[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010060235A1 - 提高电站直接空冷系统的冷却能力的方法及冷却系统 - Google Patents

提高电站直接空冷系统的冷却能力的方法及冷却系统 Download PDF

Info

Publication number
WO2010060235A1
WO2010060235A1 PCT/CN2008/001974 CN2008001974W WO2010060235A1 WO 2010060235 A1 WO2010060235 A1 WO 2010060235A1 CN 2008001974 W CN2008001974 W CN 2008001974W WO 2010060235 A1 WO2010060235 A1 WO 2010060235A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
motor
frequency
cooling system
fan
Prior art date
Application number
PCT/CN2008/001974
Other languages
English (en)
French (fr)
Inventor
韩春江
郭鹏
龚宇洋
Original Assignee
中国大唐集团科技工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国大唐集团科技工程有限公司 filed Critical 中国大唐集团科技工程有限公司
Priority to US12/601,511 priority Critical patent/US8320750B2/en
Priority to DE112008002100.7T priority patent/DE112008002100B4/de
Publication of WO2010060235A1 publication Critical patent/WO2010060235A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B11/00Controlling arrangements with features specially adapted for condensers

Definitions

  • the invention belongs to the field of power generation technology, and relates to a direct air cooling system of a power station, in particular to a method for improving the cooling capacity of a direct air cooling system of a power station, and a cooling system for a direct air cooling system of a power station. Background technique
  • the cooling system is an important part of the power production process.
  • the turbine exhaust steam that has been subjected to the work needs to be cooled and condensed in the condenser, and then the cycle is restarted.
  • the cooling system of the power station is divided into two modes: water cooling and air cooling.
  • the main difference between the two is the cooling system.
  • the generator set using the air cooling system is based on ambient air instead of water as the cooling medium for steam exhaust.
  • the air cooling system of the power station includes two categories, one is the indirect air cooling system, and can be divided into the hybrid air cooling system and the surface air cooling system.
  • the indirect air cooling system the cooling water from the steam turbine surface condenser is in the cooling tower. It is cooled.
  • the second is the direct air cooling system (ACC).
  • Direct air cooling is the steam exhaust of the steam turbine directly cooled by air, and the air is exchanged with the steam.
  • the direct air cooling system effectively solves the contradiction between rich coal and water, and represents the development direction of the future air cooling system (see Tawney R, Khan Z, Zachary J. Economic and performance evaluation of heat sink options in combined cycle applications [A], proceeding Of Turbo Expo [C]. ASME/IGTI Turbo Expo, Atlanta, Georgia, UAS, 2003).
  • the operating principle of a power plant using a direct air cooling system is shown in Figure 1.
  • the pump sends water to the boiler, which heats the water to a superheated state by burning fuel (coal, oil, natural gas or gas, etc.), and sends the superheated steam to the steam turbine by pipes.
  • the generator is driven by a steam turbine to generate electricity.
  • the steam pressure and temperature of the work done are reduced to 5Kpa (kiloPascal) ⁇ 50KPa, 30 ⁇ 38 V, and piped to the direct air-cooled radiator.
  • the heat of the steam in the radiator from the bottom up by the cooling fan Take away, cool the steam into water, and the cooled water is collected and sent to the boiler for heating to form a circulation.
  • Datong Second Power Plant (2x600MW (1000 kW) unit) Introduced Germany's single-row tube direct air cooling system
  • Datong Yungang Power Plant (2x200MW unit) introduced Germany's double-row tube direct air cooling system
  • Yushe Power Plant (2x300MW unit) introduced to the United States Three-row tube direct air cooling system.
  • the core part of the direct air cooling system is the fan cooling system.
  • the core equipment of the fan cooling system are: transformer, frequency converter, cable, variable frequency motor, reducer and fan.
  • the transformer, frequency converter and cable provide the required power for the variable frequency motor.
  • the motor drives the reducer.
  • the reducer drives the fan to rotate, pushing the air to flow from the bottom to the top. When the flowing air passes through the radiator, it forms a convective heat transfer. The heat is taken away to achieve the purpose of cooling the steam.
  • Direct air cooling system is still in its infancy in China, and it lacks experience in design and operation. Power plant owners are more concerned about the safety of air-cooled systems than the air-cooled system design optimization (please refer to the “Introduction to Air Cooling System of Power Stations” issued by China Industrial Control Network on January 10, 2008).
  • the independent design and independent set of air cooling system for large power stations has become one of the important tasks for the localization of major technical equipment in China.
  • the operating parameters of the existing fan cooling system of the direct air cooling system of the power station when the maximum output capacity is reached are:
  • Another object of the present invention is to provide a cooling system for a direct air cooling system of a power plant.
  • the motor working at 380-390V voltage and 40-47HZ frequency drives the fan to rotate according to the set speed ratio through the reducer;
  • the rotating fan feeds the cooling air towards the radiator.
  • the invention provides an output reactor between the frequency converter and the motor to suppress interference of the harmonics on the motor.
  • the invention also provides an input reactor between the transformer and the frequency converter to suppress harmonic interference to the power grid.
