WO2010070994A1 - 固体高分子型燃料電池のアノード触媒層 - Google Patents
固体高分子型燃料電池のアノード触媒層 Download PDFInfo
- Publication number
- WO2010070994A1 WO2010070994A1 PCT/JP2009/069074 JP2009069074W WO2010070994A1 WO 2010070994 A1 WO2010070994 A1 WO 2010070994A1 JP 2009069074 W JP2009069074 W JP 2009069074W WO 2010070994 A1 WO2010070994 A1 WO 2010070994A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst layer
- carbon
- catalyst
- fuel cell
- anode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a catalyst layer on the anode side in a polymer electrolyte fuel cell.
- a polymer electrolyte fuel cell is provided with a pair of electrodes on both sides of a hydrogen ion conductive solid polymer electrolyte membrane, supplies hydrogen gas as a fuel gas to one electrode (fuel electrode: anode), oxygen gas or air Is obtained as an oxidizing agent to the other electrode (air electrode: cathode) to obtain an electromotive force.
- Solid polymer fuel cells are expected to be put to practical use as mobile vehicles such as electric vehicles and power sources for small cogeneration systems because they are easy to reduce in size and weight in addition to obtaining high battery characteristics. Yes.
- a gas diffusing electrode used in a polymer electrolyte fuel cell supplies a catalyst layer containing a catalyst-supporting carbon carrier coated with a hydrogen ion conductive polymer electrolyte, and supplies a reaction gas to the catalyst layer. And a gas diffusion layer for collecting electrons.
- the catalyst layer there are voids composed of minute pores formed between the carbon secondary particles or the tertiary particles, and the voids function as a reaction gas diffusion channel.
- a noble metal such as platinum or a platinum alloy is used as the cathode and anode catalyst supported on the carbon support.
- a platinum-supported carbon carrier is prepared by adding sodium hydrogen sulfite to a chloroplatinic acid aqueous solution and then reacting with hydrogen peroxide. The resulting platinum colloid is supported on a carrier such as carbon black, washed, and if necessary. It is prepared by heat treatment.
- the platinum-supported carbon carrier is dispersed in a hydrogen ion conductive polymer electrolyte solution to prepare an ink, and the ink is applied to a gas diffusion substrate such as carbon paper and dried to produce an electrode.
- An electrolyte membrane-electrode assembly is assembled by sandwiching a solid polymer electrolyte membrane between these two electrodes and performing hot pressing or the like.
- ion exchange resins such as perfluorosulfonic acid polymers are used for the solid polymer electrolyte membrane. These ion exchange resins exhibit high hydrogen ion conductivity for the first time in a humid environment. This is thought to be due to the interposition and accompanying of water molecules in the movement of hydrogen ions. Therefore, in order to operate the fuel cell efficiently, conventionally, water vapor is supplied to the catalyst layer together with the reaction gas, and the polymer electrolyte membrane is always kept in a wet state. However, in order to obtain a wet state, it is necessary to separately provide a humidifier in the air supply path or the hydrogen supply path, which has the disadvantage that the fuel cell becomes larger and the manufacturing cost increases. Therefore, the development of a technique that can be operated even under low humidification conditions has been desired.
- a carbon material (carbon support) in a catalyst layer is composed of a catalyst support carbon material supporting a catalyst component and a gas diffusion carbon material not supporting a catalyst component, and the gas diffusion carbon
- the material is composed of at least two types of carbon materials, ie, carbon material A having a water vapor adsorption amount of 50 ml / g or less and carbon material B having 100 ml / g or more at 25 ° C. and 90% relative humidity.
- a battery is disclosed.
- the polymer electrolyte in the cathode catalyst layer is always maintained in a wet state under low humidification conditions while preventing the gas diffusion path from being blocked by condensed water.
- the output performance obtained as a whole is insufficient.
- Patent Document 2 shows that the water adsorption amount A of carbon black particles as a support in the anode and cathode catalyst layers under a saturated water vapor pressure of 60 ° C. is A ⁇
- Wp the blending weight of the polymer electrolyte in the catalyst layer
- Wc the blending weight of the carbon black particles
- an object of the present invention is to optimize the anode-side catalyst layer so that high output performance can be obtained even under low humidification conditions.
- Another object of the present invention is to provide a polymer electrolyte fuel cell having this anode catalyst layer.
- the present inventors measured the value of water vapor adsorption amount / nitrogen adsorption amount for the carbon carrier in the anode catalyst layer or the carbon carrier carrying the catalyst, and the conventional value was adjusted so that this value was not more than a predetermined value. Contrary to the knowledge, the inventors have found that the above problems can be solved by making them hydrophobic, and have completed the invention. That is, the gist of the present invention is as follows.
- An anode catalyst layer of a polymer electrolyte fuel cell comprising a carbon support on which a catalyst is supported and a hydrogen ion conductive polymer electrolyte, and a hydrophilic characteristic value defined by water vapor adsorption amount / nitrogen adsorption amount
- the anode catalyst layer in which a catalyst is supported on a carbon support having a 0.02 or less.
- a solid polymer fuel cell anode catalyst layer comprising a carbon support on which a catalyst is supported and a hydrogen ion conducting polymer electrolyte, wherein the water vapor adsorption amount / nitrogen adsorption amount in the catalyst support carbon support
- the anode catalyst layer having a defined hydrophilic property value of 0.30 or less.
- the anode catalyst layer of the present invention includes a carbon support on which a catalyst is supported, and a hydrogen ion conductive polymer electrolyte.
- a specific surface area is 200 m ⁇ 2 > / g or more.
- Carbon black is generally used.
- graphite, carbon fiber, activated carbon, carbon nanotube, etc. are applicable.
- Ketjen EC Ketjen Black International
- Vulcan Vulcan
- a metal such as platinum, cobalt, palladium, ruthenium, gold, rhodium, osmium, iridium, or an alloy composed of two or more of the above metals, a metal and an organic compound or an inorganic compound.
- a complex, a metal oxide, etc. can be mentioned.
- the anode catalyst layer of the present invention has a hydrophilic property value defined by the water vapor adsorption amount / nitrogen adsorption amount on the carbon support of 0.02 or less, preferably 0.005 to 0.02, or supports the catalyst.
- the hydrophilic property value of the carbon support in the above state is 0.30 or less, preferably 0.05 to 0.30.
- the water vapor adsorption amount is obtained by vacuum degassing the sample for 8 hours at 120 ° C., and using a constant volume method, an adsorption isotherm of water vapor (or a saturated vapor pressure of 12.344 kPa) using a constant volume method (or (Adsorption / desorption isotherm) is measured, and the adsorption amount (unit: cm 3 (STP) / g-cat) at a relative pressure of 0.5 is used.
- the nitrogen adsorption amount was pretreated by vacuum degassing at 120 ° C.
- the nitrogen adsorption isotherm was measured using a constant volume method, and the adsorption amount at a relative pressure of 0.5 (unit: cm 3 (STP) / g-cat) is used.
- the adsorption temperature at the time of measuring the nitrogen adsorption isotherm is 77 K, and the saturated vapor pressure is a measured value.
- the particle size of the carbon support, the amount of catalyst supported on the carbon support, etc. are not limited.
- the hydrophilic property value of the carbon support is 0.02 or less, or the hydrophilicity of the catalyst support carbon support.
- the characteristic value is appropriately set to be 0.30 or less.
- the hydrophilic property value of the carbon support is 0.02 or less, and
- the hydrophilic property value of the catalyst-supporting carbon support can be controlled to be in the range of 0.30 or less.
- the heat treatment time at this time is not limited, but is preferably 1 to 5 hours.
- the catalyst can be supported on the carbon support by a conventional method. Specifically, for example, a carbon support is suspended in water or the like, a catalyst metal compound such as chloroplatinic acid is added dropwise thereto, and a reducing agent is added dropwise to deposit the catalyst on the carbon support. When the alloy is supported, another metal is deposited on the carbon support and heat-treated at a high temperature to form an alloy. After the heat treatment, washing with an acid is preferably performed to remove unalloyed metal. Conditions such as the heat treatment temperature, heat treatment time, acid concentration during acid washing, washing time, washing temperature, etc. are appropriately set according to the type of the catalyst.
- heat treatment temperature 600 to 1000 ° C.
- heat treatment time 0.5 to 5 hours
- acid concentration 0.5 to 5 mol / l
- washing time 0.5 to 50 hours
- washing temperature 80 to 95 ° C. It is preferable to set the degree.
- a fluorine-containing ion exchange resin or the like is applicable, and in particular, a sulfonic acid type perfluorocarbon polymer is preferably used.
- a suitable example is Nafion (manufactured by DuPont).
- a carbon support carrying a catalyst and a hydrogen ion conductive polymer electrolyte are added to a solvent and subjected to dispersion treatment by ultrasonic irradiation, bead mill, etc.
- a liquid (ink) is prepared.
- the solvent used here include alcohols such as ethanol, ethylene glycol, and propylene glycol, fluorine-containing alcohols, and fluorine-containing ethers.
- the mixing ratio of the catalyst-supporting carbon powder and the hydrogen ion conductive polymer electrolyte is not particularly limited. In general, it is preferable that the amount of hydrogen ion conductive polymer electrolyte / the amount of catalyst-supported carbon support (weight ratio) is 0.5 to 1.5.
- the anode catalyst layer can be formed by applying the coating solution to the polymer electrolyte membrane or gas diffusion layer of the fuel cell and drying it.
- the anode catalyst layer may be formed on the polymer electrolyte by transferring a coating prepared by applying the coating solution on a separately prepared substrate and drying it onto the polymer electrolyte membrane.
- brush coating, spraying, roll coater, ink jet, screen printing method and the like can be appropriately employed.
- the cathode catalyst layer can be formed by a conventional method. For example, in the same manner as the anode catalyst layer described above, a coating liquid containing a catalyst-supporting carbon carrier and a hydrogen ion conductive polymer electrolyte is prepared. It can be formed by applying the coating liquid to the polymer electrolyte membrane or gas diffusion layer of the fuel cell and drying it.
- the carbon support (or catalyst-supported carbon support) in the cathode catalyst layer usually preferably has high hydrophilicity.
- the thickness of the cathode and anode catalyst layers in the fuel cell can be set as appropriate. Generally, it is 1 to 10 ⁇ m, preferably 3 to 5 ⁇ m.
- the electrolyte membrane-electrode assembly is obtained by bonding each catalyst layer and the polymer electrolyte membrane by bonding or hot pressing. Assembled.
- the anode and the cathode may be constituted only by the catalyst layer, and a gas diffusion layer is disposed adjacent to each catalyst layer, and the anode and It is good also as a cathode.
- any material that exhibits good hydrogen ion conductivity under wet conditions can be used.
- examples thereof include a perfluorocarbon polymer having a sulfonic acid group, a polysulfone resin, a perfluorocarbon polymer having a phosphonic acid group or a carboxylic acid group.
- sulfonic acid type perfluorocarbon polymers are preferably used.
- the polymer electrolyte membrane may be the same resin as the hydrogen ion conductive polymer electrolyte contained in the catalyst layer, or may be composed of a different resin.
- the gas diffusion layer can be composed of various materials as long as it has a function of uniformly diffusing gas from the gas flow path formed in the separator to the catalyst layer and conducting electrons between the catalyst and the separator. it can.
- carbon materials such as carbon cloth and carbon paper are used.
- Metal materials such as metal mesh and metal wool can be used as long as they have corrosion resistance in addition to gas diffusibility and electron conductivity.
- a separator having a gas flow path is usually disposed outside the anode and cathode, and the polymer electrolyte fuel cell of the present invention is produced. Electric power is generated by supplying a gas containing hydrogen to the anode and a gas containing oxygen or air to the cathode.
- the carbon carrier four types of carbon black shown in the following (1) to (4) were used. About 50 mg of each carbon carrier was weighed and vacuum degassed at 120 ° C. for 8 hours. Subsequently, nitrogen adsorption isotherm was measured by a constant volume method using BELSORP-mini manufactured by Nippon BEL Co., Ltd. The measurement temperature was 77K.
- Ketjen EC (trade name; manufactured by Ketjen Black International) (2) Ketjen EC heat-treated at 700 ° C. for 2 hours in an argon atmosphere (3) Ketjen EC heat-treated at 900 ° C. for 2 hours in an argon atmosphere (4) Denka Black (trade name; Electrochemical Industry) (Made by company) ⁇ Measurement of water vapor adsorption amount of carbon support> About 50 mg of each of the above carbon carriers (1) to (4) was weighed and vacuum degassed at 120 ° C. for 8 hours. Subsequently, water vapor adsorption / desorption isotherm was measured by a constant volume method using BELSORP-aqua manufactured by Nippon BEL Co., Ltd. The measurement temperature was 323.15K.
- the mixture was sufficiently stirred and subjected to a dispersion treatment using an ultrasonic homogenizer in order to make the particles fine and uniform.
- the ink obtained after dispersion was applied onto an electrolyte membrane made of Nafion and dried to obtain an anode catalyst layer.
- the amount of platinum in the anode catalyst layer was 0.05 mg / cm 2 .
- a cathode catalyst layer containing a Pt-supported carbon support and a hydrogen ion conductive polymer electrolyte was formed on the other surface of the electrolyte membrane on which the anode catalyst layer was formed, to produce an electrolyte membrane-electrode assembly (MEA).
- MEA electrolyte membrane-electrode assembly
- a diffusion layer (GDL) composed of a carbon base material and a water repellent layer (carbon + PTFE) was disposed outside the produced MEA, and electricity was generated by flowing hydrogen on the anode side and air on the cathode side.
- the performance of the fuel cell was evaluated based on the voltage value with respect to a load current of 1.0 A / cm 2 .
- the humidification condition was 40% RH with respect to the cell temperature.
- the hydrophilic property values and the cell voltage measurement results are shown in Table 1 and FIGS. As apparent from FIGS. 1 and 2, the voltage value increased with the decrease in the hydrophilic property values of the carbon support and the Pt-supported carbon support, and the output performance was improved. A high voltage value was obtained when the hydrophilic property value of the carbon support was 0.02 or less, and a high voltage value was obtained when the hydrophilic property value of the Pt-supported carbon support was 0.30 or less. From this result, it is possible to obtain high performance under low humidification conditions by using an anode catalyst layer in which the hydrophilic property value of the carbon support is 0.02 or less, or the hydrophilic property value of the catalyst-supporting carbon support is 0.30 or less. It has been found that a fuel cell can be obtained.
- the heat treatment temperature of the carbon support was optimally 900 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
カーボン担体として、下記の(1)~(4)に示す4種類のカーボンブラックを用いた。それぞれのカーボン担体を約50mg秤量し、120℃にて8時間真空脱気した。続いて、日本BEL(株)製BELSORP-miniを用いて、定容法により窒素吸着等温線測定を行った。測定温度は77Kとした。
(2)Ketjen ECをアルゴン雰囲気下にて700℃で2時間熱処理したもの
(3)Ketjen ECをアルゴン雰囲気下にて900℃で2時間熱処理したもの
(4)Denka Black(商品名;電気化学工業社製)
<カーボン担体の水蒸気吸着量測定>
上記(1)~(4)のカーボン担体を、それぞれ約50mg秤量し、120℃にて8時間真空脱気した。続いて、日本BEL(株)製BELSORP-aquaを用いて、定容法により水蒸気吸着脱離等温線測定を行った。測定温度は323.15Kで行った。
カーボン担体の窒素吸着等温線及び水蒸気吸着脱離等温線から相対圧0.5における吸着量を求めた。そして、水蒸気吸着量/窒素吸着量をそれぞれのカーボン担体について算出し、この値を親水性特性値とした。
これら4種類のカーボン担体を蒸留水に懸濁攪拌し、塩化白金酸を滴下した。次に、還元剤としてエタノールを滴下することによりPtをカーボン担体上に析出させた。この混合物をろ過し、固形物を乾燥させることによってPt担持カーボン担体を得た。
上記4種類のPt担持カーボン担体を約50mg秤量し、120℃にて8時間真空脱気した。続いて、日本BEL(株)製BELSORP-miniを用いて、定容法により窒素吸着等温線測定を行った。測定温度は77Kとした。
上記4種類のPt担持カーボン担体を約50mg秤量し、120℃にて8時間真空脱気した。続いて、日本BEL(株)製BELSORP-aquaを用いて、定容法により水蒸気吸着脱離等温線測定を行った。測定温度は323.15Kとした。
Pt担持カーボン担体の窒素吸着等温線及び水蒸気吸着脱離等温線から相対圧0.5における吸着量を求めた。そして、水蒸気吸着量/窒素吸着量をそれぞれのPt担持カーボン担体について算出し、この値を親水性特性値とした。
上記4種類のPt担持カーボン担体に蒸留水を加えた後、エタノールを加え、水素イオン伝導性高分子電解質としてナフィオン(商品名;デュポン社製)をさらに加えた。カーボン担体と水素イオン伝導性高分子電解質の重量比は1:1とした。この混合物を十分に攪拌し、粒子の微粒化や均一分散のため、超音波ホモジナイザーによる分散処理を行った。分散後に得られるインクをナフィオンからなる電解質膜上に塗布し、乾燥してアノード触媒層を得た。アノード触媒層における白金量は0.05mg/cm2であった。
アノード触媒層を形成した電解質膜の他方の面に、Pt担持カーボン担体及び水素イオン伝導性高分子電解質を含むカソード触媒層を形成し、電解質膜-電極接合体(MEA)を作製した。カソード触媒層において、Pt担持カーボン担体中のPt量は50重量%とし、電解質膜上のPt量が0.2mg/cm2となるように塗布した。次に、作製したMEAの外側にカーボン基材と撥水層(カーボン+PTFE)からなる拡散層(GDL)を配置し、アノード側に水素、カソード側に空気を流すことで発電させた。1.0A/cm2の負荷電流に対する電圧値により燃料電池の性能評価を行った。加湿条件はセル温度に対して40%RHとした。
親水性特性値及びセル電圧の測定結果を表1、及び図1~2に示す。図1及び図2から明らかなように、カーボン担体及びPt担持カーボン担体の親水性特性値の低下に伴って電圧値が高くなり、出力性能は向上した。カーボン担体の親水性特性値は0.02以下の点で高い電圧値が得られ、Pt担持カーボン担体の親水性特性値は0.30以下の点で高い電圧値が得られた。この結果から、カーボン担体の親水性特性値が0.02以下、もしくは触媒担持カーボン担体の親水性特性値が0.30以下であるアノード触媒層を用いることにより、低加湿条件下において高性能な燃料電池が得られることが分かった。また、カーボン担体の熱処理温度は900℃が最適であった。
Claims (4)
- 触媒が担持されたカーボン担体、及び水素イオン伝導性高分子電解質を含む固体高分子型燃料電池のアノード触媒層であって、水蒸気吸着量/窒素吸着量で規定される親水性特性値が0.02以下であるカーボン担体に触媒が担持されている前記アノード触媒層。
- 触媒が担持されたカーボン担体、及び水素イオン伝導性高分子電解質を含む固体高分子型燃料電池のアノード触媒層であって、前記触媒担持カーボン担体における、水蒸気吸着量/窒素吸着量で規定される親水性特性値が0.30以下である前記アノード触媒層。
- 触媒を担持させるカーボン担体が、800~950℃で熱処理したものである請求項1又は2記載のアノード触媒層。
- 請求項1~3のいずれかに記載のアノード触媒層を有する固体高分子型燃料電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/131,626 US20110236791A1 (en) | 2008-12-16 | 2009-11-10 | Anode catalyst layer for polymer electrolyte fuel cell |
EP09833299A EP2360760A4 (en) | 2008-12-16 | 2009-11-10 | ANODE CATALYST LAYER FOR SOLID POLYMER FUEL CELL |
CN200980150479.4A CN102257662B (zh) | 2008-12-16 | 2009-11-10 | 固体高分子型燃料电池的阳极催化剂层 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008320144A JP5297786B2 (ja) | 2008-12-16 | 2008-12-16 | 固体高分子型燃料電池のアノード触媒層 |
JP2008-320144 | 2008-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010070994A1 true WO2010070994A1 (ja) | 2010-06-24 |
Family
ID=42268670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/069074 WO2010070994A1 (ja) | 2008-12-16 | 2009-11-10 | 固体高分子型燃料電池のアノード触媒層 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110236791A1 (ja) |
EP (1) | EP2360760A4 (ja) |
JP (1) | JP5297786B2 (ja) |
CN (1) | CN102257662B (ja) |
WO (1) | WO2010070994A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5417288B2 (ja) * | 2010-09-06 | 2014-02-12 | トヨタ自動車株式会社 | アノード側およびカソード側の電極触媒と膜電極接合体および燃料電池セル |
JP2012094315A (ja) * | 2010-10-26 | 2012-05-17 | Nihon Gore Kk | 燃料電池用アノード側触媒組成物およびこれを含んでなる固体高分子形燃料電池用膜電極接合体(mea) |
JP5823285B2 (ja) * | 2011-12-22 | 2015-11-25 | 田中貴金属工業株式会社 | 固体高分子形燃料電池用の触媒及びその製造方法 |
CN106922203B (zh) * | 2014-10-29 | 2020-03-31 | 日产自动车株式会社 | 电极催化剂及其制造方法、电极催化剂层、膜电极接合体及燃料电池 |
JP6736929B2 (ja) * | 2015-03-30 | 2020-08-05 | 東洋インキScホールディングス株式会社 | 燃料電池用ペースト組成物、及び燃料電池 |
CA3058358C (en) * | 2017-03-31 | 2021-07-27 | Nippon Steel Corporation | Carbon material for catalyst carrier of polymer electrolyte fuel cell, and method of producing the same |
CN110495029B (zh) * | 2017-03-31 | 2022-12-06 | 日铁化学材料株式会社 | 固体高分子型燃料电池的催化剂载体用碳材料及其制造方法 |
CN111656584A (zh) * | 2018-01-31 | 2020-09-11 | 日立化成株式会社 | 锂离子二次电池用负极活性物质、锂离子二次电池用负极和锂离子二次电池 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002100367A (ja) | 2000-09-22 | 2002-04-05 | Honda Motor Co Ltd | 固体高分子型燃料電池 |
JP2003292316A (ja) * | 2002-03-29 | 2003-10-15 | Osaka Gas Co Ltd | 金属担持炭素材料、該炭素材料からなるガス吸蔵材及び該ガス吸蔵材を用いるガス貯蔵方法並びに燃料電池用電極材料 |
JP2008016792A (ja) * | 2006-06-08 | 2008-01-24 | Showa Denko Kk | 多孔体及びその製造方法並びにその用途 |
JP2008041253A (ja) * | 2006-08-01 | 2008-02-21 | Nissan Motor Co Ltd | 電極触媒およびそれを用いた発電システム |
JP2008159519A (ja) | 2006-12-26 | 2008-07-10 | Nippon Steel Corp | 燃料電池 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6277513B1 (en) * | 1999-04-12 | 2001-08-21 | General Motors Corporation | Layered electrode for electrochemical cells |
WO2002013297A1 (fr) * | 2000-08-04 | 2002-02-14 | Matsushita Electric Industrial Co., Ltd. | Pile a combustible polyelectrolytique et son procede de fabrication |
JP4963147B2 (ja) * | 2001-09-17 | 2012-06-27 | 株式会社豊田中央研究所 | 燃料電池用電極触媒体およびその製造方法 |
ATE475203T1 (de) * | 2004-03-05 | 2010-08-15 | Umicore Ag & Co Kg | Membran-elektrodeneinheit |
US9786925B2 (en) * | 2004-04-22 | 2017-10-10 | Nippon Steel & Sumitomo Metal Corporation | Fuel cell and fuel cell use gas diffusion electrode |
-
2008
- 2008-12-16 JP JP2008320144A patent/JP5297786B2/ja not_active Expired - Fee Related
-
2009
- 2009-11-10 US US13/131,626 patent/US20110236791A1/en not_active Abandoned
- 2009-11-10 CN CN200980150479.4A patent/CN102257662B/zh not_active Expired - Fee Related
- 2009-11-10 WO PCT/JP2009/069074 patent/WO2010070994A1/ja active Application Filing
- 2009-11-10 EP EP09833299A patent/EP2360760A4/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002100367A (ja) | 2000-09-22 | 2002-04-05 | Honda Motor Co Ltd | 固体高分子型燃料電池 |
JP2003292316A (ja) * | 2002-03-29 | 2003-10-15 | Osaka Gas Co Ltd | 金属担持炭素材料、該炭素材料からなるガス吸蔵材及び該ガス吸蔵材を用いるガス貯蔵方法並びに燃料電池用電極材料 |
JP2008016792A (ja) * | 2006-06-08 | 2008-01-24 | Showa Denko Kk | 多孔体及びその製造方法並びにその用途 |
JP2008041253A (ja) * | 2006-08-01 | 2008-02-21 | Nissan Motor Co Ltd | 電極触媒およびそれを用いた発電システム |
JP2008159519A (ja) | 2006-12-26 | 2008-07-10 | Nippon Steel Corp | 燃料電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2360760A4 |
Also Published As
Publication number | Publication date |
---|---|
CN102257662B (zh) | 2015-04-29 |
JP5297786B2 (ja) | 2013-09-25 |
EP2360760A4 (en) | 2012-06-20 |
EP2360760A1 (en) | 2011-08-24 |
JP2010146770A (ja) | 2010-07-01 |
US20110236791A1 (en) | 2011-09-29 |
CN102257662A (zh) | 2011-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104094460B (zh) | 燃料电池用电极催化剂层 | |
EP2990109B1 (en) | Catalyst and electrode catalyst layer for fuel cell having the catalyst | |
EP2991142B1 (en) | Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell | |
US10573901B2 (en) | Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst | |
EP2990105B1 (en) | Catalyst, and electrode catalyst layer, film electrode assembly, and fuel cell each including said catalyst | |
JP6113836B2 (ja) | 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池 | |
US20160087281A1 (en) | Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst | |
JP5297786B2 (ja) | 固体高分子型燃料電池のアノード触媒層 | |
JP5458503B2 (ja) | 電解質膜−電極接合体の製造方法 | |
US20160079606A1 (en) | Catalyst, and electrode catalyst layer, membrane electrode assembly and fuel cell using the catalyst | |
Jayawickrama et al. | Enhanced platinum utilization efficiency of polymer-coated carbon black as an electrocatalyst in polymer electrolyte membrane fuel cells | |
JP2008204664A (ja) | 燃料電池用膜電極接合体、およびこれを用いた燃料電池 | |
JP7516825B2 (ja) | 固体高分子形燃料電池用触媒層、膜電極接合体及び固体高分子形燃料電池 | |
JP5326585B2 (ja) | 金属触媒担持カーボン粉末の製造方法 | |
JP6672622B2 (ja) | 燃料電池用電極触媒層およびその製造方法、ならびに当該触媒層を用いる膜電極接合体、燃料電池および車両 | |
JP2010218721A (ja) | 固体高分子型燃料電池の触媒層の評価方法 | |
JP5458774B2 (ja) | 電解質膜−電極接合体 | |
JP2007250214A (ja) | 電極触媒とその製造方法 | |
KR20230034949A (ko) | 촉매 제조 | |
JP2011028973A (ja) | 固体高分子型燃料電池の触媒層の評価方法 | |
JP2010146762A (ja) | 固体高分子型燃料電池の触媒層 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980150479.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09833299 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2009833299 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009833299 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13131626 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |