[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010064582A1 - Video display device and head-mounted display - Google Patents

Video display device and head-mounted display Download PDF

Info

Publication number
WO2010064582A1
WO2010064582A1 PCT/JP2009/070031 JP2009070031W WO2010064582A1 WO 2010064582 A1 WO2010064582 A1 WO 2010064582A1 JP 2009070031 W JP2009070031 W JP 2009070031W WO 2010064582 A1 WO2010064582 A1 WO 2010064582A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
plane
polarizer
analyzer
Prior art date
Application number
PCT/JP2009/070031
Other languages
French (fr)
Japanese (ja)
Inventor
靖 谷尻
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2010064582A1 publication Critical patent/WO2010064582A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator

Definitions

  • the present invention relates to an image display device and a head-mounted display that allow an observer to observe a display image at the position of an optical pupil by guiding image light from an image display element to an optical pupil via an axially asymmetric eyepiece optical system. (Hereinafter also referred to as HMD).
  • a reflective display element for example, a liquid crystal element having a ferroelectric liquid crystal.
  • a reflective display element for example, a liquid crystal element having a ferroelectric liquid crystal.
  • FIG. 21 light from a light source 101 is transmitted through at least a polarizer 102, a display element 103, an analyzer 104, and an axially asymmetric (rotationally asymmetric) eyepiece optical system 105. It leads to the optical pupil E. Thereby, at the position of the optical pupil E, the observer can observe a video (virtual image).
  • an axis that optically connects the center of the element surface of the display element 103 and the center of the optical pupil E is defined as an optical axis AX
  • the optical axis direction when the optical path is expanded is defined as a Z direction.
  • Two directions perpendicular to the Z direction are defined as an X direction and a Y direction, respectively.
  • the above-mentioned eyepiece optical system 105 is axially asymmetric in the YZ plane, and has the YZ plane as an axially asymmetric symmetry plane.
  • the polarizer 102 and the analyzer 104 are arranged in the optical path in consideration of the relative angle with the element surface of the display element 103 in the YZ plane that is an axially asymmetric symmetry plane of the eyepiece optical system 105. It has not been done. For this reason, when the observer's pupil is at a position shifted in the X direction from the center of the optical pupil E, there arises a problem that black becomes weak and the contrast of the observation image is lowered.
  • the display element 103 is a liquid crystal element having a ferroelectric liquid crystal
  • the image is displayed in black when the display element 103 does not act as a phase plate (reciprocating half-wave plate).
  • the optical axis AX is inclined at an inclination angle other than perpendicular to the element surface of the display element 103 in the YZ plane, and the slow phase of the liquid crystal with respect to the optical axis AX.
  • the liquid crystal at the time of black display with respect to light from the display element 103 (hereinafter referred to as light toward the pupil end) heading to a position shifted in the X direction from the center of the optical pupil E is displayed.
  • the direction of the slow axis slightly deviates (rotates) from the direction of the slow axis of the liquid crystal during black display with respect to light from the display element 103 toward the center of the optical pupil E (hereinafter referred to as light toward the center of the pupil). ).
  • the relative angle between the polarizer 102 and the element surface of the display element 103 and the relative angle between the analyzer 104 and the element surface of the display element 103 are not set appropriately in the YZ plane,
  • the angle difference between the slow axis of the liquid crystal at the time of black display and the transmission axis of the polarizer 102 and the angle difference between the slow axis of the liquid crystal at the time of black display and the transmission axis of the analyzer 104 are increased.
  • the black display image light cannot be completely absorbed (shielded) by the analyzer 104 at the pupil end. That is, when an image is observed at a position deviated from the center of the optical pupil E in the X direction, black becomes weak due to light leakage at the analyzer 104, and the contrast of the observed image decreases.
  • the present invention has been made to solve the above-described problems, and its object is to provide at least one of a polarizer and an analyzer and an element surface of a liquid crystal element within an axially asymmetric symmetry plane of an eyepiece optical system.
  • a polarizer and an analyzer and an element surface of a liquid crystal element within an axially asymmetric symmetry plane of an eyepiece optical system.
  • the image display apparatus of the present invention includes a reflective image display element that modulates light from a light source to display an image, an axially asymmetric illumination optical system that guides light from the light source to the image display element, and the image
  • An image display device comprising an axially asymmetric eyepiece optical system for guiding image light from a display element to an optical pupil, wherein the image display element includes a liquid crystal element that modulates incident light for each pixel, and the light source.
  • a polarizer that transmits light in a predetermined polarization direction to the liquid crystal element, and transmits light in a predetermined polarization direction among the light emitted from the liquid crystal element to the eyepiece optical system.
  • An analyzer that guides the optical axis, and the optical axis is an axis that optically connects the center of the element surface of the liquid crystal element and the center of the optical pupil, the optical axis is axisymmetric with respect to the eyepiece optical system.
  • the symmetry plane in the symmetry plane of the axially asymmetric system
  • the relative angle of at least one of the relative angles between the analyzer surface and the element surface is less than the relative angle between the optical axis and the normal of the element surface.
  • the image display apparatus of the present invention includes a reflective image display element that modulates light from a light source to display an image, an axially asymmetric illumination optical system that guides light from the light source to the image display element, and the image
  • An image display device comprising an axially asymmetric eyepiece optical system for guiding image light from a display element to an optical pupil, wherein the image display element includes a liquid crystal element that modulates incident light for each pixel, and the light source.
  • a polarizer that transmits light in a predetermined polarization direction to the liquid crystal element, and transmits light in a predetermined polarization direction among the light emitted from the liquid crystal element to the eyepiece optical system.
  • An analyzer that guides the optical axis, and the optical axis is an axis that optically connects the center of the element surface of the liquid crystal element and the center of the optical pupil, the optical axis is axisymmetric with respect to the eyepiece optical system.
  • the symmetry plane in the symmetry plane of the axially asymmetric system
  • the plane of the polarizer and the plane of the analyzer are not parallel, and the plane of the polarizer and the liquid crystal element
  • the relative angle between the element surface and the analyzer surface is equal to the relative angle between the element surface of the liquid crystal element.
  • the analyzer is arranged to be in crossed Nicols with the polarizer, and in black display, the liquid crystal element maintains the polarization direction of the light transmitted through the polarizer,
  • the analyzer is preferably configured to absorb light in the polarization direction.
  • the transmission axis of the polarizer is parallel or perpendicular to the axially asymmetric plane of symmetry of the eyepiece optical system.
  • the optical path when the optical path is developed along the optical axis, at least one of the surface of the polarizer and the surface of the analyzer is substantially parallel to the element surface of the liquid crystal element. Good.
  • an angle formed by the plane of the polarizer and the element plane of the liquid crystal element, and the plane of the analyzer and the element plane of the liquid crystal element It is desirable that the angle between the two is within 5 degrees.
  • the plane of the polarizer and the plane of the analyzer are both substantially parallel to the element plane of the liquid crystal element. Good.
  • the plane of the polarizer and the plane of the analyzer are not parallel, and the plane of the polarizer and the element plane of the liquid crystal element
  • the relative angle between the surface of the analyzer and the element surface of the liquid crystal element may be equal.
  • both the relative angle between the plane of the polarizer and the element surface, and the relative angle between the plane of the analyzer and the element surface are normal to the optical axis and the element surface. It may be less than the relative angle.
  • the liquid crystal element has a ferroelectric liquid crystal.
  • the illumination optical system is disposed outside the optical path from the liquid crystal element toward the eyepiece optical system, and reflects the light from the light source to the liquid crystal element.
  • the relative angle between the optical axis and the normal of the element surface is 10 degrees or more.
  • the video display element is disposed on one end side of the eyepiece optical system.
  • the head-mounted display (HMD) of the present invention is characterized by having the above-described video display device of the present invention and support means for supporting the video display device in front of the observer's eyes.
  • light in a predetermined polarization direction among the light from the light source passes through the polarizer of the reflective image display element and enters the liquid crystal element, where it is modulated for each pixel.
  • light having a predetermined polarization direction is transmitted through the analyzer and guided to the optical pupil via the axially asymmetric eyepiece optical system.
  • the observer can observe the virtual image of the image displayed on the image display element at the position of the optical pupil.
  • the liquid crystal element is a liquid crystal element having a ferroelectric liquid crystal
  • the image is displayed black when the liquid crystal element does not act as a phase plate (reciprocating half-wave plate), but the axis of the eyepiece optical system
  • the optical axis In an asymmetric symmetry plane (hereinafter referred to as the YZ plane), the optical axis is tilted at an inclination angle other than perpendicular to the element plane of the liquid crystal element, so the direction perpendicular to the YZ plane from the center of the optical pupil
  • the direction of the slow axis of the liquid crystal at the time of black display with respect to light from the liquid crystal element heading to a position shifted to the position (hereinafter referred to as the X direction) is the time of black display with respect to light from the liquid crystal element toward the center of the optical pupil. Slightly shifted (rotates) from the direction of the slow axis of the liquid crystal.
  • At least one of the relative angle between the polarizer surface and the element surface and the relative angle between the analyzer surface and the element surface is the normal between the optical axis and the element surface. Is set to be less than the relative angle of the optical pupil, so that the light from the liquid crystal element going to any position deviated in the X direction from the center of the optical pupil is shifted in the direction of the transmission axis of the polarizer or the direction of the transmission axis of the analyzer. Can be set equal to or less than the shift in the direction of the slow axis of the liquid crystal during black display.
  • the angle difference between the slow axis of the liquid crystal and the transmission axis of the analyzer can be reduced. Therefore, regardless of the position of the observer's pupil in the X direction, it is possible to reliably absorb the image light during black display by the analyzer and observe a high-contrast image.
  • (A) is the explanatory view which developed the optical path in the YZ plane along the optical axis in the image display device of one embodiment of the present invention, and (b) developed the optical path in the ZX plane.
  • FIG. 2 is a perspective view showing a schematic configuration of the HMD according to the present embodiment.
  • the HMD includes a video display device 1 and support means 2.
  • the video display device 1 has a housing 3.
  • the casing 3 contains at least the light source 11 and the liquid crystal element 16 (both see FIG. 3) and holds a part of the eyepiece optical system 18.
  • the eyepiece optical system 18 is configured by bonding an eyepiece prism 31 and a deflection prism 32, and has a shape like one lens of a pair of glasses (lens for right eye in FIG. 2) as a whole.
  • the light source 11 and the liquid crystal element 16 are supplied with at least driving power and a video signal via a cable 4 provided through the housing 3.
  • the support means 2 supports the video display device 1 (particularly the eyepiece optical system 18) in front of one eye (for example, the right eye) of the observer and the dummy lens 5 to the other eye (for example, the left eye) of the observer. Support in front of. More details are as follows. Instead of providing the dummy lens 5, two video display devices 1 may be provided corresponding to both eyes and supported by the support means 2.
  • the support means 2 has a bridge 6, a frame 7, a temple 8, and a nose pad 9.
  • the frame 7, the temple 8, and the nose pad 9 are provided as a pair on the left and right sides, and are each composed of a right frame 7R, a left frame 7L, a right temple 8R, a left temple 8L, a right nose pad 9R, and a left nose pad 9L. Yes.
  • One end of the bridge 6 is connected to the video display device 1, and the other end is connected to the dummy lens 5.
  • the end of the video display device 1 opposite to the side connected to the bridge 6 is fixed to the right frame 7R.
  • the right temple 8R is rotatably supported by the right frame 7R.
  • the end of the dummy lens 5 opposite to the connection side with the bridge 6 is fixed to the left frame 7L.
  • the left temple 8L is rotatably supported by the left frame 7L.
  • the right temple 8R and the left temple 8L are brought into contact with the right and left heads of the observer, and the nose pad 9 is placed on the nose of the observer so as to wear general glasses.
  • the HMD is attached to the observer's head.
  • the observer can observe the display image on the image display device 1 as a virtual image at the position of the optical pupil, and through the image display device 1.
  • An external image can be observed with see-through.
  • the video display apparatus 1 is supported by the support means 2, the observer can observe the video provided from the video display apparatus 1 in a hands-free manner.
  • the eye width differs for each observer. It is necessary to make it easy to observe by setting it large.
  • the relative relationship between at least one of the polarizer and the analyzer and the element surface of the liquid crystal element Since the angle is set appropriately, a high-contrast image can be observed regardless of the pupil position. That is, it is possible to observe a high-contrast image with both eyes without a difference in contrast between the left and right eyes. Details of the video display device 1 will be described below.
  • FIG. 3 is a cross-sectional view illustrating a schematic configuration of the video display device 1.
  • the video display apparatus 1 includes a light source 11, a polarizer 12, a mirror 13, a unidirectional diffuser plate 14, a polarizing plate 15, a liquid crystal element 16, an analyzer 17, and an axially asymmetric (rotationally asymmetric) eyepiece optical.
  • System 18 The polarizer 12, the liquid crystal element 16, and the analyzer 17 constitute a reflective image display element (LCD) that modulates the light from the light source 11 and displays an image.
  • This image display element is disposed on one end side (upper side in FIG. 3) of the eyepiece optical system 18 and is small and lightweight as a configuration in which image light is incident on the eyepiece optical system 18 from one end side.
  • the display device 1 can be realized.
  • an optical axis is an axis that optically connects the center of the light source 11, the center of the element surface of the liquid crystal element 16, and the center of the optical pupil E formed by the eyepiece optical system 18.
  • the element surface of the liquid crystal element 16 refers to a boundary surface between a liquid crystal sealing substrate 22 and a liquid crystal 23 described later.
  • the optical axis direction when the optical path from the light source 11 to the optical pupil E is developed is taken as the Z direction.
  • a direction perpendicular to an optical axis incident surface of a hologram optical element 33 (to be described later) of the eyepiece optical system 18 is defined as an X direction
  • a direction perpendicular to the ZX plane is defined as a Y direction
  • the optical axis incident surface of the hologram optical element 33 refers to a plane including the optical axis of incident light and the optical axis of reflected light in the hologram optical element 33, that is, the YZ plane.
  • the eyepiece optical system 18 of the present embodiment has a symmetrical shape with respect to the plane including the optical axis, and the optical axis incident surface of the hologram optical element 33 is also a symmetrical plane of the eyepiece optical system 18. .
  • the light source 11 emits light toward the liquid crystal element 16 and is disposed on the observer side (optical pupil E side) with respect to the optical path of light traveling from the liquid crystal element 16 toward the eyepiece optical system 18.
  • the light source 11 is composed of an RGB integrated light emitting diode (LED) that emits light corresponding to each color of R (red), G (green), and B (blue).
  • the RGB light emitting units are arranged side by side in the X direction.
  • the light source 11 emits light in three wavelength bands of 465 ⁇ 12 nm, 520 ⁇ 19 nm, and 635 ⁇ 10 nm, for example, with a center wavelength and a light intensity half-value wavelength width.
  • the RGB light intensity of the light source 11 is adjusted in consideration of the diffraction efficiency of the hologram optical element 33 and the light transmittance of the liquid crystal element 16, thereby enabling white display.
  • a ferroelectric liquid crystal element capable of time-division driving is used as the liquid crystal element 16, and therefore the light source 11 sequentially emits each light of RGB in time division.
  • the light source 11 may have one set or two sets of RGB light emitting units.
  • each group of light emitting units is arranged so that the light emitting units of the same color in each set are substantially symmetrical with respect to the YZ plane.
  • the light emitting part having a longer wavelength of the emitted light is arranged at a position closer to the symmetry plane (YZ plane).
  • the polarizer 12 is a polarizing plate that transmits light in a predetermined polarization direction (for example, P-polarized light) out of the light from the light source 11 and guides it to the liquid crystal element 16.
  • the polarizer 12 transmits polarized light (for example, P-polarized light) in the same direction as the polarizing plate 15 described later, and blocks (absorbs) polarized light (for example, S-polarized light) in the same direction as the analyzer 17 described later. But there is. Therefore, of the light emitted from the light source 11, the light that directly passes through the analyzer 17 (S-polarized light), or the light that is reflected by the surface of the polarizing plate 15 toward the analyzer 17 and passes therethrough. (S-polarized light) can be cut in advance by the polarizer 12, and unnecessary light that is not modulated by the liquid crystal element 16 can be prevented from being transmitted to the optical pupil E through the analyzer 17.
  • the mirror 13 is an illumination optical system that guides light from the light source 11 to an image display element (LCD). More specifically, the mirror 13 reflects light from the light source 11 and guides it to the liquid crystal element 16.
  • the mirror 13 is an axially asymmetric optical system having a YZ plane as a symmetry plane, and is constituted by, for example, a cylindrical mirror having an optical power for collecting light only in the YZ plane.
  • the mirror 13 since the mirror 13 has optical power, the light from the light source 11 can be condensed and the liquid crystal element 16 can be illuminated, and a bright image can be observed by the observer.
  • the apparatus since the optical path of light from the light source 11 toward the liquid crystal element 16 is folded by the mirror 13, the apparatus can be reduced in size and weight.
  • the mirror 13 may be composed of other mirrors such as an axially asymmetric aspherical mirror and an axially asymmetric concave mirror (free curved mirror).
  • the mirror 13 is disposed outside the optical path from the liquid crystal element 16 toward the eyepiece optical system 18. More specifically, the mirror 13 is provided on the side opposite to the light source 11 with respect to the optical path of light from the liquid crystal element 16 toward the eyepiece optical system 18.
  • the analyzer 17 is disposed as an optical member in the optical path between the liquid crystal element 16 and the eyepiece optical system 18, and there is no irregularly reflecting optical element such as an illumination prism. It has become. Thereby, there is no flare light caused by unnecessary reflection on the inner surface of the prism, and a high-contrast and high-quality image can be observed.
  • the eyepiece optical system 18 described later is an optical system that is axially asymmetric with respect to the YZ plane, and the YZ plane is a symmetrical surface that is axially asymmetric. Therefore, the symmetry plane of the eyepiece optical system 18 and the symmetry plane of the mirror 13 (illumination optical system) are in the same plane.
  • the unidirectional diffusion plate 14 diffuses the light emitted from the light source 11 in the X direction perpendicular to the symmetry plane of the eyepiece optical system 18 and guides it to the liquid crystal element 16. More specifically, the unidirectional diffuser 14 diffuses incident light by 40 degrees in the X direction and 0.5 degrees in the Y direction. Instead of the unidirectional diffuser 14, a normal diffuser that diffuses incident light in both directions may be used.
  • the polarizing plate 15 transmits light of a predetermined polarization direction (for example, P-polarized light) transmitted through the polarizer 12 out of the light emitted from the light source 11 and guides it to the mirror 13 and reflects the light reflected by the mirror 13. (For example, P-polarized light) is transmitted and guided to the liquid crystal element 16. Even if the polarizing plate 15 generates a component that passes through the analyzer 17 due to diffusion by the unidirectional diffusion plate 14, it can be removed and a high-contrast image can be observed.
  • a predetermined polarization direction for example, P-polarized light
  • the analyzer 17 transmits light having a predetermined polarization direction out of the light emitted from the liquid crystal element 16 and guides it to the eyepiece optical system 18.
  • the light having the predetermined polarization direction is light (for example, S-polarized light) having a polarization direction orthogonal to light transmitted through the polarizer 12 and the polarizing plate 15. Therefore, it can be said that the analyzer 17 is arranged so as to be crossed Nicol with the polarizer 12.
  • the liquid crystal element 16 is a reflective light modulation element that has a plurality of pixels in a matrix and modulates incident light (light from the light source 11) for each pixel according to image data. More specifically, the liquid crystal element 16 includes a silicon substrate 21 (first base material), a liquid crystal sealing base material 22 (second base material), and a liquid crystal 23. Has a counter electrode, an alignment film, and a control circuit (not shown).
  • Reflective electrodes are formed on the silicon substrate 21 corresponding to each pixel, wiring lines such as scanning lines and signal lines, and switching elements (for example, TFTs) for driving each pixel on / off are formed. ing.
  • the liquid crystal sealing substrate 22 is made of, for example, a transparent cover glass, and is a substrate on which the above-described counter electrode is formed.
  • the liquid crystal 23 is sandwiched between the silicon substrate 21 and the liquid crystal sealing base material 22 and modulates incident light by controlling the phase of polarized light.
  • the liquid crystal 23 is composed of a ferroelectric liquid crystal.
  • the liquid crystal 23 is controlled so that the major axis direction (slow axis direction) of the liquid crystal molecules is parallel or perpendicular to the P-polarized light, and the incident P-polarized light is emitted (reflected) as the P-polarized light.
  • the liquid crystal 23 functions as a quarter wave plate (a half wave plate in a reciprocating manner), and converts incident P-polarized light into S-polarized light and emits (reflects) it.
  • the liquid crystal element 16 is arranged so that the long side direction of the rectangular display screen is the X direction and the short side direction is the Y direction.
  • the liquid crystal element 16 does not have a color filter. Therefore, each pixel of the liquid crystal element 16 is ON / OFF driven in a time division manner corresponding to each of RGB light sequentially supplied from the light source 11 in a time division manner. Then, RGB display is performed in a time division manner with the same pixel. Thereby, a color image can be provided to the observer.
  • the liquid crystal element 16 does not have a color filter, the light transmittance of the liquid crystal element 16 is high.
  • the reflective liquid crystal element 16 a semiconductor such as silicon can be used as a substrate as described above, so that the liquid crystal element 16 having a small size and a high degree of integration can be manufactured. Moreover, since the peripheral circuit including the switching element and the wiring can be disposed on the back surface (the surface opposite to the display side) of the substrate, the aperture ratio can be easily improved and a bright image can be obtained. Can be displayed. Further, since the ferroelectric liquid crystal has a merit that the driving speed is high, therefore, the above time-division driving method can be employed. Further, since the high-contrast image can be displayed by using the ferroelectric liquid crystal as compared with the case of using the TN liquid crystal, the effect of the present invention described later can be observed regardless of the pupil position shift. It becomes effective.
  • the eyepiece optical system 18 is an optical system that guides image light emitted from the image display element (particularly the liquid crystal element 16) to the optical pupil E, and has positive optical power that is axisymmetric.
  • the eyepiece optical system 18 includes an eyepiece prism 31, a deflection prism 32, and a hologram optical element 33.
  • the eyepiece prism 31 is a first transparent substrate that totally reflects incident light, that is, image light from the liquid crystal element 16 and guides it to the hologram optical element 33 while transmitting external light.
  • incident light that is, image light from the liquid crystal element 16
  • guides it to the hologram optical element 33 while transmitting external light For example, it is made of an acrylic resin.
  • the eyepiece prism 31 is formed in a shape in which the lower end portion of the parallel plate is thinned into a wedge shape and the upper end portion is thickened.
  • the eyepiece prism 31 is joined to the deflecting prism 32 with an adhesive so as to sandwich the hologram optical element 33 disposed at the lower end thereof.
  • the deflection prism 32 is configured by a substantially U-shaped parallel plate in plan view (see FIG. 2), and when attached to the lower end portion and both side surface portions (left and right end surfaces) of the eyepiece prism 31, the eyepiece prism. 31 is a second transparent substrate that is integrated with 31 to form a substantially parallel plate.
  • the deflecting prism 32 when the deflecting prism 32 is not joined to the eyepiece prism 31, the light of the external field image is refracted when passing through the wedge-shaped lower end portion of the eyepiece prism 31, so that the external field image observed through the eyepiece prism 31 is changed. Distortion occurs.
  • the deflection prism 32 is joined to the eyepiece prism 31 to form an integral substantially parallel plate, so that the deflection when the light of the external image passes through the wedge-shaped lower end of the eyepiece prism 31 is canceled by the deflection prism 32. can do. As a result, it is possible to prevent distortion in the external image observed through the see-through.
  • the hologram optical element 33 is a volume phase type reflection hologram that diffracts RGB image light emitted from the liquid crystal element 16 and guides it to the optical pupil E.
  • the hologram optical element 33 has optically asymmetric positive power and has the same function as an aspherical concave mirror. Thereby, the degree of freedom of arrangement of each optical member constituting the apparatus can be increased, and the apparatus can be easily reduced in size, and an image with good aberration correction can be provided to the observer.
  • the hologram optical element 33 has, for example, three wavelength ranges of 465 ⁇ 5 nm (B light), 521 ⁇ 5 nm (G light), and 634 ⁇ 5 nm (R light) with a peak wavelength of diffraction efficiency and a wavelength width of half value of diffraction efficiency. It is made to diffract (reflect) light.
  • the peak wavelength of diffraction efficiency is the wavelength at which the diffraction efficiency reaches a peak
  • the wavelength width at half maximum of the diffraction efficiency is the wavelength width at which the diffraction efficiency is at half maximum of the diffraction efficiency peak. It is.
  • the hologram optical element 33 is fabricated so as to diffract only light having a specific wavelength at a specific incident angle, it hardly affects the transmission of external light. Therefore, the observer can see the external image as usual through the eyepiece prism 31, the hologram optical element 33, and the deflection prism 32.
  • the peak wavelength of the diffraction efficiency of the hologram optical element 33 and the peak wavelength (center wavelength) of the light intensity emitted from the light source 11 are substantially the same.
  • the light in the vicinity of the wavelength at which the light intensity reaches a peak among the light emitted from the light source 11 is efficiently diffracted by the hologram optical element 33, so that it is bright even when superimposed on the external image, An easy-to-view video can be provided to the observer.
  • the positions of the optical pupils of the respective colors coincide with each other in the Y direction, and the entire optical pupil E can be reduced.
  • RGB for example, P-polarized light
  • emitted from the light source 11 in a time division manner is first transmitted through the polarizer 12, enters the mirror 13 through the polarizing plate 15 and the one-way diffusion plate 14, and is reflected there. .
  • the reflected light (P-polarized light) from the mirror 13 enters the unidirectional diffuser plate 14 again, is diffused in the X direction, passes through the polarizing plate 15 and enters the liquid crystal element 16.
  • the liquid crystal element 16 In the liquid crystal element 16, incident light is reflected, and at that time, phase modulation is performed for each pixel in accordance with image data for each RGB. For example, in a pixel corresponding to black display, incident light is not phase-modulated, is emitted from the liquid crystal element 16 as P-polarized light, and is absorbed by the analyzer 17. On the other hand, in the pixel corresponding to white display, the liquid crystal element 16 acts as a quarter wavelength plate (reciprocating half wavelength plate), and incident light is converted into S-polarized light and transmitted through the analyzer 17. By controlling the modulation time in the liquid crystal element 16 or the intensity of light emitted from the light source 11, a color image can be displayed on the LCD. Note that it is arbitrary which one of P-polarized light and S-polarized light is used for white display.
  • the image light transmitted through the analyzer 17 is incident on the eyepiece prism 31 of the eyepiece optical system 18 through a surface 31a having a convex curved surface.
  • the incident image light is totally reflected a plurality of times by two opposing planes (surfaces 31 b and 31 c) of the eyepiece prism 31, guided to the hologram optical element 33 disposed at the lower end of the eyepiece prism 31, reflected there, and optically received.
  • Guided to pupil E. Guided to pupil E. Therefore, at the position of the optical pupil E, the observer can observe an enlarged virtual image of each RGB image displayed on the LCD as a color image.
  • the eyepiece prism 31, the deflecting prism 32, and the hologram optical element 33 transmit almost all the external light, so that the observer can observe the external image in a see-through manner. Therefore, the virtual image of the image displayed on the LCD is observed while overlapping a part of the external image.
  • the analyzer 17 is arranged so as to be crossed Nicol with the polarizer 12, and in black display, the liquid crystal element 16 maintains the polarization direction of the light (P-polarized light) transmitted through the polarizer 12.
  • the analyzer 17 absorbs the light in the polarization direction. In this way, at the time of black display, the liquid crystal element 16 does not convert the light transmitted through the polarizer 12, so that the light transmitted through the polarizer 12 and incident on the liquid crystal element 16 and emitted therefrom (black display The image light) is reliably absorbed by the analyzer 17, and a high-contrast image can be observed.
  • the configuration of the present invention described later that is, the configuration for observing a high-contrast image regardless of the pupil position in the X direction (polarizer). 12 the inclined arrangement of the liquid crystal element 16 and the analyzer 17 with respect to the optical axis) is very effective.
  • the transmission axis of the polarizer 12 is parallel or perpendicular to the axially asymmetric symmetry plane (YZ plane) of the eyepiece optical system 18.
  • the polarizer 12 or the analyzer 17 has a predetermined value in the YZ plane as described later. Even when tilted at each tilt angle, the transmission axis of the polarizer 12 and the absorption axis of the analyzer 17 (axis perpendicular to the transmission axis) can be maintained parallel to the YZ plane. This makes it possible for the analyzer 17 to reliably absorb the light transmitted through the polarizer 12 during black display and observe a high-contrast image.
  • the hologram optical element 33 of the eyepiece optical system 18 is used as a combiner that simultaneously guides the image light from the LCD and external light to the observer's pupil. Can simultaneously observe an image provided from the LCD and an external image via the hologram optical element 33.
  • the hologram optical element 33 has higher diffraction efficiency of S-polarized light than P-polarized light, the image light emitted from the liquid crystal element 16 and transmitted through the analyzer 17 is changed to S-polarized light as in the present embodiment. Bright images with high color purity can be observed by an observer.
  • a configuration in which P-polarized light is emitted from the liquid crystal element 16 and after passing through the analyzer 17 may be converted to S-polarized light by a half-wave plate.
  • the deflection prism 32 cancels the refraction of the external light at the wedge portion of the eyepiece prism 31, the observer observes the external light through the eyepiece prism 31, the deflection prism 32, and the hologram optical element 33 without distortion. Can do.
  • the eyepiece prism 31 can be made thin (for example, about 3 mm) as much as a normal eyeglass lens, and the size and weight can be reduced. Become.
  • the reflection in the eyepiece prism 31 is set as total reflection, the observer can observe an external image through the surfaces 31b and 31c of the eyepiece prism 31 without reducing the transmittance of outside light.
  • the image display device 1 is an axially asymmetric optical system
  • the principal ray of image light (the ray on the optical axis) used in the eyepiece optical system 18 is YZ plane with respect to the display surface of the liquid crystal element 16. It is inclined in the Y direction. Since the ferroelectric liquid crystal element 16 displays black when it does not act as a phase plate, the liquid crystal molecules coincide with the polarization direction in the YZ plane, and the polarization is not changed. Therefore, even when obliquely incident on the liquid crystal element 16, there is little leakage light for black display, and display with high contrast is possible.
  • the liquid crystal element 16 acts as a quarter wavelength plate (reciprocating half wavelength plate), so that the intensity of light passing through the analyzer 17 varies depending on the wavelength (wavelength dependence). However, this wavelength dependence can be canceled by adjusting the intensity of light emitted from the light source 11 or adjusting the modulation time in the liquid crystal element 16.
  • the positional relationship between the light source 11 and the optical pupil E is almost conjugate (see FIG. 3).
  • the reflective liquid crystal element 16 has a high aperture ratio, the diffusion of each pixel of the liquid crystal element 16 is small. Therefore, it can be said that the light source 11 and the optical pupil E are optically conjugate in the Y direction.
  • the light source 11 and the optical pupil E are not optically conjugate.
  • the mirror 13 is arranged so that the light diffused by the one-way diffuser plate 14 after the light from the light source 11 is condensed forms the optical pupil E efficiently. It is possible to observe bright images.
  • the optical arrangement and optical power of each optical member are set so that the optical pupil E has a half intensity value of 6 mm in the X direction and 2 mm in the Y direction.
  • the light emitting area (for example, 0.3 mm square) of the light source 11 is conjugated with 0.5 degree diffusion in the unidirectional diffusion plate 14 and about 2 degree diffusion in the liquid crystal element 16. It is formed to be slightly larger than the pupil formed at the image magnification.
  • the optical pupil E is 6 mm larger than the human pupil (about 3 mm) in one direction (X direction), the observer can easily observe the image.
  • the optical pupil E has a size of 2 mm which is smaller than the human pupil in the other direction (Y direction)
  • the light from the light source 11 is condensed on the optical pupil E in the above direction without waste.
  • the observer can observe a bright image.
  • the observer observes an image if the X direction is set to the left and right direction of the observer and the Y direction is set to the up and down direction, the observer moves well and has a large pupil in the left and right direction with a wide observation range. This makes it easy to observe the image, and it is possible to observe a bright image by focusing on a small pupil in the vertical direction.
  • the optical pupil E is set to have a half intensity value of 6 mm in the X direction and 2 mm in the Y direction. That is, the optical pupil E is larger in the X direction, that is, the direction perpendicular to the optical axis incident surface, than in the Y direction, that is, the direction parallel to the optical axis incident surface (YZ plane) of the hologram optical element 33.
  • the size of the optical pupil E in this way, the observer can observe a high-quality image with little color unevenness without being greatly affected by the wavelength characteristic (wavelength selectivity) of the hologram optical element 33. Can do. The reason is as follows.
  • the wavelength selectivity in the hologram optical element 33 is smaller in the direction perpendicular to the optical axis incident surface than in the direction parallel to the optical axis incident surface (incident angle).
  • the diffraction wavelength shift due to the shift is small.
  • the angle selectivity with respect to the shift of the incident angle to the interference fringes is lower in the direction perpendicular to the optical axis incident surface than in the direction parallel to the optical axis incident surface.
  • the angle deviation in the Y direction parallel to the optical axis incident surface is more likely to occur on the optical axis incident surface even with the same angle deviation.
  • the diffraction wavelength is greatly shifted from the angle deviation in the vertical X direction (that is, the Y direction parallel to the optical axis incident surface has a large wavelength selectivity).
  • the optical pupil E small in the Y direction where the change in the diffraction wavelength is large, the range of change in the diffraction wavelength is narrowed, so that the color unevenness on the optical pupil E can be reduced. Further, even if the optical pupil E is formed large in the X direction perpendicular to the optical axis incident surface, an image with high color purity can be provided to the observer.
  • the incident surface of the light outside the optical axis incident surface is not slightly parallel to the optical axis incident surface, as described above, the angle shift in the direction perpendicular to the optical axis incident surface has little influence on the diffraction wavelength. Even if the incident surface is used as a reference, color unevenness does not increase.
  • FIG. 1A is an explanatory diagram in which the optical path from the light source 11 to the optical pupil E along the optical axis AX is developed in the YZ plane in the video display device 1 described above, and FIG. It is explanatory drawing which expand
  • 1 (a) indicates light from the liquid crystal element 16 (hereinafter referred to as Y-direction pupil end light) that is directed to a position shifted in the Y direction from the center of the optical pupil E (for example, an end portion in the Y direction). ).
  • Y-direction pupil end light indicates light from the liquid crystal element 16 (hereinafter referred to as Y-direction pupil end light) that is directed to a position shifted in the Y direction from the center of the optical pupil E (for example, an end portion in the Y direction).
  • 1B indicates light from the liquid crystal element 16 (hereinafter referred to as light at the X-direction pupil end) toward a position shifted in the X direction from the center of the optical pupil E (for example, the X direction end). Designated).
  • the optical pupil E is set larger in the X direction than in the Y direction.
  • the eyepiece optical system 18 is an axisymmetric optical system in the YZ plane and an axially symmetric optical system in the ZX plane.
  • the optical axis AX is inclined at an inclination angle other than perpendicular to the element surface of the liquid crystal element 16.
  • a ray on the optical axis AX is a principal ray
  • an incident angle of the principal ray on the liquid crystal element 16 in the YZ plane is ⁇ (°). That is, ⁇ is an angle formed by the normal line of the element surface of the liquid crystal element 16 in the YZ plane and the optical axis AX. Since the optical system is set to be substantially telecentric in order to reduce the optical aberration, the liquid crystal element 16 also has an incident angle close to the angle ⁇ in the YZ plane with respect to the incident light other than the center of the element surface. Is incident on. In the present embodiment, ⁇ ⁇ 10 ° is set in order to reduce the size of the apparatus while ensuring optical performance (for example, performance related to aberration) while increasing the degree of freedom of arrangement of the optical members.
  • the relative angle between the plane of the polarizer 12 and the element plane of the liquid crystal element 16 is ⁇ (°)
  • the plane of the analyzer 17 and the element of the liquid crystal element 16 Let the relative angle to the surface be ⁇ (°).
  • ⁇ and ⁇ are also referred to as the inclination angle of the polarizer 12 and the inclination angle of the analyzer 17, respectively.
  • the polarizer 12, the liquid crystal element 16, and the analyzer 17 are arranged so that ⁇ ⁇ and ⁇ ⁇ in the YZ plane when the optical path is developed along the optical axis AX. Has been.
  • ⁇ ⁇ and ⁇ ⁇ in the YZ plane when the optical path is developed along the optical axis AX.
  • FIG. 5 is an explanatory diagram schematically showing the directions of the transmission axis of the polarizer 12, the slow axis during black display of the liquid crystal 23, and the transmission axis of the analyzer 17 for light on the optical axis AX. is there.
  • the direction of the transmission axis of the polarizer 12 and the direction of the slow axis during black display of the liquid crystal 23 are set to the Y direction, and the direction of the transmission axis of the analyzer 17 is X Set to direction.
  • the normal of the element surface of the liquid crystal element 16 is inclined by an angle ⁇ with respect to the optical axis AX in the YZ plane, and the slow axis of the liquid crystal 23 during black display is inclined in the YZ plane.
  • the polarizer 12 and the analyzer 17 are inclined at an inclination angle ⁇ and an inclination angle ⁇ , respectively, in a plane parallel to a plane including the slow axis and the optical axis when the liquid crystal 23 displays black.
  • the direction of the transmission axis of the polarizer 12, the direction of the slow axis when the liquid crystal 23 displays black, and the direction of the transmission axis of the analyzer 17 are in the traveling direction of the light.
  • the light that has passed through the polarizer 12 without being tilted in a vertical plane is reliably absorbed by the analyzer 17 and has high contrast.
  • the slow axis direction D 0 when the liquid crystal 23 displays black is the Y direction when viewed from the X 0 direction in which the light on the optical axis AX travels.
  • the transmission axis of the polarizer 12 and the transmission axis of the analyzer 17 are not inclined in the plane.
  • the direction of the transmission axis of the polarizer 12 and the liquid crystal 23 during black display is high. Since the slow axis direction and the transmission axis direction of the analyzer 17 are not inclined in a plane perpendicular to the light traveling direction, the contrast is high.
  • FIG. 6 shows the transmission axis of the polarizer 12, the slow axis during black display of the liquid crystal 23, and the transmission axis of the analyzer 17 for the light at the X-direction pupil end indicated by the two-dot chain line in FIG. It is explanatory drawing which shows each direction of these typically. Since the slow axis when the liquid crystal 23 displays black is tilted in the YZ plane, the light at the X direction pupil end, as shown in FIG. 4, is the direction D 0 of the slow axis when the liquid crystal 23 displays black.
  • the slow axis at the time of black display of the liquid crystal 23 is slightly shifted from the Y direction by an angle B within a plane perpendicular to the light traveling direction.
  • the polarizer 12 and the analyzer 17 are inclined in the YZ plane so that ⁇ ⁇ and ⁇ ⁇ (see FIG. 1A), the light at the X-direction pupil end is determined.
  • the transmission axis of the polarizer 12 is slightly shifted from the Y direction by an angle A in a plane perpendicular to the traveling direction, and the transmission axis of the analyzer 17 is an angle C from the X direction in a plane perpendicular to the traveling direction. A little off.
  • the analyzer 17 absorbs all the light from the polarizer 12 and does not leak light, but the slow axis of the liquid crystal 23 acting as a half-wave plate, the polarizer 12 and
  • the transmission axes of the analyzer 17 are deviated from parallel or perpendicular, the larger the deviation angle, the more light is transmitted through the analyzer 17, and the amount thereof is determined by the polarization direction of the light incident on the analyzer 17 and the analyzer 17. Is proportional to the square of the sine of the angle of deviation from the direction of the transmission axis. Therefore, in the example of FIG. 6, out of the light transmitted through the polarizer 12, ⁇ Sin (2B-AC) ⁇ 2 That is, the light corresponding to this ratio passes through the analyzer 17.
  • the inclination angle ⁇ of the polarizer 12 and the inclination angle ⁇ of the analyzer 17 can be less than ⁇ , the direction of the transmission axis of the polarizer 12 with respect to the light at the X direction pupil end or The direction of the transmission axis of the analyzer 17 can be shifted by a shift amount equal to or less than the shift of the slow axis direction of the liquid crystal 23 during black display.
  • the shift amount (
  • the component transmitted through the analyzer 17 in the light from the polarizer 12 is very Becomes smaller. This is true not only for the light at the X-direction pupil end, but also for the light going to any position shifted in the X direction from the center of the optical pupil E. Therefore, regardless of the position of the observer's pupil in the X direction, the image light during black display can be reliably absorbed by the analyzer 17 and a high contrast image can be observed.
  • the focal length of the eyepiece optical system 18 is 20 mm and the size of the optical pupil E in the X direction is 5 mm
  • the angle formed with the optical axis AX in the plane is about 14 °.
  • the angle A is about 3 °
  • the angle B is about 3.8 °
  • the angle C is about 4.1 °. Therefore, from the above equation, light leaks by 0.00008 at a rate when the incident light is 1.
  • the contrast is 100: 1.008 at the pupil edge in the X direction, and the same high contrast as that on the optical axis can be achieved. It should be noted that a high-contrast image can be observed at the X-direction pupil end even when the contrast is higher, such as 1000: 1 on the optical axis, or when the contrast is lower than 100: 1 on the optical axis.
  • b) is an explanatory diagram in which the optical path of the video display device 1 is developed in the ZX plane along the optical axis AX.
  • the polarizer 12 and the analyzer 17 are arranged to be perpendicular to the optical axis AX and are parallel to each other. However, here, when the optical path is developed in the YZ plane, the polarizer 12 and the analyzer 17 are inclined by + ⁇ in the same direction as the normal of the element surface of the liquid crystal element 16 approaches the optical axis AX. Shall.
  • each is inclined, for the light on the optical axis AX, the direction of the transmission axis of the polarizer 12, the direction of the slow axis when the liquid crystal 23 displays black, and the direction of the transmission axis of the analyzer 17 are:
  • the light that has passed through the polarizer 12 without being inclined in the plane perpendicular to the traveling direction of the light is reliably absorbed by the analyzer 17 and has a high contrast. Further, not only the light on the optical axis AX but also the light at the pupil edge in the Y direction indicated by the one-dot chain line in FIG.
  • FIG. 8 shows the transmission axis of the polarizer 12, the slow axis during black display of the liquid crystal 23, and the transmission axis of the analyzer 17 for the light at the pupil edge in the X direction indicated by the two-dot chain line in FIG. It is explanatory drawing which shows each direction of these typically.
  • the slow axis during black display of the liquid crystal 23 is shifted from the Y direction by an angle D (°), as in FIG.
  • the polarizer 12 and the analyzer 17 are substantially perpendicular to the optical axis AX, so that each transmission axis hardly deviates from the Y direction and the X direction.
  • the polarization direction of the light transmitted through the polarizer 12 is rotated by an angle 2D that is twice the deviation of the slow axis of the liquid crystal 23 from the Y direction (the liquid crystal 23 has a half wavelength). It doubles to act as a plate).
  • ⁇ Sin (2D) ⁇ 2 The light corresponding to this ratio (component P parallel to the transmission axis of the analyzer 17) is transmitted through the analyzer 17.
  • the amount of the leaked light is 0.017 in a ratio where the incident light is 1. Therefore, when the contrast is 100 to 1 on the optical axis, the contrast is 100 to 2.7 at the pupil edge in the X direction. In other words, according to the present invention, when the contrast is 100 to 1 on the optical axis, the contrast is at least 100 to 2.7 at the pupil edge in the X direction.
  • FIG. 10 and 11 show the transmission axis of the polarizer 12 and the slow axis during white display of the liquid crystal 23 in the configurations of FIGS. 1 (a) and 1 (b) and FIGS. 7 (a) and 7 (b).
  • FIG. 10 is a diagram schematically illustrating each direction of the transmission axis of the analyzer 17.
  • FIG. 10 shows the light on the optical axis
  • FIG. 11 shows the Y-direction pupil end.
  • the direction of the slow axis of the liquid crystal 23 also deviates from 45 degrees with respect to the light on the optical axis, and the analyzer 17 transmits the polarization direction of the light transmitted through the polarizer 12.
  • the contrast hardly changes even if the brightness of white becomes somewhat dark.
  • the white level is set to 100 for a display with a contrast of 100 to 1, even if white is decreased by 2, it is only 98 to 1 and still has a high contrast.
  • the slow axis of the liquid crystal 23 further shifts from 45 degrees during white display, but it can be said that the influence on the contrast is small as described above.
  • FIG. 12A is an explanatory diagram in which the optical path is developed in the YZ plane of the video display device 1 in which ⁇ and ⁇ are set as described above.
  • 12 (b) shows the respective directions of the transmission axis of the polarizer 12, the slow axis during black display of the liquid crystal 23, and the transmission axis of the analyzer 17 for the light at the pupil in the X direction in the video display device 1. It is explanatory drawing shown typically.
  • FIG. 13A is an explanatory diagram in which the optical path is developed in the YZ plane of the video display apparatus 1 in which ⁇ and ⁇ are set as described above.
  • FIG. 13B shows each direction of the transmission axis of the polarizer 12, the slow axis during black display of the liquid crystal 23, and the transmission axis of the analyzer 17 for the light at the X-direction pupil end in the video display device 1. It is explanatory drawing which shows this typically.
  • FIG. 14A is an explanatory diagram in which the optical path is developed in the YZ plane of the video display device 1 in which ⁇ and ⁇ are set as described above.
  • FIG. 14B shows each direction of the transmission axis of the polarizer 12, the slow axis during black display of the liquid crystal 23, and the transmission axis of the analyzer 17 for the light at the X direction pupil end in the video display device 1. It is explanatory drawing which shows this typically.
  • FIG. 15A is an explanatory diagram in which the optical path is developed in the YZ plane of the video display device 1 in which ⁇ and ⁇ are set as described above.
  • FIG. 15B shows the transmission axis of the polarizer 12, the slow axis during black display of the liquid crystal 23, and the transmission axis of the analyzer 17 for the light at the pupil in the X direction in the video display device 1. It is explanatory drawing which shows a direction typically.
  • the polarizer 12 and the analyzer 17 are not parallel to each other, and the relative angle ⁇ between the surface of the polarizer 12 and the element surface of the liquid crystal element 16 is the analyzer.
  • the configuration equal to the relative angle ⁇ between the surface 17 and the element surface of the liquid crystal element 16 is effective even when the condition of ⁇ ⁇ or ⁇ ⁇ is not satisfied in the YZ plane (at least one of ⁇ and ⁇ is ⁇ In this case, a high-contrast image can be observed regardless of the position in the X direction.
  • the embodiments of (2) and (3) described above are as follows: “When the optical path is developed along the optical axis, the plane of the polarizer and the element plane of the liquid crystal element are within the axially asymmetric symmetry plane of the eyepiece optical system. And at least one of the relative angle between the analyzer surface and the element surface is less than the relative angle between the optical axis and the normal of the element surface. Can be realized.
  • FIG. 16 is an explanatory view schematically showing another configuration of the video display device 1 of the present embodiment.
  • the illustration of the configuration after the eyepiece optical system 18 is omitted.
  • the surface of the analyzer 17 and the element surface of the liquid crystal element 16 are optically parallel, that is, ⁇
  • the polarizer 12 is arranged so as to increase, that is, ⁇ > ⁇ .
  • the polarizer 12 and the analyzer 17 are optically inclined.
  • the polarizer 12 is arranged on the opposite side of the light source 11 with respect to the optical path from the liquid crystal element 16 toward the analyzer 17, that is, in the optical path between the mirror 13 and the liquid crystal element 16.
  • the focal length of the eyepiece optical system 18 is 20 mm and the size of the optical pupil E in the X direction is 5 mm
  • the angle formed with the optical axis AX in the plane is about 14 °.
  • 15 °
  • 45 °
  • 1 °
  • the angle formed by the normal of the surface of the polarizer 12 and the optical axis AX is 45 °
  • the angle A is about 8. 2 °
  • the angle B is about 3.8 °
  • the angle C is about 4.1 °.
  • FIG. 17 is an explanatory view schematically showing still another configuration of the video display device 1.
  • the illustration of the configuration after the eyepiece optical system 18 is omitted.
  • the polarizer 12 may be formed in a cylindrical shape along the mirror 13, that is, a shape having a curvature only in the YZ plane. In this case, the polarizer 12 can be easily attached to the curved mirror 13 and can be held integrally.
  • the case where the analyzer 17 is bent in the YZ plane can be considered in the same manner as described above, and even in this case, an image with high contrast can be observed.
  • FIG. 18 is an explanatory diagram schematically showing still another configuration of the video display device 1.
  • the illustration of the configuration after the eyepiece optical system 18 is omitted.
  • the illumination prism 41 has a concave reflecting surface 41a, and the optical path of light from the polarizer 12 toward the liquid crystal element 16 is bent by the concave reflecting surface 41a. That is, the light from the light source 11 that has passed through the polarizer 12 enters the illumination prism 41, is reflected by the concave reflecting surface 41 a, and enters the liquid crystal element 16. Then, the light emitted from the liquid crystal element 16 enters the illumination prism 41 again, passes therethrough, and travels toward the analyzer 17.
  • both the surface of the polarizer 12 and the surface of the analyzer 17 are optically parallel to the element surface of the liquid crystal element 16, one of the surface of the polarizer 12 and the surface of the analyzer 17.
  • a higher-contrast image can be observed at the X-direction pupil end. This effect can be obtained if the plane of the polarizer 12 and the plane of the analyzer 17 are not parallel to the element plane of the liquid crystal element 16 but are almost parallel.
  • the plane of the polarizer 12 and the plane of the analyzer 17 should form an angle of 5 degrees or less with the element plane of the liquid crystal element 16, and if it is substantially parallel, the effect can be obtained to the maximum.
  • the term “substantially parallel”, including both the case of being completely parallel and the case of being nearly parallel, is used.
  • At least one of the surface of the polarizer 12 and the surface of the analyzer 17 is substantially parallel to the element surface of the liquid crystal element 16 when the optical path is developed along the optical axis AX.
  • at least one of the relative angle (tilt angle ⁇ ) between the surface of the polarizer 12 and the element surface and the relative angle (tilt angle ⁇ ) between the surface of the analyzer 17 and the element surface in the YZ plane is It becomes almost zero, and is certainly less than the relative angle (angle ⁇ ) between the optical axis AX and the normal of the element surface.
  • the angle difference between the slow axis of the liquid crystal 23 and the transmission axis of the polarizer 12 during black display can be reliably reduced.
  • the angle formed by both the plane of the polarizer 12 and the plane of the analyzer 17 with the element plane of the liquid crystal element 16 is 5 degrees or less, a high-contrast image can be observed. If both the surface and the surface of the analyzer 17 are substantially parallel to the element surface of the liquid crystal element 16, the effect can be maximized.
  • FIG. 19 is an explanatory diagram schematically showing still another configuration of the video display device 1 of the present embodiment.
  • the illustration of the configuration after the eyepiece optical system 18 is omitted.
  • a cylinder mirror 42 having a selective transmission / reflection surface 42a may be used as the illumination optical system.
  • the light transmitted through the polarizer 12 is reflected by the selective transmission / reflection surface 42 a of the cylinder mirror 42 and enters the liquid crystal element 16.
  • the light emitted from the liquid crystal element 16 passes through the selective transmission / reflection surface 42 a and travels toward the analyzer 17.
  • the illumination optical system can be reduced in weight compared to the configuration using the illumination prism 41.
  • FIG. 20 is an explanatory diagram schematically showing still another configuration of the video display device 1 of the present embodiment.
  • a reflection type polarizing plate 43 for example, a brightness enhancement film (DBEF)
  • DBEF brightness enhancement film
  • a polarizing plate 44 that transmits light having the same polarization direction as the light transmitted through the polarizing plate 43 is disposed on the back surface side (the eyepiece optical system 18 side) of the polarizing plate 43.
  • the light from the light source 11 for example, P-polarized light is reflected by the polarizing plate 43 and enters the liquid crystal element 16.
  • the light emitted from the liquid crystal element 16 (for example, white-displayed S-polarized light) passes through the polarizing plate 43 and the polarizing plate 44 and enters the eyepiece optical system 18.
  • most of the light emitted from the liquid crystal element 16 (for example, black-polarized P-polarized light) is absorbed by the polarizing plate 43, but even if it is transmitted there, it is reliably absorbed by the polarizing plate 44 on the back surface.
  • the plane of the polarizing plate 43 is parallel to the element surface of the liquid crystal element 16, so that the pupil position in the X direction can be obtained. Regardless of the effect of the present invention, a high contrast image can be observed.
  • the plane of the polarizer 12 and the plane of the analyzer 17 are not parallel ⁇ the relative angle between the plane of the polarizer 12 and the element plane of the liquid crystal element 16, and the analyzer.
  • An arrangement in which the relative angle between the surface of the liquid crystal element 16 and the element surface of the liquid crystal element 16 is equal, an arrangement in which at least one of the surface of the polarizer 12 and the surface of the analyzer 17 is substantially parallel to the element surface of the liquid crystal element 16, or Whether the surface of the element 12 and the surface of the analyzer 17 are arranged at an angle of 5 degrees or less with respect to the element surface of the liquid crystal element 16 can be selected as appropriate according to the configuration of the illumination optical system. Good.
  • a ferroelectric liquid crystal is used as the liquid crystal 23 of the liquid crystal element 16
  • an IPS (In Plane Switching) liquid crystal may be used as the liquid crystal 23.
  • the IPS liquid crystal has a function as a phase plate similar to the ferroelectric liquid crystal, and performs white display by converting the phase of polarized light, while the polarization direction of incident light and the major axis direction of the liquid crystal molecules are different. Since the black display is performed without converting the polarization phase when they coincide, a high-contrast image can be displayed. Therefore, even when the IPS liquid crystal is used, the effect of the present invention that can observe a high-contrast image regardless of the pupil position in the X direction is effective.
  • the liquid crystal element 16 may be configured using a TN liquid crystal or may include a color filter.
  • the effect of obtaining a high contrast is obtained even when the liquid crystal element 16 is configured using TN liquid crystal.
  • the hologram optical element 33 having an axially asymmetric positive power is used.
  • the video display device 1 suitable for the HMD has been variously described.
  • the video display device 1 of the present embodiment can be applied to other devices such as a HUD (head-up display). It is.
  • the video display device 1 and thus the HMD can be configured by appropriately combining the configurations described in this embodiment.
  • the present invention can be used for HMD and HUD.
  • Video display apparatus 2 Support means 11 Light source 12 Polarizer (video display element) 13 Mirror (illumination optical system) 16 Liquid crystal elements (video display elements) 17 Analyzer (image display element) 18 Eyepiece optical system 23 Liquid crystal (ferroelectric liquid crystal) E Optical pupil

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

Disclosed is a video display device and head-mounted display that reliably absorb video luminescence, by way of an analyzer, when a display is black, and allow observing a high-contrast video regardless of the location along the x-axis of the observer’s eyes.  A polarizer, a liquid crystal element, and the analyzer are positioned within a plane of symmetry upon a system of axial asymmetry, such that a relative angle of either a relative angle between a surface of the polarizer and an element surface of the liquid crystal element, i.e., an angle of inclination α, and/or a relative angle between the surface of the analyzer and the element surface, i.e., an angle of inclination β, is less than a relative angle between an optical axis and a normal of the element surface, i.e. an angle of inclination θ.  It is thereby possible, even with respect to the light from the liquid crystal element that moves toward a position that is misaligned along the x-axis from the center of the optical aperture, to treat the misalignment in either the direction of the axis of penetration of the polarizer or the direction of the axis of penetration of the analyzer as less than or equal to the misalignment in the direction of the slow axis of the liquid crystal when the display is black, and to reduce the angular differential between the slow axis of the liquid crystal when the display is black and the axis of penetration of either the polarizer or the analyzer.

Description

映像表示装置およびヘッドマウントディスプレイVideo display device and head mounted display
 本発明は、映像表示素子からの映像光を、軸非対称な接眼光学系を介して光学瞳に導くことにより、光学瞳の位置にて観察者に表示映像を観察させる映像表示装置およびヘッドマウントディスプレイ(以下、HMDとも称する)に関するものである。 The present invention relates to an image display device and a head-mounted display that allow an observer to observe a display image at the position of an optical pupil by guiding image light from an image display element to an optical pupil via an axially asymmetric eyepiece optical system. (Hereinafter also referred to as HMD).
 従来から、反射型の表示素子(例えば強誘電性液晶を有する液晶素子)を用いて観察者に映像を観察させる映像表示装置が種々提案されている。例えば特許文献1の装置では、図21に示すように、光源101からの光を、少なくとも、偏光子102、表示素子103、検光子104および軸非対称(回転非対称)な接眼光学系105を介して光学瞳Eに導いている。これにより、光学瞳Eの位置では、観察者は映像(虚像)を観察することが可能となっている。 Conventionally, various video display devices have been proposed that allow an observer to observe an image using a reflective display element (for example, a liquid crystal element having a ferroelectric liquid crystal). For example, in the apparatus of Patent Document 1, as shown in FIG. 21, light from a light source 101 is transmitted through at least a polarizer 102, a display element 103, an analyzer 104, and an axially asymmetric (rotationally asymmetric) eyepiece optical system 105. It leads to the optical pupil E. Thereby, at the position of the optical pupil E, the observer can observe a video (virtual image).
特開2000-249968号公報(図1参照)Japanese Unexamined Patent Publication No. 2000-249968 (see FIG. 1)
 ところで、表示素子103の素子面の中心と光学瞳Eの中心とを光学的に結ぶ軸を光軸AXとし、光路を展開したときの光軸方向をZ方向とする。また、Z方向に垂直な2方向をそれぞれX方向およびY方向とする。このような定義の下では、上記の接眼光学系105は、YZ面内で軸非対称であり、また、YZ面を軸非対称の対称面として有している。 Incidentally, an axis that optically connects the center of the element surface of the display element 103 and the center of the optical pupil E is defined as an optical axis AX, and the optical axis direction when the optical path is expanded is defined as a Z direction. Two directions perpendicular to the Z direction are defined as an X direction and a Y direction, respectively. Under such a definition, the above-mentioned eyepiece optical system 105 is axially asymmetric in the YZ plane, and has the YZ plane as an axially asymmetric symmetry plane.
 特許文献1の装置では、接眼光学系105の軸非対称の対称面であるYZ面内において、偏光子102および検光子104が、表示素子103の素子面との相対角度を鑑みて光路中に配置されてはいない。このため、観察者の瞳が光学瞳Eの中心からX方向にずれた位置にあるときに、黒が弱くなって観察映像のコントラストが低下するという問題が生ずる。 In the apparatus of Patent Document 1, the polarizer 102 and the analyzer 104 are arranged in the optical path in consideration of the relative angle with the element surface of the display element 103 in the YZ plane that is an axially asymmetric symmetry plane of the eyepiece optical system 105. It has not been done. For this reason, when the observer's pupil is at a position shifted in the X direction from the center of the optical pupil E, there arises a problem that black becomes weak and the contrast of the observation image is lowered.
 つまり、表示素子103が強誘電性液晶を有する液晶素子の場合、表示素子103が位相板(往復で1/2波長板)として作用しないときに映像が黒表示となる。反射型の表示素子103を用いる構成では、YZ面内において、光軸AXが表示素子103の素子面に対して垂直以外の傾斜角で傾斜しており、光軸AXに対して液晶の遅相軸がYZ面内で傾いているので、光学瞳Eの中心からX方向にずれた位置に向かう表示素子103からの光(以下、瞳端に向かう光と称する)についての黒表示時の液晶の遅相軸の方向は、光学瞳Eの中心に向かう表示素子103からの光(以下、瞳中心に向かう光と称する)についての黒表示時の液晶の遅相軸の方向から少しずれる(回転する)。 That is, when the display element 103 is a liquid crystal element having a ferroelectric liquid crystal, the image is displayed in black when the display element 103 does not act as a phase plate (reciprocating half-wave plate). In the configuration using the reflective display element 103, the optical axis AX is inclined at an inclination angle other than perpendicular to the element surface of the display element 103 in the YZ plane, and the slow phase of the liquid crystal with respect to the optical axis AX. Since the axis is tilted in the YZ plane, the liquid crystal at the time of black display with respect to light from the display element 103 (hereinafter referred to as light toward the pupil end) heading to a position shifted in the X direction from the center of the optical pupil E is displayed. The direction of the slow axis slightly deviates (rotates) from the direction of the slow axis of the liquid crystal during black display with respect to light from the display element 103 toward the center of the optical pupil E (hereinafter referred to as light toward the center of the pupil). ).
 このとき、YZ面内で、偏光子102と表示素子103の素子面との相対角度、および検光子104と表示素子103の素子面との相対角度が適切に設定されていないと、瞳端に向かう光についての黒表示時の液晶の遅相軸と偏光子102の透過軸との角度差、および黒表示時の液晶の遅相軸と検光子104の透過軸との角度差が大きくなり、結果的に、瞳端では黒表示の映像光を検光子104で完全に吸収(遮光)することができなくなる。つまり、光学瞳Eの中心からX方向にずれた位置で映像を観察したとき、検光子104での光漏れによって黒が弱くなり、観察映像のコントラストが低下する。 At this time, if the relative angle between the polarizer 102 and the element surface of the display element 103 and the relative angle between the analyzer 104 and the element surface of the display element 103 are not set appropriately in the YZ plane, The angle difference between the slow axis of the liquid crystal at the time of black display and the transmission axis of the polarizer 102 and the angle difference between the slow axis of the liquid crystal at the time of black display and the transmission axis of the analyzer 104 are increased. As a result, the black display image light cannot be completely absorbed (shielded) by the analyzer 104 at the pupil end. That is, when an image is observed at a position deviated from the center of the optical pupil E in the X direction, black becomes weak due to light leakage at the analyzer 104, and the contrast of the observed image decreases.
 本発明は、上記の問題点を解決するためになされたものであって、その目的は、接眼光学系の軸非対称の対称面内で、偏光子および検光子の少なくとも一方と液晶素子の素子面との相対角度を適切に設定することにより、観察者の瞳のX方向の位置によらず、黒表示時の映像光を検光子にて確実に吸収して高コントラストの映像を観察することができる映像表示装置と、その映像表示装置を備えたHMDとを提供することにある。 The present invention has been made to solve the above-described problems, and its object is to provide at least one of a polarizer and an analyzer and an element surface of a liquid crystal element within an axially asymmetric symmetry plane of an eyepiece optical system. By appropriately setting the relative angle with respect to the image, it is possible to observe a high-contrast image by reliably absorbing the image light during black display by the analyzer regardless of the position of the observer's pupil in the X direction. It is to provide a video display device that can be used and an HMD including the video display device.
 本発明の映像表示装置は、光源からの光を変調して映像を表示する反射型の映像表示素子と、前記光源からの光を前記映像表示素子に導く軸非対称な照明光学系と、前記映像表示素子からの映像光を光学瞳に導く軸非対称な接眼光学系とを備えた映像表示装置であって、前記映像表示素子は、入射光を各画素ごとに変調する液晶素子と、前記光源からの光のうちで所定の偏光方向の光を透過させて前記液晶素子に導く偏光子と、前記液晶素子から射出される光のうちで所定の偏光方向の光を透過させて前記接眼光学系に導く検光子とを有しており、前記液晶素子の素子面の中心と前記光学瞳の中心とを光学的に結ぶ軸を光軸とすると、前記光軸は、前記接眼光学系の軸非対称の対称面内(軸非対称な系の対称面内)で、前記素子面に対して垂直以外の傾斜角で傾斜しており、前記光軸に沿って光路を展開したときに、前記接眼光学系の軸非対称の対称面内で、前記偏光子の面と前記素子面との相対角度、および前記検光子の面と前記素子面との相対角度のうちの少なくとも一方の相対角度が、前記光軸と前記素子面の法線との相対角度未満であることを特徴としている。 The image display apparatus of the present invention includes a reflective image display element that modulates light from a light source to display an image, an axially asymmetric illumination optical system that guides light from the light source to the image display element, and the image An image display device comprising an axially asymmetric eyepiece optical system for guiding image light from a display element to an optical pupil, wherein the image display element includes a liquid crystal element that modulates incident light for each pixel, and the light source. A polarizer that transmits light in a predetermined polarization direction to the liquid crystal element, and transmits light in a predetermined polarization direction among the light emitted from the liquid crystal element to the eyepiece optical system. An analyzer that guides the optical axis, and the optical axis is an axis that optically connects the center of the element surface of the liquid crystal element and the center of the optical pupil, the optical axis is axisymmetric with respect to the eyepiece optical system. In the symmetry plane (in the symmetry plane of the axially asymmetric system), with respect to the element plane Relative angle between the plane of the polarizer and the element surface within an axially asymmetric symmetry plane of the eyepiece optical system when the optical path is inclined along the optical axis and is inclined at an inclination angle other than right The relative angle of at least one of the relative angles between the analyzer surface and the element surface is less than the relative angle between the optical axis and the normal of the element surface.
 本発明の映像表示装置は、光源からの光を変調して映像を表示する反射型の映像表示素子と、前記光源からの光を前記映像表示素子に導く軸非対称な照明光学系と、前記映像表示素子からの映像光を光学瞳に導く軸非対称な接眼光学系とを備えた映像表示装置であって、前記映像表示素子は、入射光を各画素ごとに変調する液晶素子と、前記光源からの光のうちで所定の偏光方向の光を透過させて前記液晶素子に導く偏光子と、前記液晶素子から射出される光のうちで所定の偏光方向の光を透過させて前記接眼光学系に導く検光子とを有しており、前記液晶素子の素子面の中心と前記光学瞳の中心とを光学的に結ぶ軸を光軸とすると、前記光軸は、前記接眼光学系の軸非対称の対称面内(軸非対称な系の対称面内)で、前記素子面に対して垂直以外の傾斜角で傾斜しており、前記光軸に沿って光路を展開したときに、前記偏光子の面と前記検光子の面とは平行ではなく、前記偏光子の面と前記液晶素子の素子面との相対角度と、前記検光子の面と前記液晶素子の素子面との相対角度が等しいことを特徴としている。 The image display apparatus of the present invention includes a reflective image display element that modulates light from a light source to display an image, an axially asymmetric illumination optical system that guides light from the light source to the image display element, and the image An image display device comprising an axially asymmetric eyepiece optical system for guiding image light from a display element to an optical pupil, wherein the image display element includes a liquid crystal element that modulates incident light for each pixel, and the light source. A polarizer that transmits light in a predetermined polarization direction to the liquid crystal element, and transmits light in a predetermined polarization direction among the light emitted from the liquid crystal element to the eyepiece optical system. An analyzer that guides the optical axis, and the optical axis is an axis that optically connects the center of the element surface of the liquid crystal element and the center of the optical pupil, the optical axis is axisymmetric with respect to the eyepiece optical system. In the symmetry plane (in the symmetry plane of the axially asymmetric system), with respect to the element plane When the optical path is inclined at an inclination angle other than right and the optical path is developed along the optical axis, the plane of the polarizer and the plane of the analyzer are not parallel, and the plane of the polarizer and the liquid crystal element The relative angle between the element surface and the analyzer surface is equal to the relative angle between the element surface of the liquid crystal element.
 本発明の映像表示装置において、前記検光子は、前記偏光子とクロスニコルとなるように配置されており、黒表示において、前記液晶素子は前記偏光子を透過した光の偏光方向を保持し、前記検光子はその偏光方向の光を吸収する構成であることが望ましい。 In the video display device of the present invention, the analyzer is arranged to be in crossed Nicols with the polarizer, and in black display, the liquid crystal element maintains the polarization direction of the light transmitted through the polarizer, The analyzer is preferably configured to absorb light in the polarization direction.
 本発明の映像表示装置において、前記偏光子の透過軸は、前記接眼光学系の軸非対称の対称面に平行または垂直であることが望ましい。 In the image display device of the present invention, it is desirable that the transmission axis of the polarizer is parallel or perpendicular to the axially asymmetric plane of symmetry of the eyepiece optical system.
 本発明の映像表示装置において、前記光軸に沿って光路を展開したときに、前記偏光子の面および前記検光子の面の少なくとも一方が、前記液晶素子の素子面と略平行であってもよい。 In the video display device of the present invention, when the optical path is developed along the optical axis, at least one of the surface of the polarizer and the surface of the analyzer is substantially parallel to the element surface of the liquid crystal element. Good.
 本発明の映像表示装置において、前記光軸に沿って光路を展開したときに、前記偏光子の面と前記液晶素子の素子面とがなす角度および前記検光子の面と前記液晶素子の素子面とがなす角度が、いずれも5度以内であることが望ましい。 In the video display device of the present invention, when an optical path is developed along the optical axis, an angle formed by the plane of the polarizer and the element plane of the liquid crystal element, and the plane of the analyzer and the element plane of the liquid crystal element It is desirable that the angle between the two is within 5 degrees.
 本発明の映像表示装置において、前記光軸に沿って光路を展開したときに、前記偏光子の面および前記検光子の面が、両方とも、前記液晶素子の素子面と略平行であってもよい。 In the image display device of the present invention, when the optical path is developed along the optical axis, the plane of the polarizer and the plane of the analyzer are both substantially parallel to the element plane of the liquid crystal element. Good.
 本発明の映像表示装置において、前記光軸に沿って光路を展開したときに、前記偏光子の面と前記検光子の面とは平行ではなく、前記偏光子の面と前記液晶素子の素子面との相対角度と、前記検光子の面と前記液晶素子の素子面との相対角度とが等しくてもよい。 In the image display device of the present invention, when the optical path is developed along the optical axis, the plane of the polarizer and the plane of the analyzer are not parallel, and the plane of the polarizer and the element plane of the liquid crystal element The relative angle between the surface of the analyzer and the element surface of the liquid crystal element may be equal.
 本発明の映像表示装置において、前記偏光子の面と前記素子面との相対角度、および前記検光子の面と前記素子面との相対角度の両方が、前記光軸と前記素子面の法線との相対角度未満であってもよい。 In the video display device of the present invention, both the relative angle between the plane of the polarizer and the element surface, and the relative angle between the plane of the analyzer and the element surface are normal to the optical axis and the element surface. It may be less than the relative angle.
 本発明の映像表示装置において、前記液晶素子は、強誘電性液晶を有していることが望ましい。 In the video display device of the present invention, it is preferable that the liquid crystal element has a ferroelectric liquid crystal.
 本発明の映像表示装置において、前記照明光学系は、前記液晶素子から前記接眼光学系に向かう光路外に配置されており、前記光源からの光を反射させて前記液晶素子に導くことが望ましい。 In the video display device of the present invention, it is preferable that the illumination optical system is disposed outside the optical path from the liquid crystal element toward the eyepiece optical system, and reflects the light from the light source to the liquid crystal element.
 本発明の映像表示装置において、前記光軸と前記素子面の法線との相対角度は、10度以上であることが望ましい。 In the video display device of the present invention, it is desirable that the relative angle between the optical axis and the normal of the element surface is 10 degrees or more.
 本発明の映像表示装置において、前記映像表示素子は、前記接眼光学系の一端部側に配置されていることが望ましい。 In the video display device of the present invention, it is preferable that the video display element is disposed on one end side of the eyepiece optical system.
 本発明のヘッドマウントディスプレイ(HMD)は、上述した本発明の映像表示装置と、前記映像表示装置を観察者の眼前で支持する支持手段とを有していることを特徴としている。 The head-mounted display (HMD) of the present invention is characterized by having the above-described video display device of the present invention and support means for supporting the video display device in front of the observer's eyes.
 本発明によれば、光源からの光のうちで所定の偏光方向の光は、反射型の映像表示素子の偏光子を透過して液晶素子に入射し、そこで各画素ごとに変調される。液晶素子から射出される光のうちで所定の偏光方向の光は、検光子を透過し、軸非対称な接眼光学系を介して光学瞳に導かれる。これにより、光学瞳の位置にて、観察者は映像表示素子で表示される映像の虚像を観察することができる。 According to the present invention, light in a predetermined polarization direction among the light from the light source passes through the polarizer of the reflective image display element and enters the liquid crystal element, where it is modulated for each pixel. Of the light emitted from the liquid crystal element, light having a predetermined polarization direction is transmitted through the analyzer and guided to the optical pupil via the axially asymmetric eyepiece optical system. Thereby, the observer can observe the virtual image of the image displayed on the image display element at the position of the optical pupil.
 ここで、液晶素子が例えば強誘電性液晶を有する液晶素子の場合、液晶素子が位相板(往復で1/2波長板)として作用しないときに映像が黒表示となるが、接眼光学系の軸非対称の対称面内(以下、YZ面内と称する)で、光軸が液晶素子の素子面に対して垂直以外の傾斜角で傾斜しているので、光学瞳の中心からYZ面に垂直な方向(以下、X方向と称する)にずれた位置に向かう液晶素子からの光についての黒表示時の液晶の遅相軸の方向は、光学瞳の中心に向かう液晶素子からの光についての黒表示時の液晶の遅相軸の方向から少しずれる(回転する)。 Here, when the liquid crystal element is a liquid crystal element having a ferroelectric liquid crystal, for example, the image is displayed black when the liquid crystal element does not act as a phase plate (reciprocating half-wave plate), but the axis of the eyepiece optical system In an asymmetric symmetry plane (hereinafter referred to as the YZ plane), the optical axis is tilted at an inclination angle other than perpendicular to the element plane of the liquid crystal element, so the direction perpendicular to the YZ plane from the center of the optical pupil The direction of the slow axis of the liquid crystal at the time of black display with respect to light from the liquid crystal element heading to a position shifted to the position (hereinafter referred to as the X direction) is the time of black display with respect to light from the liquid crystal element toward the center of the optical pupil. Slightly shifted (rotates) from the direction of the slow axis of the liquid crystal.
 しかし、YZ面内において、偏光子の面と素子面との相対角度、および検光子の面と素子面との相対角度のうちの少なくとも一方の相対角度が、光軸と素子面の法線との相対角度未満に設定されているので、光学瞳の中心からX方向にずれたどの位置に向かう液晶素子からの光についても、偏光子の透過軸の方向または検光子の透過軸の方向のずれを、黒表示時の液晶の遅相軸の方向のずれと同じか、それ以下のずれとすることができる。これにより、光学瞳の中心からX方向にずれたどの位置に向かう液晶素子からの光についても、黒表示時の液晶の遅相軸と偏光子の透過軸との角度差、または黒表示時の液晶の遅相軸と検光子の透過軸との角度差を小さくすることができる。したがって、観察者の瞳のX方向の位置によらず、黒表示時の映像光を検光子にて確実に吸収して高コントラストの映像を観察することが可能となる。 However, in the YZ plane, at least one of the relative angle between the polarizer surface and the element surface and the relative angle between the analyzer surface and the element surface is the normal between the optical axis and the element surface. Is set to be less than the relative angle of the optical pupil, so that the light from the liquid crystal element going to any position deviated in the X direction from the center of the optical pupil is shifted in the direction of the transmission axis of the polarizer or the direction of the transmission axis of the analyzer. Can be set equal to or less than the shift in the direction of the slow axis of the liquid crystal during black display. As a result, the angle difference between the slow axis of the liquid crystal during black display and the transmission axis of the polarizer during the black display, or the light from the liquid crystal element toward any position shifted in the X direction from the center of the optical pupil, or during black display. The angle difference between the slow axis of the liquid crystal and the transmission axis of the analyzer can be reduced. Therefore, regardless of the position of the observer's pupil in the X direction, it is possible to reliably absorb the image light during black display by the analyzer and observe a high-contrast image.
(a)は、本発明の実施の一形態の映像表示装置において、光軸に沿って光路をYZ面内で展開した説明図であり、(b)は、上記光路をZX面内で展開した説明図である。(A) is the explanatory view which developed the optical path in the YZ plane along the optical axis in the image display device of one embodiment of the present invention, and (b) developed the optical path in the ZX plane. It is explanatory drawing. 上記映像表示装置が適用されるHMDの概略の構成を示す斜視図である。It is a perspective view which shows the structure of the outline of HMD to which the said video display apparatus is applied. 上記映像表示装置の概略の構成を示す断面図である。It is sectional drawing which shows the schematic structure of the said video display apparatus. 光軸上の光の進行方向と、X方向瞳端の光の進行方向と、液晶の遅相軸の方向との関係を模式的に示す説明図である。It is explanatory drawing which shows typically the relationship between the advancing direction of the light on an optical axis, the advancing direction of the light of an X direction pupil end, and the direction of the slow axis of a liquid crystal. 光軸上の光についての、偏光子の透過軸、液晶の黒表示時の遅相軸、検光子の透過軸の各方向を模式的に示す説明図である。It is explanatory drawing which shows typically each direction of the transmission axis of a polarizer, the slow axis at the time of black display of a liquid crystal, and the transmission axis of an analyzer about the light on an optical axis. X方向瞳端の光についての、偏光子の透過軸、液晶の黒表示時の遅相軸、検光子の透過軸の各方向を模式的に示す説明図である。It is explanatory drawing which shows typically each direction of the transmission axis of a polarizer, the slow axis at the time of black display of a liquid crystal, and the transmission axis of an analyzer about the light of the X direction pupil end. (a)は、YZ面内で、α=θ、かつ、β=θとなる映像表示装置の光路をYZ面内で展開した説明図であり、(b)は、上記映像表示装置の光路をZX面内で展開した説明図である。(A) is an explanatory view in which the optical path of the video display device where α = θ and β = θ is developed in the YZ plane in the YZ plane, and (b) is the optical path of the video display device. It is explanatory drawing developed in the ZX plane. 上記映像表示装置におけるX方向瞳端の光についての、偏光子の透過軸、液晶の黒表示時の遅相軸、検光子の透過軸の各方向を模式的に示す説明図である。It is explanatory drawing which shows typically each direction of the transmission axis of a polarizer, the slow axis at the time of black display of a liquid crystal, and the transmission axis of an analyzer about the light of the X direction pupil end in the said video display apparatus. 上記映像表示装置において、液晶から射出される黒表示の映像光の偏光方向を示す説明図である。In the said video display apparatus, it is explanatory drawing which shows the polarization direction of the video light of the black display inject | emitted from a liquid crystal. 光軸上の光についての、偏光子の透過軸、液晶の白表示時の遅相軸、検光子の透過軸の各方向を模式的に示す説明図である。It is explanatory drawing which shows typically each direction of the transmission axis of a polarizer, the slow axis at the time of white display of a liquid crystal, and the transmission axis of an analyzer about the light on an optical axis. Y方向瞳端の光についての、偏光子の透過軸、液晶の白表示時の遅相軸、検光子の透過軸の各方向を模式的に示す説明図である。It is explanatory drawing which shows typically each direction of the transmission axis of a polarizer, the slow axis at the time of white display of a liquid crystal, and the transmission axis of an analyzer about the light of a Y direction pupil end. (a)は、α=+θ、かつ、β=+θに設定した映像表示装置のYZ面内で光路を展開した説明図であり、(b)は、上記映像表示装置において、X方向瞳端の光についての、偏光子の透過軸、液晶の黒表示時の遅相軸、検光子の透過軸の各方向を模式的に示す説明図である。(A) is explanatory drawing which expand | deployed the optical path in YZ plane of the video display apparatus set to (alpha) = + (theta) and (beta) = + (theta), (b) is an X direction pupil end in the said video display apparatus. It is explanatory drawing which shows typically each direction of the transmission axis of a polarizer, the slow axis at the time of black display of a liquid crystal, and the transmission axis of an analyzer about light. (a)は、α=+θ、かつ、β=-θに設定した映像表示装置のYZ面内で光路を展開した説明図であり、(b)は、上記映像表示装置において、X方向瞳端の光についての、偏光子の透過軸、液晶の黒表示時の遅相軸、検光子の透過軸の各方向を模式的に示す説明図である。(A) is an explanatory diagram in which an optical path is developed in the YZ plane of the video display device in which α = + θ and β = −θ is set, and (b) is an X direction pupil end in the video display device. It is explanatory drawing which shows typically each direction of the transmission axis of a polarizer, the slow axis at the time of black display of a liquid crystal, and the transmission axis of an analyzer about this light. (a)は、α=-θ、かつ、β=+θに設定した映像表示装置のYZ面内で光路を展開した説明図であり、(b)は、上記映像表示装置において、X方向瞳端の光についての、偏光子の透過軸、液晶の黒表示時の遅相軸、検光子の透過軸の各方向を模式的に示す説明図である。(A) is an explanatory diagram in which an optical path is developed in the YZ plane of the video display device in which α = −θ and β = + θ is set, and (b) is an X direction pupil end in the video display device. It is explanatory drawing which shows typically each direction of the transmission axis of a polarizer, the slow axis at the time of black display of a liquid crystal, and the transmission axis of an analyzer about this light. (a)は、α=-θ、かつ、β=-θに設定した映像表示装置のYZ面内で光路を展開した説明図であり、(b)は、上記映像表示装置において、X方向瞳端の光についての、偏光子の透過軸、液晶の黒表示時の遅相軸、検光子の透過軸の各方向を模式的に示す説明図である。(A) is an explanatory diagram in which an optical path is developed in the YZ plane of the video display device in which α = −θ and β = −θ is set, and (b) is an X direction pupil in the video display device. It is explanatory drawing which shows typically each direction of the transmission axis of a polarizer, the slow axis at the time of black display of a liquid crystal, and the transmission axis of an analyzer about edge light. 上記映像表示装置の他の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the other structure of the said video display apparatus. 上記映像表示装置のさらに他の構成を模式的に示す説明図である。It is explanatory drawing which shows typically another structure of the said video display apparatus. 上記映像表示装置のさらに他の構成を模式的に示す説明図である。It is explanatory drawing which shows typically another structure of the said video display apparatus. 上記映像表示装置のさらに他の構成を模式的に示す説明図である。It is explanatory drawing which shows typically another structure of the said video display apparatus. 上記映像表示装置のさらに他の構成を模式的に示す説明図である。It is explanatory drawing which shows typically another structure of the said video display apparatus. 従来の映像表示装置の概略の構成を示す断面図である。It is sectional drawing which shows the structure of the outline of the conventional video display apparatus.
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。 An embodiment of the present invention will be described below with reference to the drawings.
 (HMDの構成)
 図2は、本実施形態に係るHMDの概略の構成を示す斜視図である。HMDは、映像表示装置1と、支持手段2とで構成されている。
(Configuration of HMD)
FIG. 2 is a perspective view showing a schematic configuration of the HMD according to the present embodiment. The HMD includes a video display device 1 and support means 2.
 映像表示装置1は、筐体3を有している。この筐体3は、少なくとも光源11および液晶素子16(ともに図3参照)を内包するとともに、接眼光学系18の一部を保持している。接眼光学系18は、接眼プリズム31および偏向プリズム32の貼り合わせによって構成されており、全体として眼鏡の一方のレンズ(図2では右眼用レンズ)のような形状をしている。また、上記の光源11および液晶素子16には、筐体3を貫通して設けられるケーブル4を介して、少なくとも駆動電力および映像信号が供給される。 The video display device 1 has a housing 3. The casing 3 contains at least the light source 11 and the liquid crystal element 16 (both see FIG. 3) and holds a part of the eyepiece optical system 18. The eyepiece optical system 18 is configured by bonding an eyepiece prism 31 and a deflection prism 32, and has a shape like one lens of a pair of glasses (lens for right eye in FIG. 2) as a whole. The light source 11 and the liquid crystal element 16 are supplied with at least driving power and a video signal via a cable 4 provided through the housing 3.
 支持手段2は、映像表示装置1(特に接眼光学系18)を観察者の一方の眼(例えば右眼)の前で支持するとともに、ダミーレンズ5を観察者の他方の眼(例えば左眼)の前で支持している。より詳しくは、以下の通りである。なお、ダミーレンズ5を設ける代わりに、両眼に対応して2つの映像表示装置1を設け、これらを支持手段2にて支持する構成としてもよい。 The support means 2 supports the video display device 1 (particularly the eyepiece optical system 18) in front of one eye (for example, the right eye) of the observer and the dummy lens 5 to the other eye (for example, the left eye) of the observer. Support in front of. More details are as follows. Instead of providing the dummy lens 5, two video display devices 1 may be provided corresponding to both eyes and supported by the support means 2.
 この支持手段2は、ブリッジ6と、フレーム7と、テンプル8と、鼻当て9とを有している。フレーム7、テンプル8および鼻当て9は、左右一対設けられているが、それぞれ、右フレーム7R、左フレーム7L、右テンプル8R、左テンプル8L、右鼻当て9R、左鼻当て9Lで構成されている。 The support means 2 has a bridge 6, a frame 7, a temple 8, and a nose pad 9. The frame 7, the temple 8, and the nose pad 9 are provided as a pair on the left and right sides, and are each composed of a right frame 7R, a left frame 7L, a right temple 8R, a left temple 8L, a right nose pad 9R, and a left nose pad 9L. Yes.
 ブリッジ6の一端は映像表示装置1と連結されており、他端はダミーレンズ5と連結されている。映像表示装置1におけるブリッジ6との連結側とは反対側の端部は、右フレーム7Rと固定されている。右テンプル8Rは右フレーム7Rに回動可能に支持されている。一方、ダミーレンズ5におけるブリッジ6との連結側とは反対側の端部は、左フレーム7Lと固定されている。左テンプル8Lは左フレーム7Lに回動可能に支持されている。 One end of the bridge 6 is connected to the video display device 1, and the other end is connected to the dummy lens 5. The end of the video display device 1 opposite to the side connected to the bridge 6 is fixed to the right frame 7R. The right temple 8R is rotatably supported by the right frame 7R. On the other hand, the end of the dummy lens 5 opposite to the connection side with the bridge 6 is fixed to the left frame 7L. The left temple 8L is rotatably supported by the left frame 7L.
 観察者がHMDを使用するときは、右テンプル8Rおよび左テンプル8Lを観察者の右側頭部および左側頭部に接触させるとともに、鼻当て9を観察者の鼻に当て、一般の眼鏡をかけるようにHMDを観察者の頭部に装着する。この状態で映像表示装置1にて映像を表示すると、観察者は、光学瞳の位置にて、映像表示装置1の表示映像を虚像として観察することができるとともに、この映像表示装置1を介して外界像をシースルーで観察することができる。このとき、映像表示装置1は支持手段2で支持されているので、観察者は映像表示装置1から提供される映像をハンズフリーで観察することができる。 When the observer uses the HMD, the right temple 8R and the left temple 8L are brought into contact with the right and left heads of the observer, and the nose pad 9 is placed on the nose of the observer so as to wear general glasses. The HMD is attached to the observer's head. When an image is displayed on the image display device 1 in this state, the observer can observe the display image on the image display device 1 as a virtual image at the position of the optical pupil, and through the image display device 1. An external image can be observed with see-through. At this time, since the video display apparatus 1 is supported by the support means 2, the observer can observe the video provided from the video display apparatus 1 in a hands-free manner.
 なお、支持手段2が観察者の両眼に対応して2個の映像表示装置1を支持し、両眼表示を行う構成では、眼幅は観察者ごとに異なるので、光学瞳を眼幅方向に大きく設定して観察し易くする必要がある。この場合、左眼、右眼ともに瞳位置が光学瞳の中心から異なったとしても、本発明によれば、後述するように、偏光子および検光子の少なくとも一方と液晶素子の素子面との相対角度を適切に設定しているので、瞳位置によらずに高コントラストな映像を観察することができる。つまり、左右眼でコントラストが異なることなく、両眼共に高コントラストな映像を観察することができる。以下、映像表示装置1の詳細について説明する。 In the configuration in which the support unit 2 supports the two video display devices 1 corresponding to the eyes of the observer and performs binocular display, the eye width differs for each observer. It is necessary to make it easy to observe by setting it large. In this case, even if the pupil position differs from the center of the optical pupil for both the left eye and the right eye, according to the present invention, as described later, the relative relationship between at least one of the polarizer and the analyzer and the element surface of the liquid crystal element Since the angle is set appropriately, a high-contrast image can be observed regardless of the pupil position. That is, it is possible to observe a high-contrast image with both eyes without a difference in contrast between the left and right eyes. Details of the video display device 1 will be described below.
 (映像表示装置の構成)
 図3は、映像表示装置1の概略の構成を示す断面図である。映像表示装置1は、光源11と、偏光子12と、ミラー13と、一方向拡散板14と、偏光板15と、液晶素子16と、検光子17と、軸非対称(回転非対称)な接眼光学系18とを有している。なお、偏光子12と、液晶素子16と、検光子17とで、光源11からの光を変調して映像を表示する反射型の映像表示素子(LCD)が構成されている。この映像表示素子は、接眼光学系18の一端部側(図3では上方)に配置されており、接眼光学系18に対して一端部側から映像光を入射させる構成として、小型で軽量な映像表示装置1を実現することができる。
(Configuration of video display device)
FIG. 3 is a cross-sectional view illustrating a schematic configuration of the video display device 1. The video display apparatus 1 includes a light source 11, a polarizer 12, a mirror 13, a unidirectional diffuser plate 14, a polarizing plate 15, a liquid crystal element 16, an analyzer 17, and an axially asymmetric (rotationally asymmetric) eyepiece optical. System 18. The polarizer 12, the liquid crystal element 16, and the analyzer 17 constitute a reflective image display element (LCD) that modulates the light from the light source 11 and displays an image. This image display element is disposed on one end side (upper side in FIG. 3) of the eyepiece optical system 18 and is small and lightweight as a configuration in which image light is incident on the eyepiece optical system 18 from one end side. The display device 1 can be realized.
 ここで、以下での説明の便宜上、方向を以下のように定義しておく。まず、光源11の中心と、液晶素子16の素子面の中心と、接眼光学系18によって形成される光学瞳Eの中心とを光学的に結ぶ軸を光軸とする。なお、液晶素子16の素子面とは、後述する液晶封止基材22と液晶23との境界面を指す。そして、光源11から光学瞳Eまでの光路を展開したときの光軸方向をZ方向とする。また、接眼光学系18の後述するホログラム光学素子33の光軸入射面に垂直な方向をX方向とし、ZX平面に垂直な方向をY方向とする。なお、ホログラム光学素子33の光軸入射面とは、ホログラム光学素子33における入射光の光軸と反射光の光軸とを含む平面、すなわち、YZ平面を指す。また、本実施形態の接眼光学系18は、上記光軸を含む面に対して対称な形状であり、上記したホログラム光学素子33の光軸入射面は、接眼光学系18の対称面ともなっている。 Here, for convenience of explanation below, directions are defined as follows. First, an optical axis is an axis that optically connects the center of the light source 11, the center of the element surface of the liquid crystal element 16, and the center of the optical pupil E formed by the eyepiece optical system 18. The element surface of the liquid crystal element 16 refers to a boundary surface between a liquid crystal sealing substrate 22 and a liquid crystal 23 described later. The optical axis direction when the optical path from the light source 11 to the optical pupil E is developed is taken as the Z direction. In addition, a direction perpendicular to an optical axis incident surface of a hologram optical element 33 (to be described later) of the eyepiece optical system 18 is defined as an X direction, and a direction perpendicular to the ZX plane is defined as a Y direction. The optical axis incident surface of the hologram optical element 33 refers to a plane including the optical axis of incident light and the optical axis of reflected light in the hologram optical element 33, that is, the YZ plane. Further, the eyepiece optical system 18 of the present embodiment has a symmetrical shape with respect to the plane including the optical axis, and the optical axis incident surface of the hologram optical element 33 is also a symmetrical plane of the eyepiece optical system 18. .
 光源11は、液晶素子16に向けて光を出射するものであり、液晶素子16から接眼光学系18に向かう光の光路に対して観察者側(光学瞳E側)に配置されている。この光源11は、R(赤)、G(緑)、B(青)の各色に対応する光を出射するRGB一体型の発光ダイオード(LED)で構成されている。RGBの各発光部は、X方向に並んで配置されている。 The light source 11 emits light toward the liquid crystal element 16 and is disposed on the observer side (optical pupil E side) with respect to the optical path of light traveling from the liquid crystal element 16 toward the eyepiece optical system 18. The light source 11 is composed of an RGB integrated light emitting diode (LED) that emits light corresponding to each color of R (red), G (green), and B (blue). The RGB light emitting units are arranged side by side in the X direction.
 光源11は、例えば、中心波長および光強度半値波長幅で、465±12nm、520±19nm、635±10nmとなる3つの波長帯域の光を発する。光源11のRGBの光強度は、ホログラム光学素子33の回折効率や、液晶素子16の光透過率を考慮して調整され、これによって白色表示を行うことが可能となる。なお、本実施形態では、後述するように、液晶素子16として時分割駆動が可能な強誘電液晶素子を用いているため、光源11はRGBの各光を時分割で順に出射する。 The light source 11 emits light in three wavelength bands of 465 ± 12 nm, 520 ± 19 nm, and 635 ± 10 nm, for example, with a center wavelength and a light intensity half-value wavelength width. The RGB light intensity of the light source 11 is adjusted in consideration of the diffraction efficiency of the hologram optical element 33 and the light transmittance of the liquid crystal element 16, thereby enabling white display. In the present embodiment, as will be described later, a ferroelectric liquid crystal element capable of time-division driving is used as the liquid crystal element 16, and therefore the light source 11 sequentially emits each light of RGB in time division.
 なお、光源11は、RGBの各発光部を1組有していてもよいし、2組有していてもよい。光源11がRGBの各発光部を2組有する場合、各組で同一色の発光部がYZ面に対して略対称となるように、各組の発光部が配置される。このとき、出射光の波長がより長い発光部ほど、対称面(YZ面)に近い位置に配置される。 The light source 11 may have one set or two sets of RGB light emitting units. When the light source 11 has two sets of RGB light emitting units, each group of light emitting units is arranged so that the light emitting units of the same color in each set are substantially symmetrical with respect to the YZ plane. At this time, the light emitting part having a longer wavelength of the emitted light is arranged at a position closer to the symmetry plane (YZ plane).
 偏光子12は、光源11からの光のうちで所定の偏光方向の光(例えばP偏光)を透過させて液晶素子16に導く偏光板である。また、この偏光子12は、後述する偏光板15と同一方向の偏光(例えばP偏光)を透過し、後述する検光子17と同一方向の偏光(例えばS偏光)を遮断(吸収)する偏光板でもある。したがって、光源11から出射される光のうち、検光子17に直接向かってそこを透過する光(S偏光)や、偏光板15の表面で反射されて検光子17に向かい、そこを透過する光(S偏光)を偏光子12にて予めカットすることができ、液晶素子16にて変調されない不要光が検光子17を透過して光学瞳Eに導かれるのを防ぐことができる。 The polarizer 12 is a polarizing plate that transmits light in a predetermined polarization direction (for example, P-polarized light) out of the light from the light source 11 and guides it to the liquid crystal element 16. The polarizer 12 transmits polarized light (for example, P-polarized light) in the same direction as the polarizing plate 15 described later, and blocks (absorbs) polarized light (for example, S-polarized light) in the same direction as the analyzer 17 described later. But there is. Therefore, of the light emitted from the light source 11, the light that directly passes through the analyzer 17 (S-polarized light), or the light that is reflected by the surface of the polarizing plate 15 toward the analyzer 17 and passes therethrough. (S-polarized light) can be cut in advance by the polarizer 12, and unnecessary light that is not modulated by the liquid crystal element 16 can be prevented from being transmitted to the optical pupil E through the analyzer 17.
 ミラー13は、光源11からの光を映像表示素子(LCD)に導く照明光学系であり、より詳しくは、光源11からの光を反射させて液晶素子16に導く。ミラー13は、YZ面を対称面として持つ軸非対称光学系であり、例えば、YZ平面内でのみ光を集光する光学パワーを有するシリンドリカルミラーで構成されている。このように、ミラー13が光学パワーを有しているので、光源11からの光を集光して液晶素子16を照明することができ、明るい映像を観察者に観察させることができる。また、光源11から液晶素子16に向かう光の光路が、ミラー13によって折りたたまれるので、装置の小型軽量化を図ることができる。なお、ミラー13は、軸非対称な非球面ミラー、軸非対称な凹面ミラー(自由曲面ミラー)などの他のミラーで構成されてもよい。 The mirror 13 is an illumination optical system that guides light from the light source 11 to an image display element (LCD). More specifically, the mirror 13 reflects light from the light source 11 and guides it to the liquid crystal element 16. The mirror 13 is an axially asymmetric optical system having a YZ plane as a symmetry plane, and is constituted by, for example, a cylindrical mirror having an optical power for collecting light only in the YZ plane. Thus, since the mirror 13 has optical power, the light from the light source 11 can be condensed and the liquid crystal element 16 can be illuminated, and a bright image can be observed by the observer. In addition, since the optical path of light from the light source 11 toward the liquid crystal element 16 is folded by the mirror 13, the apparatus can be reduced in size and weight. The mirror 13 may be composed of other mirrors such as an axially asymmetric aspherical mirror and an axially asymmetric concave mirror (free curved mirror).
 また、ミラー13は、液晶素子16から接眼光学系18に向かう光路外に配置されている。より詳しくは、ミラー13は、液晶素子16から接眼光学系18に向かう光の光路に対して、光源11とは反対側に設けられている。この結果、液晶素子16と接眼光学系18との間の光路中には、検光子17のみが光学部材として配置されており、例えば照明プリズムのような乱反射する光学素子は存在せず、中空となっている。これにより、そのようなプリズム内面での不要反射によるフレア光が生じることは全く無く、高コントラストでかつ高画質の映像を観察することができる。 Also, the mirror 13 is disposed outside the optical path from the liquid crystal element 16 toward the eyepiece optical system 18. More specifically, the mirror 13 is provided on the side opposite to the light source 11 with respect to the optical path of light from the liquid crystal element 16 toward the eyepiece optical system 18. As a result, only the analyzer 17 is disposed as an optical member in the optical path between the liquid crystal element 16 and the eyepiece optical system 18, and there is no irregularly reflecting optical element such as an illumination prism. It has become. Thereby, there is no flare light caused by unnecessary reflection on the inner surface of the prism, and a high-contrast and high-quality image can be observed.
 なお、後述する接眼光学系18は、YZ面に対して軸非対称な光学系であり、YZ面が軸非対称の対称面となっている。したがって、接眼光学系18の対称面とミラー13(照明光学系)の対称面とは、同一平面内にある。 The eyepiece optical system 18 described later is an optical system that is axially asymmetric with respect to the YZ plane, and the YZ plane is a symmetrical surface that is axially asymmetric. Therefore, the symmetry plane of the eyepiece optical system 18 and the symmetry plane of the mirror 13 (illumination optical system) are in the same plane.
 一方向拡散板14は、光源11から出射される光を、接眼光学系18の対称面に垂直なX方向に拡散させて液晶素子16に導くものである。より詳しくは、一方向拡散板14は、入射光をX方向には40度拡散させ、Y方向には0.5度拡散させる。なお、一方向拡散板14の代わりに、入射光を両方向に拡散する通常の拡散板を用いてもよい。 The unidirectional diffusion plate 14 diffuses the light emitted from the light source 11 in the X direction perpendicular to the symmetry plane of the eyepiece optical system 18 and guides it to the liquid crystal element 16. More specifically, the unidirectional diffuser 14 diffuses incident light by 40 degrees in the X direction and 0.5 degrees in the Y direction. Instead of the unidirectional diffuser 14, a normal diffuser that diffuses incident light in both directions may be used.
 偏光板15は、光源11から出射された光のうち、偏光子12を透過した所定の偏光方向の光(例えばP偏光)を透過させてミラー13に導くとともに、ミラー13にて反射された光(例えばP偏光)を透過させて液晶素子16に導く。この偏光板15により、一方向拡散板14による拡散によって検光子17を透過する成分が発生しても、これを除去することが可能となり、高コントラストな映像を観察することができる。 The polarizing plate 15 transmits light of a predetermined polarization direction (for example, P-polarized light) transmitted through the polarizer 12 out of the light emitted from the light source 11 and guides it to the mirror 13 and reflects the light reflected by the mirror 13. (For example, P-polarized light) is transmitted and guided to the liquid crystal element 16. Even if the polarizing plate 15 generates a component that passes through the analyzer 17 due to diffusion by the unidirectional diffusion plate 14, it can be removed and a high-contrast image can be observed.
 検光子17は、液晶素子16から出射される光のうちで所定の偏光方向の光を透過させて接眼光学系18に導く。なお、上記所定の偏光方向の光とは、偏光子12および偏光板15を透過する光とは偏光方向が直交する光(例えばS偏光)である。したがって、検光子17は、偏光子12とクロスニコルとなるように配置されていると言える。 The analyzer 17 transmits light having a predetermined polarization direction out of the light emitted from the liquid crystal element 16 and guides it to the eyepiece optical system 18. The light having the predetermined polarization direction is light (for example, S-polarized light) having a polarization direction orthogonal to light transmitted through the polarizer 12 and the polarizing plate 15. Therefore, it can be said that the analyzer 17 is arranged so as to be crossed Nicol with the polarizer 12.
 液晶素子16は、複数の画素をマトリクス状に有し、入射光(光源11からの光)を画像データに応じて各画素ごとに変調する反射型の光変調素子である。より具体的には、液晶素子16は、シリコン基板21(第1の基材)と、液晶封止基材22(第2の基材)と、液晶23とを有しており、この他にも図示しない対向電極や配向膜、制御回路を有している。 The liquid crystal element 16 is a reflective light modulation element that has a plurality of pixels in a matrix and modulates incident light (light from the light source 11) for each pixel according to image data. More specifically, the liquid crystal element 16 includes a silicon substrate 21 (first base material), a liquid crystal sealing base material 22 (second base material), and a liquid crystal 23. Has a counter electrode, an alignment film, and a control circuit (not shown).
 シリコン基板21には、各画素に対応して反射電極が形成されているとともに、走査線および信号線などの配線や、各画素をON/OFF駆動するためのスイッチング素子(例えばTFT)が形成されている。液晶封止基材22は、例えば透明なカバーガラスからなり、上記の対向電極が形成される基板である。液晶23は、シリコン基板21と液晶封止基材22とで挟持されており、偏光の位相を制御して入射光を変調する。本実施形態では、液晶23は、強誘電性液晶で構成されている。 Reflective electrodes are formed on the silicon substrate 21 corresponding to each pixel, wiring lines such as scanning lines and signal lines, and switching elements (for example, TFTs) for driving each pixel on / off are formed. ing. The liquid crystal sealing substrate 22 is made of, for example, a transparent cover glass, and is a substrate on which the above-described counter electrode is formed. The liquid crystal 23 is sandwiched between the silicon substrate 21 and the liquid crystal sealing base material 22 and modulates incident light by controlling the phase of polarized light. In the present embodiment, the liquid crystal 23 is composed of a ferroelectric liquid crystal.
 液晶23は、黒表示であれば、液晶分子の長軸方向(遅相軸の方向)がP偏光に平行あるいは垂直となるように制御され、入射するP偏光をP偏光のまま射出(反射)する一方、白表示であれば、1/4波長板(往復で1/2波長板)として働き、入射するP偏光をS偏光に変換して射出(反射)する。 In the case of black display, the liquid crystal 23 is controlled so that the major axis direction (slow axis direction) of the liquid crystal molecules is parallel or perpendicular to the P-polarized light, and the incident P-polarized light is emitted (reflected) as the P-polarized light. On the other hand, in the case of white display, it functions as a quarter wave plate (a half wave plate in a reciprocating manner), and converts incident P-polarized light into S-polarized light and emits (reflects) it.
 液晶素子16は、矩形の表示画面の長辺方向がX方向となり、その短辺方向がY方向となるように配置されている。液晶素子16はカラーフィルタを有してはおらず、それゆえ、液晶素子16の各画素は、光源11から時分割で順に供給されるRGBの光のそれぞれに対応して時分割でON/OFF駆動され、同一画素でRGBの表示が時分割に行われる。これにより、観察者にカラー映像を提供することができる。また、液晶素子16はカラーフィルタを有していないので、液晶素子16の光透過率は高い。 The liquid crystal element 16 is arranged so that the long side direction of the rectangular display screen is the X direction and the short side direction is the Y direction. The liquid crystal element 16 does not have a color filter. Therefore, each pixel of the liquid crystal element 16 is ON / OFF driven in a time division manner corresponding to each of RGB light sequentially supplied from the light source 11 in a time division manner. Then, RGB display is performed in a time division manner with the same pixel. Thereby, a color image can be provided to the observer. Moreover, since the liquid crystal element 16 does not have a color filter, the light transmittance of the liquid crystal element 16 is high.
 反射型の液晶素子16においては、上述のようにシリコン等の半導体を基板として用いることができるため、小型で集積度の高い液晶素子16を作製することができる。しかも、上記のスイッチング素子や配線を含む周辺回路を、上記基板の裏面(表示側とは反対側の面)に配置することができるので、開口率を容易に向上させることができ、明るい映像を表示することができる。また、強誘電性液晶は、駆動速度が速いことがメリットであるので、それゆえ、上記の時分割駆動方式を採用することができる。さらに、強誘電性液晶を用いることにより、TN液晶を用いる場合よりも高コントラストの映像を表示できるので、瞳位置のずれに関係なく高コントラストの映像を観察できる後述する本発明の効果が非常に有効となる。 In the reflective liquid crystal element 16, a semiconductor such as silicon can be used as a substrate as described above, so that the liquid crystal element 16 having a small size and a high degree of integration can be manufactured. Moreover, since the peripheral circuit including the switching element and the wiring can be disposed on the back surface (the surface opposite to the display side) of the substrate, the aperture ratio can be easily improved and a bright image can be obtained. Can be displayed. Further, since the ferroelectric liquid crystal has a merit that the driving speed is high, therefore, the above time-division driving method can be employed. Further, since the high-contrast image can be displayed by using the ferroelectric liquid crystal as compared with the case of using the TN liquid crystal, the effect of the present invention described later can be observed regardless of the pupil position shift. It becomes effective.
 接眼光学系18は、映像表示素子(特に液晶素子16)から出射される映像光を光学瞳Eに導く光学系であり、軸非対称な正の光学パワーを有している。この接眼光学系18は、接眼プリズム31と、偏向プリズム32と、ホログラム光学素子33とを有して構成されている。 The eyepiece optical system 18 is an optical system that guides image light emitted from the image display element (particularly the liquid crystal element 16) to the optical pupil E, and has positive optical power that is axisymmetric. The eyepiece optical system 18 includes an eyepiece prism 31, a deflection prism 32, and a hologram optical element 33.
 接眼プリズム31は、入射光すなわち液晶素子16からの映像光を内部で全反射させてホログラム光学素子33まで導光する一方、外光を透過させる第1の透明基板であり、偏向プリズム32とともに、例えばアクリル系樹脂で構成されている。この接眼プリズム31は、平行平板の下端部を薄くして楔状にし、その上端部を厚くした形状で構成されている。また、接眼プリズム31は、その下端部に配置されるホログラム光学素子33を挟むように偏向プリズム32と接着剤で接合されている。 The eyepiece prism 31 is a first transparent substrate that totally reflects incident light, that is, image light from the liquid crystal element 16 and guides it to the hologram optical element 33 while transmitting external light. For example, it is made of an acrylic resin. The eyepiece prism 31 is formed in a shape in which the lower end portion of the parallel plate is thinned into a wedge shape and the upper end portion is thickened. The eyepiece prism 31 is joined to the deflecting prism 32 with an adhesive so as to sandwich the hologram optical element 33 disposed at the lower end thereof.
 偏向プリズム32は、平面視で略U字型の平行平板で構成されており(図2参照)、接眼プリズム31の下端部および両側面部(左右の各端面)と貼り合わされたときに、接眼プリズム31と一体となって略平行平板となる第2の透明基板である。この偏向プリズム32を接眼プリズム31に接合することにより、観察者が接眼光学系18を介して観察する外界像に歪みが生じるのを防止することができる。 The deflection prism 32 is configured by a substantially U-shaped parallel plate in plan view (see FIG. 2), and when attached to the lower end portion and both side surface portions (left and right end surfaces) of the eyepiece prism 31, the eyepiece prism. 31 is a second transparent substrate that is integrated with 31 to form a substantially parallel plate. By joining the deflecting prism 32 to the eyepiece prism 31, it is possible to prevent distortion in the external image that the observer observes through the eyepiece optical system 18.
 つまり、例えば、接眼プリズム31に偏向プリズム32を接合させない場合、外界像の光は接眼プリズム31の楔状の下端部を透過するときに屈折するので、接眼プリズム31を介して観察される外界像に歪みが生じる。しかし、接眼プリズム31に偏向プリズム32を接合させて一体的な略平行平板を形成することで、外界像の光が接眼プリズム31の楔状の下端部を透過するときの屈折を偏向プリズム32でキャンセルすることができる。その結果、シースルーで観察される外界像に歪みが生じるのを防止することができる。 That is, for example, when the deflecting prism 32 is not joined to the eyepiece prism 31, the light of the external field image is refracted when passing through the wedge-shaped lower end portion of the eyepiece prism 31, so that the external field image observed through the eyepiece prism 31 is changed. Distortion occurs. However, the deflection prism 32 is joined to the eyepiece prism 31 to form an integral substantially parallel plate, so that the deflection when the light of the external image passes through the wedge-shaped lower end of the eyepiece prism 31 is canceled by the deflection prism 32. can do. As a result, it is possible to prevent distortion in the external image observed through the see-through.
 ホログラム光学素子33は、液晶素子16から出射されるRGBの映像光をそれぞれ回折させて光学瞳Eに導く体積位相型で反射型のホログラムである。ホログラム光学素子33は、光学的に軸非対称な正のパワーを持ち、非球面凹面ミラーと同様の機能を持っている。これにより、装置を構成する各光学部材の配置の自由度を高めて装置を容易に小型化することができるとともに、良好に収差補正された映像を観察者に提供することができる。 The hologram optical element 33 is a volume phase type reflection hologram that diffracts RGB image light emitted from the liquid crystal element 16 and guides it to the optical pupil E. The hologram optical element 33 has optically asymmetric positive power and has the same function as an aspherical concave mirror. Thereby, the degree of freedom of arrangement of each optical member constituting the apparatus can be increased, and the apparatus can be easily reduced in size, and an image with good aberration correction can be provided to the observer.
 ホログラム光学素子33は、例えば、回折効率のピーク波長および回折効率半値の波長幅で465±5nm(B光)、521±5nm(G光)、634±5nm(R光)の3つの波長域の光を回折(反射)させるように作製されている。ここで、回折効率のピーク波長とは、回折効率がピークとなるときの波長のことであり、回折効率半値の波長幅とは、回折効率が回折効率ピークの半値となるときの波長幅のことである。 The hologram optical element 33 has, for example, three wavelength ranges of 465 ± 5 nm (B light), 521 ± 5 nm (G light), and 634 ± 5 nm (R light) with a peak wavelength of diffraction efficiency and a wavelength width of half value of diffraction efficiency. It is made to diffract (reflect) light. Here, the peak wavelength of diffraction efficiency is the wavelength at which the diffraction efficiency reaches a peak, and the wavelength width at half maximum of the diffraction efficiency is the wavelength width at which the diffraction efficiency is at half maximum of the diffraction efficiency peak. It is.
 ホログラム光学素子33は、特定入射角の特定波長の光のみを回折するように作製されているので、外光の透過にはほとんど影響しない。したがって、観察者は、接眼プリズム31、ホログラム光学素子33および偏向プリズム32を介して外界像を通常通り見ることができる。 Since the hologram optical element 33 is fabricated so as to diffract only light having a specific wavelength at a specific incident angle, it hardly affects the transmission of external light. Therefore, the observer can see the external image as usual through the eyepiece prism 31, the hologram optical element 33, and the deflection prism 32.
 さらに、上述の数値関係から、ホログラム光学素子33の回折効率のピーク波長と、光源11から出射される光強度のピーク波長(中心波長)とは略一致していると言える。このような設定では、光源11から出射される光のうちで光強度がピークとなる波長付近の光が、ホログラム光学素子33にて効率よく回折されるので、外界像に重畳しても明るく、見やすい映像を観察者に提供することができる。また、各色の光学瞳の位置がY方向で一致し、全体の光学瞳Eを小さくすることができる。 Furthermore, from the above-mentioned numerical relationship, it can be said that the peak wavelength of the diffraction efficiency of the hologram optical element 33 and the peak wavelength (center wavelength) of the light intensity emitted from the light source 11 are substantially the same. In such a setting, the light in the vicinity of the wavelength at which the light intensity reaches a peak among the light emitted from the light source 11 is efficiently diffracted by the hologram optical element 33, so that it is bright even when superimposed on the external image, An easy-to-view video can be provided to the observer. Further, the positions of the optical pupils of the respective colors coincide with each other in the Y direction, and the entire optical pupil E can be reduced.
 (映像表示装置の動作)
 次に、上記構成の映像表示装置1の動作について説明する。
(Operation of video display device)
Next, the operation of the video display device 1 having the above configuration will be described.
 光源11から時分割で出射されるRGBの各色光(例えばP偏光)は、まず偏光子12を透過し、偏光板15および一方向拡散板14を介してミラー13に入射し、そこで反射される。そして、ミラー13での反射光(P偏光)は、再び一方向拡散板14に入射してそこでX方向に拡散され、偏光板15を透過して液晶素子16に入射する。 Each color light of RGB (for example, P-polarized light) emitted from the light source 11 in a time division manner is first transmitted through the polarizer 12, enters the mirror 13 through the polarizing plate 15 and the one-way diffusion plate 14, and is reflected there. . Then, the reflected light (P-polarized light) from the mirror 13 enters the unidirectional diffuser plate 14 again, is diffused in the X direction, passes through the polarizing plate 15 and enters the liquid crystal element 16.
 液晶素子16では、入射光が反射されるが、その際にRGBごとの画像データに応じて各画素ごとに位相変調される。例えば黒表示に対応する画素では、入射光は位相変調されず、P偏光のまま液晶素子16から出射され、検光子17で吸収される。一方、白表示に対応する画素では、液晶素子16が1/4波長板(往復で1/2波長板)として作用し、入射光はS偏光に変換され、検光子17を透過する。液晶素子16での変調時間または光源11から出射される光の強度を制御することにより、LCDにてカラー映像を表示することができる。なお、P偏光およびS偏光のうち、どちらを白表示に利用するかは任意である。 In the liquid crystal element 16, incident light is reflected, and at that time, phase modulation is performed for each pixel in accordance with image data for each RGB. For example, in a pixel corresponding to black display, incident light is not phase-modulated, is emitted from the liquid crystal element 16 as P-polarized light, and is absorbed by the analyzer 17. On the other hand, in the pixel corresponding to white display, the liquid crystal element 16 acts as a quarter wavelength plate (reciprocating half wavelength plate), and incident light is converted into S-polarized light and transmitted through the analyzer 17. By controlling the modulation time in the liquid crystal element 16 or the intensity of light emitted from the light source 11, a color image can be displayed on the LCD. Note that it is arbitrary which one of P-polarized light and S-polarized light is used for white display.
 検光子17を透過した映像光は、接眼光学系18の接眼プリズム31に、凸の曲面を有する面31aを介して内部に入射する。入射した映像光は、接眼プリズム31の対向する2つの平面(面31b・31c)で複数回全反射され、接眼プリズム31の下端に配置されたホログラム光学素子33まで導かれ、そこで反射されて光学瞳Eに導かれる。したがって、光学瞳Eの位置では、観察者は、LCDに表示されたRGBごとの映像の拡大虚像をカラー映像として観察することができる。 The image light transmitted through the analyzer 17 is incident on the eyepiece prism 31 of the eyepiece optical system 18 through a surface 31a having a convex curved surface. The incident image light is totally reflected a plurality of times by two opposing planes ( surfaces 31 b and 31 c) of the eyepiece prism 31, guided to the hologram optical element 33 disposed at the lower end of the eyepiece prism 31, reflected there, and optically received. Guided to pupil E. Therefore, at the position of the optical pupil E, the observer can observe an enlarged virtual image of each RGB image displayed on the LCD as a color image.
 一方、接眼プリズム31、偏向プリズム32およびホログラム光学素子33は、外光をほとんど全て透過させるので、観察者は外界像をシースルーで観察することができる。したがって、LCDに表示された映像の虚像は、外界像の一部に重なって観察されることになる。 On the other hand, the eyepiece prism 31, the deflecting prism 32, and the hologram optical element 33 transmit almost all the external light, so that the observer can observe the external image in a see-through manner. Therefore, the virtual image of the image displayed on the LCD is observed while overlapping a part of the external image.
 本実施形態では、検光子17は、偏光子12とクロスニコルとなるように配置されており、黒表示において、液晶素子16は偏光子12を透過した光(P偏光)の偏光方向を保持し、検光子17はその偏光方向の光を吸収する。このように、黒表示時において、液晶素子16は偏光子12を透過した光を偏光変換しないので、偏光子12を透過して液晶素子16に入射し、そこから射出される光(黒表示の映像光)を検光子17が確実に吸収して高コントラストな映像を観察することが可能となる。したがって、液晶素子16にて偏光を回さずに黒表示を行う構成において、後述する本発明の構成、すなわち、X方向の瞳位置に関係なく高コントラストの映像を観察するための構成(偏光子12、液晶素子16、検光子17の光軸に対する傾斜配置)が非常に有効となる。 In the present embodiment, the analyzer 17 is arranged so as to be crossed Nicol with the polarizer 12, and in black display, the liquid crystal element 16 maintains the polarization direction of the light (P-polarized light) transmitted through the polarizer 12. The analyzer 17 absorbs the light in the polarization direction. In this way, at the time of black display, the liquid crystal element 16 does not convert the light transmitted through the polarizer 12, so that the light transmitted through the polarizer 12 and incident on the liquid crystal element 16 and emitted therefrom (black display The image light) is reliably absorbed by the analyzer 17, and a high-contrast image can be observed. Therefore, in the configuration in which the liquid crystal element 16 performs black display without rotating the polarization, the configuration of the present invention described later, that is, the configuration for observing a high-contrast image regardless of the pupil position in the X direction (polarizer). 12, the inclined arrangement of the liquid crystal element 16 and the analyzer 17 with respect to the optical axis) is very effective.
 このとき、偏光子12の透過軸は、接眼光学系18の軸非対称の対称面(YZ面)に平行または垂直であることが望ましい。この構成では、偏光子12の透過軸の方向が、YZ面に平行な成分および垂直な成分の両方を同時に持たないので、後述するように偏光子12または検光子17がYZ面内で所定の傾斜角でそれぞれ傾斜しても、偏光子12の透過軸と検光子17の吸収軸(透過軸に垂直な軸)とをYZ面に平行に維持することができる。これにより、黒表示時に偏光子12を透過した光を検光子17が確実に吸収して高コントラストな映像を観察することが可能となる。 At this time, it is desirable that the transmission axis of the polarizer 12 is parallel or perpendicular to the axially asymmetric symmetry plane (YZ plane) of the eyepiece optical system 18. In this configuration, since the direction of the transmission axis of the polarizer 12 does not have both a component parallel to the YZ plane and a component perpendicular to the YZ plane, the polarizer 12 or the analyzer 17 has a predetermined value in the YZ plane as described later. Even when tilted at each tilt angle, the transmission axis of the polarizer 12 and the absorption axis of the analyzer 17 (axis perpendicular to the transmission axis) can be maintained parallel to the YZ plane. This makes it possible for the analyzer 17 to reliably absorb the light transmitted through the polarizer 12 during black display and observe a high-contrast image.
 また、本実施形態の映像表示装置1では、接眼光学系18のホログラム光学素子33は、LCDからの映像光と外光とを同時に観察者の瞳に導くコンバイナとして用いられているので、観察者は、ホログラム光学素子33を介して、LCDから提供される映像と外界像とを同時に観察することができる。 In the image display device 1 of the present embodiment, the hologram optical element 33 of the eyepiece optical system 18 is used as a combiner that simultaneously guides the image light from the LCD and external light to the observer's pupil. Can simultaneously observe an image provided from the LCD and an external image via the hologram optical element 33.
 また、ホログラム光学素子33は、P偏光よりもS偏光の回折効率が高いので、本実施形態のように液晶素子16から射出されて検光子17を透過する映像光をS偏光とすることにより、明るく、色純度の高い映像を観察者に観察させることができる。なお、液晶素子16からP偏光を射出し、検光子17を通過した後に1/2波長板でS偏光に変換する構成であってもよい。 Further, since the hologram optical element 33 has higher diffraction efficiency of S-polarized light than P-polarized light, the image light emitted from the liquid crystal element 16 and transmitted through the analyzer 17 is changed to S-polarized light as in the present embodiment. Bright images with high color purity can be observed by an observer. A configuration in which P-polarized light is emitted from the liquid crystal element 16 and after passing through the analyzer 17 may be converted to S-polarized light by a half-wave plate.
 また、偏向プリズム32は、接眼プリズム31の楔部分での外光の屈折をキャンセルするので、観察者は接眼プリズム31、偏向プリズム32およびホログラム光学素子33を通して、外界光を歪むことなく観察することができる。また、映像光を接眼プリズム31内で反射して眼に導く構成としたので、通常の眼鏡レンズと同程度に接眼プリズム31を薄く(例えば3mm程度に)構成することができ、さらに小型軽量となる。また、接眼プリズム31内での反射を全反射としたので、観察者は接眼プリズム31の面31b・31cを通して、外光の透過率を落とすことなく外界像を観察することができる。 Further, since the deflection prism 32 cancels the refraction of the external light at the wedge portion of the eyepiece prism 31, the observer observes the external light through the eyepiece prism 31, the deflection prism 32, and the hologram optical element 33 without distortion. Can do. In addition, since the image light is reflected in the eyepiece prism 31 and guided to the eye, the eyepiece prism 31 can be made thin (for example, about 3 mm) as much as a normal eyeglass lens, and the size and weight can be reduced. Become. In addition, since the reflection in the eyepiece prism 31 is set as total reflection, the observer can observe an external image through the surfaces 31b and 31c of the eyepiece prism 31 without reducing the transmittance of outside light.
 また、映像表示装置1は、軸非対称な光学系であるので、接眼光学系18で利用される映像光の主光線(光軸上の光線)は、液晶素子16の表示面に対してYZ面内でY方向に傾斜している。強誘電タイプの液晶素子16は、位相板として作用しないときに黒表示するため、YZ面内においては、液晶分子が偏光方向と一致しており、偏光を変化させない。したがって、液晶素子16に対して斜め入射しても黒表示の漏れ光が少なく、コントラストの高い表示が可能である。一方、白表示時は液晶素子16が1/4波長板(往復で1/2波長板)として作用するため、波長により検光子17を通過する光の強度が異なる(波長依存性)。しかし、この波長依存性は、光源11から出射される光の強度調整や、液晶素子16での変調時間を調整することでキャンセルすることが可能である。 Further, since the image display device 1 is an axially asymmetric optical system, the principal ray of image light (the ray on the optical axis) used in the eyepiece optical system 18 is YZ plane with respect to the display surface of the liquid crystal element 16. It is inclined in the Y direction. Since the ferroelectric liquid crystal element 16 displays black when it does not act as a phase plate, the liquid crystal molecules coincide with the polarization direction in the YZ plane, and the polarization is not changed. Therefore, even when obliquely incident on the liquid crystal element 16, there is little leakage light for black display, and display with high contrast is possible. On the other hand, when white is displayed, the liquid crystal element 16 acts as a quarter wavelength plate (reciprocating half wavelength plate), so that the intensity of light passing through the analyzer 17 varies depending on the wavelength (wavelength dependence). However, this wavelength dependence can be canceled by adjusting the intensity of light emitted from the light source 11 or adjusting the modulation time in the liquid crystal element 16.
 また、本実施形態では、光源11と光学瞳Eとの位置関係は、ほぼ共役となっている(図3参照)。ここで、反射型の液晶素子16は開口率が高いので、液晶素子16の各画素での拡散は小さい。したがって、光源11と光学瞳Eとは、光学的には、Y方向でほぼ共役であると言える。一方、X方向では、ミラー13の光学パワーが無いので、光源11と光学瞳Eとは光学的に共役ではない。また、ミラー13は、光源11からの光を集光した後、一方向拡散板14によって拡散される光が効率よく光学瞳Eを形成するように配置されており、光学瞳Eの位置にて明るい映像を観察することが可能である。 In this embodiment, the positional relationship between the light source 11 and the optical pupil E is almost conjugate (see FIG. 3). Here, since the reflective liquid crystal element 16 has a high aperture ratio, the diffusion of each pixel of the liquid crystal element 16 is small. Therefore, it can be said that the light source 11 and the optical pupil E are optically conjugate in the Y direction. On the other hand, in the X direction, since there is no optical power of the mirror 13, the light source 11 and the optical pupil E are not optically conjugate. The mirror 13 is arranged so that the light diffused by the one-way diffuser plate 14 after the light from the light source 11 is condensed forms the optical pupil E efficiently. It is possible to observe bright images.
 また、本実施形態では、光学瞳Eは、強度半値でX方向に6mm、Y方向に2mmの大きさとなるように、各光学部材の光学配置と光学パワーとを設定している。なお、Y方向には、光源11の発光面積(例えば0.3mm角)が、一方向拡散板14での0.5度の拡散と、液晶素子16での2度程度の拡散により、共役関係の像倍率で形成される瞳よりも少し大きく形成されている。 Further, in this embodiment, the optical arrangement and optical power of each optical member are set so that the optical pupil E has a half intensity value of 6 mm in the X direction and 2 mm in the Y direction. In the Y direction, the light emitting area (for example, 0.3 mm square) of the light source 11 is conjugated with 0.5 degree diffusion in the unidirectional diffusion plate 14 and about 2 degree diffusion in the liquid crystal element 16. It is formed to be slightly larger than the pupil formed at the image magnification.
 このように、光学瞳Eは、一方向(X方向)には人間の瞳(3mm程度)よりも大きい6mmの大きさなので、観察者は映像を観察しやすい。一方、光学瞳Eは、他の方向(Y方向)には人間の瞳よりも小さい2mmの大きさなので、光源11からの光は上記方向においては光学瞳Eに無駄なく集光する。これにより、観察者は、明るい映像を観察することができる。つまり、観察者が映像を観察する際には、X方向を観察者の左右方向、Y方向を上下方向に設定すれば、観察者は目がよく動いて観察範囲の広い左右方向には大きな瞳で映像を観察しやすく、上下方向には小さい瞳に集光して明るい映像を観察することが可能となる。 Thus, since the optical pupil E is 6 mm larger than the human pupil (about 3 mm) in one direction (X direction), the observer can easily observe the image. On the other hand, since the optical pupil E has a size of 2 mm which is smaller than the human pupil in the other direction (Y direction), the light from the light source 11 is condensed on the optical pupil E in the above direction without waste. Thereby, the observer can observe a bright image. In other words, when an observer observes an image, if the X direction is set to the left and right direction of the observer and the Y direction is set to the up and down direction, the observer moves well and has a large pupil in the left and right direction with a wide observation range. This makes it easy to observe the image, and it is possible to observe a bright image by focusing on a small pupil in the vertical direction.
 (光学瞳の設定による色ムラの低減効果について)
 本実施形態では、光学瞳Eは、上述したように、強度半値でX方向に6mm、Y方向に2mmの大きさとなるように設定されている。つまり、光学瞳Eは、Y方向、すなわち、ホログラム光学素子33の光軸入射面(YZ平面)に平行な方向よりも、X方向、すなわち、光軸入射面に垂直な方向に大きい。このように光学瞳Eの大きさを設定することにより、ホログラム光学素子33の波長特性(波長選択性)の影響をあまり受けずに、観察者は色ムラの少ない高画質の映像を観察することができる。その理由は以下の通りである。
(About the effect of reducing color unevenness by setting the optical pupil)
In the present embodiment, as described above, the optical pupil E is set to have a half intensity value of 6 mm in the X direction and 2 mm in the Y direction. That is, the optical pupil E is larger in the X direction, that is, the direction perpendicular to the optical axis incident surface, than in the Y direction, that is, the direction parallel to the optical axis incident surface (YZ plane) of the hologram optical element 33. By setting the size of the optical pupil E in this way, the observer can observe a high-quality image with little color unevenness without being greatly affected by the wavelength characteristic (wavelength selectivity) of the hologram optical element 33. Can do. The reason is as follows.
 まず、ホログラム光学素子33における入射角と波長選択性との関係について説明する。0度より大きい入射角を持つ光を回折させる干渉縞を持つホログラム光学素子33では、光軸入射面に平行な方向よりも光軸入射面に垂直な方向において、波長選択性が小さい(入射角のずれによる回折波長のずれが小さい)。言い換えると、光軸入射面に平行な方向よりも光軸入射面に垂直な方向のほうが、干渉縞への入射角のずれに対する角度選択性が低い。これは、ホログラム光学素子33の干渉縞に光が入射角を有して入射する場合、光軸入射面内での入射角の角度ずれは、そのまま入射角の角度ずれとなるため、回折波長に対する影響が大きいが、光軸入射面に垂直な方向の角度ずれは、入射角のずれとしては小さく、回折波長に対する影響は小さいからである。 First, the relationship between the incident angle and the wavelength selectivity in the hologram optical element 33 will be described. In the hologram optical element 33 having interference fringes that diffract light having an incident angle greater than 0 degrees, the wavelength selectivity is smaller in the direction perpendicular to the optical axis incident surface than in the direction parallel to the optical axis incident surface (incident angle). The diffraction wavelength shift due to the shift is small. In other words, the angle selectivity with respect to the shift of the incident angle to the interference fringes is lower in the direction perpendicular to the optical axis incident surface than in the direction parallel to the optical axis incident surface. This is because when the light is incident on the interference fringes of the hologram optical element 33 with an incident angle, the angle deviation of the incident angle in the optical axis incident surface is directly the angle deviation of the incident angle. Although the influence is large, the angle deviation in the direction perpendicular to the optical axis incident surface is small as the deviation of the incident angle, and the influence on the diffraction wavelength is small.
 したがって、ホログラム光学素子33の干渉縞に所定の入射角からずれた角度の光が入射すると、同じ角度ずれでも、光軸入射面に平行なY方向での角度ずれのほうが、光軸入射面に垂直なX方向の角度ずれよりも、大きく回折波長がずれる(すなわち、光軸入射面に平行なY方向は、波長選択性が大きい)。 Therefore, when light having an angle deviated from a predetermined incident angle is incident on the interference fringes of the hologram optical element 33, the angle deviation in the Y direction parallel to the optical axis incident surface is more likely to occur on the optical axis incident surface even with the same angle deviation. The diffraction wavelength is greatly shifted from the angle deviation in the vertical X direction (that is, the Y direction parallel to the optical axis incident surface has a large wavelength selectivity).
 したがって、回折波長の変化が大きいY方向に光学瞳Eを小さく形成することにより、回折波長の変化の範囲が狭くなるので、光学瞳E上での色ムラを低減することができる。また、光軸入射面に垂直なX方向に光学瞳Eを大きく形成しても、色純度の高い映像を観察者に提供することができる。なお、光軸入射面外の光は入射面が光軸入射面と若干平行ではないが、前述の通り、光軸入射面に垂直な方向の角度ずれは回折波長に対する影響が小さいので、光軸入射面を基準にしても色ムラが大きくなることはない。 Therefore, by forming the optical pupil E small in the Y direction where the change in the diffraction wavelength is large, the range of change in the diffraction wavelength is narrowed, so that the color unevenness on the optical pupil E can be reduced. Further, even if the optical pupil E is formed large in the X direction perpendicular to the optical axis incident surface, an image with high color purity can be provided to the observer. In addition, although the incident surface of the light outside the optical axis incident surface is not slightly parallel to the optical axis incident surface, as described above, the angle shift in the direction perpendicular to the optical axis incident surface has little influence on the diffraction wavelength. Even if the incident surface is used as a reference, color unevenness does not increase.
 (偏光子、液晶素子、検光子の位置関係について)
 次に、偏光子12、液晶素子16、検光子17の位置関係について説明する。
(About the positional relationship of polarizer, liquid crystal element, analyzer)
Next, the positional relationship between the polarizer 12, the liquid crystal element 16, and the analyzer 17 will be described.
 図1(a)は、上述した映像表示装置1において、光軸AXに沿って光源11から光学瞳Eまでの光路をYZ面内で展開した説明図であり、図1(b)は、上記光路をZX面内で展開した説明図である。なお、図1(a)の一点鎖線は、光学瞳Eの中心からY方向にずれた位置(例えばY方向端部)に向かう液晶素子16からの光(以下、Y方向瞳端の光と称する)を指す。また、図1(b)の二点鎖線は、光学瞳Eの中心からX方向にずれた位置(例えばX方向端部)に向かう液晶素子16からの光(以下、X方向瞳端の光と称する)を指す。光学瞳Eは、前述の通り、Y方向よりもX方向に大きく設定されている。 FIG. 1A is an explanatory diagram in which the optical path from the light source 11 to the optical pupil E along the optical axis AX is developed in the YZ plane in the video display device 1 described above, and FIG. It is explanatory drawing which expand | deployed the optical path in ZX plane. 1 (a) indicates light from the liquid crystal element 16 (hereinafter referred to as Y-direction pupil end light) that is directed to a position shifted in the Y direction from the center of the optical pupil E (for example, an end portion in the Y direction). ). In addition, a two-dot chain line in FIG. 1B indicates light from the liquid crystal element 16 (hereinafter referred to as light at the X-direction pupil end) toward a position shifted in the X direction from the center of the optical pupil E (for example, the X direction end). Designated). As described above, the optical pupil E is set larger in the X direction than in the Y direction.
 図1(a)(b)に示すように、接眼光学系18は、YZ面内では軸非対称であり、ZX面内では軸対称の光学系である。そして、接眼光学系18が軸非対称となるYZ面内(対称面内)において、光軸AXは液晶素子16の素子面に対して垂直以外の傾斜角で傾斜している。 As shown in FIGS. 1A and 1B, the eyepiece optical system 18 is an axisymmetric optical system in the YZ plane and an axially symmetric optical system in the ZX plane. In the YZ plane (in the symmetry plane) in which the eyepiece optical system 18 is axially asymmetric, the optical axis AX is inclined at an inclination angle other than perpendicular to the element surface of the liquid crystal element 16.
 ここで、光軸AX上の光線を主光線とし、YZ面内における主光線の液晶素子16への入射角をθ(°)とする。すなわち、θは、YZ面内での液晶素子16の素子面の法線と光軸AXとのなす角度である。なお、光学系は、光学収差を小さくするために略テレセントリックに設定されているので、素子面の中心以外に入射する光線についても同様に、YZ面内では角度θに近い入射角で液晶素子16に入射する。本実施形態では、各光学部材の配置の自由度を大きくしつつ、光学性能(例えば収差に関する性能)を確保しながら装置を小型化するために、θ≧10°に設定している。 Here, a ray on the optical axis AX is a principal ray, and an incident angle of the principal ray on the liquid crystal element 16 in the YZ plane is θ (°). That is, θ is an angle formed by the normal line of the element surface of the liquid crystal element 16 in the YZ plane and the optical axis AX. Since the optical system is set to be substantially telecentric in order to reduce the optical aberration, the liquid crystal element 16 also has an incident angle close to the angle θ in the YZ plane with respect to the incident light other than the center of the element surface. Is incident on. In the present embodiment, θ ≧ 10 ° is set in order to reduce the size of the apparatus while ensuring optical performance (for example, performance related to aberration) while increasing the degree of freedom of arrangement of the optical members.
 また、軸非対称な系の対称面であるYZ面内において、偏光子12の面と液晶素子16の素子面との相対角度をα(°)とし、検光子17の面と液晶素子16の素子面との相対角度をβ(°)とする。なお、以下では、α、βを、それぞれ、偏光子12の傾斜角、検光子17の傾斜角とも称する。 In the YZ plane, which is the symmetry plane of the axially asymmetric system, the relative angle between the plane of the polarizer 12 and the element plane of the liquid crystal element 16 is α (°), and the plane of the analyzer 17 and the element of the liquid crystal element 16 Let the relative angle to the surface be β (°). Hereinafter, α and β are also referred to as the inclination angle of the polarizer 12 and the inclination angle of the analyzer 17, respectively.
 本実施形態では、光軸AXに沿って光路を展開したときに、YZ面内で、α<θ、かつ、β<θとなるように、偏光子12、液晶素子16および検光子17が配置されている。これにより、観察者の瞳のX方向の位置によらず、黒表示時の映像光を検光子17にて確実に吸収して高コントラストの映像を観察することが可能となる。その理由は、以下の通りである。 In the present embodiment, the polarizer 12, the liquid crystal element 16, and the analyzer 17 are arranged so that α <θ and β <θ in the YZ plane when the optical path is developed along the optical axis AX. Has been. Thus, regardless of the position of the observer's pupil in the X direction, it is possible to reliably absorb the image light during black display by the analyzer 17 and observe a high-contrast image. The reason is as follows.
 図4は、光軸AX上の光の進行方向Xと、X方向瞳端の光の進行方向Xと、液晶23の液晶分子の遅相軸の方向Dとの関係を模式的に示す説明図である。また、図5は、光軸AX上の光についての、偏光子12の透過軸、液晶23の黒表示時の遅相軸、検光子17の透過軸の各方向を模式的に示す説明図である。光軸AX上の光について、偏光子12の透過軸の方向および液晶23の黒表示時の遅相軸の方向は、Y方向に設定されており、検光子17の透過軸の方向は、X方向に設定されている。 4, the traveling direction X 0 of the light on the optical axis AX, and the traveling direction X 1 of the light in the X direction the pupil edge, the relationship between the direction D 0 of the slow axis of the liquid crystal molecules of the liquid crystal 23 schematically It is explanatory drawing shown. FIG. 5 is an explanatory diagram schematically showing the directions of the transmission axis of the polarizer 12, the slow axis during black display of the liquid crystal 23, and the transmission axis of the analyzer 17 for light on the optical axis AX. is there. For light on the optical axis AX, the direction of the transmission axis of the polarizer 12 and the direction of the slow axis during black display of the liquid crystal 23 are set to the Y direction, and the direction of the transmission axis of the analyzer 17 is X Set to direction.
 液晶素子16の素子面の法線はYZ面内で光軸AXに対して角度θだけ傾いており、液晶23の黒表示時の遅相軸はYZ面内で傾いている。ここで、偏光子12および検光子17は、液晶23の黒表示時の遅相軸と光軸とを含む面に平行な面内で傾斜角αおよび傾斜角βでそれぞれ傾斜しているので、光軸AX上の光については、偏光子12の透過軸の方向と、液晶23の黒表示時の遅相軸の方向と、検光子17の透過軸の方向とは、上記光の進行方向に垂直な面内で傾くことがなく、偏光子12を通過した光は検光子17で確実に吸収されて高コントラストとなる。このことは、図4に示すように、例えば、液晶23の黒表示時の遅相軸の方向Dは、光軸AX上の光が進行するXの方向から見るとY方向となり、光軸AXに垂直なXY面内ではY方向から傾かないことから容易に理解できる。同様に、偏光子12の透過軸および検光子17の透過軸も上記面内では傾かない。また、光軸AX上の光だけでなく、例えば図1(a)の一点鎖線で示すY方向瞳端の光についても同様に、偏光子12の透過軸の方向と、液晶23の黒表示時の遅相軸の方向と、検光子17の透過軸の方向とは、上記光の進行方向に垂直な面内では傾かないので、高コントラストである。 The normal of the element surface of the liquid crystal element 16 is inclined by an angle θ with respect to the optical axis AX in the YZ plane, and the slow axis of the liquid crystal 23 during black display is inclined in the YZ plane. Here, the polarizer 12 and the analyzer 17 are inclined at an inclination angle α and an inclination angle β, respectively, in a plane parallel to a plane including the slow axis and the optical axis when the liquid crystal 23 displays black. For the light on the optical axis AX, the direction of the transmission axis of the polarizer 12, the direction of the slow axis when the liquid crystal 23 displays black, and the direction of the transmission axis of the analyzer 17 are in the traveling direction of the light. The light that has passed through the polarizer 12 without being tilted in a vertical plane is reliably absorbed by the analyzer 17 and has high contrast. As shown in FIG. 4, for example, the slow axis direction D 0 when the liquid crystal 23 displays black is the Y direction when viewed from the X 0 direction in which the light on the optical axis AX travels. In the XY plane perpendicular to the axis AX, it can be easily understood because it does not tilt from the Y direction. Similarly, the transmission axis of the polarizer 12 and the transmission axis of the analyzer 17 are not inclined in the plane. Further, not only for light on the optical axis AX but also for light at the Y-direction pupil end indicated by a one-dot chain line in FIG. 1A, for example, the direction of the transmission axis of the polarizer 12 and the liquid crystal 23 during black display. Since the slow axis direction and the transmission axis direction of the analyzer 17 are not inclined in a plane perpendicular to the light traveling direction, the contrast is high.
 一方、図6は、図1(b)の二点鎖線で示すX方向瞳端の光についての、偏光子12の透過軸、液晶23の黒表示時の遅相軸、検光子17の透過軸の各方向を模式的に示す説明図である。液晶23の黒表示時の遅相軸がYZ面内で傾いているため、X方向瞳端の光については、図4に示すように、液晶23の黒表示時の遅相軸の方向Dは、X方向瞳端の光が進行するXの方向から見ると傾いており、例えば光軸AXに垂直な投影面内ではDの方向となる。このため、X方向瞳端の光については、図6に示すように、液晶23の黒表示時の遅相軸は上記光の進行方向に垂直な面内でY方向から角度Bだけ少しずれる。同様に、偏光子12および検光子17は、α<θ、かつ、β<θとなるようにYZ面内で傾いているため(図1(a)参照)、X方向瞳端の光については、偏光子12の透過軸は、上記進行方向に垂直な面内でY方向から角度Aだけ少しずれ、検光子17の透過軸は、上記進行方向に垂直な面内でX方向から角度Cだけ少しずれる。 On the other hand, FIG. 6 shows the transmission axis of the polarizer 12, the slow axis during black display of the liquid crystal 23, and the transmission axis of the analyzer 17 for the light at the X-direction pupil end indicated by the two-dot chain line in FIG. It is explanatory drawing which shows each direction of these typically. Since the slow axis when the liquid crystal 23 displays black is tilted in the YZ plane, the light at the X direction pupil end, as shown in FIG. 4, is the direction D 0 of the slow axis when the liquid crystal 23 displays black. is inclined when viewed from the direction of X 1 where the light in the X direction pupil edge proceeds, for example, the direction of D 1 in the optical axis perpendicular to the projection plane in AX. For this reason, with respect to the light at the X direction pupil end, as shown in FIG. 6, the slow axis at the time of black display of the liquid crystal 23 is slightly shifted from the Y direction by an angle B within a plane perpendicular to the light traveling direction. Similarly, since the polarizer 12 and the analyzer 17 are inclined in the YZ plane so that α <θ and β <θ (see FIG. 1A), the light at the X-direction pupil end is determined. The transmission axis of the polarizer 12 is slightly shifted from the Y direction by an angle A in a plane perpendicular to the traveling direction, and the transmission axis of the analyzer 17 is an angle C from the X direction in a plane perpendicular to the traveling direction. A little off.
 黒表示時には、検光子17が偏光子12からの光を全て吸収して、光漏れしないのが理想であるが、1/2波長板として作用する液晶23の遅相軸と、偏光子12および検光子17の各透過軸が平行あるいは垂直からずれると、ずれ角が大きいほど検光子17を透過する光が多く発生し、その量は、検光子17に入射する光の偏光方向と検光子17の透過軸の方向とのずれ角の正弦の2乗に比例する。したがって、図6の例では、偏光子12を透過した光のうち、
 {sin(2B-A-C)}
の割合に相当する光が検光子17を透過することになる。
During black display, it is ideal that the analyzer 17 absorbs all the light from the polarizer 12 and does not leak light, but the slow axis of the liquid crystal 23 acting as a half-wave plate, the polarizer 12 and When the transmission axes of the analyzer 17 are deviated from parallel or perpendicular, the larger the deviation angle, the more light is transmitted through the analyzer 17, and the amount thereof is determined by the polarization direction of the light incident on the analyzer 17 and the analyzer 17. Is proportional to the square of the sine of the angle of deviation from the direction of the transmission axis. Therefore, in the example of FIG. 6, out of the light transmitted through the polarizer 12,
{Sin (2B-AC)} 2
That is, the light corresponding to this ratio passes through the analyzer 17.
 しかし、本実施形態では、偏光子12の傾斜角αおよび検光子17の傾斜角βをθ未満に設定していることにより、X方向瞳端の光についての偏光子12の透過軸の方向または検光子17の透過軸の方向を、黒表示時の液晶23の遅相軸の方向のずれと同じか、それ以下のずれ量でずらすことができる。これにより、ずれ量(|B-A|あるいは|B-C|)は小さくなる。しかも、黒表示時の液晶23の遅相軸と、偏光子12および検光子17の透過軸とが同じ方向にずれるので、偏光子12からの光のうち、検光子17を透過する成分は非常に小さくなる。このことは、X方向瞳端の光についてのみならず、光学瞳Eの中心からX方向にずれたどの位置に向かう光についても言える。したがって、観察者の瞳のX方向の位置によらず、黒表示時の映像光を検光子17にて確実に吸収して高コントラストな映像を観察することができる。 However, in this embodiment, by setting the inclination angle α of the polarizer 12 and the inclination angle β of the analyzer 17 to be less than θ, the direction of the transmission axis of the polarizer 12 with respect to the light at the X direction pupil end or The direction of the transmission axis of the analyzer 17 can be shifted by a shift amount equal to or less than the shift of the slow axis direction of the liquid crystal 23 during black display. As a result, the shift amount (| BA | or | BC |) becomes small. In addition, since the slow axis of the liquid crystal 23 during black display and the transmission axes of the polarizer 12 and the analyzer 17 are shifted in the same direction, the component transmitted through the analyzer 17 in the light from the polarizer 12 is very Becomes smaller. This is true not only for the light at the X-direction pupil end, but also for the light going to any position shifted in the X direction from the center of the optical pupil E. Therefore, regardless of the position of the observer's pupil in the X direction, the image light during black display can be reliably absorbed by the analyzer 17 and a high contrast image can be observed.
 例えば、接眼光学系18の焦点距離を20mmとし、光学瞳EのX方向の大きさを5mmとしたとき、液晶素子16の素子面の中心から射出されてX方向の瞳端に向かう光線のZX平面内での光軸AXとのなす角は、約14°となる。このとき、θ=15°、α=3°、β=1°に設定すると、角度Aは約3°、角度Bは約3.8°、角度Cが約4.1°となる。ゆえに、上述の式から、入射光を1としたときの割合で0.00008だけ光が漏れることになる。例えば、光軸上では白と黒の比が100対1のコントラストとなる場合、X方向瞳端ではコントラストが100対1.008となり、ほぼ光軸上と同じ高コントラストを達成することができる。なお、光軸上で1000対1などのさらに高コントラストの場合でも、光軸上で100対1よりも低いコントラストの場合でも、X方向瞳端では高コントラストな映像を観察することができる。 For example, when the focal length of the eyepiece optical system 18 is 20 mm and the size of the optical pupil E in the X direction is 5 mm, ZX of light rays emitted from the center of the element surface of the liquid crystal element 16 toward the pupil end in the X direction The angle formed with the optical axis AX in the plane is about 14 °. At this time, if θ = 15 °, α = 3 °, and β = 1 °, the angle A is about 3 °, the angle B is about 3.8 °, and the angle C is about 4.1 °. Therefore, from the above equation, light leaks by 0.00008 at a rate when the incident light is 1. For example, when the ratio of white to black is 100: 1 on the optical axis, the contrast is 100: 1.008 at the pupil edge in the X direction, and the same high contrast as that on the optical axis can be achieved. It should be noted that a high-contrast image can be observed at the X-direction pupil end even when the contrast is higher, such as 1000: 1 on the optical axis, or when the contrast is lower than 100: 1 on the optical axis.
 以上では、YZ面内で、α<θ、かつ、β<θとなる場合について説明したが、α<θおよびβ<θの少なくとも一方を満足していれば、X方向の瞳位置に関係なく高コントラストの映像を観察できる本発明の効果を得ることができる。α<θおよびβ<θの一方を満足する例については後述するが、特に、本実施形態のように、α<θおよびβ<θの両方を満足することにより、その効果を確実に得ることができる。 In the above, the case where α <θ and β <θ in the YZ plane has been described. However, as long as at least one of α <θ and β <θ is satisfied, regardless of the pupil position in the X direction. The effect of the present invention that enables observation of a high-contrast image can be obtained. An example that satisfies one of α <θ and β <θ will be described later. In particular, as in this embodiment, by satisfying both α <θ and β <θ, the effect can be reliably obtained. Can do.
 (α=θ、かつ、β=θのときのコントラストについて)
 次に、YZ面内で、αおよびβが上限のθであるときのX方向瞳端でのコントラストについて説明する。図7(a)は、YZ面内で、α=θ、かつ、β=θとなる映像表示装置1の光路を光軸AXに沿ってYZ面内で展開した説明図であり、図7(b)は、上記映像表示装置1の光路を光軸AXに沿ってZX面内で展開した説明図である。
(Contrast when α = θ and β = θ)
Next, the contrast at the X-direction pupil end when α and β are the upper limit θ in the YZ plane will be described. FIG. 7A is an explanatory diagram in which the optical path of the video display apparatus 1 in which α = θ and β = θ is developed in the YZ plane along the optical axis AX in the YZ plane. b) is an explanatory diagram in which the optical path of the video display device 1 is developed in the ZX plane along the optical axis AX.
 YZ面内で、α=θ、かつ、β=θのとき、偏光子12および検光子17は、光軸AXに垂直となるように配置され、互いに平行となる。ただし、ここでは、YZ面内で光路を展開したときに、液晶素子16の素子面の法線が光軸AXに近づく方向と同方向に+θだけ、偏光子12および検光子17を傾けているものとする。 In the YZ plane, when α = θ and β = θ, the polarizer 12 and the analyzer 17 are arranged to be perpendicular to the optical axis AX and are parallel to each other. However, here, when the optical path is developed in the YZ plane, the polarizer 12 and the analyzer 17 are inclined by + θ in the same direction as the normal of the element surface of the liquid crystal element 16 approaches the optical axis AX. Shall.
 光軸AX上の光についての、偏光子12の透過軸、液晶23の黒表示時の遅相軸、検光子17の透過軸の各方向については、図5と同様である。つまり、偏光子12および検光子17は、液晶23の黒表示時の遅相軸と光軸とを含む面に平行な面内で傾斜角α(=θ)および傾斜角β(=θ)でそれぞれ傾斜しているので、光軸AX上の光については、偏光子12の透過軸の方向と、液晶23の黒表示時の遅相軸の方向と、検光子17の透過軸の方向は、上記光の進行方向に垂直な面内で傾くことがなく、偏光子12を通過した光は検光子17で確実に吸収されて高コントラストとなる。また、光軸AX上の光だけでなく、例えば図7(a)の一点鎖線で示すY方向瞳端の光についても、同様に高コントラストである。 Regarding the light on the optical axis AX, the respective directions of the transmission axis of the polarizer 12, the slow axis during black display of the liquid crystal 23, and the transmission axis of the analyzer 17 are the same as in FIG. That is, the polarizer 12 and the analyzer 17 have an inclination angle α (= θ) and an inclination angle β (= θ) in a plane parallel to a plane including the slow axis and the optical axis when the liquid crystal 23 displays black. Since each is inclined, for the light on the optical axis AX, the direction of the transmission axis of the polarizer 12, the direction of the slow axis when the liquid crystal 23 displays black, and the direction of the transmission axis of the analyzer 17 are: The light that has passed through the polarizer 12 without being inclined in the plane perpendicular to the traveling direction of the light is reliably absorbed by the analyzer 17 and has a high contrast. Further, not only the light on the optical axis AX but also the light at the pupil edge in the Y direction indicated by the one-dot chain line in FIG.
 一方、図8は、図7(b)の二点鎖線で示すX方向瞳端の光についての、偏光子12の透過軸、液晶23の黒表示時の遅相軸、検光子17の透過軸の各方向を模式的に示す説明図である。X方向瞳端の光については、図6の場合と同様に、液晶23の黒表示時の遅相軸はY方向から角度D(°)だけずれる。しかし、図7(a)に示すように、偏光子12および検光子17は、光軸AXに対してほぼ垂直であるため、各透過軸はY方向およびX方向からほとんどずれない。したがって、図9に示すように、偏光子12を透過した光は、液晶23の遅相軸のY方向からのずれの2倍の角度2Dだけ偏光方向が回転する(液晶23は1/2波長板として作用するため2倍になる)。その結果、偏光子12を透過した光のうち、
 {sin(2D)}
の割合に相当する光(検光子17の透過軸に平行な成分P)が検光子17を透過する。
On the other hand, FIG. 8 shows the transmission axis of the polarizer 12, the slow axis during black display of the liquid crystal 23, and the transmission axis of the analyzer 17 for the light at the pupil edge in the X direction indicated by the two-dot chain line in FIG. It is explanatory drawing which shows each direction of these typically. As for the light at the X-direction pupil end, the slow axis during black display of the liquid crystal 23 is shifted from the Y direction by an angle D (°), as in FIG. However, as shown in FIG. 7A, the polarizer 12 and the analyzer 17 are substantially perpendicular to the optical axis AX, so that each transmission axis hardly deviates from the Y direction and the X direction. Therefore, as shown in FIG. 9, the polarization direction of the light transmitted through the polarizer 12 is rotated by an angle 2D that is twice the deviation of the slow axis of the liquid crystal 23 from the Y direction (the liquid crystal 23 has a half wavelength). It doubles to act as a plate). As a result, of the light transmitted through the polarizer 12,
{Sin (2D)} 2
The light corresponding to this ratio (component P parallel to the transmission axis of the analyzer 17) is transmitted through the analyzer 17.
 ここで、接眼光学系18の焦点距離等を上記と同様の条件に設定してX方向瞳端でのコントラストを算出すると、角度D=3.8°の2倍の角度ずれが漏れ光に影響し、その漏れ光の量は、入射光を1としたときの割合で0.017となる。したがって、光軸上で100対1のコントラストの場合、X方向瞳端では100対2.7となる。言い換えると、本発明によれば、光軸上で100対1のコントラストの場合、X方向瞳端で最低でも100対2.7のコントラストとなる。 Here, when the contrast at the X-direction pupil end is calculated by setting the focal length of the eyepiece optical system 18 to the same conditions as described above, an angle deviation of twice the angle D = 3.8 ° affects the leakage light. The amount of the leaked light is 0.017 in a ratio where the incident light is 1. Therefore, when the contrast is 100 to 1 on the optical axis, the contrast is 100 to 2.7 at the pupil edge in the X direction. In other words, according to the present invention, when the contrast is 100 to 1 on the optical axis, the contrast is at least 100 to 2.7 at the pupil edge in the X direction.
 なお、図10および図11は、図1(a)(b)の構成および図7(a)(b)の構成における、偏光子12の透過軸、液晶23の白表示時の遅相軸、検光子17の透過軸の各方向を模式的に示す説明図であって、図10は光軸上の光についてのものを、図11はY方向瞳端でのものをそれぞれ示している。白表示の場合、図10に示すように、光軸上の光についても、液晶23の遅相軸の方向は45度からずれ、偏光子12を透過した光の偏光方向を検光子17が透過する方向に確実には回転できない。しかしながら、白の明るさが多少暗くなってもコントラストはほとんど変わらない。例えば、コントラストが100対1の表示に対して、白レベルを100としたとき、白が2だけ低下しても98対1になるだけで、依然、高コントラストである。また、図11に示すように、Y方向瞳端の光については、白表示時に液晶23の遅相軸がさらに45度から大きくずれるが、前述の通り、コントラストへの影響は小さいと言える。 10 and 11 show the transmission axis of the polarizer 12 and the slow axis during white display of the liquid crystal 23 in the configurations of FIGS. 1 (a) and 1 (b) and FIGS. 7 (a) and 7 (b). FIG. 10 is a diagram schematically illustrating each direction of the transmission axis of the analyzer 17. FIG. 10 shows the light on the optical axis, and FIG. 11 shows the Y-direction pupil end. In the case of white display, as shown in FIG. 10, the direction of the slow axis of the liquid crystal 23 also deviates from 45 degrees with respect to the light on the optical axis, and the analyzer 17 transmits the polarization direction of the light transmitted through the polarizer 12. Cannot rotate reliably in the direction of However, the contrast hardly changes even if the brightness of white becomes somewhat dark. For example, when the white level is set to 100 for a display with a contrast of 100 to 1, even if white is decreased by 2, it is only 98 to 1 and still has a high contrast. Further, as shown in FIG. 11, for the light at the Y-direction pupil end, the slow axis of the liquid crystal 23 further shifts from 45 degrees during white display, but it can be said that the influence on the contrast is small as described above.
 (偏光子および検光子の傾き方向とコントラストとの関係について)
 次に、YZ面内における偏光子12および検光子17の傾き方向とコントラストとの関係について、シミュレーションした結果について説明する。なお、検光子17に入射する光の偏光方向と検光子17の透過軸とのずれ角(相対角度)をδとすると、δ=2B-A-Cであり、ここでは、B=Δθ(°)とする。また、αおよびβの正負は、YZ面内で光路を展開したときに、液晶素子16の素子面の法線が光軸AXに近づく方向と同方向の偏光子12および検光子17の傾き方向(回転方向)を正(例えば+θ)とする。
(1)α=+θ、かつ、β=+θの場合
 図12(a)は、αおよびβを上記のように設定した映像表示装置1のYZ面内で光路を展開した説明図であり、図12(b)は、上記映像表示装置1において、X方向瞳端の光についての、偏光子12の透過軸、液晶23の黒表示時の遅相軸、検光子17の透過軸の各方向を模式的に示す説明図である。YZ面内で、α=+θ、かつ、β=+θの場合、すなわち、上述したように、偏光子12および検光子17が光軸AXに垂直となるように配置され、互いに平行となる場合、黒表示時は、A=0°、B=Δθ、C=0°となり、上式より、δ=2Δθとなる。したがって、X方向瞳端の光については、黒表示の映像光が検光子17から若干漏れて、後述する(2)(3)の場合よりもコントラストは低くなるが、最低でもこのコントラストを確保することができる。
(2)α=+θ、かつ、β=-θの場合
 図13(a)は、αおよびβを上記のように設定した映像表示装置1のYZ面内で光路を展開した説明図であり、図13(b)は、上記映像表示装置1において、X方向瞳端の光についての、偏光子12の透過軸、液晶23の黒表示時の遅相軸、検光子17の透過軸の各方向を模式的に示す説明図である。YZ面内で、α=+θ、かつ、β=-θの場合、すなわち、偏光子12と検光子17とが互いに平行でなく(偏光子12と検光子17とは互いに逆方向に傾き)、偏光子12の面と液晶素子16の素子面との相対角度αが、検光子17の面と液晶素子16の素子面との相対角度βに等しい場合、黒表示時は、A=0°、B=Δθ、C=2Δθとなり、上式より、δ=0°となる。したがって、この条件の場合は、X方向瞳端の光について検光子17での漏れ光を確実に無くし、確実に高コントラストを実現することができる。
(3)α=-θ、かつ、β=+θの場合
 図14(a)は、αおよびβを上記のように設定した映像表示装置1のYZ面内で光路を展開した説明図であり、図14(b)は、上記映像表示装置1において、X方向瞳端の光についての、偏光子12の透過軸、液晶23の黒表示時の遅相軸、検光子17の透過軸の各方向を模式的に示す説明図である。YZ面内で、α=-θ、かつ、β=+θの場合、すなわち、偏光子12と検光子17とが互いに平行でなく(偏光子12と検光子17とは互いに逆方向に傾き)、偏光子12の面と液晶素子16の素子面との相対角度αが、検光子17の面と液晶素子16の素子面との相対角度βに等しい場合、黒表示時は、A=2Δθ、B=Δθ、C=0°となり、上式より、δ=0°となる。したがって、この条件の場合も、X方向瞳端の光について検光子17での漏れ光を確実に無くし、確実に高コントラストを実現することができる。
(4)α=-θ、かつ、β=-θの場合
 図15(a)は、αおよびβを上記のように設定した映像表示装置1のYZ面内で光路を展開した説明図であり、図15(b)は、上記映像表示装置1において、X方向瞳端の光についての、偏光子12の透過軸、液晶23の黒表示時の遅相軸、検光子17の透過軸の各方向を模式的に示す説明図である。YZ面内で、α=-θ、かつ、β=-θの場合、すなわち、偏光子12および検光子17が光軸AXに垂直ではなく、かつ、互いに平行となる場合、黒表示時は、A=2Δθ、B=Δθ、C=2Δθとなり、上式より、δ=-2Δθとなる。したがって、X方向瞳端の光については、黒表示の映像光が検光子17から若干漏れて、上記の(2)(3)の場合よりもコントラストは低くなるが、上記(1)の場合と同様に、最低でもこのコントラストを確保することができる。
(Relationship between tilt direction of polarizer and analyzer and contrast)
Next, a simulation result of the relationship between the tilt direction of the polarizer 12 and the analyzer 17 in the YZ plane and the contrast will be described. If the deviation angle (relative angle) between the polarization direction of the light incident on the analyzer 17 and the transmission axis of the analyzer 17 is δ, δ = 2B−A−C, where B = Δθ (° ). Further, the positive and negative values of α and β are the inclination directions of the polarizer 12 and the analyzer 17 in the same direction as the normal of the element surface of the liquid crystal element 16 approaches the optical axis AX when the optical path is developed in the YZ plane. Let (rotation direction) be positive (for example, + θ).
(1) When α = + θ and β = + θ FIG. 12A is an explanatory diagram in which the optical path is developed in the YZ plane of the video display device 1 in which α and β are set as described above. 12 (b) shows the respective directions of the transmission axis of the polarizer 12, the slow axis during black display of the liquid crystal 23, and the transmission axis of the analyzer 17 for the light at the pupil in the X direction in the video display device 1. It is explanatory drawing shown typically. In the YZ plane, when α = + θ and β = + θ, that is, as described above, when the polarizer 12 and the analyzer 17 are arranged so as to be perpendicular to the optical axis AX and are parallel to each other, During black display, A = 0 °, B = Δθ, C = 0 °, and δ = 2Δθ from the above equation. Accordingly, for the light at the X-direction pupil end, the black display image light leaks slightly from the analyzer 17 and becomes lower in contrast than the cases (2) and (3) described later, but this contrast is ensured at the minimum. be able to.
(2) When α = + θ and β = −θ FIG. 13A is an explanatory diagram in which the optical path is developed in the YZ plane of the video display apparatus 1 in which α and β are set as described above. FIG. 13B shows each direction of the transmission axis of the polarizer 12, the slow axis during black display of the liquid crystal 23, and the transmission axis of the analyzer 17 for the light at the X-direction pupil end in the video display device 1. It is explanatory drawing which shows this typically. In the YZ plane, when α = + θ and β = −θ, that is, the polarizer 12 and the analyzer 17 are not parallel to each other (the polarizer 12 and the analyzer 17 are inclined in opposite directions), When the relative angle α between the surface of the polarizer 12 and the element surface of the liquid crystal element 16 is equal to the relative angle β between the surface of the analyzer 17 and the element surface of the liquid crystal element 16, A = 0 ° during black display, B = Δθ, C = 2Δθ, and δ = 0 ° from the above equation. Therefore, under this condition, it is possible to reliably eliminate the leakage light from the analyzer 17 with respect to the light at the X-direction pupil end, and to reliably realize high contrast.
(3) When α = −θ and β = + θ FIG. 14A is an explanatory diagram in which the optical path is developed in the YZ plane of the video display device 1 in which α and β are set as described above. FIG. 14B shows each direction of the transmission axis of the polarizer 12, the slow axis during black display of the liquid crystal 23, and the transmission axis of the analyzer 17 for the light at the X direction pupil end in the video display device 1. It is explanatory drawing which shows this typically. In the YZ plane, when α = −θ and β = + θ, that is, the polarizer 12 and the analyzer 17 are not parallel to each other (the polarizer 12 and the analyzer 17 are inclined in opposite directions), When the relative angle α between the surface of the polarizer 12 and the element surface of the liquid crystal element 16 is equal to the relative angle β between the surface of the analyzer 17 and the element surface of the liquid crystal element 16, A = 2Δθ, B = Δθ, C = 0 °, and from the above equation, δ = 0 °. Therefore, even under this condition, the leakage light from the analyzer 17 can be surely eliminated for the light at the X-direction pupil end, and high contrast can be reliably realized.
(4) When α = −θ and β = −θ FIG. 15A is an explanatory diagram in which the optical path is developed in the YZ plane of the video display device 1 in which α and β are set as described above. FIG. 15B shows the transmission axis of the polarizer 12, the slow axis during black display of the liquid crystal 23, and the transmission axis of the analyzer 17 for the light at the pupil in the X direction in the video display device 1. It is explanatory drawing which shows a direction typically. When α = −θ and β = −θ in the YZ plane, that is, when the polarizer 12 and the analyzer 17 are not perpendicular to the optical axis AX and are parallel to each other, A = 2Δθ, B = Δθ, C = 2Δθ, and from the above equation, δ = -2Δθ. Therefore, for the light at the pupil edge in the X direction, the image light for black display leaks slightly from the analyzer 17 and the contrast becomes lower than in the cases (2) and (3) above, but in the case of (1) above. Similarly, this contrast can be secured at least.
 なお、上記(2)(3)のように、偏光子12と検光子17とが互いに平行でなく、かつ、偏光子12の面と液晶素子16の素子面との相対角度αが、検光子17の面と液晶素子16の素子面との相対角度βに等しい構成は、YZ面内でα<θまたはβ<θの条件を満足しない場合でも有効であり(αおよびβの少なくとも一方がθより大きい場合でも有効であり)、この場合でもX方向の位置に関係なく、高コントラストの映像を観察することができる。 Note that, as in the above (2) and (3), the polarizer 12 and the analyzer 17 are not parallel to each other, and the relative angle α between the surface of the polarizer 12 and the element surface of the liquid crystal element 16 is the analyzer. The configuration equal to the relative angle β between the surface 17 and the element surface of the liquid crystal element 16 is effective even when the condition of α <θ or β <θ is not satisfied in the YZ plane (at least one of α and β is θ In this case, a high-contrast image can be observed regardless of the position in the X direction.
 つまり、上記(2)(3)の実施形態は、「光軸に沿って光路を展開したときに、接眼光学系の軸非対称の対称面内で、偏光子の面と液晶素子の素子面との相対角度、および検光子の面と素子面との相対角度のうちの少なくとも一方の相対角度が、光軸と素子面の法線との相対角度未満である」という条件でなくても高コントラストを実現することができる。 That is, the embodiments of (2) and (3) described above are as follows: “When the optical path is developed along the optical axis, the plane of the polarizer and the element plane of the liquid crystal element are within the axially asymmetric symmetry plane of the eyepiece optical system. And at least one of the relative angle between the analyzer surface and the element surface is less than the relative angle between the optical axis and the normal of the element surface. Can be realized.
 (映像表示装置の他の構成について)
 図16は、本実施形態の映像表示装置1の他の構成を模式的に示す説明図である。なお、同図では、接眼光学系18以降の構成の図示を省略している。この映像表示装置1は、YZ面内で光軸AXに沿って光路を展開したときに、検光子17の面と液晶素子16の素子面とが光学的に平行となるように、すなわち、β=0°となるように、検光子17を配置し、かつ、偏光子12の面と液晶素子16の素子面との相対角度が、素子面の法線と光軸AXとのなす角度よりも大きくなるように、すなわち、α>θとなるように、偏光子12を配置して構成されている。したがって、偏光子12と検光子17とは、光学的に傾斜角を有している。なお、偏光子12は、液晶素子16から検光子17に向かう光路に対して光源11とは反対側に、すなわち、ミラー13と液晶素子16との間の光路中に配置されている。
(Other configuration of video display device)
FIG. 16 is an explanatory view schematically showing another configuration of the video display device 1 of the present embodiment. In the figure, the illustration of the configuration after the eyepiece optical system 18 is omitted. In the video display device 1, when the optical path is developed along the optical axis AX in the YZ plane, the surface of the analyzer 17 and the element surface of the liquid crystal element 16 are optically parallel, that is, β The analyzer 17 is arranged so that = 0 °, and the relative angle between the surface of the polarizer 12 and the element surface of the liquid crystal element 16 is larger than the angle formed between the normal of the element surface and the optical axis AX. The polarizer 12 is arranged so as to increase, that is, α> θ. Therefore, the polarizer 12 and the analyzer 17 are optically inclined. The polarizer 12 is arranged on the opposite side of the light source 11 with respect to the optical path from the liquid crystal element 16 toward the analyzer 17, that is, in the optical path between the mirror 13 and the liquid crystal element 16.
 図16の構成においては、β(=0°)<θであり、α<θおよびβ<θの一方を満足しているので、上述したように、X方向の瞳位置に関係なく高コントラストの映像を観察することができる。ただし、この構成では、α>θであるため、α<θおよびβ<θを両方満足する構成に比べると、X方向瞳端でのコントラストが若干低下するが、それでも高コントラストを実現することができる。 In the configuration of FIG. 16, β (= 0 °) <θ and one of α <θ and β <θ is satisfied. Therefore, as described above, high contrast is achieved regardless of the pupil position in the X direction. The video can be observed. However, in this configuration, since α> θ, the contrast at the X-direction pupil end is slightly reduced as compared with the configuration satisfying both α <θ and β <θ, but still high contrast can be realized. it can.
 例えば、接眼光学系18の焦点距離を20mmとし、光学瞳EのX方向の大きさを5mmとしたとき、液晶素子16の素子面の中心から射出されてX方向の瞳端に向かう光線のZX平面内での光軸AXとのなす角は、約14°となる。このとき、θ=15°、α=45°、β=1°に設定すると、偏光子12の面の法線と光軸AXとのなす角が45°の場合は、角度Aは約8.2°、角度Bは約3.8°、角度Cが約4.1°となる。ゆえに、上述の式から、入射光を1としたときの割合で0.007だけ光が漏れることになる。例えば、光軸上では白と黒の比が100対1のコントラストとなる場合、X方向瞳端ではコントラストが100対1.7となるが、依然として高コントラストである。なお、α<θで、かつ、β>θの場合でも同様のことが言える。したがって、α<θおよびβ<θの一方を満足するだけでも、X方向の瞳位置に関係なく比較的コントラストの高い映像を観察することができると言える。 For example, when the focal length of the eyepiece optical system 18 is 20 mm and the size of the optical pupil E in the X direction is 5 mm, ZX of light rays emitted from the center of the element surface of the liquid crystal element 16 toward the pupil end in the X direction The angle formed with the optical axis AX in the plane is about 14 °. At this time, when θ = 15 °, α = 45 °, and β = 1 °, when the angle formed by the normal of the surface of the polarizer 12 and the optical axis AX is 45 °, the angle A is about 8. 2 °, the angle B is about 3.8 °, and the angle C is about 4.1 °. Therefore, from the above equation, light leaks by 0.007 at a rate when the incident light is 1. For example, when the ratio of white to black is 100: 1 on the optical axis, the contrast is 100: 1 to 1.7 at the pupil edge in the X direction, but the contrast is still high. The same can be said for α <θ and β> θ. Therefore, even if only one of α <θ and β <θ is satisfied, it can be said that an image with relatively high contrast can be observed regardless of the pupil position in the X direction.
 ところで、図17は、映像表示装置1のさらに他の構成を模式的に示す説明図である。なお、同図では、接眼光学系18以降の構成の図示を省略している。同図に示すように、偏光子12は、ミラー13に沿ったシリンドリカル形状、すなわち、YZ面内でのみ曲率を有する形状で形成されていてもよい。この場合は、偏光子12を曲面のミラー13に容易に貼り付けることができ、またこれらを一体的に保持することができる。 Incidentally, FIG. 17 is an explanatory view schematically showing still another configuration of the video display device 1. In the figure, the illustration of the configuration after the eyepiece optical system 18 is omitted. As shown in the figure, the polarizer 12 may be formed in a cylindrical shape along the mirror 13, that is, a shape having a curvature only in the YZ plane. In this case, the polarizer 12 can be easily attached to the curved mirror 13 and can be held integrally.
 なお、光軸AX上の光については、黒表示時の液晶23の遅相軸と偏光子12の透過軸とがそれぞれの面内でY方向からずれないので、このように偏光子12をYZ面内で曲げてもコントラストが低下することはない。つまり、偏光子12がシリンドリカル形状であるので、画面や瞳位置によりコントラストが少し異なるのはやむを得ないが、検光子17の面を液晶素子16の素子面と平行(β=0°)にしていることにより、図16の構成と同様に、X方向の瞳位置に関係なく、コントラストの高い映像を観察することができる。なお、検光子17をYZ面内で曲げる場合も上記と同様に考えることができ、この場合でもコントラストの高い映像を観察することができる。 For the light on the optical axis AX, the slow axis of the liquid crystal 23 during black display and the transmission axis of the polarizer 12 do not deviate from the Y direction in the respective planes. Contrast does not decrease even if it is bent in the plane. That is, since the polarizer 12 has a cylindrical shape, it is inevitable that the contrast slightly differs depending on the screen and the pupil position, but the plane of the analyzer 17 is parallel to the element plane of the liquid crystal element 16 (β = 0 °). Thus, similarly to the configuration of FIG. 16, an image with high contrast can be observed regardless of the pupil position in the X direction. The case where the analyzer 17 is bent in the YZ plane can be considered in the same manner as described above, and even in this case, an image with high contrast can be observed.
 また、図18は、映像表示装置1のさらに他の構成を模式的に示す説明図である。なお、同図では、接眼光学系18以降の構成の図示を省略している。この映像表示装置1では、ミラー13の代わりに照明プリズム41を配置し、ほぼα=β=0°に設定している。 FIG. 18 is an explanatory diagram schematically showing still another configuration of the video display device 1. In the figure, the illustration of the configuration after the eyepiece optical system 18 is omitted. In this video display device 1, an illumination prism 41 is arranged instead of the mirror 13, and α is set to approximately β = 0 °.
 照明プリズム41は、凹面反射面41aを有しており、偏光子12から液晶素子16に向かう光の光路が凹面反射面41aで折り曲げられる。つまり、偏光子12を透過した光源11からの光は、照明プリズム41の内部に入射して凹面反射面41aで反射され、液晶素子16に入射する。そして、液晶素子16から射出される光が、再び照明プリズム41に入射してそこを透過し、検光子17に向かう。 The illumination prism 41 has a concave reflecting surface 41a, and the optical path of light from the polarizer 12 toward the liquid crystal element 16 is bent by the concave reflecting surface 41a. That is, the light from the light source 11 that has passed through the polarizer 12 enters the illumination prism 41, is reflected by the concave reflecting surface 41 a, and enters the liquid crystal element 16. Then, the light emitted from the liquid crystal element 16 enters the illumination prism 41 again, passes therethrough, and travels toward the analyzer 17.
 この構成によれば、偏光子12の面および検光子17の面を両方とも、液晶素子16の素子面に光学的に平行にしているので、偏光子12の面および検光子17の面の一方のみを液晶素子16の素子面に光学的に平行にする場合に比べて、X方向瞳端でさらに高コントラストの映像を観察することができる。なお、この効果は、偏光子12の面および検光子17の面が液晶素子16の素子面に完全に平行でなくても、平行に近い状態であれば得ることができる。例えば、偏光子12の面および検光子17の面が液晶素子16の素子面と5度以下の角度をなしていればよく、更に略平行であれば、その効果を最大限に得ることができる。以下では、完全に平行な場合、平行に近い場合の両者を含めて、略平行と称することとする。 According to this configuration, since both the surface of the polarizer 12 and the surface of the analyzer 17 are optically parallel to the element surface of the liquid crystal element 16, one of the surface of the polarizer 12 and the surface of the analyzer 17. Compared with the case where only the optical element is optically parallel to the element surface of the liquid crystal element 16, a higher-contrast image can be observed at the X-direction pupil end. This effect can be obtained if the plane of the polarizer 12 and the plane of the analyzer 17 are not parallel to the element plane of the liquid crystal element 16 but are almost parallel. For example, if the plane of the polarizer 12 and the plane of the analyzer 17 should form an angle of 5 degrees or less with the element plane of the liquid crystal element 16, and if it is substantially parallel, the effect can be obtained to the maximum. . In the following description, the term “substantially parallel”, including both the case of being completely parallel and the case of being nearly parallel, is used.
 以上のことをまとめると、光軸AXに沿って光路を展開したときに、偏光子12の面および検光子17の面の少なくとも一方が、液晶素子16の素子面と略平行であればよいと言える。この場合、YZ面内で、偏光子12の面と素子面との相対角度(傾斜角α)、および検光子17の面と素子面との相対角度(傾斜角β)のうちの少なくとも一方は、ほぼゼロとなり、確実に、光軸AXと素子面の法線との相対角度(角度θ)以下となる。これにより、光学瞳Eの中心からX方向にずれたどの位置に向かう液晶素子16からの光についても、黒表示時の液晶23の遅相軸と偏光子12の透過軸との角度差、および/または黒表示時の液晶23の遅相軸と検光子17の透過軸との角度差を確実に小さくすることができる。その結果、観察者の瞳のX方向の位置によらず、さらに高コントラストの映像を観察することが可能となる。また、偏光子12の面と検光子17の面の両方が液晶素子16の素子面となす角が5度以下であれば、高コントラストの映像を観察することが可能となり、特に、偏光子12の面および検光子17の面の両方が液晶素子16の素子面と略平行であれば、その効果を最大限に得ることができる。 In summary, it is sufficient that at least one of the surface of the polarizer 12 and the surface of the analyzer 17 is substantially parallel to the element surface of the liquid crystal element 16 when the optical path is developed along the optical axis AX. I can say that. In this case, at least one of the relative angle (tilt angle α) between the surface of the polarizer 12 and the element surface and the relative angle (tilt angle β) between the surface of the analyzer 17 and the element surface in the YZ plane is It becomes almost zero, and is certainly less than the relative angle (angle θ) between the optical axis AX and the normal of the element surface. As a result, for the light from the liquid crystal element 16 that is directed to any position shifted in the X direction from the center of the optical pupil E, the angle difference between the slow axis of the liquid crystal 23 and the transmission axis of the polarizer 12 during black display, and In other words, the angle difference between the slow axis of the liquid crystal 23 and the transmission axis of the analyzer 17 during black display can be reliably reduced. As a result, it is possible to observe a higher contrast image regardless of the position of the observer's pupil in the X direction. Further, if the angle formed by both the plane of the polarizer 12 and the plane of the analyzer 17 with the element plane of the liquid crystal element 16 is 5 degrees or less, a high-contrast image can be observed. If both the surface and the surface of the analyzer 17 are substantially parallel to the element surface of the liquid crystal element 16, the effect can be maximized.
 例えば、偏光子12の面と液晶素子16の素子面とが平行で、検光子17の面と液晶素子16の素子面とが平行でないとき、A=B=Δθ、C≦2Δθとすれば、|δ|=|2B-A-C|≦Δθとなる。また、偏光子12の面と液晶素子16の素子面とが平行でなく、検光子17の面と液晶素子16の素子面とが平行なとき、B=C=Δθ、A≦2Δθとすれば、|δ|=|2B-A-C|≦Δθとなる。いずれも検光子17での漏れ光が小さいので、X方向瞳端で高コントラストの映像を観察することができる。 For example, when the surface of the polarizer 12 and the element surface of the liquid crystal element 16 are parallel and the surface of the analyzer 17 and the element surface of the liquid crystal element 16 are not parallel, if A = B = Δθ and C ≦ 2Δθ, | Δ | = | 2B−A−C | ≦ Δθ. Further, when the surface of the polarizer 12 and the element surface of the liquid crystal element 16 are not parallel and the surface of the analyzer 17 and the element surface of the liquid crystal element 16 are parallel, B = C = Δθ and A ≦ 2Δθ. , | Δ | = | 2B−A−C | ≦ Δθ. In any case, since the leaked light from the analyzer 17 is small, a high-contrast image can be observed at the X-direction pupil end.
 また、偏光子12の面と液晶素子16の素子面とが平行で、かつ、検光子17の面と液晶素子16の素子面とが平行なとき、例えばA=B=C=Δθとなり、δ=2B-A-C=0°となるため、X方向瞳端で最高にコントラストの高い映像を観察することができる。 When the surface of the polarizer 12 and the element surface of the liquid crystal element 16 are parallel and the surface of the analyzer 17 and the element surface of the liquid crystal element 16 are parallel, for example, A = B = C = Δθ, and δ Since = 2BAC = 0 °, an image with the highest contrast can be observed at the pupil edge in the X direction.
 (映像表示装置のさらに他の構成について)
 図19は、本実施形態の映像表示装置1のさらに他の構成を模式的に示す説明図である。なお、同図では、接眼光学系18以降の構成の図示を省略している。同図に示すように、照明プリズム19の代わりに、選択透過反射面42aを有するシリンダミラー42を照明光学系として用いてもよい。この構成では、偏光子12を透過した光は、シリンダミラー42の選択透過反射面42aで反射され、液晶素子16に入射する。そして、液晶素子16から射出された光は、選択透過反射面42aを透過して検光子17に向かう。この構成では、照明プリズム41を用いる構成に比べて、照明光学系を軽量化することができる。
(About other configuration of video display device)
FIG. 19 is an explanatory diagram schematically showing still another configuration of the video display device 1 of the present embodiment. In the figure, the illustration of the configuration after the eyepiece optical system 18 is omitted. As shown in the figure, instead of the illumination prism 19, a cylinder mirror 42 having a selective transmission / reflection surface 42a may be used as the illumination optical system. In this configuration, the light transmitted through the polarizer 12 is reflected by the selective transmission / reflection surface 42 a of the cylinder mirror 42 and enters the liquid crystal element 16. The light emitted from the liquid crystal element 16 passes through the selective transmission / reflection surface 42 a and travels toward the analyzer 17. In this configuration, the illumination optical system can be reduced in weight compared to the configuration using the illumination prism 41.
 また、図20は、本実施形態の映像表示装置1のさらに他の構成を模式的に示す説明図である。なお、同図では、接眼光学系18以降の構成の図示を省略している。同図に示すように、偏光子12と検光子17とを兼ねた反射タイプの偏光板43(例えば輝度上昇フィルム(DBEF;Dual Brightness Enhancement Film))を液晶素子16の素子面に平行に配置してもよい。なお、偏光板43の裏面側(接眼光学系18側)には、偏光板43を透過する光と同じ偏光方向の光を透過させる偏光板44が配置されている。 FIG. 20 is an explanatory diagram schematically showing still another configuration of the video display device 1 of the present embodiment. In the figure, the illustration of the configuration after the eyepiece optical system 18 is omitted. As shown in the figure, a reflection type polarizing plate 43 (for example, a brightness enhancement film (DBEF)) that doubles as a polarizer 12 and an analyzer 17 is arranged in parallel to the element surface of the liquid crystal element 16. May be. A polarizing plate 44 that transmits light having the same polarization direction as the light transmitted through the polarizing plate 43 is disposed on the back surface side (the eyepiece optical system 18 side) of the polarizing plate 43.
 この構成では、光源11からの光のうちで例えばP偏光は、偏光板43にて反射されて液晶素子16に入射する。そして、液晶素子16から射出される光(例えば白表示のS偏光)は、偏光板43および偏光板44を透過して接眼光学系18に入射する。一方、液晶素子16から射出される光(例えば黒表示のP偏光)は、偏光板43にて大部分が吸収されるが、そこを透過したとしても、裏面の偏光板44により確実に吸収される。このように、偏光子12および検光子17の代わりに偏光板43を用いる構成であっても、偏光板43の面を液晶素子16の素子面と平行にすることにより、X方向の瞳位置に関係なく高コントラストの映像を観察できる本発明の効果を得ることができる。 In this configuration, of the light from the light source 11, for example, P-polarized light is reflected by the polarizing plate 43 and enters the liquid crystal element 16. The light emitted from the liquid crystal element 16 (for example, white-displayed S-polarized light) passes through the polarizing plate 43 and the polarizing plate 44 and enters the eyepiece optical system 18. On the other hand, most of the light emitted from the liquid crystal element 16 (for example, black-polarized P-polarized light) is absorbed by the polarizing plate 43, but even if it is transmitted there, it is reliably absorbed by the polarizing plate 44 on the back surface. The As described above, even if the polarizing plate 43 is used in place of the polarizer 12 and the analyzer 17, the plane of the polarizing plate 43 is parallel to the element surface of the liquid crystal element 16, so that the pupil position in the X direction can be obtained. Regardless of the effect of the present invention, a high contrast image can be observed.
 上記(2)、(3)のように、偏光子12の面と検光子17の面とは平行ではな<、偏光子12の面と液晶素子16の素子面との相対角度と、検光子17の面と液晶素子16の素子面との相対角度とが等しい配置、偏光子12の面と検光子17の面の少なくとも一方が、液晶素子16の素子面と略平行な配置、あるいは、偏光子12の面と検光子17の面の両方が、液晶素子16の素子面と5度以下の角度でなす配置のいずれを選択するかは、照明光学系の構成に応じて、適宜選択すればよい。 As in the above (2) and (3), the plane of the polarizer 12 and the plane of the analyzer 17 are not parallel <the relative angle between the plane of the polarizer 12 and the element plane of the liquid crystal element 16, and the analyzer. An arrangement in which the relative angle between the surface of the liquid crystal element 16 and the element surface of the liquid crystal element 16 is equal, an arrangement in which at least one of the surface of the polarizer 12 and the surface of the analyzer 17 is substantially parallel to the element surface of the liquid crystal element 16, or Whether the surface of the element 12 and the surface of the analyzer 17 are arranged at an angle of 5 degrees or less with respect to the element surface of the liquid crystal element 16 can be selected as appropriate according to the configuration of the illumination optical system. Good.
 (補足)
 以上では、液晶素子16の液晶23として、強誘電性液晶を用いた例について説明したが、液晶23としてIPS(In Plane Switching)液晶を用いてもよい。IPS液晶は、強誘電性液晶と同様に位相板としての機能を有しており、偏光の位相を変換して白表示を行う一方、入射する光の偏光方向と液晶分子の長軸方向とが一致するときに偏光の位相を変換せずに黒表示を行うので、高コントラストの映像を表示することができる。したがって、IPS液晶を用いた場合でも、X方向の瞳位置に関係なく高コントラストの映像を観察できる本発明の効果が有効となる。
(Supplement)
In the above, an example in which a ferroelectric liquid crystal is used as the liquid crystal 23 of the liquid crystal element 16 has been described. However, an IPS (In Plane Switching) liquid crystal may be used as the liquid crystal 23. The IPS liquid crystal has a function as a phase plate similar to the ferroelectric liquid crystal, and performs white display by converting the phase of polarized light, while the polarization direction of incident light and the major axis direction of the liquid crystal molecules are different. Since the black display is performed without converting the polarization phase when they coincide, a high-contrast image can be displayed. Therefore, even when the IPS liquid crystal is used, the effect of the present invention that can observe a high-contrast image regardless of the pupil position in the X direction is effective.
 なお、液晶素子16は、TN液晶を用いて構成されてもよく、カラーフィルタを有して構成されていてもよい。例えば、偏光子12の面および/または検光子17の面と液晶素子16の素子面とが平行の場合に高コントラストが得られる効果は、液晶素子16がTN液晶を用いて構成される場合でも得ることができる。ただし、上述した(2)(3)のように、α=+θ、かつ、β=-θ、またはα=-θ、かつ、β=+θに設定して高コントラストを得る効果は、強誘電性液晶のような位相板としての機能を発揮する液晶を用いた場合にのみ得られる。つまり、TN液晶は、上述の(2)(3)以外の構成に適用することができる。 In addition, the liquid crystal element 16 may be configured using a TN liquid crystal or may include a color filter. For example, when the plane of the polarizer 12 and / or the plane of the analyzer 17 and the element plane of the liquid crystal element 16 are parallel, the effect of obtaining a high contrast is obtained even when the liquid crystal element 16 is configured using TN liquid crystal. Obtainable. However, as described in (2) and (3) above, the effect of obtaining high contrast by setting α = + θ and β = −θ, or α = −θ, and β = + θ is ferroelectricity It can be obtained only when a liquid crystal that functions as a phase plate such as a liquid crystal is used. That is, the TN liquid crystal can be applied to configurations other than the above (2) and (3).
 なお、本実施形態では、軸非対称な正のパワーを有するホログラム光学素子33を用いたが、他に、自由曲面ミラーや、自由曲面を用いたプリズム、軸非対称なレンズなどを用いて接眼光学系18を構成した場合でも、本実施形態と同様の効果を得ることができる。 In this embodiment, the hologram optical element 33 having an axially asymmetric positive power is used. However, an eyepiece optical system using a free-form surface mirror, a prism using a free-form surface, an axially asymmetric lens, and the like. Even when 18 is configured, the same effect as that of the present embodiment can be obtained.
 なお、本実施形態では、HMDに好適な映像表示装置1について種々説明したが、本実施形態の映像表示装置1は、例えばHUD(ヘッドアップディスプレイ)などの他の装置にも適用することが可能である。 In the present embodiment, the video display device 1 suitable for the HMD has been variously described. However, the video display device 1 of the present embodiment can be applied to other devices such as a HUD (head-up display). It is.
 なお、本実施形態で述べた構成を適宜組み合わせて、映像表示装置1ひいてはHMDを構成することも勿論可能である。 Of course, the video display device 1 and thus the HMD can be configured by appropriately combining the configurations described in this embodiment.
 本発明は、HMDやHUDに利用可能である。 The present invention can be used for HMD and HUD.
 1 映像表示装置
 2 支持手段
 11 光源
 12 偏光子(映像表示素子)
 13 ミラー(照明光学系)
 16 液晶素子(映像表示素子)
 17 検光子(映像表示素子)
 18 接眼光学系
 23 液晶(強誘電性液晶)
 E 光学瞳
DESCRIPTION OF SYMBOLS 1 Video display apparatus 2 Support means 11 Light source 12 Polarizer (video display element)
13 Mirror (illumination optical system)
16 Liquid crystal elements (video display elements)
17 Analyzer (image display element)
18 Eyepiece optical system 23 Liquid crystal (ferroelectric liquid crystal)
E Optical pupil

Claims (14)

  1.  光源からの光を変調して映像を表示する反射型の映像表示素子と、
     前記光源からの光を前記映像表示素子に導く軸非対称な照明光学系と、
     前記映像表示素子からの映像光を光学瞳に導く軸非対称な接眼光学系と、を備えた映像表示装置であって、
     前記映像表示素子は、
     入射光を各画素ごとに変調する液晶素子と、
     前記光源からの光のうちで所定の偏光方向の光を透過させて前記液晶素子に導く偏光子と、
     前記液晶素子から射出される光のうちで所定の偏光方向の光を透過させて前記接眼光学系に導く検光子と、を有しており、
     前記液晶素子の素子面の中心と前記光学瞳の中心とを光学的に結ぶ軸を光軸とすると、
     前記光軸は、前記接眼光学系の軸非対称の対称面内で、前記素子面に対して垂直以外の傾斜角で傾斜しており、
     前記光軸に沿って光路を展開したときに、前記接眼光学系の軸非対称の対称面内で、前記偏光子の面と前記素子面との相対角度、および前記検光子の面と前記素子面との相対角度のうちの少なくとも一方の相対角度が、前記光軸と前記素子面の法線との相対角度未満であることを特徴とする映像表示装置。
    A reflective video display element that modulates the light from the light source and displays the video;
    An axially asymmetric illumination optical system for guiding light from the light source to the image display element;
    An axially asymmetric eyepiece optical system for guiding image light from the image display element to an optical pupil,
    The video display element is:
    A liquid crystal element that modulates incident light for each pixel;
    A polarizer that transmits light in a predetermined polarization direction out of the light from the light source and guides it to the liquid crystal element;
    An analyzer that transmits light in a predetermined polarization direction out of the light emitted from the liquid crystal element and guides the light to the eyepiece optical system,
    When an axis optically connecting the center of the element surface of the liquid crystal element and the center of the optical pupil is an optical axis,
    The optical axis is inclined at an inclination angle other than perpendicular to the element surface within the axially asymmetric symmetry plane of the eyepiece optical system,
    When the optical path is developed along the optical axis, the relative angle between the plane of the polarizer and the element plane, and the plane of the analyzer and the element plane are within the axially asymmetric symmetry plane of the eyepiece optical system. The relative angle between at least one of the relative angles between the optical axis and the normal of the element surface is less than the relative angle between the optical axis and the element surface.
  2.  光源からの光を変調して映像を表示する反射型の映像表示素子と、
     前記光源からの光を前記映像表示素子に導く軸非対称な照明光学系と、
     前記映像表示素子からの映像光を光学瞳に導く軸非対称な接眼光学系と、を備えた映像表示装置であって、
     前記映像表示素子は、
     入射光を各画素ごとに変調する液晶素子と、
     前記光源からの光のうちで所定の偏光方向の光を透過させて前記液晶素子に導く偏光子と、
     前記液晶素子から射出される光のうちで所定の偏光方向の光を透過させて前記接眼光学系に導く検光子と、を有しており、
     前記液晶素子の素子面の中心と前記光学瞳の中心とを光学的に結ぶ軸を光軸とすると、
     前記光軸は、前記接眼光学系の軸非対称の対称面内で、前記素子面に対して垂直以外の傾斜角で傾斜しており、
     前記光軸に沿って光路を展開したときに、前記偏光子の面と前記検光子の面とは平行ではなく、前記偏光子の面と前記液晶素子の素子面との相対角度と、前記検光子の面と前記液晶素子の素子面との相対角度が等しいことを特徴とする映像表示装置。
    A reflective video display element that modulates the light from the light source and displays the video;
    An axially asymmetric illumination optical system for guiding light from the light source to the image display element;
    An axially asymmetric eyepiece optical system for guiding image light from the image display element to an optical pupil,
    The video display element is:
    A liquid crystal element that modulates incident light for each pixel;
    A polarizer that transmits light in a predetermined polarization direction out of the light from the light source and guides it to the liquid crystal element;
    An analyzer that transmits light in a predetermined polarization direction out of the light emitted from the liquid crystal element and guides the light to the eyepiece optical system,
    When an axis optically connecting the center of the element surface of the liquid crystal element and the center of the optical pupil is an optical axis,
    The optical axis is inclined at an inclination angle other than perpendicular to the element surface within the axially asymmetric symmetry plane of the eyepiece optical system,
    When the optical path is developed along the optical axis, the plane of the polarizer and the plane of the analyzer are not parallel, the relative angle between the plane of the polarizer and the element plane of the liquid crystal element, and the detector. An image display apparatus characterized in that a relative angle between a photon plane and an element plane of the liquid crystal element is equal.
  3.  前記検光子は、前記偏光子とクロスニコルとなるように配置されており、
     黒表示において、前記液晶素子は前記偏光子を透過した光の偏光方向を保持し、前記検光子はその偏光方向の光を吸収することを特徴とする請求項1または2に記載の映像表示装置。
    The analyzer is arranged to be in crossed Nicols with the polarizer,
    3. The image display device according to claim 1, wherein in black display, the liquid crystal element maintains a polarization direction of light transmitted through the polarizer, and the analyzer absorbs light in the polarization direction. 4. .
  4.  前記偏光子の透過軸は、前記接眼光学系の軸非対称の対称面に平行または垂直であることを特徴とする請求項3に記載の映像表示装置。 4. The image display device according to claim 3, wherein a transmission axis of the polarizer is parallel or perpendicular to an axially asymmetric symmetry plane of the eyepiece optical system.
  5.  前記光軸に沿って光路を展開したときに、前記偏光子の面および前記検光子の面の少なくとも一方が、前記液晶素子の素子面と略平行であることを特徴とする請求項1または3または4に記載の映像表示装置。 4. When the optical path is developed along the optical axis, at least one of the plane of the polarizer and the plane of the analyzer is substantially parallel to the element plane of the liquid crystal element. Or the video display apparatus of 4.
  6.  前記光軸に沿って光路を展開したときに、前記偏光子の面と前記液晶素子の素子面とがなす角度および前記検光子の面と前記液晶素子の素子面とがなす角度が、いずれも5度以内であることを特徴とする請求項1または3または4に記載の映像表示装置。 When the optical path is developed along the optical axis, the angle formed between the plane of the polarizer and the element surface of the liquid crystal element and the angle formed between the plane of the analyzer and the element surface of the liquid crystal element are both 5. The video display device according to claim 1, wherein the video display device is within 5 degrees.
  7.  前記光軸に沿って光路を展開したときに、前記偏光子の面および前記検光子の面が、両方とも、前記液晶素子の素子面と略平行であることを特徴とする請求項6に記載の映像表示装置。 The surface of the polarizer and the surface of the analyzer are both substantially parallel to the element surface of the liquid crystal element when an optical path is developed along the optical axis. Video display device.
  8.  前記光軸に沿って光路を展開したときに、前記偏光子の面と前記検光子の面とは平行ではなく、前記偏光子の面と前記液晶素子の素子面との相対角度と、前記検光子の面と前記液晶素子の素子面との相対角度とが等しいことを特徴とする請求項1または3または4に記載の映像表示装置。 When the optical path is developed along the optical axis, the plane of the polarizer and the plane of the analyzer are not parallel, the relative angle between the plane of the polarizer and the element plane of the liquid crystal element, and the detector. The video display device according to claim 1, wherein a relative angle between a photon plane and an element plane of the liquid crystal element is equal.
  9.  前記偏光子の面と前記素子面との相対角度、および前記検光子の面と前記素子面との相対角度の両方が、前記光軸と前記素子面の法線との相対角度未満であることを特徴とする請求項1から5のいずれか1項または請求項8に記載の映像表示装置。 Both the relative angle between the surface of the polarizer and the element surface, and the relative angle between the surface of the analyzer and the element surface are less than the relative angle between the optical axis and the normal of the element surface. The video display device according to claim 1, wherein the video display device is a video display device.
  10.  前記液晶素子は、強誘電性液晶を有していることを特徴とする請求項1から9のいずれか1項に記載の映像表示装置。 The video display device according to claim 1, wherein the liquid crystal element includes a ferroelectric liquid crystal.
  11.  前記照明光学系は、前記液晶素子から前記接眼光学系に向かう光路外に配置されており、前記光源からの光を反射させて前記液晶素子に導くことを特徴とする請求項1から10のいずれか1項に記載の映像表示装置。 11. The illumination optical system is disposed outside an optical path from the liquid crystal element toward the eyepiece optical system, and reflects light from the light source to guide the liquid crystal element. 2. The video display device according to claim 1.
  12.  前記光軸と前記素子面の法線との相対角度は、10度以上であることを特徴とする請求項1から11のいずれか1項に記載の映像表示装置。 The video display device according to any one of claims 1 to 11, wherein a relative angle between the optical axis and a normal of the element surface is 10 degrees or more.
  13.  前記映像表示素子は、前記接眼光学系の一端部側に配置されていることを特徴とする請求項1から12のいずれか1項に記載の映像表示装置。 The image display device according to any one of claims 1 to 12, wherein the image display element is arranged on one end side of the eyepiece optical system.
  14.  請求項1から13のいずれか1項に記載の映像表示装置と、
     前記映像表示装置を観察者の眼前で支持する支持手段と、を有していることを特徴とするヘッドマウントディスプレイ。
    A video display device according to any one of claims 1 to 13,
    And a support means for supporting the video display device in front of an observer's eyes.
PCT/JP2009/070031 2008-12-04 2009-11-27 Video display device and head-mounted display WO2010064582A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008309267 2008-12-04
JP2008-309267 2008-12-04

Publications (1)

Publication Number Publication Date
WO2010064582A1 true WO2010064582A1 (en) 2010-06-10

Family

ID=42233233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070031 WO2010064582A1 (en) 2008-12-04 2009-11-27 Video display device and head-mounted display

Country Status (1)

Country Link
WO (1) WO2010064582A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535019A (en) * 2010-05-26 2013-09-09 ジョンソン・コントロールズ・ゲー・エム・ベー・ハー Displays, especially vehicle head-up displays
CN103837988A (en) * 2014-03-05 2014-06-04 杭州科汀光学技术有限公司 Minitype near-to-eye display optical system
JP2015049290A (en) * 2013-08-30 2015-03-16 旭化成イーマテリアルズ株式会社 Optical system
JP2016541017A (en) * 2013-11-22 2016-12-28 カール・ツァイス・スマート・オプティクス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングCarl Zeiss Smart Optics GmbH Imaging optical system and display device having the imaging optical system
JP2018511814A (en) * 2015-09-03 2018-04-26 スリーエム イノベイティブ プロパティズ カンパニー Optical system
CN108363239A (en) * 2017-01-27 2018-08-03 矢崎总业株式会社 Back light unit and head-up display device
US11604360B2 (en) * 2018-08-08 2023-03-14 Panasonic Intellectual Property Management Co., Ltd. Head-up display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166252A (en) * 1999-12-03 2001-06-22 Sony Corp Image display device
JP2001311905A (en) * 2000-04-28 2001-11-09 Canon Inc Device and system for image display
JP2008058461A (en) * 2006-08-30 2008-03-13 Konica Minolta Holdings Inc Image display apparatus and head mount type image display apparatus
JP2008058703A (en) * 2006-08-31 2008-03-13 Canon Inc Image display device
JP2008216852A (en) * 2007-03-07 2008-09-18 Konica Minolta Holdings Inc Video display device and head-mounted display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166252A (en) * 1999-12-03 2001-06-22 Sony Corp Image display device
JP2001311905A (en) * 2000-04-28 2001-11-09 Canon Inc Device and system for image display
JP2008058461A (en) * 2006-08-30 2008-03-13 Konica Minolta Holdings Inc Image display apparatus and head mount type image display apparatus
JP2008058703A (en) * 2006-08-31 2008-03-13 Canon Inc Image display device
JP2008216852A (en) * 2007-03-07 2008-09-18 Konica Minolta Holdings Inc Video display device and head-mounted display

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9541758B2 (en) 2010-05-26 2017-01-10 Bernd Ludewig Display, in particular head-up-display of a vehicle
JP2013535019A (en) * 2010-05-26 2013-09-09 ジョンソン・コントロールズ・ゲー・エム・ベー・ハー Displays, especially vehicle head-up displays
JP2015049290A (en) * 2013-08-30 2015-03-16 旭化成イーマテリアルズ株式会社 Optical system
US10120191B2 (en) 2013-11-22 2018-11-06 tooz technologies GmbH Imaging optical system as well as display device with such an imaging optical system
JP2016541017A (en) * 2013-11-22 2016-12-28 カール・ツァイス・スマート・オプティクス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングCarl Zeiss Smart Optics GmbH Imaging optical system and display device having the imaging optical system
CN103837988A (en) * 2014-03-05 2014-06-04 杭州科汀光学技术有限公司 Minitype near-to-eye display optical system
US10754159B2 (en) 2015-09-03 2020-08-25 3M Innovative Properties Company Optical system
US10678052B2 (en) 2015-09-03 2020-06-09 3M Innovative Properties Company Optical system
US11787137B2 (en) 2015-09-03 2023-10-17 3M Innovative Properties Company Optical system
US10302950B2 (en) 2015-09-03 2019-05-28 3M Innovative Properties Company Head-mounted display
US10330930B2 (en) 2015-09-03 2019-06-25 3M Innovative Properties Company Optical system
US10338380B2 (en) 2015-09-03 2019-07-02 3M Innovative Properties Company Optical stack and optical system
US10444496B2 (en) 2015-09-03 2019-10-15 3M Innovative Properties Company Convex multilayer reflective polarizer
US10663727B2 (en) 2015-09-03 2020-05-26 3M Innovative Properties Company Camera
US10670867B2 (en) 2015-09-03 2020-06-02 3M Innovative Properties Company Optical stack and optical system
US10078164B2 (en) 2015-09-03 2018-09-18 3M Innovative Properties Company Optical system
US10747002B2 (en) 2015-09-03 2020-08-18 3M Innovative Properties Company Optical system
US10747003B2 (en) 2015-09-03 2020-08-18 3M Innovative Properties Company Optical system and head-mounted display
JP2018511814A (en) * 2015-09-03 2018-04-26 スリーエム イノベイティブ プロパティズ カンパニー Optical system
US10838208B2 (en) 2015-09-03 2020-11-17 3M Innovative Properties Company Beam expander with a curved reflective polarizer
US10921594B2 (en) 2015-09-03 2021-02-16 3M Innovative Properties Company Method of making optical films and stacks
US11325330B2 (en) 2015-09-03 2022-05-10 3M Innovative Properties Company Optical system
CN108363239B (en) * 2017-01-27 2021-07-02 矢崎总业株式会社 Backlight unit and head-up display device
CN108363239A (en) * 2017-01-27 2018-08-03 矢崎总业株式会社 Back light unit and head-up display device
US11604360B2 (en) * 2018-08-08 2023-03-14 Panasonic Intellectual Property Management Co., Ltd. Head-up display

Similar Documents

Publication Publication Date Title
JP2010072150A (en) Video display apparatus and head mount display
KR100954403B1 (en) Light guide optical device
JP3994896B2 (en) Video display device
EP1043619B1 (en) Image display apparatus
US8310764B2 (en) Image display device and head mount display
US20160187656A1 (en) Collimating optical device and system
US20070291355A1 (en) Image display apparatus, head-mounted display, and optical axis adjustment method
WO2010064582A1 (en) Video display device and head-mounted display
US20100284070A1 (en) Image display apparatus and head mount display
JP4835327B2 (en) Image display device and head-mounted image display device
JP2010271526A (en) Video display device, head mounted display, and head-up display
JP5286638B2 (en) Video display device and head mounted display
JP4874593B2 (en) Video display device and head mounted display
US11619816B2 (en) Head-mounted display
JPWO2007105371A1 (en) Liquid crystal device and projector provided with the same
JP2010262232A (en) Apparatus for displaying video image and head-mounted display
WO2011001787A1 (en) Video display device, hmd, and hud
JP4529850B2 (en) Video display device
JP2008216852A (en) Video display device and head-mounted display
JP2010243972A (en) Video display device and head-mounted display
JP2009134089A (en) Image display device and head mount display
JP2010072151A (en) Video display apparatus and head mount display
CN216622845U (en) Augmented reality optical system and binocular optical system
JP2006349719A (en) Video display device and head mount display
JP2004012703A (en) Image viewing apparatus and image viewing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP