WO2010058462A1 - Scanning type projector - Google Patents
Scanning type projector Download PDFInfo
- Publication number
- WO2010058462A1 WO2010058462A1 PCT/JP2008/071088 JP2008071088W WO2010058462A1 WO 2010058462 A1 WO2010058462 A1 WO 2010058462A1 JP 2008071088 W JP2008071088 W JP 2008071088W WO 2010058462 A1 WO2010058462 A1 WO 2010058462A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scanning
- light
- reflecting
- projection apparatus
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/105—Scanning systems with one or more pivoting mirrors or galvano-mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/12—Scanning systems using multifaceted mirrors
- G02B26/125—Details of the optical system between the polygonal mirror and the image plane
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/04—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
- H04N1/113—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors
Definitions
- the present invention relates to a scanning projection apparatus mounted on an image forming apparatus such as a projector, a laser printer, or an image scanner, and more specifically, scanning capable of aligning the writing position of each scanning line on a scanned surface with high accuracy.
- the present invention relates to a mold projection apparatus.
- Patent Document 1 An example of a scanning projection apparatus is disclosed in International Publication WO 2004/004167 (hereinafter referred to as “Patent Document 1”).
- the scanning projection apparatus described in Patent Document 1 has a linear detector disposed in an area outside the effective scanning between the screen and the scanning optical system.
- the scanning projection apparatus detects scanning light using a linear detector, and writes each scanning line after a predetermined delay time has elapsed.
- the writing position of each scanning line varies due to individual differences among components, mounting errors, aberrations, and the like, and causes a problem of distorting or color shifting an image projected on the screen.
- the writing position of each scanning line is electrically adjusted and aligned in the adjustment process before shipping the assembled product.
- the present invention has been made in view of the above circumstances, and its object is to be concerned when a temperature change or the like occurs while having a simple structure suitable for downsizing and excellent in cost. It is an object of the present invention to provide a scanning projection apparatus that can effectively suppress variations in the writing position of each scanning line.
- a scanning projection apparatus that solves the above problem is an apparatus that scans a light beam on a surface to be scanned in two directions: a main scanning direction and a sub-scanning direction orthogonal to the main scanning direction. , Has the following characteristics. That is, such a scanning projection apparatus includes at least one light source unit that irradiates a light beam, a scanning unit that deflects the irradiated light beam and scans it in two directions on the surface to be scanned, and an effective scan on the surface to be scanned.
- a first reflecting portion that is disposed in the region and has a higher reflectance than the effective scanning region on the surface to be scanned; a light flux returning portion that returns the light beam reflected by the first reflecting portion and re-enters the scanning portion; Light emission control according to the projected image in at least one light source unit according to the reflected light detection unit that detects a part of the reflected light that is re-incident on the scanning unit and deflected, and the timing of detection of the reflected light by the reflected light detection unit And a light emission control unit for performing the above.
- the light reflected from the first reflecting part is detected to control the light emission of the light source part. Since the first reflecting portion is directly arranged on the surface to be scanned, the position where each scanning line should be written on the surface to be scanned and the first reflection even when the usage environment such as temperature changes. Fluctuations in the relative position with respect to the part hardly occur. That is, since the writing of each scanning line is still complete even when the usage environment changes, a fine image without distortion or color misregistration is projected onto the surface to be scanned.
- the reflected light having no angle of view in the scanning direction which is returned by the light flux returning unit, is incident on the reflected light detecting unit according to the present invention. Therefore, the reflected light detection unit does not need to be a detector having a light receiving area corresponding to the angle of view in the scanning direction, unlike the linear detector of Patent Document 1, for example, to reduce the size and cost of the scanning projection apparatus. Any suitable single cell small sensor may be used.
- the first reflecting portion a long reflecting portion that is substantially parallel to the sub-scanning direction and has a long side, the timing of detection of the reflected light becomes almost regular and control becomes easy.
- the reliability of timing detection can be improved by configuring the first reflecting portion to have a side longer than the length of the effective scanning region in the sub-scanning direction.
- a configuration in which the sides in the sub-scanning direction are shortened or interrupted (a configuration in which small-sized reflecting portions are intermittently arranged in the sub-scanning direction) may be employed.
- the first reflecting portion is preferably a position where writing of the light beam in the main scanning direction is scheduled on the surface to be scanned, in order to further facilitate positioning of the first reflecting portion with respect to the design writing position of each scanning line. Is placed close to.
- the light emission control unit is configured to perform light emission control on at least one light source unit, for example, after a predetermined time elapses after the reflected light is detected by the reflected light detection unit.
- the scanning projection apparatus further includes a long second reflecting portion having a side forming a predetermined angle with respect to the side of the first reflecting portion.
- the reflected light detection unit detects the reflected light of each of the first reflection unit and the second reflection unit.
- the light emission control unit controls the writing position in the sub-scanning direction of the light beam on the surface to be scanned based on the detection time intervals of the reflected light from the first reflecting unit and the second reflecting unit. That is, according to such a configuration, it is possible to satisfactorily control not only the writing in the main scanning direction but also the writing position in the sub-scanning direction.
- the first reflecting portion or the second reflecting portion may be a reflecting member attached to the effective scanning outside region, or is applied to the effective scanning outside region which is excellent in mass productivity and positional accuracy and advantageous in cost. Or it may be a printed reflective area.
- the light flux returning part returns the light beam incident on the first reflecting part or the second reflecting part to the optical path substantially the same as the incident light, so that the light beam is incident on the first reflecting part or the second reflecting part substantially perpendicularly.
- the normal incidence lens is, for example, a Fresnel lens arranged close to the surface to be scanned. That is, the normal incidence lens does not need to be a dedicated product, and may be a Fresnel lens included in a general scanning projection apparatus, that is, a general-purpose lens.
- the scanning projection apparatus further includes a reflected light deflecting unit that deflects at least a part of the reflected light that is returned to the substantially same optical path as that at the time of incidence and is deflected by the scanning unit, and guides the reflected light to the reflected light detecting unit. It may be.
- the scanning unit may include a deflector that deflects in the main scanning direction or the sub-scanning direction in order from the light source unit side, and a scanning optical system that scans the light beam deflected by the deflector on the surface to be scanned.
- the reflected light deflecting unit is preferably arranged in the vicinity of the deflector in order to efficiently guide the light beam deflected by the deflector to the reflected light detecting unit.
- the scanning projection apparatus may further include a conjugate optical system in which the deflection surface of the deflector that deflects the light beam and the detection surface of the reflected light detection unit that detects the reflected light are conjugate to the pupil.
- the deflector is, for example, a two-dimensional scanning galvanometer mirror or a two-dimensional MEMS (Micro Electro Mechanical Systems) mirror that deflects a light beam in two directions, or a polygon mirror with surface tilt.
- the deflector may be a deflector that deflects the light beam in one direction.
- Such a one-dimensional deflector is used in combination with, for example, another deflector or a light source system that controls the incident angle of a light beam to the one-dimensional deflector.
- the first reflection unit or the second reflection unit may be configured to reflect a light beam incident on the first reflection unit or the second reflection unit with a high divergence and increase a reflected light beam diameter.
- the reflected light deflecting unit is configured to deflect light around the reflected light flux to the reflected light detecting unit.
- first reflecting portion or the second reflecting portion may be configured by a single convex shape having a size equal to or larger than the spot size of the light beam incident on the first reflecting portion or the second reflecting portion, Or you may comprise by the some convex shape of the size smaller than this spot size.
- FIG. 1 is a main scanning sectional view schematically showing a configuration of a two-dimensional scanning projection apparatus according to a first embodiment of the present invention.
- 1 is a sub-scan sectional view schematically showing a configuration of a two-dimensional scanning projection apparatus according to a first embodiment of the present invention.
- It is main scanning sectional drawing of the reflection member which the two-dimensional scanning projector of 1st embodiment of this invention has.
- It is a main scanning sectional view of a reflective member which a two-dimensional scanning projection device of another embodiment of the present invention has.
- FIG. 1 is an external front view showing the external appearance (front) of the two-dimensional scanning projector 100 according to the first embodiment of the present invention.
- the two-dimensional scanning projection apparatus 100 is configured as a rear projector that projects an image from behind the screen so that a viewer can observe the image from the front of the screen, for example.
- a screen S on which an image is projected is provided in front of the two-dimensional scanning projector 100.
- the two-dimensional scanning projection apparatus 100 has a housing H that holds various components constituting the two-dimensional scanning projection apparatus 100 including the screen S.
- a direction orthogonal to the screen S (direction orthogonal to the paper surface in FIG. 1) is defined as an “X direction”, and a first direction parallel to the screen S (left and right parallel to the paper surface in FIG. 1) is defined.
- (Direction) is defined as “Y direction”
- a second direction (vertical direction parallel to the paper surface in FIG. 1) parallel to the screen S and perpendicular to the first direction is defined as “Z direction”. That is, the X, Y, and Z directions are defined as directions orthogonal to each other. Further, the Y direction is defined as “main scanning direction”, and the Z direction is defined as “sub scanning direction”.
- FIG. 2 and 3 are diagrams schematically showing the arrangement of various components held inside the housing H of the two-dimensional scanning projection apparatus 100.
- FIG. 2 and 3 for convenience of explanation, optical components constituting the two-dimensional scanning projection apparatus 100 are mainly illustrated, and other components (for example, holding members, electric circuits, etc.) are not shown in principle.
- 2 and 3 is a central axis (optical axis) AX of the two-dimensional scanning projection apparatus 100.
- a section including the central axis AX and the main scanning direction of the two-dimensional scanning projection apparatus 100 is defined as a “main scanning section”, and the central axis AX and the sub-axis A cross section including the scanning direction is defined as a “sub-scanning cross section”.
- 2 and 3 are a main scanning sectional view and a sub-scanning sectional view schematically showing the configuration of the two-dimensional scanning projection apparatus 100, respectively.
- a light beam separation mirror 8a, a sensor optical system 8b, and a light receiving sensor 8c which will be described later, are shown for convenience, and are actually arranged at positions away from the sub-scan section.
- the two-dimensional scanning projection apparatus 100 has a plurality of light source units that emit laser light (parallel light) (here, a total of three light source units 1a, 1b, and 1c). ing. Each light source unit has the same configuration, and is arranged so as to be aligned on the sub-scan section.
- Various optical components such as a two-dimensional deflector 4, a scanning optical system 5, and a Fresnel lens 6 are arranged in order from the light source unit side on the optical path of the two-dimensional scanning projector 100 from the light source unit to the screen S.
- a two-dimensional deflector 4 a scanning optical system 5
- Fresnel lens 6 are arranged in order from the light source unit side on the optical path of the two-dimensional scanning projector 100 from the light source unit to the screen S.
- a light beam traveling from the light source unit toward the screen S side is indicated by a dotted line
- a light beam traveling from the screen S toward the light source unit side is illustrated by a solid line.
- the light beams emitted from the respective light source units are simply indicated by the solid line only with the principal ray.
- the two-dimensional scanning projection apparatus 100 includes a system controller 10 that performs overall control of the entire apparatus, and an image processing unit 20 that generates image data (image data) to be projected onto the screen S. Yes.
- the image processing unit 20 generates a modulation signal corresponding to the image data under the control of the system controller 10 and outputs it to each light source unit.
- Each light source unit modulates and irradiates laser light in accordance with an input modulation signal.
- Each light source unit simultaneously irradiates modulated laser light to simultaneously scan the screen S with three scanning lines.
- the laser light emitted from each light source unit is incident on the deflection surface 4P of the two-dimensional deflector 4.
- the two-dimensional deflector 4 is a deflector (for example, a well-known two-dimensional scanning galvanometer mirror or two-dimensional MEMS mirror) configured such that the deflection surface 4P vibrates at high speed on the sub-scanning section or the main scanning section, for example.
- Laser light incident on the deflection surface 4P from the light source unit is scanned with respect to the screen S in two directions, ie, a main scanning direction and a sub-scanning direction.
- the laser light incident on the deflection surface 4P is incident on the scanning optical system 5 while being continuously deflected by the deflection surface 4P at an angle corresponding to the vibration state.
- the scanning optical system 5 is composed of a plurality of lenses and has, for example, an f ⁇ characteristic as a whole.
- the laser light emitted from the scanning optical system 5 enters the Fresnel lens 6.
- the Fresnel lens 6 has a shape and dimensions that sufficiently cover the entire effective scanning area of the screen S.
- the effective scanning area of the screen S is defined as a rectangular area formed by the effective scanning width Sm in the main scanning direction and the effective scanning height Sv in the sub-scanning direction shown in FIG. 1 (or FIGS. 2 and 3). Is done.
- the laser light incident on the Fresnel lens 6 is deflected in a direction substantially perpendicular to the surface of the screen S by the optical action of the Fresnel lens 6 regardless of the incident angle.
- a lenticular lens (not shown) is arranged between the Fresnel lens 6 and the screen S.
- the laser light deflected by the Fresnel lens 6 is diffused left and right by the optical action of the lenticular lens and then incident on the screen S.
- the laser light incident on the screen S scans the screen S at a substantially constant speed in the main scanning direction by the f ⁇ characteristic given by the scanning optical system 5.
- the two-dimensional scanning projection apparatus 100 ensures a wide viewing angle by the optical action of the Fresnel lens 6 and the lenticular lens.
- the two-dimensional deflector 4 is configured to rotate by a predetermined angle in the sub-scanning direction for each scanning in the main scanning direction by the two-dimensional deflector 4.
- the predetermined angle is equal to the number of laser beams (three in the first embodiment) arranged in the sub-scanning direction, which are simultaneously used for scanning the screen S, and the spot size formed on the screen S by the laser beams ( It is defined as the angle corresponding to the length multiplied by the spot diameter in the sub-scanning direction).
- a two-dimensional image is formed on the screen S by repeating the scanning in the main scanning direction and simultaneously performing the scanning in the sub-scanning direction.
- the actual scanning range of the laser light on the screen S depends on individual differences of various parts constituting the two-dimensional scanning projection apparatus 100, variations in the external dimensions of various parts due to the use environment, or optical performance of the optical parts. Considering fluctuations and the like, it is set slightly wider than the effective scanning area of the screen S.
- the scanning width of the laser light on the screen S in the main scanning direction is a scanning width S′m wider than the effective scanning width Sm.