  • the speed ratio of the reducer is the speed of the motor at 40-47HZ / 1 10-130% rated fan speed.
  • the input reactor voltage drop ranges from 1% to 5%; the output reactor inductance value is between 30-50 ⁇ .
  • the transformer is connected to the 10KV or 6KV voltage of the power grid and converted into a voltage of 400V; the input reactor is connected Into the above 400V voltage, output 395-398V voltage to the inverter; The inverter runs at 40-47HZ frequency, output 395-398V voltage to the output reactor; The output reactor connected to the above 395-398V voltage outputs 385-395V through the cable Voltage; The motor operates at 380-390V and 40-47HZ.
  • the long-term working withstand voltage of each equipment of the cooling system is: Transformer: 420V; Inverter: 480V; Motor: 400V.
  • the cooling system of the present invention comprises a transformer electrically connected by a cable, a frequency converter, a motor, a speed reducer and a fan, wherein the transformer is connected to the grid voltage, a voltage is output to the motor through the frequency converter, and the frequency converter outputs a frequency to the motor, the motor input
  • the terminal voltage is 380-390V
  • the access frequency is 40-47HZ.
  • the above system also includes an output reactor disposed between the frequency converter and the motor.
  • the speed ratio of the reducer is the speed of the motor at 40-47HZ / 1 10-130% of the rated speed of the fan.
  • the input reactor voltage drop ranges from 1% to 5%; the output reactor inductance value is between 30-50 ⁇ .
  • the transformer is a dry transformer.
  • the cooling capacity of the system is directly related to the wind speed.
  • the graph shows the relationship between the wind speed of the radiator and the heat transfer coefficient ⁇ and the radiator pressure drop. It can be seen from the figure that ⁇ is the wind speed. Increase and increase, that is, the greater the wind speed, the better the heat transfer performance.
  • Increasing the fan speed can theoretically be achieved by increasing the motor speed, ie increasing the motor speed by increasing the motor speed infinitely through the frequency converter.
  • the motor is a turning point of the characteristic at 50 ,. Below this value, it is a constant torque output. Above this value, it is a constant power output. Therefore, it is not feasible to change the motor speed to increase the fan speed by more than 50 ⁇ .
  • the first is how to ensure that the motor can output the maximum capacity
  • the second is how to efficiently transfer the torque output from the motor to the fan.
  • the motor is not designed to achieve the rated voltage of 380KV at 55HZ.
  • the motor is operated at approximately 40-47 Hz (for statistical data)
  • the voltage obtained is the largest, but only 90 to 95% of the rated voltage.
  • it is not only the operating voltage of the motor that changes, but also the operating point of the motor has changed from 55HZ to 40-47HZ (for statistical data). Therefore, in order to make the motor output capability work well, it is necessary to re-determine the operating point of the motor according to the actual situation and provide guarantee for the normal working voltage of the motor. ⁇
  • Figure 6 shows the output voltage curve of the inverter. It can be proved by comparison between Figure 5 and Figure 6 that the voltage drop mainly occurs in the reactor and cable.
  • the present invention considers the above factors to increase the output voltage of the transformer from the existing 380V to 400V, so that even if there is a voltage drop factor, the input voltage of the motor can reach 380-390V.
  • the output frequency of the frequency converter is from the original 55HZ Reduce to 40-47HZ, so that the electrode works within the range that can reach the maximum output torque and operating voltage.
  • the next step is to effectively transfer the output capacity of the motor to the fan. Because the speed reducer is set in the system to amplify the output torque of the system, the speed ratio of the reducer directly affects the performance of the fan.
  • the wind speed of the fan is determined by the amount of air blown by the fan. In order to increase the fan speed, the fan volume must be increased.
  • ⁇ * ⁇ 2 , where ⁇ ⁇ : motor speed; ⁇ 2: fan speed; ⁇ : speed ratio.
  • the reducer plays a role of torque amplification in the system, and the amplification factor is the speed ratio of the reducer.
  • the speed ratio of the reducer is theoretically the speed at the maximum output capacity of the motor/the maximum air volume of the fan.
  • the actual speed ratio selected by the existing system is the rated motor speed / 110
  • the rated speed of the fan is the ratio of the speed of the motor operating at 55 Hz to the rated speed of the 110% fan.
  • the selection of the fan at 110% of the rated speed does not take into account the fan margin. Taking into account the natural wind After the impact, in order to enhance the cooling wind can resist the influence of cross-cut wind, the speed ratio should be reduced.
  • the present invention takes into account the influence of the fan margin and the ambient wind.
  • the selected speed ratio is the speed at which the motor operates at 40-47 Hz / 1 10% - 130% of the fan rated speed, and the specific value depends on the size of the ambient wind.
  • the cooling system of the present invention and the prior art can be compared by the operating parameters and effects achieved in Table 2.
  • FIG. 3 Schematic diagram of the relationship between the wind speed and heat transfer coefficient K of the radiator and the pressure drop of the radiator
  • Figure 4 Schematic diagram of motor output torque versus frequency
  • FIG. 5 Schematic diagram of motor voltage and frequency
  • FIG. 6 Schematic diagram of inverter voltage and frequency detailed description
  • the invention is used for retrofitting a cooling system of a direct air cooling system in which the output of the high temperature in summer is not up to the design requirement, and is also suitable for the design of a new direct air cooling power station.
  • the main factor affecting the direct air cooling heat transfer effect is the oncoming wind speed of the fan blowing toward the radiator.
  • the oncoming wind speed is a key parameter for the calculation of the system area. The theory shows that for a 300 MW unit, the oncoming wind speed is increased by 0.1 m / s, which can reduce the heat exchange area by about 10,000 square meters.
  • the cooling system of the direct air cooling system of the present invention is shown in Fig. 2, and includes the following equipment, a transformer, a frequency converter, a motor, a speed reducer and a fan.
  • the electric resistance shown in the figure is for suppressing interference of the harmonics on the motor and the power grid.
  • the setting can be omitted or replaced with a filter.
  • the power supply is reduced from high voltage (10KV or 6KV) to 400V via the transformer.
  • the frequency converter supplies the frequency converter to the motor through the inverter, and then the motor drives the speed reducer.
  • the speed reducer drives the fan to rotate to provide cooling air to the system.
  • the transformer is usually dry type, the high voltage terminal voltage is usually designed to be 10KV or 6KV, and the low voltage terminal is 400V. (The specific value of the low voltage end has made the working voltage of the motor reach 380-390V, 400V is considering the statistical system voltage drop. The value chosen).
  • the transformer output voltage needs to be adjusted to 400V, which is done by adjusting the wiring switch on the high voltage side.
  • the adjustment process for the transformer of the existing system is as follows:
  • On-load tap changer change the number of turns of the coil by automatic controller or electric or manual operation.
  • the shaft power of the motor the efficiency of the reducer, the motor efficiency, the motor temperature derating factor, the long cable derating factor, the output reactor derating factor, the harmonic derating factor, the frequency conversion
  • the temperature derating factor is converted to the input side of the inverter to calculate the inverter capacity.
  • the inverter outputs 40-47HZ frequency to the motor.
  • the input reactor generally selects a reactor with a voltage drop range of 1-5%, so that the degree of interference of the harmonic suppression on the grid is kept within the national standard.
  • the output reactor uses a reactor with an inductance value between 30 and 50 ⁇ , which effectively suppresses harmonic interference to the motor.
  • the motor operates at 380-390V and the operating frequency is 40-47 ⁇ . Therefore, the speed ratio of the reducer should be set to the speed of the motor at 40-47 / /1 10% rated fan speed.
  • the flow margin of the fan should not be lower than 30%, and the speed ratio of the reducer should be set to The speed of the motor at 40-47HZ / 1 10-130% rated fan speed, the specific value is set according to the size of the ambient wind.
  • the long-term working withstand voltage of each device of the cooling system can be respectively set as follows: Transformer: 420V; Inverter: 480V; Motor: 400V.
  • An actual operation example of the cooling system of the present invention is: 6KV voltage of the transformer connected to the power grid, converted into 400V voltage; the input reactor is connected to the above 400V voltage, and outputs 395V voltage to the frequency converter; the frequency converter operates at 42HZ frequency, Output 395V voltage to the output reactor; the output reactor connected to the above 395V voltage outputs 380V through the cable; the motor runs at 380V and 42Hz frequency.
  • the ambient wind speed is about 2 m / s.
  • the reducer drives the fan according to the speed of the motor at 42 Hz / 1 15% of the rated speed of the fan. The wind blows toward the radiator. At this time, the wind speed is increased by 8%.
  • Another practical operating system transformer of the present invention is connected to the 6KV voltage of the power grid and converted into 400V voltage; the input reactor is connected to the above 400V voltage, and outputs 396V voltage to the frequency converter; the frequency converter operates at 40Hz frequency and outputs 396V voltage.
  • the output reactor is connected; the output reactor connected to the above 396V voltage outputs 382V through the cable; the motor operates at 382V and 40Hz frequency.
  • the ambient wind speed is about 1 m / s.
  • the reducer drives the fan according to the speed of the motor at 40 Hz / 1 10% of the rated speed of the fan, and blows the face to the radiator. At this time, the wind speed is increased by 12%.
  • Another practical operating system transformer of the present invention is connected to the 10KV voltage of the power grid and converted into 400V voltage; the input reactor is connected to the above 400V voltage, and outputs 398V voltage to the frequency converter; the frequency converter operates at 47HZ frequency, and outputs 398V voltage.
  • the output reactor is connected; the output reactor connected to the above 398V voltage outputs 390V through the cable; the motor operates at 390V and 40Hz frequency.
  • the ambient wind speed is about 6 m / s.
  • the reducer drives the fan according to the speed of the motor at 47 Hz / the rated speed of the fan at 130%, and blows the face to the radiator. At this time, the wind speed is increased by 14%.
  • the system of the present invention will have a 30% power generation loss under the premise of having a rated load in a 300 MW direct air cooling unit at a high temperature in summer, and the power loss of 90 MW/H can be avoided by the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Description

提高电站直接空冷系统的冷却能力的方法及冷却系统 技术领域
本发明属于发电技术领域, 涉及电站直接空冷系统, 尤其涉及一种提高电站直接空 冷系统的冷却能力的方法, 以及一种电站直接空冷系统的冷却系统。 背景技术
冷却系统是电力生产过程中的一个重要环节, 做过功的汽轮机乏汽需要在凝汽器中 冷却凝结, 然后重新开始循环。
电站的冷却系统分为水冷和空冷两种方式, 两者的主要区别在于冷却系统, 釆用空 冷系统的发电机组是以环境空气而不是以水作为汽轮机排汽的冷却介质。
电站空冷系统包括两大类, 一是间接空冷系统, 又可以分为混合式空气冷却系统和 表面式空气冷却系统; 在间接空冷系统中, 从汽轮机表面式凝汽器来的冷却水在冷却塔 中得到冷却。 二是直接空冷系统(ACC ), 直接空冷是汽轮机的排汽直接用空气来冷却, 空气与蒸气间进行热交换。
直接空冷系统有效地解决了富煤贫水的矛盾, 代表了未来空冷系统的发展方向 (参 见 Tawney R, Khan Z, Zachary J. Economic and performance evaluation of heat sink options in combined cycle applications [A], proceeding of Turbo Expo [C]. ASME/IGTI Turbo Expo, Atlanta, Georgia, UAS, 2003 )。
世界上第一台 1500KW直接空冷机组于 1938年在德国一个坑口电站投运。 目前, 直接空冷技术德国和美国居于领先地位, 现有的直接空冷系统包括德国的单排管、 双排 管系统, 美国的单排管、 三排管系统。
采用直接空冷系统的电站运行原理如图 1所示,泵将水送至锅炉,通过燃烧燃料 (煤、 油、 天燃气或煤气等)将水加热到过热状态, 用管道将过热蒸汽送至汽轮机, 由汽轮机 带动发电机发电。 做完功的蒸汽压力和温度降低到 5Kpa (千帕斯卡) 〜50KPa、 30〜38 V , 由管道输送到直接空冷散热器内, 在散热器内由冷却风机由下向上流动的空气将蒸 汽的热量带走, 将蒸汽冷却成水, 冷却后的水经收集后再由泵被送至锅炉加热, 形成循 环。
我国近年来也从国外引进了该技术, 应用于发电行业。 比如大同第二发电厂 ( 2x600MW ( 1000 千瓦) 机组) 引进德国的单排管直接空冷系统, 大同云冈发电厂 ( 2x200MW机组)引进德国的双排管直接空冷系统系统, 和榆社发电厂(2x300MW机 组) 引进的美国三排管直接空冷系统。
目前,在国内已经运行的直接空冷发电机组己经超过百台,而且,都是大型机组(单 机 300MW 以上)。 直接空冷发电机组的装机容量与间接空冷发电机组的装机容量之比 已超过 9: 1。
直接空冷系统中的核心部分在于风机冷却系统, 如图 2所示, 风机冷却系统的核心 设备有: 变压器、 变频器、 电缆、 变频电机、 减速机和风机。 变压器、 变频器、 电缆为 变频电机提供了需要的电源, 再由电机驱动减速机, 减速机带动风机旋转, 推动空气由 下向上流动, 流动的空气经过散热器时, 形成对流换热, 将蒸汽的热量带走, 实现蒸汽 被冷却的目的。
直接空冷系统在国内尚处于起步阶段, 在设计和运行上均缺乏经验。 电厂业主更关 注的是空冷系统的安全性, 而非空冷系统设计优化的经济性 (请参见中国工控网 2008 年 1 1月 10日发布的《电站空冷系统简介》)。 大型电站空冷系统自主设计和自主成套己 成为我国重大技术装备国产化的重要工作之一。
在温度最高的夏季, 为保证机组的正常运行, 使散热系统中的凝汽器压力维持在正 常的水平,就需要提高环境空气和汽轮机排汽之间的传热能力。提高散热器的散热能力, 最有效的方法就是提高冷却空气的流速, 即提高空冷散热器的迎面风速, 这就需要提高 风机的转速 (请参见 "直接空冷机组空冷系统运行问题分析及对策", 杨立军, 杜小泽, 杨勇平, 刘登瀛, 郭跃年, 《现代电力》 第 23卷第 2期, 2006年 4月)。
如图 2所示, 现有的电站直接空冷系统的风机冷却系统在达到最大输出能力时的运 行参数为:
变压器接入电压 (a) : 6 V (千伏) 或 10KV , 输出电压为 380V (伏);
变频器输出频率 (d ): 55 HZ (赫兹);
电机工作频率频率 (f) : 55HZ;
减速机速比 (g): 55HZ时电机的转速 /1 10%风机额定转速。
但普遍存在的现象是夏季高温时, 直接空冷系统出力和效率远达不到设计要求, 严 重影响了电厂经济效益。 表 1 : 国内几个电厂所发生的发电损失数据
Figure imgf000005_0001
注: 表中 "年"按照夏季最热三个月、 每天按照三个小时计算。 发明内容
本发明的目的在于提供一种提高电站直接空冷系统的冷却能力的方法。
本发明的另一目的在于提供一种电站直接空冷系统的冷却系统。
本发明的方法, 其步骤包括:
1 . 由冷却系统中的变压器接入电网电压, 向电机输出电压, 使其工作电压达到 380-390V;
2. 由冷却系统中的变频器向电机输出 40-47HZ频率;
3.工作在 380-390V电压和 40-47HZ频率下的电机通过减速机按照设定的速比带动 风机转动;
4. 转动的风机迎面向散热器输送冷却风。
本发明在变频器与电机之间设置输出电抗器, 抑制谐波对电机的干扰。
本发明还在变压器和变频器之间设置输入电抗器, 抑制谐波对电网的干扰。
减速机的速比为电机在 40-47HZ频率下的转速 /1 10-130%风机额定转速。
所述输入电抗器压降范围在 1%-5%之间; 所述输出电抗器电感值在 30-50μΗ之间。 所述变压器接入电网的 10KV或 6KV电压, 转换成 400V电压; 所述输入电抗器接 入上述 400V电压, 输出 395-398V电压给变频器; 变频器运行于 40-47HZ频率, 输出 395-398V 电压给输出电抗器; 接入上述 395-398V 电压的输出电抗器通过电缆输出 385-395V电压; 电机运行于 380-390V电压和 40-47HZ频率。
冷却系统各设备的长期工作耐压分别为: 变压器: 420V; 变频器: 480V ; 电机: 400 V。
本发明的冷却系统, 包括通过电缆电连接的变压器, 变频器、 电机、减速器和风机, 其中变压器接入电网电压, 通过变频器向电机输出电压, 变频器向电机输出频率, 所述 电机输入端电压 380-390V , 接入的频率为 40-47HZ。
上述系统还包括设置于变频器和电机之间的输出电抗器。
还包括设置于变压器与变频器之间的输入电抗器。
所述减速机的速比为电机在 40-47HZ频率下的转速 /1 10-130%风机额定转速。
所述输入电抗器压降范围在 1%-5%之间; 所述输出电抗器电感值在 30-50μΗ之间。 所述变压器为干式变压器。
如图 3所示, 系统的冷却能力直接与风速有关, 图中表示的是散热器风速与换热系 数 Κ和散热器压力降的关系曲线, 从图中可以看出, Κ是随着风速的增加而增加的, 也 就是说, 风速越大, 换热性能越好。
提高风机转速理论上可以通过提高电机转速来实现, 即通过变频器无限地提高电机 转速来提高风机转速。 但受电机特性的限制, 电机在 50ΗΖ是特性的转折点, 在该值以 下是恒力矩输出, 在该值以上就是恒功率输出了。 因此, 用改变电机转速来提高风机转 速的办法在 50ΗΖ以上就不可行了。
由于电机存在制造误差、 设计误差等因素, 上述理论数据与实际电机特性还有一定 的距离。 如图 4所示为实际电机在实际负载情况下的性能曲线, 可以看出, 实际工作的 电机在 47ΗΖ左右时就已经达到性能转变的临界点了。 从该曲线可知, 在 47ΗΖ以下, 随着电机转速的提高, 可以实现输出功率的增加, 在 47ΗΖ以上, 不论如何增加电机转 速, 都不会增加输出力矩了。
在上述前提下为提高风速, 一是如何保证电机能够将能力最大输出; 二是如何将电 机输出的扭矩高效地传递给风机。
电机的输出扭矩为: ΤΝ=9550*ΡΝΝ ; 其中 ΤΝ : 扭矩; ΡΝ : 电机功率; ηΝ : 电机转 速; ΡΝ =31^ *1^05 9 = (ηΝ* ΤΝ)/9550, 其中 Ul : 电机输入电压; 1| : 电机输入电流; Θ: 相位角。 由上述可见, 当电机输入电压一定时, 改变输入电流将改变电机输出功率 (同时也 改变了输出扭矩)。 同样, 当电机输入电流一定时, 改变输入电压也将改变电机输出功 率 (同时也改变了输出扭矩)。 但是, 在实际应用中, 电压的改变直接影响到电流的变 化。
因此, 在实际工程中, 如果能够保证电机输入电压, 就基本上为电机输出能力提供 了保障。
现有的电站直接空冷系统的风机冷却系统在达到最大输出能力时的运行参数为: 变 压器接入电压 (a): 6KV或 10KV, 输出电压为 380V; 变频器输出频率 (d ): 55 HZ; 电机工作频率频率 (f): 55HZ。
从图 5可以看出, 通过实际工作的电机工作参数的测量和实验室试验数据分析, 电 机是没有在 55HZ时达到设计的额定电压 380KV的。 当电动机在大约 40-47HZ (为统计 数据) 工作时, 获得的电压最大, 但是, 仅仅为额定电压的 90〜95%。 而且, 发生改变 的不仅仅是电动机的工作电压,电动机的工作点也发生了改变,从 55HZ变到了 40-47HZ (为统计数据)左右。 因此, 为使电动机输出能力获得很好的发挥, 必须根据实际情况 重新确定电动机的工作点, 并为电动机正常工作电压提供保证。 ·
通过实际测量, 系统中的电压降低主要发生在电抗器、 电缆两个地方。 图 6为变频 器输出电压曲线, 通过图 5与图 6的比较可以证明, 电压降主要发生在电抗器和电缆两 个地方。
因为压降原因, 各部件设备实际的工作参数为:
变压器接入电压 (a): 6KV或 10KV
输入电抗器输入端电压 (b): 380V;
变频器输入端电压 ( c ): 370-375 V;
变频器输出端电压及频率 (d ): 370-375V , 55 HZ;
输出电抗器输入端电压及频率 (e ): 370-375 V、 55 HZ;
电机输入端电压及频率 (f): 360-365 V、 55HZ。
另一方面, 电机的输出扭矩与电源频率的关系如图 4所示, 当电源在 55HZ时, 电 机将损失 20%以上的输出扭矩, 严重影响了整个系统的出力。
本发明考虑上述因素, 提高变压器的输出电压, 将其由现有的 380V提高到 400V, 这样, 即便有压降因素的存在, 电机的输入端电压仍可达到 380-390V。
本发明还根据电机输出扭矩与电源频率的关系,将变频器的输出频率由原来的 55HZ 降低到 40-47HZ, 使电极工作在能达到最大输出扭矩和工作电压的范围内。
有了可靠的电机输出能力做保证, 下一步目标就是将电机的输出能力有效地传递给 风机。 因为为将系统的输出力矩放大, 在系统中设置了减速机, 减速机的速比选取直接 影响了风机能力的发挥。
风机风速的大小, 是由风机的鼓风量来决定的。 为了提高风机风速, 必须提高风机 的风量。
风机的风量为: Q=K*n, 其中 Q: 风量; K: 比例常数; n: 风机转速。
风机的轴功率为: P=D*n3=(nN*TN)/9550, 其中 P: 风机轴功率; D: 比例常数。 从上面两个计算公式可以看出, 在其它条件不变的前提下, 改变风机的转速可以提 高风机的流量, 但是, 风机需要的轴功率也需要提高。
此时, 风机与电机的功率匹配关系为:
P= PN* n¾sl* η^, 其中 电机效率; η«机: 减速机效率。
电机转速与风机的转速关系应该满足的关系为: η|=λ*η2, 其中 ηι: 电机转速; η2: 风机转速; λ: 减速机速比。
由于系统在能量传递过程中是遵照能量守恒的原理进行的, 因此, 无论电机和风机 之间存在什么, 电机的输出功率和风机输入轴功率之间在忽略传递效率后都存在如下关 系-
ΡΝ: =Ρ, 其中 ΡΝ: 电机输出功率。
在上述基础上, 就有: (n T ^SSi^ ^TVQSSO, 其中 Tl: 电机输出能力点力矩; η,: 电机转速; Τ: 风机输入力矩。
由此得: 入 /n TVT n^K/Q 。
从上述可以看出, 减速机在系统中起到了力矩放大的作用, 放大系数就是减速机的 速比。
考虑到希望风机工作在预定设计的理想状态下, 减速机的速比理论上为电机最大输 出能力时的转速 /风机最大风量时的转速, 现有系统选用的实际速比为电机额定转速 /110%风机额定转速, 也就是电机工作在 55HZ时的转速与 110%风机额定转速之比。
如图 4所示, 当电源在 55HZ时, 电机将损失 20%以上的输出扭矩, 严重影响了整 个系统的出力。导致现有系统采用的减速机的速比严重降低了电机输出能力传递给风机 的效率, 电机产生空转现象, 而无法有效带动风机。
另一方面, 选取风机在 110%额定转速没有考虑到风机的裕量。 在考虑到自然风的 影响后, 为增强冷却风能够抵抗横切风的影响, 速比还应再降低一些。
因此, 本发明考虑到风机裕量和环境风的影响, 选用的速比为电机工作在 40-47HZ 时的转速 /1 10%-130%风机额定转速, 具体数值因环境风的大小而定。 本发明与现有技术的冷却系统可以通过表 2所示的运行参数和所达到的效果来进行 对比。
表 2 本发明与现有技术在达到最大输出能力时的对比一览表
Figure imgf000009_0001
附图说明
图 1 直接空冷系统结构图
图 2 直接空冷系统冷却系统构成图
图 3 散热器风速与换热系数 K和散热器压力降的关系示意图
图 4 电机输出扭矩与频率关系示意图
图 5 电机电压与频率关系示意图
图 6 变频器电压与频率关系示意图 具体实施方式
本发明用于改造夏季高温时出力达不到设计要求的直接空冷系统的冷却系统, 也适 合新建直接空冷电站的设计。
影响直接空冷换热效果的主要因素为风机吹向散热器的迎面风速。迎面风速是系统 面积计算的一个关键参数, 理论表明, 一台 300MW机组, 迎面风速提高 0.1米 /秒,可以 将换热面积减少大约一万平方米。
本发明的直接空冷系统的冷却系统如图 2所示,包含了下列设备,变压器,变频器, 电机,减速机和风机,图中所示的抗电器是为了抑制谐波对电机和电网的干扰而设置的, 可以不设, 也可以替换为滤波器。
如图 2所示, 电源从高电压 (10KV或 6KV ) 经由变压器降至 400V, 经由变频器 实现调频供电到电机,再由电机驱动减速机,减速机带动风机旋转为系统提供冷却空气。
变压器通常选用干式, 高压端电压通常设计为 10KV或 6KV, 低压端为 400V (低 压端的具体数值已使电机的工作电压达到 380-390V为准, 400V是考虑到经统计后的系 统压降而选用的数值)。
对于现有系统, 需要将变压器输出电压调整到 400V, 这通过调整高压端的接线开 关来完成。
对于现有系统的变压器的调整过程如下:
1 . 变压器投入运行前, 根据变压器铭牌和分接指示牌将分接片调整到合适位置。
2. 无激磁调压的变压器, 在完全脱离电网 (高、 低压侧均断幵) 的情况下, 用户 根据当时电网电压的高低按分接位置进行三相同时调节。
3. 有载调压变压器, 通过自动控制器或电动、 手动操作来改变线圈匝数。
对于变频器, 根据现有的标准, 通过电机的轴功率, 对减速机效率、 电机效率、 电 机温度降容系数、 长电缆降容系数、 输出电抗器降容系数、 谐波降容系数、 变频器温度 降容系数折算到变频器输入侧计算出变频器容量。 变频器向电机输出 40-47HZ频率。
输入电抗器一般选择压降范围为 1-5%的电抗器, 使抑制谐波对电网的干扰程度保 持在国家标准范围内。
输出电抗器选用电感值在 30-50μΗ之间的电抗器, 有效抑制谐波对电机的干扰。 在达到最大输出能力时, 电机的工作电压在 380-390V , 工作频率在 40-47ΗΖ。 因此, 减速机的速比应设为电机在 40-47ΗΖ时的转速 /1 10%风机额定转速。
考虑到环境中横切风的影响, 风机的流量裕量不应低于 30%, 减速机的速比应设为 电机在 40-47HZ时的转速 /1 10-130%风机额定转速,具体数值根据环境风的大小来设定。 为保证本发明系统的安全稳定运行, 冷却系统各设备的长期工作耐压可以分别设置 为: 变压器: 420V; 变频器: 480V; 电机: 400V。
本发明的冷却系统的一个实际运行实例为: 变压器接入电网的 6KV 电压, 转换成 400V电压; 所述输入电抗器接入上述 400V电压, 输出 395V电压给变频器; 变频器运 行于 42HZ频率,输出 395V电压给输出电抗器;接入上述 395V电压的输出电抗器通过 电缆输出 380V电压; 电机运行于 380V电压和 42HZ频率。 环境风速在 2米 /秒左右, 减速机按照电机在 42HZ时的转速 /1 15%风机额定转速的速比带动风机, 迎面吹向散热 器, 此时, 风速提高 8%。
本发明的另一实际运行的系统变压器接入电网的 6KV电压, 转换成 400V电压; 所 述输入电抗器接入上述 400V电压,输出 396V电压给变频器;变频器运行于 40HZ频率, 输出 396V电压给输出电抗器;接入上述 396V电压的输出电抗器通过电缆输出 382V电 压; 电机运行于 382V电压和 40HZ频率。 环境风速在 1米 /秒左右, 减速机按照电机在 40HZ时的转速 /1 10%风机额定转速的速比带动风机, 迎面吹向散热器, 此时, 风速提高 12%。
本发明的另一实际运行的系统变压器接入电网的 10KV电压, 转换成 400V电压; 所述输入电抗器接入上述 400V 电压, 输出 398V 电压给变频器; 变频器运行于 47HZ 频率, 输出 398V电压给输出电抗器; 接入上述 398V电压的输出电抗器通过电缆输出 390V电压; 电机运行于 390V电压和 40HZ频率。 环境风速在 6米 /秒左右, 减速机按 照电机在 47HZ时的转速 /130%风机额定转速的速比带动风机, 迎面吹向散热器, 此时, 风速提高 14%。
本发明的系统在一台 300MW直接空冷机组夏季高气温时, 在有额定负荷的前提下 将有 30%发电量量损失, 用上述方法能避免电量损失 90MW/H。

Claims

权利要求书
1 . 一种提高电站直接空冷系统的冷却能力的方法, 其步骤包括:
1 ) 由冷却系统中的变压器接入电网电压, 向电机输出电压, 使其工作电压达到 380-390V;
2 ) 由冷却系统中的变频器向电机输出 40-47HZ频率;
3 )工作在 380-390V电压和 40-47HZ频率下的电机通过减速机按照设定的速比带动 风机转动;
4 ) 转动的风机迎面向散热器输送冷却风。
2. 如权利要求 1 所述的方法, 其特征在于在所述变频器与所述电机之间设置输出电抗 器, 抑制谐波对电机的干扰。
3. 如权利要求 2所述的方法, 其特征在于所述输出电抗器电感值在 30-50μΗ之间。
4. 如权利要求 2所述的方法, 其特征在于在所述变压器和所述变频器之间设置输入电 抗器, 抑制谐波对电网的干扰。
5. 如权利要求 4所述的方法, 其特征在于所述输入电抗器压降范围在 1%-5%之间。
6.如权利要求 1所述的方法,其特征在于所述减速机的所述速比为所述电机在 40-47ΗΖ 频率下的转速 /1 10-130%所述风机额定转速。
7. 如权利要求 4所述的方法, 其特征在于所述变压器接入电网的 10KV或 6KV电压, 转换成 400V电压; 所述输入电抗器接入上述 400V电压, 输出 395-398V电压给变 频器; 变频器运行于 40-47ΗΖ频率, 输出 395-398V 电压给输出电抗器; 接入上述 395-398V电压的输出电抗器通过电缆输出 385-395V电压; 电机运行于 380-390V电 压和 40-47ΗΖ频率。
8. 如权利要求 1 -7任一所述的方法, 其特征在于所述变压器工作耐压为 420V; 所述变 频器工作耐压为 480V; 所述电机工作耐压为 400V。
9. 一种电站直接空冷系统的冷却系统, 包括通过电缆电连接的变压器, 变频器、 电机、 减速器和风机, 其中变压器接入电网电压, 通过变频器向电机输出电压, 变频器向 电机输出频率, 其特征在于所述电机输入端电压为 380-390V, 接入变频器的频率为 40-47HZ。
10. 如权利要求 9所述的系统, 其特征在于还包括设置于所述变频器和所述电机之间的 输出电抗器。
1 1 . 如权利要求 10所述的系统, 其特征在于所述输出电抗器电感值在 30-50μΗ之间。
12. 如权利要求 10所述的系统, 其特征在于还包括设置于所述变压器与所述变频器之 间的输入电抗器。
13. 如权利要求 12所述的系统, 其特征在于所述输入电抗器压降范围在 1%-5%之间。
14. 如权利要求 9所述的系统, 其特征在于所述减速机的速比为电机在 40-47ΗΖ频率下 的转速 / 1 10- 130%风机额定转速。
15. 如权利要求 9-14任一所述的系统, 其特征在于所述变压器工作耐压为 420V; 所述 变频器工作耐压为 480V ; 所述电机工作耐压为 400V。
16. 如权利要求 15所述的系统, 其特征在于所述变压器为干式变压器。
I I
PCT/CN2008/001974 2008-11-28 2008-12-05 提高电站直接空冷系统的冷却能力的方法及冷却系统 WO2010060235A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/601,511 US8320750B2 (en) 2008-11-28 2008-12-05 Method for improving cooling capacity of a power station direct air-cooling system and the cooling system thereof
DE112008002100.7T DE112008002100B4 (de) 2008-11-28 2008-12-05 Verfahren zum Verbessern der Kühlleistung eines Direktluftkühlungssystems für ein Kraftwerk und des Kühlungssystems desselben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810227678.8A CN101430168B (zh) 2008-11-28 2008-11-28 提高电站直接空冷系统的冷却能力的方法及冷却系统
CN200810227678.8 2008-11-28

Publications (1)

Publication Number Publication Date
WO2010060235A1 true WO2010060235A1 (zh) 2010-06-03

Family

ID=40645704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001974 WO2010060235A1 (zh) 2008-11-28 2008-12-05 提高电站直接空冷系统的冷却能力的方法及冷却系统

Country Status (4)

Country Link
US (1) US8320750B2 (zh)
CN (1) CN101430168B (zh)
DE (1) DE112008002100B4 (zh)
WO (1) WO2010060235A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITVR20120155A1 (it) * 2012-07-24 2014-01-25 Motive S R L Motore elettrico con inverter a bordo
CN104456763A (zh) 2014-10-31 2015-03-25 华为技术有限公司 空调室外机风机驱动器的散热结构及空调室外机
US10132568B2 (en) 2015-08-20 2018-11-20 Holtec International Dry cooling system for powerplants
US10161683B2 (en) 2015-08-20 2018-12-25 Holtec International Dry cooling system for powerplants
CN109990616A (zh) * 2019-03-06 2019-07-09 梁新强 一种汽轮发电机组凝汽器水冷变为空冷的系统装置及方法
CN114357023B (zh) * 2021-12-24 2022-12-23 朗坤智慧科技股份有限公司 一种基于数据驱动的直接空冷机组运行优化方法及系统
CN114876841B (zh) * 2022-04-21 2024-04-30 西安热工研究院有限公司 一种空冷风机运行频率控制方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB464531A (en) * 1936-03-23 1937-04-20 Otto Happel Improvements in and relating to air cooled surface condensers
JPS61121799A (ja) * 1984-11-16 1986-06-09 Matsushita Seiko Co Ltd Pwmインバ−タ装置付き天井扇
JPH11132675A (ja) * 1997-10-24 1999-05-21 Nippon Steel Corp 復水器の制御方法
CN101430167A (zh) * 2008-11-28 2009-05-13 中国大唐集团科技工程有限公司 提高直接空冷系统电机输出传递效率的方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4506508A (en) * 1983-03-25 1985-03-26 Chicago Bridge & Iron Company Apparatus and method for condensing steam
JPS6186069A (ja) * 1984-10-02 1986-05-01 Tamura Seisakusho Co Ltd 自動はんだ付けシステムの制御装置
US4742441A (en) * 1986-11-21 1988-05-03 Heart Interface Corporation High frequency switching power converter
US4926931A (en) * 1988-11-14 1990-05-22 Larinoff Michael W Freeze protected, air-cooled vacuum steam condensers
US4949543A (en) * 1989-09-12 1990-08-21 Modine Manufacturing Company Tube and fin assembly for heat exchangers in power plants
JPH0674522A (ja) * 1992-06-26 1994-03-15 Sanyo Electric Co Ltd 空気調和機の制御方法
DE10143279B4 (de) * 2001-09-04 2009-05-28 Semikron Elektronik Gmbh & Co. Kg Frequenzumrichter
TWM290932U (en) * 2005-11-22 2006-05-21 Fego Prec Ind Co Ltd Universal low-energy-consumption ceiling fan controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB464531A (en) * 1936-03-23 1937-04-20 Otto Happel Improvements in and relating to air cooled surface condensers
JPS61121799A (ja) * 1984-11-16 1986-06-09 Matsushita Seiko Co Ltd Pwmインバ−タ装置付き天井扇
JPH11132675A (ja) * 1997-10-24 1999-05-21 Nippon Steel Corp 復水器の制御方法
CN101430167A (zh) * 2008-11-28 2009-05-13 中国大唐集团科技工程有限公司 提高直接空冷系统电机输出传递效率的方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIANG, WEIPING ET AL.: "Analysis on the energy-saving performance of frequency conversion and speed governing system for direct air-cooling fans.", ELECTRIC POWER., vol. 41, no. 9, September 2008 (2008-09-01), pages 58 - 60 *
LIU, WEIXING ET AL.: "Application of Air Cooled Condenser System in Coal-fired Plants.", ELECTRIC POWER SCIENCE AND ENGINEERING., no. 3, September 2004 (2004-09-01), pages 72 - 74 *
ZHAO, ZHIDONG ET AL.: "Development and Present Situation of Air-cooled Condenser.", NORTH CHINA ELECTRIC POWER., no. 5, May 2004 (2004-05-01), pages 44 - 50 *

Also Published As

Publication number Publication date
DE112008002100T5 (de) 2010-11-04
CN101430168B (zh) 2010-08-11
US20110214845A1 (en) 2011-09-08
CN101430168A (zh) 2009-05-13
US8320750B2 (en) 2012-11-27
DE112008002100B4 (de) 2015-12-31

Similar Documents

Publication Publication Date Title
US11329583B2 (en) Generalized frequency conversion system for steam turbine generator unit
WO2010060235A1 (zh) 提高电站直接空冷系统的冷却能力的方法及冷却系统
CN102128139A (zh) 利用塔筒壁冷却的风力发电机
Jwo et al. Development of a wind directly forced heat pump and its efficiency analysis
CN202468176U (zh) 一种风力发电机组的冷却系统
CN102185420A (zh) 2mw风力发电机冷却系统
CN113123873A (zh) 一种利用吸收式热泵提高燃气轮机效率的系统及其运行方法
CN101430167B (zh) 提高直接空冷系统电机输出传递效率的方法及系统
CN207866019U (zh) 一种水电双动力散热冷却塔
CN203146047U (zh) 一种螺杆膨胀机式烟气余热发电装置
CN103147812B (zh) 一种螺杆膨胀机式烟气余热发电装置
CN206681801U (zh) 一种火电厂辅机汽电双动力驱动、发电系统
CN105402094A (zh) 变桨柜冷却装置及风力发电机组
CN205135923U (zh) 变桨柜冷却装置及风力发电机组
CN201322552Y (zh) 电站直接空冷系统的冷却系统
CN201322553Y (zh) 提高直接空冷系统电机输出传递效率的冷却系统
Jiang Wind turbine cooling technologies
CN112983567A (zh) 一种基于双馈系统的直接空冷机组电动引风机系统
Huang et al. A High-efficiency air-cooling and waste heat utilization system for 100Mvar STATCOM
CN221300054U (zh) 一种风电机组齿轮箱的两相流体散热系统
CN203809213U (zh) 一种低压穿越变流器塔筒散热装置
CN204552948U (zh) 燃气蒸汽联合循环机组的进气系统
CN113175419B (zh) 风力发电机外部换热器弧形排布结构
CN104847425B (zh) 一种外燃式布列顿联合循环发电装置
CN214836719U (zh) 一种利用吸收式热泵提高燃气轮机效率的系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12601511

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878353

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112008002100

Country of ref document: DE

Date of ref document: 20101104

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08878353

Country of ref document: EP

Kind code of ref document: A1