WO2010041644A1 - Polyamideimide resin, adhesive composition using the resin, ink for printed circuit board using the adhesive composition, cover lay film, adhesive sheet and printed circuit board - Google Patents
Polyamideimide resin, adhesive composition using the resin, ink for printed circuit board using the adhesive composition, cover lay film, adhesive sheet and printed circuit board Download PDFInfo
- Publication number
- WO2010041644A1 WO2010041644A1 PCT/JP2009/067379 JP2009067379W WO2010041644A1 WO 2010041644 A1 WO2010041644 A1 WO 2010041644A1 JP 2009067379 W JP2009067379 W JP 2009067379W WO 2010041644 A1 WO2010041644 A1 WO 2010041644A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adhesive composition
- acid
- polyamideimide resin
- adhesive
- mol
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/386—Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/14—Polyamide-imides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J179/00—Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
- C09J179/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C09J179/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/35—Heat-activated
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/032—Organic insulating material consisting of one material
- H05K1/0346—Organic insulating material consisting of one material containing N
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/28—Applying non-metallic protective coatings
- H05K3/285—Permanent coating compositions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/02—Organic macromolecular compounds, natural resins, waxes or and bituminous materials
- C08L2666/14—Macromolecular compounds according to C08L59/00 - C08L87/00; Derivatives thereof
- C08L2666/20—Macromolecular compounds having nitrogen in the main chain according to C08L75/00 - C08L79/00; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2203/00—Applications of adhesives in processes or use of adhesives in the form of films or foils
- C09J2203/326—Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2423/00—Presence of polyolefin
- C09J2423/10—Presence of homo or copolymers of propene
- C09J2423/106—Presence of homo or copolymers of propene in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2463/00—Presence of epoxy resin
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2479/00—Presence of polyamine or polyimide
- C09J2479/08—Presence of polyamine or polyimide polyimide
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0366—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0154—Polyimide
Definitions
- the present invention relates to a novel polyamideimide resin, an adhesive composition using the same, a heat resistant ink, an adhesive sheet, a coverlay film, a glass cloth impregnated prepreg, and a printed circuit board using these.
- the present invention relates to a heat-resistant ink and an adhesive composition suitable for a printed circuit board excellent in solder heat resistance and high-temperature flexibility after humidification.
- a heat-resistant adhesive a material mainly composed of a polyimide resin or an epoxy resin has been used, but there are some problems in using these resins.
- One of them is the compatibility between heat resistance and low-temperature adhesiveness.
- polyimide has excellent heat resistance, and therefore requires strong equipment for bonding at high temperatures, and epoxy adhesives that can be bonded at low temperatures have a problem of poor heat resistance.
- Several specific methods for achieving both the low-temperature adhesiveness and the heat resistance have been disclosed. For example, there are methods such as using a heat-resistant epoxy resin and a maleimide resin, but these resins are fragile due to their high curing density, and therefore their use is limited.
- Patent Document 1 shows that an epoxy resin is blended with a polyetherimide having a specific structure to achieve both low-temperature adhesion and heat resistance. If this is the case, an adhesive temperature of 200 ° C. is necessary, and it cannot be said that the adhesiveness is sufficiently low.
- Polyamideimide heat-resistant adhesives have also been proposed.
- Patent Document 2 and Patent Document 3 disclose polyamideimides copolymerized with acrylonitrile-butadiene and adhesives for semiconductors using the same.
- Patent Document 5 propose a polyamideimide copolymerized with dimer acid and an adhesive for semiconductors using the same, all of which have low-temperature adhesion and heat resistance, particularly soldering resistance after humidification, and high temperature. None of the copper foil circuit parts under high humidity satisfy all the migration resistance due to the formation of dendrites.
- the present invention was devised in view of the current state of the prior art, and its purpose is an adhesive composition containing a polyamide-imide resin that is excellent in low-temperature adhesion, migration resistance and heat resistance, particularly soldering resistance after humidification.
- Adhesives useful for printed circuit boards in particular, inks, adhesive sheets, coverlay films, printed circuit board using them, and polyamideimide resins suitable for use in them Is to provide.
- the inventor of the present invention has reached the present invention as a result of diligent research in order to achieve such an object. That is, the present invention
- An ink for printed circuit boards wherein the adhesive composition according to (7) or (8) contains inorganic and / or organic fine particles and has a thixotropic index of 1.2 or more and 3.0 or less.
- a coverlay film using the adhesive composition according to (7) or (8).
- An adhesive sheet obtained by applying and drying the adhesive composition according to (7) or (8) on a polypropylene film, a release paper, or a release film.
- the adhesive composition excellent in the low temperature adhesiveness and soldering resistance to a metal or a polyimide film, especially the soldering resistance after a humidification process, and the anti-migration property in high temperature, high humidity, and a printed circuit Ink, adhesive sheets, and coverlay films useful for substrates, printed circuit boards using these, and polyamideimide resins suitable for use in these can be easily obtained.
- the present invention is capable of low-temperature adhesion, and has an adhesive composition excellent in migration resistance and heat resistance, particularly soldering resistance after humidification, and an adhesive sheet, coverlay film, glass cloth impregnated prepreg, and printed circuit formed therefrom.
- the present invention relates to a printed circuit board using these, and a polyamide-imide resin suitable for use in these.
- Polyamideimide resin used in the present invention can be produced by a known method such as an acid chloride method or an isocyanate method.
- pyromellitic acid In addition to trimellitic acid and its anhydride and chloride, pyromellitic acid, biphenyltetracarboxylic acid, biphenylsulfonetetracarboxylic acid, benzophenonetetracarboxylic acid, biphenylethertetracarboxylic acid are used as the acid components used in the production of polyamideimide resin.
- Tetracarboxylic acids such as acids, ethylene glycol bis trimellitate and propylene glycol bis trimellitate and their anhydrides, oxalic acid, adipic acid, malonic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, dicarboxypolybutadiene, dicarboxypoly (Acrylonitrile-butadiene), aliphatic dicarboxylic acids such as dicarboxypoly (styrene-butadiene), 1,4 cyclohexane dicarboxylic acid, 1,3 cyclohexane dicarboxylic acid, 4,4 ′ dicyclo Examples include alicyclic dicarboxylic acids such as hexylmethane dicarboxylic acid and dimer acid, and aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarbox
- Trimellitic anhydride is most preferable from the viewpoints of properties, adhesiveness, solubility, and the like, and a part of which is replaced with trimellitic acid, dicarboxypoly (acrylonitrile-butadiene) or dimer acid is more preferable.
- diamine or diisocyanate used in the production of the polyamideimide resin examples include aliphatic diamines such as ethylenediamine, propylenediamine, and hexamethylenediamine, and diisocyanates thereof, 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, isophoronediamine, 4 Alicyclic diamines such as 4,4'-dicyclohexylmethanediamine and their diisocyanates, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diamino Aromatic diamines such as diphenylsulfone, benzidine, o-tolidine, 2,4-tolylenediamine, 2,6-tolylenediamine, xylylenediamine, diaminopoly (acrylonitrile-buty
- the polyamidoimide resin of the present invention can be copolymerized with a polyhydric alcohol component in addition to the acid component and the diamine or diisocyanate component.
- Polyhydric alcohol components include ethylene glycol, diethylene glycol, triethylene glycol, dimethylol butanoic acid, polyethylene glycol, propylene glycol, polypropylene glycol, tetramethylene glycol, polytetramethylene glycol, polyester diol, carbonate diol and other diols and pentaerythritol.
- polyester diol, polyethylene glycol, polypropylene glycol, and polytetramethylene glycol are preferable in view of adhesiveness and solubility.
- dimethylolbutanoic acid, polyethylene glycol having a number average molecular weight of 400 to 10,000, polypropylene glycol or polytetramethylene glycol are preferred.
- the polyamide-imide resin of the present invention has a high acid value in spite of being a high molecular weight material in order to satisfy all of heat resistance when used for a printed circuit board, in particular, solder resistance after humidification, low-temperature adhesion and migration resistance. It is necessary to be.
- the logarithmic viscosity of the polyamideimide resin which is a measure of molecular weight, is 0.2 dl / g or more. When the logarithmic viscosity is less than 0.2 dl / g, the strength and elongation when formed into a film are low, so that sufficient adhesive force cannot be obtained.
- the upper limit is not particularly limited, but when the logarithmic viscosity becomes large, when mixing hardeners, flame retardants, and other additives, compatibility with them decreases or work viscosity decreases due to increased solution viscosity In other words, it may be substantially 1.5 dl / g or less. It is preferably 0.3 to 1.0 dl / g, more preferably 0.3 to 0.5 dl / g.
- the logarithmic viscosity can usually be adjusted by adjusting the charging ratio of the acid component and the diamine component (diisocyanate component), the polymerization temperature, the concentration, the addition of a catalyst, etc.
- the diamine component (diisocyanate component) can be increased or the polymerization temperature and concentration can be adjusted.
- the logarithmic viscosity can be increased by increasing the viscosity or adding a catalyst.
- the acid value of the polyamide-imide resin of the present invention is in the range of 400 equivalent / 10 6 g to 1000 equivalent / 10 6 g, preferably 450 equivalent / 10 6 g to 1000 equivalent / 10 6 g, more preferably 500 equivalents / 10 6 g to 1000 equivalents / 10 6 g. If the acid value exceeds the above upper limit, a carboxyl group may remain even after the adhesive composition is cured with a polyfunctional epoxy compound, polyfunctional isocyanate compound, melamine compound, etc., which will be described later, migration resistance and humidification Post solder resistance decreases.
- the acid value is less than the above lower limit
- the number of reaction points with the polyfunctional epoxy compound, polyfunctional isocyanate compound, melamine compound, etc. decreases, the curing density decreases, and the solder heat resistance after humidification becomes insufficient.
- a polyamideimide resin having an acid value in the above range can be obtained.
- trimellitic anhydride is used as the acid component
- the polymerization is carried out by replacing 3 to 30 mol% of trimellitic anhydride with trimellitic acid.
- trimellitic acid and a diisocyanate compound of 0.9 to 1.2 equivalents of the trimellitic acid are reacted in advance at 80 ° C. or lower, and then the remaining raw materials (acid component and diisocyanate component) are added for polymerization. It is preferable to carry out. This is because trimellitic anhydride, trimellitic acid and diisocyanate compound are charged simultaneously from the beginning, and gelation may occur when polymerized at a high temperature.
- trimellitic acid commercially available trimellitic acid may be used as it is, but before or during polymerization, water corresponding to 3 to 30 mol% of trimellitic anhydride is added to trimellitic acid. By ring-opening the acid anhydride, an equivalent amount of trimellitic acid corresponding to water can be produced and reacted with diisocyanate for use. In this case, it is preferable that trimellitic anhydride and water are reacted in advance at a temperature of 80 ° C. or less, and then a diisocyanate compound is added to polymerize the polyamideimide resin.
- the total acid component of the polyamide-imide resin is 100 mol%, 3-30 mol% of the acid component contains trimellitic acid, so that the side chain of the polyamideimide resin can have a carboxyl group, which is effective.
- a reaction with a polyfunctional compound such as a polyfunctional epoxy compound, a polyfunctional isocyanate compound, or a melamine compound is performed, and heat resistance such as humidified solder is improved. If it is less than 3 mol%, the acid value of the polyamide-imide resin is low, and when a polyfunctional compound such as a polyfunctional epoxy compound, polyfunctional isocyanate or melamine compound is added, sufficient crosslinking may not be performed, so heat resistance may be insufficient.
- the film becomes hard and brittle and adhesion may be reduced, or carboxyl groups may be excessive and migration resistance may be reduced.
- the polymerization is carried out so that 3 to 30 mol% of the acid component contains dimethylolbutanoic acid.
- 3 to 30 mol% of trimellitic anhydride is replaced with dimethylolbutanoic acid and reacted with diisocyanate.
- dimethylol butanoic acid may be added at the same time as the other raw materials to be polymerized, but dimethylol butanoic acid and 0.9 to 1.2 moles of the diisocyanate compound are previously added at 80 ° C. or lower. It is also possible to carry out the polymerization by adding other raw materials after the reaction.
- dimethylol butanoic acid is added from the beginning at the same time as other raw materials for polymerization, the polymerization is first performed at 80 ° C. or lower to react with dimethylol butanoic acid and a diisocyanate compound, and then polymerization is performed at a temperature of 100 ° C. or higher. It is preferable.
- the total acid component of the polyamide-imide resin is 100 mol%, 3-30 mol% of the acid component contains dimethylol butanoic acid, so that the side chain of the polyamide-imide resin can have a carboxyl group, which is effective.
- a reaction with a polyfunctional compound such as a polyfunctional epoxy compound, a polyfunctional isocyanate compound, or a melamine compound is performed, and heat resistance such as humidified solder is improved. If it is less than 3 mol%, the acid value of the polyamide-imide resin is low, and when a polyfunctional compound such as a polyfunctional epoxy compound, polyfunctional isocyanate or melamine compound is added, sufficient crosslinking may not be performed, so heat resistance may be insufficient.
- the film becomes hard and brittle and adhesion may be reduced, or carboxyl groups may be excessive and migration resistance may be reduced.
- alkylene glycol is added to react with the remaining acid anhydride to extend the chain. And introducing a carboxyl group into the side chain.
- the molecular weight of the prepolymer is not particularly limited, but the number average molecular weight is preferably 10,000 or less, more preferably 5000 or less.
- the ratio of the acid component to the diamine component is preferably increased, and in the case of polyamideimide, it is preferably performed after preferential formation of amide bonds.
- the prepolymer synthesis is preferably performed at 80 ° C. or lower.
- the alkylene glycol ethylene glycol, propylene glycol, tetramethylene glycol and oligomers thereof can be used. Among them, polyethylene glycol, polypropylene glycol having a number average molecular weight of 400 to 10,000, preferably 600 to 2000, It is preferable to use one or more alkylene glycols selected from the group consisting of polytetramethylene glycol from the viewpoint of adhesiveness.
- the chain can be extended with dimethylolbutanoic acid.
- Polymerization may be performed by adjusting the amount of alkylene glycol added so that the acid value of the whole polyamideimide resin is 400 equivalents / 10 6 g to 1000 equivalents / 10 6 g.
- a method of adjusting the acid value of the polyamideimide as a whole by combining the methods (1), (2), and (3) above may be used.
- the polyamideimide resin of the present invention having a carboxyl group in the side chain can be obtained. Since it is expected that the polyamide-imide resin will be gelled if it is usually crosslinked, adding a trifunctional compound such as trimellitic acid during the polymerization is an operation that is not usually performed by those skilled in the art. However, as a result of extensive research on polymerization conditions such as temperature control, the present inventors have previously obtained trimellitic acid and a diisocyanate compound of 0.9 to 1.2 equivalents of the trimellitic acid in advance at 80 ° C. or less.
- a polyamideimide resin having a carboxyl group in the side chain can be obtained while the gelation is suppressed by carrying out the polymerization by adding the remaining raw materials (acid component and diisocyanate component) after the reaction.
- One or more compounds selected from the group consisting of a polyfunctional epoxy compound, a polyfunctional isocyanate compound and a melamine compound are added to the polyamideimide resin of the present invention and allowed to react, thereby causing low temperature adhesion and migration resistance under high temperature and high humidity.
- An adhesive composition excellent in heat resistance and heat resistance, in particular, solder resistance after humidification is obtained. In particular, it excels in migration resistance under high temperature and high humidity and solder resistance after humidification.
- the number of cross-linking points of the polyamide-imide resin can be increased.
- the increase in the number of cross-linking points contributes to the improvement of the adhesion, whereby the moisture resistance can be greatly improved, and it is considered that the migration resistance and the solder resistance after humidification are excellent.
- the polyamideimide resin of the present invention is stirred in a polar solvent such as N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, N, N′-dimethylformamide, and ⁇ -butyrolactone while heating to 60 to 200 ° C.
- a polar solvent such as N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, N, N′-dimethylformamide, and ⁇ -butyrolactone
- a catalyst can be used if necessary.
- metal salts such as sodium methylate and potassium fluoride
- amines such as triethylamine, triethylenediamine and diazabicycloundecene are used.
- a part of the above-mentioned polymerization solvent can be replaced with another relatively inexpensive solvent having a low boiling point.
- solvents include alcohols such as methanol, ethanol and butanol, ketones such as acetone, butanone and cyclohexanone, esters such as methyl acetate and ethyl acetate, and hydrocarbons such as toluene and xylene as a whole. About 40% by weight, it is preferable to replace the polymerization solvent with these solvents.
- the polymerization solution can be used by dissolving it in a solvent immiscible with the polymerization solution, preferably acetone or water, removing the polymerization solvent, washing, drying and re-dissolving in another solvent.
- Examples of the solvent used for redissolving include alcohols such as methanol, ethanol and butanol, aromatic hydrocarbons such as toluene and xylene, ethers such as tetrahydrofuran and dioxane, and ketones such as cyclopentanone and cyclohexanone.
- alcohols such as methanol, ethanol and butanol
- aromatic hydrocarbons such as toluene and xylene
- ethers such as tetrahydrofuran and dioxane
- ketones such as cyclopentanone and cyclohexanone.
- the adhesive composition of the present invention has a carboxyl group in a side chain having a logarithmic viscosity of 0.2 dl / g or more and an acid value of 400 equivalent / 10 6 g to 1000 equivalent / 10 6 g.
- the polyamidoimide resin has one or more compounds selected from the group consisting of polyfunctional epoxy compounds, polyfunctional isocyanate compounds and melamine compounds.
- the polyamide-imide resin one or more compounds selected from the group consisting of polyfunctional epoxy compounds, polyfunctional isocyanate compounds and melamine compounds can be blended, heated, and cured to form a highly crosslinked structure. Excellent adhesion and resistance to humidification and soldering can be expressed.
- a polyfunctional epoxy compound combined with the polyamide-imide resin of this invention Bisphenol A diglycidyl ether, a phenol novolak-type epoxy compound, an amine-type epoxy compound, etc. are mentioned. From the viewpoint of compatibility with the polyamide-imide resin and the crosslinking density, a phenol novolac type epoxy compound is particularly preferable.
- the polyfunctional isocyanate compound is not limited, and examples include tolylene diisocyanate to trimethylolpropane, isophorone diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate triadduct, and hexamethylene diisocyanate cyclic trimer.
- a cyclic trimer of hexamethylene diisocyanate is particularly preferable.
- the melamine compound include trimethylolmelamine methyl ether and butyl ether. These polyfunctional compounds such as polyfunctional epoxy compounds, polyfunctional isocyanate compounds, and melamine compounds are preferably blended in an amount of 3 to 200 parts by weight, more preferably 10 to 10 parts by weight based on 100 parts by weight of the polyamideimide resin. It mix
- the blending amount of the polyfunctional compound is less than 3 parts by weight, heat resistance and chemical resistance such as humidified solder may be insufficient, and if it exceeds 200 parts by weight, the film becomes hard and brittle so that the adhesiveness is reduced. There is a case.
- the acid value of the polyamide-imide resin after the curing reaction is preferably 100 equivalents / 10 6 g or less, more preferably 30 equivalents / 10 6 g or less.
- polyfunctional compounds for example, in the case of epoxy compounds, polyvalent carboxylic acids and their anhydrides, imidazole compounds, and amine-based catalysts are used as curing aids and catalysts.
- a metal compound such as dibutyltin dilaurate or a catalyst such as p-toluenesulfonic acid can be used in the case of a melamine compound.
- an adhesive composition in which a polyfunctional compound such as a polyfunctional epoxy compound, polyfunctional isocyanate compound, or melamine compound is blended are used as an adhesive or a coating agent
- An organic or inorganic phosphorus compound can be blended with.
- the phosphorus compound and phosphoric acid esters and phosphazenes such as red phosphorus, various inorganic phosphates such as sodium phosphate, magnesium phosphate and calcium phosphate, triethyl phosphate, triphenyl phosphate, tricresyl phosphate, and phosphate ester condensates.
- a phosphorus compound can be added so that the phosphorus content is 1% by weight or more and 3% by weight or less based on the solid content of the adhesive composition. If it is less than 1 weight, it tends to be difficult to obtain a flame-retardant effect.
- the adhesive composition of the present invention includes silicone as a flame retardant other than fillers such as silica and calcium carbonate, inorganic and organic pigments, dyes, antistatic agents, leveling agents, and phosphorus compounds within a range that does not impair the content of the present invention.
- silicone as a flame retardant other than fillers such as silica and calcium carbonate, inorganic and organic pigments, dyes, antistatic agents, leveling agents, and phosphorus compounds within a range that does not impair the content of the present invention.
- Compounds, aluminum hydroxide, urea compounds, and resins other than polyamideimide, such as polyester, polyamide, polyimide, polyurethane, and the like can be appropriately blended.
- the adhesive composition of the present invention can be used as an adhesive solution in which the adhesive composition is dissolved in a solvent.
- the adhesive solution is applied to an adherend, dried and then overlapped with the other adherend and bonded by a heating roll or heat press, and if necessary, used as an adhesive by performing a heat curing treatment.
- solvents such as N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, N, N′-dimethylformamide, and ⁇ -butyrolactone used in the polymerization of polyamideimide resin can be used.
- high-boiling polymerization solvents may be alcohols such as methanol, ethanol, butanol, methyl acetate, acetic acid. It is preferable to use those substituted with low boiling point solvents such as esters such as ethyl, aromatic hydrocarbons such as toluene and xylene, and ketones such as ether, acetone, butanone and cyclohexanone. It is preferable to replace the polymerization solvent with these solvents by about 40% by weight as a whole.
- the solid content concentration in the adhesive solution can be appropriately set depending on the purpose of use, but is preferably 20 to 60% by weight, more preferably 30 to 50% by weight.
- composition containing the polyamidoimide resin of the present invention and a polyfunctional compound such as a polyfunctional epoxy compound, polyfunctional isocyanate compound, and melamine compound is not particularly limited, but the most useful use is an adhesive for printed circuit boards.
- an insulating ink for circuit protection Specifically, adhesives for bonding copper foil or aluminum foil to insulating base materials such as polyimide film, polyester film, glass-epoxy sheet, phenolic resin sheet, coverlay film adhesive, coverlay, etc. Examples thereof include insulating ink for protection, an adhesive for reinforcing a part of a circuit board with a reinforcing plate, an adhesive for mounting a semiconductor chip directly on the circuit board, and the like.
- Insulating ink for printed circuit board When the polyamideimide resin of the present invention is used as an insulating ink for printed circuit board, inorganic particles such as silicon oxide and calcium sulfate and / or various kinds are used in a mixed solution of the polyamideimide resin and the polyfunctional compound.
- the organic fine particles are preferably mixed and dispersed in the mixed solution of the polyamidoimide resin and the polyfunctional compound in an amount of 0.5 to 10% by weight, more preferably 1 to 5% by weight.
- a thixo index represented by a viscosity ratio at 20 rpm and 25 ° C. is 1.2 or more and 3.0 or less, preferably a silicone-based or acrylic antifoaming agent or leveling agent is mixed with a polyamide-imide resin solution and the polyfunctional compound. It can be used by blending 0.5 to 5% by weight.
- Cover lay film comprises the adhesive composition of the present invention as an adhesive layer and is composed of two layers of an insulating film layer / adhesive layer, or an insulating film layer / adhesive layer / protective film layer. It consists of three layers.
- the insulating film is a film having a thickness of 5 to 200 ⁇ m made of a plastic film such as polyimide, polyester, polyphenylene sulfide, polyether sulfone, polyether ether ketone, aramid, polycarbonate, polyarylate, and the like.
- a film may be laminated.
- an adhesive solution obtained by dissolving the adhesive composition of the present invention in a solvent is applied to the above-described insulating film and dried to form an adhesive layer.
- the adhesive layer is appropriately semi-cured, and the residual amount after dissolution of the dried adhesive layer in N-methyl-2-pyrrolidone at 100 ° C. for 2 hours is 2 to 70%, Preferably it is 5 to 50%.
- the drying temperature is preferably 100 to 170 ° C. and the drying time is 1 to 10 minutes. Further, after drying, if necessary, heat treatment may be performed at 50 to 100 ° C. for 10 to 24 hours.
- the thickness of the adhesive layer after drying is preferably about 5 to 40 ⁇ m. For storage and the like, when a three-layer structure is used, a releasable protective film is further laminated and laminated.
- the adhesive sheet adhesive sheet refers to a composition having the adhesive composition of the present invention as an adhesive layer and having at least one or more peelable protective films.
- a two-layer structure of protective film layer / adhesive layer or a three-layer structure of protective film layer / adhesive layer / protective film corresponds to this.
- the protective film layer here is not particularly limited as long as it can be peeled without impairing the form of the adhesive layer, but examples thereof include polypropylene film, polyester film, silicone, wax-treated polyester film, and paper.
- metals, ceramics, and the like can be used, and there is an advantage that new functions such as heat dissipation, electromagnetic shielding, reinforcement, and identification can be added as well as protection for the purpose of surface insulation and environmental resistance.
- Adhesive solution is applied to a release substrate such as polypropylene film or polyester film, silicone or wax-treated polyester fill or paper, and dried, preferably in a semi-cured state by the same method as the above coverlay film
- a release substrate such as polypropylene film or polyester film, silicone or wax-treated polyester fill or paper
- An agent film or a sheet is sandwiched between two types of adherends, heated and pressed with a heating roll or a heat press, and cured if necessary.
- Printed circuit board The adhesive composition of the present invention is used as an adhesive layer, and an insulating film and a copper foil are laminated together with the adhesive layer, and the printed circuit board ink and coverlay film of the present invention are used for printed circuit.
- a substrate can be manufactured.
- As the copper foil a rolled copper foil or an electrolytic copper foil conventionally used for printed circuit boards can be used.
- With an insulating film what was demonstrated as an insulating film of the coverlay film mentioned above can be used.
- the line / space becomes 70/70 ⁇ m in a copper-clad laminate Viroflex (manufactured by Toyobo) using an 18 ⁇ m rolled copper foil with an insulating layer of 20 ⁇ m.
- a circuit is formed, and a cover lay film coated with adhesives using various polyamideimide resin solutions is laminated on the circuit surface, and an atmosphere of 85 ° C. and 85% HR is applied with a voltage of 50 V applied between the terminals of the sample.
- the change in the insulation resistance value after being left for 2 weeks was measured. The determination is as follows. ⁇ : Insulation resistance value between lines is 1E + 08 ⁇ or more ⁇ : Insulation resistance value between lines is 1E + 08 ⁇ or less
- Phosphorus atom content (wet decomposition, determination of phosphorus by molybdenum blue colorimetric method) The sample was weighed in an Erlenmeyer flask in accordance with the phosphorus concentration in the sample, 3 ml of sulfuric acid, 0.5 ml of perchloric acid and 3.5 ml of nitric acid were added, and the mixture was gradually decomposed by heating with an electric heater over a half day.
- polyamideimide resin A solution The obtained polyamideimide resin had a glass transition temperature of 205 ° C., a logarithmic viscosity of 0.35 dl / g, and an acid value of 588 eq / 10 6 g.
- polyamide-imide resin B A four-necked flask equipped with a condenser and a nitrogen gas inlet was charged with 0.97 mol of TMA, 0.03 mol of CTBN1300 ⁇ 13 and 0.1 mol of water together with DMAc so that the solid content concentration would be 40%. After stirring for 1 hour at °C to open a part of TMA, 1.02 mol of MDI was charged with DMAc so that the solid content concentration would be 40%, and the temperature was raised to 80 °C while stirring for about 2 hours. The mixture was reacted at 150 ° C. for about 3 hours. While this solution was cooled, toluene was added to adjust the solid content concentration to 30%. This was designated as polyamideimide resin B solution. The obtained polyamideimide resin had a glass transition temperature of 203 ° C., a logarithmic viscosity of 0.36 dl / g, and an acid value of 578 eq / 10 6 g.
- polyamideimide resin C solution This was designated as polyamideimide resin C solution.
- the obtained polyamideimide resin had a glass transition temperature of 201 ° C., a logarithmic viscosity of 0.43 dl / g, and an acid value of 488 eq / 10 6 g.
- polyamideimide resin D [Production of polyamide-imide resin D]
- the polyamideimide resin C was produced by the same method except that TMA was changed to 0.72 mol and DMBA was changed to 0.15 mol to obtain a polyamideimide resin D solution.
- Polyamideimide resin D thus obtained had a glass transition temperature of 185 ° C., a logarithmic viscosity of 0.48 dl / g, and an acid value of 736 eq / 10 6 g.
- Polyamideimide resin E Manufactured under the same conditions as in the polyamideimide resin C except that TMA was changed to 0.57 mol and DMBA was changed to 0.3 mol in the manufacture of the polyamideimide resin C, and a polyamideimide resin E solution was obtained.
- Polyamideimide resin E thus obtained had a glass transition temperature of 177 ° C., a logarithmic viscosity of 0.37 dl / g and an acid value of 976 eq / 10 6 g.
- Polyamideimide resin F A reaction vessel equipped with a condenser and a nitrogen inlet was charged with TMA 0.97 mol, CTBN 1300 ⁇ 13 0.03 mol, MDI 0.9 mol together with DMAc so that the solid concentration would be 50%, and at 80 ° C. After reacting for 2 hours, 0.1 mol of PTG850 was added so that the solid concentration would be 40%, and the temperature was raised to 150 ° C. and reacted for 3 hours. While cooling, the mixture was diluted with toluene so that the solid content concentration became 30%. This was designated as polyamideimide resin F solution. The obtained polyamideimide resin F had a glass transition temperature of 192 ° C., a logarithmic viscosity of 0.36 dl / g, and an acid value of 824 eq / 10 6 g.
- Polyamideimide resin G A polyamideimide resin G solution was obtained under the same conditions as the polyamideimide resin C except that TMA was changed to 0.84 mol and DMBA was changed to 0.03 mol in the production of the polyamideimide resin C.
- Polyamideimide resin G obtained from this had a glass transition temperature of 205 ° C., a logarithmic viscosity of 0.5 dl / g, and an acid value of 410 eq / 10 6 g.
- Polyamideimide resin H Manufactured under the same conditions as the polyamideimide resin D except that MDI was changed to 1.07 mol in the manufacture of the polyamideimide D to obtain a polyamideimide resin H solution.
- the obtained polyamideimide resin H had a glass transition temperature of 188 ° C., a logarithmic viscosity of 0.95 dl / g, and an acid value of 433 eq / 10 6 g.
- ⁇ Manufacture of adhesive composition-2 10 g of trifunctional isocyanate compound coronate EH (manufactured by Nippon Polyurethane) was blended with 100 g of the polyamideimide resin A and B solutions to obtain adhesive compositions a ′ and b ′.
- Adhesive composition a, b, c, d, e, f, g, h, a ′, b ′ was applied to a 1/2 oz electrolytic copper foil with a gap of 100 ⁇ m, dried at 60 ° C. for 5 minutes, and 130 ° C. for 10 minutes.
- Polyamideimide resins A, B, C, D, E, F, G, and H produced above are 100 g of phenol novolac epoxy compound (Japan Epoxy Epicoat 152), 1.5 g of diaminodiphenylsulfone, and phosphinic acid. 10 g of a derivative (a flame retardant BCA, manufactured by Sanko Co., Ltd.) and 5 g of a phosphazene compound (a flame retardant SPB100L) were blended to obtain adhesive compositions a, b, c, d, e, f, g, and h.
- a flame retardant BCA manufactured by Sanko Co., Ltd.
- SPB100L a flame retardant SPB100L
- ⁇ Manufacture of adhesive composition-2 10 g of trifunctional isocyanate compound coronate EH (manufactured by Nippon Polyurethane) was blended with 100 g of the polyamideimide resin A and B solutions to obtain adhesive compositions a ′ and b ′.
- Adhesive composition a, b, c, d, e, f, g, h, a ′, b ′ was applied to a 12.5 ⁇ m polyimide film (Kaneka Apical NPI 12.5 ⁇ m) with a gap of 150 ⁇ m at 60 ° C.
- a coverlay film was prepared by drying for 5 minutes at 130 ° C. for 5 minutes.
- This cover lay film was laminated on the circuit surface of Toyobo copper-clad laminate Viroflex using an insulating layer of 20 ⁇ m and 18 ⁇ m rolled copper foil, heat-pressed at 150 ° C. for 2 minutes, and heat-treated at 150 ° C. for 2 hours.
- a, b, c, d, e, f, g, and h satisfy the VTM-0 of UL standard in flame retardancy.
- Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance.
- the adhesive sheets a ′′, b ′′, c ′′, d ′′, e ′′, f ′′, g ′ are applied to the polyimide film surface of the copper-clad laminate prepared using the adhesive composition b.