- the scanning height of the laser light on the screen S in the sub-scanning direction is a scanning height S′v wider than the effective scanning height Sv. That is, the actual scanning range of the laser beam on the screen S is defined as a rectangular region formed by the scanning width S′m and the scanning height S′v.
- a range obtained by excluding the effective scanning area of the screen S from the actual scanning range of the laser light on the screen S is defined as an “outside effective scanning area R”.
- the two-dimensional scanning projection apparatus 100 in order to satisfactorily correct the deviation of the writing position of each scanning line, as shown in FIGS. A position on the non-effective scanning area R (a position close to the writing position) that is a predetermined distance away in the main scanning direction from the effective writing position (the right side of the effective scanning area in FIG. 1 or the upper end of the effective scanning width Sm in FIG. 2).
- the reflecting member 7 is disposed on the back side of the external frame.
- the reflecting member 7 is, for example, a resin molded product, and has a rectangular shape that is longer than the effective scanning height Sv when facing from the direction facing the screen S.
- the surface facing from this direction is the reflecting surface 7a, and a material having a high reflectance such as metal is deposited thereon.
- the reflective surface 7a has a rectangular shape that substantially matches the external dimension of the reflective member 7 when viewed from the direction, and the longitudinal direction is parallel to the sub-scanning direction.
- the front surface side (scanning optical system 5 side) of the reflecting member 7 is covered with a Fresnel lens 6. Therefore, the laser light emitted from the scanning optical system 5 is incident on the reflecting member 7 via the Fresnel lens 6.
- the reflecting member 7 has a shape such that the cross section is always the same when cut by any plane parallel to the main scanning cross section.
- FIG. 4 shows a main scanning sectional view of the reflecting member 7.
- the reflecting surface 7a of the reflecting member 7 is formed in a convex shape.
- the width of the reflecting surface 7a (the length in the main scanning direction) is approximately the same as or larger than the spot size of the laser light incident through the Fresnel lens 6. Therefore, the laser light is incident on the reflection surface 7a without any deviation, and is slightly diverged and reflected only in the main scanning direction. That is, the laser beam reflected by the reflecting surface 7a has a diameter larger than that of the incident light in the main scanning direction, as is apparent when comparing the dotted line (incident light) and the solid line (reflected light) in FIG. .
- the laser light is deflected by the optical action of the Fresnel lens 6 and is incident on the reflecting surface 7a substantially perpendicularly. Therefore, the laser beam reflected by the reflecting surface 7a returns the same optical path as that at the time of incidence.
- the laser light returning on the same optical path passes through the Fresnel lens 6 and the scanning optical system 5 in order, and is deflected by the deflection surface 4P of the two-dimensional deflector 4.
- FIG. 5A to FIG. 5C show three examples of the shape of the reflecting surface 7a.
- the reflecting surface 7a shown in FIG. 5A has a configuration having a plurality of convex shapes having a size smaller than the spot size of the laser light incident on the reflecting surface 7a.
- the reflective surface 7a shown in FIG. 5B has a configuration having a surface shape inclined with respect to the screen S. Such a surface shape can be regarded as a part of a convex shape having a very large curvature.
- the reflecting surface 7a shown in FIG. 5C has a concave shape. The end of the reflecting surface 7a in FIG. 5C is rounded. Any of the reflecting surfaces 7a shown in FIGS. 5A to 5C reflects the incident laser beam by slightly diverging in the main scanning direction, like the reflecting surface 7a of FIG.
- the reflection surface 7a assumed here is a smooth surface, but may be a rough surface in another embodiment.
- the reflecting surface 7a is a surface having a fine uneven shape of a predetermined size, which is roughened by, for example, blasting or the like.
- the laser light incident on the reflecting surface 7a is reflected in various directions, becomes a slightly broadened light beam, returns to the optical path at the time of incidence, and the optical path from the Fresnel lens 6 to the sensor optical system 8b. The light is received by the light receiving sensor 8c.
- the two-dimensional scanning projector 100 has a light beam separation mirror 8 a at a position near the two-dimensional deflector 4 that faces the deflection surface 4 ⁇ / b> P of the two-dimensional deflector 4.
- the light beam separation mirror 8a has a reflection surface only on the surface facing the deflection surface 4P.
- the position where the light beam separation mirror 8a is disposed is outside the effective light beam diameter of the laser light (dotted line in FIG. 2) directed from the light source portion toward the deflection surface 4P. Therefore, the laser beam traveling from the light source unit toward the deflecting surface 4P is not shielded by the light beam separation mirror 8a.
- the position of the light beam separation mirror 8a is within the effective light beam diameter of the reflected light (solid line in FIG. 2) (the periphery of the effective light beam diameter). Therefore, a part of the reflected light is incident on the reflecting surface of the light beam separation mirror 8a and reflected.
- an optical isolator (not shown) is disposed in front of each light source unit, and return light to each light source unit is shielded.
- the laser beam reflected by the reflecting surface of the light beam separation mirror 8a is collected by the sensor optical system 8b and received by the light receiving surface of the light receiving sensor 8c.
- the light receiving surface of the light receiving sensor 8c is disposed at a position conjugate with the optical pupil of the deflecting surface 4P of the two-dimensional deflector 4 by the sensor optical system 8b. Therefore, the reflected light is received at approximately one point on the light receiving surface. Therefore, the light receiving sensor 8c does not need to have a configuration having a plurality of cells like the linear detector described in Patent Document 1, for example, and may be a single small sensor having a single cell. Such a sensor is suitable for downsizing and cost reduction of the two-dimensional scanning projection apparatus.
- the light beam separation mirror 8a is located outside the effective light beam diameter of the laser light (dotted line in FIG. 2) from the light source unit toward the deflection surface 4P and does not cause mechanical interference with the two-dimensional deflector 4. The closer to the two-dimensional deflector 4, the better. As the light beam separation mirror 8a is arranged in the vicinity of the two-dimensional deflector 4, the periphery of the effective light beam diameter of the reflected light (solid line in FIG. 2) is reflected more efficiently and guided to the light receiving sensor 8c. Because it can. According to another aspect, even when the light beam separation mirror 8a is downsized, if the light beam separation mirror 8a is disposed in the vicinity of the two-dimensional deflector 4, a sufficient amount of light for signal detection can be guided to the light receiving sensor 8c.
- the light receiving sensor 8c generates a voltage corresponding to the received laser beam and outputs it to the system controller 10 as a detection signal for determining the writing position.
- FIG. 6 shows a signal waveform input to the system controller 10 from the light receiving sensor 8c. As shown in FIG. 6, the detection signal is repeatedly input from the light receiving sensor 8c to the system controller 10. When a predetermined time t elapses after the detection signal is input (in other words, the rising edge of the signal waveform is detected), the system controller 10 writes the laser light that scans the screen S at the writing position (FIG. 1). 2, or the upper end of the effective scanning width Sm in FIG. 2), and outputs an instruction to the image processing unit 20 to perform light emission control of each light source unit.
- the image processing unit 20 When the image processing unit 20 performs light emission control of the light source unit according to the instruction for all the scanning lines, the writing position of each scanning line is aligned. As a result, an image having no distortion or color misregistration is projected on the screen S. It should be noted that when setting the predetermined time t, it is actually necessary to consider signal delay and the like. Further, the image processing unit 20 performs light emission control of the three light source units during the image drawing period of FIG. 6, but controls light emission of only one of the light source units in order to obtain a detection signal during other periods. Continuous light is irradiated during the latter period.
- the reflecting member 7 is directly attached on the screen S. Therefore, the position of the reflecting member 7 with respect to the position where each scanning line is to be written does not vary substantially even when a temperature change or the like occurs during actual use. That is, even when a temperature change or the like occurs, the relative position between the position where each scanning line should be written and the reflecting member 7 does not substantially change. Therefore, the writing positions of the respective scanning lines are still aligned, and the image projected on the screen S is not substantially distorted or displaced. Further, as in Patent Document 1, when the relative position between the scanning line detection sensor and the screen is indirectly determined via another holding member, the sensor and the screen are caused by vibration during transportation. The attachment position such as may move slightly.
- the maximum amount of variation of the relative position that can occur in that case is not only the tolerance of the sensor, the screen itself, but also the stack of tolerances of all the parts that hold the sensor or screen directly or indirectly. Therefore, in Patent Document 1, the writing position of each scanning line may vary greatly after transportation.
- the reflecting member 7 is directly attached to the screen S. Therefore, the maximum fluctuation amount of the relative position is only the sum of the allowable tolerances of the reflecting member 7 and the screen S. That is, according to the two-dimensional scanning projection apparatus 100 of the first embodiment, variation in the writing position of each scanning line, which is a concern due to vibration during transportation, is effectively suppressed.
- the mounting position of the reflecting member 7 is preferably immediately before the writing position of each scanning line as in the first embodiment. This is because when the reflecting member 7 is disposed immediately before the writing position, the reflecting member 7 can be easily positioned with respect to the writing position. However, in another embodiment, the reflecting member 7 may be attached to any location within the effective scanning outside region R.
- the writing position in the sub-scanning direction with respect to the effective scanning area of the screen S is determined by open control. Therefore, strictly speaking, the writing position in the sub-scanning direction can vary according to changes in the usage environment such as temperature. Therefore, it is desirable to correct the writing position in the sub-scanning direction in addition to the writing position of each scanning line.
- a configuration capable of correcting both the writing position of each scanning line and the writing position in the sub-scanning direction will be described. In the following, only the configuration and features unique to each embodiment will be described, and the same configurations and the like as those of the first embodiment will be referred to above.
- FIG. 7 is an external front view showing the external appearance (front) of the two-dimensional scanning projection apparatus 100z of the second embodiment.
- the two-dimensional scanning projection apparatus 100z further includes a reflecting member 7 'in addition to the reflecting member 7 on the back side of the appearance frame.
- the reflecting member 7 ′ is located on the non-effective scanning area R between the ideal writing position of each scanning line (the right side of the effective scanning area in FIG. 7 or the upper end of the effective scanning width Sm in FIG. 2) and the reflecting member 7. At a position, it is arranged obliquely with respect to the sub-scanning direction (in other words, the longitudinal direction of the reflecting member 7).
- the reflecting member 7 ′ is different in length from the reflecting member 7 in the longitudinal direction.
- the front surface side (scanning optical system 5 side) of the reflecting member 7 ′ is also covered with the Fresnel lens 6 as with the reflecting member 7.
- the two-dimensional scanning projection apparatus 100z of the second embodiment corrects the writing position in the sub-scanning direction using the reflecting member 7 '.
- FIG. 8 is a diagram for explaining the correction process of the writing position in the sub-scanning direction.
- FIG. 8A is a diagram when the screen S is viewed from the scanning optical system 5 side.
- the arrows extending in the main scanning direction indicate the scanning lines A1 to A3.
- FIGS. 8B, 8C, and 8D show signal waveforms output from the light receiving sensor 8c when scanning the scanning lines A1, A2, and A3, respectively.
- the scanning lines A1 to A3 scan on two reflecting surfaces (the reflecting surface 7a of the reflecting member 7 and the reflecting surface 7'a of the reflecting member 7 '). Therefore, the light receiving sensor 8c receives reflected light twice in a short time and outputs two detection signals as shown in FIGS. 8B to 8D.
- the detection signal corresponding to the reflective surface 7a is defined as "first detection signal”
- the detection signal corresponding to the reflective surface 7'a is defined as "second detection signal”. Since the interval between the reflecting surface 7a and the reflecting surface 7'a on each scanning line is different, the time interval between the first detection signal and the second detection signal is also different for each scanning line.
- the two-dimensional scanning projection apparatus 100z of the second embodiment has n light source units. That is, the two-dimensional scanning projection apparatus 100z is configured to simultaneously scan n rows of scanning lines.
- a design time interval between the first detection signal and the second detection signal corresponding to the first light source unit is defined as “interval t0”, which corresponds to each of the i-th and (i + 1) -th light source units.
- the design time interval difference is defined as “interval difference ⁇ t”
- the design time interval corresponding to the i-th light source unit is defined as “interval ti”.
- the interval ti is represented by t0 + (i ⁇ 1) ⁇ t.
- the i-th light source unit refers to a light source unit that scans the i-th scanning line from the top among n scanning lines that are scanned simultaneously.
- the system controller 10 compares the actual time interval t'a between the first detection signal and the second detection signal input from the light receiving sensor 8c with the designed time interval ta.
- the system controller 10 estimates the amount of deviation of the writing position in the sub-scanning direction based on the comparison result.
- the system controller 10 instructs the image processing unit 20 so that the (i-2) th light source unit outputs the modulated light to be output by the i th light source unit. By performing such correction, the writing position in the sub-scanning direction is always kept constant regardless of the use environment.
- FIG. 9 shows a configuration of the two-dimensional deflector 14 included in the two-dimensional scanning projection apparatus 100y of the third embodiment.
- the two-dimensional scanning projection apparatus 100 y of the third embodiment has a two-dimensional deflector 14 as an alternative to the two-dimensional deflector 4.
- the two-dimensional deflector 14 is, for example, a polygon mirror with surface tilt.
- the polygon mirror with surface tilt has a configuration in which each deflection surface is inclined by a predetermined angle in the sub-scanning direction with respect to the adjacent deflection surface.
- a description will be given by taking as an example a polygon mirror with surface tilt having eight deflection surfaces (deflection surfaces P1 to P8).
- FIG. 9A is a main scanning sectional view showing a schematic configuration of a polygon mirror with surface tilt.
- the deflection surface P1 is a surface parallel to the sub-scanning direction, while the other deflection surfaces P2 to P8 have an angle with respect to the sub-scanning direction.
- FIG. 9B is a diagram for explaining the surface tilt shape of the polygon mirror with surface tilt. For convenience of explaining such a shape, FIG. 9B shows only the deflection surfaces P1, P2, and P3.
- the adjacent deflection surfaces P1 and P2 or the deflection surfaces P2 and P3 are each configured to have a surface tilt angle ⁇ .
- each deflection surface of the polygon mirror with surface tilt deflects incident laser light in the sub-scanning direction by an amount corresponding to the surface tilt angle. That is, the scanning width, scanning interval, etc. in the sub-scanning direction are defined by the surface tilt angle of each deflection surface.
- the number of scanning lines in the entire range including the non-effective scanning region R is 560 and the deflection surface of the polygon mirror with surface tilt is 16 surfaces.
