[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010050413A1 - ソホロースリピドの製造方法 - Google Patents

ソホロースリピドの製造方法 Download PDF

Info

Publication number
WO2010050413A1
WO2010050413A1 PCT/JP2009/068260 JP2009068260W WO2010050413A1 WO 2010050413 A1 WO2010050413 A1 WO 2010050413A1 JP 2009068260 W JP2009068260 W JP 2009068260W WO 2010050413 A1 WO2010050413 A1 WO 2010050413A1
Authority
WO
WIPO (PCT)
Prior art keywords
genus
sophorose lipid
fatty acid
type
sophorose
Prior art date
Application number
PCT/JP2009/068260
Other languages
English (en)
French (fr)
Inventor
恵広 柳澤
川野 茂
八十原 良彦
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US13/126,532 priority Critical patent/US8664373B2/en
Priority to EP09823524.5A priority patent/EP2351847B1/en
Priority to JP2010535769A priority patent/JP5676267B2/ja
Publication of WO2010050413A1 publication Critical patent/WO2010050413A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • C07H15/10Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical containing unsaturated carbon-to-carbon bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7016Disaccharides, e.g. lactose, lactulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/165Yeast isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/72Candida

Definitions

  • the present invention relates to a sophorose lipid, a production method thereof, and an antibacterial agent and / or an antifungal agent containing the sophorose lipid as an active ingredient.
  • Biosurfactants are surfactants produced by microorganisms and are known to exhibit various physiological activities as well as surface-active effects. In addition, since it is excellent in biodegradability and is low in toxicity and low in irritation to animals and plants, it is expected to be applied in various fields as a compound friendly to humans and the environment. As biosurfactants, in addition to glycolipid biosurfactants, peptide biosurfactants, fatty acid biosurfactants, and the like have been known.
  • Sophorose lipid is a kind of glycolipid type biosurfactant, and has a structure in which fatty acid is bound to sophorose composed of two molecules of glucose by glycosyl ether bond.
  • sophorose lipid there are lactone type in which the carboxyl group of fatty acid side chain forms a cyclic ester bond with sophorose, and hydrolyzed acid type.
  • lactone type in which the carboxyl group of fatty acid side chain forms a cyclic ester bond with sophorose
  • hydrolyzed acid type the presence or absence of double bond in fatty acid side chain, the difference in carbon chain length
  • Sophorose lipid is produced as a mixture of these by culturing yeast using sugar, fat or the like as a culture substrate, and the composition varies depending on the culture substrate used for the culture (Non-patent Document 2). Moreover, the composition of the fatty acid side chain of sophorose lipid also differs depending on the type of culture substrate used (Non-patent Document 2).
  • sophorose lipid is usually obtained as a highly viscous oil that is difficult to handle (Non-patent Document 3).
  • a sophorose lipid oil obtained by sedimentation from a culture solution is an oil containing 40 to 50% water, and when the sophorose lipid is extracted with an organic solvent to improve the purity, it is obtained as a very viscous substance. (Patent Document 1).
  • sophorose lipids are all oily, and there are almost no examples obtained in solid form.
  • solid sophorose lipid is obtained from a culture solution using Turkish corn oil as a culture substrate (Non-patent Document 5).
  • Via sophorose lipids are obtained depending on the culture method, and knowledge about culture conditions for obtaining solid sophorose lipids is not sufficiently described.
  • composition ratio of the obtained solid sophorose lipid for example, the ratio of lactone type to acid type, the ratio of diacetyl lactone type, monoacetyl lactone type and diol lactone type, saturated side chain and unsaturated type side in fatty acid side chain There is no description regarding the ratio of the chain, etc. (Non-patent Document 5).
  • Non-patent Document 6 culturing microorganisms under aerobic aeration conditions is important for high production of sophorose lipid
  • Non-patent Document 5 a device has been devised such as increasing the number of stirrings to keep the dissolved oxygen saturation high (Non-patent Document 5).
  • composition ratio of the sophorose lipid produced and the culture conditions such as aeration conditions for example, the ratio of lactone type to acid type, the ratio of diacetyl lactone type to monoacetyl lactone type to diol lactone type, the fatty acid side chain
  • the ratio of saturated side chains and unsaturated side chains for example, the ratio of lactone type to acid type, the ratio of diacetyl lactone type to monoacetyl lactone type to diol lactone type, the fatty acid side chain
  • lactone type sophorose lipid has a stronger antibacterial activity than acid type sophorose lipid, and it is known that diacetyl and monoacetyl forms show strong activity among them (Non-patent Document 7).
  • Non-patent Document 7 it has been reported that a lactone-type sophorose lipid derived from a culture solution obtained from a medium containing oleic acid has antibacterial and antifungal activities (Patent Document 2, Patent Document 3, and Non-Patent Document 7). In these reports, there is no description regarding the relationship between the structure of the fatty acid side chain of sophorose lipid and the antibacterial activity.
  • Acid sophorose lipids are highly soluble in water, and even if they are produced in the culture medium, they are difficult to isolate from the culture medium, and only chromatographic purification methods that are practically impossible to implement industrially are known (non- Patent Document 1).
  • Patent Document 1 there is a method of hydrolyzing a lactone type sophorose lipid to obtain an acid type (Patent Document 1), but since a method for obtaining a low-cost and high-purity lactone type sophorose lipid is not known in the first place, an inexpensive and high-purity acid is known. It is very difficult to obtain a type sophorose lipid at present.
  • Another object of the present invention is to provide an antibacterial agent and / or an antifungal agent comprising a sophorose lipid having a high molar ratio of diacetyllactone type, particularly a sophorose lipid having a high molar ratio of diacetyllactone type having a high degree of saturation of fatty acid side chains as an active ingredient. And It is another object of the present invention to provide a high-purity acid-type sophorose lipid and its inexpensive production method.
  • the amount of oxygen supplied to the culture solution is limited to culture biosurfactant-producing bacteria
  • the inventors have found that the molar ratio of the diacetyllactone type is improved. Further, when the molar ratio of the diacetyllactone type is 80% or more, the sophorose lipid can be easily obtained as an easy-to-handle solid, and the high-purity acid type can be obtained by using the obtained high-purity lactone type as a raw material. It was found that sophorose lipid can be easily obtained.
  • one feature of the present invention is a method for producing a glycolipid biosurfactant in which microorganisms are cultured with a limited amount of oxygen supplied.
  • Another feature of the present invention is the above production method in which the oxygen supply amount is limited so that the dissolved oxygen saturation is 20% or less except in the initial stage of culture.
  • Another feature of the present invention is the production method described above, wherein the glycolipid biosurfactant is sophorose lipid.
  • Another feature of the present invention is the above production method, wherein the molar ratio of the diacetyl lactone type sophorose lipid in the lactone type sophorose lipid in the sophorose lipid is 80% or more.
  • Another feature of the present invention is the above production method, wherein the molar ratio of saturated fatty acid residues to fatty acid residues constituting the fatty acid side chain in the glycolipid biosurfactant is 40% or more.
  • Another feature of the present invention is the above production method, wherein the molar ratio of saturated fatty acid residues in the fatty acid residues constituting the fatty acid side chain in the sophorose lipid is 40% or more.
  • Another feature of the present invention is the above production method using oil and fat as a raw material.
  • Another feature of the present invention is the process as described above, wherein the microorganism is Candida bombicola .
  • Another feature of the present invention is the above production method further comprising a step of crystallizing a glycolipid type biosurfactant.
  • Another feature of the present invention is the above production method for obtaining a glycolipid type biosurfactant in a solid state.
  • Another feature of the present invention is the above production method, further comprising the step of hydrolyzing the lactone type glycolipid type biosurfactant in the glycolipid type biosurfactant into an acid type glycolipid type biosurfactant.
  • Another feature of the present invention is a sophorose lipid in which the molar ratio of saturated fatty acid residues in the fatty acid residues constituting the fatty acid side chain in the sophorose lipid is 40% or more.
  • Another feature of the present invention is a sophorose lipid in which the molar ratio of the diacetyllactone type sophorose lipid in the lactone type sophorose lipid in the sophorose lipid is 80% or more.
  • Another feature of the present invention is a sophorose lipid in which the molar ratio of saturated fatty acid residues in the fatty acid residues constituting the fatty acid side chain in the sophorose lipid is 40% or more.
  • Another feature of the present invention is a sophorose lipid in which the molar ratio of the diacetyllactone type sophorose lipid in the lactone type sophorose lipid in the sophorose lipid is 80% or more.
  • Another feature of the present invention is solid sophorose lipid.
  • Another feature of the present invention is a composition comprising a glycolipid type biosurfactant obtained by the above production method and / or the sophorose lipid.
  • Another feature of the present invention is a surfactant containing the above composition.
  • surfactant described above is used for food, household goods, life materials, civil engineering / building materials, paint / ink, rubber / plastic, machinery / equipment, medical / makeup. It is used for food use, livestock / fishery use, agricultural use, or use at the time of product manufacture.
  • Another feature of the present invention is an antibacterial and / or antifungal agent comprising the above composition.
  • Another feature of the present invention is that the above-mentioned antibacterial and / or antifungal agents are used for food, household goods, living materials, earth and paint, machinery / equipment, water treatment, separation, medical / It is used in cosmetic applications, livestock / fishery applications, or agricultural applications.
  • Another feature of the present invention is a pharmaceutical comprising the above composition.
  • Another feature of the present invention is a method for producing an acid-type sophorose lipid, which comprises hydrolyzing the above-mentioned sophorose lipid.
  • a glycolipid-type biosurfactant having a specific structure particularly a sophorose lipid having a high molar ratio of diacetyllactone type
  • a sophorose lipid having a high molar ratio of diacetyllactone type particularly a sophorose lipid having a high molar ratio of solid diacetyllactone type
  • the sophorose lipid has a very high antibacterial and antifungal activity and is useful as an antibacterial and / or antifungal agent. Furthermore, by hydrolyzing a high-purity lactone type sophorose lipid with an acid or an alkali, a high-purity acid type sophorose lipid and its inexpensive production method can be provided.
  • Glycolipid type biosurfactant is a surfactant produced by a microorganism having a sugar as a hydrophilic group and a hydrocarbon chain as a hydrophobic group. Examples thereof include sophorose lipid, mannosyl erythritol lipid, rhamnose lipid, trehalose lipid, and the like.
  • Sophorose lipid is a kind of glycolipid type biosurfactant and generally has the following general formula (1):
  • R 1 and R 2 represent H or COCH 3
  • R 3 represents H or CH 3
  • R 4 is a saturated or unsaturated hydrocarbon having 12 to 16 carbon atoms.
  • a group of R 3 CH 3
  • R 4 represents a saturated or unsaturated hydrocarbon group having 11 to 15 carbon atoms
  • sophorose lipids are the position and number of acetyl groups, the presence or absence of double bonds in the fatty acid side chain, the carbon chain length of the fatty acid side chain, the position of the glycosyl ether bond on the fatty acid side chain, and on the sophorose that forms the lactone ring. Depending on the position of the hydroxyl group, etc., there are multiple derivatives, usually a mixture of these compounds. Sophorose lipids are usually obtained as highly viscous oils that are difficult to handle. Diacetyllactone-type sophorose lipid having a relatively high hydrophobicity can be obtained as a solid.
  • the glycolipid type biosurfactant in the present invention can be obtained by culturing a microorganism having the ability to produce a glycolipid type biosurfactant. May be used Any microorganism capable of producing glycolipids type biosurfactants, for example, in the case of Sohorosuripido, Candida (Candida) spp, Torulopsis (Torulopsis) genus, wicca Hami Ella (Wickerhamiella) genus, It is preferable to use yeast belonging to the genus Starmerella .
  • Candida is preferably a yeast belonging to the genus Candida-Bonbikora (Candida bombicola), Torulopsis Apikora (Torulopsis apicola) are more preferable. Most preferred is Candida bombicola ATCC22214.
  • a medium glycolipid type biosurfactant for example, sophorose lipid, can be obtained by culturing the above microorganism in the following medium.
  • the culture of the present invention can be any medium as long as it contains a nutrient source that can be assimilated by yeast.
  • a nutrient source that can be assimilated by yeast.
  • sugars such as glucose, sucrose and maltose, organic acids such as lactic acid, acetic acid, citric acid and propionic acid, alcohols such as ethanol and glycerin, hydrocarbons such as paraffin, fats and oils such as soybean oil and rapeseed oil, Or a carbon source such as a mixture thereof; a nitrogen source such as ammonium sulfate, ammonium phosphate, urea, yeast extract, meat extract, peptone, corn steep liquor; and other nutrient sources such as other inorganic salts and vitamins; -A normal mixed medium can be used.
  • Sugar and / or fats and oils may be used as the main raw material. Glucose is preferred as the main raw material sugar.
  • Animal and vegetable fats and oils can be used as the main raw material fats and oils. Examples of vegetable oils include rapeseed oil, soybean oil, sunflower oil, coconut oil, cottonseed oil, corn oil, palm oil, palm kernel oil, linseed oil, castor oil, and the like. Unsaturated fatty acids, saturated fatty acids, unsaturated fatty acid esters, saturated fatty acid esters, and the like obtained by processing these vegetable oils and fats may be used, but among these, saturated fatty acid esters are preferred. An acyl group constituting the saturated fatty acid ester having 16 to 18 carbon atoms can be suitably used.
  • the ester type of the fatty acid ester is not particularly limited, and examples thereof include esters such as methyl, ethyl, propyl, isopropyl, and butyl.
  • a methyl ester or an ethyl ester is preferable, and a methyl ester is more preferable.
  • the oil is palm oil, methyl palmitate, methyl stearate, or a mixture thereof.
  • Culture conditions The culture pH, culture temperature, and culture time of the present invention can be generally determined under general conditions.
  • the culture is performed at pH 2.5 to 9.5 and temperature range 20 to 45 ° C. for 4 to 14 days. preferable.
  • the amount of oxygen supply can be limited by the amount of ventilation and / or the stirring conditions. In general, the amount of oxygen supply can be limited by reducing the amount of aeration, reducing the number of stirring, changing the culture apparatus, and the like. This also leads to suppression of foaming of the culture solution by the biosurfactant accumulated as the culture progresses.
  • the dissolved oxygen saturation level which was 100% immediately after the start of the culture, is significantly reduced by oxygen consumption in the culture solution accompanying the growth of the cells, so that the dissolved oxygen saturation level is kept high in normal aerobic culture. Therefore, contrivances such as high aeration and high agitation are made.
  • the oxygen supply amount is limited so as to keep the dissolved oxygen saturation low.
  • the dissolved oxygen saturation is 20% or less, preferably 15% or less, more preferably 10% or less, and even more preferably 5% or less, except for the initial culture period immediately after the start of the culture in which the cells grow.
  • the culture is carried out by adjusting the oxygen supply amount so as to keep it at 0%.
  • a temporary increase in the dissolved oxygen saturation of several hours to half a day due to the change in the aeration conditions does not cause a problem because it does not greatly affect the molar ratio of the diacetyllactone type described later.
  • the initial period of culture immediately after the start of the culture in which the cells grow is 0 to 3 days from the start of culture, preferably 0 to 2 days, and most preferably 0 to 1 day. It is only necessary to supply oxygen necessary for the growth of the cells during the initial period of the culture immediately after the start of the culture, and it is not necessary to start the dissolved oxygen saturation from 100%.
  • the aeration condition when a general 5L mini jar fermenter is stirred at 450 rpm is preferably 0.4 vvm or less, more preferably 0.2 vvm or less, and most preferably 0.1 vvm or less.
  • the amount of the medium is preferably 100 ml or more.
  • the sophorose lipid accumulation rate is improved, so the oxygen supply amount may be increased within the above range.
  • composition of Sophorose Lipid The composition of fermented sophorose lipid can be analyzed by analyzing under the HPLC conditions described in J. Chromatogr., Vol. 648, 139 (1993) or analysis conditions equivalent thereto.
  • the elution patterns of various sophorose lipids having different structures under the present analysis conditions are described in the above-mentioned literature, and the compounds of each elution peak can be identified by comparing this with the elution patterns of actual analysis results.
  • the sophorose lipid obtained by the culture of the present invention is mainly composed of a lactone type sophorose lipid, and the acid type sophorose lipid has a low molar ratio.
  • Lactone type sophorose lipids are diacetyl lactone type (in the general formula (1), R 1 and R 2 are both COCH 3 ), monoacetyl lactone type (in the general formula (1), R 1 , R 2 One of which is COCH 3 and the other is H), and a diol lactone type (in the general formula (1), R 1 and R 2 are both H).
  • the molar ratio varies depending on the oxygen supply amount under the above-described culture conditions.
  • the main component of the solid sophorose lipid obtained by the method for obtaining the solid sophorose lipid described later is a diacetyllactone type. When the molar ratio of the diacetyllactone type is lower than 80%, it is difficult to precipitate as a solid.
  • the molar ratio of the diacetyllactone type is high.
  • the “diacetyllactone type molar ratio” refers to the ratio of the diacetyllactone type to the lactone type sophorose lipid composed of diacetyllactone type, monoacetyllactone type, and diol lactone type.
  • the molar ratio of diacetyllactone type is preferably 80% or more, more preferably 85% or more, more preferably 90% or more, and most preferably 95% or more.
  • the fatty acid side chain portion of sophorose lipid may be saturated or unsaturated, and these may be mixed.
  • the composition molar ratio of the saturated type and the unsaturated type can be controlled by the fats and oils used during the cultivation. If you want to obtain sophorose lipids with many saturated fatty acid side chains, you can use fats and oils that contain a lot of saturated fatty acids. If you want to obtain sophorose lipids with many unsaturated fatty acid side chains, you can use unsaturated fatty acids. May be used.
  • diacetyllactone-type sophorose lipids particularly diacetyllactone-type sophorose lipids having a saturated fatty acid side chain have strong antibacterial and antifungal activities.
  • the saturated molar ratio of the fatty acid side chain is high.
  • the saturated molar ratio of the fatty acid side chain is preferably 40% or more, more preferably 60% or more, still more preferably 80% or more, and most preferably 90% or more.
  • sophorose lipid of the present invention can be obtained by the following method.
  • sophorose lipid By allowing the culture solution to stand, almost all of the produced sophorose lipid quickly settles to the lower part of the culture solution. If this is recovered, sophorose lipid can be obtained in high yield. At this time, if the culture solution is heated to about 80 ° C., the fluidity of sophorose lipid is improved and the liquid separation property is improved, so that the yield is improved.
  • the obtained sophorose lipid may be washed with water, an aqueous buffer, an organic solvent such as hexane, or the like for the purpose of removing impurities.
  • sophorose lipid can be obtained.
  • an organic solvent such as hexane
  • fat-soluble impurities such as unutilized oil and fat
  • sophorose lipid is extracted with an organic solvent such as ethyl acetate or toluene
  • water or water-soluble impurities can be removed. These impurity removal operations may or may not be performed.
  • the organic solvent used for extraction can be easily distilled off by concentration under reduced pressure.
  • crystallization may be performed from a solvent in which the sophorose lipid crystallizes, such as water or an aqueous buffer solution.
  • a solvent in which the sophorose lipid crystallizes such as water or an aqueous buffer solution.
  • the pH at the time of crystallization from water or an aqueous buffer solution is preferably neutral to acidic, particularly preferably near neutral.
  • the pH value is pH 1 to 8, preferably pH 2 to 7.5, more preferably pH 3 to 7, and most preferably pH 6 to 7. If the pH is adjusted and stirred, sophorose lipid crystals precipitate. It is preferable to perform crystallization at a low temperature because the yield is improved.
  • sophorose lipid obtained in the present invention particularly the sophorose lipid having a high molar ratio of diacetyllactone type, and the sophorose lipid having a high saturated molar ratio of the fatty acid side chain can be suitably used for purification by crystallization. Even if it is a biosurfactant other than sophorose lipid, purification by crystallization can be suitably used as long as it is a glycolipid type biosurfactant obtained by the present invention.
  • Antibacterial and antifungal activity and fatty acid side chain composition refers to the effect of suppressing the growth of bacteria, yeasts, fungi and other microorganisms. It refers to the effect of reducing or killing these viable counts.
  • the saturated molar ratio of the fatty acid side chain is 40% or more, preferably 60% or more, more preferably 80% or more, still more preferably 90% or more.
  • These have strong antibacterial and antifungal activities and are preferably used as antibacterial and / or antifungal agents. If these are used as an antibacterial agent and / or antifungal agent, they are effective at lower concentrations than conventional antibacterial agents and / or antifungal agents, leading to a reduction in the amount used.
  • the microorganisms targeted by the antibacterial agent and / or antifungal agent of the present invention are not particularly limited. For example, it is effective against gram positive bacteria.
  • Gram-positive bacteria for example, Micrococcus (Micrococcus) genus scan tomato Lactococcus (Stomatococcus) genus, Plano Lactococcus (Planococcus) genus, Staphylococcus (Staphylococcus) genus Deinococcus (Deinococcus) genus Streptococcus (Streptococcus) genus, Rukonosutoku (Leuconostoc) genus, Pediococcus (Pediococcus) genus, Aerococcus (Aerococcus) genus, Gemera (Gemella) genus, Peputokokkasu (Peptococcus) genus, Peptostreptococcus (Peptostreptococc
  • Bacillus (Bacillus) genus Bacillus (Bacillus) genus
  • Staphylococcus Staphylococcus
  • Corynebacterium Corynebacterium bacteria belonging to the genus.
  • bacteria belonging to the genus Staphylococcus specifically Staphylococcus aureus , Staphylococcus epidermidis
  • bacteria belonging to the genus Corynebacterium specifically Corynebacterium xerosis
  • bacteria belonging to the genus Streptococcus specifically Streptococcus suis , Streptococcus bovis
  • Propionibacterium It can be suitably used for bacteria belonging to it, specifically, Propionibacterium acnes .
  • the yeast and mold for example, Cladosporium (Cladosporium) genus Aspergillus (Aspergillus) genus Fusarium (Fusarium) genus Penicillium (Penicillium) genus Guroeofiramu (Gloeophyllum) genus Schizophyllum (Schizophyllum) genus Candida (Candida ) genus Saccharomyces (Saccharomyces) genus Pichia (Pichia) sp., Rhodotorula (Rhodotorula) genus, and the like.
  • Saccharomyces Saccharomyces (Saccharomyces) genus Cladosporium (Cladosporium) genus Aspergillus (Aspergillus) genus Fusarium (Fusarium) genus Penicillium (Penicillium) genus Guroeofiramu (Gloeophyllum) genus Schizophyllum (Schizophyllum) genus, preferably at equal Can be used.
  • glycolipid type biosurfactant obtained in the present invention has properties as a surfactant and antibacterial / antifungal activity and can be used in fields where these properties are required. In addition, when a new property or function is found, it can be used in a field where the characteristic is required.
  • glycolipid type biosurfactant obtained in the present invention examples include, for example, food use (emulsifier, fungicide, etc.), household product use (detergent for use in toilets, baths, kitchens, etc., for washing) Detergents (softeners, antistatic agents, etc.), household materials (rust inhibitors, bactericides, etc.), civil engineering and building materials (concrete admixtures, water reducing agents, etc.), paints and inks (water based) For ink, antifoaming agent, dispersant, etc.), rubber / plastic use (antistatic agent, antifogging agent, dispersant, etc.), machine / equipment use (bactericide, cleaning agent, rust preventive, etc.), Medical / cosmetic applications (pharmaceuticals, cosmetics, fragrances, fungicides, etc.), livestock / fishery applications (feed additives, antibacterial agents, etc.), agricultural applications (pesticides, soil conditioners, fungicides,
  • glycolipid type biosurfactant obtained in the present invention examples include, for example, food use (preservatives, shelf life improving agents, freshness maintaining agents, etc.), household product use (brush products) , Stationery, miscellaneous goods such as shoe insoles, interiors such as furniture, covering materials such as walls, floors, and ceilings, water facilities and supplies such as toilets, baths, and kitchens, etc.), daily use (textile products, leather) Products, paper products, rubber products, clothing, packaging materials, packaging containers, etc.), civil engineering / painting applications (fixed structures, building interior / exterior materials, wood, metal, concrete, plastics, etc.), machinery / equipment applications (Electric and household appliances, machinery, vehicles, optical instruments, medical, welfare and sanitary equipment, etc.), water treatment applications (water treatment, wastewater treatment, sludge treatment, etc.), separation applications (filtering equipment, filter media, filtration Equipment, etc.), medical and cosmetic applications (pharmaceuticals, cosmetics, perfume
  • the usage form of the glycolipid type biosurfactant obtained in the present invention is not particularly limited, and can be used in combination with or mixed with other components as appropriate according to the application.
  • it may be used in a neat (liquid or solid state) or in a liquid state dissolved in various solvents.
  • the amount of the glycolipid biosurfactant obtained in the present invention may be set according to the intended use.
  • the content of sophorose lipid as an active ingredient is not particularly limited, and is usually 0.001% by weight or more, more preferably 0.01% by weight or more. More preferably, it is 0.1% by weight or more.
  • High-purity acid-type sophorose lipid can be easily obtained by hydrolysis with acid or alkali using the high-purity solid sophorose lipid obtained by the above method as a raw material. For example, when 3 molar equivalents of sodium hydroxide are allowed to act at room temperature, the diacetyllactone-type sophorose lipid is rapidly hydrolyzed, and an acid-type sophorose lipid aqueous solution with high colorless purity is obtained. If water is distilled off from this aqueous solution, further purification can be achieved.
  • microorganisms used in the examples are all from the National Institute of Biotechnology, Biotechnology Headquarters, Biogenetic Resources Division (NBRC) (2-5-8 Kazusa Kamashi, Kisarazu City, Chiba Prefecture), or American American * Available from the Type Culture Collection (ATCC) without any restrictions.
  • NBRC Biogenetic Resources Division
  • ATCC American American * Available from the Type Culture Collection
  • Example 1 As seed medium, potassium dihydrogen phosphate 0.1%, manganese sulfate heptahydrate 0.5%, ferric chloride 0.01%, sodium chloride 0.01%, yeast extract 0.4%, glucose 50 ml of a liquid medium (pH 4.5) consisting of 10% and 10% rapeseed oil was placed in a 500 ml Sakaguchi flask, and the main culture medium was potassium dihydrogen phosphate 0.1%, manganese sulfate heptahydrate 0.5 %, Ferric chloride 0.01%, Sodium chloride 0.01%, Yeast extract 0.4%, Glucose 10%, Esterpalm-M (manufactured by Miyoshi Oil & Fats Co., Ltd., methyl palmitate and stearin) 3 L of a liquid medium (pH 4.5) consisting of an oil and fat having a methyl acid molar ratio of 7: 3) was injected into a 5 L mini jar fermenter (manufactured by
  • Candida bombicola ATCC22214 strain was inoculated into the seed mother medium and cultured with shaking at 30 ° C. for 1 day. The entire amount of the seed culture solution was inoculated into the main culture medium, and cultured for 7 days at 30 ° C., 450 rpm, and 0.3 vvm. The dissolved oxygen saturation was 0% on the first day after the start of the culture, and maintained at 0% thereafter.
  • composition of sophorose lipid in the culture solution was determined by analysis under the following HPLC conditions.
  • sophorose lipid composition The structures of various sophorose lipids were identified by comparison with elution times described in literature values (J. Chromatogr., 648, 139) (1993)). Under the above HPLC analysis conditions, acid type sophorose lipid eluted at 28 to 34 minutes, monoacetyllactone type and diol lactone type at 34 to 45 minutes, and diacetyllactone type at 45 to 55 minutes. These peak areas were integrated and compared in the respective elution time ranges, and the molar ratio of the peak areas was defined as the molar ratio of the sophorose lipid composition. As a result, no acid type sophorose lipid was detected in the culture solution at the end of the culture, and the lactone type was 100%. The molar ratio of diacetyllactone type in lactone type sophorose lipid was 81%. The saturated molar ratio of fatty acid side chains was 75%.
  • Example 2 The total amount of the main culture solution obtained in Example 1 was heated to 80 ° C. to obtain about 300 g of an oily product that settled. After washing with an equal volume of hexane to remove unutilized oil and fat, extraction was performed with an equal volume of ethyl acetate to obtain a solution of sophorose lipid in ethyl acetate. After distilling off ethyl acetate by concentration under reduced pressure, 1.5 L of water was added and the pH was adjusted to 6.5, followed by cooling and crystallization from room temperature to 4 ° C. The precipitated crystals were obtained by filtration and dried to obtain 18 g of solid sophorose lipid. Analysis was carried out under the HPLC conditions described in Example 1.
  • the molar ratio of the lactone type sophorose lipid was 100%.
  • the molar ratio of diacetyllactone type in lactone type sophorose lipid was 96%.
  • the saturated molar ratio of the fatty acid side chain was 92%.
  • Example 3 The culture was carried out in the same manner as described in Example 1 except that the aeration conditions during main culture were changed to 0.2 vvm.
  • the culture solution at the end of the culture was analyzed under the HPLC conditions described in Example 1.
  • acid type sophorose lipid was not detected, and the molar ratio of lactone type sophorose lipid was 100%.
  • the lactone type sophorose lipid the molar ratio of the diacetyl lactone type was 89%. Further, the saturated molar ratio of the fatty acid side chain was 86%.
  • the time course of dissolved oxygen saturation during culturing is shown in FIG.
  • the dissolved oxygen saturation became 0% in 1 day of culture, and the dissolved oxygen saturation did not increase thereafter.
  • Example 4 The culture solution obtained in Example 3 was subjected to the same operation as in Example 2, and after obtaining about 300 g of an oily substance, crystals were obtained. As a result, 39 g of solid sophorose lipid was obtained. As a result of analysis under the HPLC conditions described in Example 1, the molar ratio of the lactone type sophorose lipid was 100%. The molar ratio of diacetyllactone type in lactone type sophorose lipid was 100%. Further, the saturated molar ratio of the fatty acid side chain was 98%.
  • the culture was carried out in the same manner as described in Example 1 except that the aeration conditions during the main culture were changed to 0.5 vvm.
  • the molar ratio of the lactone type sophorose lipid in the culture broth at the end of the culture was 99%.
  • the molar ratio of the diacetyllactone form in the lactone type sophorose lipid was 71%. Further, the saturated molar ratio of the fatty acid side chain was 62%.
  • the time-dependent change in dissolved oxygen saturation during culture is shown in FIG.
  • the dissolved oxygen saturation decreased to 2% in 1 day of culture and was maintained until 2nd day of culture. It rose after the 2nd day of culture and maintained at 15% or more until the 4th day when the culture was completed.
  • Example 1 The culture solution obtained in Reference Example 1 was subjected to the same operation as in Example 2, and after obtaining about 300 g of an oily substance, an attempt was made to obtain crystals. As a result, no precipitation of crystals was observed, and sophorose lipid was not obtained as a solid.
  • Example 5 The culture was carried out in the same manner as in Example 1 except that palm oil was used as the oil (Esterpal-M) used in the main culture.
  • the obtained culture broth was heated to 80 ° C., and about 300 g of the precipitated oil was obtained as a sophorose lipid derived from palm oil.
  • the molar ratio of the lactone type sophorose lipid was 97%.
  • the molar ratio of the diacetyllactone type in the lactone type sophorose lipid was 83%.
  • the saturated molar ratio of the fatty acid side chain was 43%.
  • Example 6 The sophorose lipid oil obtained in Example 5 was treated in the same manner as in Example 2 to obtain crystals. As a result, 20 g of solid sophorose lipid was obtained. As a result of analysis under the HPLC conditions described in Example 1, the molar ratio of the lactone type sophorose lipid was 100%. The molar ratio of diacetyllactone type in lactone type sophorose lipid was 95%. The saturated molar ratio of fatty acid side chains was 80%.
  • Example 7 The antibacterial and antifungal activities of various sophorose lipids obtained in Examples 1, 2, and 5 were examined. 5 ml of a liquid medium (pH 7.0) composed of 1% meat extract, 1% polypeptone, 0.5% yeast extract and 0.3% sodium chloride was dispensed into a ⁇ 24 mm test tube and steam sterilized at 121 ° C. for 20 minutes. One platinum ear of the bacteria and yeast shown in Table 1 was inoculated into this liquid medium, and cultured with shaking at 30 ° C. for 24 hours. This was used as a seed culture solution.
  • a liquid medium pH 7.0
  • sophorose lipids were added to the same medium so as to be 0.001 to 0.1%, 50 ⁇ l of the seed culture solution was inoculated, and cultured with shaking at 30 ° C. for 15 hours. The obtained culture broth was diluted 41 times with water, and the absorbance at 550 nm was measured. The relative value when the absorbance in the non-sophorose lipid addition group was taken as 100% was calculated as the growth degree. The results are shown in Table 1. Of the various sophorose lipids tested, those with a higher saturated fatty acid molar ratio strongly inhibited the growth of gram-positive bacteria and yeast at lower concentrations.
  • Example 8 The fungicidal activity of various sophorose lipids obtained in Examples 1, 2, and 5 was examined. Sodium nitrate 0.2%, dipotassium hydrogen phosphate 0.1%, potassium chloride 0.05%, magnesium sulfate heptahydrate 0.05%, iron sulfate heptahydrate 0.001%, sucrose 3% Then, 8 ml of an agar medium consisting of 1.5% agar was prepared in a ⁇ 18 mm test tube and steam sterilized at 121 ° C. for 20 minutes. In this agar medium, 1 platinum ear of the mold shown in the table below was inoculated and cultured at 30 ° C. for 2 weeks to obtain a spore-forming slant.
  • Example 9 The fungicidal activity of various sophorose lipids obtained in Examples 1, 2, and 5 was examined.
  • a ⁇ 8 mm filter paper was placed on a potato dextrose agar plate (manufactured by Nissui Pharmaceutical Co., Ltd.) plate prepared by adding 0.1% of various sophorose lipids.
  • 5 ⁇ l of the spore suspension prepared for the mold shown in the table below was inoculated in the same manner as in Example 8, and cultured at 30 ° C. for 3 days. The presence or absence of mold growth was visually determined, and the diameter of the grown mold was measured. The degree of growth was calculated by the following formula.
  • Example 10 To 5 g of the solid sophorose lipid obtained in Example 2, 2.5 g of 40% aqueous sodium hydroxide solution was added and stirred at room temperature for 1 hour. Thereafter, the pH was adjusted to 7 with concentrated hydrochloric acid. This was analyzed under the HPLC conditions described in Example 1. As a result, the lactone type sophorose lipid was not detected and was all converted to the acid type. By this method, an aqueous solution of acid-type sophorose lipid which was colorless and transparent and had high purity and high content was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Communicable Diseases (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Botany (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Detergent Compositions (AREA)

Abstract

 糖脂質型バイオサーファクタント、特にラクトン型ソホロースリピドの安価で効率的な製造方法に関し、該バイオサーファクタント生産微生物を酸素供給量を制限して培養することを特徴とする。本発明によれば、ラクトン型のソホロースリピドを優先的に生産させることができ、また、該ラクトン型を固体状で容易に回収することができる。更には、こうして得られる高純度のラクトン型ソホロースリピドを加水分解することにより、高純度のアシッド型ソホロースリピドを製造することができる。また本発明は、強力な抗菌/防カビ活性を有するラクトン型ソホロースリピド、及び該ソホロースリピドを含有する抗菌剤及び/又は防カビ剤にも関する。

Description

ソホロースリピドの製造方法
 本発明は、ソホロースリピドとその製造方法及びこれを有効成分とした抗菌剤及び/又は防カビ剤に関する。
 バイオサーファクタントは、微生物により生産される界面活性剤であり、界面活性作用のみならず様々な生理活性を示すことが知られている。また、生分解性に優れ、かつ動植物に対して低毒、低刺激性であることから、人や環境に優しい化合物として様々な分野での応用が期待されている。バイオサーファクタントとして、これまでに糖脂質型バイオサーファクタントのほか、ペプチド型バイオサーファクタントや脂肪酸型バイオサーファクタント等が知られている。
 ソホロースリピドは糖脂質型バイオサーファクタントの一種であり、二分子のグルコースから成るソホロースに脂肪酸がグリコシルエーテル結合により結合した構造を有する。ソホロースリピドには、脂肪酸側鎖のカルボキシル基がソホロースと環状エステル結合を形成したラクトン型と、加水分解されたアシッド型が存在し、更に、脂肪酸側鎖における二重結合の有無、炭素鎖長の違い、グリコシルエーテル結合の位置の違い、糖の水酸基のアセチル基導入の有無、などにより複数の誘導体が存在する(非特許文献1)。糖や油脂などを培養基質として酵母を培養することによりソホロースリピドはこれらの混合物として生産され、その組成は培養に用いる培養基質により異なる(非特許文献2)。また、ソホロースリピドの脂肪酸側鎖の組成も用いる培養基質の種類により異なる(非特許文献2)。
 ソホロースリピドは通常、取り扱い難い高粘性の油状物として得られることが知られている(非特許文献3)。例えば、培養液から沈降傾斜により得られるソホロースリピド油状物は40~50%の水分を含有する油状物であり、これから有機溶媒でソホロースリピドを抽出して純度を向上させると、極めて高粘性の物質として得られる(特許文献1)。
 ヘキサデカン等のアルカンを培養基質として用いた場合には、ラクトン型ソホロースリピドの中でも、特にジアセチルラクトン型が主成分のソホロースリピドが生産され、これは疎水性が比較的高いため、培養液中に結晶として析出することが知られている(非特許文献4)。これは、ソホロースリピドを取り扱い容易な固体状として得られる点で有用である。しかし、高価なアルカンを原料とするために、工業的な実施は非現実的である。
 一方、安価な植物油脂や植物油脂由来の脂肪酸などを原料としたソホロースリピドの生産研究は数多く報告されているが、得られるソホロースリピドはいずれも油状であり、固体状で取得した例はほとんど無い。唯一、ターキッシュコーンオイルを培養基質とした培養液から固体状ソホロースリピドを得た例がある(非特許文献5)。しかし、培養方法によっては粘性のある蜂蜜状のソホロースリピドが得られており、固体状ソホロースリピドを取得するための培養条件に関する知見が十分に記載されているわけではない。また、得られた固体状ソホロースリピドの組成比率、例えば、ラクトン型とアシッド型の比率、ジアセチルラクトン型とモノアセチルラクトン型とジオールラクトン型の比率、脂肪酸側鎖における飽和型側鎖と不飽和型側鎖の比率、などに関する記載も無い(非特許文献5)。
 ソホロースリピドの生産性向上を目的とした報告は多い。ソホロースリピドを高生産させるためには、好気的な通気条件で微生物を培養することが重要であることは知られており(非特許文献6)、微生物の増殖に伴って溶存酸素飽和度が低下した場合は攪拌数を上げて溶存酸素飽和度を高く保つなどの工夫がなされている(非特許文献5)。これらの報告においても、通気条件などの培養条件と生産されるソホロースリピドの組成比率、例えば、ラクトン型とアシッド型の比率、ジアセチルラクトン型とモノアセチルラクトン型とジオールラクトン型の比率、脂肪酸側鎖における飽和型側鎖と不飽和型側鎖の比率、などとの関係に関する記述は無い。
 更に、ラクトン型ソホロースリピドはアシッド型ソホロースリピドに比べて強い抗菌活性を有し、中でもジアセチル体及びモノアセチル体が強い活性を示すことは知られている(非特許文献7)。他にも、例えば、オレイン酸を含む培地から得た培養液由来のラクトン型ソホロースリピドが抗菌、防カビ活性を有することが報告されている(特許文献2、特許文献3、非特許文献7)。これらの報告において、ソホロースリピドの脂肪酸側鎖の構造と抗菌活性との関係に関する記述は無い。
 アシッド型ソホロースリピドは水溶性が高く、培養液中に生成しても培養液から単離するのは困難であり、工業的実施が事実上不可能なクロマトグラフィーによる精製法しか知られていない(非特許文献1)。また、ラクトン型ソホロースリピドを加水分解してアシッド型を得る方法があるが(特許文献1)、そもそも安価で高純度のラクトン型ソホロースリピドを取得する方法が知られていないため、安価で高純度のアシッド型ソホロースリピドを得るのは現状では非常に困難である。
特開昭54-28895号公報 国際公開第WO2004/044216号公報 国際公開第WO2006/069175号公報
Journal of the American Oil Chemists’ Society, vol.65, no.9, 1460(1988) Journal of Industrial Microbiology, vol.13, 249 (1994) Canadian Journal of Chemistry, vol.39, 846(1961) Journal of the American Oil Chemists’ Society, vol.83, no.2, 137(2006) Engineering in Life Sciences, vol.5, no.4, 357 (2005) Applied Microbiology and Biotechnology, vol.76, 23(2007) Fett Wissenschaft Technologie, vol.91, 363(1989)
 本発明は、特定の構造を有する糖脂質型バイオサーファクタント、特にジアセチルラクトン型のモル比率が高いソホロースリピド、を安価な油脂から製造する方法を提供することを課題とする。また、ジアセチルラクトン型のモル比率が高いソホロースリピドを提供すること、特にジアセチルラクトン型のモル比率が高いソホロースリピドを取り扱いが容易な固体として提供すること、を課題とする。また、ジアセチルラクトン型のモル比率が高いソホロースリピド、特に脂肪酸側鎖の飽和度が高いジアセチルラクトン型のモル比率が高いソホロースリピド、を有効成分とした抗菌剤及び/又は防カビ剤を提供することを課題とする。更に、高純度なアシッド型ソホロースリピド、及びその安価な製造方法を提供することを課題とする。
 上記課題に鑑み、安価油脂を用いて強い抗菌、防カビ活性を有するラクトン型ソホロースリピドを高生産できる条件について検討した結果、培養液への酸素の供給量を制限してバイオサーファクタント産生菌を培養することにより、ジアセチルラクトン型のモル比率が向上することを見出した。また、ジアセチルラクトン型のモル比率が80%以上であれば、ソホロースリピドを取り扱い容易な固体として簡便に得られ、更に、得られた高純度のラクトン型を原料にすることにより、高純度のアシッド型ソホロースリピドが容易に得られることを見出した。また、ラクトン型ソホロースリピドを多く含むこれらのソホロースリピドの中でも、脂肪酸側鎖が飽和のラクトン型ソホロースリピドが非常に強力な抗菌・防カビ活性を有しすることを見出した。これら知見に基づき、本発明を完成するに至った。
 即ち、本発明の一つの特徴は、酸素供給量を制限して微生物を培養する糖脂質型バイオサーファクタントの製造方法である。
 また、本発明の別の特徴は、培養初期を除き、溶存酸素飽和度が20%以下になるように酸素供給量を制限する、上記の製造方法である。
 また、本発明の別の特徴は、糖脂質型バイオサーファクタントがソホロースリピドである、上記の製造方法である。
 また、本発明の別の特徴は、ソホロースリピド中のラクトン型ソホロースリピドに占めるジアセチルラクトン型ソホロースリピドのモル比率が80%以上である、上記の製造方法である。
 また、本発明の別の特徴は、糖脂質型バイオサーファクタント中の脂肪酸側鎖を構成する脂肪酸残基に占める飽和型脂肪酸残基のモル比率が40%以上である、上記の製造方法である。
 また、本発明の別の特徴は、ソホロースリピド中の脂肪酸側鎖を構成する脂肪酸残基に占める飽和型脂肪酸残基のモル比率が40%以上である、上記の製造方法である。
 また、本発明の別の特徴は、油脂を原料とする、上記の製造方法である。
 本発明の別の特徴は、微生物がキャンディダ・ボンビコラ(Candida bombicola)である、上記の製造方法である。
 本発明の別の特徴は、さらに、糖脂質型バイオサーファクタントを晶析させる工程を含む、上記の製造方法である。
 本発明の別の特徴は、糖脂質型バイオサーファクタントを固体状で得る、上記の製造方法である。
 本発明の別の特徴は、さらに、糖脂質型バイオサーファクタント中のラクトン型糖脂質型バイオサーファクタントを加水分解してアシッド型糖脂質型バイオサーファクタントにする工程を含む、上記の製造方法である。
 本発明の別の特徴は、ソホロースリピド中の脂肪酸側鎖を構成する脂肪酸残基に占める飽和型脂肪酸残基のモル比率が40%以上であるソホロースリピドである。
 本発明の別の特徴は、ソホロースリピド中のラクトン型ソホロースリピドに占めるジアセチルラクトン型ソホロースリピドのモル比率が80%以上である、ソホロースリピドである。
 本発明の別の特徴は、ソホロースリピド中の脂肪酸側鎖を構成する脂肪酸残基に占める飽和型脂肪酸残基のモル比率が40%以上であるソホロースリピドである。
 本発明の別の特徴は、ソホロースリピド中のラクトン型ソホロースリピドに占めるジアセチルラクトン型ソホロースリピドのモル比率が80%以上であるソホロースリピドである。
 本発明の別の特徴は、固体状であるソホロースリピドである。
 本発明の別の特徴は、上記の製造方法により得られる糖脂質型バイオサーファクタント、及び/又は、上記ソホロースリピドを含む組成物である。
 本発明の別の特徴は、上記の組成物を含む、界面活性剤である。
 本発明の別の特徴は、上記の界面活性剤の、食品用途、家庭用品用途、生活資材用途、土木・建築材料用途、塗料・インク用途、ゴム・プラスチック用途、機械・器具用途、医療・化粧料用途、畜産・漁業用途、農業用途、又は、製品製造時での利用用途における使用である。
 本発明の別の特徴は、上記の組成物を含む、抗菌剤及び/又は防カビ剤である。
 本発明の別の特徴は、上記の抗菌剤及び/又は防カビ剤の、食品用途、家庭用品用途、生活資材用途、土建・塗料用途、機械・器具用途、水処理用途、分離用途、医療・化粧料用途、畜産・漁業用途、又は、農業用途における使用である。
 本発明の別の特徴は、上記の組成物を含む医薬品である。
 本発明の別の特徴は、上記のソホロースリピドを加水分解することを特徴とする、アシッド型ソホロースリピドの製造方法である。
 本発明によれば、特定の構造を有する糖脂質型バイオサーファクタント、特にジアセチルラクトン型のモル比率が高いソホロースリピド、を安価な油脂から製造することが可能となる。また、ジアセチルラクトン型のモル比率が高いソホロースリピド、特に固体状のジアセチルラクトン型のモル比率が高いソホロースリピドを取得できる。更に、ジアセチルラクトン型のモル比率が高いソホロースリピドであって、特にその脂肪酸側鎖の飽和度が高いソホロースリピドを提供できる。当該ソホロースリピドは非常に高い抗菌、防カビ活性を有し、抗菌剤及び/又は防カビ剤として有用である。更に、高純度なラクトン型ソホロースリピドを酸、アルカリで加水分解することで、高純度なアシッド型ソホロースリピド、及びその安価な製造方法を提供できる。
本発明の実施例3に係る、通気条件0.2vvmの溶存酸素飽和度の経時変化、を示した図である。 本発明の参考例1に係る、通気条件0.5vvmの溶存酸素飽和度の経時変化、を示した図である。
 以下、本発明を実施形態に基づいて詳細に説明する。
 1.糖脂質型バイオサーファクタント
 糖脂質型バイオサーファクタントは、親水基として糖を、疎水基として炭化水素鎖を有する、微生物により生産される界面活性剤である。例えば、ソホロースリピド、マンノシルエリスリトールリピド、ラムノースリピド、トレハロースリピド、などが挙げられる。
 2.ソホロースリピド
 ソホロースリピドは糖脂質型バイオサーファクタントの一種であり、一般に下記一般式(1):
Figure JPOXMLDOC01-appb-C000001
(式中、R1及びR2は、H又はCOCH3を表す。R3はH又はCH3を表し、R3=Hのとき、R4は炭素数12~16の飽和又は不飽和炭化水素基を、R3=CH3のとき、R4は炭素数11~15の飽和又は不飽和炭化水素基を表す。)で表されるラクトン型、及び、下記一般式(2):
Figure JPOXMLDOC01-appb-C000002
(式中、R1~R4は前記に同じ。)で表されるアシッド型がある。このようにソホロースリピドは、アセチル基の位置及びその数、脂肪酸側鎖の二重結合の有無、脂肪酸側鎖の炭素鎖長、脂肪酸側鎖上におけるグリコシルエーテル結合の位置、ラクトン環を形成するソホロース上のヒドロキシル基の位置、などの違いにより複数の誘導体が存在し、通常、これらの化合物の混合物である。ソホロースリピドは通常、取り扱い難い高粘性の油状物として得られる。比較的疎水性の高いジアセチルラクトン型ソホロースリピドについては、固体としても取得し得る。
 3.微生物
 本発明における糖脂質型バイオサーファクタントは、糖脂質型バイオサーファクタントの生産能を有する微生物を培養することで得られる。糖脂質型バイオサーファクタントの生産能を有する微生物であればいずれでも用いることができるが、例えば、ソホロースリピドの場合は、キャンディダ(Candida)属、トルロプシス(Torulopsis)属、ウィッカハミエラ(Wickerhamiella)属、スターメレラ(Starmerella)属に属する酵母を用いることが好ましい。特にキャンディダ(Candida)属に属する酵母が好ましく、キャンディダ・ボンビコラ(Candida bombicola)、トルロプシス・アピコラ(Torulopsis apicola)などがより好ましい。最も好ましくはキャンディダ・ボンビコラ(Candida bombicola)ATCC22214である。
 4.培地
 糖脂質型バイオサーファクタント、例えば、ソホロースリピドは、以下の培地で前記の微生物を培養することにより得られる。
 本発明の培養は、通常、酵母が資化できる栄養源を含む培地であれば何でも使用できる。例えば、グルコース、シュークロース、マルトース等の糖類、乳酸、酢酸、クエン酸、プロピオン酸等の有機酸類、エタノール、グリセリン等のアルコール類、パラフィン等の炭化水素類、大豆油、菜種油等の油脂類、またはこれらの混合物等の炭素源;硫酸アンモニウム、リン酸アンモニウム、尿素、酵母エキス、肉エキス、ペプトン、コーンスチープリカー等の窒素源;更に、その他の無機塩、ビタミン類等の栄養源;を適宜混合・配合した通常の培地を用いることができる。
 糖及び/又は油脂を主原料にしてもよい。主原料の糖としてはグルコースが好ましい。主原料の油脂としては、動植物油脂が使用できる。植物油脂としては、例えば、ナタネ油、大豆油、ひまわり油、ココナッツ油、綿実油、コーン油、パーム油、パーム核油、アマニ油、ひまし油、などが挙げられる。これらの植物油脂を加工して得られる不飽和脂肪酸、飽和脂肪酸、不飽和脂肪酸エステル、飽和脂肪酸エステル、等を用いても良いが、これらの中でも好ましくは飽和脂肪酸エステルである。飽和脂肪酸エステルを構成するアシル基の炭素数は16~18のものを好適に利用できる。脂肪酸エステルのエステル種は特に限定されず、メチル、エチル、プロピル、イソプロピル、ブチル、等のエステルが挙げられる。好ましくはメチルエステル又はエチルエステルであり、更に好ましくはメチルエステルである。油脂として最も好ましくは、パーム油、パルミチン酸メチル、ステアリン酸メチル、又はこれらの混合物である。
 5.培養条件
 本発明の培養pH、培養温度、培養時間は通常一般の条件により実施でき、例えば、pH2.5~9.5、温度範囲20~45℃の範囲で、4~14日間培養するのが好ましい。
 培養液への酸素供給量を通常一般の好気的培養条件よりも制限することで、ソホロースリピドにおけるジアセチルラクトン型のモル比率は向上する。ジアセチルラクトン型のモル比率については後述する。酸素供給量は、通気量及び/又は攪拌条件により制限できる。一般に、通気量の低減、攪拌数の低減、培養装置の変更等により、酸素供給量は制限できる。これは、培養の進行に伴い蓄積されるバイオサーファクタントによる培養液の発泡の抑制にもつながる。
 例えば一般に、培養開始直後に100%であった溶存酸素飽和度は、菌体の増殖に伴う培養液中の酸素消費により著しく低下するため、通常の好気的培養では溶存酸素飽和度を高く保つべく、高通気、高攪拌等の工夫がなされる。しかし、本発明の培養では、溶存酸素飽和度を低く保つように、酸素供給量を制限して培養する。例えば、菌体が増殖する培養開始直後の培養初期の期間を除き、溶存酸素飽和度を20%以下に、好ましくは15%以下に、より好ましくは10%以下に、さらに好ましくは5%以下に、最も好ましくは0%に保つように酸素供給量を調節して培養する。通気条件の変更による数時間~半日程度の一時的な溶存酸素飽和度の増加は、後述のジアセチルラクトン型のモル比率に大きな影響を与えないため問題とならない。菌体が増殖する培養開始直後の培養初期の期間とは、培養開始からの0~3日間であり、好ましくは0~2日間、最も好ましくは0~1日間である。培養開始直後の培養初期の期間も、菌体の増殖に必要な酸素を供給すればよく、また溶存酸素飽和度は100%から開始する必要も無い。例えば一般的な5Lミニジャーファーメンターを450rpmの条件で攪拌した場合の通気条件として、好ましくは0.4vvm以下、更に好ましくは0.2vvm以下、最も好ましくは0.1vvm以下である。例えば500ml容坂口フラスコで振とう培養を行う場合、100ml以上の培地量とするのが好ましい。また、培養途中に通気量を上げるとソホロースリピド蓄積速度が向上するため、上記範囲の中で酸素供給量を上げても良い。
 6.ソホロースリピドの組成
 発酵生産されたソホロースリピドの組成は、J. Chromatogr., vol.648, 139 (1993)に記載のHPLC条件、もしくはこれと同等の分析条件、で分析することにより解析できる。構造が異なる各種ソホロースリピドの本分析条件における溶出パターンは上記文献に記載されており、これと実際の分析結果の溶出パターンとを比較すれば、各溶出ピークの化合物を同定することができる。
 本発明の培養で得られるソホロースリピドは、ラクトン型ソホロースリピドが主成分であり、アシッド型ソホロースリピドのモル比率は低い。
 ラクトン型ソホロースリピドは、ジアセチルラクトン型(前記一般式(1)において、R、Rが共にCOCHであるもの)、モノアセチルラクトン型(前記一般式(1)において、R、RのいずれかがCOCHであり、もう一方がHであるもの)、ジオールラクトン型(前記一般式(1)において、R、Rが共にHであるもの)から構成されるが、これらの存在モル比率は前述の培養条件における酸素供給量により変化する。後述の固体状ソホロースリピドの取得方法で得られる固体状ソホロースリピドの主成分はジアセチルラクトン型である。ジアセチルラクトン型のモル比率が80%より低い場合は、固体として析出し難いため、ジアセチルラクトン型のモル比率は高い方が好ましい。なお、「ジアセチルラクトン型のモル比率」とは、ジアセチルラクトン型、モノアセチルラクトン型、ジオールラクトン型から構成されるラクトン型ソホロースリピドに占めるジアセチルラクトン型の割合を示す。また後述のように、ジアセチルラクトン型は強い抗菌活性を示すため、取得したソホロースリピドを抗菌剤及び/又は防カビ剤として用いる場合には、ジアセチルラクトン型のモル比率は高い方が好ましい。従って、発酵生産されたソホロースリピドのうち、ジアセチルラクトン型のモル比率は、好ましくは80%以上、更に好ましくは85%以上、より好ましくは90%以上、最も好ましくは95%以上である。
 また、ソホロースリピドの脂肪酸側鎖部分は、飽和型でも不飽和型でも良く、これらが混ざっていてもよい。飽和型と不飽和型の組成モル比率は、培養時に用いる油脂により制御できる。飽和型の脂肪酸側鎖を多く有するソホロースリピドを取得したい場合は、飽和型脂肪酸を多く含有する油脂を用いればよく、不飽和型の脂肪酸側鎖を多く有するソホロースリピドを取得したい場合は、不飽和型脂肪酸を多く含有する油脂を用いればよい。また後述のように、ジアセチルラクトン型ソホロースリピドのうち、特に飽和型の脂肪酸側鎖を有するジアセチルラクトン型ソホロースリピドが強い抗菌、防カビ活性を有する。そのため、ソホロースリピドを抗菌剤及び/又は防カビ剤として用いる場合には、脂肪酸側鎖の飽和型のモル比率が高い方が好ましい。具体的には脂肪酸側鎖の飽和型のモル比率は40%以上が好ましく、より好ましくは60%以上、さらに好ましくは80%以上、最も好ましくは90%以上である。
 7.ソホロースリピドの取得
 本発明のソホロースリピドは、以下の方法で得られる。
 培養液を静置することにより、生産されたソホロースリピドのほぼ全量が培養液の下部へ速やかに沈降するため、これを回収すればソホロースリピドが高収率で得られる。この時、培養液を80℃程度に加熱すれば、ソホロースリピドの流動性が向上して分液性が良くなるため、収率が向上する。取得したソホロースリピドは、不純物を除去する目的で、水や水系緩衝液、ヘキサン等の有機溶媒などで洗浄しても良い。
 上記のソホロースリピドから、ジアセチルラクトン型ソホロースリピドの純度が向上するように精製すれば、固体状ソホロースリピドが得られる。例えば以下のような方法が挙げられる。上記方法で得られたソホロースリピドを、ヘキサンなどの有機溶媒で洗浄すれば、未資化油脂などの脂溶性の不純物が除去できる。また、ソホロースリピドを酢酸エチルやトルエンなどの有機溶媒で抽出すれば、水や水溶性の不純物を除去できる。これら不純物の除去操作は、実施してもしなくても良い。抽出に用いた有機溶媒は、減圧濃縮により簡単に留去することができる。こうして得られたソホロースリピドから、ソホロースリピドを固体として単離するには、水や水系緩衝液など、ソホロースリピドが結晶化する溶媒から晶析すればよい。水や水系緩衝液などからの晶析時のpHは、中性から酸性が好適であり、特に中性付近が好ましい。具体的なpH値としてはpH1~8、好ましくはpH2~7.5、より好ましくはpH3~7、もっとも好ましくはpH6~7である。pHを調整後に攪拌すればソホロースリピドの結晶が析出する。低温で晶析を実施すれば、収率が向上するので好ましい。晶析の液が凍らない温度、例えば4℃程度、まで冷却攪拌して晶析するのが好ましい。この晶析液からの固体状ソホロースリピドの単離は、一般的な方法、例えば、遠心分離や濾過により実施できる。本願発明で得られるソホロースリピド、特にジアセチルラクトン型のモル比率が高いソホロースリピド、さらには脂肪酸側鎖の飽和型のモル比率が高いソホロースリピドは、晶析による精製を好適に用いることができる。ソホロースリピド以外のバイオサーファクタントであっても、本願発明により得られる糖脂質型バイオサーファクタントであれば、同様に晶析による精製を好適に用いることができる。
 8.抗菌、防カビ活性と脂肪酸側鎖の組成
 本発明において「抗菌、防カビ活性」とは、細菌及び酵母、カビ等の微生物の増殖を抑制する効果を言う。これらの生菌数を減少、または殺滅させる効果を指す。
 抗菌、防カビ活性を有することが知られるラクトン型ソホロースリピドのうち、脂肪酸側鎖の飽和型のモル比率が40%以上、好ましくは60%以上、より好ましくは80%以上、更に好ましくは90%以上であるものが強い抗菌、防カビ活性を有しており、これらを抗菌剤及び/又は防カビ剤として用いるのが好ましい。これらを抗菌剤及び/又は防カビ剤として用いれば、従来の抗菌剤及び/又は防カビ剤よりも低濃度で効果を発揮するため、使用量の低減につながる。
 本発明の抗菌剤及び/又は防カビ剤の対象とする微生物は、特に限定されない。例えば、グラム陽性細菌に効果的である。グラム陽性細菌としては、例えば、ミクロコッカス(Micrococcus)属、ストマトコッカス(Stomatococcus)属、プラノコッカス(Planococcus)属、スタフィロコッカス(Staphylococcus)属、デイノコッカス(Deinococcus)属、ストレプトコッカス(Streptococcus)属、ルーコノストク(Leuconostoc)属、ペディオコッカス(Pediococcus)属、アエロコッカス(Aerococcus)属、ゲメラ(Gemella)属、ペプトコッカス(Peptococcus)属、ペプトストレプトコッカス(Peptostreptococcus)属、ルミノコッカス(Ruminococcus)属、コプロコッカス(Coprococcus)属、サルシナ(Sarcina)属、バチラス(Bacillus)属、スポロラクトバチラス(Sporolactobacillus)属、クロストリジウム(Clostridium)属、デサルフォトマキュラム(Desulfotomaculum)属、スポロサルシナ(Sporosarcina)属、オスシロスピラ(Oscillospira)属、ラクトバチラス(Lactobacillus)属、リステリア(Listeria)属、エリシペロテリックス(Erysipelothrix)属、ブロコテリックス(Brochothrix)属、レニバクテリウム(Renibacterium)属、クルチア(Kurthia)属、カリオファノン(Caryophanon)属、コリネバクテリウム(Corynebacterium)属、ガルデネレラ(Gardenerella)属、アルカノバクテリウム(Arcanobacterium)属、アルスロバクター(Arthrobacter)属、ブレビバクテリウム(Brevibacterium)属、クロトバクテリウム(Curtobacterium)属、カセオバクター(Caseobacter)属、ミクロバクテリウム(Microbacterium)属、アウレオバクテリウム(Aureobacterium)属、セルロモナス(Cellulomonas)属、アグロマイセス(Agromyces)属、アラクニア(Arachnia)属、ロチア(Rothia)属、プロピオニバクテリウム(Propionibacterium)属、エウバクテリウム(Eubacterium)属、アセトバクテリウム(Acetobacterium)属、ラクノスピラ(Lachnospira)属、ブチリビブリオ(Butyrivibrio)属、サーモアナエロバクター(Thermoanaerobacter)属、アクチノマイセス(Actinomyces)属、ビフィドバクテリウム(Bifidobacterium)属、マイコバクテリウム(Mycobacterium)属、ノカルディア(Nocardia)属、ロドコッカス(Rhodococcus)属、ノカルディオイデス(Nocardioides)属、シュードノカルディア(Pseudonocardia)属、オエルスコビア(Oerskovia)属、サッカロポリスポラ(Saccharopolyspora)属、ミクロポリスポラ(Micropolyspora)属、プロミクロモノスポラ(Promicromonospora)属、イントラスポランギウム(Intrasporangium)属、等が挙げられる。
 中でも、バチラス(Bacillus)属、スタフィロコッカス(Staphylococcus)属、コリネバクテリウム(Corynebacterium)属に属する細菌に好適に用いることができる。
 特に、スタフィロコッカス(Staphylococcus)属に属する細菌、具体的にはスタフィロコッカス・アウレウス(Staphylococcus aureus)、スタフィロコッカス・エピデルミジス(Staphylococcus epidermidis)や、コリネバクテリウム属に属する細菌、具体的にはコリネバクテリウム・キセロシス(Corynebacterium xerosis)や、ストレプトコッカス(Streptococcus)属に属する細菌、具体的にはストレプトコッカス・スイス(Streptococcus suis)、ストレプトコッカス・ボビス(Streptococcus bovis)や、プロピオニバクテリウム(Propionibacterium)属に属する細菌、具体的にはプロピオニバクテリウム・アクネス(Propionibacterium acnes)等に好適に用いることができる。
 酵母やカビとしては、例えば、クラドスポリウム(Cladosporium)属、アスペルギルス(Aspergillus)属、フザリウム(Fusarium)属、ペニシリウム(Penicillium)属、グロエオフィラム(Gloeophyllum)属、シゾフィラム(Schizophyllum)属、キャンディダ(Candida)属、サッカロマイセス(Saccharomyces)属、ピキア(Pichia)属、ロドトルラ(Rhodotorula)属、等が挙げられる。
 特に、サッカロマイセス(Saccharomyces)属、クラドスポリウム(Cladosporium)属、アスペルギルス(Aspergillus)属、フザリウム(Fusarium)属、ペニシリウム(Penicillium)属、グロエオフィラム(Gloeophyllum)属、シゾフィラム(Schizophyllum)属、等に好適に用いることができる。
 9.使用用途
 本発明で得られる糖脂質型バイオサーファクタントは、界面活性剤としての性質や抗菌・防カビ活性を有するため、これら特性が求められる分野で利用できる。また、新たな性質や機能を見出した場合は、その特性が求められる分野で利用することができる。
 本発明で得られる糖脂質型バイオサーファクタントの界面活性剤としての使用用途としては、例えば、食品用途(乳化剤、防カビ剤など)、家庭用品用途(トイレ・風呂・キッチンなどで用いる洗剤、洗濯用洗剤(柔軟剤、帯電防止剤)、など)、生活資材用途(防錆剤、殺菌剤、など)、土木・建築材料用途(コンクリート用混和剤、減水剤、など)、塗料・インク用途(水性インク用、消泡剤、分散剤、など)、ゴム・プラスチック用途(帯電防止剤、防曇剤、分散剤、など)、機械・器具用途(殺菌剤、洗浄剤、防錆剤、など)、医療・化粧料用途(医薬品、化粧品、香料、殺菌剤、など)、畜産・漁業用途(飼料添加物、抗菌剤、など)、農業用途(農薬、土壌改質剤、殺菌剤、など)、製品製造時での利用用途(紙・パルプ、ゴム・プラスチック、繊維、などの分野)、等が挙げられる。
 本発明で得られる糖脂質型バイオサーファクタントの抗菌剤及び/又は防カビ剤としての使用用途としては、例えば、食品用途(保存料、日持ち向上剤、鮮度保持剤など)、家庭用品用途(ブラシ製品、文房具、靴中敷などの雑貨品、家具等のインテリア、壁・床・天井などの被覆材料、トイレ・風呂・キッチンなどの水まわり設備や用品、など)、生活資材用途(繊維製品、皮革製品、紙製品、ゴム製品、衣類、包装材料、包装容器、など)、土建・塗料用途(固定構造物、建築物の内外装材料、木材、金属、コンクリート、プラスチック、など)、機械・器具用途(電気・家電製品、機械、乗り物、光学器械、医療・福祉・衛生用器具、など)、水処理用途(用水処理、廃水処理、汚泥処理、など)、分離用途(濾過装置、濾過材、濾過機材、など)、医療・化粧料用途(医薬品、化粧品、香料、など)、畜産・漁業用途(飼料添加物など)、農業用途(農薬など)、等が挙げられる。
 本発明で得られる糖脂質型バイオサーファクタントの使用形態に特に制限は無く、用途に応じて適宜他の成分と併用あるいは混在した状態でも使用できる。例えば、ニート(液体又は固体状態)の状態で使用してもよく、各種の溶媒に溶解させた液体状態で用いても良い。また、水又は有機溶媒の存在下で乳化した状態で用いても良いし、固体成分と混合して用いても良い。
 本発明で得られる糖脂質型バイオサーファクタントの使用量は、使用用途などに合わせて設定すればよい。例えば、抗菌剤及び/又は防カビ剤として使用する場合、有効成分であるソホロースリピドの含有量は特に限定されるものではなく、通常、0.001重量%以上、より好ましくは0.01重量%以上、更に好ましくは0.1重量%以上である。
 10.アシッド型ソホロースリピドの調製
 上記の方法で得られる高純度の固体状ソホロースリピドを原料として、酸やアルカリなどで加水分解することにより、高純度のアシッド型ソホロースリピドが容易に得られる。例えば、3モル当量の水酸化ナトリウムを室温で作用させれば、ジアセチルラクトン型のソホロースリピドは速やかに加水分解され、無色透明の純度が高いアシッド型ソホロースリピド水溶液が得られる。この水溶液から水を留去すれば更に高純度化が図れる。
 以下に本発明の具体的な実施例を示す。しかし、本発明はこれらの実施例により限定されるものではない。
 実施例で用いる微生物はいずれも、独立行政法人製品評価技術基盤機構バイオテクノロジー本部 生物遺伝資源部門(NBRC)(〒292-0818 千葉県木更津市かずさ鎌足2-5-8)、又は米国のアメリカン・タイプ・カルチャー・コレクション(American Type Culture Collection, ATCC)から、なんら制限なく入手することができる。
 (実施例1)
 種母培地として、リン酸二水素カリウム0.1%、硫酸マンガン七水和物0.5%、塩化第二鉄0.01%、塩化ナトリウム0.01%、酵母エキス0.4%、グルコース10%、ナタネ油10%からなる液体培地(pH4.5)50mlを500ml容坂口フラスコに、また、本培養培地として、リン酸二水素カリウム0.1%、硫酸マンガン七水和物0.5%、塩化第二鉄0.01%、塩化ナトリウム0.01%、酵母エキス0.4%、グルコース10%、パーム油より製造されたエステルパル-M(ミヨシ油脂社製、パルミチン酸メチルとステアリン酸メチルのモル比率が7:3の油脂)、からなる液体培地(pH4.5)3Lを5L容ミニジャーファーメンター(丸菱バイオエンジ社製)に注入し、121℃で20分間蒸気滅菌した。種母培地に、キャンディダ・ボンビコラ(Candida bombicola)ATCC22214株を1白金耳植菌し、30℃で1日間振盪培養した。種母培養液の全量を本培養培地に植菌し、30℃、450rpm、0.3vvmの条件で7日間培養した。溶存酸素飽和度は、培養開始後1日で0%となり、以降0%を維持した。
 培養液中のソホロースリピドの組成は、下記HPLC条件で分析して決定した。
 (HPLC分析条件)
 カラム:YMC-Pack Pro C18 RS(150X4.6mm, 3um, 株式会社ワイエムシィ製)
 溶離液:2%アセトニトリル水溶液→70%アセトニトリル水溶液のリニアグラジエント(0→48分)
 流速:1.0ml/min.
 カラム温度:30℃
 検出:コロナ荷電化粒子検出器(ESA社製)。
 各種ソホロースリピドの構造は、文献値(J. Chromatogr., 648, 139 (1993))に記載の溶出時間との比較により同定した。上記HPLC分析条件においては、アシッド型ソホロースリピドは28~34分、モノアセチルラクトン型およびジオールラクトン型は34~45分、ジアセチルラクトン型は45分~55分に溶出した。これらのピーク面積をそれぞれの溶出時間の範囲で積算して比較し、ピーク面積のモル比率をソホロースリピドの組成のモル比率とした。その結果、培養終了時の培養液中にはアシッド型ソホロースリピドは検出されず、ラクトン型が100%であった。また、ラクトン型ソホロースリピドのうちジアセチルラクトン型のモル比率は81%であった。また、脂肪酸側鎖の飽和型のモル比率は75%であった。
 (実施例2)
 実施例1で得た本培養液の全量を80℃に加熱し、沈降した約300gの油状物を得た。等容量のヘキサンで洗浄して未資化油脂を除去した後、等容量の酢酸エチルで抽出し、ソホロースリピドの酢酸エチル溶液を得た。減圧濃縮により酢酸エチルを留去後、1.5Lの水を添加し、そのpHを6.5に調整した後に室温から4℃まで冷却晶析を行った。析出した結晶を濾過により取得後、乾燥すると18gの固体状ソホロースリピドが得られた。実施例1に記載のHPLC条件で分析した。その結果、ラクトン型ソホロースリピドのモル比率は100%であった。ラクトン型ソホロースリピドのうちジアセチルラクトン型のモル比率は96%であった。また、脂肪酸側鎖の飽和型のモル比率は92%であった。
 (実施例3)
 本培養時の通気条件を0.2vvmに変更した以外は、実施例1に記載と同様に培養した。培養終了時の培養液を実施例1に記載のHPLC条件で分析した。その結果、アシッド型ソホロースリピドは検出されず、ラクトン型ソホロースリピドのモル比率は100%であった。ラクトン型ソホロースリピドのうちジアセチルラクトン型の
モル比率は89%であった。また、脂肪酸側鎖の飽和型のモル比率は86%であった。
 培養時の、溶存酸素飽和度の経時変化を図1に示した。培養1日で溶存酸素飽和度は0%となり、以降溶存酸素飽和度は上昇しなかった。
 (実施例4)
 実施例3で得た培養液に対して、実施例2と同様の操作を行い、約300gの油状物を得た後に結晶を取得した。その結果、39gの固体状ソホロースリピドが得られた。実施例1に記載のHPLC条件で分析した結果、ラクトン型ソホロースリピドのモル比率は100%であった。ラクトン型ソホロースリピドのうちジアセチルラクトン型のモル比率は100%であった。また、脂肪酸側鎖の飽和型のモル比率は98%であった。
 (参考例1)
 本培養時の通気条件を0.5vvmに変更した以外は、実施例1に記載と同様に培養した。実施例1に記載のHPLC条件で分析したところ、培養終了時の培養液中のラクトン型ソホロースリピドのモル比率は99%であった。ラクトン型ソホロースリピドのうちジアセチルラクトン体のモル比率は71%であった。また、脂肪酸側鎖の飽和型のモル比率は62%であった。
 培養時の、溶存酸素飽和度の経時変化を図2に示した。溶存酸素飽和度は、培養1日で2%まで低下し、培養2日目まで維持した。培養2日目以降は上昇し、培養を終了した4日目まで15%以上を維持した。
 (比較例1)
 参考例1で得た培養液に対して、実施例2と同様の操作を行い、約300gの油状物を得た後に結晶の取得を試みた。その結果、結晶の析出は全く認められず、ソホロースリピドを固体として得られなかった。
 (実施例5)
 本培養時に用いる油脂(エステルパル-M)をパーム油とした以外は、実施例1と同様に培養した。得られた培養液を80℃に加熱し、沈降した油状物をパーム油由来のソホロースリピドとして約300g取得した。実施例1に記載のHPLC条件で分析した結果、ラクトン型ソホロースリピドのモル比率は97%であった。ラクトン型ソホロースリピドのうちジアセチルラクトン型のモル比率は83%であった。また、脂肪酸側鎖の飽和型のモル比率は43%であった。
 (実施例6)
 実施例5で得たソホロースリピドの油状物に対して、実施例2と同様の操作を行い、結晶を取得した。その結果、20gの固体状ソホロースリピドが得られた。実施例1に記載のHPLC条件で分析した結果、ラクトン型ソホロースリピドのモル比率は100%であった。ラクトン型ソホロースリピドのうちジアセチルラクトン型のモル比率は95%であった。また、脂肪酸側鎖の飽和型のモル比率は80%であった。
 (実施例7)
 実施例1、2、5で得られた各種ソホロースリピドの抗菌、防カビ活性を調べた。肉エキス1%、ポリペプトン1%、酵母エキス0.5%、塩化ナトリウム0.3%からなる液体培地(pH7.0)5mlをφ24mm試験管に分注し、121℃で20分間蒸気滅菌した。この液体培地に表1に示した細菌及び酵母を1白金耳植菌し、30℃で24時間振盪培養し、これを種母培養液とした。同じ培地に0.001~0.1%になるように各種ソホロースリピドを加え、種母培養液を50μl植菌し、30℃で15時間振盪培養した。得られた培養液を水で41倍希釈して550nmの吸光度を測定し、ソホロースリピド非添加区の吸光度を100%とした時の相対値を生育度として算出した。結果を表1に示した。試験した各種ソホロースリピドのうち、飽和脂肪酸モル比率が高いもののほうが、より低濃度でグラム陽性細菌や酵母の生育を強く阻害した。
Figure JPOXMLDOC01-appb-T000003
 (実施例8)
 実施例1、2、5で得られた各種ソホロースリピドの防カビ活性を調べた。硝酸ナトリウム0.2%、リン酸水素二カリウム0.1%、塩化カリウム0.05%、硫酸マグネシウム七水和物0.05%、硫酸鉄七水和物0.001%、ショ糖3%、寒天1.5%からなる寒天培地8mlをφ18mm試験管に調製し、121℃で20分間蒸気滅菌した。この寒天培地に下表のカビを1白金耳植菌して30℃で2週間培養し、胞子形成スラントを得た。これに5mlの0.1%Tween80水溶液を入れて懸濁後、ガーゼで濾過し、胞子懸濁液を得た。グルコース2%、酵母エキス1%を含む培地をφ24mm試験管に分注し、121℃で20分間蒸気滅菌した。この液体培地に0.1%になるように各種ソホロースリピドを加え、胞子懸濁液を50μl植菌し、30℃で1週間振盪培養した。カビの生育の有無を目視で判定した。生育の認められた試験区を+、生育が認められなかった試験区を-として、結果を表2に示した。試験した各種ソホロースリピドのうち、脂肪酸側鎖部分の飽和型のモル比率が高いものの方が、より強力にカビの生育を阻害した。
Figure JPOXMLDOC01-appb-T000004
 (実施例9)
 実施例1、2、5で得られた各種のソホロースリピドの防カビ活性を調べた。各種ソホロースリピドを0.1%加えて作製したポテトデキストロース寒天培地(日水製薬株式会社製)プレートにφ8mmの濾紙を設置した。この濾紙上に、実施例8と同様にして下表のカビについて調製した胞子懸濁液5μlを植菌し、30℃で3日間培養した。カビの生育の有無を目視で判定すると共に、生育したカビの直径を測定した。生育度は以下の式により算出した。
 生育度(%)=(ソホロースリピド添加区の生育範囲直径)/(ソホロースリピド非添加区の生育範囲直径)×100(%)
 結果を表3にまとめた。試験した各種ソホロースリピドのうち、脂肪酸側鎖部分の飽和型のモル比率が高いものほど、より強力にカビの生育を阻害した。
Figure JPOXMLDOC01-appb-T000005
 (実施例10)
 実施例2で得た固体状ソホロースリピド5gに、2.5gの40%水酸化ナトリウム水溶液を添加して、室温で1時間攪拌した。その後、濃塩酸でpHを7に調整した。これを実施例1に記載のHPLC条件で分析した。その結果、ラクトン型ソホロースリピドは検出されず、全てアシッド型に変換されていた。この方法により、無色透明で高純度・高含量のアシッド型ソホロースリピドの水溶液が得られた。

Claims (37)

  1.  酸素供給量を制限して微生物を培養する糖脂質型バイオサーファクタントの製造方法。
  2.  培養初期を除き、溶存酸素飽和度が20%以下になるように酸素供給量を制限する請求項1に記載の製造方法。
  3.  糖脂質型バイオサーファクタントがソホロースリピドである請求項1または2のいずれか1項に記載の製造方法。
  4.  ソホロースリピド中のラクトン型ソホロースリピドに占めるジアセチルラクトン型ソホロースリピドのモル比率が80%以上である請求項3に記載の製造方法。
  5.  糖脂質型バイオサーファクタント中の脂肪酸側鎖を構成する脂肪酸残基に占める飽和型脂肪酸残基のモル比率が40%以上である請求項1~4のいずれか1項に記載の製造方法。
  6.  ソホロースリピド中の脂肪酸側鎖を構成する脂肪酸残基に占める飽和型脂肪酸残基のモル比率が40%以上である請求項4に記載の製造方法。
  7.  油脂を原料とする請求項1~6のいずれか1項に記載の製造方法。
  8.  油脂が、植物油脂、もしくは、植物油脂を加工して得られる脂肪酸またはその誘導体、である請求項7に記載の製造方法。
  9.  植物油脂を加工して得られる脂肪酸またはその誘導体が飽和脂肪酸エステルである請求項8に記載の製造方法。
  10.  飽和脂肪酸エステルを構成するアシル基の炭素数が16~18である請求項9に記載の製造方法。
  11.  油脂がパーム油である請求項7に記載の製造方法。
  12.  微生物がキャンディダ・ボンビコラ(Candida bombicola)である請求項1~11のいずれか1項に記載の製造方法。
  13.  さらに、糖脂質型バイオサーファクタントを晶析させる工程を含む請求項1~12のいずれか1項に記載の製造方法。
  14.  さらに、糖脂質型バイオサーファクタントを有機溶媒により洗浄及び/又は抽出する工程を含む請求項1~13のいずれか1項に記載の製造方法。
  15.  糖脂質型バイオサーファクタントを固体状で得る請求項1~14のいずれか1項に記載の製造方法。
  16.  さらに、糖脂質型バイオサーファクタント中のラクトン型糖脂質型バイオサーファクタントを加水分解してアシッド型糖脂質型バイオサーファクタントにする工程を含む請求項1~15のいずれか1項に記載の製造方法。
  17.  請求項6に記載の製造方法により製造される、ソホロースリピド中の脂肪酸側鎖を構成する脂肪酸残基に占める飽和型脂肪酸残基のモル比率が40%以上であるソホロースリピド。
  18.  ソホロースリピド中のラクトン型ソホロースリピドに占めるジアセチルラクトン型ソホロースリピドのモル比率が80%以上である請求項17に記載のソホロースリピド。
  19.  ソホロースリピド中の脂肪酸側鎖を構成する脂肪酸残基に占める飽和型脂肪酸残基のモル比率が40%以上であるソホロースリピド。
  20.  ソホロースリピド中の脂肪酸側鎖を構成する脂肪酸残基に占める飽和型脂肪酸残基のモル比率が60%以上である請求項19に記載のソホロースリピド。
  21.  ソホロースリピド中の脂肪酸側鎖を構成する脂肪酸残基に占める飽和型脂肪酸残基のモル比率が80%以上である請求項20に記載のソホロースリピド。
  22.  ソホロースリピド中の脂肪酸側鎖を構成する脂肪酸残基に占める飽和型脂肪酸残基のモル比率が90%以上である請求項21に記載のソホロースリピド。
  23.  ソホロースリピド中のラクトン型ソホロースリピドに占めるジアセチルラクトン型ソホロースリピドのモル比率が80%以上である請求項19~22のいずれか一項に記載のソホロースリピド。
  24.  ソホロースリピド中のラクトン型ソホロースリピドに占めるジアセチルラクトン型ソホロースリピドのモル比率が85%以上である請求項23に記載のソホロースリピド。
  25.  ソホロースリピド中のラクトン型ソホロースリピドに占めるジアセチルラクトン型ソホロースリピドのモル比率が90%以上である請求項24に記載のソホロースリピド。
  26.  ソホロースリピド中のラクトン型ソホロースリピドに占めるジアセチルラクトン型ソホロースリピドのモル比率が95%以上である請求項25に記載のソホロースリピド。
  27.  固体状である請求項17~26のいずれか一項に記載のソホロースリピド。
  28.  請求項1~16のいずれか1項に記載の製造方法により得られる糖脂質型バイオサーファクタント、及び/又は、請求項17~27のいずれか一項に記載のソホロースリピド、を含む組成物。
  29.  請求項28に記載の組成物を含む界面活性剤。
  30.  請求項29に記載の界面活性剤の、食品用途、家庭用品用途、生活資材用途、土木・建築材料用途、塗料・インク用途、ゴム・プラスチック用途、機械・器具用途、医療・化粧料用途、畜産・漁業用途、農業用途、又は、製品製造時での利用用途における使用。
  31.  請求項28に記載の組成物を含む抗菌剤及び/又は防カビ剤。
  32.  対象とする微生物がグラム陽性細菌、酵母、カビである、請求項31に記載の抗菌剤及び/又は防カビ剤。
  33.  対象とする微生物が、ミクロコッカス(Micrococcus)属、ストマトコッカス(Stomatococcus)属、プラノコッカス(Planococcus)属、スタフィロコッカス(Staphylococcus)属、デイノコッカス(Deinococcus)属、ストレプトコッカス(Streptococcus)属、ルーコノストク(Leuconostoc)属、ペディオコッカス(Pediococcus)属、アエロコッカス(Aerococcus)属、ゲメラ(Gemella)属、ペプトコッカス(Peptococcus)属、ペプトストレプトコッカス(Peptostreptococcus)属、ルミノコッカス(Ruminococcus)属、コプロコッカス(Coprococcus)属、サルシナ(Sarcina)属、バチラス(Bacillus)属、スポロラクトバチラス(Sporolactobacillus)属、クロストリジウム(Clostridium)属、デサルフォトマキュラム(Desulfotomaculum)属、スポロサルシナ(Sporosarcina)属、オスシロスピラ(Oscillospira)属、ラクトバチラス(Lactobacillus)属、リステリア(Listeria)属、エリシペロテリックス(Erysipelothrix)属、ブロコテリックス(Brochothrix)属、レニバクテリウム(Renibacterium)属、クルチア(Kurthia)属、カリオファノン(Caryophanon)属、コリネバクテリウム(Corynebacterium)属、ガルデネレラ(Gardenerella)属、アルカノバクテリウム(Arcanobacterium)属、アルスロバクター(Arthrobacter)属、ブレビバクテリウム(Brevibacterium)属、クロトバクテリウム(Curtobacterium)属、カセオバクター(Caseobacter)属、ミクロバクテリウム(Microbacterium)属、アウレオバクテリウム(Aureobacterium)属、セルロモナス(Cellulomonas)属、アグロマイセス(Agromyces)属、アラクニア(Arachnia)属、ロチア(Rothia)属、プロピオニバクテリウム(Propionibacterium)属、エウバクテリウム(Eubacterium)属、アセトバクテリウム(Acetobacterium)属、ラクノスピラ(Lachnospira)属、ブチリビブリオ(Butyrivibrio)属、サーモアナエロバクター(Thermoanaerobacter)属、アクチノマイセス(Actinomyces)属、ビフィドバクテリウム(Bifidobacterium)属、マイコバクテリウム(Mycobacterium)属、ノカルディア(Nocardia)属、ロドコッカス(Rhodococcus)属、ノカルディオイデス(Nocardioides)属、シュードノカルディア(Pseudonocardia)属、オエルスコビア(Oerskovia)属、サッカロポリスポラ(Saccharopolyspora)属、ミクロポリスポラ(Micropolyspora)属、プロミクロモノスポラ(Promicromonospora)属、イントラスポランギウム(Intrasporangium)属、クラドスポリウム(Cladosporium)属、アスペルギルス(Aspergillus)属、フザリウム(Fusarium)属、ペニシリウム(Penicillium)属、グロエオフィラム(Gloeophyllum)属、シゾフィラム(Schizophyllum)属、キャンディダ(Candida)属、サッカロマイセス(Saccharomyces)属、ピキア(Pichia)属、ロドトルラ(Rhodotorula)属に属する微生物から選ばれる1以上の微生物である請求項32に記載の抗菌剤及び/又は防カビ剤。
  34.  対象とする微生物が、バチラス(Bacillus)属、スタフィロコッカス(Staphylococcus)属、コリネバクテリウム(Corynebacterium)属、サッカロマイセス(Saccharomyces)属、クラドスポリウム(Cladosporium)属、アスペルギルス(Aspergillus)属、フザリウム(Fusarium)属、ペニシリウム(Penicillium)属、グロエオフィラム(Gloeophyllum)属、シゾフィラム(Schizophyllum)属に属する微生物から選ばれる1以上の微生物である、請求項33に記載の抗菌剤及び/又は防カビ剤。
  35.  請求項31~34のいずれか1項に記載の抗菌剤及び/又は防カビ剤の、食品用途、家庭用品用途、生活資材用途、土建・塗料用途、機械・器具用途、水処理用途、分離用途、医療・化粧料用途、畜産・漁業用途、又は、農業用途における使用。
  36.  請求項28に記載の組成物を含む医薬品。
  37.  請求項17~27のいずれか1項に記載のソホロースリピドを加水分解することを特徴とする、アシッド型ソホロースリピドの製造方法。
PCT/JP2009/068260 2008-10-28 2009-10-23 ソホロースリピドの製造方法 WO2010050413A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/126,532 US8664373B2 (en) 2008-10-28 2009-10-23 Method for producing sophorose lipid
EP09823524.5A EP2351847B1 (en) 2008-10-28 2009-10-23 Method for producing sophorose lipid
JP2010535769A JP5676267B2 (ja) 2008-10-28 2009-10-23 ソホロースリピドの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-276201 2008-10-28
JP2008276201 2008-10-28

Publications (1)

Publication Number Publication Date
WO2010050413A1 true WO2010050413A1 (ja) 2010-05-06

Family

ID=42128776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068260 WO2010050413A1 (ja) 2008-10-28 2009-10-23 ソホロースリピドの製造方法

Country Status (4)

Country Link
US (1) US8664373B2 (ja)
EP (1) EP2351847B1 (ja)
JP (1) JP5676267B2 (ja)
WO (1) WO2010050413A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2718454A1 (en) * 2011-06-06 2014-04-16 Ecover Coordination Center N.V. Improved sophorolactone production
WO2015034007A1 (ja) * 2013-09-04 2015-03-12 サラヤ株式会社 低毒性ソホロリピッド含有組成物及びその用途
JP2015100290A (ja) * 2013-11-22 2015-06-04 花王株式会社 ソフォロリピッドの製造方法
JP2015104381A (ja) * 2013-12-03 2015-06-08 花王株式会社 ソフォロリピッドの製造方法
JP2016160264A (ja) * 2016-01-04 2016-09-05 サラヤ株式会社 低毒性ソホロリピッド含有組成物及びその用途
JP2016160244A (ja) * 2015-03-04 2016-09-05 サラヤ株式会社 低毒性ソホロリピッド含有組成物及びその用途
JPWO2015137357A1 (ja) * 2014-03-10 2017-04-06 サラヤ株式会社 ソホロリピッドと生理活性物質と油脂とを含有する組成物およびその製造方法
US10065982B2 (en) 2012-03-02 2018-09-04 Saraya Co., Ltd. High-purity acid-form sophorolipid (SL) containing composition and process for preparing same
US10287615B2 (en) 2011-06-06 2019-05-14 Ecover Co-Ordination Center N.V. Sophorolactone production
CN111053734A (zh) * 2020-01-16 2020-04-24 山东大学 一种抗痤疮丙酸杆菌及其生物膜的药物组合物
JP2020105244A (ja) * 2018-12-26 2020-07-09 レック株式会社 バイオフィルム形成防止剤、及び、該剤を含有する洗浄用組成物
US10752650B2 (en) 2013-08-09 2020-08-25 Saraya Co., Ltd. Sophorolipid compound and composition comprising same
JP2020535108A (ja) * 2017-09-28 2020-12-03 ローカス アグリカルチャー アイピー カンパニー エルエルシー 植物のモザイクウイルス及び細菌感染の処置
WO2022030577A1 (ja) * 2020-08-05 2022-02-10 サラヤ株式会社 取り扱い性に優れたソホロリピッド含有組成物
US11312928B2 (en) 2017-03-07 2022-04-26 Saraya Co., Ltd. Detergent composition comprising an acidic sophorose lipid and fatty acid salt mixture
US11470860B2 (en) 2016-03-02 2022-10-18 Pathway Intermediates Limited Animal feeds containing specific glycolipids
CN115485252A (zh) * 2020-02-20 2022-12-16 轨迹Ip有限责任公司 改善的混凝土组合物及其生产方法
WO2024071365A1 (ja) * 2022-09-30 2024-04-04 株式会社カネカ 活性酸素低減用組成物

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107936663A (zh) 2012-05-07 2018-04-20 罗地亚管理公司 掺有一种或更多种抗菌生物表面活性剂的水性涂料和油漆、及其使用方法
BR112014032940A2 (pt) 2012-07-20 2017-06-27 Sophoro Biotechnologies Llc ésteres de carboidratos como indutores de expressão de genes
WO2014018020A1 (en) * 2012-07-24 2014-01-30 Empire Technology Development Llc Cellulosic material preservatives containing disaccharide
WO2015153476A1 (en) * 2014-03-31 2015-10-08 The Regents Of The University Of California Methods of producing glycolipids
WO2017222478A2 (en) * 2016-06-24 2017-12-28 LERTKARNKHASUK, Apisak Anti-fog spray
WO2018049182A2 (en) 2016-09-08 2018-03-15 Locus Solutions, Llc Distributed systems for the efficient production and use of microbe-based compositions
EA201991199A1 (ru) 2016-11-16 2019-11-29 Материалы и способы борьбы с нематодами
MX2019006780A (es) 2016-12-11 2019-12-02 Locus Oil Ip Company Llc Productos microbianos y su uso en biorremedicacion y para remover parafina y otras sustancias contaminantes desde los equipos de produccion y procesamiento de petroleo y gas.
KR102588304B1 (ko) * 2017-04-09 2023-10-11 로커스 아이피 컴퍼니 엘엘씨 산업적, 기계적 및 음식점의 설비를 유지하기 위한 물질과 방법
EP3612021A4 (en) 2017-04-20 2021-04-14 Locus IP Company, LLC COST-EFFECTIVE COMPOSITIONS AND PROCESSES TO IMPROVE AQUACULTURE AND AQUARIUM FISH BREEDING
GR1009585B (el) * 2017-11-17 2019-09-11 Τεχνολογικο Εκπαιδευτικο Ιδρυμα Ανατολικης Μακεδονιας Και Θρακης Μεθοδος παραγωγης βιο-επιφανειοδραστικων ουσιων υψηλης καθαροτητας απο θαλασσιους μικροοργανισμους που αποδομουν βαρεα κλασματα αργου πετρελαιου
CA3085343A1 (en) 2017-12-28 2019-07-04 Locus Ip Company, Llc Oral health composition comprising purified biosurfactants and/or their derivatives
JP2021514004A (ja) 2018-02-26 2021-06-03 ローカス アグリカルチャー アイピー カンパニー エルエルシー 昆虫病原性糸状菌を用いた害虫の防除のための材料と方法
EP3801463A4 (en) 2018-05-25 2022-05-04 Locus IP Company, LLC THERAPEUTIC COMPOSITIONS FOR IMPROVED HEALING OF WOUNDS AND SCARS
CN109730093B (zh) * 2018-06-04 2021-07-20 北京东方昊天生物技术研究所有限公司 一种蚜虫驱菌剂及其制备方法和应用
KR20210072044A (ko) 2018-11-05 2021-06-16 로디아 오퍼레이션스 바이오-애주번트로서 바이오계면활성제를 함유한 수성 코팅 및 이를 사용하는 방법
AU2020272591A1 (en) 2019-04-12 2021-11-04 Locus Solutions Ipco, Llc Pasture treatments for enhanced carbon sequestration and reduction in livestock-produced greenhouse gas emissions
EP3955750A4 (en) * 2019-04-16 2023-01-11 Locus IP Company, LLC MICROBE-BASED EMULSIFYING FOOD ADDITIVES
CA3136067A1 (en) * 2020-03-10 2021-09-16 Locus Ip Company, Llc Compositions for replacing chemical surfactants
EP4384659A1 (en) * 2021-08-11 2024-06-19 Locus Solutions IPCO, LLC Compositions for improving the environmental impact of textiles and leather
US11479703B1 (en) 2022-06-01 2022-10-25 King Fahd University Of Petroleum And Minerals Rhamnolipid stabilized invert emulsion drilling fluid and method of drilling subterranean geological formation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428895A (en) 1977-08-01 1979-03-03 Kao Corp Dehydration purification of fermentation products
JP2001522597A (ja) * 1997-11-07 2001-11-20 アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー 新規ソホロース脂質、それらの製造法および使用法
WO2004044216A1 (en) 2002-11-06 2004-05-27 Polytechnic University Antimicrobial properties of various forms of sophorolipids
WO2006069175A2 (en) 2004-12-22 2006-06-29 Polytechnic University Antifungal properties of various forms of sophorolipids

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2060698C (en) * 1991-02-12 1997-09-30 Peter J. Hall Detergent compositions
FR2692593B1 (fr) * 1992-06-18 1995-06-16 Inst Francais Du Petrole Procede de production de sophorolipides acetyles sous leur forme acide a partir d'un substrat consistant et une huile ou un ester.
US5520839A (en) * 1993-09-10 1996-05-28 Lever Brothers Company, Division Of Conopco, Inc. Laundry detergent composition containing synergistic combination of sophorose lipid and nonionic surfactant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428895A (en) 1977-08-01 1979-03-03 Kao Corp Dehydration purification of fermentation products
JP2001522597A (ja) * 1997-11-07 2001-11-20 アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー 新規ソホロース脂質、それらの製造法および使用法
WO2004044216A1 (en) 2002-11-06 2004-05-27 Polytechnic University Antimicrobial properties of various forms of sophorolipids
WO2006069175A2 (en) 2004-12-22 2006-06-29 Polytechnic University Antifungal properties of various forms of sophorolipids

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 76, 2007, pages 23
CANADIAN JOURNAL OF CHEMISTRY, vol. 39, 1961, pages 846
CASAS, J.A. ET AL.: "Optimization of a synthetic medium for Candida bombicola growth using factorial design of experiments", ENZYME MICROB. TECHNOL., vol. 21, no. 3, 1997, pages 221 - 229, XP008139499 *
CASAS, J.A. ET AL.: "Sophorolipid production by Candida bombicola: medium composition and culture methods", J.BIOSCI.BIOENG., vol. 88, no. 5, 1999, pages 488 - 494, XP008139506 *
CAVALERO, D.A. ET AL.: "The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC 22214", J.BIOTECHNOL., vol. 103, no. 1, 2003, pages 31 - 41, XP008139519 *
DANIEL, H.J. ET AL.: "Production of sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214 using deproteinized whey concentrates as substrates", APPL.MICROBIOL.BIOTECHNOL., vol. 51, no. 1, 1999, pages 40 - 45, XP008104228 *
DANIEL, H.J. ET AL.: "Production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509", BIOTECHNOL.LETT., vol. 20, no. 12, 1998, pages 1153 - 1156, XP008139502 *
ENGINEERING IN LIFE SCIENCES, vol. 5, no. 4, 2005, pages 357
FETT WISSENSCHAFT TECHNOLOGIE, vol. 91, 1989, pages 363
GLENNS, R.N. ET AL.: "Effect of substrate on sophorolipid properties", J.AM.OIL CHEM.SOC., vol. 83, no. 2, 2006, pages 137 - 145, XP008139518 *
J. CHROMATOGR., vol. 648, 1993, pages 139
JOURNAL OF INDUSTRIAL MICROBIOLOGY, vol. 13, 1994, pages 249
JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, vol. 65, no. 9, 1988, pages 1460
JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, vol. 83, no. 2, 2006, pages 137
MCCAFFREY, W.C. ET AL.: "Sophorolipids production by Candida bombicola using self- cycling fermentation", J.FERMENT.BIOENG., vol. 79, no. 2, 1995, pages 146 - 151, XP002054166 *
PEKIN, G. ET AL.: "Production of sophorolipids from Candida bombicola ATCC 22214 using Turkish corn oil and honey", ENG.LIFE SCI., vol. 5, no. 4, 2005, pages 357 - 362, XP008139495 *
See also references of EP2351847A4
SHAH, V. ET AL.: "Sophorolipids, microbial glycolipids with anti-human immunodeficiency virus and sperm-immobilizing activities", ANTIMICROB.AGENTS CHEMOTHER., vol. 49, no. 10, 2005, pages 4093 - 4100, XP002601797 *
VAN BOGAERT, I.N.A. ET AL.: "Microbial production and application of sophorolipids", APPL.MICROBIOL.BIOTECHNOL., vol. 76, no. 1, 2007, pages 23 - 34, XP019538805 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10287615B2 (en) 2011-06-06 2019-05-14 Ecover Co-Ordination Center N.V. Sophorolactone production
EP2718454A1 (en) * 2011-06-06 2014-04-16 Ecover Coordination Center N.V. Improved sophorolactone production
US10065982B2 (en) 2012-03-02 2018-09-04 Saraya Co., Ltd. High-purity acid-form sophorolipid (SL) containing composition and process for preparing same
US10752650B2 (en) 2013-08-09 2020-08-25 Saraya Co., Ltd. Sophorolipid compound and composition comprising same
CN105683329B (zh) * 2013-09-04 2018-04-06 莎罗雅株式会社 低毒性的含有槐糖脂的组合物及其用途
CN105683329A (zh) * 2013-09-04 2016-06-15 莎罗雅株式会社 低毒性的含有槐糖脂的组合物及其用途
JPWO2015034007A1 (ja) * 2013-09-04 2017-03-02 サラヤ株式会社 低毒性ソホロリピッド含有組成物及びその用途
US10688031B2 (en) 2013-09-04 2020-06-23 Saraya Co., Ltd. Low-toxicity sophorolipid-containing composition and use therefor
WO2015034007A1 (ja) * 2013-09-04 2015-03-12 サラヤ株式会社 低毒性ソホロリピッド含有組成物及びその用途
JP2015100290A (ja) * 2013-11-22 2015-06-04 花王株式会社 ソフォロリピッドの製造方法
JP2015104381A (ja) * 2013-12-03 2015-06-08 花王株式会社 ソフォロリピッドの製造方法
JPWO2015137357A1 (ja) * 2014-03-10 2017-04-06 サラヤ株式会社 ソホロリピッドと生理活性物質と油脂とを含有する組成物およびその製造方法
US10307466B2 (en) 2014-03-10 2019-06-04 Saraya Co., Ltd. Composition comprising sophorolipid, physiologically active substance and oil or fat, and method for producing the same
JP2016160244A (ja) * 2015-03-04 2016-09-05 サラヤ株式会社 低毒性ソホロリピッド含有組成物及びその用途
JP2016160264A (ja) * 2016-01-04 2016-09-05 サラヤ株式会社 低毒性ソホロリピッド含有組成物及びその用途
US11470860B2 (en) 2016-03-02 2022-10-18 Pathway Intermediates Limited Animal feeds containing specific glycolipids
US11312928B2 (en) 2017-03-07 2022-04-26 Saraya Co., Ltd. Detergent composition comprising an acidic sophorose lipid and fatty acid salt mixture
JP2020535108A (ja) * 2017-09-28 2020-12-03 ローカス アグリカルチャー アイピー カンパニー エルエルシー 植物のモザイクウイルス及び細菌感染の処置
JP7390191B2 (ja) 2017-09-28 2023-12-01 ローカス アグリカルチャー アイピー カンパニー エルエルシー 植物のモザイクウイルス及び細菌感染の処置
JP2020105244A (ja) * 2018-12-26 2020-07-09 レック株式会社 バイオフィルム形成防止剤、及び、該剤を含有する洗浄用組成物
CN111053734A (zh) * 2020-01-16 2020-04-24 山东大学 一种抗痤疮丙酸杆菌及其生物膜的药物组合物
CN115485252A (zh) * 2020-02-20 2022-12-16 轨迹Ip有限责任公司 改善的混凝土组合物及其生产方法
WO2022030577A1 (ja) * 2020-08-05 2022-02-10 サラヤ株式会社 取り扱い性に優れたソホロリピッド含有組成物
WO2024071365A1 (ja) * 2022-09-30 2024-04-04 株式会社カネカ 活性酸素低減用組成物

Also Published As

Publication number Publication date
JP5676267B2 (ja) 2015-02-25
EP2351847A4 (en) 2012-03-21
EP2351847B1 (en) 2017-04-05
JPWO2010050413A1 (ja) 2012-03-29
US20110237531A1 (en) 2011-09-29
EP2351847A1 (en) 2011-08-03
US8664373B2 (en) 2014-03-04

Similar Documents

Publication Publication Date Title
JP5676267B2 (ja) ソホロースリピドの製造方法
Van Bogaert et al. Microbial synthesis of sophorolipids
Paulino et al. Current status in biotechnological production and applications of glycolipid biosurfactants
Van Bogaert et al. Microbial production and application of sophorolipids
De et al. A review on natural surfactants
Roelants et al. Production and applications of sophorolipids
Marchant et al. Biosurfactants: a sustainable replacement for chemical surfactants?
JP5470857B2 (ja) 糖型バイオサーファクタント生産能を有する微生物及びそれを用いる糖型バイオサーファクタントの製造方法
Sajna et al. White biotechnology in biosurfactants
US20220403439A1 (en) Compositions for Replacing Chemical Surfactants
CA3161382A1 (en) Improved methods for purification of sophorolipids
da Silva et al. Integral production and concentration of surfactin from Bacillus sp. ITP-001 by semi-batch foam fractionation
Lee et al. Rhamnolipid production in batch and fed-batch fermentation using Pseudomonas aeruginosa BYK-2 KCTC 18012P
KIM et al. Sophorolipid production by Candida bombicola ATCC 22214 from a corn-oil processing byproduct
Sana et al. Production kinetics of Rhamnolipid using fish fat: A step towards environmental hazard control of sewage
Van Bogaert et al. Sophorolipids
KR20230011904A (ko) 친수성 소포로리피드를 포함하는 조성물의 제조 방법
Van Bogaert et al. Microbial synthesis and application
Dailin et al. Yeast biosurfactants biosynthesis, production and application
JP6956174B2 (ja) 発酵における感染に対する脂肪酸エステル
WO2021173316A1 (en) Methods for isolating single-molecule products
Khamis et al. Microbial surfactants: classifications, properties, recovery, and applications
WO2024118749A1 (en) Methods for producing bio-derivatized linear sophorolipids
Ashby et al. Sophorolipids: Unique microbial glycolipids with vast application potential
WO2023225452A1 (en) Ozone treatment of fermentation media

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823524

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010535769

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009823524

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009823524

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13126532

Country of ref document: US