- a reinforcing plate made of 0.3 mm aluminum was overlapped through each of ', h'', and crimped for 2 minutes using a heat press at 150 ° C. Thereafter, heat treatment was performed for 2 hours under pressure at the same temperature.
- Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance.
- the glass transition temperature obtained by producing the polyamideimide resin under the same conditions as in the polyamideimide resin production example C is 208 ° C., except that TMA is 0.85 mol and DMBA is 0.02 mol.
- a polyamide-imide resin K was produced in the same manner as the polyamide-imide resin A except that the amount of MDI charged in the production of the polyamide-imide resin A was 0.95 mol.
- the logarithmic viscosity of the obtained resin was 0.13 dl / g, and the acid value was 1866 eq / 10 6 g. Since this resin has a low molecular weight and does not form a film, the glass transition temperature could not be measured.
- the same adhesive composition k as in Production of the adhesive composition of Example 1 was prepared, and a coverlay film was prepared and tested in the same manner as in Examples 11 to 20. It was. Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance. The phosphorus content relative to the total solid content of the adhesive composition was 2.7% by weight.
- an adhesive composition 1 having the same composition as that of Example 1 was prepared, and a copper-clad laminate was prepared and tested in the same manner as in Examples 1 to 10. Went.
- Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance. The phosphorus content relative to the total solid content of the adhesive composition was 2.7% by weight.
- low temperature adhesion and heat resistance to metal and polyimide films particularly solder resistance after humidification treatment and migration resistance characteristics under high temperature and high humidity. It is possible to provide excellent inks, adhesive compositions and adhesive sheets useful for circuit boards, coverlay films, glass cloth impregnated prepregs, and printed circuit boards using these.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Adhesive Tapes (AREA)
- Polyurethanes Or Polyureas (AREA)
- Epoxy Resins (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Disclosed is an adhesive composition which enables bonding at low temperatures, while having excellent adhesiveness, solder resistance after humidification, and migration resistance characteristics under high temperature, high humidity conditions. The adhesive composition is particularly useful for circuit boards. Also disclosed are an adhesive sheet and a printed circuit board using the adhesive composition or the adhesive sheet.
Specifically disclosed is a polyamideimide resin having a logarithmic viscosity of not less than 0.2 dl/g and an acid value of from 400 equivalent weight/106 g to 1000 equivalent weight/106 g, said polyamideimide resin containing a carboxyl group in a side chain.
Description
本発明は新規なポリアミドイミド樹脂、これを用いた接着剤組成物、耐熱性インク、接着剤シート、カバーレイフィルム、ガラスクロス含浸プレプレグ及びこれらを用いたプリント回路基板に関する。特に加湿後ハンダ耐熱や高温屈曲性に優れたプリント回路板に好適な耐熱性インク、接着剤組成物に関する。
The present invention relates to a novel polyamideimide resin, an adhesive composition using the same, a heat resistant ink, an adhesive sheet, a coverlay film, a glass cloth impregnated prepreg, and a printed circuit board using these. In particular, the present invention relates to a heat-resistant ink and an adhesive composition suitable for a printed circuit board excellent in solder heat resistance and high-temperature flexibility after humidification.
従来、耐熱性接着剤としてはポリイミド系樹脂やエポキシ樹脂等を主成分とする材料が用いられてきたが、これらの樹脂を用いるに於いていくつかの問題があった。
その一つが耐熱性と低温接着性の両立が挙げられる。従来、ポリイミドは耐熱性に優れるが故に高温で接着させる強力な設備が必要であり、低温で接着できるエポキシ系接着剤は耐熱性に劣るという問題があった。
上記の低温接着性と耐熱性の両立についての具体的な方法がいくつか開示されている。例えば、耐熱性エポキシ樹脂、マレイミド樹脂を用いるなどの方法があるが、これらの樹脂はその硬化密度の高さから脆いため、用途が限られる。また、特許文献1には特定構造を有するポリエーテルイミドにエポキシ樹脂を配合させて低温接着性と耐熱性を両立させることが示されているが、その内容によれば接着時間を数分にしようとすれば200℃の接着温度が必要であり十分な低温接着性とは言い難い。
また、ポリアミドイミド系の耐熱接着剤も提案されており、たとえば特許文献2や特許文献3にはアクリロニトリルーブタジエンが共重合されたポリアミドイミド及びこれを用いた半導体用接着剤が、また特許文献4や特許文献5にはダイマー酸が共重合されたポリアミドイミド及びこれを用いた半導体用接着剤が提案されているが、いずれも低温接着性、耐熱性、特に加湿後の耐ハンダ性と、高温高湿下での銅箔の回路部分におけるデンドライトの生成による耐マイグレーション性のすべてを満足するものは得られていない。 Conventionally, as a heat-resistant adhesive, a material mainly composed of a polyimide resin or an epoxy resin has been used, but there are some problems in using these resins.
One of them is the compatibility between heat resistance and low-temperature adhesiveness. Conventionally, polyimide has excellent heat resistance, and therefore requires strong equipment for bonding at high temperatures, and epoxy adhesives that can be bonded at low temperatures have a problem of poor heat resistance.
Several specific methods for achieving both the low-temperature adhesiveness and the heat resistance have been disclosed. For example, there are methods such as using a heat-resistant epoxy resin and a maleimide resin, but these resins are fragile due to their high curing density, and therefore their use is limited. In addition, Patent Document 1 shows that an epoxy resin is blended with a polyetherimide having a specific structure to achieve both low-temperature adhesion and heat resistance. If this is the case, an adhesive temperature of 200 ° C. is necessary, and it cannot be said that the adhesiveness is sufficiently low.
Polyamideimide heat-resistant adhesives have also been proposed. For example, Patent Document 2 and Patent Document 3 disclose polyamideimides copolymerized with acrylonitrile-butadiene and adhesives for semiconductors using the same. And Patent Document 5 propose a polyamideimide copolymerized with dimer acid and an adhesive for semiconductors using the same, all of which have low-temperature adhesion and heat resistance, particularly soldering resistance after humidification, and high temperature. None of the copper foil circuit parts under high humidity satisfy all the migration resistance due to the formation of dendrites.
その一つが耐熱性と低温接着性の両立が挙げられる。従来、ポリイミドは耐熱性に優れるが故に高温で接着させる強力な設備が必要であり、低温で接着できるエポキシ系接着剤は耐熱性に劣るという問題があった。
上記の低温接着性と耐熱性の両立についての具体的な方法がいくつか開示されている。例えば、耐熱性エポキシ樹脂、マレイミド樹脂を用いるなどの方法があるが、これらの樹脂はその硬化密度の高さから脆いため、用途が限られる。また、特許文献1には特定構造を有するポリエーテルイミドにエポキシ樹脂を配合させて低温接着性と耐熱性を両立させることが示されているが、その内容によれば接着時間を数分にしようとすれば200℃の接着温度が必要であり十分な低温接着性とは言い難い。
また、ポリアミドイミド系の耐熱接着剤も提案されており、たとえば特許文献2や特許文献3にはアクリロニトリルーブタジエンが共重合されたポリアミドイミド及びこれを用いた半導体用接着剤が、また特許文献4や特許文献5にはダイマー酸が共重合されたポリアミドイミド及びこれを用いた半導体用接着剤が提案されているが、いずれも低温接着性、耐熱性、特に加湿後の耐ハンダ性と、高温高湿下での銅箔の回路部分におけるデンドライトの生成による耐マイグレーション性のすべてを満足するものは得られていない。 Conventionally, as a heat-resistant adhesive, a material mainly composed of a polyimide resin or an epoxy resin has been used, but there are some problems in using these resins.
One of them is the compatibility between heat resistance and low-temperature adhesiveness. Conventionally, polyimide has excellent heat resistance, and therefore requires strong equipment for bonding at high temperatures, and epoxy adhesives that can be bonded at low temperatures have a problem of poor heat resistance.
Several specific methods for achieving both the low-temperature adhesiveness and the heat resistance have been disclosed. For example, there are methods such as using a heat-resistant epoxy resin and a maleimide resin, but these resins are fragile due to their high curing density, and therefore their use is limited. In addition, Patent Document 1 shows that an epoxy resin is blended with a polyetherimide having a specific structure to achieve both low-temperature adhesion and heat resistance. If this is the case, an adhesive temperature of 200 ° C. is necessary, and it cannot be said that the adhesiveness is sufficiently low.
Polyamideimide heat-resistant adhesives have also been proposed. For example, Patent Document 2 and Patent Document 3 disclose polyamideimides copolymerized with acrylonitrile-butadiene and adhesives for semiconductors using the same. And Patent Document 5 propose a polyamideimide copolymerized with dimer acid and an adhesive for semiconductors using the same, all of which have low-temperature adhesion and heat resistance, particularly soldering resistance after humidification, and high temperature. None of the copper foil circuit parts under high humidity satisfy all the migration resistance due to the formation of dendrites.
本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、低温接着性、耐マイグレーション性や耐熱性、特に加湿後の耐ハンダ性に優れるポリアミドイミド樹脂を含む接着剤組成物、特にプリント回路板に有用な接着剤組成物及びそれを用いたインク、接着剤シート、カバーレイフィルム、さらにはこれらを用いたプリント回路基版、これらに使用するのに好適なポリアミドイミド樹脂を提供するものである。
The present invention was devised in view of the current state of the prior art, and its purpose is an adhesive composition containing a polyamide-imide resin that is excellent in low-temperature adhesion, migration resistance and heat resistance, particularly soldering resistance after humidification. Adhesives useful for printed circuit boards, in particular, inks, adhesive sheets, coverlay films, printed circuit board using them, and polyamideimide resins suitable for use in them Is to provide.
本発明者はかかる目的を達成するために、鋭意研究した結果本発明に到達した。すなわち本発明は、
The inventor of the present invention has reached the present invention as a result of diligent research in order to achieve such an object. That is, the present invention
(1)
対数粘度が0.2dl/g以上であり、かつ酸価が400当量/106g~1000当量/106gである側鎖にカルボキシル基を有することを特徴とするポリアミドイミド樹脂。
(2)
ポリアミドイミド樹脂の全酸成分を100モル%とした場合に、酸成分の3~30モル%がトリメリット酸であることを特徴とする(1)に記載のポリアミドイミド樹脂。
(3)
前記トリメリット酸は、トリメリット酸無水物に水を加えることによりトリメリット酸無水物が開環したものであることを特徴とする(2)記載のポリアミドイミド樹脂。
(4)
ポリアミドイミド樹脂の全酸成分を100モル%とした場合に、酸成分の3~30モル%がジメチロールブタン酸であることを特徴とする(1)に記載のポリアミドイミド樹脂。
(5)
トリメリット酸無水物及び/又はテトラカルボン酸無水物とジアミン成分及び/又はジイソシアネート成分とを反応させてプレポリマーにした後、該プレポリマーをアルキレングリコールで鎖延長させることにより得られる(1)に記載のポリアミドイミド樹脂。
(6)
前記アルキレングリコールが、数平均分子量400~10000のポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコールからなる群より選ばれた1種以上であることを特徴とする(5)に記載のポリアミドイミド樹脂。
(7)
(1)~(6)のいずれか記載のポリアミドイミド樹脂に多官能エポキシ化合物、多官能イソシアネート化合物及びメラミン化合物からなる群より選ばれた1種以上の化合物を含むことを特徴とする接着剤組成物。
(8)
接着剤組成物の全固形分に対して、有機リン化合物をリン含有量で1重量%以上3重量%以下含むことを特徴とする(7)に記載の接着剤組成物。
(9)
(7)又は(8)に記載の接着剤組成物に、無機及び/又は有機微粒子が含有され、チキソ指数が1.2以上3.0以下であることを特徴とするプリント回路基板用インク。
(10)
(7)又は(8)に記載の接着剤組成物を用いたカバーレイフィルム。
(11)
(7)又は(8)に記載の接着剤組成物を、ポリプロピレンフィルム、離型紙又は離型フィルム上に塗布、乾燥した接着剤シート。
(12)
(7)又は(8)に記載の接着剤組成物を用いたプリント回路基板。 (1)
A polyamide-imide resin having a carboxyl group in a side chain having a logarithmic viscosity of 0.2 dl / g or more and an acid value of 400 equivalent / 10 6 g to 1000 equivalent / 10 6 g.
(2)
The polyamideimide resin according to (1), wherein 3 to 30 mol% of the acid component is trimellitic acid when the total acid component of the polyamideimide resin is 100 mol%.
(3)
The polyamideimide resin according to (2), wherein the trimellitic acid is a ring-opened trimellitic acid anhydride by adding water to the trimellitic acid anhydride.
(4)
The polyamideimide resin according to (1), wherein 3 to 30 mol% of the acid component is dimethylolbutanoic acid when the total acid component of the polyamideimide resin is 100 mol%.
(5)
(1) obtained by reacting trimellitic anhydride and / or tetracarboxylic anhydride with a diamine component and / or diisocyanate component to give a prepolymer, and then chain-extending the prepolymer with alkylene glycol. The polyamide-imide resin described.
(6)
The polyamideimide resin according to (5), wherein the alkylene glycol is at least one selected from the group consisting of polyethylene glycol, polypropylene glycol and polytetramethylene glycol having a number average molecular weight of 400 to 10,000.
(7)
An adhesive composition characterized in that the polyamideimide resin according to any one of (1) to (6) contains at least one compound selected from the group consisting of a polyfunctional epoxy compound, a polyfunctional isocyanate compound, and a melamine compound. object.
(8)
The adhesive composition as set forth in (7), wherein the organophosphorus compound is contained in an amount of 1% by weight or more and 3% by weight or less with respect to the total solid content of the adhesive composition.
(9)
An ink for printed circuit boards, wherein the adhesive composition according to (7) or (8) contains inorganic and / or organic fine particles and has a thixotropic index of 1.2 or more and 3.0 or less.
(10)
A coverlay film using the adhesive composition according to (7) or (8).
(11)
An adhesive sheet obtained by applying and drying the adhesive composition according to (7) or (8) on a polypropylene film, a release paper, or a release film.
(12)
A printed circuit board using the adhesive composition according to (7) or (8).
対数粘度が0.2dl/g以上であり、かつ酸価が400当量/106g~1000当量/106gである側鎖にカルボキシル基を有することを特徴とするポリアミドイミド樹脂。
(2)
ポリアミドイミド樹脂の全酸成分を100モル%とした場合に、酸成分の3~30モル%がトリメリット酸であることを特徴とする(1)に記載のポリアミドイミド樹脂。
(3)
前記トリメリット酸は、トリメリット酸無水物に水を加えることによりトリメリット酸無水物が開環したものであることを特徴とする(2)記載のポリアミドイミド樹脂。
(4)
ポリアミドイミド樹脂の全酸成分を100モル%とした場合に、酸成分の3~30モル%がジメチロールブタン酸であることを特徴とする(1)に記載のポリアミドイミド樹脂。
(5)
トリメリット酸無水物及び/又はテトラカルボン酸無水物とジアミン成分及び/又はジイソシアネート成分とを反応させてプレポリマーにした後、該プレポリマーをアルキレングリコールで鎖延長させることにより得られる(1)に記載のポリアミドイミド樹脂。
(6)
前記アルキレングリコールが、数平均分子量400~10000のポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコールからなる群より選ばれた1種以上であることを特徴とする(5)に記載のポリアミドイミド樹脂。
(7)
(1)~(6)のいずれか記載のポリアミドイミド樹脂に多官能エポキシ化合物、多官能イソシアネート化合物及びメラミン化合物からなる群より選ばれた1種以上の化合物を含むことを特徴とする接着剤組成物。
(8)
接着剤組成物の全固形分に対して、有機リン化合物をリン含有量で1重量%以上3重量%以下含むことを特徴とする(7)に記載の接着剤組成物。
(9)
(7)又は(8)に記載の接着剤組成物に、無機及び/又は有機微粒子が含有され、チキソ指数が1.2以上3.0以下であることを特徴とするプリント回路基板用インク。
(10)
(7)又は(8)に記載の接着剤組成物を用いたカバーレイフィルム。
(11)
(7)又は(8)に記載の接着剤組成物を、ポリプロピレンフィルム、離型紙又は離型フィルム上に塗布、乾燥した接着剤シート。
(12)
(7)又は(8)に記載の接着剤組成物を用いたプリント回路基板。 (1)
A polyamide-imide resin having a carboxyl group in a side chain having a logarithmic viscosity of 0.2 dl / g or more and an acid value of 400 equivalent / 10 6 g to 1000 equivalent / 10 6 g.
