[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010073445A1 - 活性エネルギー線硬化型組成物、活性エネルギー線硬化型コーティング材及び成形品 - Google Patents

活性エネルギー線硬化型組成物、活性エネルギー線硬化型コーティング材及び成形品 Download PDF

Info

Publication number
WO2010073445A1
WO2010073445A1 PCT/JP2009/005271 JP2009005271W WO2010073445A1 WO 2010073445 A1 WO2010073445 A1 WO 2010073445A1 JP 2009005271 W JP2009005271 W JP 2009005271W WO 2010073445 A1 WO2010073445 A1 WO 2010073445A1
Authority
WO
WIPO (PCT)
Prior art keywords
active energy
energy ray
group
formula
inorganic polymer
Prior art date
Application number
PCT/JP2009/005271
Other languages
English (en)
French (fr)
Inventor
内田かずほ
安藤努
中島大輔
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2009544078A priority Critical patent/JPWO2010073445A1/ja
Priority to CN2009801527387A priority patent/CN102264783A/zh
Priority to US13/124,441 priority patent/US20110201719A1/en
Priority to EP09834262.9A priority patent/EP2371872A4/en
Publication of WO2010073445A1 publication Critical patent/WO2010073445A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to an active energy ray-curable composition that can be used as a surface layer forming material for forming a surface layer on the surface of a molded body, for example, and an active energy ray-curable coating material and a molded article.
  • Poly (meth) acrylate resin or polycarbonate resin is excellent in moldability.
  • a resin molded product formed of a poly (meth) acrylate resin or a polycarbonate resin is lighter than glass.
  • the resin molded product is widely used for spectacles, contact lenses, lenses for optical devices, and the like.
  • a resin molded product formed of a polycarbonate resin is excellent in impact resistance and is suitably used for a large resin molded product.
  • a resin molded product formed of polycarbonate resin has been put to practical use as a headlamp lens for automobiles, a hood for motorcycles, or window materials for automobiles, trains, bullet trains, and the like.
  • the resin molded product has a lower surface hardness than glass. For this reason, the said resin molded product is easy to be damaged at the time of transportation, attachment of parts, or use. Moreover, the durability of the resin molded product is low.
  • Patent Document 1 discloses the formation of a surface layer containing a polyfunctional acrylate monomer, colloidal silica, acryloxy functional silane, and a photopolymerization initiator. A composition for use is disclosed. In the example of Patent Document 1, 3-methacryloxypropyltrimethoxysilane is used as the acryloxy functional silane.
  • Patent Document 2 discloses a composition for forming a surface layer containing an ultraviolet curable resin and a surface modifier that is a siloxane compound.
  • the ultraviolet curable resin include acrylic oligomers having two or more acryloyl groups in the molecule, and acrylic monomers or oligomers to which colloidal silica is bonded.
  • the siloxane compound include a polyether-modified dimethylpolysiloxane copolymer, a polyether-modified methylalkylpolysiloxane copolymer, and a polyester-modified dimethylpolysiloxane.
  • Patent Document 3 discloses a coated resin molded product in which a primer layer is formed on the surface of a resin molded product and then a topcoat layer is formed on the surface of the primer layer.
  • a thermoplastic acrylic polymer is used as a material for forming the primer layer.
  • Organopolysiloxane filled with colloidal silica is used as a material for forming the topcoat layer.
  • the hardness of the surface layer may not be sufficiently high.
  • a topcoat layer is formed after a primer layer is formed in order to increase the surface hardness. Therefore, the production efficiency of the resin molded product covered with the surface layer is low. Even when the surface layer is formed of the primer layer forming material and the top coat layer forming material, the hardness of the surface layer may not be sufficiently high. Furthermore, the material for forming the top coat layer has a problem that it takes a long time to cure.
  • An object of the present invention is to provide an active energy ray-curable composition capable of giving a cured product having excellent scratch resistance and easily obtaining a molded article having a surface layer with high hardness, and an active energy ray-curable coating It is to provide materials and molded products.
  • an inorganic polymer obtained by hydrolytic condensation of an inorganic polymer component containing a silane compound represented by the following formula (1), a water-soluble polyfunctional (meth) acrylate, and active energy rays An active energy ray-curable composition comprising a polymerization initiator is provided.
  • R1 represents an organic group having 1 to 30 carbon atoms having a polymerizable double bond
  • R2 represents an alkyl group having 1 to 6 carbon atoms
  • p represents 1 or 2.
  • the plurality of R1 may be the same or different.
  • Several R2 may be the same and may differ.
  • the inorganic polymer constituent further includes a metal alkoxide compound represented by the following formula (2).
  • M represents Si, Ti or Zr
  • R3 represents a phenyl group, an alkyl group having 1 to 30 carbon atoms, or a hydrocarbon group having 1 to 30 carbon atoms having an epoxy group
  • R4 represents Represents an alkyl group having 1 to 6 carbon atoms
  • n represents an integer of 0 to 2.
  • the plurality of R3 may be the same or different.
  • Several R4 may be the same and may differ.
  • the compound represented by the above formula (2) is a silane compound represented by the following formula (21).
  • R13 represents a phenyl group, an alkyl group having 1 to 30 carbon atoms, or a hydrocarbon group having 1 to 30 carbon atoms having an epoxy group
  • R14 represents an alkyl group having 1 to 6 carbon atoms.
  • M represents an integer of 0-2.
  • m 2
  • the plurality of R13 may be the same or different.
  • Several R14 may be the same and may differ.
  • the inorganic polymer component includes a compound represented by the following formula (2A) as a compound represented by the above formula (2).
  • R4a represents an alkyl group having 1 to 6 carbon atoms.
  • the plurality of R4a may be the same or different.
  • the inorganic polymer constituent component includes a compound represented by the following formula (21A) as a compound represented by the above formula (21).
  • R14a represents an alkyl group having 1 to 6 carbon atoms. Several R14a may be the same and may differ.
  • the water-soluble polyfunctional (meth) acrylate is an oxyalkylene-modified glycerin (meth) acrylate represented by the following formula (3) or an alkylene represented by the following formula (4).
  • Glycol di (meth) acrylate is an oxyalkylene-modified glycerin (meth) acrylate represented by the following formula (3) or an alkylene represented by the following formula (4).
  • R5 represents an ethylene group or a propylene group
  • R6 represents hydrogen or a methyl group
  • R7 represents hydrogen or a methyl group
  • the sum of x, y and z represents an integer of 6 to 30 .
  • a plurality of R5, R6 and R7 may be the same or different.
  • R8 represents hydrogen or a methyl group
  • R9 represents an ethylene group or a propylene group
  • p represents an integer of 1 to 25.
  • the active energy ray-curable composition according to the present invention is preferably a coating material.
  • the active energy ray-curable composition according to the present invention is suitably used as an active energy ray-curable coating material.
  • the molded product according to the present invention has a surface layer formed using an active energy ray-curable coating material configured according to the present invention.
  • an inorganic polymer obtained by hydrolytic condensation of an inorganic polymer component containing the compound represented by the above formula (1), a water-soluble polyfunctional (meth) acrylate, and active energy ray polymerization initiation Since the agent is contained, the scratch resistance of the cured product after curing can be improved.
  • the scratch resistance of the cured product after curing can be further enhanced.
  • a molded product having a surface layer with high hardness can be easily provided.
  • FIG. 1 is a perspective view showing a molded product according to an embodiment of the present invention.
  • the active energy ray-curable composition according to the present invention includes an inorganic polymer obtained by hydrolytic condensation of an inorganic polymer component, a water-soluble polyfunctional (meth) acrylate, and an active energy ray polymerization initiator.
  • the “inorganic polymer constituent component” means a component used when obtaining an inorganic polymer and constituting a part of the skeleton of the obtained inorganic polymer.
  • the inorganic polymer contained in the active energy ray-curable composition according to the present invention is an inorganic polymer obtained by hydrolytic condensation of an inorganic polymer component containing a silane compound represented by the following formula (1). .
  • R1 represents an organic group having 1 to 30 carbon atoms having a polymerizable double bond
  • R2 represents an alkyl group having 1 to 6 carbon atoms
  • p represents 1 or 2.
  • the plurality of R1 may be the same or different.
  • Several R2 may be the same and may differ.
  • the inorganic polymer constituent component preferably further contains a metal alkoxide compound represented by the following formula (2).
  • the inorganic polymer contained in the active energy ray-curable composition according to the present invention comprises an inorganic polymer component containing a compound represented by the above formula (1) and a compound represented by the following formula (2).
  • An inorganic polymer obtained by hydrolysis and condensation is preferred.
  • M represents Si, Ti or Zr
  • R3 represents a phenyl group, an alkyl group having 1 to 30 carbon atoms, or a hydrocarbon group having 1 to 30 carbon atoms having an epoxy group
  • R4 represents Represents an alkyl group having 1 to 6 carbon atoms
  • n represents an integer of 0 to 2.
  • the plurality of R3 may be the same or different.
  • Several R4 may be the same and may differ.
  • R3 in the above formula (2) is an alkyl group having 1 to 30 carbon atoms
  • specific examples of R3 include methyl, ethyl, propyl, isopropyl, isobutyl, n-hexyl, and cyclohexyl groups. , N-octyl group, n-decyl group and the like.
  • the upper limit with preferable carbon number of this alkyl group is 10, and the more preferable upper limit is 6.
  • the “alkyl group” includes a cycloalkyl group.
  • R3 in the above formula (2) is a hydrocarbon group having 1 to 30 carbon atoms having an epoxy group
  • specific examples of R3 include 1,2-epoxyethyl group, 1,2-epoxypropyl group, 2 , 3-epoxypropyl group, 3,4-epoxybutyl group, 3-glycidoxypropyl group, 2- (3,4-epoxycyclohexyl) ethyl group, and the like.
  • the upper limit with preferable carbon number of this hydrocarbon group is 8, and the more preferable upper limit is 6.
  • the hydrocarbon group in “the hydrocarbon group having 1 to 30 carbon atoms having an epoxy group” is a group containing an oxygen atom derived from an epoxy group in addition to a carbon atom and a hydrogen atom.
  • R4 in the above formula (2) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.
  • M in the above formula (2) is Si, Ti or Zr. M is preferably Si. That is, the compound represented by the above formula (2) is preferably a silane compound represented by the following formula (21).
  • R13 represents a phenyl group, an alkyl group having 1 to 30 carbon atoms, or a hydrocarbon group having 1 to 30 carbon atoms having an epoxy group
  • R14 represents an alkyl group having 1 to 6 carbon atoms.
  • M represents an integer of 0-2.
  • m 2
  • the plurality of R13 may be the same or different.
  • Several R14 may be the same and may differ.
  • R13 in the above formula (21) the same groups as those described above for R3 can be mentioned.
  • R13 in the above formula (21) is an alkyl group having 1 to 30 carbon atoms
  • the preferred upper limit of the carbon number of this alkyl group is 10, and the more preferred upper limit is 6.
  • R13 in the formula (21) is a hydrocarbon group having 1 to 30 carbon atoms having an epoxy group
  • the preferable upper limit of the carbon number of the hydrocarbon group is 8, and the more preferable upper limit is 6.
  • silane compound represented by the above formula (21) examples include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, isopropyltrimethoxysilane, Examples include isobutyltrimethoxysilane, cyclohexyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, and diisopropyldimethoxysilane.
  • M in the above formula (2) is Ti
  • specific examples of the compound represented by the above formula (2) include titanium tetramethoxide, titanium tetraethoxide, titanium tetraisopropoxide, or titanium tetrabutoxide. Etc.
  • M in the above formula (2) is Zr
  • specific examples of the compound represented by the above formula (2) include zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetraisopropoxide, or zirconium tetrabutoxide. Etc.
  • the polymerizable double bond of R1 in the above formula (1) includes a carbon-carbon double bond.
  • R1 in the above formula (1) examples include a vinyl group, an allyl group, an isopropenyl group, or a 3- (meth) acryloxyalkyl group.
  • the (meth) acryloxyalkyl group examples include a (meth) acryloxymethyl group, a (meth) acryloxyethyl group, a (meth) acryloxypropyl group, and the like.
  • R1 is a (meth) acryloxyalkyl group.
  • the preferable lower limit of the carbon number of R1 is 2, a preferable upper limit is 30, and a more preferable upper limit is 10.
  • (meth) acryloxy means methacryloxy or acryloxy.
  • R2 in the above formula (1) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.
  • silane compound represented by the above formula (1) examples include 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, or 3- (meth) acryloxypropyl.
  • examples include methyldimethoxysilane.
  • Only 1 type may be used for the metal alkoxide compound represented by the said Formula (2), or the silane compound represented by the said Formula (21), and 2 or more types may be used together.
  • the silane compound represented by the said Formula (1) only 1 type may be used and 2 or more types may be used together.
  • the formula (2) or formula (21) is used in 100 wt% of the inorganic polymer constituent component.
  • the compound to be contained is more preferably contained in the range of 5 to 95% by weight.
  • the more preferable lower limit of the content of the compound represented by the formula (2) or the formula (21) is 10 wt%, and the more preferable upper limit is 90 wt%.
  • cured material obtained by hardening an active energy ray hardening-type composition may crack.
  • the content of the compound represented by the formula (2) or the formula (21) is too large, a cured product obtained by curing the active energy ray-curable composition becomes flexible, so that the scratch resistance is high. Tend to be lower.
  • the silane compound represented by the formula (1) is preferably contained in the range of 100 to 5% by weight in 100% by weight of the inorganic polymer component, and contained in the range of 95 to 5% by weight. It is preferable that In 100% by weight of the inorganic polymer component, a more preferable upper limit of the content of the silane compound represented by the formula (1) is 90% by weight, and a more preferable lower limit is 10% by weight. If the content of the compound represented by the above formula (1) is too small, the cured product obtained by curing the active energy ray-curable composition becomes flexible, and thus the scratch resistance tends to be low. . When there is too much content of the compound represented by the said Formula (1), the hardened
  • the inorganic polymer constituent component may include a compound represented by the following formula (2A) in which n in the above formula (2) is 0 as the compound represented by the above formula (2).
  • the compound represented by the above formula (2) may be a compound represented by the following formula (2A) in which n in the above formula (2) is 0.
  • the said inorganic polymer structural component may contain the silane compound represented by following formula (21A) whose m in said Formula (21) is 0 as a compound represented by said Formula (2).
  • the compound represented by the above formula (2) may be a silane compound represented by the following formula (21A) in which m in the above formula (21) is 0.
  • R4a represents an alkyl group having 1 to 6 carbon atoms.
  • the plurality of R4a may be the same or different.
  • R14a represents an alkyl group having 1 to 6 carbon atoms. Several R14a may be the same and may differ.
  • the inorganic polymer component may contain a compound represented by the above formula (2) and a compound other than the silane compound represented by the above formula (1).
  • the other compound is a compound represented by the above formula (2) and a silane represented by the above formula (1) as long as the transparency and scratch resistance of the cured product of the active energy ray-curable composition are not lowered. It may be copolymerized or graft polymerized with the compound.
  • Solvent, water, alcohols generated by condensation, etc. are removed from a reaction solution obtained by adding a solvent or water and a catalyst to the above inorganic polymer component and hydrolyzing and condensing the inorganic polymer component by a sol-gel method. By doing so, an inorganic polymer can be obtained.
  • the solvent is not particularly limited as long as it is a solvent that dissolves the compound represented by the above formula (2) and the silane compound represented by the above formula (1).
  • Specific examples of the solvent include alcohol solvents such as methanol, ethanol, n-propanol and isopropanol, ether solvents such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethyl ether, benzene, toluene and n-hexane.
  • hydrocarbon solvents such as acetone, ketone solvents such as methyl ethyl ketone and cyclohexanone, and ester solvents such as ethyl acetate and butyl acetate.
  • the said solvent only 1 type may be used and 2 or more types may be used together.
  • a low boiling point solvent is preferable.
  • an alcohol solvent such as methanol, ethanol, n-propanol or isopropanol is preferably used.
  • Water used for the hydrolysis reaction is added to convert an alkoxy group of the compound represented by the above formula (2) and the silane compound represented by the above formula (1) into a hydroxyl group.
  • the water used for the hydrolysis reaction is preferably added in an amount of 0.1 to 1 equivalent to the number of moles of the alkoxy group. If the amount of water used for the hydrolysis reaction is too small, the hydrolysis reaction and condensation reaction will not proceed sufficiently, and an inorganic polymer may not be obtained. If the amount of water used for the hydrolysis reaction is too large, the inorganic polymer may gel, so the reaction time and temperature need to be adjusted optimally.
  • the catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, nitrous acid, perchloric acid or sulfamic acid, or formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid, maleic acid.
  • An organic acid such as acid, lactic acid, p-toluenesulfonic acid or acrylic acid may be mentioned.
  • the said catalyst is hydrochloric acid, acetic acid, or acrylic acid.
  • the weight average molecular weight of the inorganic polymer is preferably in the range of 1000 to 100,000.
  • a more preferable lower limit of the weight average molecular weight of the inorganic polymer is 1500, a more preferable upper limit is 20000, and a further preferable upper limit is 10,000. If the said weight average molecular weight satisfy
  • the said weight average molecular weight is a weight average molecular weight by polystyrene conversion measured by the gel permeation chromatography (GPC) method.
  • the weight average molecular weight is obtained by using a filtrate obtained by diluting the inorganic polymer 100-fold with tetrahydrofuran (THF) by filtering with a filter, and then using the filtrate and the column. And can be measured by the GPC method.
  • GPC gel permeation chromatography
  • the column for example, a trade name “2690 Separations Model” manufactured by Water is used.
  • the inorganic polymer is preferably contained within a range of 5 to 89.9% by weight in a total of 100% by weight of the inorganic polymer, the water-soluble polyfunctional (meth) acrylate and the active energy ray polymerization initiator. .
  • a more preferable upper limit of the content of the inorganic polymer is 79.9% by weight, a more preferable lower limit is 10% by weight, and a still more preferable lower limit is 20% by weight.
  • Water-soluble polyfunctional (meth) acrylate The water-soluble polyfunctional (meth) acrylate contained in the active energy ray-curable composition according to the present invention is not particularly limited as long as it has water solubility and has two or more (meth) acryl groups. . As for water-soluble polyfunctional (meth) acrylate, only 1 type may be used and 2 or more types may be used together.
  • (meth) acryl means acrylic or methacrylic.
  • (Meth) acrylate means acrylate or methacrylate.
  • water-soluble polyfunctional (meth) acrylate examples include triethylene glycol di (meth) acrylate and pentaerythritol tri (meth) acrylate.
  • water-soluble polyfunctional (meth) acrylate oxyalkylene-modified glycerin (meth) acrylate represented by the following formula (3), alkylene glycol di (meth) acrylate represented by the following formula (4), etc. Is mentioned.
  • the water-soluble polyfunctional (meth) acrylate is an oxyalkylene-modified glycerin (meth) acrylate represented by the following formula (3) or an alkylene glycol di (meth) acrylate represented by the following formula (4). preferable.
  • R5 represents an ethylene group or a propylene group
  • R6 represents hydrogen or a methyl group
  • R7 represents hydrogen or a methyl group
  • the sum of x, y and z represents an integer of 6 to 30 .
  • a plurality of R5, R6 and R7 may be the same or different.
  • R8 represents hydrogen or a methyl group
  • R9 represents an ethylene group or a propylene group
  • p represents an integer of 1 to 25.
  • the water-soluble polyfunctional (meth) acrylate preferably has 3 or more alkylene glycol units, more preferably 6 or more, and still more preferably 9 or more. The more alkylene glycol units, the higher the scratch resistance of the cured product.
  • the inorganic polymer and the water-soluble polyfunctional (meth) acrylate are preferably used in a weight ratio (inorganic polymer: water-soluble polyfunctional (meth) acrylate) of 8: 2 to 5: 5.
  • a weight ratio inorganic polymer: water-soluble polyfunctional (meth) acrylate
  • the water-soluble polyfunctional (meth) acrylate may be added after the inorganic polymer component is polymerized by hydrolysis and condensation reaction by a sol-gel method, and after removing the solvent and water, the inorganic polymer component is polymerized. It may be added immediately after removing the solvent and water.
  • the active energy ray polymerization initiator contained in the active energy ray-curable composition according to the present invention is not particularly limited, but a photopolymerization initiator that generates radicals by irradiation with active energy rays is preferable.
  • a commercially available photopolymerization initiator can be used.
  • photopolymerization initiator examples include benzoin compounds, acetophenone compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, and phosphine oxide compounds.
  • benzoin compounds examples include benzoin compounds, acetophenone compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, and phosphine oxide compounds.
  • the said photoinitiator only 1 type may be used and 2 or more types may be used together.
  • benzoin compound examples include benzoin, benzoymethyl ether, benzoyethyl ether, benzoypropyl ether, and benzoyisobutyl ether.
  • acetophenone compound examples include acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl.
  • anthraquinone compound examples include 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, and 2-amylanthraquinone.
  • Examples of the thioxanthone compound include 2,4-diethylthioxanthone, 2-isopropylthioxanthone, and 2-chlorothioxanthone.
  • ketal compound examples include acetophenone dimethyl ketal and benzyl dimethyl ketal.
  • benzophenone compound examples include benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 4,4'-bismethylaminobenzophenone, and the like.
  • Examples of the phosphine oxide compound include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, or bis (2,4,6- And trimethylbenzoyl) -phenylphosphine oxide.
  • the photopolymerization initiator is preferably an acetophenone compound or a phosphine oxide compound. Since yellowing after irradiation with active energy rays can be further suppressed, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- ( Methylthio) phenyl] -2-morpholino-propan-1-one, 2,4,6-trimethylbenzoyldiphenylphosphine oxide or bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide is preferred 2,2-dimethoxy-1,2-diphenylethane-1-one or 1-hydroxycyclohexyl phenyl ketone is more preferred.
  • the content of the active energy ray polymerization initiator can be appropriately adjusted according to the kind and number of moles of polymerizable double bonds and the irradiation energy of ultraviolet rays contained in the active energy ray curable composition.
  • the active energy ray polymerization initiator is contained in the range of 0.5 to 20% by weight in a total of 100% by weight of the inorganic polymer, the water-soluble polyfunctional (meth) acrylate and the active energy ray polymerization initiator. It is preferable.
  • the minimum with preferable content of the said active energy ray polymerization initiator is 2 weight%, and a preferable upper limit is 10 weight%.
  • the active energy ray-curable composition according to the present invention can be used by diluting with a solvent in order to uniformly coat the substrate.
  • the organic solvent may be mentioned as the solvent.
  • the said solvent only 1 type may be used and 2 or more types may be used together.
  • Specific examples of the organic solvent include, for example, alcohols such as ethanol, 1-propanol, 2-propanol, 1-butanol, t-butanol or 1-methoxy-2-ethanol, ethyl acetate, propyl acetate or butyl acetate.
  • the active energy ray-curable composition according to the present invention may contain a thixotropic agent, a dispersant, a flame retardant, a colorant, an ultraviolet absorber, an antioxidant, or the like, if necessary.
  • the active energy rays irradiated when the active energy ray-curable composition according to the present invention is cured include ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, ⁇ rays, X rays, infrared rays, and visible rays.
  • ultraviolet rays or electron beams are preferable because they are excellent in curability and hardened products are hardly deteriorated.
  • the active energy ray-curable composition according to the present invention by irradiation with ultraviolet rays, various ultraviolet irradiation devices can be used.
  • the light source a xenon lamp, a high-pressure mercury lamp, a metal halide lamp, or the like can be used.
  • the irradiation energy of ultraviolet rays is preferably in the range of 10 to 10,000 mJ / cm 2 , more preferably in the range of 100 to 5,000 mJ / cm 2 .
  • the irradiation energy of ultraviolet rays is too low, the active energy ray-curable composition is difficult to be cured, and the scratch resistance of the cured product may be lowered.
  • the irradiation energy of ultraviolet rays is too high, the cured product may be deteriorated or the transparency of the cured product may be lowered.
  • the irradiation energy of the electron beam is preferably in the range of 0.5 to 20 Mrad, and more preferably in the range of 1.0 to 10 Mrad. If the irradiation energy of the electron beam is too low, the active energy ray-curable composition is difficult to be cured, and the scratch resistance of the cured product tends to be low. If the irradiation energy of the electron beam is too high, the cured product may be deteriorated or the transparency of the cured product may be reduced.
  • the active energy ray-curable composition according to the present invention comprises the inorganic polymer, the water-soluble polyfunctional (meth) acrylate, the active energy ray polymerization initiator, and other components blended as necessary. It is obtained by mixing.
  • a cured product can be obtained by irradiating the active energy ray-curable composition according to the present invention with an active energy ray to advance the curing and then firing the composition.
  • active energy ray hardening-type composition which concerns on this invention WHEREIN: Active energy A cured product can be obtained by baking the composition after curing with a polymerizable functional group by irradiation with a line.
  • the active energy ray curable composition according to the present invention is provided with an active energy ray.
  • the active energy ray polymerization initiator decomposes to generate radicals, and the water-soluble polyfunctional (meth) acrylate and the polymerizable double of the silane compound represented by the above formula (1) which is an inorganic polymer constituent component Bonding causes a first polymerization reaction, and further crosslinking proceeds.
  • the active energy ray-curable composition having undergone the first polymerization reaction is baked, the inorganic polymer is crosslinked while forming a siloxane bond by a dehydration condensation reaction, and the second polymerization reaction proceeds.
  • the firing temperature at the time of advancing the second polymerization reaction is not particularly limited, but it is preferable to select a temperature as high as possible according to the heat resistance of the base resin.
  • the firing temperature is about 110 to 130 ° C.
  • the reaction time can be appropriately changed depending on the firing temperature.
  • the reaction time is about 30 minutes to 4 hours.
  • the active energy ray-curable composition according to the present invention is the first Since it is cured by the second polymerization reaction, a hard and dense cured product is obtained. For this reason, the abrasion resistance of hardened
  • the active energy ray-curable composition according to the present invention is preferably a coating material.
  • the active energy ray-curable composition according to the present invention is suitably used as an active energy ray-curable coating material.
  • the molded product according to the present invention has a surface layer formed using an active energy ray-curable coating material configured according to the present invention.
  • FIG. 1 is a perspective view showing a molded product according to an embodiment of the present invention.
  • a molded product 1 shown in FIG. 1 includes a resin molded body 2 and first and second surface layers 3 and 4 formed on both surfaces of the resin molded body 2.
  • the 1st, 2nd surface layers 3 and 4 are formed of the hardened
  • Example 1 95.2 g of ethanol, 99.4 g (0.4 mol) of 3-methacryloxypropyltrimethoxysilane (MPTS) and 109.0 g (0.8 mol) of methyltrimethoxysilane (MeTS) were added to the flask. The mixture was obtained by mixing. While cooling the resulting mixed liquid to 0 ° C., dilute hydrochloric acid obtained by diluting 8.75 g of 12N concentrated hydrochloric acid with 30.4 g of water was added dropwise to the mixed liquid, stirred for 10 minutes, further stirred at room temperature for 10 minutes, and mixed. A solution was obtained. The obtained mixed solution was heated to 80 ° C. and concentrated by an evaporator to obtain 125.0 g of a viscous and transparent inorganic polymer-containing solution.
  • MPTS 3-methacryloxypropyltrimethoxysilane
  • MeTS methyltrimethoxysilane
  • the addition amount of the photopolymerization initiator is 5 parts by weight with respect to a total of 100 parts by weight of the inorganic polymer and the water-soluble polyfunctional (meth) acrylate, and the inorganic polymer and the water-soluble polyfunctional (meth).
  • the total amount of acrylate and the photopolymerization initiator was 100% by weight, and it was 4.8% by weight.
  • Example 2 The amount of 3-methacryloxypropyltrimethoxysilane (MPTS) added was changed from 99.4 g (0.4 mol) to 49.7 g (0.2 mol), and the methyltrimethoxysilane (MeTS) 111.5 g of a viscous and transparent inorganic polymer-containing solution was obtained in the same manner as in Example 1 except that the addition amount was changed from 109.0 g (0.8 mol) to 136.2 g (1.0 mol). It was.
  • MPTS 3-methacryloxypropyltrimethoxysilane
  • the addition amount of the photopolymerization initiator is 5 parts by weight with respect to a total of 100 parts by weight of the inorganic polymer and the water-soluble polyfunctional (meth) acrylate, and the inorganic polymer and the water-soluble polyfunctional (meth).
  • the total amount of acrylate and the photopolymerization initiator was 100% by weight, and it was 4.8% by weight.
  • Example 3 The addition amount of the 3-methacryloxypropyltrimethoxysilane (MPTS) was changed from 99.4 g (0.4 mol) to 248.4 g (1.0 mol), and the methyltrimethoxysilane (MeTS) In the same manner as in Example 1 except that the addition amount was changed from 109.0 g (0.8 mol) to 27.2 g (0.2 mol), 165.4 g of a viscous and transparent inorganic polymer-containing solution was added. Obtained.
  • MPTS 3-methacryloxypropyltrimethoxysilane
  • MeTS methyltrimethoxysilane
  • the addition amount of the photopolymerization initiator is 5 parts by weight with respect to a total of 100 parts by weight of the inorganic polymer and the water-soluble polyfunctional (meth) acrylate, and the inorganic polymer and the water-soluble polyfunctional (meth).
  • the total amount of acrylate and the photopolymerization initiator was 100% by weight, and it was 4.8% by weight.
  • Example 4 95.2 g of ethanol, 20.8 g (0.1 mol) of tetraethoxysilane (TEOS), 74.5 g (0.3 mol) of 3-methacryloxypropyltrimethoxysilane (MPTS), methyltrimethoxysilane (MeTS) ) 109.0 g (0.8 mol) was added to the flask and mixed to obtain a mixture. While cooling the resulting mixed liquid to 0 ° C., dilute hydrochloric acid obtained by diluting 8.75 g of 12N concentrated hydrochloric acid with 30.4 g of water was added dropwise to the mixed liquid, stirred for 10 minutes, further stirred at room temperature for 10 minutes, and mixed. A solution was obtained. The obtained mixed solution was heated to 80 ° C. and concentrated by an evaporator to obtain 122.6 g of a viscous and transparent inorganic polymer-containing solution.
  • TEOS tetraethoxysilane
  • MPTS 3-methacryloxypropy
  • the addition amount of the photopolymerization initiator is 5 parts by weight with respect to a total of 100 parts by weight of the inorganic polymer and the water-soluble polyfunctional (meth) acrylate, and the inorganic polymer and the water-soluble polyfunctional (meth).
  • the total amount of acrylate and the photopolymerization initiator was 100% by weight, and it was 4.8% by weight.
  • Example 5 190.4 g of ethanol, 28.4 g (0.1 mol) of titanium tetraisopropoxide (TiTPr), 74.5 g (0.3 mol) of 3-methacryloxypropyltrimethoxysilane (MPTS), methyltrimethoxysilane (MeTS) 109.0 g (0.8 mol) was added to the flask and mixed to obtain a mixed solution. While cooling the resulting mixture to 0 ° C., dilute hydrochloric acid obtained by diluting 8.75 g of 12N concentrated hydrochloric acid with 21.4 g of water was added dropwise to the mixture, stirred for 10 minutes, and further stirred at room temperature for 10 minutes. A solution was obtained. The obtained mixed solution was heated to 80 ° C. and concentrated by an evaporator to obtain 127.1 g of a viscous and transparent inorganic polymer-containing solution.
  • TiTPr titanium tetraisopropoxide
  • MPTS 3-methacryloxypropyltri
  • the addition amount of the photopolymerization initiator is 5 parts by weight with respect to a total of 100 parts by weight of the inorganic polymer and the water-soluble polyfunctional (meth) acrylate, and the inorganic polymer and the water-soluble polyfunctional (meth).
  • the total amount of acrylate and the photopolymerization initiator was 100% by weight, and it was 4.8% by weight.
  • Example 2 In the same manner as in Example 1, 125.0 g of an inorganic polymer-containing solution was obtained. Water-soluble polyfunctional (meth) acrylate was not added to the resulting inorganic polymer-containing solution, 125.0 g of isopropyl alcohol, and 2,2-dimethoxy-1,2-diphenylethane-1-one as a photopolymerization initiator ( 6.3 g of Irgacure 651 manufactured by Ciba Specialty Chemicals was added to obtain an active energy ray-curable composition.
  • the addition amount of the photopolymerization initiator is 5 parts by weight with respect to a total of 100 parts by weight of the inorganic polymer and the water-soluble polyfunctional (meth) acrylate, and the inorganic polymer and the water-soluble polyfunctional (meth). It was 4.8% by weight in 100% by weight of the total of acrylate and the photopolymerization initiator.
  • The hard coat layer is colorless and uniform.
  • The hard coat layer has some unevenness, and the fluoroscopic image is distorted or the coating film becomes cloudy.
  • X A crack has occurred in the hard coat layer
  • the haze value of the polycarbonate plate on which the hard coat layer was not formed was measured, the haze value was 0.2%.
  • TEOS Tetraethoxysilane
  • MPTS 3-Methacryloxypropyltrimethoxysilane
  • Methyltrimethoxysilane Methyltrimethoxysilane
  • Example 7 95.2 g of ethanol, 99.4 g (0.4 mol) of 3-methacryloxypropyltrimethoxysilane (MPTS) and 109.0 g (0.8 mol) of methyltrimethoxysilane (MeTS) were added to the flask. The mixture was obtained by mixing. While cooling the resulting mixed liquid to 0 ° C., dilute hydrochloric acid obtained by diluting 8.75 g of 12N concentrated hydrochloric acid with 30.4 g of water was added dropwise to the mixed liquid, stirred for 10 minutes, further stirred at room temperature for 10 minutes, and mixed. A solution was obtained. The obtained mixed solution was heated to 80 ° C. and concentrated by an evaporator to obtain 125.0 g of a viscous and transparent inorganic polymer-containing solution.
  • MPTS 3-methacryloxypropyltrimethoxysilane
  • MeTS methyltrimethoxysilane
  • Example 8 to 30 and Comparative Examples 3 to 5 An active energy ray-curable composition was obtained in the same manner as in Example 1 except that the type and blending amount of the materials used were changed as shown in Tables 2 to 4 below.
  • Example 31 66.24 g of ethanol and 178.85 g (0.72 mol) of 3-methacryloxypropyltrimethoxysilane (MPTS) were added to the flask and mixed to obtain a mixed solution. While cooling the resulting mixture to 0 ° C., dilute hydrochloric acid obtained by diluting 6.00 g of 12N concentrated hydrochloric acid with 22.60 g of water was added dropwise to the mixture, stirred for 10 minutes, and further stirred at room temperature for 10 minutes. A solution was obtained. The obtained mixed solution was heated to 80 ° C. and concentrated by an evaporator to obtain 125.0 g of a viscous and transparent inorganic polymer-containing solution. The obtained inorganic polymer-containing solution had a weight average molecular weight of 2500.
  • MPTS 3-methacryloxypropyltrimethoxysilane
  • the addition amount of the photopolymerization initiator is 5 parts by weight with respect to a total of 100 parts by weight of the inorganic polymer and the water-soluble polyfunctional (meth) acrylate, and the inorganic polymer and the water-soluble polyfunctional (meth).
  • the total amount of acrylate and the photopolymerization initiator was 100% by weight, and it was 4.8% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Abstract

 耐擦傷性に優れた硬化物を与え、硬度が高い表面層が形成された成形品を容易に得ることができる活性エネルギー線硬化型組成物を提供する。 下記式(1)で表されるシラン化合物を含む無機ポリマー構成成分を加水分解縮合させて得られた無機ポリマーと、水溶性多官能(メタ)アクリレートと、活性エネルギー線光重合開始剤とを含む活性エネルギー線硬化型組成物。 Si(R1)(OR2)4-p ・・・式(1) 上記式(1)中、R1は重合性二重結合を有する炭素数1~30の有機基を表し、R2は炭素数1~6のアルキル基を表し、pは1又は2を表す。pが2であるとき、複数のR1は同一であってもよく、異なっていてもよい。複数のR2は同一であってもよく、異なっていてもよい。

Description

活性エネルギー線硬化型組成物、活性エネルギー線硬化型コーティング材及び成形品
 本発明は、例えば、成形体の表面に表面層を形成する表面層形成材料として用いることができる活性エネルギー線硬化型組成物、並びに活性エネルギー線硬化型コーティング材及び成形品に関する。
 ポリ(メタ)アクリレート樹脂又はポリカーボネート樹脂は、成形加工性に優れている。また、ポリ(メタ)アクリレート樹脂又はポリカーボネート樹脂により形成された樹脂成形品は、ガラスと比較して軽い。このため、上記樹脂成形品は、眼鏡、コンタクトレンズ又は光学装置用レンズ等に広く用いられている。特にポリカーボネート樹脂により形成された樹脂成形品は耐衝撃性に優れており、大型の樹脂成形品に好適に用いられている。例えば、ポリカーボネート樹脂により形成された樹脂成形品は、自動車のヘッドランプレンズ、バイクのフード、又は自動車、電車もしくは新幹線などの窓材料として実用化されている。
 しかしながら、上記樹脂成形品は、ガラスに比べると表面の硬度が低い。このため、運搬時、部品の取り付け時もしくは使用中に上記樹脂成形品に傷が付きやすい。また、上記樹脂成形品の耐久性は低い。
 従って、上記樹脂成形品の表面の硬度を高くすることが求められている。従来、硬度を高めるために、上記樹脂成形品の表面に、硬度が高い表面層が形成されている。
 上記表面層の形成材料の一例として、下記の特許文献1には、多官能性アクリレート単量体と、コロイド状シリカと、アクリルオキシ官能性シランと、光重合開始剤とを含有する表面層形成用組成物が開示されている。特許文献1の実施例では、上記アクリルオキシ官能性シランとして、3-メタクリルオキシプロピルトリメトキシシランが用いられている。
 また、下記の特許文献2には、紫外線硬化樹脂と、シロキサン化合物である表面改質剤とを含有する表面層形成用組成物が開示されている。上記紫外線硬化樹脂の具体例としては、アクリロイル基を分子中に2個以上有するアクリルオリゴマー、及びコロイダルシリカが結合されたアクリルモノマー又はオリゴマーが挙げられている。上記シロキサン化合物の具体例としては、ポリエーテル変性ジメチルポリシロキサン共重合体、ポリエーテル変性メチルアルキルポリシロキサン共重合体、及びポリエステル変性ジメチルポリシロキサンが挙げられている。
 また、下記の特許文献3には、樹脂成形品の表面に、プライマー層が形成された後、該プライマー層の表面にトップコート層が形成された被覆樹脂成形品が開示されている。上記プライマー層の形成材料として、熱可塑性アクリルポリマーが用いられている。上記トップコート層の形成材料として、コロイド状シリカが充填されたオルガノポリシロキサンが用いられている。
特開昭57-131214号公報 特開2003-338089号公報 特公平04-002614号公報
 上記特許文献1,2に記載の表面層形成用組成物を用いて、上記樹脂成形品の表面に表面層を形成した場合、表面層の硬度が充分に高くならないことがある。
 上記特許文献3では、表面の硬度を高めるために、プライマー層が形成された後、トップコート層が形成されている。従って、表面層により被覆された樹脂成形品の製造効率が低い。また、上記プライマー層の形成材料及び上記トップコート層の形成材料により表面層を形成した場合でも、表面層の硬度が充分に高くならないことがある。さらに、上記トップコート層の形成材料は、硬化に長時間を要するという問題がある。
 本発明の目的は、耐擦傷性に優れた硬化物を与え、硬度が高い表面層が形成された成形品を容易に得ることができる活性エネルギー線硬化型組成物、並びに活性エネルギー線硬化型コーティング材及び成形品を提供することにある。
 本発明の広い局面では、下記式(1)で表されるシラン化合物を含む無機ポリマー構成成分を加水分解縮合させて得られた無機ポリマーと、水溶性多官能(メタ)アクリレートと、活性エネルギー線重合開始剤とを含む、活性エネルギー線硬化型組成物が提供される。
 Si(R1)(OR2)4-p  ・・・式(1)
 上記式(1)中、R1は重合性二重結合を有する炭素数1~30の有機基を表し、R2は炭素数1~6のアルキル基を表し、pは1又は2を表す。pが2であるとき、複数のR1は同一であってもよく、異なっていてもよい。複数のR2は同一であってもよく、異なっていてもよい。
 本発明に係る活性エネルギー線硬化型組成物のある特定の局面では、上記無機ポリマー構成成分は、下記式(2)で表される金属アルコキシド化合物をさらに含む。
 M(R3)(OR4)4-n  ・・・式(2)
 上記式(2)中、MはSi、Ti又はZrであり、R3はフェニル基、炭素数1~30のアルキル基、又はエポキシ基を有する炭素数1~30の炭化水素基を表し、R4は炭素数1~6のアルキル基を表し、nは0~2の整数を表す。nが2であるとき、複数のR3は同一であってもよく、異なっていてもよい。複数のR4は同一であってもよく、異なっていてもよい。
 本発明の他の特定の局面では、上記式(2)で表される化合物は、下記式(21)で表されるシラン化合物である。
 Si(R13)(OR14)4-m  ・・・式(21)
 上記式(21)中、R13はフェニル基、炭素数1~30のアルキル基、又はエポキシ基を有する炭素数1~30の炭化水素基を表し、R14は炭素数1~6のアルキル基を表し、mは0~2の整数を表す。mが2であるとき、複数のR13は同一であってもよく、異なっていてもよい。複数のR14は同一であってもよく、異なっていてもよい。
 本発明のさらに他の特定の局面では、上記無機ポリマー構成成分は、上記式(2)で表される化合物として、下記式(2A)で表される化合物を含む。
 M(OR4a)  ・・・式(2A)
 上記式(2A)中、R4aは炭素数1~6のアルキル基を表す。複数のR4aは同一であってもよく、異なっていてもよい。
 本発明のさらに他の特定の局面では、上記無機ポリマー構成成分は、上記式(21)で表される化合物として、下記式(21A)で表される化合物を含む。
 Si(OR14a)  ・・・式(21A)
 上記式(21A)中、R14aは炭素数1~6のアルキル基を表す。複数のR14aは同一であってもよく、異なっていてもよい。
 本発明の別の特定の局面では、上記水溶性多官能(メタ)アクリレートは、下記式(3)で表されるオキシアルキレン変性グリセリン(メタ)アクリレート、又は下記式(4)で表されるアルキレングリコールジ(メタ)アクリレートである。
Figure JPOXMLDOC01-appb-C000001
 上記式(3)中、R5はエチレン基又はプロピレン基を表し、R6は水素又はメチル基を表し、R7は水素又はメチル基を表し、x、y及びzの合計は6~30の整数を表す。複数のR5、R6及びR7はそれぞれ、同一であってもよく、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000002
 上記式(4)中、R8は水素又はメチル基を表し、R9はエチレン基又はプロピレン基を表し、pは1~25の整数を表す。
 本発明に係る活性エネルギー線硬化型組成物は、コーティング材であることが好ましい。本発明に係る活性ネネルギー線硬化型組成物は、活性エネルギー線硬化型コーティング材として好適に用いられる。
 本発明に係る成形品は、本発明に従って構成された活性エネルギー線硬化型コーティング材を用いて形成された表面層を有する。
 本発明によれば、上記式(1)で表される化合物を含む無機ポリマー構成成分を加水分解縮合させて得られた無機ポリマーと、水溶性多官能(メタ)アクリレートと、活性エネルギー線重合開始剤とが含有されているため、硬化後の硬化物の耐擦傷性を高めることができる。
 上記無機ポリマー構成成分が、上記式(2)で表される化合物をさらに含む場合には、硬化後の硬化物の耐擦傷性をより一層高めることができる。
 本発明に係る活性エネルギー線硬化型組成物の使用により、硬度が高い表面層が形成された成形品を容易に提供できる。
図1は、本発明の一実施形態に係る成形品を示す斜視図である。
 以下、本発明の詳細を説明する。
 本発明に係る活性エネルギー線硬化型組成物は、無機ポリマー構成成分を加水分解縮合させて得られた無機ポリマーと、水溶性多官能(メタ)アクリレートと、活性エネルギー線重合開始剤とを含む。
 本明細書において、「無機ポリマー構成成分」とは、無機ポリマーを得る際に用いられる成分であって、得られた無機ポリマーの骨格の一部を構成する成分を意味する。
 (無機ポリマー)
 本発明に係る活性エネルギー線硬化型組成物に含まれている無機ポリマーは、下記式(1)で表されるシラン化合物を含む無機ポリマー構成成分を加水分解縮合させて得られた無機ポリマーである。
 Si(R1)(OR2)4-p  ・・・式(1)
 上記式(1)中、R1は重合性二重結合を有する炭素数1~30の有機基を表し、R2は炭素数1~6のアルキル基を表し、pは1又は2を表す。pが2であるとき、複数のR1は同一であってもよく、異なっていてもよい。複数のR2は同一であってもよく、異なっていてもよい。
 硬化物の耐擦傷性をより一層高める観点からは、上記無機ポリマー構成成分は、下記式(2)で表される金属アルコキシド化合物をさらに含むことが好ましい。本発明に係る活性エネルギー線硬化型組成物に含まれている無機ポリマーは、上記式(1)で表される化合物と、下記式(2)で表される化合物とを含む無機ポリマー構成成分を加水分解縮合させて得られた無機ポリマーであることが好ましい。
 M(R3)(OR4)4-n  ・・・式(2)
 上記式(2)中、MはSi、Ti又はZrであり、R3はフェニル基、炭素数1~30のアルキル基、又はエポキシ基を有する炭素数1~30の炭化水素基を表し、R4は炭素数1~6のアルキル基を表し、nは0~2の整数を表す。nが2であるとき、複数のR3は同一であってもよく、異なっていてもよい。複数のR4は同一であってもよく、異なっていてもよい。
 上記式(2)中のR3が炭素数1~30のアルキル基である場合、R3の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、イソブチル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、又はn-デシル基等が挙げられる。このアルキル基の炭素数の好ましい上限は10であり、より好ましい上限は6である。なお、本明細書において、「アルキル基」には、シクロアルキル基が含まれる。
 上記式(2)中のR3がエポキシ基を有する炭素数1~30の炭化水素基である場合、R3の具体例としては、1,2-エポキシエチル基、1,2-エポキシプロピル基、2,3-エポキシプロピル基、3,4-エポキシブチル基、3-グリシドキシプロピル基、又は2-(3,4-エポキシシクロヘキシル)エチル基等が挙げられる。この炭化水素基の炭素数の好ましい上限は8であり、より好ましい上限は6である。なお、本明細書において、「エポキシ基を有する炭素数1~30の炭化水素基」における炭化水素基は、炭素原子及び水素原子に加えて、エポキシ基に由来する酸素原子を含む基である。
 上記式(2)中のR4の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、又はイソブチル基等が挙げられる。
 上記式(2)中のMはSi、Ti又はZrである。MはSiであることが好ましい。すなわち、上記式(2)で表される化合物は、下記式(21)で表されるシラン化合物であることが好ましい。
 Si(R13)(OR14)4-m  ・・・式(21)
 上記式(21)中、R13はフェニル基、炭素数1~30のアルキル基、又はエポキシ基を有する炭素数1~30の炭化水素基を表し、R14は炭素数1~6のアルキル基を表し、mは0~2の整数を表す。mが2であるとき、複数のR13は同一であってもよく、異なっていてもよい。複数のR14は同一であってもよく、異なっていてもよい。
 上記式(21)中のR13としては、上記R3と同様の基が挙げられる。上記式(21)中のR13が炭素数1~30のアルキル基である場合、このアルキル基の炭素数の好ましい上限は10であり、より好ましい上限は6である。また、上記式(21)中のR13がエポキシ基を有する炭素数1~30の炭化水素基である場合、この炭化水素基の炭素数の好ましい上限は8であり、より好ましい上限は6である。
 また、上記式(21)中のR14としては、上記R4と同様の基が挙げられる。
 上記式(21)で表されるシラン化合物の具体例としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソプロピルトリメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、又はジイソプロピルジメトキシシラン等が挙げられる。
 上記式(2)中のMがTiである場合、上記式(2)で表される化合物の具体例としては、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトライソプロポキシド、又はチタンテトラブトキシド等が挙げられる。
 上記式(2)中のMがZrである場合、上記式(2)で表される化合物の具体例としては、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトライソプロポキシド、又はジルコニウムテトラブトキシド等が挙げられる。
 上記式(1)中のR1の重合性二重結合としては、炭素-炭素二重結合が挙げられる。
 上記式(1)中のR1の具体例としては、ビニル基、アリル基、イソプロペニル基、又は3-(メタ)アクリロキシアルキル基等が挙げられる。上記(メタ)アクリロキシアルキル基としては、(メタ)アクリロキシメチル基、(メタ)アクリロキシエチル基又は(メタ)アクリロキシプロピル基等が挙げられる。なかでも、R1は(メタ)アクリロキシアルキル基であることが好ましい。R1の炭素数の好ましい下限は2であり、好ましい上限は30であり、より好ましい上限は10である。
 本明細書において、「(メタ)アクリロキシ」とは、メタクリロキシ又はアクリロキシを意味する。
 上記式(1)中のR2の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基又はイソブチル基等が挙げられる。
 上記式(1)で表されるシラン化合物の具体例としては、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、又は3-(メタ)アクリロキシプロピルメチルジメトキシシラン等が挙げられる。
 上記式(2)で表される金属アルコキシド化合物又は上記式(21)で表されるシラン化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。上記式(1)で表されるシラン化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記無機ポリマー構成成分が上記式(2)又は式(21)で表される化合物を含む場合には、上記無機ポリマー構成成分100重量%中に、上記式(2)又は式(21)で表される化合物は5~95重量%の範囲内で含有されていることがより好ましい。上記無機ポリマー構成成分100重量%中、上記式(2)又は式(21)で表される化合物の含有量のより好ましい下限は10重量%であり、より好ましい上限は90重量%である。上記式(2)又は式(21)で表される化合物の含有量が少なすぎると、活性エネルギー線硬化型組成物を硬化させることにより得られた硬化物が割れることがある。上記式(2)又は式(21)で表される化合物の含有量が多すぎると、活性エネルギー線硬化型組成物を硬化させることにより得られた硬化物が柔軟になるため、耐擦傷性が低くなる傾向がある。
 上記無機ポリマー構成成分100重量%中に、上記式(1)で表されるシラン化合物は100~5重量%の範囲内で含有されていることが好ましく、95~5重量%の範囲内で含有されていることが好ましい。上記無機ポリマー構成成分100重量%中、上記式(1)で表されるシラン化合物の含有量のより好ましい上限は90重量%、より好ましい下限は10重量%である。上記式(1)で表される化合物の含有量が少なすぎると、活性エネルギー線硬化型組成物を硬化させることにより得られた硬化物が柔軟になるため、耐擦傷性が低くなる傾向がある。上記式(1)で表される化合物の含有量が多すぎると、活性エネルギー線硬化型組成物を硬化させることにより得られた硬化物が割れることがある。
 上記無機ポリマー構成成分は、上記式(2)で表される化合物として、上記式(2)中のnが0である、下記式(2A)で表される化合物を含んでいてもよい。上記式(2)で表される化合物は、上記式(2)中のnが0である、下記式(2A)で表される化合物でもよい。また、上記無機ポリマー構成成分は、上記式(2)で表される化合物として、上記式(21)中のmが0である、下記式(21A)で表されるシラン化合物を含んでいてもよい。上記式(2)で表される化合物は、上記式(21)中のmが0である、下記式(21A)で表されるシラン化合物でもよい。これらの化合物又はシラン化合物の使用により、活性エネルギー線硬化型組成物の硬化物の耐擦傷性をより一層高めることができる。
 M(OR4a)  ・・・式(2A)
 上記式(2A)中、R4aは炭素数1~6のアルキル基を表す。複数のR4aは同一であってもよく、異なっていてもよい。
 Si(OR14a)  ・・・式(21A)
 上記式(21A)中、R14aは炭素数1~6のアルキル基を表す。複数のR14aは同一であってもよく、異なっていてもよい。
 上記無機ポリマー構成成分は、上記式(2)で表される化合物及び上記式(1)で表されるシラン化合物以外の他の化合物を含有してもよい。上記他の化合物は、活性エネルギー線硬化型組成物の硬化物の透明性及び耐擦傷性を低下させない範囲で、上記式(2)で表される化合物及び上記式(1)で表されるシラン化合物と共重合、又はグラフト重合していてもよい。
 上記無機ポリマー構成成分に、溶媒又は水と触媒等とを加えて、ゾル-ゲル法により無機ポリマー構成成分を加水分解縮合させた反応溶液から、溶媒、水及び縮合により生じたアルコール類等を除去することにより、無機ポリマーを得ることができる。
 上記溶媒は、上記式(2)で表される化合物と、上記式(1)で表されるシラン化合物とを溶解する溶媒であれば、特に制限されない。上記溶媒の具体例としては、メタノール、エタノール、n-プロパノールもしくはイソプロパノール等のアルコール溶剤、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキサンもしくはジエチルエーテル等のエーテル溶剤、ベンゼン、トルエンもしくはn-ヘキサン等の炭化水素溶剤、アセトン、メチルエチルケトンもしくはシクロヘキサノン等のケトン溶剤、又は酢酸エチルもしくは酢酸ブチル等のエステル溶剤等が挙げられる。上記溶媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。なかでも、溶媒を容易に揮発させることができることから、低沸点溶剤が好ましい。上記低沸点溶剤として、メタノール、エタノール、n-プロパノールもしくはイソプロパノール等のアルコール溶剤を用いることが好ましい。
 加水分解反応に用いる水は、上記式(2)で表される化合物と、上記式(1)で表されるシラン化合物とのアルコキシ基を水酸基に変換するために添加される。上記加水分解反応に用いる水は、上記アルコキシ基のモル数に対して、0.1~1倍当量となるように添加されることが好ましい。上記加水分解反応に用いる水の添加量が少なすぎると、加水分解反応及び縮合反応が十分に進まず、無機ポリマーが得られないことがある。上記加水分解反応に用いる水の添加量が多すぎると、無機ポリマーがゲル化することがあるため、反応時間及び温度を最適に調整する必要がある。
 また、上記触媒の具体例としては、塩酸、硫酸、硝酸、リン酸、亜硝酸、過塩素酸もしくはスルファミン酸等の無機酸、又はギ酸、酢酸、プロピオン酸、酪酸、シュウ酸、コハク酸、マレイン酸、乳酸、パラトルエンスルホン酸もしくはアクリル酸等の有機酸が挙げられる。なかでも、加水分解反応及び縮合反応を制御しやすいことから、上記触媒は、塩酸、酢酸又はアクリル酸であることがより好ましい。
 上記無機ポリマーの重量平均分子量は、1000~100000の範囲内であることが好ましい。上記無機ポリマーの重量平均分子量のより好ましい下限は1500、より好ましい上限は20000、更に好ましい上限は10000である。上記重量平均分子量が上記好ましい下限を満たすと、活性エネルギー線硬化型組成物を硬化させることにより得られた硬化物が柔軟になりすぎず、耐擦傷性をより一層高めることができる。上記重量平均分子量が上記好ましい上限を満たすと、無機ポリマー含有溶液の粘度が高くなりすぎず、該無機ポリマー含有溶液の取扱性を高めることができる。
 なお、上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定されたポリスチレン換算による重量平均分子量である。該重量平均分子量は、具体的には、上記無機ポリマーをテトラヒドロフラン(THF)により100倍に希釈した希釈液を、フィルターでろ過することによりろ液を得た後、該ろ液とカラムとを用いて、GPC法により測定できる。上記カラムとして、例えば、Water社製の商品名「2690 Separations Model」等が用いられる。
 上記無機ポリマー、上記水溶性多官能(メタ)アクリレート及び上記活性エネルギー線重合開始剤の合計100重量%中に、上記無機ポリマーは5~89.9重量%の範囲内で含有されることが好ましい。上記無機ポリマーの含有量のより好ましい上限は79.9重量%であり、より好ましい下限は10重量%、さらに好ましい下限は20重量%である。
 (水溶性多官能(メタ)アクリレート)
 本発明に係る活性エネルギー線硬化型組成物に含まれている水溶性多官能(メタ)アクリレートは、水溶性を有し、かつ2以上の(メタ)アクリル基を有していれば特に限定されない。水溶性多官能(メタ)アクリレートは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 本明細書において、「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。また、「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。
 上記水溶性多官能(メタ)アクリレートの具体例としては、トリエチレングリコールジ(メタ)アクリレート、又はペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。
 さらに、上記水溶性多官能(メタ)アクリレートとしては、下記式(3)で表されるオキシアルキレン変性グリセリン(メタ)アクリレート、又は下記式(4)で表されるアルキレングリコールジ(メタ)アクリレート等が挙げられる。上記水溶性多官能(メタ)アクリレートは、下記式(3)で表されるオキシアルキレン変性グリセリン(メタ)アクリレート、又は下記式(4)で表されるアルキレングリコールジ(メタ)アクリレートであることが好ましい。これらの好ましい水溶性多官能(メタ)アクリレートの使用により、活性エネルギー線硬化型組成物の硬化物の耐擦傷性をより一層高めることができる。
Figure JPOXMLDOC01-appb-C000003
 上記式(3)中、R5はエチレン基又はプロピレン基を表し、R6は水素又はメチル基を表し、R7は水素又はメチル基を表し、x、y及びzの合計は6~30の整数を表す。複数のR5、R6及びR7はそれぞれ、同一であってもよく、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000004
 上記式(4)中、R8は水素又はメチル基を表し、R9はエチレン基又はプロピレン基を表し、pは1~25の整数を表す。
 上記水溶性多官能(メタ)アクリレートは、アルキレングリコール単位を3以上有することが好ましく、6以上有することがより好ましく、さらに9以上有することがより好ましい。上記アルキレングリコール単位が多いほど、硬化物の耐擦傷性がより一層高くなる。
 上記無機ポリマーに対する上記水溶性多官能(メタ)アクリレートの配合量が多いほど、硬化物の擦傷性が高められる傾向がある。上記無機ポリマーと上記水溶性多官能(メタ)アクリレートとは、重量比(無機ポリマー:水溶性多官能(メタ)アクリレート)で、8:2~5:5で用いられることが好ましい。上記無機ポリマーと上記水溶性多官能(メタ)アクリレートとが上記好ましい重量比で用いられた場合には、耐擦傷性がより一層高い硬化物を得ることができる。
 上記水溶性多官能(メタ)アクリレートは、上記無機ポリマー構成成分をゾルーゲル法により加水分解及び縮合反応により重合し、溶媒及び水等を除去した後に添加してもよく、上記無機ポリマー構成成分を重合した直後に添加し、溶媒及び水等を除去してもよい。
 (活性エネルギー線重合開始剤)
 本発明に係る活性エネルギー線硬化型組成物に含まれる活性エネルギー線重合開始剤は特に限定されないが、活性エネルギー線を照射することによってラジカルを発生させる光重合開始剤が好ましい。上記光重合開始剤として、一般に市販されている光重合開始剤を用いることができる。
 上記光重合開始剤としては、ベンゾイン化合物、アセトフェノン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、ベンゾフェノン化合物又はホスフィンオキサイド化合物等が挙げられる。上記光重合開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ベンゾイン化合物としては、ベンゾイン、ベンゾイメチルエーテル、ベンゾイエチルエーテル、ベンゾイプロピルエーテル又はベンゾイイソブチルエーテル等が挙げられる。
 上記アセトフェノン化合物としては、アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、又は2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン等が挙げられる。
 上記アントラキノン化合物としては、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-クロロアントラキノン又は2-アミルアントラキノン等が挙げられる。
 上記チオキサントン化合物としては、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン又は2-クロロチオキサントン等が挙げられる。
 上記ケタール化合物としては、アセトフェノンジメチルケタール又はベンジルジメチルケタール等が挙げられる。
 上記ベンゾフェノン化合物としては、ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド又は4,4’-ビスメチルアミノベンゾフェノン等が挙げられる。
 上記ホスフィンオキサイド化合物としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、又はビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等が挙げられる。
 紫外線の照射後の黄変を抑制できるため、上記光重合開始剤は、アセトフェノン化合物又はホスフィンオキサイド化合物であることが好ましい。活性エネルギー線の照射後の黄変をより一層抑制できるため、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド又はビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイドが好ましく、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン又は1-ヒドロキシシクロヘキシルフェニルケトンがより好ましい。
 上記活性エネルギー線重合開始剤の含有量は、上記活性エネルギー線硬化型組成物中に含まれる成分の重合性二重結合の種類及びモル数、紫外線の照射エネルギーによって適宜調整できる。上記無機ポリマー、上記水溶性多官能(メタ)アクリレート及び上記活性エネルギー線重合開始剤の合計100重量%中に、上記活性エネルギー線重合開始剤は0.5~20重量%の範囲内で含有されることが好ましい。上記活性エネルギー線重合開始剤の含有量の好ましい下限は2重量%であり、好ましい上限は10重量%である。上記活性エネルギー線重合開始剤の含有量が少なすぎると、重合反応が十分に進行しないために、硬化物の耐擦傷性が低くなる傾向がある。上記活性エネルギー線重合開始剤の含有量が多すぎると、紫外線の照射時、又は硬化物の使用時の紫外線等により、硬化物が割れてクラックが生じたり、分解物が表面にブリードアウトしたりして、外観不良が生じることがある。
 (他の成分)
 本発明に係る活性エネルギー線硬化型組成物は、基材に均一に塗工するために、溶剤により希釈して使用できる。
 上記溶剤としては、有機溶剤が挙げられる。上記溶剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。上記有機溶剤の具体例としては、例えば、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、t-ブタノールもしくは1-メトキシ-2-エタノールなどのアルコール類、酢酸エチル、酢酸プロピルもしくは酢酸ブチルなどのエステル類、メチルエチルケトン、エチルブチルケトン、メチルイソブチルケトンもしくはシクロヘキサノンなどのケトン類、トルエンもしくはキシレンなどの芳香族炭化水素、又は石油エーテルもしくは石油ナフサなどの石油溶剤類等が挙げられる。
 本発明に係る活性エネルギー線硬化型組成物は、必要に応じて、チキソ性付与剤、分散剤、難燃剤、着色剤、紫外線吸収剤又は酸化防止剤等を含有してもよい。
 (活性エネルギー線)
 本発明に係る活性エネルギー線硬化型組成物を硬化させる際に照射する活性エネルギー線には、紫外線、電子線、α線、β線、γ線、X線、赤外線及び可視光線が含まれる。これらの活性エネルギー線のなかでも、硬化性に優れ、かつ硬化物が劣化し難いため、紫外線又は電子線が好ましい。
 本発明に係る活性エネルギー線硬化型組成物を紫外線の照射により硬化させるために、種々の紫外線照射装置を用いることができる。光源として、キセノンランプ、高圧水銀灯又はメタルハライドランプ等を使用できる。紫外線の照射エネルギーは、10~10,000mJ/cmの範囲内にあることが好ましく、100~5,000mJ/cmの範囲内にあることがより好ましい。紫外線の照射エネルギーが低すぎると、活性エネルギー線硬化型組成物が硬化しにくく、硬化物の耐擦傷性が低くなることがある。紫外線の照射エネルギーが高すぎると、硬化物が劣化したり、硬化物の透明性が低下したりすることがある。
 本発明に係る活性エネルギー線硬化型組成物を電子線の照射により硬化させるために、種々の電子線照射装置を用いることができる。電子線の照射エネルギーは、0.5~20Mradの範囲内にあることが好ましく、1.0~10Mradの範囲内にあることがより好ましい。電子線の照射エネルギーが低すぎると、活性エネルギー線硬化型組成物が硬化しにくく、硬化物の耐擦傷性が低くなる傾向がある。電子線の照射エネルギーが高すぎると、硬化物が劣化したり、硬化物の透明性が低下したりすることがある。
 本発明に係る活性エネルギー線硬化型組成物は、上記無機ポリマーと、上記水溶性多官能(メタ)アクリレートと、上記活性エネルギー線重合開始剤と、必要に応じて配合される他の成分とを混合することにより得られる。
 本発明に係る活性エネルギー線硬化型組成物に活性エネルギー線を照射することにより、硬化を進行させた後、該組成物を焼成することにより、硬化物を得ることができる。また、上記無機ポリマー構成成分が、上記式(1)で表される化合物と上記式(2)で表される化合物とを含む場合に、本発明に係る活性エネルギー線硬化型組成物に活性エネルギー線を照射することにより、重合性官能基による硬化を進行させた後、該組成物を焼成することにより、硬化物を得ることができる。
 上記無機ポリマー構成成分が、上記式(1)で表される化合物と上記式(2)で表される化合物とを含む場合に、本発明に係る活性エネルギー線硬化型組成物に活性エネルギー線を照射すると、活性エネルギー線重合開始剤が分解してラジカルを生じ、上記水溶性多官能(メタ)アクリレートと、無機ポリマー構成成分である上記式(1)で表されるシラン化合物の重合性二重結合とが第1の重合反応を起こし、更に架橋が進行する。
 さらに、第1の重合反応が進行した活性エネルギー線硬化型組成物を焼成すると、脱水縮合反応によりシロキサン結合を形成しつつ無機ポリマーが架橋し、第2の重合反応が進行する。
 第2の重合反応を進行させる際の焼成温度は特に限定されないが、基材樹脂の耐熱性に応じてなるべく高い温度を選定することが好ましい。例えば、ポリカーボネート樹脂を機材とする場合、焼成温度は110~130℃程度である。反応時間は焼成温度により適宜変更され得る。反応時間は30分~4時間程度である。
 上記無機ポリマー構成成分が、上記式(1)で表される化合物と上記式(2)で表される化合物とを含む場合に、本発明に係る活性エネルギー線硬化型組成物は、上記第1,第2の重合反応により硬化されるため、硬質で緻密な硬化物が得られる。このため、硬化物の耐擦傷性をより一層高めることができる。
 (活性エネルギー線硬化型コーティング材)
 本発明に係る活性エネルギー線硬化型組成物は、コーティング材であることが好ましい。本発明に係る活性ネネルギー線硬化型組成物は、活性エネルギー線硬化型コーティング材として好適に用いられる。
 (成形品)
 本発明に係る成形品は、本発明に従って構成された活性エネルギー線硬化型コーティング材を用いて形成された表面層を有する。
 図1に、本発明の一実施形態に係る成形品を斜視図で示す。図1に示す成形品1は、樹脂成形体2と、樹脂成形体2の両面に形成された第1,第2の表面層3,4とを備える。第1,第2の表面層3,4が、本発明の活性エネルギー線硬化型コーティング材を硬化させることにより得られた硬化物層により形成されている。
 以下、実施例および比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
 (実施例1)
 エタノール95.2gと、3-メタクリロキシプロピルトリメトキシシラン(MPTS)99.4g(0.4モル)と、メチルトリメトキシシラン(MeTS)109.0g(0.8モル)とをフラスコに添加し、混合することにより、混合液を得た。得られた混合液を0℃に冷却しながら、水30.4gにより12Nの濃塩酸8.75gを希釈した希塩酸を混合液に滴下し、10分攪拌し、室温で10分さらに攪拌し、混合溶液を得た。得られた混合溶液を、80℃に加熱し、エバポレーターにより濃縮することにより、粘稠かつ透明な無機ポリマー含有溶液125.0gを得た。
 得られた無機ポリマー含有溶液に、イソプロピルアルコール125.0g、上記式(3)で表される水溶性多官能(メタ)アクリレートに相当するエトキシ化グリセリントリアクリレート(新中村化学工業社製、NKエステルA-GLY-9E、x+y+z=9)125.0g、及び光重合開始剤として2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(チバ・スペシャルティ・ケミカルズ社製、Irgacure651)を12.5g添加し、活性エネルギー線硬化型組成物を得た。なお、上記光重合開始剤の添加量は、無機ポリマー及び上記水溶性多官能(メタ)アクリレートの合計100重量部に対して、5重量部であり、無機ポリマー、上記水溶性多官能(メタ)アクリレート及び上記光重合開始剤の合計100重量%中、4.8重量%であった。
 (実施例2)
 上記3-メタクリロキシプロピルトリメトキシシラン(MPTS)の添加量を99.4g(0.4モル)から49.7g(0.2モル)に変更したこと、並びに上記メチルトリメトキシシラン(MeTS)の添加量を109.0g(0.8モル)から136.2g(1.0モル)に変更したこと以外は実施例1と同様にして、粘稠かつ透明な無機ポリマー含有溶液111.5gを得た。
 得られた無機ポリマー含有溶液に、イソプロピルアルコール111.5g、水溶性多官能(メタ)アクリレートとしてのエトキシ化グリセリントリアクリレート(新中村化学工業社製、NKエステルA-GLY-9E)111.5g、及び光重合開始剤として2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(チバ・スペシャルティ・ケミカルズ社製、Irgacure651)を11.2g添加し、活性エネルギー線硬化型組成物を得た。なお、上記光重合開始剤の添加量は、無機ポリマー及び上記水溶性多官能(メタ)アクリレートの合計100重量部に対して、5重量部であり、無機ポリマー、上記水溶性多官能(メタ)アクリレート及び上記光重合開始剤の合計100重量%中、4.8重量%であった。
 (実施例3)
 上記3-メタクリロキシプロピルトリメトキシシラン(MPTS)の添加量を99.4g(0.4モル)から248.4g(1.0モル)に変更したこと、並びに上記メチルトリメトキシシラン(MeTS)の添加量を109.0g(0.8モル)から27.2g(0.2モル)に変更としたこと以外は実施例1と同様にして、粘稠かつ透明な無機ポリマー含有溶液165.4gを得た。
 得られた無機ポリマー含有溶液に、イソプロピルアルコール165.4g、水溶性多官能(メタ)アクリレートとしてのエトキシ化グリセリントリアクリレート(新中村化学工業社製、NKエステルA-GLY-9E)165.4g、及び光重合開始剤として2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(チバ・スペシャルティ・ケミカルズ社製、Irgacure651)を16.5g添加し、活性エネルギー線硬化型組成物を得た。なお、上記光重合開始剤の添加量は、無機ポリマー及び上記水溶性多官能(メタ)アクリレートの合計100重量部に対して、5重量部であり、無機ポリマー、上記水溶性多官能(メタ)アクリレート及び上記光重合開始剤の合計100重量%中、4.8重量%であった。
 (実施例4)
 エタノール95.2gと、テトラエトキシシラン(TEOS)20.8g(0.1モル)、3-メタクリロキシプロピルトリメトキシシラン(MPTS)74.5g(0.3モル)と、メチルトリメトキシシラン(MeTS)109.0g(0.8モル)とをフラスコに添加し、混合することにより、混合液を得た。得られた混合液を0℃に冷却しながら、水30.4gにより12Nの濃塩酸8.75gを希釈した希塩酸を混合液に滴下し、10分攪拌し、室温で10分さらに攪拌し、混合溶液を得た。得られた混合溶液を、80℃に加熱し、エバポレーターにより濃縮することにより、粘稠かつ透明な無機ポリマー含有溶液122.6gを得た。
 得られた無機ポリマー含有溶液に、イソプロピルアルコール122.6g、水溶性多官能(メタ)アクリレートとしてのエトキシ化グリセリントリアクリレート(新中村化学工業社製、NKエステルA-GLY-9E)122.6g、及び光重合開始剤として2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(チバ・スペシャルティ・ケミカルズ社製、Irgacure651)を12.3g添加し、活性エネルギー線硬化型組成物を得た。なお、上記光重合開始剤の添加量は、無機ポリマー及び上記水溶性多官能(メタ)アクリレートの合計100重量部に対して、5重量部であり、無機ポリマー、上記水溶性多官能(メタ)アクリレート及び上記光重合開始剤の合計100重量%中、4.8重量%であった。
 (実施例5)
 エタノール190.4gと、チタンテトライソプロポキシド(TiTPr)28.4g(0.1モル)、3-メタクリロキシプロピルトリメトキシシラン(MPTS)74.5g(0.3モル)と、メチルトリメトキシシラン(MeTS)109.0g(0.8モル)とをフラスコに添加し、混合することにより、混合液を得た。得られた混合液を0℃に冷却しながら、水21.4gにより12Nの濃塩酸8.75gを希釈した希塩酸を混合液に滴下し、10分攪拌し、室温で10分さらに攪拌し、混合溶液を得た。得られた混合溶液を、80℃に加熱し、エバポレーターにより濃縮することにより、粘稠かつ透明な無機ポリマー含有溶液127.1gを得た。
 得られた無機ポリマー含有溶液に、イソプロピルアルコール127.1g、水溶性多官能(メタ)アクリレートとしてのエトキシ化グリセリントリアクリレート(新中村化学工業社製、NKエステルA-GLY-9E)127.1g、及び光重合開始剤として2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(チバ・スペシャルティ・ケミカルズ社製、Irgacure651)を12.7g添加し、活性エネルギー線硬化型組成物を得た。なお、上記光重合開始剤の添加量は、無機ポリマー及び上記水溶性多官能(メタ)アクリレートの合計100重量部に対して、5重量部であり、無機ポリマー、上記水溶性多官能(メタ)アクリレート及び上記光重合開始剤の合計100重量%中、4.8重量%であった。
 (実施例6)
 上記エトキシ化グリセリントリアクリレート(新中村化学工業社製、NKエステルA-GLY-9E)125.0gを、上記式(4)で表される水溶性多官能(メタ)アクリレートに相当する水溶性多官能(メタ)アクリレートとしてのトリエチレングリコールジメタクリレート(新中村化学工業社製、NKエステル3G(p=3))125.0gに変更したこと以外は実施例1と同様にして、活性エネルギー線硬化型組成物を得た。
 (比較例1)
 上記エトキシ化グリセリントリアクリレート(新中村化学工業社製、NKエステルA-GLY-9E)125.0gを、非水溶性多官能(メタ)アクリレートとしてのトリメチロールプロパントリアクリレート(新中村化学工業社製、NKエステルA-TMPT)125.0gに変更したこと以外は実施例1と同様にして、活性エネルギー線硬化型組成物を得た。なお、比較例1で得られた活性エネルギー線硬化型組成物は相分離したため、評価しなかった。
 (比較例2)
 実施例1と同様にして無機ポリマー含有溶液125.0gを得た。得られた無機ポリマー含有溶液に水溶性多官能(メタ)アクリレートを添加せず、イソプロピルアルコール125.0g、及び光重合開始剤として2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(チバ・スペシャルティ・ケミカルズ社製、Irgacure651)を6.3g添加し、活性エネルギー線硬化型組成物を得た。なお、上記光重合開始剤の添加量は、無機ポリマー及び上記水溶性多官能(メタ)アクリレートの合計100重量部に対して、5重量部であり、無機ポリマー、上記水溶性多官能(メタ)アクリレート及び上記光重合開始剤の合計100重量%中、4.8重量%であった。
 (実施例1~6及び比較例1,2の評価)
 市販の無色透明なポリカーボネート板(縦10cm×横10cm×厚み4mm)を用意した。このポリカーボネート板上に、スピンコーターを用いて、得られた活性エネルギー線硬化型組成物を均一に塗布した。室温で10分間乾燥した後、窒素雰囲気下、120W高圧水銀灯にて照射エネルギーが1500mJ/cmとなるように紫外線を照射した。その後、125℃のオーブン内で1時間加熱し、焼成することにより、ポリカーボネート板の上面に、厚み5μmのハードコート層を形成した。
 (1)外観
 焼成後のハードコート層の状態を目視にて確認し、下記の評価基準で評価した。
 ○:ハードコート層が無色で均一
 △:ハードコート層に多少のむらがあり、透視像がゆがむか、塗膜が白濁する。
 ×:ハードコート層にクラックが生じている
 (2)透明性の評価
 JIS K7136に準拠し、ヘイズメーター(東京電色社製 TC-HIIIDPK)により、ハードコート層が形成されたポリカーボネート板のヘイズ値を測定した。なお、ヘイズ値が小さいほど、透明性が高いことを示す。
 なお、上記ハードコート層が形成されていない上記ポリカーボネート板のヘイズ値を測定したところ、ヘイズ値は0.2%であった。
 (3)耐擦傷性の評価
 JIS R3212に準拠し、70回/分の速度で回転する水平な回転テーブルと、65±3mmの間隔で固定された円滑に回転する1対の摩耗輪とにより構成された東洋精機社製のテーバー摩耗試験機「ロータリーアブレーションテスタTS」を用いて、耐擦傷性を評価した。なお、摩耗輪はCS-10F(タイプIV)、荷重500gにおける、500サイクル試験後のヘイズと初期ヘイズとのヘイズ差(Δヘイズ%)を測定した。
 なお、上記ハードコート層が形成されていない上記ポリカーボネート板の上記ヘイズ差(Δヘイズ%)を測定したところ、ヘイズ差は48%であった。比較例2の活性エネルギー線硬化型組成物を用いて得られたハードコート層はクラックが生じたため、耐擦傷性を評価しなかった。
 (4)密着性
 JIS K5400に準拠し、ポリカーボネート板の表面に形成されたハードコート層に、カミソリ刃を用いて1mm間隔で縦11本及び横11本の切り目を入れて、区切られた合計100個の基盤目を形成した。基盤目が形成されたハードコート層に、市販のセロハンテープを密着させた後、セロハンテープをハードコート層から90度方向に急激に剥がした。合計100個の基盤目のうちの、ハードコート層がポリカーボネート板から剥離せずに残存している基盤目の数を数えた。
 結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例7~31及び比較例3~5の活性エネルギー線硬化型組成物を得るために、以下の材料を用意した。
 1)テトラエトキシシラン(TEOS)
 2)3-メタクリロキシプロピルトリメトキシシラン(MPTS)
 3)メチルトリメトキシシラン(MeTS)
 4)上記式(3)で表される水溶性多官能(メタ)アクリレートに相当するエトキシ化グリセリントリアクリレート(新中村化学工業社製、NKエステルA-GLY-9E(x+y+z=9))
 5)上記式(4)で表される水溶性多官能(メタ)アクリレートに相当するポリエチレングリコールジアクリレート(新中村化学工業社製、NKエステルA-400(p=9))
 6)2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(光重合開始剤、チバ・スペシャルティ・ケミカルズ社製、Irgacure651)
 (実施例7)
 エタノール95.2gと、3-メタクリロキシプロピルトリメトキシシラン(MPTS)99.4g(0.4モル)と、メチルトリメトキシシラン(MeTS)109.0g(0.8モル)とをフラスコに添加し、混合することにより、混合液を得た。得られた混合液を0℃に冷却しながら、水30.4gにより12Nの濃塩酸8.75gを希釈した希塩酸を混合液に滴下し、10分攪拌し、室温で10分さらに攪拌し、混合溶液を得た。得られた混合溶液を、80℃に加熱し、エバポレーターにより濃縮することにより、粘稠かつ透明な無機ポリマー含有溶液125.0gを得た。
 得られた無機ポリマー含有溶液に、イソプロピルアルコール625.0g、上記式(3)で表される水溶性多官能(メタ)アクリレートに相当するエトキシ化グリセリントリアクリレート(新中村化学工業社製、NKエステルA-GLY-9E、x+y+z=9)500.0g、及び光重合開始剤として2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(チバ・スペシャルティ・ケミカルズ社製、Irgacure651)を31.3g添加し、活性エネルギー線硬化型組成物を得た。なお、上記光重合開始剤の添加量は、無機ポリマー、上記水溶性多官能(メタ)アクリレート及び上記光重合開始剤の合計100重量%中、4.8重量%であった。
 (実施例8~30及び比較例3~5)
 使用した材料の種類及び配合量を下記の表2~4に示すように変更したこと以外は実施例1と同様にして、活性エネルギー線硬化型組成物を得た。
 (実施例31)
 エタノール66.24gと3-メタクリロキシプロピルトリメトキシシラン(MPTS)178.85g(0.72モル)とをフラスコに添加し、混合することにより、混合液を得た。得られた混合液を0℃に冷却しながら、水22.60gにより12Nの濃塩酸6.00gを希釈した希塩酸を混合液に滴下し、10分攪拌し、室温で10分さらに攪拌し、混合溶液を得た。得られた混合溶液を、80℃に加熱し、エバポレーターにより濃縮することにより、粘稠かつ透明な無機ポリマー含有溶液125.0gを得た。得られた無機ポリマー含有溶液の重量平均分子量は2500であった。
 得られた無機ポリマー含有溶液に、イソプロピルアルコール625.0g、上記式(3)で表される水溶性多官能(メタ)アクリレートに相当するエトキシ化グリセリントリアクリレート(新中村化学工業社製、NKエステルA-GLY-9E、x+y+z=9)500.0g、及び光重合開始剤として2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(チバ・スペシャルティ・ケミカルズ社製、Irgacure651)を31.3g添加し、活性エネルギー線硬化型組成物を得た。なお、上記光重合開始剤の添加量は、無機ポリマー及び上記水溶性多官能(メタ)アクリレートの合計100重量部に対して、5重量部であり、無機ポリマー、上記水溶性多官能(メタ)アクリレート及び上記光重合開始剤の合計100重量%中、4.8重量%であった。
 (実施例7~31及び比較例3~5の評価)
 実施例1~7及び比較例1,2と同様の評価項目について評価を実施した。
 結果を下記の表2~4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 1…成形品
 2…樹脂成形体
 3,4…第1,第2の表面層

Claims (8)

  1.  下記式(1)で表されるシラン化合物を含む無機ポリマー構成成分を加水分解縮合させて得られた無機ポリマーと、
     水溶性多官能(メタ)アクリレートと、
     活性エネルギー線重合開始剤とを含む、活性エネルギー線硬化型組成物。
     Si(R1)(OR2)4-p  ・・・式(1)
     上記式(1)中、R1は重合性二重結合を有する炭素数1~30の有機基を表し、R2は炭素数1~6のアルキル基を表し、pは1又は2を表す。pが2であるとき、複数のR1は同一であってもよく、異なっていてもよい。複数のR2は同一であってもよく、異なっていてもよい。
  2.  前記無機ポリマー構成成分が、下記式(2)で表される金属アルコキシド化合物をさらに含む、請求項1に記載の活性エネルギー線硬化型組成物。
     M(R3)(OR4)4-n  ・・・式(2)
     上記式(2)中、MはSi、Ti又はZrであり、R3はフェニル基、炭素数1~30のアルキル基、又はエポキシ基を有する炭素数1~30の炭化水素基を表し、R4は炭素数1~6のアルキル基を表し、nは0~2の整数を表す。nが2であるとき、複数のR3は同一であってもよく、異なっていてもよい。複数のR4は同一であってもよく、異なっていてもよい。
  3.  前記式(2)で表される化合物が、下記式(21)で表されるシラン化合物である、請求項2に記載の活性エネルギー線硬化型組成物。
     Si(R13)(OR14)4-m  ・・・式(21)
     上記式(21)中、R13はフェニル基、炭素数1~30のアルキル基、又はエポキシ基を有する炭素数1~30の炭化水素基を表し、R14は炭素数1~6のアルキル基を表し、mは0~2の整数を表す。mが2であるとき、複数のR13は同一であってもよく、異なっていてもよい。複数のR14は同一であってもよく、異なっていてもよい。
  4.  前記無機ポリマー構成成分が、前記式(2)で表される化合物として、下記式(2A)で表される化合物を含む、請求項2に記載の活性エネルギー線硬化型組成物。
     M(OR4a)  ・・・式(2A)
     上記式(2A)中、R4aは炭素数1~6のアルキル基を表す。複数のR4aは同一であってもよく、異なっていてもよい。
  5.  前記無機ポリマー構成成分が、前記式(21)で表される化合物として、下記式(21A)で表される化合物を含む、請求項3に記載の活性エネルギー線硬化型組成物。
     Si(OR14a)  ・・・式(21A)
     上記式(21A)中、R14aは炭素数1~6のアルキル基を表す。複数のR14aは同一であってもよく、異なっていてもよい。
  6.  前記水溶性多官能(メタ)アクリレートが、下記式(3)で表されるオキシアルキレン変性グリセリン(メタ)アクリレート、又は下記式(4)で表されるアルキレングリコールジ(メタ)アクリレートである、請求項1又は2に記載の活性エネルギー線硬化型組成物。
    Figure JPOXMLDOC01-appb-C000005
     上記式(3)中、R5はエチレン基又はプロピレン基を表し、R6は水素又はメチル基を表し、R7は水素又はメチル基を表し、x、y及びzの合計は6~30の整数を表す。複数のR5、R6及びR7はそれぞれ、同一であってもよく、異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000006
     上記式(4)中、R8は水素又はメチル基を表し、R9はエチレン基又はプロピレン基を表し、pは1~25の整数を表す。
  7.  請求項1又は2に記載の活性エネルギー線硬化型組成物はコーティング材である、活性エネルギー線硬化型コーティング材。
  8.  請求項7に記載の活性エネルギー線硬化型コーティング材を用いて形成された表面層を有する、成形品。
PCT/JP2009/005271 2008-12-26 2009-10-09 活性エネルギー線硬化型組成物、活性エネルギー線硬化型コーティング材及び成形品 WO2010073445A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009544078A JPWO2010073445A1 (ja) 2008-12-26 2009-10-09 活性エネルギー線硬化型組成物、活性エネルギー線硬化型コーティング材及び成形品
CN2009801527387A CN102264783A (zh) 2008-12-26 2009-10-09 活性能量射线固化型组合物、活性能量射线固化型涂敷材料以及成形品
US13/124,441 US20110201719A1 (en) 2008-12-26 2009-10-09 Active energy ray-curable composition, active energy ray-curable coating material, and molded product
EP09834262.9A EP2371872A4 (en) 2008-12-26 2009-10-09 ACTIVE-ENERGY RAY-CURABLE COMPOSITION, ACTIVE-ENERGY RAY-CURABLE COATING MATERIAL, AND MOLDED PRODUCT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-333718 2008-12-26
JP2008333718 2008-12-26
JP2009-075710 2009-03-26
JP2009075710 2009-03-26

Publications (1)

Publication Number Publication Date
WO2010073445A1 true WO2010073445A1 (ja) 2010-07-01

Family

ID=42287109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005271 WO2010073445A1 (ja) 2008-12-26 2009-10-09 活性エネルギー線硬化型組成物、活性エネルギー線硬化型コーティング材及び成形品

Country Status (6)

Country Link
US (1) US20110201719A1 (ja)
EP (1) EP2371872A4 (ja)
JP (1) JPWO2010073445A1 (ja)
KR (1) KR20110110095A (ja)
CN (1) CN102264783A (ja)
WO (1) WO2010073445A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120058347A1 (en) * 2010-09-06 2012-03-08 Shin-Etsu Chemical Co., Ltd. Plastic article for automotive glazing
JP2012092264A (ja) * 2010-10-28 2012-05-17 Fujikura Kasei Co Ltd 一液型活性エネルギー線硬化性塗料組成物および複合塗膜
WO2012141802A1 (en) * 2011-02-28 2012-10-18 Sekisui Chemical Co., Ltd. Layered body
JP2016056256A (ja) * 2014-09-08 2016-04-21 セイコーインスツル株式会社 コーティング剤、コーティング膜、およびコーティング剤の製造方法
JP2018178071A (ja) * 2017-04-21 2018-11-15 阪本薬品工業株式会社 活性エネルギー線硬化型樹脂組成物及びその硬化物
JP7054753B1 (ja) 2021-06-28 2022-04-14 アイカ工業株式会社 ハードコート樹脂組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI566036B (zh) * 2015-03-31 2017-01-11 奇美實業股份有限公司 感光性聚矽氧烷組成物、保護膜以及具有保護膜的元件
KR102392261B1 (ko) * 2017-08-24 2022-04-29 코오롱인더스트리 주식회사 코팅용 수지 조성물 및 이의 경화물을 코팅층으로 포함하는 코팅필름

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131214A (en) 1980-12-18 1982-08-14 Gen Electric Abrasion resistant ultraviolet ray curable coating composition and manufacture
JPH042614B2 (ja) 1982-05-04 1992-01-20
JP2002243907A (ja) * 2001-02-21 2002-08-28 Fuji Photo Film Co Ltd 反射防止フィルムおよび画像表示装置
JP2003338089A (ja) 2002-05-21 2003-11-28 Canon Inc 光情報記録媒体
JP2003342308A (ja) * 2002-05-24 2003-12-03 Nippon Shokubai Co Ltd 硬化性樹脂組成物及びその製造方法
JP2008280413A (ja) * 2007-05-09 2008-11-20 Sekisui Chem Co Ltd 薄膜形成用組成物及び薄膜形成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478876A (en) * 1980-12-18 1984-10-23 General Electric Company Process of coating a substrate with an abrasion resistant ultraviolet curable composition
CA2033960A1 (en) * 1990-01-24 1991-07-25 Levi J. Cottington Alkoxy-functional silane compositions for unprimed adhesion to polycarbonate
US5242719A (en) * 1992-04-06 1993-09-07 General Electric Company Abrasion resistant UV-curable hardcoat compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131214A (en) 1980-12-18 1982-08-14 Gen Electric Abrasion resistant ultraviolet ray curable coating composition and manufacture
JPH042614B2 (ja) 1982-05-04 1992-01-20
JP2002243907A (ja) * 2001-02-21 2002-08-28 Fuji Photo Film Co Ltd 反射防止フィルムおよび画像表示装置
JP2003338089A (ja) 2002-05-21 2003-11-28 Canon Inc 光情報記録媒体
JP2003342308A (ja) * 2002-05-24 2003-12-03 Nippon Shokubai Co Ltd 硬化性樹脂組成物及びその製造方法
JP2008280413A (ja) * 2007-05-09 2008-11-20 Sekisui Chem Co Ltd 薄膜形成用組成物及び薄膜形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2371872A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120058347A1 (en) * 2010-09-06 2012-03-08 Shin-Etsu Chemical Co., Ltd. Plastic article for automotive glazing
US9862806B2 (en) * 2010-09-06 2018-01-09 Shin-Etsu Chemical Co., Ltd. Plastic article for automotive glazing
JP2012092264A (ja) * 2010-10-28 2012-05-17 Fujikura Kasei Co Ltd 一液型活性エネルギー線硬化性塗料組成物および複合塗膜
WO2012141802A1 (en) * 2011-02-28 2012-10-18 Sekisui Chemical Co., Ltd. Layered body
JP2016056256A (ja) * 2014-09-08 2016-04-21 セイコーインスツル株式会社 コーティング剤、コーティング膜、およびコーティング剤の製造方法
JP2018178071A (ja) * 2017-04-21 2018-11-15 阪本薬品工業株式会社 活性エネルギー線硬化型樹脂組成物及びその硬化物
JP7054753B1 (ja) 2021-06-28 2022-04-14 アイカ工業株式会社 ハードコート樹脂組成物
JP2023007298A (ja) * 2021-06-28 2023-01-18 アイカ工業株式会社 ハードコート樹脂組成物

Also Published As

Publication number Publication date
JPWO2010073445A1 (ja) 2012-05-31
KR20110110095A (ko) 2011-10-06
US20110201719A1 (en) 2011-08-18
EP2371872A4 (en) 2013-12-04
EP2371872A1 (en) 2011-10-05
CN102264783A (zh) 2011-11-30

Similar Documents

Publication Publication Date Title
WO2010073445A1 (ja) 活性エネルギー線硬化型組成物、活性エネルギー線硬化型コーティング材及び成形品
KR100759203B1 (ko) 코팅 조성물 및 그의 경화 피막을 갖는 물품
JP5000303B2 (ja) シリカ含有シリコーン樹脂組成物及びその成形体
JP6206188B2 (ja) 指紋付着防止剤組成物、指紋付着防止剤の製造方法、ハードコート用組成物、ハードコート層を有する基材およびタッチパネル
KR101127328B1 (ko) 활성 에너지선 경화성 코팅용 조성물 및 보호 피막 형성방법
JP5650888B2 (ja) 熱硬化性組成物及び成形品
JP6911820B2 (ja) コーティング剤及び表面被覆部材
CA2421465A1 (en) Coating compositions
WO2014150404A1 (en) Radiation polymerizable abrasion resistant aqueous coatings
JP5466461B2 (ja) 積層体
JP2006212987A (ja) 転写材
JP6697771B1 (ja) 塗装建材の製造方法、及び得られた塗装建材
JP2014051090A (ja) 積層体
CN115197631A (zh) 一种增硬增韧涂料组合物及其制备方法,及一种pet薄膜
JP6034369B2 (ja) 積層体
JP2005255718A (ja) 活性エネルギー線硬化性コーティング用組成物および保護被膜形成方法
US20130236728A1 (en) Laminated body
JP2012223910A (ja) 積層体およびその製造方法
CN116323012B (zh) 树脂玻璃用涂覆剂和树脂玻璃
JP2014508059A (ja) 積層体
JP2015193200A (ja) 透明性積層体およびその製造方法
CN116261491B (zh) 树脂玻璃用涂覆剂和树脂玻璃
JP2012116173A (ja) 保護被膜を有する積層体
JP3175034U (ja) シリコン含有樹脂コーティング構造体
JP6135582B2 (ja) 透明性積層体およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009544078

Country of ref document: JP

Ref document number: 200980152738.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834262

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13124441

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009834262

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117012001

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4509/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE