[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010052126A1 - Procédé pour mesurer la température et/ou la pression au niveau d'un pipeline, en particulier dans la zone en mer d'installations d'extraction de pétrole et de gaz - Google Patents

Procédé pour mesurer la température et/ou la pression au niveau d'un pipeline, en particulier dans la zone en mer d'installations d'extraction de pétrole et de gaz Download PDF

Info

Publication number
WO2010052126A1
WO2010052126A1 PCT/EP2009/063773 EP2009063773W WO2010052126A1 WO 2010052126 A1 WO2010052126 A1 WO 2010052126A1 EP 2009063773 W EP2009063773 W EP 2009063773W WO 2010052126 A1 WO2010052126 A1 WO 2010052126A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
optical waveguide
heating
unit
power
Prior art date
Application number
PCT/EP2009/063773
Other languages
German (de)
English (en)
Inventor
Thomas Bosselmann
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2010052126A1 publication Critical patent/WO2010052126A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/324Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2215/00Details concerning sensor power supply

Definitions

  • the invention relates to a method for measuring temperature and / or pressure on a pipeline, in particular in the offshore area of oil and gas production facilities.
  • the invention also relates to the associated apparatus for carrying out the method.
  • Offshore platforms are constantly expanding their radius towards so-called satellite oil fields, which are up to several tens of kilometers, currently about 10 to 15 km, from the platform and tap holes.
  • the oil production pipes to these remote production sites run along the borehole on the seabed.
  • Water or gas is pumped into metal piping with a typical diameter of 6 "(about 152 mm) to 12" (about 305 mm) to the platform. Over the length of the pipeline, the medium cools down and, under the prevailing pressure and temperature conditions, the pipes become covered by deposits of paraffins or for the formation of methane hydrates, which hinders the flow.
  • a thermal image of the pipeline is calculated in the computer calculated. This is based on a temperature at the borehole (eg 150 0 C) and the incoming flow on the platform is quite easy to measure.
  • an object of the invention to provide a method by which the temperature and / or pressure of an extended over longer areas pipeline can be detected.
  • an associated device is to be created.
  • the object is achieved by the measures of claim 1.
  • An associated device is specified in claim 15. Further developments of the method and the associated device are the subject of the dependent claims.
  • the invention relates to the use of a fiber optic system (DTS, FBG), which has a protective sheath and rests against the metallic pipe.
  • DTS fiber optic system
  • FBG fiber optic system
  • the protective sheath of the optical fiber must be non-metallic.
  • a system is advantageous which has its light source and evaluation unit on the platform.
  • the system can be a so-called distributed temperature measuring system - DTS -, which is based on Raman spectroscopy.
  • a further advantageous variant uses multiplexed fiber Bragg gratings (FBG).
  • FBG fiber Bragg gratings
  • a fiber Bragg grating can be placed on the track and measure with pinpoint accuracy.
  • FBG can measure both temperature and strain. From the literature arrangements are known which with the aid of z. B. Barometer cans measure pressure as strain.
  • a sensor cable can be realized, which depending on the application dialing and has alternating temperature and pressure measuring points.
  • the grids must be mounted in a special arrangement: temperature sensors must be mounted stress-free, while pressure sensors need to be precisely straightened for strain. It is therefore conceivable to segment the sensor cable, transmission pieces are used for the pure transmission of optical sensor signals, in between sensor pieces are incorporated, which contain the sensor. These can be designed as splice boxes.
  • Temperature sensor has the advantage that it can bring it directly to the ground and thus in good contact with the measuring object. The rest of the cable can thus a simpler structure such.
  • B. have a conventional submarine cable.
  • a DTS for outdoor installation is not advantageous because the sensitive optical fiber is located in a usually thick cable sheath. This is known to have a low thermal conductivity. Outside there is a gradient between the heated pipeline housing and the much cooler water. But it is necessary a good thermal contact with the pipe wall.
  • the tubing has thermal insulation which includes the optical fiber of the fiber optic (FO) sensor.
  • FO fiber optic
  • DTS have typical operative lengths of 20 km. If this length is not sufficient, the range can be doubled by introducing a system from 2 sides.
  • FBG systems consistently have stronger signals and thus a more favorable signal-to-noise ratio. Due to the multiplexing properties, measuring systems can be implemented for transmission lengths of considerably longer lengths.
  • an arrangement that ensures a significantly better connection to the temperature can lead the sensor cable in the pipeline.
  • the sensor cable is inserted via an additional flange.
  • This arrangement has the advantage that the cable can be reliably sealed via the flange.
  • the introduction can be done above the water level, ie topside. But also directly at the heating station.