(2)
The polyamideimide resin according to (1), wherein 3 to 30 mol% of the acid component is trimellitic acid when the total acid component of the polyamideimide resin is 100 mol%.
(3)
The polyamideimide resin according to (2), wherein the trimellitic acid is a ring-opened trimellitic acid anhydride by adding water to the trimellitic acid anhydride.
(4)
The polyamideimide resin according to (1), wherein 3 to 30 mol% of the acid component is dimethylolbutanoic acid when the total acid component of the polyamideimide resin is 100 mol%.
(5)
(1) obtained by reacting trimellitic anhydride and / or tetracarboxylic anhydride with a diamine component and / or diisocyanate component to give a prepolymer, and then chain-extending the prepolymer with alkylene glycol. The polyamide-imide resin described.
(6)
The polyamideimide resin according to (5), wherein the alkylene glycol is at least one selected from the group consisting of polyethylene glycol, polypropylene glycol and polytetramethylene glycol having a number average molecular weight of 400 to 10,000.
(7)
An adhesive composition characterized in that the polyamideimide resin according to any one of (1) to (6) contains at least one compound selected from the group consisting of a polyfunctional epoxy compound, a polyfunctional isocyanate compound, and a melamine compound. object.
(8)
The adhesive composition as set forth in (7), wherein the organophosphorus compound is contained in an amount of 1% by weight or more and 3% by weight or less with respect to the total solid content of the adhesive composition.
(9)
An ink for printed circuit boards, wherein the adhesive composition according to (7) or (8) contains inorganic and / or organic fine particles and has a thixotropic index of 1.2 or more and 3.0 or less.
(10)
A coverlay film using the adhesive composition according to (7) or (8).
(11)
An adhesive sheet obtained by applying and drying the adhesive composition according to (7) or (8) on a polypropylene film, a release paper, or a release film.
(12)
A printed circuit board using the adhesive composition according to (7) or (8).
本発明によれば、金属やポリイミドフィルムへの低温接着性と耐ハンダ性、特に加湿処理後の耐ハンダ性及び高温高湿下での耐マイグーション特性に優れた接着剤組成物、プリント回路基板に有用なインク、接着剤シート、及びカバーレイフィルムならびにこれらを用いたプリント回路基板、及びこれらに使用するのに好適なポリアミドイミド樹脂を容易に得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the adhesive composition excellent in the low temperature adhesiveness and soldering resistance to a metal or a polyimide film, especially the soldering resistance after a humidification process, and the anti-migration property in high temperature, high humidity, and a printed circuit Ink, adhesive sheets, and coverlay films useful for substrates, printed circuit boards using these, and polyamideimide resins suitable for use in these can be easily obtained.
本発明は低温接着が可能で、耐マイグレーション性及び耐熱性、特に加湿後の耐ハンダ性に優れた接着剤組成物及びこれを成形した接着剤シート、カバーレイフィルム、ガラスクロス含浸プレプレグ、プリント回路基板用インクであり、更にこれらを用いたプリント回路基板、そしてこれらに使用するのに好適なポリアミドイミド樹脂に関する。
INDUSTRIAL APPLICABILITY The present invention is capable of low-temperature adhesion, and has an adhesive composition excellent in migration resistance and heat resistance, particularly soldering resistance after humidification, and an adhesive sheet, coverlay film, glass cloth impregnated prepreg, and printed circuit formed therefrom. The present invention relates to a printed circuit board using these, and a polyamide-imide resin suitable for use in these.
1. ポリアミドイミド樹脂
本発明に用いられるポリアミドイミド樹脂は酸クロリド法又はイソシアネート法等公知の方法で製造することができる。 1. Polyamideimide resin The polyamideimide resin used in the present invention can be produced by a known method such as an acid chloride method or an isocyanate method.
本発明に用いられるポリアミドイミド樹脂は酸クロリド法又はイソシアネート法等公知の方法で製造することができる。 1. Polyamideimide resin The polyamideimide resin used in the present invention can be produced by a known method such as an acid chloride method or an isocyanate method.
ポリアミドイミド樹脂の製造に用いられる酸成分としてはトリメリット酸及びこれの無水物、塩化物の他にピロメリット酸、ビフェニルテトラカルボン酸、ビフェニルスルホンテトラカルボン酸、ベンゾフェノンテトラカルボン酸、ビフェニルエーテルテトラカルボン酸、エチレングリコールビストリメリテート、プロピレングリコールビストリメリテート等のテトラカルボン酸及びこれらの無水物、シュウ酸、アジピン酸、マロン酸、セバチン酸、アゼライン酸、ドデカンジカルボン酸、ジカルボキシポリブタジエン、ジカルボキシポリ(アクリロニトリルーブタジエン)、ジカルボキシポリ(スチレンーブタジエン)等の脂肪族ジカルボン酸、1,4シクロヘキサンジカルボン酸、1,3シクロヘキサンジカルボン酸、4,4‘ジシクロヘキシルメタンジカルボン酸、ダイマー酸等の脂環族ジカルボン酸、テレフタル酸、イソフタル酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸があげられこれらの中では反応性、耐熱性、接着性、溶解性などの点からトリメリット酸無水物が最も好ましく、その一部をトリメリット酸、ジカルボキシポリ(アクリロニトリルーブタジエン)やダイマー酸で置き換えたものが更に好ましい。
In addition to trimellitic acid and its anhydride and chloride, pyromellitic acid, biphenyltetracarboxylic acid, biphenylsulfonetetracarboxylic acid, benzophenonetetracarboxylic acid, biphenylethertetracarboxylic acid are used as the acid components used in the production of polyamideimide resin. Tetracarboxylic acids such as acids, ethylene glycol bis trimellitate and propylene glycol bis trimellitate and their anhydrides, oxalic acid, adipic acid, malonic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, dicarboxypolybutadiene, dicarboxypoly (Acrylonitrile-butadiene), aliphatic dicarboxylic acids such as dicarboxypoly (styrene-butadiene), 1,4 cyclohexane dicarboxylic acid, 1,3 cyclohexane dicarboxylic acid, 4,4 ′ dicyclo Examples include alicyclic dicarboxylic acids such as hexylmethane dicarboxylic acid and dimer acid, and aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, and naphthalenedicarboxylic acid. Trimellitic anhydride is most preferable from the viewpoints of properties, adhesiveness, solubility, and the like, and a part of which is replaced with trimellitic acid, dicarboxypoly (acrylonitrile-butadiene) or dimer acid is more preferable.
ポリアミドイミド樹脂の製造に用いられるジアミン又はジイソシアネートとしては、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン等の脂肪族ジアミン及びこれらのジイソシアネート、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、イソホロンジアミン、4,4’-ジシクロヘキシルメタンジアミン等の脂環族ジアミン及びこれらのジイソシアネート、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、ベンジジン、o-トリジン、2,4-トリレンジアミン、2,6-トリレンジアミン、キシリレンジアミン等の芳香族ジアミン、ジアミノポリ(アクリロニトリルーブタジエン)及びこれらのジイソシアネートが挙げられ、これらの中では耐熱性、接着性、溶解性などから4,4’-ジアミノジフェニルメタン又は4,4’-ジフェニルメタンジイソシアネート、イソホロンジアミン又はイソホロンジイソシアネート、及びジアミノポリ(アクリロニトリルーブタジエン)等が好ましい。
Examples of the diamine or diisocyanate used in the production of the polyamideimide resin include aliphatic diamines such as ethylenediamine, propylenediamine, and hexamethylenediamine, and diisocyanates thereof, 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, isophoronediamine, 4 Alicyclic diamines such as 4,4'-dicyclohexylmethanediamine and their diisocyanates, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diamino Aromatic diamines such as diphenylsulfone, benzidine, o-tolidine, 2,4-tolylenediamine, 2,6-tolylenediamine, xylylenediamine, diaminopoly (acrylonitrile-butadiene Among them, 4,4′-diaminodiphenylmethane or 4,4′-diphenylmethane diisocyanate, isophoronediamine or isophorone diisocyanate, and diaminopoly (acrylonitrile-butadiene are preferred because of their heat resistance, adhesiveness, solubility and the like. Etc.) are preferred.
本発明のポリアミドイミド樹脂には上記の酸成分とジアミン又はジイソシアネート成分の他に多価アルコール成分を共重合することができる。多価アルコール成分としてはエチレングリコール、ジエチレングリコール、トリエチレングリコール、ジメチロールブタン酸、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、テトラメチレングリコール、ポリテトラメチレングリコール、ポリエステルジオール、カーボネートジオール等のジオールやペンタエリスリトールなどの三官能以上のアルコールが挙げられ、これらの中では接着性、溶解性からポリエステルジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールが好ましい。側鎖にカルボキシル基を導入する場合はジメチロールブタン酸や数平均分子量が400~10000のポリエチレングリコール、ポリプロピレングリコールやポリテトラメチレングリコールが好ましい。
The polyamidoimide resin of the present invention can be copolymerized with a polyhydric alcohol component in addition to the acid component and the diamine or diisocyanate component. Polyhydric alcohol components include ethylene glycol, diethylene glycol, triethylene glycol, dimethylol butanoic acid, polyethylene glycol, propylene glycol, polypropylene glycol, tetramethylene glycol, polytetramethylene glycol, polyester diol, carbonate diol and other diols and pentaerythritol. Among these, polyester diol, polyethylene glycol, polypropylene glycol, and polytetramethylene glycol are preferable in view of adhesiveness and solubility. When a carboxyl group is introduced into the side chain, dimethylolbutanoic acid, polyethylene glycol having a number average molecular weight of 400 to 10,000, polypropylene glycol or polytetramethylene glycol are preferred.
本発明のポリアミドイミド樹脂はプリント回路基板に用いたときの耐熱性、特に加湿後の耐ハンダ特性、低温接着性と耐マイグレーション性の全てを満足させるためには高分子量体でありながら高酸価であることが必要である。具体的には、分子量の目安となるポリアミドイミド樹脂の対数粘度が0.2dl/g以上である。対数粘度が0.2dl/g未満では膜にしたときの強度や伸度が低いため、十分な接着力が得られない。上限は特に限定されないが、対数粘度が大きくなると硬化剤や難燃剤、その他添加剤を混合する場合には、それらとの相溶性が低下したり、溶液粘度が高くなって作業性が低下する場合もあり、実質的には1.5dl/ g以下であればよい。好ましくは0.3~1.0dl/g、より好ましくは0.3~0.5dl/ gである。
対数粘度は通常、酸成分とジアミン成分(ジイソシアネート成分)の仕込み比や重合温度、濃度、触媒の添加などによって調整することができ、ジアミン成分(ジイソシアネート成分)を多めにしたり、重合温度や濃度を高くしたり、触媒を添加すること等で対数粘度を大きくすることができる。 The polyamide-imide resin of the present invention has a high acid value in spite of being a high molecular weight material in order to satisfy all of heat resistance when used for a printed circuit board, in particular, solder resistance after humidification, low-temperature adhesion and migration resistance. It is necessary to be. Specifically, the logarithmic viscosity of the polyamideimide resin, which is a measure of molecular weight, is 0.2 dl / g or more. When the logarithmic viscosity is less than 0.2 dl / g, the strength and elongation when formed into a film are low, so that sufficient adhesive force cannot be obtained. The upper limit is not particularly limited, but when the logarithmic viscosity becomes large, when mixing hardeners, flame retardants, and other additives, compatibility with them decreases or work viscosity decreases due to increased solution viscosity In other words, it may be substantially 1.5 dl / g or less. It is preferably 0.3 to 1.0 dl / g, more preferably 0.3 to 0.5 dl / g.
The logarithmic viscosity can usually be adjusted by adjusting the charging ratio of the acid component and the diamine component (diisocyanate component), the polymerization temperature, the concentration, the addition of a catalyst, etc. The diamine component (diisocyanate component) can be increased or the polymerization temperature and concentration can be adjusted. The logarithmic viscosity can be increased by increasing the viscosity or adding a catalyst.
対数粘度は通常、酸成分とジアミン成分(ジイソシアネート成分)の仕込み比や重合温度、濃度、触媒の添加などによって調整することができ、ジアミン成分(ジイソシアネート成分)を多めにしたり、重合温度や濃度を高くしたり、触媒を添加すること等で対数粘度を大きくすることができる。 The polyamide-imide resin of the present invention has a high acid value in spite of being a high molecular weight material in order to satisfy all of heat resistance when used for a printed circuit board, in particular, solder resistance after humidification, low-temperature adhesion and migration resistance. It is necessary to be. Specifically, the logarithmic viscosity of the polyamideimide resin, which is a measure of molecular weight, is 0.2 dl / g or more. When the logarithmic viscosity is less than 0.2 dl / g, the strength and elongation when formed into a film are low, so that sufficient adhesive force cannot be obtained. The upper limit is not particularly limited, but when the logarithmic viscosity becomes large, when mixing hardeners, flame retardants, and other additives, compatibility with them decreases or work viscosity decreases due to increased solution viscosity In other words, it may be substantially 1.5 dl / g or less. It is preferably 0.3 to 1.0 dl / g, more preferably 0.3 to 0.5 dl / g.
The logarithmic viscosity can usually be adjusted by adjusting the charging ratio of the acid component and the diamine component (diisocyanate component), the polymerization temperature, the concentration, the addition of a catalyst, etc. The diamine component (diisocyanate component) can be increased or the polymerization temperature and concentration can be adjusted. The logarithmic viscosity can be increased by increasing the viscosity or adding a catalyst.
本発明のポリアミドイミド樹脂の酸価は、400当量/106g~1000当量/106gの範囲であり、好ましくは450当量/106g~1000当量/106gであり、より好ましくは500当量/106g~1000当量/106gである。酸価が上記上限を超えると、後述する多官能エポキシ化合物、多官能イソシアネート化合物、メラミン化合物等で接着剤組成物を硬化させた後でもカルボキシル基が残存する可能性があり、耐マイグレーション性や加湿後耐ハンダ性が低下する。また酸価が上記下限未満では、多官能エポキシ化合物、多官能イソシアネート化合物及びメラミン化合物等との反応点が少なくなり硬化密度が低くなり、加湿後の耐ハンダ耐熱性が不十分となる。
下記(1)~(4)のように、ポリアミドイミド樹脂の側鎖にカルボキシル基を持たせることで、前記範囲の酸価を有するポリアミドイミド樹脂を得ることができる。ただし、下記の方法に限定されるものではない。
(1)ポリアミドイミド樹脂の全酸成分を100モル%とした場合、酸成分の3~30モル%がトリメリット酸を含むようにポリアミドイミドの重合を行う。
例えば、酸成分としてトリメリット酸無水物を使用するのであれば、トリメリット酸無水物の3~30モル%をトリメリット酸に置き換えて重合を行う。この場合、トリメリット酸と該トリメリット酸の0.9~1.2倍当量のジイソシアネート化合物を予め、80℃以下で反応させた後、残りの原料(酸成分やジイソシアネート成分)を加えて重合を行うことが好ましい。最初からトリメリット酸無水物とトリメリット酸及びジイソシアネート化合物を同時に仕込、高温で重合するとゲル化する場合があるからである。また、前記トリメリット酸は、市販のトリメリット酸をそのまま使用しても構わないが、重合前又は重合中にトリメリット酸無水物の3~30モル%に相当する水を加えて、トリメリット酸無水物を開環させることにより、水に相当する当量のトリメリット酸を生成させ、これをジイソシアネートと反応させて用いることもできる。この場合、トリメリット酸無水物と水を予め、80℃以下の温度で反応させた後、ジイソシアネート化合物を加えてポリアミドイミド樹脂を重合することが好ましい。
ポリアミドイミド樹脂の全酸成分を100モル%とした場合、酸成分の3~30モル%がトリメリット酸を含むことにより、ポリアミドイミド樹脂の側鎖にカルボキシル基を持たせることができ、効果的に多官能エポキシ化合物、多官能イソシアネート化合物及びメラミン化合物等の多官能化合物との反応が行われ、加湿ハンダなどの耐熱性が向上する。3モル%未満ではポリアミドイミド樹脂の酸価が低く、多官能エポキシ化合物、多官能イソシアネートやメラミン化合物等の多官能化合物を加えた場合に十分な架橋が行われないため耐熱性が不足する場合があり、30モル%を超える場合には膜が硬く脆くなって密着性が低下したり、カルボキシル基が過剰になり、耐マイグレーション性が低下する場合がある。
(2)ポリアミドイミド樹脂の全酸成分を100モル%とした場合、酸成分の3~30モル%がジメチロールブタン酸を含むように重合を行う。
例えば、トリメリット酸無水物の3~30モル%をジメチロールブタン酸で置き換えてジイソシアネートと反応させる。この場合、ジメチロールブタン酸を最初から他の原料と同時に加えて重合しても良いが、ジメチロールブタン酸とこれの0.9~1.2倍モルのジイソシアネート化合物とを予め80℃以下で反応させてから他の原料を追加して重合を行うこともできる。ジメチロールブタン酸を最初から他の原料と同時に加えて重合する場合は、最初は80℃以下で重合してジメチロールブタン酸とジイソシアネート化合物を反応させた後、100℃以上の温度で重合を行うことが好ましい。
ポリアミドイミド樹脂の全酸成分を100モル%とした場合、酸成分の3~30モル%がジメチロールブタン酸を含むことにより、ポリアミドイミド樹脂の側鎖にカルボキシル基を持たせることができ、効果的に多官能エポキシ化合物、多官能イソシアネート化合物及びメラミン化合物などの多官能化合物との反応が行われ、加湿ハンダなどの耐熱性が向上する。3モル%未満ではポリアミドイミド樹脂の酸価が低く、多官能エポキシ化合物、多官能イソシアネートやメラミン化合物等の多官能化合物を加えた場合に十分な架橋が行われないため耐熱性が不足する場合があり、30モル%以上を超える場合には膜が硬く脆くなって密着性が低下したり、カルボキシル基が過剰になり、耐マイグレーション性が低下する場合がある。
(3)トリメリット酸無水物及び/又はテトラカルボン酸物とジアミン成分及び/またはジイソシアネート成分とを反応させてプレポリマーを合成した後、アルキレングリコールを加えて残存酸無水物と反応させ、鎖延長させると共にカルボキシル基を側鎖に導入する。
プレポリマーの分子量は特に制限はないが、数平均分子量で10,000以下が好ましく、より好ましくは5000以下である。プレポリマーを合成する際において、酸成分とジアミン成分の比率は、酸成分を多めにすることが好ましく、ポリアミドイミドの場合、アミド結合を優先的に形成させた後に行うことが好ましい。プレポリマー合成は80℃以下で行うのが好ましい。
アルキレングリコールとしてはエチレングリコール、プロピレングリコール、テトラメチレングリコール及びこれらのオリゴマーを用いることができ、これらの中では数平均分子量が400~10000、好ましくは数平均分子量600~2000のポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコールからなる群より選ばれた1種以上のアルキレングリコールを用いることが接着性などの点から好ましい。この際、ジメチロールブタン酸で鎖延長させることもできる。なお、ポリアミドイミド樹脂全体の酸価が400当量/106g~1000当量/106gとなるように、アルキレングリコールの添加量を調節して重合すればよい。
(4)上記(1)、(2)、(3)の方法を組み合わせ、全体としてポリアミドイミドの酸価を調整させる方法もよい。 The acid value of the polyamide-imide resin of the present invention is in the range of 400 equivalent / 10 6 g to 1000 equivalent / 10 6 g, preferably 450 equivalent / 10 6 g to 1000 equivalent / 10 6 g, more preferably 500 equivalents / 10 6 g to 1000 equivalents / 10 6 g. If the acid value exceeds the above upper limit, a carboxyl group may remain even after the adhesive composition is cured with a polyfunctional epoxy compound, polyfunctional isocyanate compound, melamine compound, etc., which will be described later, migration resistance and humidification Post solder resistance decreases. On the other hand, when the acid value is less than the above lower limit, the number of reaction points with the polyfunctional epoxy compound, polyfunctional isocyanate compound, melamine compound, etc. decreases, the curing density decreases, and the solder heat resistance after humidification becomes insufficient.
As shown in the following (1) to (4), by giving a carboxyl group to the side chain of the polyamideimide resin, a polyamideimide resin having an acid value in the above range can be obtained. However, it is not limited to the following method.
(1) When the total acid component of the polyamideimide resin is 100 mol%, the polyamideimide is polymerized so that 3 to 30 mol% of the acid component contains trimellitic acid.
For example, if trimellitic anhydride is used as the acid component, the polymerization is carried out by replacing 3 to 30 mol% of trimellitic anhydride with trimellitic acid. In this case, trimellitic acid and a diisocyanate compound of 0.9 to 1.2 equivalents of the trimellitic acid are reacted in advance at 80 ° C. or lower, and then the remaining raw materials (acid component and diisocyanate component) are added for polymerization. It is preferable to carry out. This is because trimellitic anhydride, trimellitic acid and diisocyanate compound are charged simultaneously from the beginning, and gelation may occur when polymerized at a high temperature. As the trimellitic acid, commercially available trimellitic acid may be used as it is, but before or during polymerization, water corresponding to 3 to 30 mol% of trimellitic anhydride is added to trimellitic acid. By ring-opening the acid anhydride, an equivalent amount of trimellitic acid corresponding to water can be produced and reacted with diisocyanate for use. In this case, it is preferable that trimellitic anhydride and water are reacted in advance at a temperature of 80 ° C. or less, and then a diisocyanate compound is added to polymerize the polyamideimide resin.
When the total acid component of the polyamide-imide resin is 100 mol%, 3-30 mol% of the acid component contains trimellitic acid, so that the side chain of the polyamideimide resin can have a carboxyl group, which is effective. In addition, a reaction with a polyfunctional compound such as a polyfunctional epoxy compound, a polyfunctional isocyanate compound, or a melamine compound is performed, and heat resistance such as humidified solder is improved. If it is less than 3 mol%, the acid value of the polyamide-imide resin is low, and when a polyfunctional compound such as a polyfunctional epoxy compound, polyfunctional isocyanate or melamine compound is added, sufficient crosslinking may not be performed, so heat resistance may be insufficient. If the amount exceeds 30 mol%, the film becomes hard and brittle and adhesion may be reduced, or carboxyl groups may be excessive and migration resistance may be reduced.
(2) When the total acid component of the polyamideimide resin is 100 mol%, the polymerization is carried out so that 3 to 30 mol% of the acid component contains dimethylolbutanoic acid.
For example, 3 to 30 mol% of trimellitic anhydride is replaced with dimethylolbutanoic acid and reacted with diisocyanate. In this case, dimethylol butanoic acid may be added at the same time as the other raw materials to be polymerized, but dimethylol butanoic acid and 0.9 to 1.2 moles of the diisocyanate compound are previously added at 80 ° C. or lower. It is also possible to carry out the polymerization by adding other raw materials after the reaction. When dimethylol butanoic acid is added from the beginning at the same time as other raw materials for polymerization, the polymerization is first performed at 80 ° C. or lower to react with dimethylol butanoic acid and a diisocyanate compound, and then polymerization is performed at a temperature of 100 ° C. or higher. It is preferable.
When the total acid component of the polyamide-imide resin is 100 mol%, 3-30 mol% of the acid component contains dimethylol butanoic acid, so that the side chain of the polyamide-imide resin can have a carboxyl group, which is effective. In particular, a reaction with a polyfunctional compound such as a polyfunctional epoxy compound, a polyfunctional isocyanate compound, or a melamine compound is performed, and heat resistance such as humidified solder is improved. If it is less than 3 mol%, the acid value of the polyamide-imide resin is low, and when a polyfunctional compound such as a polyfunctional epoxy compound, polyfunctional isocyanate or melamine compound is added, sufficient crosslinking may not be performed, so heat resistance may be insufficient. If the amount exceeds 30 mol%, the film becomes hard and brittle and adhesion may be reduced, or carboxyl groups may be excessive and migration resistance may be reduced.
(3) After synthesizing trimellitic anhydride and / or tetracarboxylic acid with a diamine component and / or diisocyanate component to synthesize a prepolymer, alkylene glycol is added to react with the remaining acid anhydride to extend the chain. And introducing a carboxyl group into the side chain.
The molecular weight of the prepolymer is not particularly limited, but the number average molecular weight is preferably 10,000 or less, more preferably 5000 or less. When synthesizing the prepolymer, the ratio of the acid component to the diamine component is preferably increased, and in the case of polyamideimide, it is preferably performed after preferential formation of amide bonds. The prepolymer synthesis is preferably performed at 80 ° C. or lower.
As the alkylene glycol, ethylene glycol, propylene glycol, tetramethylene glycol and oligomers thereof can be used. Among them, polyethylene glycol, polypropylene glycol having a number average molecular weight of 400 to 10,000, preferably 600 to 2000, It is preferable to use one or more alkylene glycols selected from the group consisting of polytetramethylene glycol from the viewpoint of adhesiveness. At this time, the chain can be extended with dimethylolbutanoic acid. Polymerization may be performed by adjusting the amount of alkylene glycol added so that the acid value of the whole polyamideimide resin is 400 equivalents / 10 6 g to 1000 equivalents / 10 6 g.
(4) A method of adjusting the acid value of the polyamideimide as a whole by combining the methods (1), (2), and (3) above may be used.
下記(1)~(4)のように、ポリアミドイミド樹脂の側鎖にカルボキシル基を持たせることで、前記範囲の酸価を有するポリアミドイミド樹脂を得ることができる。ただし、下記の方法に限定されるものではない。
(1)ポリアミドイミド樹脂の全酸成分を100モル%とした場合、酸成分の3~30モル%がトリメリット酸を含むようにポリアミドイミドの重合を行う。
例えば、酸成分としてトリメリット酸無水物を使用するのであれば、トリメリット酸無水物の3~30モル%をトリメリット酸に置き換えて重合を行う。この場合、トリメリット酸と該トリメリット酸の0.9~1.2倍当量のジイソシアネート化合物を予め、80℃以下で反応させた後、残りの原料(酸成分やジイソシアネート成分)を加えて重合を行うことが好ましい。最初からトリメリット酸無水物とトリメリット酸及びジイソシアネート化合物を同時に仕込、高温で重合するとゲル化する場合があるからである。また、前記トリメリット酸は、市販のトリメリット酸をそのまま使用しても構わないが、重合前又は重合中にトリメリット酸無水物の3~30モル%に相当する水を加えて、トリメリット酸無水物を開環させることにより、水に相当する当量のトリメリット酸を生成させ、これをジイソシアネートと反応させて用いることもできる。この場合、トリメリット酸無水物と水を予め、80℃以下の温度で反応させた後、ジイソシアネート化合物を加えてポリアミドイミド樹脂を重合することが好ましい。
ポリアミドイミド樹脂の全酸成分を100モル%とした場合、酸成分の3~30モル%がトリメリット酸を含むことにより、ポリアミドイミド樹脂の側鎖にカルボキシル基を持たせることができ、効果的に多官能エポキシ化合物、多官能イソシアネート化合物及びメラミン化合物等の多官能化合物との反応が行われ、加湿ハンダなどの耐熱性が向上する。3モル%未満ではポリアミドイミド樹脂の酸価が低く、多官能エポキシ化合物、多官能イソシアネートやメラミン化合物等の多官能化合物を加えた場合に十分な架橋が行われないため耐熱性が不足する場合があり、30モル%を超える場合には膜が硬く脆くなって密着性が低下したり、カルボキシル基が過剰になり、耐マイグレーション性が低下する場合がある。
(2)ポリアミドイミド樹脂の全酸成分を100モル%とした場合、酸成分の3~30モル%がジメチロールブタン酸を含むように重合を行う。
例えば、トリメリット酸無水物の3~30モル%をジメチロールブタン酸で置き換えてジイソシアネートと反応させる。この場合、ジメチロールブタン酸を最初から他の原料と同時に加えて重合しても良いが、ジメチロールブタン酸とこれの0.9~1.2倍モルのジイソシアネート化合物とを予め80℃以下で反応させてから他の原料を追加して重合を行うこともできる。ジメチロールブタン酸を最初から他の原料と同時に加えて重合する場合は、最初は80℃以下で重合してジメチロールブタン酸とジイソシアネート化合物を反応させた後、100℃以上の温度で重合を行うことが好ましい。
ポリアミドイミド樹脂の全酸成分を100モル%とした場合、酸成分の3~30モル%がジメチロールブタン酸を含むことにより、ポリアミドイミド樹脂の側鎖にカルボキシル基を持たせることができ、効果的に多官能エポキシ化合物、多官能イソシアネート化合物及びメラミン化合物などの多官能化合物との反応が行われ、加湿ハンダなどの耐熱性が向上する。3モル%未満ではポリアミドイミド樹脂の酸価が低く、多官能エポキシ化合物、多官能イソシアネートやメラミン化合物等の多官能化合物を加えた場合に十分な架橋が行われないため耐熱性が不足する場合があり、30モル%以上を超える場合には膜が硬く脆くなって密着性が低下したり、カルボキシル基が過剰になり、耐マイグレーション性が低下する場合がある。
(3)トリメリット酸無水物及び/又はテトラカルボン酸物とジアミン成分及び/またはジイソシアネート成分とを反応させてプレポリマーを合成した後、アルキレングリコールを加えて残存酸無水物と反応させ、鎖延長させると共にカルボキシル基を側鎖に導入する。
プレポリマーの分子量は特に制限はないが、数平均分子量で10,000以下が好ましく、より好ましくは5000以下である。プレポリマーを合成する際において、酸成分とジアミン成分の比率は、酸成分を多めにすることが好ましく、ポリアミドイミドの場合、アミド結合を優先的に形成させた後に行うことが好ましい。プレポリマー合成は80℃以下で行うのが好ましい。
アルキレングリコールとしてはエチレングリコール、プロピレングリコール、テトラメチレングリコール及びこれらのオリゴマーを用いることができ、これらの中では数平均分子量が400~10000、好ましくは数平均分子量600~2000のポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコールからなる群より選ばれた1種以上のアルキレングリコールを用いることが接着性などの点から好ましい。この際、ジメチロールブタン酸で鎖延長させることもできる。なお、ポリアミドイミド樹脂全体の酸価が400当量/106g~1000当量/106gとなるように、アルキレングリコールの添加量を調節して重合すればよい。
(4)上記(1)、(2)、(3)の方法を組み合わせ、全体としてポリアミドイミドの酸価を調整させる方法もよい。 The acid value of the polyamide-imide resin of the present invention is in the range of 400 equivalent / 10 6 g to 1000 equivalent / 10 6 g, preferably 450 equivalent / 10 6 g to 1000 equivalent / 10 6 g, more preferably 500 equivalents / 10 6 g to 1000 equivalents / 10 6 g. If the acid value exceeds the above upper limit, a carboxyl group may remain even after the adhesive composition is cured with a polyfunctional epoxy compound, polyfunctional isocyanate compound, melamine compound, etc., which will be described later, migration resistance and humidification Post solder resistance decreases. On the other hand, when the acid value is less than the above lower limit, the number of reaction points with the polyfunctional epoxy compound, polyfunctional isocyanate compound, melamine compound, etc. decreases, the curing density decreases, and the solder heat resistance after humidification becomes insufficient.
As shown in the following (1) to (4), by giving a carboxyl group to the side chain of the polyamideimide resin, a polyamideimide resin having an acid value in the above range can be obtained. However, it is not limited to the following method.
(1) When the total acid component of the polyamideimide resin is 100 mol%, the polyamideimide is polymerized so that 3 to 30 mol% of the acid component contains trimellitic acid.
For example, if trimellitic anhydride is used as the acid component, the polymerization is carried out by replacing 3 to 30 mol% of trimellitic anhydride with trimellitic acid. In this case, trimellitic acid and a diisocyanate compound of 0.9 to 1.2 equivalents of the trimellitic acid are reacted in advance at 80 ° C. or lower, and then the remaining raw materials (acid component and diisocyanate component) are added for polymerization. It is preferable to carry out. This is because trimellitic anhydride, trimellitic acid and diisocyanate compound are charged simultaneously from the beginning, and gelation may occur when polymerized at a high temperature. As the trimellitic acid, commercially available trimellitic acid may be used as it is, but before or during polymerization, water corresponding to 3 to 30 mol% of trimellitic anhydride is added to trimellitic acid. By ring-opening the acid anhydride, an equivalent amount of trimellitic acid corresponding to water can be produced and reacted with diisocyanate for use. In this case, it is preferable that trimellitic anhydride and water are reacted in advance at a temperature of 80 ° C. or less, and then a diisocyanate compound is added to polymerize the polyamideimide resin.
