太阳能光伏-市电混合驱动蓄冷蓄热型热泵机组 技术领域 Solar photovoltaic-mains hybrid drive cold storage heat storage heat pump unit
本发明涉及一种热泵系统, 具体涉及一种利用太阳能光伏直流电源和普通 市电交流电源混合驱动的双电源热泵系统。 背景技术 The invention relates to a heat pump system, in particular to a dual power heat pump system which is driven by a hybrid of a solar photovoltaic direct current power source and a common mains alternating current power source. Background technique
热泵热水器节能效果显著。 与普通的电热水器相比, 由于热泵热水器的效 率大于 1 , 所以每消耗 lkW的电量, 可以得到 3-4kW的热水量, 所以其节能效 水, 其产生 '的 7热水'可作釆暖、 生活热水之用, 冷水在 、季可;空调、 生活冷水 之用, 一机多用, 且节省能源, 因此是未来家庭中央能源系统的核心设备, 对 提高居民的生活质量有很重要的意义。 The energy saving effect of the heat pump water heater is remarkable. Compared with ordinary electric water heaters, since the efficiency of the heat pump water heater is greater than 1, the amount of hot water of 3-4 kW can be obtained for each lkW of electricity consumed, so its energy-saving effect can produce ' 7 hot water'. Warm and hot water, cold water, season; air conditioning, cold water, multi-purpose, and energy saving, so it is the core equipment of the family's central energy system in the future, which is very important to improve the quality of life of residents. significance.
普通的太阳能热水器是利用平板式集热器、 真空管集热器等收集太阳光的 能量, 从而将冷水加温的装置。 普通太阳能热水器不能在制取热水的同时制取 冷水。 而且, 尽管太阳能本身是取之不尽、 用之不竭的清洁能源, 但由于其间 歇性和气候依赖性的特点, 太阳能热水器只有在白天阳光充足时才能发挥作用, 而在阴天和晚间最需要热水的时候, 却不能派上用场。 An ordinary solar water heater is a device that collects the energy of sunlight by using a flat type collector, a vacuum tube collector, and the like, thereby warming the cold water. Ordinary solar water heaters cannot produce cold water while making hot water. Moreover, although solar energy itself is an inexhaustible source of clean energy, due to its intermittent and climate-dependent characteristics, solar water heaters can only function when the sun is sunny during the day, and most on cloudy and late days. When hot water is needed, it can't come in handy.
目前已有的太阳能光伏蒸汽压缩式制冷系统均使用了逆变器, 即将太阳能 电池板输出的直流电先进行升压、 逆变后变成交流电, 然后以交流电去驱动交 流压缩机, 而逆变器的价格昂贵, 额外增加了系统的成本。 发明内容 At present, the existing solar photovoltaic vapor compression refrigeration system uses an inverter, that is, the direct current output from the solar panel is first boosted, inverted, and then converted into alternating current, and then the alternating current is used to drive the alternating current compressor, and the inverter The price is expensive, which adds extra cost to the system. Summary of the invention
本发明的目的在于提供一种太阳能光伏 -市电混合驱动蓄冷蓄热型热泵机 组, 其可以由太阳能光伏直流电源和普通市电交流电源混合驱动。 It is an object of the present invention to provide a solar photovoltaic-mains hybrid drive cold storage and heat storage type heat pump unit that can be driven by a hybrid of a solar photovoltaic direct current power source and a common commercial alternating current power source.
本发明的目的通过以下技术方案来实现。 本发明的太阳能光伏 -市电混合驱 动蓄冷蓄热型热泵机组, 其包括: 压缩机模块, 其包括直流压缩机子系统; 光 伏直流电源子系统, 耦合至所述直流压缩机子系统; 翅片式冷凝器; 节流机构; 翅片式蒸发器; 耦合在所述压缩才/ ^莫块与所述翅片式冷凝器之间的蓄热子系统, 其中包括用于从所述制冷剂吸热的蓄热介质; 耦合在所述节流机构与所述翅片 式蒸发器之间的蓄冷子系统, 其中包括用于被所述制冷剂冷却的蓄冷介质; 所 述压缩机模块、 蓄热子系统、 翅片式冷凝器、 节流机构、 蓄冷子系统、 翅片式
蒸发器通过管线连接成一个回路, 制冷剂在所述回路中循环。 The object of the present invention is achieved by the following technical solutions. The solar photovoltaic-mains hybrid drive cold storage heat storage heat pump unit of the present invention comprises: a compressor module including a direct current compressor subsystem; a photovoltaic direct current power supply subsystem coupled to the direct current compressor subsystem; finned condensation a throttle mechanism; a finned evaporator; a thermal storage subsystem coupled between the compression module and the fin condenser, including heat for absorbing heat from the refrigerant a heat storage medium; a cold storage subsystem coupled between the throttle mechanism and the finned evaporator, including a cold storage medium for being cooled by the refrigerant; the compressor module, a heat storage subsystem , finned condenser, throttle mechanism, cold storage subsystem, finned The evaporators are connected by a line into a circuit in which the refrigerant circulates.
优选地, 所述压缩机模块还包括与所述直流压缩机子系统并联的交流压缩 机子系统。 Preferably, the compressor module further includes an AC compressor subsystem in parallel with the DC compressor subsystem.
根据本发明的一个实施例, 在所述压缩机模块中设置有四个第五电磁阀, 用于控制所述直流压缩机子系统中的直流压缩机和所述交流压缩机子系统中的 交流压缩机的接入制冷剂循环回路的状态。 According to an embodiment of the present invention, four fifth solenoid valves are disposed in the compressor module for controlling a DC compressor in the DC compressor subsystem and an AC compressor in the AC compressor subsystem Access to the state of the refrigerant circuit.
根据本发明的一个实施例, 所述蓄热子系统包括: 绝热良好的蓄热容器, 内部包含有所述蓄热介质; 所述蓄冷子系统包括: 绝热良好的蓄冷容器, 内部 包含有所述蓄冷介质。 所述蓄热子系统可以进一步包括: 设置于所述蓄热容器 内部的第一盘管换热器, 其连接在所述制冷剂循环回路中, 用于使其中的制冷 剂与所述蓄热介质进行热交换; 设置于所述蓄热容器内部的第二盘管换热器, 用于使流过其中的水与所述蓄热容器内部的蓄热介质进行热交换, 所述蓄冷子 系统可以进一步包括: 设置于所述蓄冷容器内部的第三盘管换热器, 其连接在 所述制冷剂循环回路中, 用于使其中的制冷剂与所述蓄冷介质进行热交换; 设 置于所述蓄冷容器内部的第四盘管换热器, 用于使流过其中的水与所述蓄冷容 器内部的蓄冷介质进行热交换。 According to an embodiment of the present invention, the thermal storage subsystem includes: a heat-insulating heat-storing container having the heat storage medium therein; the cold storage subsystem comprising: a heat-insulating cold storage container, the interior containing the Cool storage medium. The thermal storage subsystem may further include: a first coil heat exchanger disposed inside the thermal storage tank, coupled to the refrigerant circulation loop, for refrigerating the refrigerant therein The medium performs heat exchange; a second coil heat exchanger disposed inside the heat storage container for exchanging heat between the water flowing therethrough and the heat storage medium inside the heat storage container, the cold storage subsystem The method further includes: a third coil heat exchanger disposed inside the cold storage container, coupled to the refrigerant circulation loop for heat exchange between the refrigerant therein and the cold storage medium; A fourth coil heat exchanger inside the cold storage container is used for exchanging heat between the water flowing therethrough and the cold storage medium inside the cold storage container.
根据本发明的一个实施例, 在所述制冷剂循环回路中设置有: 第一电磁阀, 用于使所述制冷剂旁通而不经过所述翅片式冷凝器; 第二电磁阀, 用于使所述 制冷剂旁通而不经过所述翅片式蒸发器; 第三电磁阀, 用于使所述制冷剂旁通 而不经过所述蓄热子系统; 第四电磁阀, 用于使所述制冷剂旁通而不经过所述 蓄冷子系统。 According to an embodiment of the present invention, a first electromagnetic valve is provided in the refrigerant circulation circuit for bypassing the refrigerant without passing through the fin condenser; Circulating the refrigerant without passing through the fin evaporator; a third solenoid valve for bypassing the refrigerant without passing through the heat storage subsystem; a fourth solenoid valve, for The refrigerant is bypassed without passing through the cold storage subsystem.
优选地, 在所述蓄热子系统中设置有第一温度传感器, 用于感测所述蓄热 介质的温度, 以确定所述第一电磁阀和第三电磁阀的开闭; 在所述蓄冷子系统 中设置有第二温度传感器, 用于感测所述蓄冷介质的温度, 以确定所述第二电 磁阀和第四电磁阀的开闭。 Preferably, a first temperature sensor is disposed in the thermal storage subsystem for sensing a temperature of the thermal storage medium to determine opening and closing of the first electromagnetic valve and the third electromagnetic valve; A second temperature sensor is disposed in the cold storage subsystem for sensing the temperature of the cold storage medium to determine opening and closing of the second electromagnetic valve and the fourth electromagnetic valve.
在所述的太阳能光伏 -市电混合驱动蓄冷蓄热型热泵机组中, 所述蓄热介质 可以是石蜡、 水和盐、 十水硫酸钠的其中之一, 所述蓄冷介质可以是甘油、 水、 水和盐、 石蜡的其中之一。 In the solar photovoltaic-mains hybrid drive cold storage heat storage heat pump unit, the heat storage medium may be one of paraffin, water and salt, and sodium sulfate decahydrate, and the cold storage medium may be glycerin or water. One of water, salt and paraffin.
根据本发明的一个实施例, 所述光伏直流电源子系统包括太阳能电池组件、 接线盒、 蓄电池、 功率和电压调节器。 According to an embodiment of the invention, the photovoltaic DC power subsystem comprises a solar cell module, a junction box, a battery, a power and a voltage regulator.
根据本发明的一个实施例, 在所述热泵机组的高压管路上设置有高压传感 器, 低压管路上设置有低压传感器, 在蓄热子系统和蓄冷子系统中分别设置有 安全阀。 According to an embodiment of the invention, a high pressure sensor is disposed on the high pressure line of the heat pump unit, a low pressure sensor is disposed on the low pressure line, and a safety valve is disposed in the heat storage subsystem and the cold storage subsystem, respectively.