  • the cable must be oil resistant since In addition to oil and gas and water and particles are produced, hydrogen tightness and water resistance under high pressure to define. A temperature gradient is absent.
  • a DTS could also be used advantageously, since the poor thermal conductivity of a cable construction entails only a higher time constant.
  • the temperature monitoring system can also be used for a protection system.
  • An electrical shunt no longer heats the back of a pipeline. This manifests itself in a drop in temperature. By the temperature sensors, the location of this shunt can be limited.
  • FIG. 1 shows a measuring device for an underwater pipeline with a fiber optic monitoring system
  • FIG. 2 specific means for temperature measurement and evaluation in a system according to FIG. 1, FIG.
  • Figure 3 to Figure 2 alternative method for measuring temperature within the pipeline shows a perspective section of a pipeline with an associated inductor as a current transformer and an optical waveguide with Bragg sensors as
  • Temperature measuring device and Figure 5 shows a sensor arrangement with Bragg sensors at the bottom of
  • the pipeline will cool to temperatures near 4 ° C. If the medium to be transported also cools down, it can lead to problems during production.
  • Such a pipeline should therefore be heated, including the medium transported in the pipeline, for which purpose different electrical heating methods come into question.
  • a device can be realized either as a resistive heater or as an inductive heater.
  • inductive heating of such a pipeline reference is made to the patent application cited above.
  • the temperature and / or the pressure of the pipeline 10 In connection with devices described therein, it is proposed to monitor the temperature and / or the pressure of the pipeline 10 at predetermined time intervals. In particular, it is desirable to measure the temperature of the pipeline 10 locally. In addition to the detection of the temperature and / or pressure signals, the measurement signals are to be evaluated and transmitted as measurement data to a central evaluation unit.
  • an alternating current source 12 with a power supply line 13 for resistive heating of the pipeline 10 is combined with a so-called Bragg unit 110 and an associated optical waveguide 11.
  • the Bragg unit 110 is advantageously topside, ie on the oil platform outside the seawater.
  • the optical waveguide 11 is in thermal contact with the pipe and can be used for locally distributed temperature measurement on the pipeline.
  • pipelines laid at the bottom of the sea can be very long, so that a "topside" supply of the correspondingly long optical waveguide becomes problematic
  • the other optical waveguide 11 ' is guided under water from the borehole along the pipeline 10.
  • the signal transmission takes place in this case by means of a known PLC (Power Line Communication ) Methods.
  • units 31 to 33 for power supply 1, for current measurement and for PLC modulation are given by way of example in an arrangement according to FIG.
  • a Bragg unit 110 ' is arranged to operate the sensors under water. All units 31, 32, 33 and 110 'are arranged in a watertight housing and optionally shielded against electrical influences from the power line 13.
  • the signals of the second optical waveguide 11 ' are thus guided on the power supply line 13, decoupled via an inductive converter 51 and evaluated centrally in an external demodulation unit 50.
  • the temperature sensors of the optical waveguide, which are distributed on the pipeline 10, are each assigned inductive transducers 31, voltage supply units 32 and modulation units 33 in a watertight housing 150.
  • An external evaluation unit with demodulation unit 50 and inductive converter 51 is constructed in a known manner.
  • the energy supply unit is designed specifically in such a way that a resistive heating is realized, wherein the current or the electrical power is supplied via line 12 to the pipeline 10 and the pipeline 10 itself serves as a resistive resistor ,
  • an inductive heater is provided in FIG. 3, in which a line 15 as a closed current conductor loop ("loop") departs from a high-frequency generator 14 and a conductor branch runs parallel to the pipeline 10.
  • the heating is carried out in this case necessarily made of metallic material tube formed by induced electromagnetic fields.
  • FIG. 3 shows a supply device 120 with a lateral "topside" flange 121 as inlet, which makes it possible to introduce the optical waveguide 11 into the pipeline, in addition to which there is a so-called splice box 130.
  • the measuring points are in this case 111, 112, 113, .... It is advantageous in this case, in particular, that the actual measurements are not influenced by the electromagnetic fields of the induction heating.
  • a section of the pipeline 10 with associated inductor line 14, optical waveguide 11 for temperature measurement and locally arranged housing unit 160 with evaluation means can be seen in FIG.
  • the inductor line 14 is indicated, which is connected via the inductive converter 31 with the evaluation unit located in the housing 160.
  • the optical waveguide 11 e.g. with Bragg sensors, guided inside the thermal insulation 9. This construction is also clear from the sectional view according to FIG. 5, in which the optical waveguide 11 is guided between components 161 of the housing 160.
  • the temperature measurement can also be carried out by using a DTS (Distributed Temperature S_system) method based on Raman spectroscopy for the distributed temperature measurement.
  • DTS Distributed Temperature S_system

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

L'invention concerne un procédé pour mesurer la température et/ou la pression au niveau d'un pipeline, en particulier dans la zone en mer d'installations d'extraction de pétrole et de gaz, ainsi qu'un dispositif associé. Si le pipeline est chauffé électriquement, de l'énergie électrique doit être fournie à la conduite de transport. Des guides d'ondes optiques sont guidés sur le pipeline pour mesurer la température et/ou la pression. Ces guides d'ondes optiques présentent des capteurs individuels disposés de façon décentralisée sur le pipeline et peuvent être alimentés par une unité de Bragg externe (110). Les signaux de mesure sont analysés de façon centralisée.
PCT/EP2009/063773 2008-11-06 2009-10-21 Procédé pour mesurer la température et/ou la pression au niveau d'un pipeline, en particulier dans la zone en mer d'installations d'extraction de pétrole et de gaz WO2010052126A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008056087A DE102008056087A1 (de) 2008-11-06 2008-11-06 Verfahren zur Messung von Temperatur und/oder Druck an einer Rohrleitung, insbesondere im Offshore-Bereich von Öl- und Gasförderanlagen, und zugehörige Vorrichtung
DE102008056087.1 2008-11-06

Publications (1)

Publication Number Publication Date
WO2010052126A1 true WO2010052126A1 (fr) 2010-05-14

Family

ID=42026741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/063773 WO2010052126A1 (fr) 2008-11-06 2009-10-21 Procédé pour mesurer la température et/ou la pression au niveau d'un pipeline, en particulier dans la zone en mer d'installations d'extraction de pétrole et de gaz

Country Status (2)

Country Link
DE (1) DE102008056087A1 (fr)
WO (1) WO2010052126A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837259A (zh) * 2012-11-23 2014-06-04 中国石油天然气集团公司 裸露油气管道最低管壁温度的测量方法及装置
US9651183B2 (en) 2014-07-15 2017-05-16 Siemens Aktiengesellschaft Controlling heating and communication in a pipeline system
US10634284B2 (en) 2016-09-09 2020-04-28 Nvent Services Gmbh Automated re-melt control systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975211A1 (fr) * 2014-07-15 2016-01-20 Siemens Aktiengesellschaft Système de canalisation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887619A1 (fr) * 1997-06-26 1998-12-30 Commissariat A L'energie Atomique Système d'alimentation et de transmission pour capteur à fibre optique, intégré dans une structure amagnétique, et module d'alimentation et de réception associé
US5975204A (en) * 1995-02-09 1999-11-02 Baker Hughes Incorporated Method and apparatus for the remote control and monitoring of production wells
US6049657A (en) * 1996-03-25 2000-04-11 Sumner; Glen R. Marine pipeline heated with alternating current
US6617556B1 (en) * 2002-04-18 2003-09-09 Conocophillips Company Method and apparatus for heating a submarine pipeline
FR2864202A1 (fr) * 2003-12-22 2005-06-24 Commissariat Energie Atomique Dispositif tubulaire instrumente pour le transport d'un fluide sous pression
WO2005119390A2 (fr) * 2004-05-28 2005-12-15 Prescott Clifford N Controleur sous-marin en temps reel et systeme de controle pour pipeline

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2619317C (fr) * 2007-01-31 2011-03-29 Weatherford/Lamb, Inc. Mesure de la temperature repartie par effet brillouin etalonnee sur place avec detection de la temperature repartie par effet raman

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5975204A (en) * 1995-02-09 1999-11-02 Baker Hughes Incorporated Method and apparatus for the remote control and monitoring of production wells
US6049657A (en) * 1996-03-25 2000-04-11 Sumner; Glen R. Marine pipeline heated with alternating current
EP0887619A1 (fr) * 1997-06-26 1998-12-30 Commissariat A L'energie Atomique Système d'alimentation et de transmission pour capteur à fibre optique, intégré dans une structure amagnétique, et module d'alimentation et de réception associé
US6617556B1 (en) * 2002-04-18 2003-09-09 Conocophillips Company Method and apparatus for heating a submarine pipeline
FR2864202A1 (fr) * 2003-12-22 2005-06-24 Commissariat Energie Atomique Dispositif tubulaire instrumente pour le transport d'un fluide sous pression
WO2005119390A2 (fr) * 2004-05-28 2005-12-15 Prescott Clifford N Controleur sous-marin en temps reel et systeme de controle pour pipeline

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837259A (zh) * 2012-11-23 2014-06-04 中国石油天然气集团公司 裸露油气管道最低管壁温度的测量方法及装置
US9651183B2 (en) 2014-07-15 2017-05-16 Siemens Aktiengesellschaft Controlling heating and communication in a pipeline system
US10634284B2 (en) 2016-09-09 2020-04-28 Nvent Services Gmbh Automated re-melt control systems
US11592144B2 (en) 2016-09-09 2023-02-28 Nvent Services Gmbh Automated re-melt control systems

Also Published As

Publication number Publication date
DE102008056087A1 (de) 2010-05-12

Similar Documents

Publication Publication Date Title
DE602004005078T2 (de) Instrumentierte röhrenförmige einrichtung zum transport eines unter druck stehenden fluids unter verwendung von bragg-gitter-rosetten
DE69526583T2 (de) Übertragung von bohrlochdaten
DE69523500T2 (de) Einfahrwerkzeuge im Bohrloch mit gewickeltem Rohrstang
DE69428496T2 (de) Bohrloch-instrumentenkabel mit reduzierten durchmesser
EP2037246B1 (fr) Procédé destiné à la surveillance de l'état d'un tuyau pour un habillage dans un système de tuyaux ou de canaux
DE60112041T2 (de) Drosselspule für drahtloses kommunikations- und steuerungssystem in einem bohrloch
DE69434746T2 (de) Verbesserte, mit Fett geschmierte Kabelanordnung zur Echtzeit-Oberflächenabbildung
EP3499253B1 (fr) Trajet de câble sous-marin et procédé de détermination d'une décharge partielle électrique dans un trajet de câble sous-marin
DE60123760T2 (de) Elektrische stromversorgungs-aufnahmepunkte an einer ölbohrlochverrohrung
WO2010052126A1 (fr) Procédé pour mesurer la température et/ou la pression au niveau d'un pipeline, en particulier dans la zone en mer d'installations d'extraction de pétrole et de gaz
DE102008056089A1 (de) Verfahren zur Messung des Zustandes an einer Rohrleitung, insbesondere im Offshore-Bereich von Öl- und Gasförderanlagen, und zugehörige Vorrichtung sowie Verwendung dieser Vorrichtung
DE102008056257A1 (de) Verfahren und Vorrichtung zur Beheizung einer Rohrleitung
US20110219866A1 (en) Apparatus to Monitor Flow Assurance Properties in Conduits
CN102650606A (zh) 一种流体介质界面的光纤传感检测装置及方法
US9359833B2 (en) Method for installing multiple fiber optic cables in coiled tubing
SA518391564B1 (ar) الشحن الحثي لتقنية صوتية كهربائية
Ravet et al. DEH cable system preventive protection with distributed temperature and strain sensors
DE102006028942A1 (de) Pipelinesystem und Verfahren zum Betrieb eines Pipelinesystems
WO2019201611A1 (fr) Câble d'alimentation pouvant être posé sous terre, en particulier câble sous-marin
DE19725431C2 (de) Vorrichtung und Verfahren zur Bestimmung der Lage einer unterirdisch verlegten Rohrleitung
Inaudi et al. Distributed fiber-optic sensing for long-range monitoring of pipelines
US20140290374A1 (en) Apparatus to Monitor Flow Assurance Properties in Conduits
US10858897B2 (en) Downhole armored optical cable tension measurement
EP3244116B1 (fr) Système de détection de défaillance de câble de chauffage électrique direct de pipeline sous-marin
US11085261B2 (en) Well logging assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09748281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09748281

Country of ref document: EP

Kind code of ref document: A1