロック図である。図2において図1と同一の参照番号が付与されている構成要素は、図1における構成要素と同一の機能を有する。
 図1を参照し、実施の形態1の補聴装置の一部を構成する補聴器100の構成を説明する。補聴器100は、右耳に装着する右ユニット及び左耳に装着する左ユニットからなる。左右の各ユニットは、両耳マイク101の各耳用のマイクと、方向感成分算出部103と、出力信号生成部105と、両耳スピーカー107の各耳用のスピーカーから構成される。補聴器100の左右のユニット間は無線で通信する。なお、補聴器100の左右のユニット間は有線で通信するよう構成されても良い。
 両耳マイク101は、右ユニットの一部を構成する右耳マイク101Aと左ユニットの一部を構成する左耳マイク101Bとから構成される。両耳マイク101は、補聴器100の装着者の左右の耳元で、音源から補聴器100の装着者に到来する音を入力し、音響信号に変換する。
 方向感成分算出部103は、両耳マイク101で変換された音響信号から、両耳間時間差および両耳間音量差を、音源から前記両耳マイクの装着者に到来する前記音の到来方向を補聴器100の装着者が感じる方向感成分として算出する。つまり、方向感成分は、両耳マイク101の装着者を基点とした音源の方向感を表す。
 両耳間時間差を方向感成分として算出する場合、方向感成分算出部103は、右耳マイク101Aで変換された右の音響信号の時間と左耳マイク101Bで変換された左の音響信号の時間とをずらしながら相互相関値を計算する。そして、相互相関値が最大となる時間を両耳間時間差とする。両耳間音量差を方向感成分として算出する場合、方向感成分算出部103は、両耳間時間差の分だけ、右耳マイク101Aで変換された右の音響信号の時間と左耳マイク101Bで変換された左の音響信号とをずらして、左右の音響信号のパワー比を求める。そして、方向感成分算出部103は、左右の音響信号のパワー比を両耳間音量差とする。
 上述のように、方向感成分算出部103は、音源から両耳マイク101に到達する音から、直接的に、音源から到来する音の方向感成分を算出する。そのため、実施の形態1の補聴装置は、音源から到来する音の方向を忠実に再現することができる。なお、方向感成分算出部103は、両耳間時間差及び両耳間音量差のいずれか一方を方向感成分として算出しても良いし、両耳間時間差及び両耳間音量差の両方を方向感成分として算出しても良い。
 出力信号生成部105は、方向感成分算出部103で算出された方向感成分と、後述する外部マイクアレー300から受信した音源信号とから、左右の各スピーカーから出力するための左右の音響信号を生成する。出力信号生成部105は、方向感成分のひとつである両耳間時間差から、左ユニット及び右ユニットのうち、どちらのユニットが音源から離れているかを判定する。
 音源からより離れているユニットに対して出力信号生成部105は、後述する外部マイクアレー300の音源分離部303から受信した音源信号を、両耳間時間差の分だけ遅延させる。さらに、音源からより離れているユニットに対して出力信号生成部105は、当該ユニットの両耳スピーカー107の音量を、両耳間音量差の分だけ小さくするよう制御する。
 また、左右のユニットのうち音源に近いユニットに対して出力信号生成部105は、音源分離部303から受信した音源信号をそのまま両耳スピーカー107へ出力する。
 両耳スピーカー107は、右ユニットの一部を構成する右耳スピーカー107Aと左ユニットの一部を構成する左耳スピーカー107Bとから構成される。両耳スピーカー107は、補聴器100の装着者の左右の耳元で、出力信号生成部105で生成された音源信号を左右の音響信号として出力する。
 次に、図1を参照し、実施の形態1の補聴装置の一部を構成する外部マイクアレー300の構成を説明する。外部マイクアレー300は、音源入力部301と、音源分離部303と、を備える。実施の形態1の補聴装置では、外部マイクアレー300は、補聴器100の両耳マイク101よりも近い場所に設置される。外部マイクアレー300は、補聴器100の左右のユニット間と、無線で通信する。なお、外部マイクアレー300は、補聴器100の左右のユニット間と、有線で通信するように構成されても良い。
 音源入力部301は、音源から外部マイクアレー300に到来する音を入力し、音響信号に変換する。音源入力部301は、複数のマイクで構成される。
 音源入力部301で変換された各マイクの音響信号は、音源分離部303へ転送される。
 音源分離部303は、各マイクに音源から到来する音の到来時間の差を利用して、外部マイクアレー300を基点とした音源の方向を検出する。
 音源分離部303は、各マイクの空間配置に基づいて、各マイクに対する音の遅延時間を加味し、各マイクの音響信号を加算することで、音源分離部303は、外部マイクアレー300を基点とした音源の方向に指向性処理された音源信号を生成し、補聴器100の出力信号生成部105へ無線で送信する。
 ここで、音源分離部303で生成された音源信号は、外部マイクアレー300を基点として、対象の音源から到来する音を強調(指向性処理)されている。そのため、音源分離部303で生成された音源信号では、対象となる音源の音以外の音が抑圧され、対象となる音源の音が明瞭となっている。なお、外部マイクアレー300の位置が、両耳マイク101の位置より音源の位置に近い場合、音源分離部303で生成される音源信号では、さらに対象となる音源の音が明瞭となっている。
 次に、図3を参照し、実施の形態1の補聴装置の動作例1を説明する。
(動作例1)
 図3に示すように、補聴器100を装着する人物Aと、人物Bと、人物Cとが、中央付近に外部マイクアレー300が設置されている円卓700を囲んで会議をしている。図3では、人物Bが発話をしている間、人物Aは人物Bを斜め右方向に見て人物Bの話を聞いている。
 まず、人物Bが発話した音が、2つのマイク系統から入力され、音響信号に変換される。第1のマイク系統は、外部マイクアレー300の音源入力部301を構成する複数のマイクであり、第2のマイク系統は、補聴器100の両耳マイク101である。
(第1のマイク系統)
 外部マイクアレー300の音源入力部301では、発話する人物Bから外部マイクアレー300に到来する音(矢印1)が入力され、音響信号に変換される。外部マイクアレー300の音源入力部301を構成する複数のマイクのそれぞれが、音源である人物Bから到来する人物Bの発話の音を収音する。
 音源入力部301で変換された音響信号は、音源分離部303へ転送される。
 音源分離部303では、各マイクに到来する人物Bの発話の音の到来時間の差を利用して、外部マイクアレー300を基点とした音源の方向を示す音源方向が検出される。
 音源分離部303では、各マイクの音響信号が、各マイクの空間配置に基づいて、各マイクに対する音の遅延時間を加味し加算され、外部マイクアレー300を基点とした音源の方向に指向性処理される。そして、指向性処理された音響信号は、外部マイクアレー300を基点とした音源の方向に指向性処理された音源信号として、補聴器100の出力信号生成部105へ無線で送信される。
(第2のマイク系統)
 補聴器100の両耳マイク101を構成する右耳マイク101A及び左耳マイク101Bではそれぞれ、発話する人物Bから両耳マイク101に到来する音(矢印2A及び矢印2B)が、音響信号に変換される。
 右耳マイク101A及び左耳マイク101Bで、それぞれ変換された左右の音響信号は、方向感成分算出部103へ転送される。
 方向感成分算出部103では、両耳マイク101で変換された左右の音響信号から、両耳間時間差および両耳間音量差のうち少なくともいずれか一方が、両耳マイク101の装着者を基点とした音源の方向を示す方向感成分として、算出される。図3に示す動作例1では、人物Aは、音源である人物Bを右側に見ているので、右耳マイク101Aを基準にした両耳時間差はプラスの値、両耳音量差(パワー比)は1以下の値となる(矢印2Bは矢印2Aよりも長い)。方向感成分算出部103で算出された方向感成分は、出力信号生成部105へ転送される。
 出力信号生成部105では、方向感成分算出部103で算出された方向感成分と外部マイクアレー300を基点とした音源の方向に指向性処理された音源信号とから、両耳スピーカー107から出力するための左右の音響信号が生成される。
 図3に示す動作例1では、人物Aの左耳が人物Aの右耳より人物Bから離れている。そのため、出力信号生成部105では、人物Aの左耳スピーカー107Bから出力される左の音響信号が、方向感成分である両耳間時間差の分だけ遅延される。
 また、出力信号生成部105では、左の音響信号を出力するための左耳スピーカー107Bの音量が、両耳間音量差の分だけ小さくなるよう左耳スピーカー107Bが制御される。
 また、出力信号生成部105では、音源分離部303から受信した音源信号が、右の音響信号として、右耳スピーカー107Aから出力するために右耳スピーカー107Aへ転送される。
 上述のように、両耳スピーカー107の左耳スピーカー107B及び右耳スピーカー107Aから出力される音響信号では、(1)方向感成分算出部103で算出され、両耳マイク101の装着者を基点とした音源の方向感を表す方向感成分により、音源である人物Bの発話の音が到来する方向が忠実に再現され、かつ(2)外部マイクアレー300を基点とした音源の方向に指向性処理された音源信号により、音源である人物Bの発話の音声の明瞭性が高められている。
 次に、図4を参照し、実施の形態1の補聴装置の動作例2を説明する。
(動作例2)
 図4に示すように、補聴器100を装着する人物Aと、人物Bと、人物Cとが、中央付近に外部マイクアレー300が設置されている円卓700を囲んで会議をしているとする。図4では、図3に示す状態から、人物Bが発話をやめ、人物Aが外部マイクアレー300を正面に見ていたのを、発話を開始した人物Cを正面に見る方に向きなおし、人物Cの発話を聞いている。
 まず、人物Cの発話した音が、2つのマイク系統から入力され、音響信号に変換される。第1のマイク系統は、外部マイクアレー300の音源入力部を構成する複数のマイクであり、第2のマイク系統は、補聴器100の両耳マイク101である。
(第1のマイク系統)
 外部マイクアレー300の音源入力部301では、発話する人物Cから外部マイクアレー300に到来する音が(矢印3)入力され、音響信号に変換される。
 外部マイクアレー300の音源入力部301を構成する複数のマイクのそれぞれが、音源である人物Cから到来する人物Cの発話の音を収音する。
 音源分離部303では、各マイクに到来する人物Cの発話の音の到来時間の差を利用して、外部マイクアレー300を基点とした音源の方向を示す音源方向が検出される。
 音源分離部303では、各マイクの音響信号が、各マイクの空間配置に基づいて、各マイクに対する音の遅延時間を加味して加算され、外部マイクアレー300を基点とした音源の方向に指向性処理される。そして、指向性処理された音響信号は、外部マイクアレー300と基点とした音源の方向に指向性処理された音源信号として、補聴器100の出力信号生成部105へ無線で送信される。
(第2のマイク系統)
 補聴器100の両耳マイク101を構成する右耳マイク101A及び左耳マイク101Bではそれぞれ、発話する人物Cから両耳マイク101に到来する音(矢印4A及び矢印4B)が、入力され、音響信号に変換される。
 右耳マイク101A及び左耳マイク101Bで、それぞれ変換された左右の音響信号は、方向感成分算出部103へ転送される。
 方向感成分算出部103では、両耳マイク101で変換された左右の音響信号から、両耳間時間差および両耳間音量差のうち少なくともいずれか一方が、両耳マイク101の装着者を基点とした音源の方向感を表す方向感成分として、算出される。図4に示す動作例2では、人物Aは、人物Cを左に見る方向から人物Cを正面に見る方向に向きなおしているので、両耳時間差は、左耳マイク101Bを基準とするとプラスの値から0に、両耳音量差(パワー比)は1より小さい値から1に、それぞれ変化する(矢印4Aと矢印4Bの長さが等しくなる)。方向感成分算出部103で算出される方向感成分は、出力信号生成部105へ転送される。
 出力信号生成部105では、方向感成分算出部103で算出された方向感成分と外部マイクアレー300を基点とした音源の方向に指向性処理された音源信号とから、両耳スピーカー107から出力するための左右の音響信号が生成される。
 両耳スピーカー107の左耳スピーカー107B及び右耳スピーカー107Aから、出力信号生成部105で合成された左右の音響信号が出力される。
 図4に示す動作例2では、人物Aが外部マイクアレー300を正面に見る方向から人物Cを正面に見る方向に向きなおす間、出力信号生成部105では、方向感成分である両耳間時間差が測定値から算出される値からゼロに変化する。さらに、出力信号生成部105は、右耳スピーカー107Aの音量を、両耳間音量差の分だけ小さくするよう右耳スピーカー107Aを制御し、次第に左と等しくする。そのため、人物Aが外部マイクアレー300を正面に見ているとき、右耳の右耳スピーカー107Aからは左耳の左耳スピーカー107Bと比べて人物Cの発話が遅れて小さく音が出力されている。しかし、人物Aが外部マイクアレー300を正面に見る方向から人物Cを正面に見る方向に向きなおすにつれて、左耳スピーカー107Bだけでなく右耳の右スピーカー107Aからも人物Cの発話が遅れずに同じ大きさの音が出力されるように変化する。そして、人物Aは人物Cを正面から見たとき、人物Aは正面から人物Cの発話が正面から聞こえるようになる。
 言い換えると、人物Aに対する人物Cの発話による音像は、補聴器100の装着者である人物Aの動きに応じて動かない。
 上述のように動作例2において、本実施の形態1の補聴装置では、人物Aに対する人物Cの発話による音像は、補聴器100を装着する人物Aの動きに応じて動かない。
 また、両耳スピーカー107の左耳スピーカー107B及び右耳スピーカー107Aから出力される音響信号では、(1)方向感成分算出部103で算出され、両耳マイク101の装着者を基点とした音源の方向を示す方向感成分により、音源である人物Cの発話の音声が到来する方向が忠実に再現され、かつ(2)外部マイクアレー300を基点とした音源の方向に指向性処理された音源信号により、音源である人物Cの発話の音声の明瞭性が高められている。したがって、実施の形態1の補聴装置は、話者の発話する音声が到来する方向を再現しつつ、当該話者の発話する音声の明瞭性を高めることができる。
 図5は、本実施の形態1の補聴装置の構成図、及び補聴装置を用いた会議システムの構成図を示す。
 補聴装置は、補聴器100と外部マイクアレー300とを含む。補聴器100は、補聴器本体110と、右耳マイク101A及び右耳スピーカー107A、並びに左耳マイク101B及び左耳スピーカー107Bとを含み、互いに有線によって接続される。外部マイクアレー300は、スピーカーホン本体310と2つの外部マイク320とを含み、2つの外部マイク320とスピーカーホン本体310とは、有線L1によって接続される。スピーカーホン本体310は、4つの内蔵マイク330を含む。補聴器100に含まれる補聴器本体110と、外部マイクアレー300に含まれるスピーカーホン本体310とは、有線L2によって接続される。
 補聴器本体110、及びスピーカーホン本体310は、それぞれ、電源、DSP(Digital Signal Processor)、通信部、記憶部、制御部を含む。
 図5に示すように、補聴装置を用いた会議システムは、補聴装置、机710、及び複数の椅子720から構成される。複数の椅子720は、机710の周りに設置される。椅子720に座る話者の音声は、外部マイクアレー300、並びに右耳マイク101A及び左耳マイク101Bに入力される。話者の音声は、外部マイクアレー300を介して、明瞭性の高い音声成分として両耳スピーカー107に出力される。また、話者の音声は、右耳マイク101A及び左耳マイク101Bを介して、方向感成分として両耳スピーカー107に出力される。補聴装置の利用者は、明瞭性の高い音声成分と方向感成分とに基づいて、話者の音声を明瞭に、かつ到来方向を知覚して聞くことができる。
 なお、以上の説明は、有線L1、L2によって各部が接続されているものとしたが、無線によって各部が接続されてもよい。例えば、右耳マイク101Aと右耳スピーカー107Aと、を備える右耳ユニット110R、左耳マイク101Bと左耳スピーカー107Bとを備える左耳ユニット110L、及び外部マイクアレー300のそれぞれが、電源、DSP、通信部、記憶部、制御部などを含み、互いに無線で通信するとしてもよい。
 また、図6に示すように、図5に示す、補聴装置を用いた会議システムにおいて、補聴器100にリモコンユニット130を加えてもよい。図6中、無線で通信する部分を破線で示した。リモコンユニット130は、補聴器100の出力音量を変更するなどのユーザーによる制御が基本機能であるが、4つのマイク131で構成されるマイクアレーを実装することにより、外部マイクアレー300としても利用できるようになる。このリモコンユニット130は、たとえば、携帯電話150上に実装することができる。
 有線であるか無線であるか、また補聴装置に含まれる各ユニットの構成によらず、いずれの場合にも、補聴装置における情報処理は、通信による処理遅延や電力消費量などを考慮して、補聴器100と外部マイクアレー300とに含まれる複数のユニット間で適切に分散されるのが望ましい。
 例えば、図5では、図1のブロック構成に従い、スピーカーホン本体310が内蔵するDSPが音源入力処理及び音源分離処理を行い、補聴器本体110が内蔵するDSPがその他の処理を行えばよい。これにより、外部マイクアレー300と補聴器100との間の通信信号は、分離された音声信号だけを含めばよく、通信容量が少なくて済むという効果がある。また、処理量の多い音源分離を、ACアダプターを利用可能なスピーカーホン本体310で行うことにより、補聴器本体110の電力消費量を抑えられるという効果がある。
 また、例えば、図6では、無線通信に伴う処理遅延が、有線通信よりも顕著になるので、通信量に配慮した方がよい。
 方向感成分として両耳間音量差が用いれば、左右の音量のそれぞれと所定の基準音量との差を用いて左右の出力信号の音量を決定することができる。これによって、補聴器本体110の左右ユニットからリモコンユニット130への信号の送信による処理遅れは生じないため、方向感成分が自然のままに保たれるという効果がある。さらに、左右の音量の直接比較は不要となるため、補聴器本体110の右ユニット内で右の出力信号を生成し、補聴器本体110の左ユニット内で左の出力信号を生成し、左右独立に処理を行うことが可能となるので、左右の通信に伴う処理遅れについても生じないという効果がある。
 なお、本実施の形態1の補聴装置の補聴器100の形は特に限定されるものでない。しかし例えば、本実施の形態1の補聴装置の補聴器100の形をカナル型にすれば、本実施の形態1の補聴装置は、両耳マイク101の装着者の頭部の向きだけでなく、補聴器100の装着者の各部位(耳介、肩、胴体)の大きさや形に依存する反射による影響を反映させた方向感成分を生成することができる。
 なお、本実施の形態1の補聴装置では、外部マイクアレー300を円卓700の中央付近に設置しているが、これに限らない。各話者がヘッドセット型の外部マイクアレー300を装着しても良い。この場合、外部マイクアレーは、音源入力部301で構成され、音源分離部303は必要ない。
 なお、本実施の形態1の補聴装置では、両耳スピーカー107は、例えば、ヘッドホンに内蔵しても良い。
 なお、本実施の形態1の補聴装置では、両耳マイク101は、例えば、ヘッドホンに内蔵しても良い。
 なお、本実施の形態1の補聴装置では、外部マイクアレー300の音源入力部301を一つのマイクで構成し、外部マイクアレー300を両耳マイク101よりも、音源の近くに配置しても良い。
(実施の形態2)
 図7は、実施の形態2の補聴装置の構成を示すブロック図である。また、図8は、実施の形態2の補聴装置の構成を、詳細に示すブロック図である。図7に示すように、第2の実施の形態の補聴装置は、補聴器200と、外部マイクアレー400と、を備える。図9は、実施の形態2の補聴装置の使用例を示す図である。
 図7を参照し、実施の形態2の補聴装置の一部を構成する補聴器200の構成を説明する。実施の形態2の補聴装置の両耳マイク及び両耳スピーカーは、実施の形態1の両耳マイク101及び両耳スピーカー107とその構成が同じである。そのため、図1と同じ参照番号が付されている。
 補聴器200は、右耳に装着する右ユニット及び左耳に装着する左ユニットからなる。左右の各ユニットは、両耳マイク101と、出力信号生成部205と、両耳伝達特性計測部207と、音源位置推定部209と、両耳スピーカー107と、音声検出部211とから構成される。補聴器200の左右のユニット間は無線で通信する。なお、補聴器100の左右のユニット間は有線で通信するよう構成されても良い。
 両耳マイク101は、右ユニットの一部を構成する右耳マイク101Aと左ユニットの一部を構成する左耳マイク101Bとから構成される。両耳マイク101は、補聴器200の装着者の左右の耳元で、音源から補聴器200の装着者に到来する音を入力し、音響信号に変換する。そして、変換された音響信号は、補聴器200装着者の左右の耳の伝達関数を求めるために、両耳伝達特性計測部207へ転送される。
 音声検出部211は、後述するように、外部マイクアレー400の音源分離部403で分離された各音源信号を受信し、その音源信号から発話している人物の音声を検出する。音声検出部211は、音源ごとに分離された音源信号毎に所定の時間区間のパワーを求める。そして、所定の時間区間のパワーが閾値以上である音源を、発話している人物の音声として検出する。なお、音声検出部211は、発話している人物の音声を検出する場合に用いる音源信号の要素として、パワーに加えて、調波構造を表すパラメータ(例えば、ピッチを仮定した櫛型フィルタによるパワーと広帯域パワーの比)を用いても良い。
 両耳伝達特性計測部207は、発話している人物の音声として音声検出部211で検出された音源信号(以下、音声信号と記載)と右耳マイク101Aからひろった右の音響信号との間の伝達関数(以下、右の伝達特性と記載)を求める。同様に、両耳伝達特性計測部207は、音声信号と左耳マイク101Bからひろった左の音響信号との間の伝達関数(以下、左の伝達特性と記載)を求める。両耳伝達特性計測部207は、各耳の伝達特性と、外部マイクアレー400を基点とした音源の方向を示す方向(以下、音源方向と記載)とを対応付ける。そのため、音声として検出された音声信号が複数ある場合でも、両耳伝達特性計測部207は、各音源の音源方向を表現できる。
 なお、実施の形態2の補聴装置において、実施の形態1における方向感成分は、両耳伝達特性計測部207で求められる各耳の伝達特性が相当する。
 なお、複数人の発話者が同時に発話している場合、すわなち、音声検出部211が、音源ごとに分離された音源信号を複数同時に検出した場合、両耳伝達特性計測部207は、各耳の伝達関数の計測を停止する。その場合、各耳の伝達関数の計測を停止する直前の伝達関数を利用することで、各人物の音源方向感を保持できる。
 音源位置推定部209は、両耳伝達特性計測部207で求められた、音源方向と対応付けられた左右の耳の伝達関数に基づき、各音源の位置を推定することができる。
 まず、音源位置推定部209は、音源方向と対応付けられた各耳の伝達関数のインパルス応答上で、最初のピークを持つ時間から、外部マイクアレー400から両耳マイク101までの音の到達時間を求める。この到達時間から、補聴器200の装着者からの各音源の遠近を推定することができる。さらに、音源位置推定部209は、左右の耳の伝達関数のインパルス応答から時間をずらしながら相互相関値を計算し、相互相関値が最大となる時間を両耳間時間差として求める。
 そして、音源位置推定部209は、複数の音源のうち、到達時間が最小の値を持ち、かつ、両耳間時間差が0に近い音源を補聴器200の装着自身の発話とする。したがって、音源位置推定部209は、両耳伝達特性計測部207で求められた、音源方向と対応付けられた左右の耳の伝達関数に基づき、各音源の位置を推定することができる。そして、音源位置推定部209の推定結果は、出力信号生成部205で参照される。
 上述のように、実施の形態2の補聴装置では、音声検出部211と、両耳伝達特性計測部207と、音源位置推定部209とが、実施の形態1の方向感成分算出部と同じ機能を備えている。
 出力信号生成部205は、両耳伝達特性計測部207で計測された左右の伝達特性と、及び左右の音声信号とから、それぞれ両耳スピーカー107の右耳スピーカー107A及び左耳スピーカー107Bから出力するための左右の音響信号を生成する。出力信号生成部205は、第1のマイク系統の音声信号に、左右の伝達特性を表す伝達関数のインパルス応答を畳み込んで、左右の音響信号を生成する。
 なお、出力信号生成部205は、必要に応じて音源位置推定部209の推定結果を参照し、左右の音声信号の音源が、補聴器200の装着者自身であるかどうかを判断する。音源位置推定部209で、音源が補聴器200の装着自身と判断された場合、出力信号生成部205は、第1のマイク系統の音声信号は両耳スピーカー107へ出力せず、第2のマイク系統の音声信号を両耳スピーカー107へ出力する。これによって、装着者自信の声も明瞭でかつ時間遅れの少ない音声を違和感なく聞くことができる。
 両耳スピーカー107は、右ユニットの一部を構成する右耳スピーカー107Aと左ユニットの一部を構成する左耳スピーカー107Bとから構成される。両耳スピーカー107は、補聴器200の装着者の左右の耳元で、出力信号生成部205で生成された音源信号を左右の音響信号として出力する。
 次に、図7、図8を参照し、実施の形態2の補聴装置の一部を構成する外部マイクアレー400の構成を説明する。実施の形態2の補聴装置において、外部マイクアレーの音源入力部301は、実施の形態1の外部マイクアレーの音源入力部と同じ構成である。そのため、図1と同じ参照番号が付されている。
 外部マイクアレー400は、音源入力301と、音源分離部403と、を備える。実施の形態2の補聴装置において、外部マイクアレー400は、補聴器200の両耳マイク101よりも、発話者B、Cに近い場所に設置される。外部マイクアレー400は、補聴器200の左右のユニット間と、無線で通信する。なお、外部マイクアレー400は、補聴器200の左右のユニット間と、有線で通信するように構成されても良い。
 音源入力部301は、音源から外部マイクアレー400に到来する音を入力し、響信号に変換する。音源入力部301は、複数のマイクで構成される。
 音源入力部301で変換された各マイクの音響信号は、音源分離部303へ転送される。
 音源分離部303は、各マイクに音源から到来する音の到来時間の差を利用して、外部マイクアレー400を基点とした音源の方向を検出する。
 音源分離部303は、各マイクの空間配置に基づいて、各マイクに対する音の遅延時間を加味し、各マイクの音響信号を加算する。そして、音源分離部303は、このように外部マイクアレー400を基点とした音源の方向に指向性処理された音源信号を生成し、補聴器200の音声検出部211へ無線で送信する。
 ここで、音源分離部303で生成された音源信号は、外部マイクアレー400を基点として、対象の音源から到来する音を強調(指向性処理)されている。そのため、音源分離部303で生成された音源信号では、対象となる音源の音以外の音が抑圧され、対象となる音源の音が明瞭となっている。なお、外部マイクアレー400の位置が、両耳マイク101の位置より音源の位置に近い場合、音源分離部303で生成される音源信号では、さらに対象となる音源の音が明瞭となっている。
 なお、音源分離部303は、独立成分分析による音源分離を行うようにしてもよい。その際、音声検出部211でパワーを利用するために、分離行列の逆行列の対角要素をそれぞれの独立成分に乗じて、パワー情報を復元しておく。
(動作例)
 図9に示すように、補聴器200を装着する人物Aと、人物Bと、人物Cとが、中央付近に外部マイクアレー400が設置されている円卓700を囲んで会議をしているとする。図9では、人物B、人物Cが発話をしている間、人物Aは人物Bを正面に見て人物Bの話を聞いている。
 人物B及び人物C及び人物Aの発話の音が、2つのマイク系統から入力され、左右の音響信号に変換される。第1のマイク系統は、外部マイクアレー400の音源入力部を構成する複数のマイクであり、第2のマイク系統は、補聴器200の両耳マイク101である。
 (第1のマイク系統)
 外部マイクアレー400の音源入力部301では、人物Bから外部マイクアレー400に到来する音(矢印5)が入力され、音響信号に変換される。同様に、外部マイクアレー400の音源入力部301では、人物Cから外部マイクアレー400に到来する音(矢印7)が、音響信号に変換される。また、外部アレー400の音源入力部301では、人物Aから外部マイクアレー400に到達する音(矢印9)についても、音響信号に変換される。外部マイクアレー400の音源入力部301を構成する複数のマイクのそれぞれが、音源である人物B及び人物C及び人物Aからそれぞれ到来する発話の音を収音する。音源入力部301で音響信号に変換された音響信号は、音源分離部303へ転送される。
 音源分離部403では、例えば、各マイクに到来する人物Bの発話の音の到来時間の差を利用して、外部マイクアレー400を基点とした音源の方向を示す音源方向が検出される。
 音源分離部303では、各マイクの音響信号が、各マイクの空間配置に基づいて、各マイクに対する音の遅延時間を加味し加算され、外部マイクアレー400を基点とした音源の方向に指向性処理される。そして、指向性処理された音響信号は、外部マイクアレー400を基点とした音源の方向に指向性処理された音源信号として、補聴器200の音声検出部211へ無線で送信される。
(第2のマイク系統、補聴器200)
 補聴器200の両耳マイク101の左右のマイク101A、101Bでは、各音源から到来する各人物(人物B又は人物C又は人物A)の発話の音(矢印6A、矢印8A、矢印10A、矢印6B、矢印8B、矢印10B)が入力され、それぞれ音響信号に変換される。
 変換された各音源の音響信号は、各マイク101A、101Bから、両耳伝達特性計測部207へ転送される。
 また、音声検出部211では、外部マイクアレー400の音源分離部403から受信した各音源信号から各人物B、人物C、人物Aの音声が検出される。
 また、音声検出部211では、音源ごとに分離された音源信号毎に所定の時間区間のパワーを求める。そして、所定の時間区間のパワーが閾値以上である音源を、発話している人物の音声として検出する。検出された発話人物の音声は、音源分離部403で指向性処理された音源信号から検出されているので、非常に明瞭となっている。
 発話している人物の音声が検出された各音源信号(以下、音声信号と記載)は、両耳伝達特性計測部207へ転送される。
 両耳伝達特性計測部207では、音声検出部211から転送された各音源(人物B又は人物Cまたは人物A)の音声信号のそれぞれと右耳マイク101Aから転送された音響信号との間の伝達関数が求められる。同様に、両耳伝達特性計測部207では、音声検出部211から転送された各音源(人物B又は人物C)の音声信号のそれぞれと左耳マイク101Bから転送された音響信号との間の伝達関数が求められる。
 また、両耳伝達特性計測部207では、各音源の(人物B、人物C、人物A)の各耳の伝達特性と外部マイクアレー400を基点とした音源の方向を示す音源方向とが対応付けられている。
 なお、二人以上の人物が同時に発話している場合、両耳伝達特性計測部207では、各耳の伝達関数の計測が停止される。その場合、各耳の伝達関数の計測を停止する直前の伝達関数を使用する。
 音源方向と対応付けられた各音源の各耳の伝達特性は、出力信号生成部205及び音源位置推定部209へ転送される。
 音源位置推定部209では、両耳伝達特性計測部207で求められた、外部マイクアレー400を基点とした音源の方向を示す音源方向と対応付けられた左右の耳の伝達関数に基づき、各音源の位置を推定することができる。
 なお、図9では、補聴器200の装着者である人物Aの発話は、複数の音源のうち、到達時間が最小の値を持ち(矢印10Bと矢印9の長さの差が、矢印6Bと矢印5の長さの差や矢印8Bと矢印7の長さよりも小さい)、かつ、両耳間時間差が0に近い(矢印10Aと矢印10Bの長さがほぼ等しい)音源として検出される。
 出力信号生成部205では、各音源の左右の音声信号のそれぞれに、音源方向と対応付けられた各音源の各耳の伝達特性を表す伝達関数のインパルス応答を畳み込んで、両耳スピーカー107の右耳スピーカー107A及び左耳スピーカー107Bから出力するため左右の音響信号を合成する。図9では、音源位置推定部209が、補聴器200の装着者である人物Aの発話が検出されると、出力信号生成部205では、第2のマイク系統の音声信号を両耳スピーカー107へ出力する。
 両耳スピーカー107では、出力信号生成部205で合成された左右の音響信号が、それぞれ右耳スピーカー107A及び左耳スピーカー107Bから出力される。
 上述のように、実施の形態2の補聴装置では、外部マイクアレー400で処理された各音源の音が明瞭となっている左右の音声信号と、補聴器200の両耳伝達特性計測部207で求められ、音源方向が対応付けられた左右の伝達関数とから生成された左右の音響信号を両耳スピーカー107から出力する。そのため、実施の形態2の補聴装置は、話者の発話する音声が到来する方向を再現しつつ、当該話者の発話する音声の明瞭性を高めることができる。
 また、実施の形態2の補聴装置において、補聴器200の形は特に限定されるものでないが、例えばカナル型を用いると、出力信号生成部205で合成された左右の音響信号は、発話している人物が補聴器200を装着している頭部の向きだけでなく、発話している人物の各部位(耳介、肩、胴体)の大きさや形から反射による影響を左右の伝達特性に含む。そのため、実施の形態2の補聴装置において、補聴器200の装着者は、両耳スピーカー107から出力される音の方向感をリアルタイムに感じることができる。
 なお、実施の形態2における補聴装置についても、実施の形態1において図5で示した補聴装置の構成図、及び会議システムの構成図を適用できる。
 本出願は、2009年1月22日出願の日本特許出願(特願2009-012292)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明に係る補聴装置は、逆写像ルールを用いずに、話者の発話する音声が到来する方向を再現しつつ、当該話者の発話する音声の明瞭性を高めることができるという効果を有し、補聴装置等として有用である。
100、200、800 補聴器
101         両耳マイク
101A        右耳マイク
101B        左耳マイク
103、203     方向感成分算出部
105、205     出力信号生成部
107、801     両耳スピーカー
107A        右耳スピーカー
107B        左耳スピーカー
110         補聴器本体
130         リモコンユニット
207         両耳伝達特性計測部
209         音源位置推定部
211         音声検出部
300、400、900 外部マイクアレー
301、901     音源入力部
303、403、902 音源分離部
310         スピーカーホン本体
320         外部マイク
700         円卓
710         机
720         複数の椅子
803         仮想音像回転部
805         逆写像ルール記憶部
807         頭部角度センサ
809         方向基準設定部
813         方向推定部

Claims (5)

  1.  音源から到来する音を入力して第1音響信号に変換する音源入力部と、
     前記音源入力部で変換された前記第1音響信号を、各音源に対応した音源信号に分離する音源分離部と、
     左右の耳元に配置され、前記音源から到来する前記音を入力して第2音響信号に変換する両耳マイクと、
     前記両耳マイクで変換された左右の前記第2音響信号から、前記両耳マイクを基点とした前記音源の方向感を表す方向感成分を算出する方向感成分算出部と、
     前記音源信号及び前記方向感成分に基づいて、左右の出力音響信号を生成する出力信号生成部と、
     前記出力信号生成部で生成された前記左右の出力音響信号を出力する両耳スピーカーと、
    を備える補聴装置。
  2.  請求項1に記載の補聴装置であって、
     前記方向感成分算出部は、前記音源毎に、左右の前記第2音響信号から両耳間時間差及び両耳間音量差の少なくとも一方を算出し、
     当該両耳間時間差及び両耳間音量差の少なくとも一方を、前記方向感成分とする補聴装置。
  3.  請求項1に記載の補聴装置であって、
     前記方向感成分算出部は、前記音源毎に、前記音源分離部からの前記音源信号と前記両耳マイクからの左右の前記第2音響信号との間の伝達特性を、前記方向感成分として算出する補聴装置。
  4.  請求項3に記載の補聴装置であって、更に、
     前記方向感成分算出部は、
     前記音源分離部から取得した音源信号から、音源毎に発話区間を検出し、
     前記方向感成分算出部が、複数の音源の前記発話区間を同時に検出すると、前記伝達特性として直前の値を利用する補聴装置。
  5.  請求項3に記載の補聴装置であって、
     前記方向感成分算出部は、前記伝達特性に基づいて各音源の位置を推定し、
     前記出力信号生成部は、前記方向感成分算出部により前記両耳マイクの装着者自身が前記音源の位置と推定された場合、前記第2の音響信号を前記両耳スピーカーへ出力する補聴装置。
PCT/JP2010/000381 2009-01-22 2010-01-22 補聴装置 WO2010084769A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/145,415 US8670583B2 (en) 2009-01-22 2010-01-22 Hearing aid system
JP2010547444A JP5409656B2 (ja) 2009-01-22 2010-01-22 補聴装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009012292 2009-01-22
JP2009-012292 2009-01-22

Publications (1)

Publication Number Publication Date
WO2010084769A1 true WO2010084769A1 (ja) 2010-07-29

Family

ID=42355824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000381 WO2010084769A1 (ja) 2009-01-22 2010-01-22 補聴装置

Country Status (3)

Country Link
US (1) US8670583B2 (ja)
JP (2) JP5409656B2 (ja)
WO (1) WO2010084769A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074950A (ja) * 2010-09-29 2012-04-12 Brother Ind Ltd 遠隔会議装置
JP2012175580A (ja) * 2011-02-23 2012-09-10 Kyocera Corp 携帯電子機器及び音出力システム
JP2015019353A (ja) * 2013-05-29 2015-01-29 ジーエヌ リザウンド エー/エスGn Resound A/S 補聴器の外部入力装置

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318108B2 (en) 2010-01-18 2016-04-19 Apple Inc. Intelligent automated assistant
US8977255B2 (en) 2007-04-03 2015-03-10 Apple Inc. Method and system for operating a multi-function portable electronic device using voice-activation
US8676904B2 (en) 2008-10-02 2014-03-18 Apple Inc. Electronic devices with voice command and contextual data processing capabilities
US10706373B2 (en) 2011-06-03 2020-07-07 Apple Inc. Performing actions associated with task items that represent tasks to perform
US10276170B2 (en) 2010-01-18 2019-04-30 Apple Inc. Intelligent automated assistant
CN104902037B (zh) 2010-12-27 2018-08-28 罗姆股份有限公司 移动电话
CN106879080B (zh) 2012-01-20 2020-09-29 株式会社精好 移动电话、软骨传导振动源装置、聆听装置、通话装置
US10417037B2 (en) 2012-05-15 2019-09-17 Apple Inc. Systems and methods for integrating third party services with a digital assistant
DE102012214081A1 (de) 2012-06-06 2013-12-12 Siemens Medical Instruments Pte. Ltd. Verfahren zum Fokussieren eines Hörinstruments-Beamformers
KR101836023B1 (ko) 2012-06-29 2018-03-07 로무 가부시키가이샤 스테레오 이어폰
KR102118209B1 (ko) 2013-02-07 2020-06-02 애플 인크. 디지털 어시스턴트를 위한 음성 트리거
US10652394B2 (en) 2013-03-14 2020-05-12 Apple Inc. System and method for processing voicemail
US10748529B1 (en) 2013-03-15 2020-08-18 Apple Inc. Voice activated device for use with a voice-based digital assistant
KR102127640B1 (ko) * 2013-03-28 2020-06-30 삼성전자주식회사 휴대 단말 및 보청기와 휴대 단말에서 음원의 위치를 제공하는 방법
DE102013207149A1 (de) * 2013-04-19 2014-11-06 Siemens Medical Instruments Pte. Ltd. Steuerung der Effektstärke eines binauralen direktionalen Mikrofons
EP2806661B1 (en) * 2013-05-23 2017-09-06 GN Resound A/S A hearing aid with spatial signal enhancement
US10425747B2 (en) 2013-05-23 2019-09-24 Gn Hearing A/S Hearing aid with spatial signal enhancement
CN105264524B (zh) 2013-06-09 2019-08-02 苹果公司 用于实现跨数字助理的两个或更多个实例的会话持续性的设备、方法、和图形用户界面
US10176167B2 (en) 2013-06-09 2019-01-08 Apple Inc. System and method for inferring user intent from speech inputs
US9124990B2 (en) 2013-07-10 2015-09-01 Starkey Laboratories, Inc. Method and apparatus for hearing assistance in multiple-talker settings
CN105453026A (zh) 2013-08-06 2016-03-30 苹果公司 基于来自远程设备的活动自动激活智能响应
EP2840807A1 (en) * 2013-08-19 2015-02-25 Oticon A/s External microphone array and hearing aid using it
JP6296646B2 (ja) * 2014-01-22 2018-03-20 日東電工株式会社 聴覚補完システム、聴覚補完装置及び聴覚補完方法
US9715875B2 (en) 2014-05-30 2017-07-25 Apple Inc. Reducing the need for manual start/end-pointing and trigger phrases
EP3149728B1 (en) 2014-05-30 2019-01-16 Apple Inc. Multi-command single utterance input method
US10170123B2 (en) 2014-05-30 2019-01-01 Apple Inc. Intelligent assistant for home automation
US9338493B2 (en) 2014-06-30 2016-05-10 Apple Inc. Intelligent automated assistant for TV user interactions
JP2017530579A (ja) * 2014-08-14 2017-10-12 レンセラール ポリテクニック インスティチュート 両耳統合相互相関自己相関メカニズム
KR102110094B1 (ko) 2014-12-18 2020-05-12 파인웰 씨오., 엘티디 자전거 주행용 청취 장치 및 자전거 시스템
JP6676837B2 (ja) * 2015-04-14 2020-04-08 株式会社ファインウェル 受話装置
EP3038381B1 (en) * 2014-12-22 2017-08-09 GN Resound A/S Diffuse noise listening
US9774960B2 (en) * 2014-12-22 2017-09-26 Gn Hearing A/S Diffuse noise listening
JP6762091B2 (ja) * 2014-12-30 2020-09-30 ジーエヌ ヒアリング エー/エスGN Hearing A/S 外部からピックアップされたマイクロホン信号の上に空間聴覚キューを重ね合わせる方法
US9886953B2 (en) 2015-03-08 2018-02-06 Apple Inc. Virtual assistant activation
JP6479211B2 (ja) * 2015-04-02 2019-03-06 シバントス ピーティーイー リミテッド 聴音装置
US10460227B2 (en) 2015-05-15 2019-10-29 Apple Inc. Virtual assistant in a communication session
US10200824B2 (en) 2015-05-27 2019-02-05 Apple Inc. Systems and methods for proactively identifying and surfacing relevant content on a touch-sensitive device
US20160378747A1 (en) 2015-06-29 2016-12-29 Apple Inc. Virtual assistant for media playback
WO2017010547A1 (ja) 2015-07-15 2017-01-19 ローム株式会社 ロボットおよびロボットシステム
US10740384B2 (en) 2015-09-08 2020-08-11 Apple Inc. Intelligent automated assistant for media search and playback
US10671428B2 (en) 2015-09-08 2020-06-02 Apple Inc. Distributed personal assistant
US10331312B2 (en) 2015-09-08 2019-06-25 Apple Inc. Intelligent automated assistant in a media environment
US10747498B2 (en) 2015-09-08 2020-08-18 Apple Inc. Zero latency digital assistant
JP6551929B2 (ja) 2015-09-16 2019-07-31 株式会社ファインウェル 受話機能を有する腕時計
US11587559B2 (en) 2015-09-30 2023-02-21 Apple Inc. Intelligent device identification
US10368162B2 (en) 2015-10-30 2019-07-30 Google Llc Method and apparatus for recreating directional cues in beamformed audio
US10691473B2 (en) 2015-11-06 2020-06-23 Apple Inc. Intelligent automated assistant in a messaging environment
US10956666B2 (en) 2015-11-09 2021-03-23 Apple Inc. Unconventional virtual assistant interactions
JP6665379B2 (ja) * 2015-11-11 2020-03-13 株式会社国際電気通信基礎技術研究所 聴覚支援システムおよび聴覚支援装置
US10223066B2 (en) 2015-12-23 2019-03-05 Apple Inc. Proactive assistance based on dialog communication between devices
CN108496345B (zh) 2016-01-19 2021-02-26 株式会社精好 笔型呼入呼出通话装置
US10586535B2 (en) 2016-06-10 2020-03-10 Apple Inc. Intelligent digital assistant in a multi-tasking environment
DK179415B1 (en) 2016-06-11 2018-06-14 Apple Inc Intelligent device arbitration and control
DK201670540A1 (en) 2016-06-11 2018-01-08 Apple Inc Application integration with a digital assistant
GB2551521A (en) * 2016-06-20 2017-12-27 Nokia Technologies Oy Distributed audio capture and mixing controlling
US20180018963A1 (en) * 2016-07-16 2018-01-18 Ron Zass System and method for detecting articulation errors
US11195542B2 (en) 2019-10-31 2021-12-07 Ron Zass Detecting repetitions in audio data
DE102016225207A1 (de) 2016-12-15 2018-06-21 Sivantos Pte. Ltd. Verfahren zum Betrieb eines Hörgerätes
US11204787B2 (en) 2017-01-09 2021-12-21 Apple Inc. Application integration with a digital assistant
US10841724B1 (en) 2017-01-24 2020-11-17 Ha Tran Enhanced hearing system
US10726832B2 (en) 2017-05-11 2020-07-28 Apple Inc. Maintaining privacy of personal information
DK180048B1 (en) 2017-05-11 2020-02-04 Apple Inc. MAINTAINING THE DATA PROTECTION OF PERSONAL INFORMATION
DK179496B1 (en) 2017-05-12 2019-01-15 Apple Inc. USER-SPECIFIC Acoustic Models
DK201770427A1 (en) 2017-05-12 2018-12-20 Apple Inc. LOW-LATENCY INTELLIGENT AUTOMATED ASSISTANT
DK179745B1 (en) 2017-05-12 2019-05-01 Apple Inc. SYNCHRONIZATION AND TASK DELEGATION OF A DIGITAL ASSISTANT
DK201770411A1 (en) 2017-05-15 2018-12-20 Apple Inc. MULTI-MODAL INTERFACES
US20180336892A1 (en) * 2017-05-16 2018-11-22 Apple Inc. Detecting a trigger of a digital assistant
US10303715B2 (en) 2017-05-16 2019-05-28 Apple Inc. Intelligent automated assistant for media exploration
US9992585B1 (en) 2017-05-24 2018-06-05 Starkey Laboratories, Inc. Hearing assistance system incorporating directional microphone customization
JP6668306B2 (ja) * 2017-10-18 2020-03-18 ヤマハ株式会社 サンプリング周波数推定装置
EP3735782A4 (en) * 2018-01-05 2022-01-12 Laslo Olah HEARING AID AND METHOD OF USING THE SAME
US10818288B2 (en) 2018-03-26 2020-10-27 Apple Inc. Natural assistant interaction
US11145294B2 (en) 2018-05-07 2021-10-12 Apple Inc. Intelligent automated assistant for delivering content from user experiences
US10928918B2 (en) 2018-05-07 2021-02-23 Apple Inc. Raise to speak
DK201870355A1 (en) 2018-06-01 2019-12-16 Apple Inc. VIRTUAL ASSISTANT OPERATION IN MULTI-DEVICE ENVIRONMENTS
US10892996B2 (en) 2018-06-01 2021-01-12 Apple Inc. Variable latency device coordination
DK180639B1 (en) 2018-06-01 2021-11-04 Apple Inc DISABILITY OF ATTENTION-ATTENTIVE VIRTUAL ASSISTANT
DK179822B1 (da) 2018-06-01 2019-07-12 Apple Inc. Voice interaction at a primary device to access call functionality of a companion device
JP2020053948A (ja) 2018-09-28 2020-04-02 株式会社ファインウェル 聴取装置
US11462215B2 (en) 2018-09-28 2022-10-04 Apple Inc. Multi-modal inputs for voice commands
US11348573B2 (en) 2019-03-18 2022-05-31 Apple Inc. Multimodality in digital assistant systems
US11307752B2 (en) 2019-05-06 2022-04-19 Apple Inc. User configurable task triggers
DK201970509A1 (en) 2019-05-06 2021-01-15 Apple Inc Spoken notifications
US11140099B2 (en) 2019-05-21 2021-10-05 Apple Inc. Providing message response suggestions
DK180129B1 (en) 2019-05-31 2020-06-02 Apple Inc. USER ACTIVITY SHORTCUT SUGGESTIONS
DK201970511A1 (en) 2019-05-31 2021-02-15 Apple Inc Voice identification in digital assistant systems
US11227599B2 (en) 2019-06-01 2022-01-18 Apple Inc. Methods and user interfaces for voice-based control of electronic devices
US11488406B2 (en) 2019-09-25 2022-11-01 Apple Inc. Text detection using global geometry estimators
US11061543B1 (en) 2020-05-11 2021-07-13 Apple Inc. Providing relevant data items based on context
US11038934B1 (en) 2020-05-11 2021-06-15 Apple Inc. Digital assistant hardware abstraction
US11755276B2 (en) 2020-05-12 2023-09-12 Apple Inc. Reducing description length based on confidence
US11490204B2 (en) 2020-07-20 2022-11-01 Apple Inc. Multi-device audio adjustment coordination
US11438683B2 (en) 2020-07-21 2022-09-06 Apple Inc. User identification using headphones
CN113556660B (zh) * 2021-08-01 2022-07-19 武汉左点科技有限公司 一种基于虚拟环绕立体声技术的助听方法及装置
EP4161103A1 (en) * 2021-09-29 2023-04-05 Oticon A/s A remote microphone array for a hearing aid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140000A (ja) * 1995-11-15 1997-05-27 Nippon Telegr & Teleph Corp <Ntt> 会議用拡聴器
JP2002504794A (ja) * 1998-02-18 2002-02-12 トプホルム アンド ウエスターマン エイピーエス バイノーラル・デジタル補聴システム
JP2005268964A (ja) * 2004-03-16 2005-09-29 Intelligent Cosmos Research Institute 音処理装置、音処理方法および音処理プログラム
JP2007336460A (ja) * 2006-06-19 2007-12-27 Tohoku Univ 聴音装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3385725B2 (ja) 1994-06-21 2003-03-10 ソニー株式会社 映像を伴うオーディオ再生装置
JPH11308699A (ja) * 1998-04-21 1999-11-05 Nippon Telegr & Teleph Corp <Ntt> 空間音響再生装置、その両耳間差維持方法及び両耳間差補正方法
JP2001166025A (ja) * 1999-12-14 2001-06-22 Matsushita Electric Ind Co Ltd 音源の方向推定方法および収音方法およびその装置
JP3952870B2 (ja) 2002-06-12 2007-08-01 株式会社東芝 音声伝送装置、音声伝送方法及びプログラム
DE10228632B3 (de) * 2002-06-26 2004-01-15 Siemens Audiologische Technik Gmbh Richtungshören bei binauraler Hörgeräteversorgung
US20070009120A1 (en) 2002-10-18 2007-01-11 Algazi V R Dynamic binaural sound capture and reproduction in focused or frontal applications
US7333622B2 (en) 2002-10-18 2008-02-19 The Regents Of The University Of California Dynamic binaural sound capture and reproduction
US20080056517A1 (en) 2002-10-18 2008-03-06 The Regents Of The University Of California Dynamic binaural sound capture and reproduction in focued or frontal applications
EP1531650A3 (en) * 2003-11-12 2008-07-09 Gennum Corporation Hearing instrument having a wireless base unit
US7564980B2 (en) * 2005-04-21 2009-07-21 Sensimetrics Corporation System and method for immersive simulation of hearing loss and auditory prostheses
EP2095678A1 (en) * 2006-11-24 2009-09-02 Rasmussen Digital APS Signal processing using spatial filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140000A (ja) * 1995-11-15 1997-05-27 Nippon Telegr & Teleph Corp <Ntt> 会議用拡聴器
JP2002504794A (ja) * 1998-02-18 2002-02-12 トプホルム アンド ウエスターマン エイピーエス バイノーラル・デジタル補聴システム
JP2005268964A (ja) * 2004-03-16 2005-09-29 Intelligent Cosmos Research Institute 音処理装置、音処理方法および音処理プログラム
JP2007336460A (ja) * 2006-06-19 2007-12-27 Tohoku Univ 聴音装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074950A (ja) * 2010-09-29 2012-04-12 Brother Ind Ltd 遠隔会議装置
JP2012175580A (ja) * 2011-02-23 2012-09-10 Kyocera Corp 携帯電子機器及び音出力システム
JP2015019353A (ja) * 2013-05-29 2015-01-29 ジーエヌ リザウンド エー/エスGn Resound A/S 補聴器の外部入力装置

Also Published As

Publication number Publication date
US8670583B2 (en) 2014-03-11
JP2013236396A (ja) 2013-11-21
JP5642851B2 (ja) 2014-12-17
JP5409656B2 (ja) 2014-02-05
JPWO2010084769A1 (ja) 2012-07-19
US20120020503A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5642851B2 (ja) 補聴装置
US10431239B2 (en) Hearing system
US11037544B2 (en) Sound output device, sound output method, and sound output system
JP5894634B2 (ja) 個人ごとのhrtfの決定
CN104883636B (zh) 仿生听力耳麦
CN109640235B (zh) 利用声源的定位的双耳听力系统
CN104185129B (zh) 具有改善的定位的助听器
Ranjan et al. Natural listening over headphones in augmented reality using adaptive filtering techniques
EP2351384A1 (en) Method of rendering binaural stereo in a hearing aid system and a hearing aid system
JP2011512745A (ja) 音響システム及びサウンドを提供する方法
US11805364B2 (en) Hearing device providing virtual sound
JP2019041382A (ja) 音響デバイス
US8666080B2 (en) Method for processing a multi-channel audio signal for a binaural hearing apparatus and a corresponding hearing apparatus
DK2887695T3 (en) A hearing aid system with selectable perceived spatial location of audio sources
EP1796427A1 (en) Hearing device with virtual sound source
KR102613035B1 (ko) 위치보정 기능의 이어폰 및 이를 이용하는 녹음방법
US20070127750A1 (en) Hearing device with virtual sound source
JP2019066601A (ja) 音響処理装置、プログラム及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733376

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010547444

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13145415

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10733376

Country of ref document: EP

Kind code of ref document: A1