本发明的有益效果主要体现在:
本发明的太阳能光伏直流-市电两用的蓄冷蓄热型热泵机组, 是利用太阳能 光伏直流电源和普通市电交流电源混合驱动的双电源热泵系统, 其具备互为补 充的一个直流压缩机和一个交流压缩机。 当有阳光时, 利用太阳能电池板产生 的直流电直接驱动直流型制冷压缩机以制取冷量和热量, 所生产的冷量和热量 可分别通过相变的蓄冷和蓄热介质储存起来, 弥补了太阳能的间歇性和气候依 赖性的缺点。 当直流电源不敷使用时, 则使用来自电网的交流电源供电, 从而 极大地提高了系统的适应性。 此外, 本发明中设置了两个制冷压缩机: 直流压 缩机和交流压缩机, 太阳能充足时, 交流压缩机不工作, 当太阳能不足且蓄能 也不足时, 则将交流压缩机接入普通交流电网以取代直流压缩机的作用; 由此 可见: 空调负荷可由太阳能和市电驱动的压缩机在不同时段分别负担, 并可根 据成本要求确定合适的分担比例, 极大地降低了太阳能空调系统的初始成本, 增强了系统的实用性。 The beneficial effects of the present invention are mainly embodied in: The solar photovoltaic DC-mains dual-purpose cold storage heat storage heat pump unit of the invention is a dual power heat pump system driven by a hybrid of a solar photovoltaic direct current power source and a common mains AC power source, which has a DC compressor supplemented by each other and An AC compressor. When there is sunlight, the direct current generated by the solar panel directly drives the DC refrigeration compressor to obtain the cooling capacity and heat. The produced cold and heat can be stored separately through the phase change cold storage and heat storage medium, which makes up for The shortcomings of solar energy and climate dependence. When the DC power supply is not enough, it is powered by AC power from the power grid, which greatly improves the system's adaptability. In addition, the present invention provides two refrigeration compressors: a DC compressor and an AC compressor. When the solar energy is sufficient, the AC compressor does not work. When the solar energy is insufficient and the energy storage is insufficient, the AC compressor is connected to the common AC. The power grid replaces the role of the DC compressor; it can be seen that: the air-conditioning load can be borne by the solar-powered and commercial-powered compressors at different times, and the appropriate sharing ratio can be determined according to the cost requirements, which greatly reduces the initial of the solar-powered air-conditioning system. Cost, which enhances the usability of the system.
本发明中所设置的相变蓄能装置, 将热泵制取的热水和冷水都储存起来, 这样就在收集太阳能的时间段和使用太阳能的时间段之间进行了调配, 同时也 可在冷热水的高生产量和用户的低使用量之间进行调配, 使太阳能得到了充分 有效的利用, 而不造成任何不必要的浪费。 The phase change energy storage device provided in the invention stores both the hot water and the cold water prepared by the heat pump, so that the time between collecting solar energy and the time period using solar energy is adjusted, and also in the cold The high production of hot water and the low usage of the user are used to make the solar energy fully and effectively utilized without any unnecessary waste.
与现有的普通太阳能热水器相比, 本发明将太阳能与热泵冷热水机组相结 合, 可达到制取热水的同时制取冷水。 其利用太阳能光伏电池板产生直流电, 然后将此直流电升压、 调功后用以驱动蒸汽压缩式制冷机组, 在制冷机的冷凝 器侧可以得到热水, 在制冷机的蒸发器侧可得到冷水。 这种设备, 使我们在除 去设备投资外, 得到的热水和冷水都是免费的, 即可以享受到免费的生活热水 和空调效果。 在蓄冷或蓄热达到极限后, 可通过气流带走翅片式冷凝器的散热 或为翅片式蒸发器补充热量。 Compared with the existing ordinary solar water heater, the invention combines the solar energy with the heat pump hot and cold water unit to obtain the hot water while preparing the cold water. The utility model utilizes a solar photovoltaic panel to generate direct current, and then boosts and adjusts the direct current to drive the vapor compression refrigeration unit, and obtains hot water on the condenser side of the refrigerator, and obtains cold water on the evaporator side of the refrigerator. . This kind of equipment allows us to get free hot water and cold water in addition to equipment investment, that is, we can enjoy free domestic hot water and air conditioning effects. After the cold storage or heat storage reaches the limit, the airflow can be used to remove the heat from the finned condenser or to supplement the heat to the finned evaporator.
与现有的太阳能光伏蒸汽压缩式制冷系统相比, 本发明的系统不需要使用 逆变器, 且太阳能电池板的面积可以大幅度降低。 本发明的系统, 在充分利用 太阳能的同时, 克服了太阳能的限制, 而且具有非常突出的成本优势。 附图说明 Compared with the existing solar photovoltaic vapor compression refrigeration system, the system of the present invention does not require the use of an inverter, and the area of the solar panel can be greatly reduced. The system of the present invention overcomes the limitation of solar energy while making full use of solar energy, and has a very prominent cost advantage. DRAWINGS
图 1是本发明的一个具体实施方式的结构示意图。 具体实施方式 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic view showing the structure of one embodiment of the present invention. detailed description
下面结合附图和具体实施方式具体说明本发明的技术方案。 The technical solutions of the present invention are specifically described below with reference to the accompanying drawings and specific embodiments.
本发明的太阳能光伏-市电混合驱动蓄冷蓄热型热泵机组的主体是一个热泵 系统, 在其蒸发器侧可制取冷水, 在其冷凝器侧则可以制取热水。 冷水和热水
可以分别通过相变的蓄冷介质和相变的蓄热介质储存起来, 以解决制冷系统的 工作时间段和冷热水的使用时间段不同的矛盾。 制冷系统的核心是两个互为补 充的压缩机: 一个直流压缩机和一个交流压缩机。 直流压缩机使用太阳能光伏 系统产生的直流电, 而交流压缩机直接使用由供电网络来的交流市电。 The main body of the solar photovoltaic-mains hybrid drive cold storage heat storage heat pump unit of the present invention is a heat pump system, in which cold water can be produced on the evaporator side and hot water can be prepared on the condenser side. Cold water and hot water It can be stored separately through the phase change cold storage medium and the phase change heat storage medium to solve the contradiction between the working period of the refrigeration system and the use period of the hot and cold water. At the heart of the refrigeration system are two complementary compressors: a DC compressor and an AC compressor. The DC compressor uses the direct current generated by the solar photovoltaic system, while the AC compressor directly uses the AC mains from the power supply network.
如图 1 所示, 根据本发明的一个具体实施例包括: 直流压缩机子系统 A、 可选的交流压缩机子系统 B、 蓄热子系统( 、 翅片式冷凝器 D、 储液器 E、 干 燥过滤器?、 膨胀阀或节流机构 G、 蓄冷子系统 H、 翅片式蒸发器 I、 光伏直 流电源子系统 K。 该实施例中的连接关系是, 子系统 Α、 Β并联, 并联的子系 统 、 Β再与子系统( 、 D、 E、 F、 G、 H、 I以管线连接成一个回路, 制冷 剂在该回路中循环; 交流电源子系统 J通过导线连接至交流压缩机子系统 B的 接线盒。 光伏直流电源子系统 K通过导线接至直流压缩机子系统 A的接线盒。 As shown in FIG. 1, a specific embodiment in accordance with the present invention includes: a DC compressor subsystem A, an optional AC compressor subsystem B, a thermal storage subsystem (, a finned condenser D, a reservoir E, and a drying Filter?, expansion valve or throttle mechanism G, cold storage subsystem H, finned evaporator I, photovoltaic DC power supply subsystem K. The connection relationship in this embodiment is: subsystem Α, Β parallel, parallel The system, the Β and the subsystems (, D, E, F, G, H, I are connected by a pipeline into a loop, in which the refrigerant circulates; the AC power subsystem J is connected to the AC compressor subsystem B by wires Junction box The photovoltaic DC power subsystem K is connected to the junction box of the DC compressor subsystem A by wires.
直流压缩机子系统 A包括直流制冷压缩机 2、安装在其排气管路上的电磁阀 1和安装在其吸气管路上的电磁阀 3。 The DC compressor subsystem A includes a DC refrigeration compressor 2. A solenoid valve 1 mounted on its exhaust line and a solenoid valve 3 mounted on its suction line.
交流压缩机子系统 B包括交流制冷压缩机 8、安装在其排气管路上的电磁阀 7和三通 6、 安装在其吸气管路上的电磁阀 9和三通 10。 The AC compressor subsystem B includes an AC refrigeration compressor 8, a solenoid valve 7 and a tee 6 mounted on its exhaust line, a solenoid valve 9 and a tee 10 mounted on its suction line.
蓄热子系统 C包括绝热良好的容器 (蓄热桶) 17、 安全阀 18、 温度传感器 19、 蓄热桶 17中的相变蓄热介质 20、 热水出水阀 21、 热水回水阀 22、 盘管换 热器 23、 制冷剂出口阀 24、 制冷剂进口阀 25、 盘管换热器 26、 三通 27、 旁通 电磁阀 28、 三通 29。 温度传感器 19安装在蓄热桶 17的上部。 The heat storage subsystem C includes a well-insulated container (heat storage tank), a safety valve 18, a temperature sensor 19, a phase change heat storage medium 20 in the heat storage tank 17, a hot water outlet valve 21, and a hot water return valve 22. The coil heat exchanger 23, the refrigerant outlet valve 24, the refrigerant inlet valve 25, the coil heat exchanger 26, the tee 27, the bypass solenoid valve 28, and the tee 29. The temperature sensor 19 is mounted on the upper portion of the heat storage tank 17.
旁通电磁阀 28装设于蓄热子系统的进出口管路上, 旁通电磁阀 28通常情 况下处于关闭状态。 The bypass solenoid valve 28 is mounted on the inlet and outlet lines of the heat storage subsystem, and the bypass solenoid valve 28 is normally closed.
翅片式冷凝器 D包括风机 33、 翅片管式换热器 34、 三通 30、 电磁阀 31、 三通 32。 The finned condenser D includes a fan 33, a finned tube heat exchanger 34, a tee 30, a solenoid valve 31, and a tee 32.
蓄冷子系统 H包括绝热良好的容器(蓄冷桶) 38、 蓄冷桶 38中的相变蓄冷 介质 39、 制冷剂出口阀 40、 制冷剂进口阀 41、 温度传感器 42、 盘管换热器 43、 冷水回水阀 44、 冷水出水阀 45、 盘管换热器 46、 安全阀 47、 三通 35、 旁通电 磁阀 36、 三通 37。 温度传感器 42安装在蓄冷桶 38的下部。 The cold storage subsystem H includes a well-insulated container (storage tank) 38, a phase change cold storage medium 39 in the cold storage tank 38, a refrigerant outlet valve 40, a refrigerant inlet valve 41, a temperature sensor 42, a coil heat exchanger 43, and cold water. The return valve 44, the cold water outlet valve 45, the coil heat exchanger 46, the relief valve 47, the tee 35, the bypass solenoid valve 36, and the tee 37. The temperature sensor 42 is installed at the lower portion of the cold storage tank 38.
旁通电磁阀 36装设于蓄冷子系统的进出口管路上, 旁通电磁阀 36通常情 况下处于关闭状态。 The bypass solenoid valve 36 is mounted on the inlet and outlet lines of the cold storage subsystem, and the bypass solenoid valve 36 is normally closed.
翅片式蒸发器 I包括风机 52、 翅片管式换热器 51、 三通 48、 电磁阀 49、 三通 50。 The finned evaporator I includes a fan 52, a finned tube heat exchanger 51, a tee 48, a solenoid valve 49, and a tee 50.
交流电源子系统 J包括交流接线盒 55、 连接至交流压缩机 8的导线 54。 光伏直流电源子系统 K包括太阳能电池组件 60、接线盒 59、蓄电池 58、 功 率和电压调节器 57、 连接至直流制冷压缩机 2的导线 56。 各个部件之间通过导
线如图 1 所示连接起来。 光伏直流电源子系统 K用于接收太阳光, 产生可供直 流型制冷压缩机 2工作的直流电源。 The AC power subsystem J includes an AC junction box 55, and a wire 54 connected to the AC compressor 8. The photovoltaic DC power subsystem K includes a solar cell assembly 60, a junction box 59, a battery 58, a power and voltage regulator 57, and a wire 56 connected to the DC refrigeration compressor 2. Guide between various components The wires are connected as shown in Figure 1. The photovoltaic DC power supply subsystem K is used to receive sunlight and generate a DC power supply for the DC refrigeration compressor 2 to operate.
在与室温平衡的初始状态下, 蓄热桶 17中的相变蓄热介质 20处于固态, 而蓄冷桶 38中的相变蓄冷介质 39处于液态。 In the initial state balanced with the room temperature, the phase change heat storage medium 20 in the heat storage tank 17 is in a solid state, and the phase change cold storage medium 39 in the cold storage tank 38 is in a liquid state.
相变蓄热介质 20的热特性是: 其在初始温度下处于固态, 当其受热、 温度 升高到其融点时, 其开始部分融化并保持固液混合状态, 在此状态下其温度基 本保持不变, 直到其全部转化成液体。 此时若继续加热, 则其温度才会继续升 高。 相变蓄热介质 20可以是石蜡、 水和盐等满足此特性的物质。 The thermal characteristic of the phase change heat storage medium 20 is: it is in a solid state at an initial temperature, and when it is heated and the temperature rises to its melting point, it begins to partially melt and maintain a solid-liquid mixed state, in which the temperature is substantially maintained. It does not change until it is completely converted into a liquid. If heating is continued at this time, its temperature will continue to rise. The phase change heat storage medium 20 may be a substance that satisfies this property, such as paraffin, water, and salt.
相变蓄冷介质 39的热特性是: 其在初始温度下处于液态, 当其受冷放热、 温度降低到其融点时, 其开始部分冷凝并保持固液混合状态, 在此状态下其温 度基本保持不变, 直到其全部转化成固体。 此时若继续对其冷却, 则其温度才 会继续降低。 相变蓄冷介质 39可以是甘油、 水和盐、 石蜡等物质。 The thermal characteristic of the phase change cold storage medium 39 is: it is in a liquid state at an initial temperature, and when it is cooled and exothermic, the temperature is lowered to its melting point, and it begins to partially condense and maintain a solid-liquid mixed state, in which the temperature is basically Leave it unchanged until it is completely converted to a solid. If you continue to cool it at this time, its temperature will continue to decrease. The phase change cold storage medium 39 may be glycerin, water and salt, paraffin or the like.
根据上述实施例, 本发明的热泵机组在有阳光照射时由太阳能光伏直流电 源子系统 K供电。 太阳能电池板是由若干块太阳能电池组件 60按一定的方式并 联和串联连接后达到一定的电压和电流要求。 该光伏电源接入接线盒 59, 并经 功率和电压调节器 57调功并稳压后供给直流压缩机 2做功。 当直流压缩机 2不 做功时, 多余的电能可以储存在蓄电池 58中。 According to the above embodiment, the heat pump unit of the present invention is powered by the solar photovoltaic DC power supply subsystem K when exposed to sunlight. The solar panel is connected by a number of solar cell modules 60 in a certain manner in parallel and in series to achieve a certain voltage and current requirements. The photovoltaic power source is connected to the junction box 59, and is regulated and regulated by the power and voltage regulator 57 to supply the DC compressor 2 for work. When the DC compressor 2 is not performing work, excess electric energy can be stored in the battery 58.
直流压缩机 2在直流电源的驱动下运转, 压缩管路中的制冷剂在系统中循 环。 制冷剂循环的方向是: 系统中的制冷剂依次经过 A→C→D→E→F→G→H →I→A。 此时电磁阀 1、 3在系统控制器的控制下处于打开状态, 电磁阀 7、 9 在系统控制器的控制下处于关闭状态, 导线 56处于连通状态, 而导线 54处于 断开状态。 在该模式下, 交流压缩机 8和直流压缩机 2不同时工作。 The DC compressor 2 is operated by a DC power source, and the refrigerant in the compression line circulates in the system. The direction of the refrigerant cycle is: The refrigerant in the system passes through A→C → D → E → F→G → H → I→A. At this time, the solenoid valves 1, 3 are in an open state under the control of the system controller, and the solenoid valves 7, 9 are in a closed state under the control of the system controller, the wire 56 is in a connected state, and the wire 54 is in an open state. In this mode, the AC compressor 8 and the DC compressor 2 do not operate at the same time.
制冷剂气体被直流压缩机 2变成高温高压的气体, 先在盘管换热器 23中加 热蓄热介质 20, 蓄热介质 20温度升高, 乃至发生固相至液相的相变, 而制冷剂 气体得到部分冷却。 蓄热介质 20被加热后可作为热源向盘管换热器 26传递热 量, 向外供应热水。 The refrigerant gas is changed into a high-temperature and high-pressure gas by the DC compressor 2, and the heat storage medium 20 is first heated in the coil heat exchanger 23, and the temperature of the heat storage medium 20 rises, and a solid phase to a liquid phase phase transition occurs. The refrigerant gas is partially cooled. After the heat storage medium 20 is heated, it can be used as a heat source to transfer heat to the coil heat exchanger 26 to supply hot water to the outside.
部分冷却后的制冷剂气体随之进入翅片管式换热器 34中继续冷却, 其冷凝 热由冷凝器风机 33送来的空气带走并散到大气中。 在翅片冷凝器 D出口, 制冷 剂气体已全部转变为液体。 The partially cooled refrigerant gas then enters the finned tube heat exchanger 34 to continue cooling, and the condensation heat is carried away by the air sent from the condenser fan 33 and is released into the atmosphere. At the outlet of the fin condenser D, the refrigerant gas has all been converted into a liquid.
然后,使制冷剂液体先经过储液器 E、干燥过滤器 F, 而后到达节流机构 G。 的变化, 以保证系统 ^的压力不会波动;^大': 干燥过滤器 F 的作用是滤除循环 制冷剂中的杂质以保证系统的清洁, 以及吸收循环制冷剂中的水分, 使其不致 结水而堵塞节流机构。
膨胀阀或节流机构 G可以是毛细管、 热力膨胀阀、 电子膨胀阀或孔板节流 器之中的任意一种。 Then, the refrigerant liquid is first passed through the accumulator E, the drying filter F, and then reaches the throttle mechanism G. The change is to ensure that the pressure of the system does not fluctuate; ^大': The function of the drying filter F is to filter out the impurities in the circulating refrigerant to ensure the cleaning of the system and to absorb the moisture in the circulating refrigerant, so that it does not cause The throttling mechanism is blocked by water. The expansion valve or the throttle mechanism G may be any one of a capillary tube, a thermal expansion valve, an electronic expansion valve, or an orifice restrictor.
制冷剂液体经节流机构 G节流后, 压力降低, 部分变成闪蒸气体, 温度也 降低, 变成气液混和物。 此制冷剂的气液混和物依次进入蓄冷桶 38内的盘管散 热器 46和翅片式蒸发器 I中的翅片管式换热器 51并吸热, 在翅片式蒸发器 I 出口, 制冷剂全部变为气体, 然后进入直流压缩机 2 , 开始下一次循环。 After the refrigerant liquid is throttled by the throttle mechanism G, the pressure is lowered, and some of the refrigerant becomes a flash gas, and the temperature is also lowered to become a gas-liquid mixture. The gas-liquid mixture of the refrigerant sequentially enters the coil radiator 46 in the cold storage tank 38 and the fin-and-tube heat exchanger 51 in the fin-type evaporator I and absorbs heat, at the outlet of the fin-type evaporator I, The refrigerant is all turned into a gas, and then enters the DC compressor 2 to start the next cycle.
蓄冷桶 38 内的蓄冷介质 39被冷却, 乃至发生由液相至固相的相变。 蓄冷 介质 39被冷却后可作为冷源向盘管换热器 43传递冷量, 向外供应冷水。 The cold storage medium 39 in the cold storage tank 38 is cooled, and a phase change from the liquid phase to the solid phase occurs. After the cold storage medium 39 is cooled, it can be used as a cold source to transfer cooling to the coil heat exchanger 43, and supply cold water to the outside.
两台压缩机中, 交流压缩机 8平时作为备用, 当直流压缩机 2因为太阳能 子系统 K提供的直流电不足而不能工作时, 交流压缩机 8替代直流压缩机 2工 作。 此时交流压缩机 8的电源取自交流接线盒 55 , 交流接线盒 55的电力来自普 通市电。 当交流压缩机 8工作时, 制冷剂的流向是: 系统中的制冷剂依次经过 B →C→D→E→F→G→H→I→B。 此时电磁阀 7、 9在系统控制器的控制下处于打 开状态, 电磁阀 1、 3在系统控制器的控制下处于关闭状态, 导线 54处于连通 状态, 而导线 56处于断开状态。 Among the two compressors, the AC compressor 8 is normally used as a backup, and when the DC compressor 2 cannot operate due to insufficient DC power supplied from the solar system K, the AC compressor 8 operates in place of the DC compressor 2. At this time, the power of the AC compressor 8 is taken from the AC junction box 55, and the power of the AC junction box 55 is from ordinary utility power. When the AC compressor 8 is in operation, the flow direction of the refrigerant is: The refrigerant in the system sequentially passes B → C → D → E → F → G → H → I → B. At this time, the solenoid valves 7, 9 are in an open state under the control of the system controller, the solenoid valves 1, 3 are in a closed state under the control of the system controller, the wire 54 is in a connected state, and the wire 56 is in an open state.
蓄热子系统 C和翅片管式冷凝器 D均作为制冷系统的冷凝器向外界输出热 量, 担制冷系统的热负荷, 因此这两个子系统既可同时工作也可不同时工作。 当电磁阀 31在控制器的控制下处于打开状态时, 制冷剂被旁通, 直接由三通 30 到达三通 32 , 而不经过翅片管式换热器 34的盘管 (因其管路较长、 阻力较大, 若两个通路中的阻力相差不大时, 可以考虑在翅片管式换热器 34的入口也设一 个电磁阀, 以将此通路完全切断), 此时翅片冷凝器 D不工作, 风机 33 也无需 开启。 Both the regenerative subsystem C and the finned tube condenser D are used as condensers of the refrigeration system to output heat to the outside, which is responsible for the thermal load of the refrigeration system. Therefore, the two subsystems can work simultaneously or at different times. When the solenoid valve 31 is in the open state under the control of the controller, the refrigerant is bypassed, directly from the tee 30 to the tee 32, without passing through the coil of the fin-and-tube heat exchanger 34 (due to its piping) Longer, more resistant, if the resistance in the two passages is not much different, consider that a solenoid valve is also provided at the inlet of the fin-and-tube heat exchanger 34 to completely cut the passage. The condenser D does not work and the fan 33 does not need to be opened.
翅片冷凝器 D开始工作的时刻可由蓄热介质 20的温度状况决定。 例如, 根 据一优选的运行模式, 设相变蓄热介质的固-液相转变温度为 Th, 温度传感器 19的感测温度为 T1 , 则: The timing at which the fin condenser D starts to operate can be determined by the temperature condition of the heat storage medium 20. For example, according to a preferred mode of operation, the solid-liquid phase transition temperature of the phase change heat storage medium is Th, and the sensing temperature of the temperature sensor 19 is T1, then:
• 当 T Th- Δ ΤΙ时, 开启电磁阀 31 , 关闭风机 33 , 使翅片冷凝器 D不工 作, 系统的热负荷全部用于加热蓄热介质 20。 Δ Τ1 为某一过冷度, 可 由用户根据使用经验和偏好决定, 但不能小于等于 0。 • When T Th- Δ ΤΙ, the solenoid valve 31 is opened, the fan 33 is turned off, the fin condenser D is not operated, and the thermal load of the system is all used to heat the heat storage medium 20. Δ Τ1 is a certain degree of subcooling, which can be determined by the user based on experience and preference, but not less than or equal to zero.
• 当 Tl > Th+ A T2时, 此时蓄热介质已全部融化, 则关闭电磁阀 31 , 开 启风机 33运行,此时制冷剂可通过翅片管式换热器 34向环境空气散热。 △ Τ2为某一过热度,可由用户根据使用经验和偏好决定,但不能小于等 于 0。 • When Tl > Th+ A T2, when the heat storage medium has completely melted, the solenoid valve 31 is closed and the fan 33 is turned on. At this time, the refrigerant can dissipate heat to the ambient air through the fin-and-tube heat exchanger 34. △ Τ2 is a certain degree of superheat, which can be determined by the user based on experience and preference, but cannot be less than 0.
• 当 Th- Δ ΤΙ < TKTh+ A T2时, 保持电磁阀 31和风机 33的运行状态不 变。
这样, 通过控制翅片冷凝器 D的工作状态, 可以控制蓄热介质 20的温度始 终处于某一温度范围内, 即保证了制冷系统的高压压力不会太高, 而始终在某 一范围之内。 当温度传感器 19检测到蓄热介质 20的温度高于某一上限值, 或 用户不需使用热水时, 可使电磁阀 28开启, 这时制冷剂气体被旁通, 制冷剂的 冷凝放热完全由翅片管式换热器 D承担。 • When Th Δ ΤΙ < TKTh + A T2, the operating states of the solenoid valve 31 and the fan 33 are kept unchanged. Thus, by controlling the operating state of the fin condenser D, it is possible to control the temperature of the heat storage medium 20 to always be within a certain temperature range, that is, the high pressure of the refrigeration system is not too high, and is always within a certain range. . When the temperature sensor 19 detects that the temperature of the heat storage medium 20 is above a certain upper limit value, or the user does not need to use hot water, the solenoid valve 28 can be opened, at which time the refrigerant gas is bypassed, and the refrigerant is condensed. The heat is completely borne by the finned tube heat exchanger D.
同样, 蓄冷子系统 H和翅片式蒸发器 I均作为制冷系统的蒸发器从外界吸 收热量, 承担制冷系统的冷负荷, 因此这两个子系统既可同时工作也可不同时 工作。 当电磁阀 49在控制器的控制下处于打开状态时, 制冷剂被旁通, 直接由 50到达 48, 而不经过翅片管式换热器 51 的盘管 (也可以考虑在翅片管式换热 器 51的入口设一个电磁阀, 以将此通路完全切断), 此时翅片蒸发器 I不工作, 风机 52也无需开启。 Similarly, both the cold storage subsystem H and the finned evaporator I act as evaporators of the refrigeration system to absorb heat from the outside and take on the cooling load of the refrigeration system, so that the two subsystems can work simultaneously or at different times. When the solenoid valve 49 is in the open state under the control of the controller, the refrigerant is bypassed, directly from 50 to 48, without passing through the coil of the fin-and-tube heat exchanger 51 (also considered in the finned tube type) A solenoid valve is provided at the inlet of the heat exchanger 51 to completely cut off the passage. At this time, the fin evaporator I does not operate, and the fan 52 does not need to be opened.
翅片管式蒸发器 I开始工作的时刻可由蓄冷介质 39的温度状况决定。例如, 根据一优选的运行模式, 设相变蓄冷介质的液-固相转变温度为 Tc, 温度传感器 42的感测温度为 T2, 则: The timing at which the finned tube evaporator I starts to operate can be determined by the temperature condition of the cold storage medium 39. For example, according to a preferred mode of operation, the liquid-solid phase transition temperature of the phase change cold storage medium is Tc, and the temperature sensed by the temperature sensor 42 is T2, then:
• 当 T2 > Tc + Δ Τ3时, 开启电磁阀 49, 关闭风机 52, 使翅片蒸发器 I 不工作, 系统的冷负荷全部用于冷却蓄冷介质 39。 Δ Τ3为某一过热度, 可由用户根据使用经验和偏好决定, 但不能小于等于 0。 • When T2 > Tc + Δ Τ3, the solenoid valve 49 is opened, the fan 52 is turned off, the fin evaporator I is not operated, and the cooling load of the system is all used to cool the cold storage medium 39. Δ Τ3 is a certain degree of superheat, which can be determined by the user based on experience and preference, but cannot be less than or equal to zero.
* 当 T2 Tc-A T4时, 此时蓄冷介质已全部凝固, 则关闭电磁阀 49, 开启风机 52运行, 此时制冷剂可通过翅片管式换热器 51从环境空气吸 热。 Δ Τ4为某一过冷度, 可由用户根据使用经验和偏好决定, 但不能小 于等于 0。 * When T2 Tc-A T4, when the cold storage medium has completely solidified, the solenoid valve 49 is closed, and the fan 52 is turned on. At this time, the refrigerant can absorb heat from the ambient air through the fin-and-tube heat exchanger 51. Δ Τ 4 is a certain degree of subcooling, which can be determined by the user based on experience and preference, but cannot be less than or equal to zero.
• 当 Tc-△ T4 < T2 < Tc+△ T3时, 保持电磁阀 49和风机 52的运行状态 不变。 • When Tc-△ T4 < T2 < Tc + △ T3, keep the operating state of solenoid valve 49 and fan 52 unchanged.
这样, 通过控制翅片蒸发器 I的工作状态, 可以控制蓄冷介质 39的温度始 终处于某一温度范围内, 即保证了制冷系统的低压压力不会太低, 而始终在某 一范围之内。 当温度传感器 42检测到蓄冷介质 48的温度低于某一下限值, 或 用户不需使用冷水时, 可使旁通电磁阀 36开启, 这时制冷剂被旁通, 制冷剂的 蒸发吸热完全由翅片管式换热器 I承担。 Thus, by controlling the operating state of the fin evaporator I, it is possible to control the temperature of the cold storage medium 39 to always be within a certain temperature range, that is, to ensure that the low pressure of the refrigeration system is not too low, and is always within a certain range. When the temperature sensor 42 detects that the temperature of the cold storage medium 48 is below a certain lower limit value, or the user does not need to use cold water, the bypass solenoid valve 36 can be opened, at which time the refrigerant is bypassed, and the evaporation of the refrigerant is completely absorbed. It is carried by the fin-and-tube heat exchanger I.
根据本发明的一个优选实施例, 在系统的高压管路上设置了高压传感器 4, 以及在系统的低压管路上设置了低压传感器 5。 当检测到高压过高或低压过低 时, 停止所有压缩机和风机的运行, 以保证系统的安全。 According to a preferred embodiment of the invention, a high pressure sensor 4 is provided on the high pressure line of the system, and a low pressure sensor 5 is provided on the low pressure line of the system. When it is detected that the high pressure is too high or the low pressure is too low, all compressors and fans are stopped to ensure the safety of the system.
根据本发明的一个优选实施例, 蓄热桶 17和蓄冷桶 38上还分别设置了安 全阀 18和安全阀 47。 当容器中的蓄热或蓄冷介质因为温度太高、体积膨胀而导 致压力太高时, 安全阀会自动打开, 泄放掉一部分介质, 使容器内的压力降低,
从而进一步增加了系统的安全性。 According to a preferred embodiment of the invention, a safety valve 18 and a safety valve 47 are also provided on the heat storage tank 17 and the cold storage tank 38, respectively. When the heat storage or cold storage medium in the container is too high due to too high temperature and volume expansion, the safety valve will automatically open, and a part of the medium will be discharged, so that the pressure inside the container is lowered. This further increases the security of the system.
另外, 本领域的技术人员可以明白, 尽管上述实施例中设置了并联的直流 压缩机子系统 A和交流压缩机子系统 B , 但是本系统在去除交流压缩机子系统 B和交流电源子系统 J之后, 仍可构成一个完全不依赖于任何辅助电源的光伏 直流蓄冷蓄热型冷水(热泵)机组, 其可独立工作, 并可运用在移动的场合。 In addition, those skilled in the art can understand that although the parallel DC compressor subsystem A and the AC compressor subsystem B are disposed in the above embodiment, the system still removes the AC compressor subsystem B and the AC power subsystem J. It can form a photovoltaic DC cold storage and regenerative cold water (heat pump) unit that does not depend on any auxiliary power supply. It can work independently and can be used in mobile applications.
以上仅是本发明的具体应用范例, 对本发明的保护范围不构成任何限制。 凡釆用等同变换或者等效替换而形成的技术方案, 均落在本发明权利保护范围 之内。
The above is only a specific application example of the present invention, and does not impose any limitation on the scope of protection of the present invention. Any technical solution formed by equivalent transformation or equivalent replacement is within the scope of the present invention.