- an array light source in which, for example, 35 light sources are arranged in the sub-scanning direction as the light source unit is mounted on the two-dimensional scanning projection apparatus 100y. Then, 35 laser beams are simultaneously incident on the deflecting surfaces and deflected, and are simultaneously scanned on the screen S via the optical system at the subsequent stage. Since 35 scanning lines are scanned using each deflection surface, the total number of scanning lines reaches 540, which is obtained by multiplying the number of simultaneous scanning lines 35 by the number 16 of deflection surfaces.
- the number of light sources to be mounted on the two-dimensional scanning projection apparatus 100y and the number of deflection surfaces of the polygon mirror with surface tilt are appropriately selected according to the required number of scanning lines, scanning speed, and the like.
- the details of the polygon mirror with surface tilt are disclosed in, for example, Japanese Patent Application Laid-Open No. 61-198208.
- FIG. 10 is a main scanning sectional view schematically showing the configuration of the two-dimensional scanning projection apparatus 100x of the fourth embodiment.
- the two-dimensional scanning projector 100x has a beam splitter 18 as an alternative to the light beam separation mirror 8a.
- the beam splitter 18 transmits the laser light emitted from the light source unit, and reflects the reflected light from the reflecting members 7 and 7 '.
- the reflected light reflected by the beam splitter 18 is collected by the sensor optical system 8b and received by the light receiving sensor 8c.
- a further amount of reflected light is guided to the light receiving sensor 8c. Since the light receiving sensor 8c can receive a lot of reflected light, it can output a detection signal at a stable level.
- the beam splitter 18 is disposed at a position that intersects the central axis AX of the two-dimensional scanning projector 100x (in other words, the laser light emitted from the light source unit). Therefore, in the case of the configuration of the fourth embodiment, the laser light reflected by the reflecting member 7 is deflected by the beam splitter 18 and guided to the light receiving sensor 8c even when the width is not widened in the main scanning direction. Therefore, in 4th embodiment, the reflective surface 7a of the reflective member 7 does not need to be a convex surface, and may be comprised by the plane, for example.
- the above is the embodiment of the present invention.
- the two-dimensional scanning projection apparatus according to the present invention is not limited to the above-described configuration, and various modifications are possible within the scope of the technical idea of the present invention.
- the two-dimensional scanning projector according to the present invention is not limited to a multi-beam two-dimensional scanning projector, but may be a single-beam two-dimensional scanning projector.
- a region corresponding to the reflecting member 7 or 7 'on the screen S has reflectivity instead of an optical component such as the reflecting member 7 or 7'.
- coated or printed the material may be sufficient.
- the coating agent has the effect of increasing the divergence of the laser light incident on the reflecting surface 7a and reflecting it as a slightly broadened light beam.
- the reflecting member 7 or 7 ′ is manufactured by printing or the like, it is excellent in mass productivity and positional accuracy and advantageous in terms of cost.
- a two-dimensional scanning projection apparatus having a diaphragm mirror is assumed.
- the diaphragm mirror also has a slit that is wider than the width of the laser light emitted from the light source unit and narrower than the width of the reflected light from the reflecting member 7 in the main scanning direction. Therefore, the laser light emitted from the light source unit passes through the slit of the diaphragm mirror.
- part of the reflected light from the reflecting member 7 enters the shielding part of the diaphragm mirror.
- the shielding portion of the diaphragm mirror is configured as a reflection surface or a diffraction surface. Therefore, a part of the reflected light from the reflecting member 7 is deflected or diffracted by the shielding part, enters the sensor optical system 8b, and is guided to the light receiving sensor 8c.
- the two-dimensional scanning projection apparatus according to the present invention is assumed to be mounted on a projector, but can be suitably used for other image forming apparatuses such as a laser printer and an image scanner.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Optical Scanning Systems (AREA)
Abstract
In order to align writing start positions of respective scanning lines at high accuracy, a scanning type projector includes at least one light source unit which emits a light flux, a scan unit which scans a surface to be scanned with the emitted light flux in two directions, a main scanning direction and a sub scanning direction, a first reflection unit which is provided in an area outside an effective scanning area on the surface to be scanned and has a first reflection surface with a higher reflectance than the effective scanning area, a reflected light detection unit which detects a reflection light of the light flux with which the first reflection unit is scanned, and a light emission control unit which performs a light emission control to the at least one light source unit based on a projection image according to a timing at which reflected light detection means detects the reflected light.
Description
この発明は、プロジェクタやレーザープリンタ、イメージスキャナといった画像形成装置に搭載される走査型投影装置に関連し、詳しくは、被走査面上における各走査線の書き出し位置を高精度に揃えることができる走査型投影装置に関する。
The present invention relates to a scanning projection apparatus mounted on an image forming apparatus such as a projector, a laser printer, or an image scanner, and more specifically, scanning capable of aligning the writing position of each scanning line on a scanned surface with high accuracy. The present invention relates to a mold projection apparatus.
光源から照射された光束を二次元走査してスクリーン等の被走査面上に拡大投影する二次元走査型投影装置が知られている。この種の走査型投影装置は、例えばスクリーン背後から画像を投影し、該画像をスクリーン正面から観察する、いわゆるリアプロジェクタとしての利用に適している。
2. Description of the Related Art There is known a two-dimensional scanning projection device that two-dimensionally scans a light beam emitted from a light source and projects it on a scanned surface such as a screen. This type of scanning projection apparatus is suitable for use as a so-called rear projector that projects an image from behind the screen and observes the image from the front of the screen, for example.
走査型投影装置の一例が国際公開WO2004/004167公報(以下、「特許文献1」と記す。)に開示されている。特許文献1に記載の走査型投影装置は、スクリーンと走査光学系との間の有効走査外領域に配置されたリニア検出器を有している。該走査型投影装置は、リニア検出器を用いて走査光を検出し、所定の遅延時間が経過した後に各走査線を書き出している。しかし、各走査線の書き出し位置は、各部品の個体差や取付誤差、収差等に起因してばらつき、スクリーンに投影される画像を歪ませたり色ずれさせたりする問題を生み出す。このような問題の発生を避けるべく、一般的な走査型投影装置は、組立後製品出荷前の調整工程において、各走査線の書き出し位置が電気的に調整されて揃えられている。
An example of a scanning projection apparatus is disclosed in International Publication WO 2004/004167 (hereinafter referred to as “Patent Document 1”). The scanning projection apparatus described in Patent Document 1 has a linear detector disposed in an area outside the effective scanning between the screen and the scanning optical system. The scanning projection apparatus detects scanning light using a linear detector, and writes each scanning line after a predetermined delay time has elapsed. However, the writing position of each scanning line varies due to individual differences among components, mounting errors, aberrations, and the like, and causes a problem of distorting or color shifting an image projected on the screen. In order to avoid the occurrence of such a problem, in a general scanning projection apparatus, the writing position of each scanning line is electrically adjusted and aligned in the adjustment process before shipping the assembled product.
ところが、走査型投影装置の使用環境(例えば温度等)が変化したとき、当該変化に起因して各部品の寸法等が変動し、その結果、各走査線の書き出し位置にばらつきが生じることがある。走査型投影装置が大型であるほど、スクリーンと他の部品との光学的(物理的)距離が必然的に長くなるため、スクリーン(より正確には各走査線の書き出しが行われるべき位置)と各部品との相対位置の変動が顕著に現れる。かかる相対位置の変動は、実使用時において各走査線の書き出し位置のばらつきを生じさせる主要因の一つであり、問題視されている。
However, when the usage environment (for example, temperature) of the scanning projection apparatus changes, the dimensions of each component change due to the change, and as a result, the writing position of each scanning line may vary. . The larger the scanning projection device, the longer the optical (physical) distance between the screen and other parts, so the screen (more precisely, where each scan line should be written) The fluctuation of the relative position with each part appears remarkably. Such a change in relative position is one of the main factors that cause variations in the writing position of each scanning line during actual use, and is regarded as a problem.
また、特許文献1の構成に基づいて副走査(二次元走査)も行おうとした場合には、走査範囲中の全ての走査線に対応するレーザー光を受光して信号検出を行うために、副走査方向に長尺な受光エリアを持つリニア検出器が構成上必須である。しかし、副走査方向に長尺なリニア検出器は、外形寸法が大きいため実装スペースが制限される上、単価が高いといった欠点を有している。
Further, when sub-scanning (two-dimensional scanning) is to be performed based on the configuration of Patent Document 1, in order to detect signals by receiving laser light corresponding to all scanning lines in the scanning range, sub-scanning is performed. A linear detector having a light receiving area that is long in the scanning direction is indispensable. However, the linear detector that is long in the sub-scanning direction has the disadvantages that the mounting space is limited due to the large outer dimensions and the unit price is high.
本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、コスト面に優れ、小型化に適した簡易な構成でありつつも温度変化等が生じた際に懸念される各走査線の書き出し位置のばらつきを効果的に抑えることができる走査型投影装置を提供することである。
The present invention has been made in view of the above circumstances, and its object is to be concerned when a temperature change or the like occurs while having a simple structure suitable for downsizing and excellent in cost. It is an object of the present invention to provide a scanning projection apparatus that can effectively suppress variations in the writing position of each scanning line.
上記の課題を解決する本発明の一形態に係る走査型投影装置は、被走査面上に光束を主走査方向と、該主走査方向と直交する副走査方向の二方向に走査する装置であり、以下の特徴を有する。すなわち、かかる走査型投影装置は、光束を照射する少なくとも一つの光源部と、照射された光束を偏向して被走査面上で二方向に走査する走査部と、被走査面上の有効走査外領域に配置され、該被走査面上の有効走査領域より高い反射率を有する第一反射部と、該第一反射部により反射された光束を戻して走査部に再入射させる光束戻し部と、走査部に再入射されて偏向された反射光の一部を検知する反射光検知部と、反射光検知部による反射光の検知のタイミングに従い、少なくとも一つの光源部に投影画像に応じた発光制御を行う発光制御部とを有することを特徴としている。
A scanning projection apparatus according to an embodiment of the present invention that solves the above problem is an apparatus that scans a light beam on a surface to be scanned in two directions: a main scanning direction and a sub-scanning direction orthogonal to the main scanning direction. , Has the following characteristics. That is, such a scanning projection apparatus includes at least one light source unit that irradiates a light beam, a scanning unit that deflects the irradiated light beam and scans it in two directions on the surface to be scanned, and an effective scan on the surface to be scanned. A first reflecting portion that is disposed in the region and has a higher reflectance than the effective scanning region on the surface to be scanned; a light flux returning portion that returns the light beam reflected by the first reflecting portion and re-enters the scanning portion; Light emission control according to the projected image in at least one light source unit according to the reflected light detection unit that detects a part of the reflected light that is re-incident on the scanning unit and deflected, and the timing of detection of the reflected light by the reflected light detection unit And a light emission control unit for performing the above.
このように、本発明においては、第一反射部の反射光を検知して光源部の発光制御を行う。第一反射部は被走査面上に直接配置されているため、温度等の使用環境に変化が生じた場合にも、被走査面上の各走査線の書き出しが行われるべき位置と第一反射部との相対位置の変動は略生じない。すなわち、使用環境の変化時にも各走査線の書き出しが依然として揃っているため、歪みや色ずれの無い精細な画像が被走査面上に投影される。
As described above, in the present invention, the light reflected from the first reflecting part is detected to control the light emission of the light source part. Since the first reflecting portion is directly arranged on the surface to be scanned, the position where each scanning line should be written on the surface to be scanned and the first reflection even when the usage environment such as temperature changes. Fluctuations in the relative position with respect to the part hardly occur. That is, since the writing of each scanning line is still complete even when the usage environment changes, a fine image without distortion or color misregistration is projected onto the surface to be scanned.
また、本発明に係る反射光検知部には、光束戻し部により戻された、走査方向に画角を持たない戻り光が入射される。したがって、反射光検知部は、特許文献1のリニア検出器のように走査方向の画角に対応する受光エリアを有する検知器である必要がなく、例えば走査型投影装置の小型化やコストダウンに適した単一セルの小型なセンサであればよい。
Further, the reflected light having no angle of view in the scanning direction, which is returned by the light flux returning unit, is incident on the reflected light detecting unit according to the present invention. Therefore, the reflected light detection unit does not need to be a detector having a light receiving area corresponding to the angle of view in the scanning direction, unlike the linear detector of Patent Document 1, for example, to reduce the size and cost of the scanning projection apparatus. Any suitable single cell small sensor may be used.
ここで、第一反射部を副走査方向に実質的に平行で長い辺を持つ長尺状の反射部にすることで、反射光の検知のタイミングが略定期的となり制御が容易となる。また、第一反射部を有効走査領域の副走査方向の長さより長い辺を持つ構成とすることでタイミング検知の確実性を高めることが出来るが、スクリーンの小型化・製造の容易性のため、副走査方向の辺を短くしたり、途切れを持たせたりした構成(サイズの小さい反射部が副走査方向に断続的に並ぶ構成)としてもよい。
Here, by making the first reflecting portion a long reflecting portion that is substantially parallel to the sub-scanning direction and has a long side, the timing of detection of the reflected light becomes almost regular and control becomes easy. In addition, the reliability of timing detection can be improved by configuring the first reflecting portion to have a side longer than the length of the effective scanning region in the sub-scanning direction. A configuration in which the sides in the sub-scanning direction are shortened or interrupted (a configuration in which small-sized reflecting portions are intermittently arranged in the sub-scanning direction) may be employed.
第一反射部は、各走査線の設計上の書き出し位置に対する第一反射部の位置決めをより一層容易にするため、好ましくは、被走査面上における光束の主走査方向の書き出しが予定される位置に近接して配置される。
The first reflecting portion is preferably a position where writing of the light beam in the main scanning direction is scheduled on the surface to be scanned, in order to further facilitate positioning of the first reflecting portion with respect to the design writing position of each scanning line. Is placed close to.
発光制御部は、反射光検知部により反射光が検知されてから例えば所定時間経過後に、少なくとも一つの光源部に対して発光制御を行うように構成される。
The light emission control unit is configured to perform light emission control on at least one light source unit, for example, after a predetermined time elapses after the reflected light is detected by the reflected light detection unit.
本発明に係る走査型投影装置は、第一反射部の辺に対して所定の角度をなす辺を有する長尺状の第二反射部をさらに有する構成であることが望ましい。この場合に、反射光検知部は、第一反射部、第二反射部それぞれの反射光を検知する。そして、発光制御部は、第一反射部、第二反射部それぞれの反射光の検知の時間間隔に基づき被走査面上における光束の副走査方向の書き出し位置を制御する。すなわち、かかる構成によれば、主走査方向の書き出しだけでなく副走査方向の書き出し位置も良好にコントロールすることができる。
It is desirable that the scanning projection apparatus according to the present invention further includes a long second reflecting portion having a side forming a predetermined angle with respect to the side of the first reflecting portion. In this case, the reflected light detection unit detects the reflected light of each of the first reflection unit and the second reflection unit. The light emission control unit controls the writing position in the sub-scanning direction of the light beam on the surface to be scanned based on the detection time intervals of the reflected light from the first reflecting unit and the second reflecting unit. That is, according to such a configuration, it is possible to satisfactorily control not only the writing in the main scanning direction but also the writing position in the sub-scanning direction.
第一反射部又は第二反射部は、有効走査外領域に取り付けられた反射部材であってもよく、或いは量産性や位置精度に優れると共にコスト面でも有利である、該有効走査外領域に塗布又は印刷された反射領域であってもよい。
The first reflecting portion or the second reflecting portion may be a reflecting member attached to the effective scanning outside region, or is applied to the effective scanning outside region which is excellent in mass productivity and positional accuracy and advantageous in cost. Or it may be a printed reflective area.
光束戻し部は、第一反射部又は第二反射部に入射された光束を入射時と略同一の光路に戻すため、該光束を該第一反射部又は該第二反射部に略垂直に入射させる垂直入射レンズを有する構成としてもよい。ここで垂直入射レンズは、例えば被走査面に近接して配置されたフレネルレンズである。すなわち垂直入射レンズは、専用品である必要がなく、一般的な走査型投影装置が持つフレネルレンズ、つまり汎用的なレンズであってもよい。
The light flux returning part returns the light beam incident on the first reflecting part or the second reflecting part to the optical path substantially the same as the incident light, so that the light beam is incident on the first reflecting part or the second reflecting part substantially perpendicularly. It is good also as a structure which has the normal incidence lens to make. Here, the normal incidence lens is, for example, a Fresnel lens arranged close to the surface to be scanned. That is, the normal incidence lens does not need to be a dedicated product, and may be a Fresnel lens included in a general scanning projection apparatus, that is, a general-purpose lens.
かかる走査型投影装置は、入射時と略同一の光路に戻され走査部により偏向された反射光の少なくとも一部を該光路から偏向して反射光検知部に導く反射光偏向部をさらに有する構成であってもよい。
The scanning projection apparatus further includes a reflected light deflecting unit that deflects at least a part of the reflected light that is returned to the substantially same optical path as that at the time of incidence and is deflected by the scanning unit, and guides the reflected light to the reflected light detecting unit. It may be.
さらに、走査部は、光源部側から順に、主走査方向又は副走査方向に偏向する偏向器、および偏向器により偏向された光束を被走査面上で走査する走査光学系を有する構成としてもよい。かかる場合に、反射光偏向部は、偏向器により偏向された光束を反射光検知部に効率良く導くため、偏向器近傍に配置されることが好ましい。
Further, the scanning unit may include a deflector that deflects in the main scanning direction or the sub-scanning direction in order from the light source unit side, and a scanning optical system that scans the light beam deflected by the deflector on the surface to be scanned. . In such a case, the reflected light deflecting unit is preferably arranged in the vicinity of the deflector in order to efficiently guide the light beam deflected by the deflector to the reflected light detecting unit.
また、当該走査型投影装置は、光束を偏向する偏向器の偏向面と、反射光を検知する反射光検知部の検知面を瞳共役にする共役光学系をさらに有する構成であってもよい。
The scanning projection apparatus may further include a conjugate optical system in which the deflection surface of the deflector that deflects the light beam and the detection surface of the reflected light detection unit that detects the reflected light are conjugate to the pupil.
ここで偏向器は、例えば光束を二方向に偏向する二次元走査型ガルバノミラー又は二次元MEMS(Micro Electro Mechanical Systems)ミラー、或いは面倒れ付きポリゴンミラーである。また、偏向器は、光束を一方向に偏向する偏向器であってもよい。かかる一次元偏向器は、例えば当該一次元偏向器への光束の入射角度を操る、別の偏向器や光源システムと組み合わせて使用される。
Here, the deflector is, for example, a two-dimensional scanning galvanometer mirror or a two-dimensional MEMS (Micro Electro Mechanical Systems) mirror that deflects a light beam in two directions, or a polygon mirror with surface tilt. The deflector may be a deflector that deflects the light beam in one direction. Such a one-dimensional deflector is used in combination with, for example, another deflector or a light source system that controls the incident angle of a light beam to the one-dimensional deflector.
第一反射部又は第二反射部は、該第一反射部又は該第二反射部に入射される光束を発散度を大きくして反射させ、反射光束径を大きくするように構成されてもよい。この場合に、反射光偏向部は、反射光束の周辺の光を反射光検知部に偏向するように構成される。
The first reflection unit or the second reflection unit may be configured to reflect a light beam incident on the first reflection unit or the second reflection unit with a high divergence and increase a reflected light beam diameter. . In this case, the reflected light deflecting unit is configured to deflect light around the reflected light flux to the reflected light detecting unit.
また、第一反射部又は第二反射部は、該第一反射部又は該第二反射部に入射される光束のスポットサイズと同等又は大きいサイズの単一の凸形状で構成されてもよく、或いは該スポットサイズより小さいサイズの複数の凸形状で構成されてもよい。
Further, the first reflecting portion or the second reflecting portion may be configured by a single convex shape having a size equal to or larger than the spot size of the light beam incident on the first reflecting portion or the second reflecting portion, Or you may comprise by the some convex shape of the size smaller than this spot size.
以下、図面を参照して、本発明の実施形態の二次元走査型投影装置について説明する。
Hereinafter, a two-dimensional scanning projection apparatus according to an embodiment of the present invention will be described with reference to the drawings.
図1は、本発明の第一実施形態の二次元走査型投影装置100の外観(正面)を示す外観正面図である。二次元走査型投影装置100は、例えば視聴者が画像をスクリーン正面から観察できるよう、スクリーン背後から画像を投影するリアプロジェクタとして構成されている。
FIG. 1 is an external front view showing the external appearance (front) of the two-dimensional scanning projector 100 according to the first embodiment of the present invention. The two-dimensional scanning projection apparatus 100 is configured as a rear projector that projects an image from behind the screen so that a viewer can observe the image from the front of the screen, for example.
図1に示されるように、二次元走査型投影装置100の正面には画像が投影されるスクリーンSが備えられている。二次元走査型投影装置100は、スクリーンSをはじめとする二次元走査型投影装置100を構成する各種部品を保持する筐体Hを有している。なお、本明細書において、スクリーンSと直交する方向(図1で紙面と直交する方向)を「X方向」と定義し、スクリーンSに平行な第一の方向(図1で紙面に平行な左右方向)を「Y方向」と定義し、スクリーンSに平行でかつ第一の方向に直交する第二の方向(図1で紙面に平行な上下方向)を「Z方向」と定義する。すなわち、X、Y、Z方向は、互いに直交する方向として定義される。さらに、Y方向を「主走査方向」と定義し、Z方向を「副走査方向」と定義する。
As shown in FIG. 1, a screen S on which an image is projected is provided in front of the two-dimensional scanning projector 100. The two-dimensional scanning projection apparatus 100 has a housing H that holds various components constituting the two-dimensional scanning projection apparatus 100 including the screen S. In this specification, a direction orthogonal to the screen S (direction orthogonal to the paper surface in FIG. 1) is defined as an “X direction”, and a first direction parallel to the screen S (left and right parallel to the paper surface in FIG. 1) is defined. (Direction) is defined as “Y direction”, and a second direction (vertical direction parallel to the paper surface in FIG. 1) parallel to the screen S and perpendicular to the first direction is defined as “Z direction”. That is, the X, Y, and Z directions are defined as directions orthogonal to each other. Further, the Y direction is defined as “main scanning direction”, and the Z direction is defined as “sub scanning direction”.
図2、図3はそれぞれ、二次元走査型投影装置100の筐体Hの内部に保持された各種部品の配置構成を概略的に示す図である。図2、図3においては、説明の便宜上、二次元走査型投影装置100を構成する光学部品を主に図示し、それ以外の部品(例えば保持部材、電気回路等)の図示は原則省略する。図2、図3の各図中一点鎖線は、二次元走査型投影装置100の中心軸(光軸)AXである。二次元走査型投影装置100の中心軸AXとスクリーンSとが交差する点は、スクリーンSの有効走査領域(別の表現によれば、画像が投影される有効表示領域)の中心点S0と一致する。なお、二次元走査型投影装置100の光路を展開した状態において、二次元走査型投影装置100の中心軸AXと主走査方向を含む断面を「主走査断面」と定義し、中心軸AXと副走査方向を含む断面を「副走査断面」と定義する。かかる定義によれば、図2、図3はそれぞれ、二次元走査型投影装置100の構成を概略的に示す主走査断面図、副走査断面図である。但し、図3において、後述する光束分離ミラー8a、センサ用光学系8b、受光センサ8cは便宜上図示したものであり、実際には副走査断面から離れた位置に配置されている。
2 and 3 are diagrams schematically showing the arrangement of various components held inside the housing H of the two-dimensional scanning projection apparatus 100. FIG. 2 and 3, for convenience of explanation, optical components constituting the two-dimensional scanning projection apparatus 100 are mainly illustrated, and other components (for example, holding members, electric circuits, etc.) are not shown in principle. 2 and 3 is a central axis (optical axis) AX of the two-dimensional scanning projection apparatus 100. The point where the center axis AX of the two-dimensional scanning projection apparatus 100 and the screen S intersect with the central point S 0 of the effective scanning area of the screen S (effective display area according to another expression). Match. In a state where the optical path of the two-dimensional scanning projection apparatus 100 is developed, a section including the central axis AX and the main scanning direction of the two-dimensional scanning projection apparatus 100 is defined as a “main scanning section”, and the central axis AX and the sub-axis A cross section including the scanning direction is defined as a “sub-scanning cross section”. 2 and 3 are a main scanning sectional view and a sub-scanning sectional view schematically showing the configuration of the two-dimensional scanning projection apparatus 100, respectively. However, in FIG. 3, a light beam separation mirror 8a, a sensor optical system 8b, and a light receiving sensor 8c, which will be described later, are shown for convenience, and are actually arranged at positions away from the sub-scan section.
図2、図3に示されるように、二次元走査型投影装置100は、レーザー光(平行光)を照射する光源部を複数(ここでは光源部1a、1b、1cの合計3つ)有している。各光源部は同一の構成を有し、副走査断面上に並ぶように配置されている。光源部からスクリーンSに至る二次元走査型投影装置100の光路上には、光源部側から順に、二次元偏向器4、走査光学系5、フレネルレンズ6の各種光学部品が配置されている。なお、図2においては、光源部からスクリーンS側に向かう光束を点線で、スクリーンSから光源部側に向かう光束を実線で示す。図3においては、図面を明瞭にするため、各光源部から照射された光束は、主光線のみを実線によって簡略的に示す。
As shown in FIG. 2 and FIG. 3, the two-dimensional scanning projection apparatus 100 has a plurality of light source units that emit laser light (parallel light) (here, a total of three light source units 1a, 1b, and 1c). ing. Each light source unit has the same configuration, and is arranged so as to be aligned on the sub-scan section. Various optical components such as a two-dimensional deflector 4, a scanning optical system 5, and a Fresnel lens 6 are arranged in order from the light source unit side on the optical path of the two-dimensional scanning projector 100 from the light source unit to the screen S. In FIG. 2, a light beam traveling from the light source unit toward the screen S side is indicated by a dotted line, and a light beam traveling from the screen S toward the light source unit side is illustrated by a solid line. In FIG. 3, in order to clarify the drawing, the light beams emitted from the respective light source units are simply indicated by the solid line only with the principal ray.
二次元走査型投影装置100は、装置全体の制御を統括的に行うシステムコントローラ10、およびスクリーンSへの投影が予定される画像のデータ(画像データ)を生成する画像処理部20を有している。画像処理部20は、システムコントローラ10の制御下で画像データに応じた変調信号を生成して各光源部に出力する。各光源部は、入力される変調信号に応じてレーザー光を変調して照射する。各光源部は、スクリーンSに3本の走査線を同時に走査すべく、変調されたレーザー光を同時に照射する。各光源部から照射されたレーザー光は、二次元偏向器4の偏向面4Pに入射される。
The two-dimensional scanning projection apparatus 100 includes a system controller 10 that performs overall control of the entire apparatus, and an image processing unit 20 that generates image data (image data) to be projected onto the screen S. Yes. The image processing unit 20 generates a modulation signal corresponding to the image data under the control of the system controller 10 and outputs it to each light source unit. Each light source unit modulates and irradiates laser light in accordance with an input modulation signal. Each light source unit simultaneously irradiates modulated laser light to simultaneously scan the screen S with three scanning lines. The laser light emitted from each light source unit is incident on the deflection surface 4P of the two-dimensional deflector 4.
二次元偏向器4は、例えば偏向面4Pが副走査断面又は主走査断面上で高速振動するように構成された偏向器(例えば周知の二次元走査型ガルバノミラー又は二次元MEMSミラー)であり、光源部から偏向面4Pに入射されたレーザー光をスクリーンSに対して主走査方向、副走査方向の2方向に走査する。偏向面4Pに入射されたレーザー光は、該偏向面4Pによって、その振動状態に応じた角度で連続して偏向されつつ走査光学系5に入射される。
The two-dimensional deflector 4 is a deflector (for example, a well-known two-dimensional scanning galvanometer mirror or two-dimensional MEMS mirror) configured such that the deflection surface 4P vibrates at high speed on the sub-scanning section or the main scanning section, for example. Laser light incident on the deflection surface 4P from the light source unit is scanned with respect to the screen S in two directions, ie, a main scanning direction and a sub-scanning direction. The laser light incident on the deflection surface 4P is incident on the scanning optical system 5 while being continuously deflected by the deflection surface 4P at an angle corresponding to the vibration state.
走査光学系5は、複数枚のレンズから構成されており、全体として例えばfθ特性を有している。走査光学系5から射出されたレーザー光は、フレネルレンズ6に入射される。フレネルレンズ6は、スクリーンSの有効走査領域全域を十分に覆う形状および寸法を有している。ここで、スクリーンSの有効走査領域は、図1(又は図2、図3)に示される主走査方向の有効走査幅Smと、副走査方向の有効走査高さSvとがなす矩形領域として定義される。
The scanning optical system 5 is composed of a plurality of lenses and has, for example, an fθ characteristic as a whole. The laser light emitted from the scanning optical system 5 enters the Fresnel lens 6. The Fresnel lens 6 has a shape and dimensions that sufficiently cover the entire effective scanning area of the screen S. Here, the effective scanning area of the screen S is defined as a rectangular area formed by the effective scanning width Sm in the main scanning direction and the effective scanning height Sv in the sub-scanning direction shown in FIG. 1 (or FIGS. 2 and 3). Is done.
フレネルレンズ6に入射されたレーザー光は、その入射角度に拘わらず、フレネルレンズ6の光学作用によりスクリーンSの面に略垂直な方向に偏向される。フレネルレンズ6とスクリーンSの間には、図示省略されたレンチキュラーレンズが配置されている。フレネルレンズ6によって偏向されたレーザー光は、かかるレンチキュラーレンズの光学作用によって左右に拡散された後、スクリーンSに入射される。スクリーンSに入射されたレーザー光は、走査光学系5によって与えられたfθ特性により、スクリーンS上を主走査方向に略等速で走査する。二次元走査型投影装置100は、フレネルレンズ6とレンチキュラーレンズの光学作用により、広範な視野角が確保されている。
The laser light incident on the Fresnel lens 6 is deflected in a direction substantially perpendicular to the surface of the screen S by the optical action of the Fresnel lens 6 regardless of the incident angle. A lenticular lens (not shown) is arranged between the Fresnel lens 6 and the screen S. The laser light deflected by the Fresnel lens 6 is diffused left and right by the optical action of the lenticular lens and then incident on the screen S. The laser light incident on the screen S scans the screen S at a substantially constant speed in the main scanning direction by the fθ characteristic given by the scanning optical system 5. The two-dimensional scanning projection apparatus 100 ensures a wide viewing angle by the optical action of the Fresnel lens 6 and the lenticular lens.
二次元走査型投影装置100では、二次元偏向器4による主走査方向への走査一回につき、二次元偏向器4が副走査方向に所定角度回動するように構成されている。ここで所定角度は、スクリーンSの走査に同時使用される、副走査方向に並ぶレーザー光の本数(第一実施形態では3本)に、該レーザー光によってスクリーンS上に形成されるスポットサイズ(副走査方向のスポット径)を乗じた長さに対応する角度として定義される。かかる主走査方向の走査を繰り返し行いつつ副走査方向の走査も同時に行うことにより、スクリーンS上に二次元画像が形成される。
In the two-dimensional scanning projection apparatus 100, the two-dimensional deflector 4 is configured to rotate by a predetermined angle in the sub-scanning direction for each scanning in the main scanning direction by the two-dimensional deflector 4. Here, the predetermined angle is equal to the number of laser beams (three in the first embodiment) arranged in the sub-scanning direction, which are simultaneously used for scanning the screen S, and the spot size formed on the screen S by the laser beams ( It is defined as the angle corresponding to the length multiplied by the spot diameter in the sub-scanning direction). A two-dimensional image is formed on the screen S by repeating the scanning in the main scanning direction and simultaneously performing the scanning in the sub-scanning direction.
スクリーンSにおけるレーザー光の実際上の走査範囲は、二次元走査型投影装置100を構成する各種部品の個体差や、使用環境に起因する各種部品の外形寸法の変動、或いは光学部品の光学性能の変動等を考慮して、スクリーンSの有効走査領域よりも一回り広く設定されている。具体的には、スクリーンSにおけるレーザー光の主走査方向の走査幅は、有効走査幅Smよりも広範な走査幅S’mである。また、スクリーンSにおけるレーザー光の副走査方向の走査高さは、有効走査高さSvよりも広範な走査高さS’vである。すなわち、スクリーンSにおけるレーザー光の実際上の走査範囲は、走査幅S’mと走査高さS’vとがなす矩形領域として定義される。ここで、図1に示されるように、スクリーンSにおけるレーザー光の実際上の走査範囲から、スクリーンSの有効走査領域を除いた範囲を「有効走査外領域R」と定義する。
The actual scanning range of the laser light on the screen S depends on individual differences of various parts constituting the two-dimensional scanning projection apparatus 100, variations in the external dimensions of various parts due to the use environment, or optical performance of the optical parts. Considering fluctuations and the like, it is set slightly wider than the effective scanning area of the screen S. Specifically, the scanning width of the laser light on the screen S in the main scanning direction is a scanning width S′m wider than the effective scanning width Sm. Further, the scanning height of the laser light on the screen S in the sub-scanning direction is a scanning height S′v wider than the effective scanning height Sv. That is, the actual scanning range of the laser beam on the screen S is defined as a rectangular region formed by the scanning width S′m and the scanning height S′v. Here, as shown in FIG. 1, a range obtained by excluding the effective scanning area of the screen S from the actual scanning range of the laser light on the screen S is defined as an “outside effective scanning area R”.
第一実施形態の二次元走査型投影装置100には、各走査線の書き出し位置のズレを良好に補正すべく、図1、図2の各図に示されるように、各走査線の理想的な書き出し位置(図1の有効走査領域の右辺、又は図2の有効走査幅Smの上端)から主走査方向に所定距離離れた有効走査外領域R上の位置(書き出し位置に近接した位置であって、図1においては外観フレームの裏側)に反射部材7が配置されている。反射部材7は、例えば樹脂成形品であり、スクリーンSと正対する方向から臨んだときに有効走査高さSvより長尺な矩形形状を有する。当該方向から臨まれる面は反射面7aであり、金属等の高反射率を有する材料が蒸着されている。反射面7aは、当該方向から臨むときに反射部材7の外形寸法と略一致する矩形形状を持ち、長手方向が副走査方向に平行である。反射部材7の前面側(走査光学系5側)は、フレネルレンズ6によって覆われている。そのため、反射部材7には、走査光学系5から射出されたレーザー光がフレネルレンズ6を介して入射される。
In the two-dimensional scanning projection apparatus 100 according to the first embodiment, in order to satisfactorily correct the deviation of the writing position of each scanning line, as shown in FIGS. A position on the non-effective scanning area R (a position close to the writing position) that is a predetermined distance away in the main scanning direction from the effective writing position (the right side of the effective scanning area in FIG. 1 or the upper end of the effective scanning width Sm in FIG. 2). In FIG. 1, the reflecting member 7 is disposed on the back side of the external frame. The reflecting member 7 is, for example, a resin molded product, and has a rectangular shape that is longer than the effective scanning height Sv when facing from the direction facing the screen S. The surface facing from this direction is the reflecting surface 7a, and a material having a high reflectance such as metal is deposited thereon. The reflective surface 7a has a rectangular shape that substantially matches the external dimension of the reflective member 7 when viewed from the direction, and the longitudinal direction is parallel to the sub-scanning direction. The front surface side (scanning optical system 5 side) of the reflecting member 7 is covered with a Fresnel lens 6. Therefore, the laser light emitted from the scanning optical system 5 is incident on the reflecting member 7 via the Fresnel lens 6.
反射部材7は、主走査断面と平行な何れの面で切断した場合も断面が常に同じになるような形状を有している。ここで図4に、反射部材7の主走査断面図を示す。図4に示されるように、反射部材7の反射面7aは凸面状に形成されている。反射面7aの幅(主走査方向の長さ)は、フレネルレンズ6を介して入射されるレーザー光のスポットサイズと略同等か若しくは大きいサイズを有している。よって、レーザー光は、反射面7aにもれなく入射され、主走査方向にのみやや発散して反射される。すなわち、反射面7aにより反射されたレーザー光は、図2の点線(入射光)と実線(反射光)とを比較すると明らかなように、主走査方向に関して入射光よりも径が太くなっている。
The reflecting member 7 has a shape such that the cross section is always the same when cut by any plane parallel to the main scanning cross section. Here, FIG. 4 shows a main scanning sectional view of the reflecting member 7. As shown in FIG. 4, the reflecting surface 7a of the reflecting member 7 is formed in a convex shape. The width of the reflecting surface 7a (the length in the main scanning direction) is approximately the same as or larger than the spot size of the laser light incident through the Fresnel lens 6. Therefore, the laser light is incident on the reflection surface 7a without any deviation, and is slightly diverged and reflected only in the main scanning direction. That is, the laser beam reflected by the reflecting surface 7a has a diameter larger than that of the incident light in the main scanning direction, as is apparent when comparing the dotted line (incident light) and the solid line (reflected light) in FIG. .
ところで、レーザー光は、フレネルレンズ6の光学作用によって偏向されて、反射面7aに略垂直に入射されている。そのため、反射面7aにより反射されたレーザー光は、入射時と同一の光路を戻る。同一光路を戻るレーザー光は、フレネルレンズ6、走査光学系5を順に透過して、二次元偏向器4の偏向面4Pにより偏向される。
Incidentally, the laser light is deflected by the optical action of the Fresnel lens 6 and is incident on the reflecting surface 7a substantially perpendicularly. Therefore, the laser beam reflected by the reflecting surface 7a returns the same optical path as that at the time of incidence. The laser light returning on the same optical path passes through the Fresnel lens 6 and the scanning optical system 5 in order, and is deflected by the deflection surface 4P of the two-dimensional deflector 4.
反射面7aには、様々な形状が想定される。図5(a)~図5(c)に、反射面7aの形状を三例示す。図5(a)に示される反射面7aは、反射面7aに入射されるレーザー光のスポットサイズよりも小さいサイズの凸面形状を複数有した構成を持つ。図5(b)に示される反射面7aは、スクリーンSに対して傾斜した面形状を有した構成を持つ。かかる面形状は、曲率が非常に大きい凸面形状の一部とみなすことができる。図5(c)に示される反射面7aは凹面形状を有している。図5(c)の反射面7aの端部はR面取りされている。図5(a)~図5(c)に示されるいずれの反射面7aも図4の反射面7aと同じく、入射されたレーザー光を主走査方向に対してやや発散させて反射する。
Various shapes are assumed for the reflecting surface 7a. FIG. 5A to FIG. 5C show three examples of the shape of the reflecting surface 7a. The reflecting surface 7a shown in FIG. 5A has a configuration having a plurality of convex shapes having a size smaller than the spot size of the laser light incident on the reflecting surface 7a. The reflective surface 7a shown in FIG. 5B has a configuration having a surface shape inclined with respect to the screen S. Such a surface shape can be regarded as a part of a convex shape having a very large curvature. The reflecting surface 7a shown in FIG. 5C has a concave shape. The end of the reflecting surface 7a in FIG. 5C is rounded. Any of the reflecting surfaces 7a shown in FIGS. 5A to 5C reflects the incident laser beam by slightly diverging in the main scanning direction, like the reflecting surface 7a of FIG.
ここで想定される反射面7aはなめらかな面であるが、別の実施形態では粗い面であってもよい。反射面7aは、例えばブラスト加工等によって粗めに仕上げられた、所定サイズの微細な凹凸形状を有する面である。粗い面の場合、反射面7aに入射されたレーザー光は多様な方向に反射して、やや広がりを持つ光束となって入射時の光路を戻り、フレネルレンズ6からセンサ用光学系8bに至る光路を進行して受光センサ8cにより受光される。
The reflection surface 7a assumed here is a smooth surface, but may be a rough surface in another embodiment. The reflecting surface 7a is a surface having a fine uneven shape of a predetermined size, which is roughened by, for example, blasting or the like. In the case of a rough surface, the laser light incident on the reflecting surface 7a is reflected in various directions, becomes a slightly broadened light beam, returns to the optical path at the time of incidence, and the optical path from the Fresnel lens 6 to the sensor optical system 8b. The light is received by the light receiving sensor 8c.
図2に示されるように、二次元走査型投影装置100は、二次元偏向器4の偏向面4Pに対向する、二次元偏向器4近傍の位置に光束分離ミラー8aを有している。光束分離ミラー8aは、偏向面4Pと対向する面にのみ反射面を有している。光束分離ミラー8aが配置されている位置は、光源部から偏向面4Pに向かうレーザー光(図2の点線)の有効光束径外である。そのため、光源部から偏向面4Pに向かうレーザー光が光束分離ミラー8aによって遮蔽されることはない。しかし、光束分離ミラー8aの位置は、反射光(図2の実線)の有効光束径内(有効光束径の周辺部)である。したがって、反射光の一部は、光束分離ミラー8aの反射面に入射され反射される。なお、各光源部の前段には図示省略された光アイソレータが配置されており、各光源部への戻り光は遮蔽されている。
As shown in FIG. 2, the two-dimensional scanning projector 100 has a light beam separation mirror 8 a at a position near the two-dimensional deflector 4 that faces the deflection surface 4 </ b> P of the two-dimensional deflector 4. The light beam separation mirror 8a has a reflection surface only on the surface facing the deflection surface 4P. The position where the light beam separation mirror 8a is disposed is outside the effective light beam diameter of the laser light (dotted line in FIG. 2) directed from the light source portion toward the deflection surface 4P. Therefore, the laser beam traveling from the light source unit toward the deflecting surface 4P is not shielded by the light beam separation mirror 8a. However, the position of the light beam separation mirror 8a is within the effective light beam diameter of the reflected light (solid line in FIG. 2) (the periphery of the effective light beam diameter). Therefore, a part of the reflected light is incident on the reflecting surface of the light beam separation mirror 8a and reflected. In addition, an optical isolator (not shown) is disposed in front of each light source unit, and return light to each light source unit is shielded.
光束分離ミラー8aの反射面により反射されたレーザー光は、センサ用光学系8bにより集光されて、受光センサ8cの受光面に受光される。受光センサ8cの受光面は、センサ用光学系8bにより、二次元偏向器4の偏向面4Pの光学的な瞳と共役な位置に配置されている。そのため、反射光は、受光面上の略一点に受光される。したがって、受光センサ8cは、例えば特許文献1に記載のリニア検出器のように複数セルを有する構成である必要がなく、単一セルを持つ単一の小型なセンサであればよい。このようなセンサは、二次元走査型投影装置の小型化やコストダウンに適している。なお、光束分離ミラー8aは、光源部から偏向面4Pに向かうレーザー光(図2の点線)の有効光束径外であり且つ二次元偏向器4との機械的干渉を起こさない位置であれば、二次元偏向器4近傍に配置されるほど好ましい。光束分離ミラー8aは、二次元偏向器4近傍に配置されるほど、反射光(図2の実線)の有効光束径の周辺部をより一層効率良くに反射させて、受光センサ8cに導くことができるからである。別の側面によれば、光束分離ミラー8aは小型化された場合であっても、二次元偏向器4近傍に配置されていれば信号検知に十分な光量を受光センサ8cに導くことができる。
The laser beam reflected by the reflecting surface of the light beam separation mirror 8a is collected by the sensor optical system 8b and received by the light receiving surface of the light receiving sensor 8c. The light receiving surface of the light receiving sensor 8c is disposed at a position conjugate with the optical pupil of the deflecting surface 4P of the two-dimensional deflector 4 by the sensor optical system 8b. Therefore, the reflected light is received at approximately one point on the light receiving surface. Therefore, the light receiving sensor 8c does not need to have a configuration having a plurality of cells like the linear detector described in Patent Document 1, for example, and may be a single small sensor having a single cell. Such a sensor is suitable for downsizing and cost reduction of the two-dimensional scanning projection apparatus. Note that the light beam separation mirror 8a is located outside the effective light beam diameter of the laser light (dotted line in FIG. 2) from the light source unit toward the deflection surface 4P and does not cause mechanical interference with the two-dimensional deflector 4. The closer to the two-dimensional deflector 4, the better. As the light beam separation mirror 8a is arranged in the vicinity of the two-dimensional deflector 4, the periphery of the effective light beam diameter of the reflected light (solid line in FIG. 2) is reflected more efficiently and guided to the light receiving sensor 8c. Because it can. According to another aspect, even when the light beam separation mirror 8a is downsized, if the light beam separation mirror 8a is disposed in the vicinity of the two-dimensional deflector 4, a sufficient amount of light for signal detection can be guided to the light receiving sensor 8c.
受光センサ8cは、受光したレーザー光に応じた電圧を発生させて、書き出し位置を決定するための検知信号としてシステムコントローラ10に出力する。図6に、受光センサ8cからシステムコントローラ10に入力される信号波形を示す。図6に示されるように、システムコントローラ10には、受光センサ8cから検知信号が繰り返し入力される。システムコントローラ10は、検知信号が入力されてから(別の表現によれば、信号波形の立ち上がりを検知してから)所定時間t経過した時、スクリーンSを走査するレーザー光が書き出し位置(図1の有効走査領域の右辺、又は図2の有効走査幅Smの上端)に到達すると判断して、各光源部の発光制御を行うように画像処理部20に指示を出力する。画像処理部20が全ての走査線に対して当該指示に応じた光源部の発光制御を行うことにより、各走査線の書き出し位置が揃うこととなる。その結果、歪みや色ずれの無い画像がスクリーンSに投影される。なお、所定時間tを設定する際、実際には信号遅延等を考慮する必要があることを言い添えておく。また、画像処理部20は、図6の画像描画期間中3つの光源部の発光制御を行うが、それ以外の期間は検知信号を得るために何れか一つの光源部のみを発光制御する。後者の期間中は連続光が照射される。
The light receiving sensor 8c generates a voltage corresponding to the received laser beam and outputs it to the system controller 10 as a detection signal for determining the writing position. FIG. 6 shows a signal waveform input to the system controller 10 from the light receiving sensor 8c. As shown in FIG. 6, the detection signal is repeatedly input from the light receiving sensor 8c to the system controller 10. When a predetermined time t elapses after the detection signal is input (in other words, the rising edge of the signal waveform is detected), the system controller 10 writes the laser light that scans the screen S at the writing position (FIG. 1). 2, or the upper end of the effective scanning width Sm in FIG. 2), and outputs an instruction to the image processing unit 20 to perform light emission control of each light source unit. When the image processing unit 20 performs light emission control of the light source unit according to the instruction for all the scanning lines, the writing position of each scanning line is aligned. As a result, an image having no distortion or color misregistration is projected on the screen S. It should be noted that when setting the predetermined time t, it is actually necessary to consider signal delay and the like. Further, the image processing unit 20 performs light emission control of the three light source units during the image drawing period of FIG. 6, but controls light emission of only one of the light source units in order to obtain a detection signal during other periods. Continuous light is irradiated during the latter period.
このように第一実施形態の二次元走査型投影装置100においては、スクリーンS上に反射部材7が直接取り付けられている。そのため、各走査線の書き出しが行われるべき位置に対する反射部材7の位置は、実使用時において温度変化等が生じた場合にも略変動しない。すなわち、温度変化等が生じた場合にも各走査線の書き出しが行われるべき位置と反射部材7との相対位置の変動が実質的に生じない。そのため、各走査線の書き出し位置は依然として揃い、スクリーンSに投影される画像に歪みや色ずれが実質的には生じない。また、特許文献1のように、走査線検出用のセンサとスクリーンとの相対位置が別の保持部材を介して間接的に決められている場合には、輸送時の振動等により該センサ、スクリーン等の取付位置が微少に動くことがある。その場合に生じ得る該相対位置の最大の変動量は、該センサ、スクリーン自体の許容公差だけでなく、該センサ又はスクリーンを直接又は間接的に保持する全ての部品の許容公差の積み重ねである。そのため、特許文献1においては、輸送後に各走査線の書き出し位置が大きくばらつきかねない。一方、第一実施形態の二次元走査型投影装置100では、反射部材7がスクリーンSに直接取り付けられている。そのため、該相対位置の最大の変動量は、反射部材7とスクリーンSの許容公差の合計に過ぎない。すなわち、第一実施形態の二次元走査型投影装置100によれば、輸送時の振動等により懸念される各走査線の書き出し位置のばらつきが有効に抑えられている。
Thus, in the two-dimensional scanning projection apparatus 100 of the first embodiment, the reflecting member 7 is directly attached on the screen S. Therefore, the position of the reflecting member 7 with respect to the position where each scanning line is to be written does not vary substantially even when a temperature change or the like occurs during actual use. That is, even when a temperature change or the like occurs, the relative position between the position where each scanning line should be written and the reflecting member 7 does not substantially change. Therefore, the writing positions of the respective scanning lines are still aligned, and the image projected on the screen S is not substantially distorted or displaced. Further, as in Patent Document 1, when the relative position between the scanning line detection sensor and the screen is indirectly determined via another holding member, the sensor and the screen are caused by vibration during transportation. The attachment position such as may move slightly. The maximum amount of variation of the relative position that can occur in that case is not only the tolerance of the sensor, the screen itself, but also the stack of tolerances of all the parts that hold the sensor or screen directly or indirectly. Therefore, in Patent Document 1, the writing position of each scanning line may vary greatly after transportation. On the other hand, in the two-dimensional scanning projection apparatus 100 of the first embodiment, the reflecting member 7 is directly attached to the screen S. Therefore, the maximum fluctuation amount of the relative position is only the sum of the allowable tolerances of the reflecting member 7 and the screen S. That is, according to the two-dimensional scanning projection apparatus 100 of the first embodiment, variation in the writing position of each scanning line, which is a concern due to vibration during transportation, is effectively suppressed.
反射部材7の取付位置は、第一実施形態のように各走査線の書き出し位置の直前であることが好ましい。書き出し位置直前に反射部材7を配置する場合、書き出し位置に対する反射部材7の位置決めが容易であるためである。但し、別の実施形態では、反射部材7は、有効走査外領域R内であれば何れの箇所に取り付けられてもよい。
The mounting position of the reflecting member 7 is preferably immediately before the writing position of each scanning line as in the first embodiment. This is because when the reflecting member 7 is disposed immediately before the writing position, the reflecting member 7 can be easily positioned with respect to the writing position. However, in another embodiment, the reflecting member 7 may be attached to any location within the effective scanning outside region R.
以上説明された第一実施形態によれば、各走査線の書き出し位置は温度変化等が生じた場合にも依然として揃っているため、スクリーンSに投影される画像に主走査方向の歪みや色ずれが生じることはない。一方、スクリーンSの有効走査領域に対する副走査方向の書き出し位置はオープン制御で決定されている。そのため、厳密には、温度等の使用環境の変化に応じて副走査方向の書き出し位置が変動し得る。そこで、各走査線の書き出し位置に加えて、副走査方向の書き出し位置の補正も行うことが望ましい。第二実施形態として、各走査線の書き出し位置、副走査方向の書き出し位置の両方を補正することができる構成を説明する。なお、以下では、各実施形態独自の構成や特徴についてのみ説明し、それ以外の第一実施形態と同様の構成等は上記を参照する。
According to the first embodiment described above, since the writing position of each scanning line is still aligned even when a temperature change or the like occurs, distortion or color misregistration in the main scanning direction appears on the image projected on the screen S. Will not occur. On the other hand, the writing position in the sub-scanning direction with respect to the effective scanning area of the screen S is determined by open control. Therefore, strictly speaking, the writing position in the sub-scanning direction can vary according to changes in the usage environment such as temperature. Therefore, it is desirable to correct the writing position in the sub-scanning direction in addition to the writing position of each scanning line. As a second embodiment, a configuration capable of correcting both the writing position of each scanning line and the writing position in the sub-scanning direction will be described. In the following, only the configuration and features unique to each embodiment will be described, and the same configurations and the like as those of the first embodiment will be referred to above.
図7は、第二実施形態の二次元走査型投影装置100zの外観(正面)を示す外観正面図である。図7に示されるように、二次元走査型投影装置100zは、外観フレームの裏側に反射部材7に加えてさらに反射部材7’を有している。反射部材7’は、各走査線の理想的な書き出し位置(図7の有効走査領域の右辺、又は図2の有効走査幅Smの上端)と反射部材7の間の有効走査外領域R上の位置に、副走査方向(別の表現によれば、反射部材7の長手方向)に対して斜めに配置されている。
FIG. 7 is an external front view showing the external appearance (front) of the two-dimensional scanning projection apparatus 100z of the second embodiment. As shown in FIG. 7, the two-dimensional scanning projection apparatus 100z further includes a reflecting member 7 'in addition to the reflecting member 7 on the back side of the appearance frame. The reflecting member 7 ′ is located on the non-effective scanning area R between the ideal writing position of each scanning line (the right side of the effective scanning area in FIG. 7 or the upper end of the effective scanning width Sm in FIG. 2) and the reflecting member 7. At a position, it is arranged obliquely with respect to the sub-scanning direction (in other words, the longitudinal direction of the reflecting member 7).
反射部材7’は、反射部材7と長手方向の長さが異なるものの、例えば断面については同一形状、同一寸法を有している。反射部材7’の前面側(走査光学系5側)も反射部材7と同じく、フレネルレンズ6によって覆われている。第二実施形態の二次元走査型投影装置100zは、反射部材7’を利用して副走査方向の書き出し位置の補正を行っている。
The reflecting member 7 ′ is different in length from the reflecting member 7 in the longitudinal direction. The front surface side (scanning optical system 5 side) of the reflecting member 7 ′ is also covered with the Fresnel lens 6 as with the reflecting member 7. The two-dimensional scanning projection apparatus 100z of the second embodiment corrects the writing position in the sub-scanning direction using the reflecting member 7 '.
図8は、副走査方向の書き出し位置の補正処理を説明するための図である。図8(a)は、スクリーンSを走査光学系5側から臨んだときの図である。図8(a)中、主走査方向に延びる矢印は走査線A1~A3を示す。図8(b)、図8(c)、図8(d)はそれぞれ、走査線A1、A2、A3の走査時に受光センサ8cが出力する信号波形を示す。
FIG. 8 is a diagram for explaining the correction process of the writing position in the sub-scanning direction. FIG. 8A is a diagram when the screen S is viewed from the scanning optical system 5 side. In FIG. 8A, the arrows extending in the main scanning direction indicate the scanning lines A1 to A3. FIGS. 8B, 8C, and 8D show signal waveforms output from the light receiving sensor 8c when scanning the scanning lines A1, A2, and A3, respectively.
図8(a)に示されるように、走査線A1~A3は、2つの反射面(反射部材7の反射面7a、および反射部材7’の反射面7’a)上を走査する。そのため、受光センサ8cは、反射光を短期間に2回受光して、図8(b)~(d)に示されるように2つの検知信号を出力する。ここで、反射面7aに対応する検知信号を「第一検知信号」と定義し、反射面7’aに対応する検知信号を「第二検知信号」と定義する。各走査線上における反射面7aと反射面7’aとの間隔はそれぞれ異なるため、第一検知信号と第二検知信号との時間間隔も走査線毎に異なる。
As shown in FIG. 8A, the scanning lines A1 to A3 scan on two reflecting surfaces (the reflecting surface 7a of the reflecting member 7 and the reflecting surface 7'a of the reflecting member 7 '). Therefore, the light receiving sensor 8c receives reflected light twice in a short time and outputs two detection signals as shown in FIGS. 8B to 8D. Here, the detection signal corresponding to the reflective surface 7a is defined as "first detection signal", and the detection signal corresponding to the reflective surface 7'a is defined as "second detection signal". Since the interval between the reflecting surface 7a and the reflecting surface 7'a on each scanning line is different, the time interval between the first detection signal and the second detection signal is also different for each scanning line.
第二実施形態の二次元走査型投影装置100zは、n個の光源部を有している。すなわち二次元走査型投影装置100zは、n行の走査線を同時に走査するように構成されている。ここで、1番目の光源部に対応する第一検知信号と第二検知信号との設計上の時間間隔を「間隔t0」と定義し、i番目、(i+1)番目の光源部それぞれに対応する設計上の該時間間隔の差を「間隔差Δt」と定義し、i番目の光源部に対応する設計上の該時間間隔を「間隔ti」と定義する。このとき間隔tiは、t0+(i-1)Δtで表される。i番目の光源部とは、同時に走査されるn行の走査線中、上からi行目の走査線を走査する光源部をいう。
The two-dimensional scanning projection apparatus 100z of the second embodiment has n light source units. That is, the two-dimensional scanning projection apparatus 100z is configured to simultaneously scan n rows of scanning lines. Here, a design time interval between the first detection signal and the second detection signal corresponding to the first light source unit is defined as “interval t0”, which corresponds to each of the i-th and (i + 1) -th light source units. The design time interval difference is defined as “interval difference Δt”, and the design time interval corresponding to the i-th light source unit is defined as “interval ti”. At this time, the interval ti is represented by t0 + (i−1) Δt. The i-th light source unit refers to a light source unit that scans the i-th scanning line from the top among n scanning lines that are scanned simultaneously.
第二実施形態では検知信号を得るため、n個中a番目の光源部のみが画像描画期間以外の期間中連続光を照射する。a番目の光源部に対応する第一検知信号と第二検知信号との設計上の時間間隔は、ta(=t0+(a-1)Δt)である。システムコントローラ10は、受光センサ8cから入力される第一検知信号と第二検知信号との実際の時間間隔t’aと、設計上の時間間隔taとを比較する。
In the second embodiment, in order to obtain a detection signal, only the a-th light source unit out of n emits continuous light during a period other than the image drawing period. The design time interval between the first detection signal and the second detection signal corresponding to the a-th light source unit is ta (= t0 + (a−1) Δt). The system controller 10 compares the actual time interval t'a between the first detection signal and the second detection signal input from the light receiving sensor 8c with the designed time interval ta.
システムコントローラ10は、かかる比較結果に基づき副走査方向の書き出し位置のズレ量を推定する。副走査方向の書き出し位置のズレ量は、所定の数式f(f=(t’a-ta)/Δt)により走査線本数に換算することができる。副走査方向の書き出し位置のズレ量が例えば走査線本数換算で2本分である場合を考える。この場合、システムコントローラ10は、i番目の光源部が出力すべき変調光を(i-2)番目の光源部が出力するように画像処理部20に指示を出す。このような補正を行うことにより、副走査方向の書き出し位置が使用環境等に拘わらず常に一定に保たれる。
The system controller 10 estimates the amount of deviation of the writing position in the sub-scanning direction based on the comparison result. The deviation amount of the writing position in the sub-scanning direction can be converted into the number of scanning lines by a predetermined formula f (f = (t′a−ta) / Δt). Consider a case where the amount of deviation in the writing position in the sub-scanning direction is, for example, two in terms of the number of scanning lines. In this case, the system controller 10 instructs the image processing unit 20 so that the (i-2) th light source unit outputs the modulated light to be output by the i th light source unit. By performing such correction, the writing position in the sub-scanning direction is always kept constant regardless of the use environment.
図9は、第三実施形態の二次元走査型投影装置100yが有する二次元偏向器14の構成を示す。第三実施形態の二次元走査型投影装置100yは、二次元偏向器4の代替として、二次元偏向器14を有している。図9に示されるように、二次元偏向器14は、例えば面倒れ付きポリゴンミラーである。面倒れ付きポリゴンミラーは、各偏向面が隣接する偏向面に対して副走査方向に所定角度傾斜した構成を有している。ここでは偏向面を8面(偏向面P1~P8)有する面倒れ付きポリゴンミラーを例にとり、説明を行う。
FIG. 9 shows a configuration of the two-dimensional deflector 14 included in the two-dimensional scanning projection apparatus 100y of the third embodiment. The two-dimensional scanning projection apparatus 100 y of the third embodiment has a two-dimensional deflector 14 as an alternative to the two-dimensional deflector 4. As shown in FIG. 9, the two-dimensional deflector 14 is, for example, a polygon mirror with surface tilt. The polygon mirror with surface tilt has a configuration in which each deflection surface is inclined by a predetermined angle in the sub-scanning direction with respect to the adjacent deflection surface. Here, a description will be given by taking as an example a polygon mirror with surface tilt having eight deflection surfaces (deflection surfaces P1 to P8).
図9(a)は、面倒れ付きポリゴンミラーの概略構成を示す主走査断面図である。図9(a)に示されるように、偏向面P1は副走査方向に平行な面である一方、他の偏向面P2~P8は副走査方向に対して角度を持つ。図9(b)は、面倒れ付きポリゴンミラーの面倒れ形状を説明するための図である。かかる形状を説明する便宜上、図9(b)には、偏向面P1、P2、P3のみを示している。図9(b)に示されるように、隣接する偏向面P1とP2、又は偏向面P2とP3はそれぞれ、面倒れ角度αをなすように構成されている。偏向面Pの添字が1増えるほど当該偏向面と副走査方向とがなす角度がα度増える。偏向面P8は、偏向面P1(副走査方向)に対して角度7α傾斜している。面倒れ付きポリゴンミラーの各偏向面は、入射されたレーザー光を面倒れ角度に応じた分だけ副走査方向に偏向する。すなわち、副走査方向の走査幅、走査間隔等は、各偏向面の面倒れ角度により定義される。
FIG. 9A is a main scanning sectional view showing a schematic configuration of a polygon mirror with surface tilt. As shown in FIG. 9A, the deflection surface P1 is a surface parallel to the sub-scanning direction, while the other deflection surfaces P2 to P8 have an angle with respect to the sub-scanning direction. FIG. 9B is a diagram for explaining the surface tilt shape of the polygon mirror with surface tilt. For convenience of explaining such a shape, FIG. 9B shows only the deflection surfaces P1, P2, and P3. As shown in FIG. 9B, the adjacent deflection surfaces P1 and P2 or the deflection surfaces P2 and P3 are each configured to have a surface tilt angle α. As the subscript of the deflection surface P increases by 1, the angle between the deflection surface and the sub-scanning direction increases by α degrees. The deflection surface P8 is inclined at an angle 7α with respect to the deflection surface P1 (sub-scanning direction). Each deflection surface of the polygon mirror with surface tilt deflects incident laser light in the sub-scanning direction by an amount corresponding to the surface tilt angle. That is, the scanning width, scanning interval, etc. in the sub-scanning direction are defined by the surface tilt angle of each deflection surface.
有効走査外領域Rを含む全範囲の走査線本数が560本で、面倒れ付きポリゴンミラーの偏向面が16面の場合を例に考える。この場合、二次元走査型投影装置100yには、光源部として例えば35個の光源が副走査方向に配列されたアレイ光源が実装される。そして、35本のレーザー光が各偏向面に同時に入射されて偏向され、後段の光学系を介してスクリーンSに同時に走査される。各偏向面を使用して35本の走査線が走査されるため、全走査線本数が同時走査本数の35本に偏向面の面数16を乗じた540本に達する。
Consider the case where the number of scanning lines in the entire range including the non-effective scanning region R is 560 and the deflection surface of the polygon mirror with surface tilt is 16 surfaces. In this case, an array light source in which, for example, 35 light sources are arranged in the sub-scanning direction as the light source unit is mounted on the two-dimensional scanning projection apparatus 100y. Then, 35 laser beams are simultaneously incident on the deflecting surfaces and deflected, and are simultaneously scanned on the screen S via the optical system at the subsequent stage. Since 35 scanning lines are scanned using each deflection surface, the total number of scanning lines reaches 540, which is obtained by multiplying the number of simultaneous scanning lines 35 by the number 16 of deflection surfaces.
二次元走査型投影装置100yに実装すべき光源の個数および面倒れ付きポリゴンミラーの偏向面の面数は、必要な走査線本数や走査速度等に応じて適宜選択される。なお、面倒れ付きポリゴンミラーの詳細は、例えば特開昭61-198208号公報に開示されている。
The number of light sources to be mounted on the two-dimensional scanning projection apparatus 100y and the number of deflection surfaces of the polygon mirror with surface tilt are appropriately selected according to the required number of scanning lines, scanning speed, and the like. The details of the polygon mirror with surface tilt are disclosed in, for example, Japanese Patent Application Laid-Open No. 61-198208.
図10は、第四実施形態の二次元走査型投影装置100xの構成を概略的に示す主走査断面図である。図10に示されるように、二次元走査型投影装置100xは、光束分離ミラー8aの代替として、ビームスプリッタ18を有している。ビームスプリッタ18は、光源部から照射されたレーザー光を透過する一方、反射部材7や7’からの反射光を反射する。ビームスプリッタ18により反射された反射光は、センサ用光学系8bにより集光されて、受光センサ8cに受光される。第四実施形態の構成によれば、より一層の光量の反射光が受光センサ8cに導かれる。受光センサ8cは多くの反射光を受光できるため、安定したレベルの検知信号を出力することができる。
FIG. 10 is a main scanning sectional view schematically showing the configuration of the two-dimensional scanning projection apparatus 100x of the fourth embodiment. As shown in FIG. 10, the two-dimensional scanning projector 100x has a beam splitter 18 as an alternative to the light beam separation mirror 8a. The beam splitter 18 transmits the laser light emitted from the light source unit, and reflects the reflected light from the reflecting members 7 and 7 '. The reflected light reflected by the beam splitter 18 is collected by the sensor optical system 8b and received by the light receiving sensor 8c. According to the configuration of the fourth embodiment, a further amount of reflected light is guided to the light receiving sensor 8c. Since the light receiving sensor 8c can receive a lot of reflected light, it can output a detection signal at a stable level.
ところで、ビームスプリッタ18は、二次元走査型投影装置100xの中心軸AX(別の表現によれば、光源部から照射されるレーザー光)と交差する位置に配置されている。そのため、第四実施形態の構成の場合、反射部材7により反射されるレーザー光は、主走査方向に幅が広げられない場合もビームスプリッタ18により偏向されて、受光センサ8cに導かれる。したがって、第四実施形態においては、反射部材7の反射面7aは、凸面である必要がなく例えば平面で構成されてもよい。
Incidentally, the beam splitter 18 is disposed at a position that intersects the central axis AX of the two-dimensional scanning projector 100x (in other words, the laser light emitted from the light source unit). Therefore, in the case of the configuration of the fourth embodiment, the laser light reflected by the reflecting member 7 is deflected by the beam splitter 18 and guided to the light receiving sensor 8c even when the width is not widened in the main scanning direction. Therefore, in 4th embodiment, the reflective surface 7a of the reflective member 7 does not need to be a convex surface, and may be comprised by the plane, for example.
以上が本発明の実施形態である。本発明に係る二次元走査型投影装置は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲において様々な変形が可能である。例えば本発明に係る二次元走査型投影装置は、マルチビーム型の二次元走査型投影装置に限らず、シングルビーム型の二次元走査型投影装置であってもよい。
The above is the embodiment of the present invention. The two-dimensional scanning projection apparatus according to the present invention is not limited to the above-described configuration, and various modifications are possible within the scope of the technical idea of the present invention. For example, the two-dimensional scanning projector according to the present invention is not limited to a multi-beam two-dimensional scanning projector, but may be a single-beam two-dimensional scanning projector.
また、別の実施形態の二次元走査型投影装置では、反射部材7や7’のような光学部品に代替して、スクリーンS上の反射部材7や7’に対応する領域に反射性を有する材料を塗布又は印刷した構成であってもよい。かかる場合、塗布剤は、反射面7aに入射されたレーザー光の発散度を高めて、やや広がりを持つ光束として反射させる作用を有している。反射部材7や7’は、印刷等により製造される場合、量産性や位置精度に優れると共に、コスト面でも有利である。
In the two-dimensional scanning projection apparatus according to another embodiment, a region corresponding to the reflecting member 7 or 7 'on the screen S has reflectivity instead of an optical component such as the reflecting member 7 or 7'. The structure which apply | coated or printed the material may be sufficient. In such a case, the coating agent has the effect of increasing the divergence of the laser light incident on the reflecting surface 7a and reflecting it as a slightly broadened light beam. When the reflecting member 7 or 7 ′ is manufactured by printing or the like, it is excellent in mass productivity and positional accuracy and advantageous in terms of cost.
また、第四実施形態のビームスプリッタ18の代替として、絞り兼用ミラーを有した二次元走査型投影装置が想定される。絞り兼用ミラーは、主走査方向において、光源部から照射されるレーザー光の幅よりも広く且つ反射部材7からの反射光の幅よりも狭いスリットを有する。そのため、光源部から照射されたレーザー光は、絞り兼用ミラーのスリットを通過する。一方、反射部材7からの反射光の一部は、絞り兼用ミラーの遮蔽部に入射される。ここで絞り兼用ミラーの遮蔽部は反射面又は回折面として構成されている。したがって、反射部材7からの反射光の一部は、遮蔽部により偏向又は回折されてセンサ用光学系8bに入射され、受光センサ8cに導かれる。
Further, as a substitute for the beam splitter 18 of the fourth embodiment, a two-dimensional scanning projection apparatus having a diaphragm mirror is assumed. The diaphragm mirror also has a slit that is wider than the width of the laser light emitted from the light source unit and narrower than the width of the reflected light from the reflecting member 7 in the main scanning direction. Therefore, the laser light emitted from the light source unit passes through the slit of the diaphragm mirror. On the other hand, part of the reflected light from the reflecting member 7 enters the shielding part of the diaphragm mirror. Here, the shielding portion of the diaphragm mirror is configured as a reflection surface or a diffraction surface. Therefore, a part of the reflected light from the reflecting member 7 is deflected or diffracted by the shielding part, enters the sensor optical system 8b, and is guided to the light receiving sensor 8c.
また、本発明に係る二次元走査型投影装置は、プロジェクタへの搭載を想定しているが、他の画像形成装置、例えばレーザープリンタやイメージスキャナ等にも好適に使用することができる。
The two-dimensional scanning projection apparatus according to the present invention is assumed to be mounted on a projector, but can be suitably used for other image forming apparatuses such as a laser printer and an image scanner.
Claims (14)
- 被走査面上に光束を主走査方向と、該主走査方向と直交する副走査方向の二方向に走査する走査型投影装置において、
前記光束を照射する少なくとも一つの光源部と、
前記照射された光束を偏向して前記被走査面上で前記二方向に走査する走査部と、
前記被走査面上の有効走査外領域に配置され、該被走査面上の有効走査領域より高い反射率を有する第一反射部と、
前記第一反射部により反射された光束を戻して前記走査部に再入射させる光束戻し部と、
前記走査部に再入射されて偏向された反射光の一部を検知する反射光検知部と、
前記反射光検知部による前記反射光の検知のタイミングに従い、前記少なくとも一つの光源部に投影画像に応じた発光制御を行う発光制御部と、
を有することを特徴とする走査型投影装置。 In a scanning projection apparatus that scans a light beam on a surface to be scanned in two directions of a main scanning direction and a sub-scanning direction orthogonal to the main scanning direction,
At least one light source unit for irradiating the luminous flux;
A scanning unit that deflects the irradiated light beam and scans the scanned surface in the two directions;
A first reflecting portion disposed in an area outside the effective scan on the scanned surface and having a higher reflectance than the effective scanning area on the scanned surface;
A light flux returning section that returns the light flux reflected by the first reflecting section and re-enters the scanning section;
A reflected light detector that detects a part of reflected light that is re-incident on the scanning unit and deflected;
A light emission control unit that performs light emission control according to a projection image on the at least one light source unit according to the timing of detection of the reflected light by the reflected light detection unit;
A scanning projection apparatus comprising: - 前記第一反射部は、前記副走査方向に長い辺を持つ長尺状の反射部であることを特徴とする、請求項1に記載の走査型投影装置。 2. The scanning projection apparatus according to claim 1, wherein the first reflecting part is a long reflecting part having a long side in the sub-scanning direction.
- 前記第一反射部は、前記被走査面上における前記光束の前記主走査方向の書き出しが予定される位置に近接して配置されていることを特徴とする、請求項1または請求項2の何れかに記載の走査型投影装置。 3. The first reflecting portion according to claim 1, wherein the first reflecting portion is disposed in proximity to a position where writing of the light beam in the main scanning direction is scheduled on the surface to be scanned. A scanning projection apparatus according to claim 1.
- 前記発光制御部は、前記反射光検知部により前記反射光が検知されてから所定時間経過後に、前記少なくとも一つの光源部に対して前記発光制御を行うことを特徴とする、請求項1から請求項3の何れかに記載の走査型投影装置。 The said light emission control part performs the said light emission control with respect to the said at least 1 light source part after progress for a predetermined time after the said reflected light is detected by the said reflected light detection part. Item 4. The scanning projection device according to any one of Items 3 to 4.
- 前記第一反射部の前記辺に対して所定の角度をなす辺を有する第二反射部をさらに有し、
前記反射光検知部は、前記第一反射部、前記第二反射部それぞれの反射光を検知して、
前記発光制御部は、前記第一反射部、前記第二反射部それぞれの反射光の検知の時間間隔に基づき前記被走査面上における前記光束の副走査方向の書き出し位置を制御することを特徴とする、請求項2を引用する請求項3または請求項4の何れかに記載の走査型投影装置。 A second reflecting portion having a side that forms a predetermined angle with respect to the side of the first reflecting portion;
The reflected light detection unit detects reflected light of each of the first reflection unit and the second reflection unit,
The light emission control unit controls a writing position in the sub-scanning direction of the light beam on the scanned surface based on a detection time interval of reflected light of each of the first reflecting unit and the second reflecting unit. The scanning projection apparatus according to claim 3, wherein the scanning projection apparatus according to claim 3 is cited. - 前記第一反射部又は前記第二反射部は、前記有効走査外領域に取り付けられた反射部材であり、又は該有効走査外領域に塗布又は印刷された反射領域であることを特徴とする、請求項1から請求項5の何れかに記載の走査型投影装置。 The first reflection part or the second reflection part is a reflection member attached to the area outside the effective scan, or a reflection area coated or printed on the area outside the effective scan. The scanning projection apparatus according to any one of claims 1 to 5.
- 前記光束戻し部は、前記第一反射部又は前記第二反射部に入射された光束を入射時と略同一の光路に戻すため、該光束を該第一反射部又は該第二反射部に略垂直に入射させる垂直入射光学素子を有することを特徴とする、請求項1から請求項6の何れかに記載の走査型投影装置。 The light flux returning section returns the light flux incident on the first reflecting section or the second reflecting section to the first reflecting section or the second reflecting section in order to return the light flux incident on the first reflecting section or the second reflecting section. The scanning projection apparatus according to any one of claims 1 to 6, further comprising a normal incidence optical element that makes incidence perpendicularly.
- 前記垂直入射光学素子は、前記被走査面に近接して配置されたフレネルレンズであることを特徴とする、請求項7に記載の走査型投影装置。 The scanning projection apparatus according to claim 7, wherein the normal incidence optical element is a Fresnel lens disposed close to the surface to be scanned.
- 前記略同一の光路に戻されて前記走査部により偏向された前記反射光の少なくとも一部を該光路から偏向して前記反射光検知部に導く反射光偏向部をさらに有することを特徴とする、請求項7または請求項8の何れかに記載の走査型投影装置。 It further includes a reflected light deflecting unit that deflects at least a part of the reflected light returned to the substantially same optical path and deflected by the scanning unit from the optical path and guides the reflected light to the reflected light detecting unit. The scanning projection apparatus according to claim 7 or 8.
- 前記走査部は、前記光源部側から順に、
前記光束を前記主走査方向又は前記副走査方向に偏向する偏向器、
前記偏向器により偏向された前記光束を前記被走査面上で走査する走査光学系、
を有し、
前記反射光偏向部は、前記偏向器近傍に配置されていることを特徴とする、請求項9に記載の走査型投影装置。 The scanning unit is sequentially from the light source unit side,
A deflector for deflecting the light beam in the main scanning direction or the sub-scanning direction;
A scanning optical system for scanning the light beam deflected by the deflector on the surface to be scanned;
Have
The scanning projection apparatus according to claim 9, wherein the reflected light deflecting unit is disposed in the vicinity of the deflector. - 前記光束を偏向する前記偏向器の偏向面と、前記反射光を検知する前記反射光検知部の検知面との光学的な瞳を共役に結ぶ共役光学系をさらに有することを特徴とする、請求項10に記載の走査型投影装置。 The optical system further includes a conjugate optical system that conjugates an optical pupil between a deflection surface of the deflector that deflects the light beam and a detection surface of the reflected light detection unit that detects the reflected light. Item 11. A scanning projection apparatus according to Item 10.
- 前記偏向器は、前記光束を前記二方向に偏向する二次元走査型ガルバノミラー又は二次元MEMS(Micro Electro Mechanical Systems)ミラー、或いは面倒れ付きポリゴンミラーであることを特徴とする、請求項10または請求項11の何れかに記載の走査型投影装置。 The deflector is a two-dimensional scanning galvanometer mirror, a two-dimensional MEMS (Micro Electro Mechanical Systems) mirror, or a polygon mirror with surface tilt, which deflects the light beam in the two directions. The scanning projection apparatus according to claim 11.
- 前記第一反射部又は前記第二反射部は、該第一反射部又は該第二反射部に入射される前記光束を発散度を大きくして反射させるように構成され、前記反射光偏向部は、該反射光束の周辺の光を前記反射光検知部に偏向することを特徴とする、請求項9から請求項12の何れかに記載の走査型投影装置。 The first reflecting part or the second reflecting part is configured to reflect the light beam incident on the first reflecting part or the second reflecting part with a large divergence, and the reflected light deflecting part is The scanning projection apparatus according to claim 9, wherein light around the reflected light beam is deflected to the reflected light detection unit.
- 前記第一反射部又は前記第二反射部は、該第一反射部又は該第二反射部に入射される前記光束のスポットサイズと同等又は大きいサイズの単一の凸形状で構成され、或いは該スポットサイズより小さいサイズの複数の凸形状で構成されていることを特徴とする、請求項13に記載の走査型投影装置。 The first reflecting portion or the second reflecting portion is configured by a single convex shape having a size equal to or larger than the spot size of the light beam incident on the first reflecting portion or the second reflecting portion, or The scanning projection apparatus according to claim 13, wherein the scanning projection apparatus includes a plurality of convex shapes having a size smaller than a spot size.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/071088 WO2010058462A1 (en) | 2008-11-20 | 2008-11-20 | Scanning type projector |
JP2010539073A JP5226081B2 (en) | 2008-11-20 | 2008-11-20 | Scanning projector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/071088 WO2010058462A1 (en) | 2008-11-20 | 2008-11-20 | Scanning type projector |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010058462A1 true WO2010058462A1 (en) | 2010-05-27 |
Family
ID=42197909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/071088 WO2010058462A1 (en) | 2008-11-20 | 2008-11-20 | Scanning type projector |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5226081B2 (en) |
WO (1) | WO2010058462A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013016591A (en) * | 2011-07-01 | 2013-01-24 | Denso Corp | Optical deflection element and optical deflection module |
WO2015146071A1 (en) * | 2014-03-28 | 2015-10-01 | 株式会社Jvcケンウッド | Image display device and image display adjustment method |
JP2015194695A (en) * | 2014-03-28 | 2015-11-05 | 株式会社Jvcケンウッド | Image display device and image display adjustment method |
JP2015194694A (en) * | 2014-03-28 | 2015-11-05 | 株式会社Jvcケンウッド | Image display device and image display adjustment method |
WO2016158099A1 (en) * | 2015-03-31 | 2016-10-06 | ミツミ電機株式会社 | Optical scanning control device |
JP2017009628A (en) * | 2015-06-16 | 2017-01-12 | 株式会社リコー | Optical scanner |
JP2020144326A (en) * | 2019-03-08 | 2020-09-10 | 株式会社リコー | Optical scanner, display system, and movable body |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56111827A (en) * | 1980-02-08 | 1981-09-03 | Canon Inc | Synchronizing signal generating method of optical scanner |
JPH08505717A (en) * | 1993-11-23 | 1996-06-18 | シュナイダー ルンドフンクヴェルケ アクチェンゲゼルシャフト | Method and apparatus for compensating for pyramidal errors |
JPH1090616A (en) * | 1996-01-18 | 1998-04-10 | Ricoh Co Ltd | Multi-beam scanner |
JP2002182140A (en) * | 2000-12-19 | 2002-06-26 | Matsushita Electric Ind Co Ltd | Optical scanner and image forming device using the same |
WO2004004167A1 (en) * | 2002-06-26 | 2004-01-08 | Silicon Light Machines Corporation | Method and apparatus for calibration of light-modulating array |
-
2008
- 2008-11-20 JP JP2010539073A patent/JP5226081B2/en not_active Expired - Fee Related
- 2008-11-20 WO PCT/JP2008/071088 patent/WO2010058462A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56111827A (en) * | 1980-02-08 | 1981-09-03 | Canon Inc | Synchronizing signal generating method of optical scanner |
JPH08505717A (en) * | 1993-11-23 | 1996-06-18 | シュナイダー ルンドフンクヴェルケ アクチェンゲゼルシャフト | Method and apparatus for compensating for pyramidal errors |
JPH1090616A (en) * | 1996-01-18 | 1998-04-10 | Ricoh Co Ltd | Multi-beam scanner |
JP2002182140A (en) * | 2000-12-19 | 2002-06-26 | Matsushita Electric Ind Co Ltd | Optical scanner and image forming device using the same |
WO2004004167A1 (en) * | 2002-06-26 | 2004-01-08 | Silicon Light Machines Corporation | Method and apparatus for calibration of light-modulating array |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013016591A (en) * | 2011-07-01 | 2013-01-24 | Denso Corp | Optical deflection element and optical deflection module |
WO2015146071A1 (en) * | 2014-03-28 | 2015-10-01 | 株式会社Jvcケンウッド | Image display device and image display adjustment method |
JP2015194695A (en) * | 2014-03-28 | 2015-11-05 | 株式会社Jvcケンウッド | Image display device and image display adjustment method |
JP2015194694A (en) * | 2014-03-28 | 2015-11-05 | 株式会社Jvcケンウッド | Image display device and image display adjustment method |
WO2016158099A1 (en) * | 2015-03-31 | 2016-10-06 | ミツミ電機株式会社 | Optical scanning control device |
JP2016191826A (en) * | 2015-03-31 | 2016-11-10 | ミツミ電機株式会社 | Optical scanning control device |
CN107533220A (en) * | 2015-03-31 | 2018-01-02 | 三美电机株式会社 | Optical scanning control device |
US10078259B2 (en) | 2015-03-31 | 2018-09-18 | Mitsumi Electric Co., Ltd. | Optical scanning control device |
CN107533220B (en) * | 2015-03-31 | 2021-01-08 | 三美电机株式会社 | Optical scanning control device |
JP2017009628A (en) * | 2015-06-16 | 2017-01-12 | 株式会社リコー | Optical scanner |
JP2020144326A (en) * | 2019-03-08 | 2020-09-10 | 株式会社リコー | Optical scanner, display system, and movable body |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010058462A1 (en) | 2012-04-12 |
JP5226081B2 (en) | 2013-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5226081B2 (en) | Scanning projector | |
US8085457B2 (en) | Light source system, optical scanner, image forming apparatus, and light-amount control method | |
US11619742B2 (en) | Line beam scanning optical system and laser radar | |
US20080316562A1 (en) | Mems Scanner System and Method | |
KR101120487B1 (en) | Multibeam scanning device | |
US20080049289A1 (en) | Optical deflector, light scanning appratus and scanning type image display apparatus | |
US6842187B2 (en) | Optical beam scanning device and image forming apparatus | |
EP1107038B1 (en) | Multi-beam scanning optical system and image forming apparatus using the same | |
US8094179B2 (en) | Light source device, optical scanning device, and image forming apparatus | |
JP3499359B2 (en) | Multi-beam writing optical system | |
JP6627994B2 (en) | Optical deflector, optical scanning device, image forming device, and vehicle | |
JP2005274678A (en) | Optical scanner | |
JPH08304728A (en) | Slit plate loading structure for optical scanner | |
JPH1010448A (en) | Optical scanner | |
JP2012048080A (en) | Light source device, optical scanner and image forming device | |
JP4298091B2 (en) | Method for assembling scanning optical device | |
JP2004070312A (en) | Multi-beam scanner | |
JP4389735B2 (en) | Optical scanning apparatus and beam waist position adjusting method | |
JP2002250882A (en) | Multibeam scanner | |
CN116413703A (en) | MEMS laser radar angle calibration device, method, equipment and storage medium | |
JP4967833B2 (en) | Optical scanning device | |
US6980344B2 (en) | Scanning optical system | |
JP2007047765A (en) | Lens-holding structure and scanning optical apparatus having the lens-holding structure | |
JP3579530B2 (en) | Scanning optical device | |
JP4875570B2 (en) | Scanning optical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08878259 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010539073 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08878259 Country of ref document: EP Kind code of ref document: A1 |