When the total acid component of the polyamide-imide resin is 100 mol%, 3-30 mol% of the acid component contains trimellitic acid, so that the side chain of the polyamideimide resin can have a carboxyl group, which is effective. In addition, a reaction with a polyfunctional compound such as a polyfunctional epoxy compound, a polyfunctional isocyanate compound, or a melamine compound is performed, and heat resistance such as humidified solder is improved. If it is less than 3 mol%, the acid value of the polyamide-imide resin is low, and when a polyfunctional compound such as a polyfunctional epoxy compound, polyfunctional isocyanate or melamine compound is added, sufficient crosslinking may not be performed, so heat resistance may be insufficient. If the amount exceeds 30 mol%, the film becomes hard and brittle and adhesion may be reduced, or carboxyl groups may be excessive and migration resistance may be reduced.
(2) When the total acid component of the polyamideimide resin is 100 mol%, the polymerization is carried out so that 3 to 30 mol% of the acid component contains dimethylolbutanoic acid.
For example, 3 to 30 mol% of trimellitic anhydride is replaced with dimethylolbutanoic acid and reacted with diisocyanate. In this case, dimethylol butanoic acid may be added at the same time as the other raw materials to be polymerized, but dimethylol butanoic acid and 0.9 to 1.2 moles of the diisocyanate compound are previously added at 80 ° C. or lower. It is also possible to carry out the polymerization by adding other raw materials after the reaction. When dimethylol butanoic acid is added from the beginning at the same time as other raw materials for polymerization, the polymerization is first performed at 80 ° C. or lower to react with dimethylol butanoic acid and a diisocyanate compound, and then polymerization is performed at a temperature of 100 ° C. or higher. It is preferable.
When the total acid component of the polyamide-imide resin is 100 mol%, 3-30 mol% of the acid component contains dimethylol butanoic acid, so that the side chain of the polyamide-imide resin can have a carboxyl group, which is effective. In particular, a reaction with a polyfunctional compound such as a polyfunctional epoxy compound, a polyfunctional isocyanate compound, or a melamine compound is performed, and heat resistance such as humidified solder is improved. If it is less than 3 mol%, the acid value of the polyamide-imide resin is low, and when a polyfunctional compound such as a polyfunctional epoxy compound, polyfunctional isocyanate or melamine compound is added, sufficient crosslinking may not be performed, so heat resistance may be insufficient. If the amount exceeds 30 mol%, the film becomes hard and brittle and adhesion may be reduced, or carboxyl groups may be excessive and migration resistance may be reduced.
(3) After synthesizing trimellitic anhydride and / or tetracarboxylic acid with a diamine component and / or diisocyanate component to synthesize a prepolymer, alkylene glycol is added to react with the remaining acid anhydride to extend the chain. And introducing a carboxyl group into the side chain.
The molecular weight of the prepolymer is not particularly limited, but the number average molecular weight is preferably 10,000 or less, more preferably 5000 or less. When synthesizing the prepolymer, the ratio of the acid component to the diamine component is preferably increased, and in the case of polyamideimide, it is preferably performed after preferential formation of amide bonds. The prepolymer synthesis is preferably performed at 80 ° C. or lower.
As the alkylene glycol, ethylene glycol, propylene glycol, tetramethylene glycol and oligomers thereof can be used. Among them, polyethylene glycol, polypropylene glycol having a number average molecular weight of 400 to 10,000, preferably 600 to 2000, It is preferable to use one or more alkylene glycols selected from the group consisting of polytetramethylene glycol from the viewpoint of adhesiveness. At this time, the chain can be extended with dimethylolbutanoic acid. Polymerization may be performed by adjusting the amount of alkylene glycol added so that the acid value of the whole polyamideimide resin is 400 equivalents / 10 6 g to 1000 equivalents / 10 6 g.
(4) A method of adjusting the acid value of the polyamideimide as a whole by combining the methods (1), (2), and (3) above may be used.
上述した方法により、側鎖にカルボキシル基を有する本願発明のポリアミドイミド樹脂を得ることができる。通常であれば架橋等がおこりポリアミドイミド樹脂がゲル化することが予想されることから、トリメリット酸のような三官能の化合物を重合中に加えることは当業者であれば通常行わない操作であるが、本発明者らは、温度制御等の重合条件について鋭意研究を重ねた結果、トリメリット酸と該トリメリット酸の0.9~1.2倍当量のジイソシアネート化合物を予め、80℃以下で反応させた後、残りの原料(酸成分やジイソシアネート成分)を加えて重合する方法を行えば、ゲル化を抑えつつ側鎖にカルボキシル基を有するポリアミドイミド樹脂を得られることを見い出した。本発明のポリアミドイミド樹脂に、多官能エポキシ化合物、多官能イソシアネート化合物及びメラミン化合物からなる群より選ばれる1種以上の化合物を加え反応させることにより、低温接着性、高温高湿下での耐マイグレーション性及び耐熱性、特に加湿後の耐ハンダ性に優れた接着剤組成物が得られる。特に高温高湿下での耐マイグレーション性及び加湿後の耐ハンダ性に優れる。ポリアミドイミド樹脂の側鎖にカルボキシル基を導入する重合法を新たに見出したことにより、ポリアミドイミド樹脂の架橋点を増やすことができるようになった。架橋点の増加は、密着性の向上に貢献し、それにより耐湿性を大幅に改良することができ、耐マイグレーション性、加湿後の耐ハンダ性に優れるものと考えられる。
By the method described above, the polyamideimide resin of the present invention having a carboxyl group in the side chain can be obtained. Since it is expected that the polyamide-imide resin will be gelled if it is usually crosslinked, adding a trifunctional compound such as trimellitic acid during the polymerization is an operation that is not usually performed by those skilled in the art. However, as a result of extensive research on polymerization conditions such as temperature control, the present inventors have previously obtained trimellitic acid and a diisocyanate compound of 0.9 to 1.2 equivalents of the trimellitic acid in advance at 80 ° C. or less. It was found that a polyamideimide resin having a carboxyl group in the side chain can be obtained while the gelation is suppressed by carrying out the polymerization by adding the remaining raw materials (acid component and diisocyanate component) after the reaction. One or more compounds selected from the group consisting of a polyfunctional epoxy compound, a polyfunctional isocyanate compound and a melamine compound are added to the polyamideimide resin of the present invention and allowed to react, thereby causing low temperature adhesion and migration resistance under high temperature and high humidity. An adhesive composition excellent in heat resistance and heat resistance, in particular, solder resistance after humidification is obtained. In particular, it excels in migration resistance under high temperature and high humidity and solder resistance after humidification. By newly finding a polymerization method for introducing a carboxyl group into a side chain of a polyamide-imide resin, the number of cross-linking points of the polyamide-imide resin can be increased. The increase in the number of cross-linking points contributes to the improvement of the adhesion, whereby the moisture resistance can be greatly improved, and it is considered that the migration resistance and the solder resistance after humidification are excellent.
本発明のポリアミドイミド樹脂はN,N’-ジメチルアセトアミドやN-メチルー2-ピロリドン,N,N’-ジメチルホルムアミド、γ―ブチロラクトン等の極性溶剤中、60~200℃に加熱しながら攪拌することで容易に製造することができる。この場合、必要により触媒を用いることができる。触媒としてはナトリウムメチラート、フッ化カリウムなどの金属塩、トリエチルアミン、トリエチレンジアミン、ジアザビシクロウンデセンなどのアミン類が用いられる。また、上記の重合溶剤はその一部を他の比較的安価で沸点の低い溶剤に置き換えることができる。それらの溶剤としてはメタノール、エタノール、ブタノールなどのアルコール類、アセトン、ブタノン、シクロヘキサノンなどのケトン類、酢酸メチル、酢酸エチルなどのエステル類、トルエン、キシレンなどの炭化水素類などが挙げられ、全体として40重量%程度、重合溶媒をこれらの溶剤で置き換えることが好ましい。
また、上記重合溶液を重合溶液と混和しない溶剤、好ましくはアセトンや水の中に投入して重合溶剤を除去、洗浄、乾燥して他の溶剤に再溶解して用いることができる。再溶解に用いる溶剤としてはメタノール、エタノール、ブタノール等のアルコール類、トルエン、キシレン等の芳香族炭化水素類、テトラヒドロフラン、ジオキサン等のエーテル類、シクロペンタノン、シクロヘキサノン等のケトン類などが挙げられる。 The polyamideimide resin of the present invention is stirred in a polar solvent such as N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, N, N′-dimethylformamide, and γ-butyrolactone while heating to 60 to 200 ° C. Can be manufactured easily. In this case, a catalyst can be used if necessary. As the catalyst, metal salts such as sodium methylate and potassium fluoride, and amines such as triethylamine, triethylenediamine and diazabicycloundecene are used. In addition, a part of the above-mentioned polymerization solvent can be replaced with another relatively inexpensive solvent having a low boiling point. These solvents include alcohols such as methanol, ethanol and butanol, ketones such as acetone, butanone and cyclohexanone, esters such as methyl acetate and ethyl acetate, and hydrocarbons such as toluene and xylene as a whole. About 40% by weight, it is preferable to replace the polymerization solvent with these solvents.
The polymerization solution can be used by dissolving it in a solvent immiscible with the polymerization solution, preferably acetone or water, removing the polymerization solvent, washing, drying and re-dissolving in another solvent. Examples of the solvent used for redissolving include alcohols such as methanol, ethanol and butanol, aromatic hydrocarbons such as toluene and xylene, ethers such as tetrahydrofuran and dioxane, and ketones such as cyclopentanone and cyclohexanone.
また、上記重合溶液を重合溶液と混和しない溶剤、好ましくはアセトンや水の中に投入して重合溶剤を除去、洗浄、乾燥して他の溶剤に再溶解して用いることができる。再溶解に用いる溶剤としてはメタノール、エタノール、ブタノール等のアルコール類、トルエン、キシレン等の芳香族炭化水素類、テトラヒドロフラン、ジオキサン等のエーテル類、シクロペンタノン、シクロヘキサノン等のケトン類などが挙げられる。 The polyamideimide resin of the present invention is stirred in a polar solvent such as N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, N, N′-dimethylformamide, and γ-butyrolactone while heating to 60 to 200 ° C. Can be manufactured easily. In this case, a catalyst can be used if necessary. As the catalyst, metal salts such as sodium methylate and potassium fluoride, and amines such as triethylamine, triethylenediamine and diazabicycloundecene are used. In addition, a part of the above-mentioned polymerization solvent can be replaced with another relatively inexpensive solvent having a low boiling point. These solvents include alcohols such as methanol, ethanol and butanol, ketones such as acetone, butanone and cyclohexanone, esters such as methyl acetate and ethyl acetate, and hydrocarbons such as toluene and xylene as a whole. About 40% by weight, it is preferable to replace the polymerization solvent with these solvents.
The polymerization solution can be used by dissolving it in a solvent immiscible with the polymerization solution, preferably acetone or water, removing the polymerization solvent, washing, drying and re-dissolving in another solvent. Examples of the solvent used for redissolving include alcohols such as methanol, ethanol and butanol, aromatic hydrocarbons such as toluene and xylene, ethers such as tetrahydrofuran and dioxane, and ketones such as cyclopentanone and cyclohexanone.
2. 接着剤組成物
本発明の接着剤組成物は、対数粘度が0.2dl/g以上であり、かつ酸価が400当量/106g~1000当量/106gである側鎖にカルボキシル基を有するポリアミドイミド樹脂に、多官能エポキシ化合物、多官能イソシアネート化合物及びメラミン化合物からなる群より選ばれた1種以上の化合物を含む。前記ポリアミドイミド樹脂に、多官能エポキシ化合物や多官能イソシアネート化合物及びメラミン化合物からなる群より選ばれた1種以上の化合物を配合、加熱、硬化させることによって高度な架橋構造を形成させることができ、優れた密着性や加湿耐ハンダ性等を発現させることができる。
本発明のポリアミドイミド樹脂に組み合わせる多官能エポキシ化合物としては特に制限はなく、ビスフェノールAジグリシジルエーテル類、フェノールノボラック型エポキシ化合物、アミン型エポキシ化合物などが挙げられる。ポリアミドイミド樹脂との相溶性、架橋密度の観点から、フェノールノボラック型エポキシ化合物が特に好ましい。
また、多官能イソシアネート化合物としても制限はなく、トリメチロールプロパンへのトリレンジイソシアネートやイソホロンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネートのトリアダクト体、ヘキサメチレンジイソシアネートの環状3量体などが挙げられる。密着性、架橋密度の観点から、ヘキサメチレンジイソシアネートの環状3量体が特に好ましい。
メラミン化合物としてはトリメチロールメラミンのメチルエーテル、ブチルエーテルなどが挙げられる。
これらの多官能エポキシ化合物、多官能イソシアネート化合物、メラミン化合物等の多官能化合物は、ポリアミドイミド樹脂100重量部に対して、3~200重量部の範囲で配合することが好ましく、より好ましくは10~100重量部の範囲で配合する。多官能化合物の配合量が3重量部未満では加湿ハンダなどの耐熱性や耐薬品性が不足する場合があり、また200重量部を超えると膜が硬く、脆くなるため密着性が逆に低下する場合がある。
さらに詳細に設計するには、硬化反応させる前段階で、多官能エポキシ化合物、多官能イソシアネート化合物、メラミン化合物等の多官能化合物のエポキシ基やNCO基の個数/ポリアミドイミド樹脂のカルボキシル基の個数=1~50が好ましく、3~25の範囲がより好ましい。配合したエポキシ化合物が、必ずしもすべてが硬化反応に関与するわけではないことが通常であるから、ポリアミドイミド樹脂のカルボキシル基に対して等量または過剰量が加えることが好ましい。カルボキシル基に対してエポキシ基が1未満では硬化が不十分で加湿後の耐ハンダ性や耐マイグレーション性が不足する場合があり、また、50を超えると硬化後の接着剤層が脆く密着性が低下する傾向がある。
硬化反応させた後のポリアミドイミド樹脂の酸価は、100当量/106g以下が好ましく、より好ましくは30当量/106g以下である。 2. Adhesive composition The adhesive composition of the present invention has a carboxyl group in a side chain having a logarithmic viscosity of 0.2 dl / g or more and an acid value of 400 equivalent / 10 6 g to 1000 equivalent / 10 6 g. The polyamidoimide resin has one or more compounds selected from the group consisting of polyfunctional epoxy compounds, polyfunctional isocyanate compounds and melamine compounds. In the polyamide-imide resin, one or more compounds selected from the group consisting of polyfunctional epoxy compounds, polyfunctional isocyanate compounds and melamine compounds can be blended, heated, and cured to form a highly crosslinked structure. Excellent adhesion and resistance to humidification and soldering can be expressed.
There is no restriction | limiting in particular as a polyfunctional epoxy compound combined with the polyamide-imide resin of this invention, Bisphenol A diglycidyl ether, a phenol novolak-type epoxy compound, an amine-type epoxy compound, etc. are mentioned. From the viewpoint of compatibility with the polyamide-imide resin and the crosslinking density, a phenol novolac type epoxy compound is particularly preferable.
The polyfunctional isocyanate compound is not limited, and examples include tolylene diisocyanate to trimethylolpropane, isophorone diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate triadduct, and hexamethylene diisocyanate cyclic trimer. From the viewpoints of adhesion and crosslink density, a cyclic trimer of hexamethylene diisocyanate is particularly preferable.
Examples of the melamine compound include trimethylolmelamine methyl ether and butyl ether.
These polyfunctional compounds such as polyfunctional epoxy compounds, polyfunctional isocyanate compounds, and melamine compounds are preferably blended in an amount of 3 to 200 parts by weight, more preferably 10 to 10 parts by weight based on 100 parts by weight of the polyamideimide resin. It mix | blends in 100 weight part. If the blending amount of the polyfunctional compound is less than 3 parts by weight, heat resistance and chemical resistance such as humidified solder may be insufficient, and if it exceeds 200 parts by weight, the film becomes hard and brittle so that the adhesiveness is reduced. There is a case.
In order to design in more detail, the number of epoxy groups and NCO groups of polyfunctional compounds such as polyfunctional epoxy compounds, polyfunctional isocyanate compounds, and melamine compounds / number of carboxyl groups of polyamide-imide resin in the previous stage of the curing reaction = 1 to 50 is preferable, and a range of 3 to 25 is more preferable. Since not all of the compounded epoxy compounds are usually involved in the curing reaction, it is preferable to add an equivalent amount or an excess amount with respect to the carboxyl group of the polyamide-imide resin. If the epoxy group is less than 1 with respect to the carboxyl group, the curing may be insufficient and the soldering resistance and migration resistance after humidification may be insufficient, and if it exceeds 50, the adhesive layer after curing is brittle and the adhesion is poor. There is a tendency to decrease.
The acid value of the polyamide-imide resin after the curing reaction is preferably 100 equivalents / 10 6 g or less, more preferably 30 equivalents / 10 6 g or less.
本発明の接着剤組成物は、対数粘度が0.2dl/g以上であり、かつ酸価が400当量/106g~1000当量/106gである側鎖にカルボキシル基を有するポリアミドイミド樹脂に、多官能エポキシ化合物、多官能イソシアネート化合物及びメラミン化合物からなる群より選ばれた1種以上の化合物を含む。前記ポリアミドイミド樹脂に、多官能エポキシ化合物や多官能イソシアネート化合物及びメラミン化合物からなる群より選ばれた1種以上の化合物を配合、加熱、硬化させることによって高度な架橋構造を形成させることができ、優れた密着性や加湿耐ハンダ性等を発現させることができる。
本発明のポリアミドイミド樹脂に組み合わせる多官能エポキシ化合物としては特に制限はなく、ビスフェノールAジグリシジルエーテル類、フェノールノボラック型エポキシ化合物、アミン型エポキシ化合物などが挙げられる。ポリアミドイミド樹脂との相溶性、架橋密度の観点から、フェノールノボラック型エポキシ化合物が特に好ましい。
また、多官能イソシアネート化合物としても制限はなく、トリメチロールプロパンへのトリレンジイソシアネートやイソホロンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネートのトリアダクト体、ヘキサメチレンジイソシアネートの環状3量体などが挙げられる。密着性、架橋密度の観点から、ヘキサメチレンジイソシアネートの環状3量体が特に好ましい。
メラミン化合物としてはトリメチロールメラミンのメチルエーテル、ブチルエーテルなどが挙げられる。
これらの多官能エポキシ化合物、多官能イソシアネート化合物、メラミン化合物等の多官能化合物は、ポリアミドイミド樹脂100重量部に対して、3~200重量部の範囲で配合することが好ましく、より好ましくは10~100重量部の範囲で配合する。多官能化合物の配合量が3重量部未満では加湿ハンダなどの耐熱性や耐薬品性が不足する場合があり、また200重量部を超えると膜が硬く、脆くなるため密着性が逆に低下する場合がある。
さらに詳細に設計するには、硬化反応させる前段階で、多官能エポキシ化合物、多官能イソシアネート化合物、メラミン化合物等の多官能化合物のエポキシ基やNCO基の個数/ポリアミドイミド樹脂のカルボキシル基の個数=1~50が好ましく、3~25の範囲がより好ましい。配合したエポキシ化合物が、必ずしもすべてが硬化反応に関与するわけではないことが通常であるから、ポリアミドイミド樹脂のカルボキシル基に対して等量または過剰量が加えることが好ましい。カルボキシル基に対してエポキシ基が1未満では硬化が不十分で加湿後の耐ハンダ性や耐マイグレーション性が不足する場合があり、また、50を超えると硬化後の接着剤層が脆く密着性が低下する傾向がある。
硬化反応させた後のポリアミドイミド樹脂の酸価は、100当量/106g以下が好ましく、より好ましくは30当量/106g以下である。 2. Adhesive composition The adhesive composition of the present invention has a carboxyl group in a side chain having a logarithmic viscosity of 0.2 dl / g or more and an acid value of 400 equivalent / 10 6 g to 1000 equivalent / 10 6 g. The polyamidoimide resin has one or more compounds selected from the group consisting of polyfunctional epoxy compounds, polyfunctional isocyanate compounds and melamine compounds. In the polyamide-imide resin, one or more compounds selected from the group consisting of polyfunctional epoxy compounds, polyfunctional isocyanate compounds and melamine compounds can be blended, heated, and cured to form a highly crosslinked structure. Excellent adhesion and resistance to humidification and soldering can be expressed.
There is no restriction | limiting in particular as a polyfunctional epoxy compound combined with the polyamide-imide resin of this invention, Bisphenol A diglycidyl ether, a phenol novolak-type epoxy compound, an amine-type epoxy compound, etc. are mentioned. From the viewpoint of compatibility with the polyamide-imide resin and the crosslinking density, a phenol novolac type epoxy compound is particularly preferable.
The polyfunctional isocyanate compound is not limited, and examples include tolylene diisocyanate to trimethylolpropane, isophorone diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate triadduct, and hexamethylene diisocyanate cyclic trimer. From the viewpoints of adhesion and crosslink density, a cyclic trimer of hexamethylene diisocyanate is particularly preferable.
Examples of the melamine compound include trimethylolmelamine methyl ether and butyl ether.
These polyfunctional compounds such as polyfunctional epoxy compounds, polyfunctional isocyanate compounds, and melamine compounds are preferably blended in an amount of 3 to 200 parts by weight, more preferably 10 to 10 parts by weight based on 100 parts by weight of the polyamideimide resin. It mix | blends in 100 weight part. If the blending amount of the polyfunctional compound is less than 3 parts by weight, heat resistance and chemical resistance such as humidified solder may be insufficient, and if it exceeds 200 parts by weight, the film becomes hard and brittle so that the adhesiveness is reduced. There is a case.
In order to design in more detail, the number of epoxy groups and NCO groups of polyfunctional compounds such as polyfunctional epoxy compounds, polyfunctional isocyanate compounds, and melamine compounds / number of carboxyl groups of polyamide-imide resin in the previous stage of the curing reaction = 1 to 50 is preferable, and a range of 3 to 25 is more preferable. Since not all of the compounded epoxy compounds are usually involved in the curing reaction, it is preferable to add an equivalent amount or an excess amount with respect to the carboxyl group of the polyamide-imide resin. If the epoxy group is less than 1 with respect to the carboxyl group, the curing may be insufficient and the soldering resistance and migration resistance after humidification may be insufficient, and if it exceeds 50, the adhesive layer after curing is brittle and the adhesion is poor. There is a tendency to decrease.
The acid value of the polyamide-imide resin after the curing reaction is preferably 100 equivalents / 10 6 g or less, more preferably 30 equivalents / 10 6 g or less.
また、これらの多官能化合物には各々の硬化助剤や触媒として、例えばエポキシ化合物の場合には、多価カルボン酸やそれらの無水物、イミダゾール化合物、アミン系触媒を、イソシアネート化合物の場合にはジブチルスズジラウレートなどの金属化合物を、またメラミン化合物の場合にはp-トルエンスルホン酸などの触媒を用いることができる。
In addition, for these polyfunctional compounds, for example, in the case of epoxy compounds, polyvalent carboxylic acids and their anhydrides, imidazole compounds, and amine-based catalysts are used as curing aids and catalysts. A metal compound such as dibutyltin dilaurate or a catalyst such as p-toluenesulfonic acid can be used in the case of a melamine compound.
本発明のポリアミドイミド樹脂及びこれらに多官能エポキシ化合物、多官能イソシアネート化合物、メラミン化合物等の多官能化合物を配合した接着剤組成物を接着剤やコーテイング剤として用いる場合、難燃性を付与するために有機または無機のリン化合物を配合することができる。リン化合物としては特に制限はなく、赤燐、各種燐酸ナトリウム、燐酸マグネシウム、燐酸カルシウムなどの無機燐酸塩、トリエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、リン酸エステル縮合物などの燐酸エステルやホスファゼン化合物、ホスフィン酸誘導体などが挙げられ、特に、耐湿性の観点からホスファゼン化合物が特に好ましい。接着剤組成物固形分に対して、リン含有量が1重量%以上3重量以下となるように、リン化合物を添加することができる。1重量未満では難燃性の効果が得られにくい傾向にあり、3重量%を超えると過剰なだけでなく、樹脂の密着性、耐湿性が落ちる傾向にある。
In order to impart flame retardancy when the polyamideimide resin of the present invention and an adhesive composition in which a polyfunctional compound such as a polyfunctional epoxy compound, polyfunctional isocyanate compound, or melamine compound is blended are used as an adhesive or a coating agent An organic or inorganic phosphorus compound can be blended with. There is no particular limitation on the phosphorus compound, and phosphoric acid esters and phosphazenes such as red phosphorus, various inorganic phosphates such as sodium phosphate, magnesium phosphate and calcium phosphate, triethyl phosphate, triphenyl phosphate, tricresyl phosphate, and phosphate ester condensates. Compounds, phosphinic acid derivatives and the like can be mentioned, and phosphazene compounds are particularly preferable from the viewpoint of moisture resistance. A phosphorus compound can be added so that the phosphorus content is 1% by weight or more and 3% by weight or less based on the solid content of the adhesive composition. If it is less than 1 weight, it tends to be difficult to obtain a flame-retardant effect.
本発明の接着剤組成物には、本発明の内容を損なわない範囲でシリカや炭酸カルシウム等のフィラー、無機、有機の顔料、染料、帯電防止剤、レベリング剤、リン化合物以外の難燃剤としてシリコーン化合物、水酸化アルミニウム、尿素化合物など及びポリアミドイミド以外の樹脂、例えばポリエステル、ポリアミド、ポリイミド、ポリウレタン等を適宜配合することができる。
The adhesive composition of the present invention includes silicone as a flame retardant other than fillers such as silica and calcium carbonate, inorganic and organic pigments, dyes, antistatic agents, leveling agents, and phosphorus compounds within a range that does not impair the content of the present invention. Compounds, aluminum hydroxide, urea compounds, and resins other than polyamideimide, such as polyester, polyamide, polyimide, polyurethane, and the like can be appropriately blended.
本発明の接着剤組成物は、接着剤組成物を溶剤に溶解した接着剤溶液として用いることができる。例えば、該接着剤溶液を、被着体に塗布、乾燥後もう一方の被着体と重ね合わせて加熱ロール又はヒートプレスにより圧着させ、必要により加熱硬化処理を行うことにより接着剤として使用することができる。
前記溶剤としては、ポリアミドイミド樹脂の重合で使用したN,N’-ジメチルアセトアミドやN-メチルー2-ピロリドン,N,N’-ジメチルホルムアミド、γ―ブチロラクトン等の溶剤を使用することができるが、接着剤層中に溶剤が残ると接着加工時に発砲したり、耐熱性そのものが低下して好ましくない結果になるので、高沸点の重合溶剤をメタノール、エタノール、ブタノールなどのアルコール類、酢酸メチル、酢酸エチルなどのエステル類、トルエン、キシレンなどの芳香族炭化水素類、エーテル、アセトン、ブタノン、シクロヘキサノンなどのケトン類等の低沸点溶剤に置き換えたものを使用するのが好ましい。溶剤全体として40重量%程度、重合溶媒をこれらの溶剤で置き換えることが好ましい。
接着剤溶液中、固形分濃度は、使用目的により適宜設定することができるが、好ましくは20~60重量%、より好ましくは30~50重量%である。 The adhesive composition of the present invention can be used as an adhesive solution in which the adhesive composition is dissolved in a solvent. For example, the adhesive solution is applied to an adherend, dried and then overlapped with the other adherend and bonded by a heating roll or heat press, and if necessary, used as an adhesive by performing a heat curing treatment. Can do.
As the solvent, solvents such as N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, N, N′-dimethylformamide, and γ-butyrolactone used in the polymerization of polyamideimide resin can be used. If a solvent remains in the adhesive layer, it may cause undesired results due to firing at the time of adhesion processing or a decrease in heat resistance itself, so high-boiling polymerization solvents may be alcohols such as methanol, ethanol, butanol, methyl acetate, acetic acid. It is preferable to use those substituted with low boiling point solvents such as esters such as ethyl, aromatic hydrocarbons such as toluene and xylene, and ketones such as ether, acetone, butanone and cyclohexanone. It is preferable to replace the polymerization solvent with these solvents by about 40% by weight as a whole.
The solid content concentration in the adhesive solution can be appropriately set depending on the purpose of use, but is preferably 20 to 60% by weight, more preferably 30 to 50% by weight.
前記溶剤としては、ポリアミドイミド樹脂の重合で使用したN,N’-ジメチルアセトアミドやN-メチルー2-ピロリドン,N,N’-ジメチルホルムアミド、γ―ブチロラクトン等の溶剤を使用することができるが、接着剤層中に溶剤が残ると接着加工時に発砲したり、耐熱性そのものが低下して好ましくない結果になるので、高沸点の重合溶剤をメタノール、エタノール、ブタノールなどのアルコール類、酢酸メチル、酢酸エチルなどのエステル類、トルエン、キシレンなどの芳香族炭化水素類、エーテル、アセトン、ブタノン、シクロヘキサノンなどのケトン類等の低沸点溶剤に置き換えたものを使用するのが好ましい。溶剤全体として40重量%程度、重合溶媒をこれらの溶剤で置き換えることが好ましい。
接着剤溶液中、固形分濃度は、使用目的により適宜設定することができるが、好ましくは20~60重量%、より好ましくは30~50重量%である。 The adhesive composition of the present invention can be used as an adhesive solution in which the adhesive composition is dissolved in a solvent. For example, the adhesive solution is applied to an adherend, dried and then overlapped with the other adherend and bonded by a heating roll or heat press, and if necessary, used as an adhesive by performing a heat curing treatment. Can do.
As the solvent, solvents such as N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, N, N′-dimethylformamide, and γ-butyrolactone used in the polymerization of polyamideimide resin can be used. If a solvent remains in the adhesive layer, it may cause undesired results due to firing at the time of adhesion processing or a decrease in heat resistance itself, so high-boiling polymerization solvents may be alcohols such as methanol, ethanol, butanol, methyl acetate, acetic acid. It is preferable to use those substituted with low boiling point solvents such as esters such as ethyl, aromatic hydrocarbons such as toluene and xylene, and ketones such as ether, acetone, butanone and cyclohexanone. It is preferable to replace the polymerization solvent with these solvents by about 40% by weight as a whole.
The solid content concentration in the adhesive solution can be appropriately set depending on the purpose of use, but is preferably 20 to 60% by weight, more preferably 30 to 50% by weight.
本発明のポリアミドイミド樹脂及び多官能エポキシ化合物、多官能イソシアネート化合物、メラミン化合物等の多官能化合物を配合した組成物の用途は特に制限されないが、最も有用な用途は、プリント回路板関連用接着剤または回路保護の絶縁インキである。具体的にはポリイミドフィルムやポリエステルフィルム、ガラスーエポキシシート、フェノール樹脂シート等の絶縁基材に銅箔やアルミ箔等を張り合わせる接着剤、カバーレイフィルム用接着剤、カバーレイと同様、回路を保護する絶縁インキ、回路基板の一部を補強板で強化する場合の接着剤、回路基板に直接半導体チップを搭載する場合の接着剤等が挙げられる。
The use of the composition containing the polyamidoimide resin of the present invention and a polyfunctional compound such as a polyfunctional epoxy compound, polyfunctional isocyanate compound, and melamine compound is not particularly limited, but the most useful use is an adhesive for printed circuit boards. Or an insulating ink for circuit protection. Specifically, adhesives for bonding copper foil or aluminum foil to insulating base materials such as polyimide film, polyester film, glass-epoxy sheet, phenolic resin sheet, coverlay film adhesive, coverlay, etc. Examples thereof include insulating ink for protection, an adhesive for reinforcing a part of a circuit board with a reinforcing plate, an adhesive for mounting a semiconductor chip directly on the circuit board, and the like.
3. プリント回路基板用絶縁インキ
本発明のポリアミドイミド樹脂をプリント回路基板用絶縁インキとして用いる場合は、ポリアミドイミド樹脂及び前記多官能化合物の混合溶液に、酸化ケイ素や硫酸カルシウムなどの無機粒子及び/又は各種有機の微粒子をポリアミドイミド樹脂及び前記多官能化合物の混合溶液に対して好ましくは0.5~10重量%、より好ましくは1~5重量%配合分散させて、BH型粘度計の回転数4rpm/20rpm、25℃での粘度比で表すチキソ指数が1.2以上3.0以下にして、好ましくはシリコーン系またはアクリル系の消泡剤やレベリング剤をポリアミドイミド樹脂溶液及び前記多官能化合物の混合に対して0.5~5重量%配合して用いることができる。 3. Insulating ink for printed circuit board When the polyamideimide resin of the present invention is used as an insulating ink for printed circuit board, inorganic particles such as silicon oxide and calcium sulfate and / or various kinds are used in a mixed solution of the polyamideimide resin and the polyfunctional compound. The organic fine particles are preferably mixed and dispersed in the mixed solution of the polyamidoimide resin and the polyfunctional compound in an amount of 0.5 to 10% by weight, more preferably 1 to 5% by weight. A thixo index represented by a viscosity ratio at 20 rpm and 25 ° C. is 1.2 or more and 3.0 or less, preferably a silicone-based or acrylic antifoaming agent or leveling agent is mixed with a polyamide-imide resin solution and the polyfunctional compound. It can be used by blending 0.5 to 5% by weight.
本発明のポリアミドイミド樹脂をプリント回路基板用絶縁インキとして用いる場合は、ポリアミドイミド樹脂及び前記多官能化合物の混合溶液に、酸化ケイ素や硫酸カルシウムなどの無機粒子及び/又は各種有機の微粒子をポリアミドイミド樹脂及び前記多官能化合物の混合溶液に対して好ましくは0.5~10重量%、より好ましくは1~5重量%配合分散させて、BH型粘度計の回転数4rpm/20rpm、25℃での粘度比で表すチキソ指数が1.2以上3.0以下にして、好ましくはシリコーン系またはアクリル系の消泡剤やレベリング剤をポリアミドイミド樹脂溶液及び前記多官能化合物の混合に対して0.5~5重量%配合して用いることができる。 3. Insulating ink for printed circuit board When the polyamideimide resin of the present invention is used as an insulating ink for printed circuit board, inorganic particles such as silicon oxide and calcium sulfate and / or various kinds are used in a mixed solution of the polyamideimide resin and the polyfunctional compound. The organic fine particles are preferably mixed and dispersed in the mixed solution of the polyamidoimide resin and the polyfunctional compound in an amount of 0.5 to 10% by weight, more preferably 1 to 5% by weight. A thixo index represented by a viscosity ratio at 20 rpm and 25 ° C. is 1.2 or more and 3.0 or less, preferably a silicone-based or acrylic antifoaming agent or leveling agent is mixed with a polyamide-imide resin solution and the polyfunctional compound. It can be used by blending 0.5 to 5% by weight.
4. カバーレイフイルム
本発明のカバーレイフィルムは、本発明の接着剤組成物を接着剤層とし、絶縁性フィルム層/接着剤層の2層構成、あるいは絶縁性フィルム層/接着剤層/保護フィルム層の3層構成からなる。絶縁性フィルムとは、ポリイミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルエーテルケトン、アラミド、ポリカーボネート、ポリアリレート等のプラスチックフィルムからなる厚さ5~200μmのフィルムであり、これらから選ばれる複数のフィルムを積層しても良い。
カバーレイフィルムの製造方法は、本発明の接着剤組成物を溶剤に溶解した接着剤溶液を、上述した絶縁性フィルムに塗工、乾燥させ、接着剤層を形成させる。
この場合、接着剤層は適度に半硬化した状態にするのが好ましく、乾燥後の接着剤層を100℃のNーメチルー2-ピロリドンに2時間浸漬した後の溶解残存量が2~70%、好ましくは5~50%の範囲にするのがよい。そのためには上記乾燥温度を100℃~170℃、乾燥時間を1~10分で行うのがよい。更に必要に応じて乾燥後、50~100℃で10~24時間加熱処理を行ってもよい。上記接着剤層の乾燥後の厚さは、5~40μm程度であることが好ましい。なお、保管等のため、3層構成にする場合はさらに離型性保護フィルムをラミネートし積層する。 4). Cover lay film The cover lay film of the present invention comprises the adhesive composition of the present invention as an adhesive layer and is composed of two layers of an insulating film layer / adhesive layer, or an insulating film layer / adhesive layer / protective film layer. It consists of three layers. The insulating film is a film having a thickness of 5 to 200 μm made of a plastic film such as polyimide, polyester, polyphenylene sulfide, polyether sulfone, polyether ether ketone, aramid, polycarbonate, polyarylate, and the like. A film may be laminated.
In the method for producing a coverlay film, an adhesive solution obtained by dissolving the adhesive composition of the present invention in a solvent is applied to the above-described insulating film and dried to form an adhesive layer.
In this case, it is preferable that the adhesive layer is appropriately semi-cured, and the residual amount after dissolution of the dried adhesive layer in N-methyl-2-pyrrolidone at 100 ° C. for 2 hours is 2 to 70%, Preferably it is 5 to 50%. For this purpose, the drying temperature is preferably 100 to 170 ° C. and the drying time is 1 to 10 minutes. Further, after drying, if necessary, heat treatment may be performed at 50 to 100 ° C. for 10 to 24 hours. The thickness of the adhesive layer after drying is preferably about 5 to 40 μm. For storage and the like, when a three-layer structure is used, a releasable protective film is further laminated and laminated.
本発明のカバーレイフィルムは、本発明の接着剤組成物を接着剤層とし、絶縁性フィルム層/接着剤層の2層構成、あるいは絶縁性フィルム層/接着剤層/保護フィルム層の3層構成からなる。絶縁性フィルムとは、ポリイミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルエーテルケトン、アラミド、ポリカーボネート、ポリアリレート等のプラスチックフィルムからなる厚さ5~200μmのフィルムであり、これらから選ばれる複数のフィルムを積層しても良い。
カバーレイフィルムの製造方法は、本発明の接着剤組成物を溶剤に溶解した接着剤溶液を、上述した絶縁性フィルムに塗工、乾燥させ、接着剤層を形成させる。
この場合、接着剤層は適度に半硬化した状態にするのが好ましく、乾燥後の接着剤層を100℃のNーメチルー2-ピロリドンに2時間浸漬した後の溶解残存量が2~70%、好ましくは5~50%の範囲にするのがよい。そのためには上記乾燥温度を100℃~170℃、乾燥時間を1~10分で行うのがよい。更に必要に応じて乾燥後、50~100℃で10~24時間加熱処理を行ってもよい。上記接着剤層の乾燥後の厚さは、5~40μm程度であることが好ましい。なお、保管等のため、3層構成にする場合はさらに離型性保護フィルムをラミネートし積層する。 4). Cover lay film The cover lay film of the present invention comprises the adhesive composition of the present invention as an adhesive layer and is composed of two layers of an insulating film layer / adhesive layer, or an insulating film layer / adhesive layer / protective film layer. It consists of three layers. The insulating film is a film having a thickness of 5 to 200 μm made of a plastic film such as polyimide, polyester, polyphenylene sulfide, polyether sulfone, polyether ether ketone, aramid, polycarbonate, polyarylate, and the like. A film may be laminated.
In the method for producing a coverlay film, an adhesive solution obtained by dissolving the adhesive composition of the present invention in a solvent is applied to the above-described insulating film and dried to form an adhesive layer.
In this case, it is preferable that the adhesive layer is appropriately semi-cured, and the residual amount after dissolution of the dried adhesive layer in N-methyl-2-pyrrolidone at 100 ° C. for 2 hours is 2 to 70%, Preferably it is 5 to 50%. For this purpose, the drying temperature is preferably 100 to 170 ° C. and the drying time is 1 to 10 minutes. Further, after drying, if necessary, heat treatment may be performed at 50 to 100 ° C. for 10 to 24 hours. The thickness of the adhesive layer after drying is preferably about 5 to 40 μm. For storage and the like, when a three-layer structure is used, a releasable protective film is further laminated and laminated.
5. 接着剤シート
接着剤シートとは、本発明の接着剤組成物を接着剤層とし、かつ少なくとも1層以上の剥離可能な保護フィルムを有する構成のものをいう。例えば、保護フィルム層/接着剤層の2層構成、あるいは、保護フィルム層/接着剤層/保護フィルムの3層構成がこれに該当する。ここでいう保護フィルム層とは、接着剤層の形態を損なうことなく剥離できれば特に限定されないが、ポリプロピレンフィルムやポリエステルフィルム、シリコーンやワックス処理したポリエステルフィルムや紙等が挙げられる。また、金属、セラミックス等用いることが可能であり、表面の絶縁性、耐環境性の目的で保護のみならず、放熱、電磁シールド、補強、識別などの新たな機能を付与できる利点がある。
接着剤溶液をポリプロピレンフィルムやポリエステルフィルム、シリコーンやワックス処理したポリエステルフィルや紙等の離型基材に塗布、乾燥して、好ましくは上記のカバーレイフィルムと同様な方法で半硬化した状態の接着剤フィルムやシートを2種類の被着体に挟み込み、加熱ロールやヒートプレスで加熱圧着、必要により硬化させることが挙げられる。
この場合も塗布法と同様、残溶剤のないシートを得るには低沸点溶剤に溶解したものを使用するのが好ましい。 5). The adhesive sheet adhesive sheet refers to a composition having the adhesive composition of the present invention as an adhesive layer and having at least one or more peelable protective films. For example, a two-layer structure of protective film layer / adhesive layer or a three-layer structure of protective film layer / adhesive layer / protective film corresponds to this. The protective film layer here is not particularly limited as long as it can be peeled without impairing the form of the adhesive layer, but examples thereof include polypropylene film, polyester film, silicone, wax-treated polyester film, and paper. In addition, metals, ceramics, and the like can be used, and there is an advantage that new functions such as heat dissipation, electromagnetic shielding, reinforcement, and identification can be added as well as protection for the purpose of surface insulation and environmental resistance.
Adhesive solution is applied to a release substrate such as polypropylene film or polyester film, silicone or wax-treated polyester fill or paper, and dried, preferably in a semi-cured state by the same method as the above coverlay film An agent film or a sheet is sandwiched between two types of adherends, heated and pressed with a heating roll or a heat press, and cured if necessary.
Also in this case, as in the coating method, it is preferable to use a sheet dissolved in a low boiling point solvent in order to obtain a sheet having no residual solvent.
接着剤シートとは、本発明の接着剤組成物を接着剤層とし、かつ少なくとも1層以上の剥離可能な保護フィルムを有する構成のものをいう。例えば、保護フィルム層/接着剤層の2層構成、あるいは、保護フィルム層/接着剤層/保護フィルムの3層構成がこれに該当する。ここでいう保護フィルム層とは、接着剤層の形態を損なうことなく剥離できれば特に限定されないが、ポリプロピレンフィルムやポリエステルフィルム、シリコーンやワックス処理したポリエステルフィルムや紙等が挙げられる。また、金属、セラミックス等用いることが可能であり、表面の絶縁性、耐環境性の目的で保護のみならず、放熱、電磁シールド、補強、識別などの新たな機能を付与できる利点がある。
接着剤溶液をポリプロピレンフィルムやポリエステルフィルム、シリコーンやワックス処理したポリエステルフィルや紙等の離型基材に塗布、乾燥して、好ましくは上記のカバーレイフィルムと同様な方法で半硬化した状態の接着剤フィルムやシートを2種類の被着体に挟み込み、加熱ロールやヒートプレスで加熱圧着、必要により硬化させることが挙げられる。
この場合も塗布法と同様、残溶剤のないシートを得るには低沸点溶剤に溶解したものを使用するのが好ましい。 5). The adhesive sheet adhesive sheet refers to a composition having the adhesive composition of the present invention as an adhesive layer and having at least one or more peelable protective films. For example, a two-layer structure of protective film layer / adhesive layer or a three-layer structure of protective film layer / adhesive layer / protective film corresponds to this. The protective film layer here is not particularly limited as long as it can be peeled without impairing the form of the adhesive layer, but examples thereof include polypropylene film, polyester film, silicone, wax-treated polyester film, and paper. In addition, metals, ceramics, and the like can be used, and there is an advantage that new functions such as heat dissipation, electromagnetic shielding, reinforcement, and identification can be added as well as protection for the purpose of surface insulation and environmental resistance.
Adhesive solution is applied to a release substrate such as polypropylene film or polyester film, silicone or wax-treated polyester fill or paper, and dried, preferably in a semi-cured state by the same method as the above coverlay film An agent film or a sheet is sandwiched between two types of adherends, heated and pressed with a heating roll or a heat press, and cured if necessary.
Also in this case, as in the coating method, it is preferable to use a sheet dissolved in a low boiling point solvent in order to obtain a sheet having no residual solvent.
6. プリント回路基板
本発明の接着剤組成物を接着剤層とし、該接着剤層で絶縁性フィルムと銅箔を張り合わせたり、また、本発明のプリント回路基板用インキ、カバーレイフィルムを用いてプリント回路基板を製造することができる。銅箔には、プリント回路基板に従来用いられている圧延銅箔、電解銅箔を用いることができる。絶縁フィルムとは、上述したカバーレイフィルムの絶縁性フィルムとして説明したものを用いることができる。 6). Printed circuit board The adhesive composition of the present invention is used as an adhesive layer, and an insulating film and a copper foil are laminated together with the adhesive layer, and the printed circuit board ink and coverlay film of the present invention are used for printed circuit. A substrate can be manufactured. As the copper foil, a rolled copper foil or an electrolytic copper foil conventionally used for printed circuit boards can be used. With an insulating film, what was demonstrated as an insulating film of the coverlay film mentioned above can be used.
本発明の接着剤組成物を接着剤層とし、該接着剤層で絶縁性フィルムと銅箔を張り合わせたり、また、本発明のプリント回路基板用インキ、カバーレイフィルムを用いてプリント回路基板を製造することができる。銅箔には、プリント回路基板に従来用いられている圧延銅箔、電解銅箔を用いることができる。絶縁フィルムとは、上述したカバーレイフィルムの絶縁性フィルムとして説明したものを用いることができる。 6). Printed circuit board The adhesive composition of the present invention is used as an adhesive layer, and an insulating film and a copper foil are laminated together with the adhesive layer, and the printed circuit board ink and coverlay film of the present invention are used for printed circuit. A substrate can be manufactured. As the copper foil, a rolled copper foil or an electrolytic copper foil conventionally used for printed circuit boards can be used. With an insulating film, what was demonstrated as an insulating film of the coverlay film mentioned above can be used.
以下実施例を示して具体的に説明するが、本発明はこれらの実施例よって何ら制限されるものではない。
尚、実施例中の測定値は以下の方法で測定した。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples.
In addition, the measured value in an Example was measured with the following method.
尚、実施例中の測定値は以下の方法で測定した。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples.
In addition, the measured value in an Example was measured with the following method.
(1)ポリアミドイミド樹脂の酸価
ポリアミドイミド0.4gをDMF20mlに溶解した溶液に、チモールフタレイン試液2~3滴、及び1/10規定のナトリウムメトキシドのメタノール溶液を滴下し、色の変化から滴定して求めた。 (1) Acid value of polyamideimide resin To a solution obtained by dissolving 0.4 g of polyamideimide in 20 ml of DMF, add 2 to 3 drops of thymolphthalein test solution and a methanol solution of 1/10 normal sodium methoxide to change the color. Determined by titration.
ポリアミドイミド0.4gをDMF20mlに溶解した溶液に、チモールフタレイン試液2~3滴、及び1/10規定のナトリウムメトキシドのメタノール溶液を滴下し、色の変化から滴定して求めた。 (1) Acid value of polyamideimide resin To a solution obtained by dissolving 0.4 g of polyamideimide in 20 ml of DMF, add 2 to 3 drops of thymolphthalein test solution and a methanol solution of 1/10 normal sodium methoxide to change the color. Determined by titration.
(2)対数粘度
乾燥ポリマー0.5gを100mlのNMPに溶解した溶液を25℃でウベローデ粘度管を用いて測定した。 (2) A solution obtained by dissolving 0.5 g of a logarithmic viscosity dry polymer in 100 ml of NMP was measured at 25 ° C. using an Ubbelohde viscosity tube.
乾燥ポリマー0.5gを100mlのNMPに溶解した溶液を25℃でウベローデ粘度管を用いて測定した。 (2) A solution obtained by dissolving 0.5 g of a logarithmic viscosity dry polymer in 100 ml of NMP was measured at 25 ° C. using an Ubbelohde viscosity tube.
(3)接着力
実施例のサンプルを東洋ボールドウイン社製テンシロンで剥離角度90度で剥離強度を測定した。実施例1~10、比較例4においてはポリイミドフィルムと電解銅箔(マット面)との接着力を、実施例11~20、比較例1~3においてはポリイミドフィルムと圧延銅箔(シャイン面)との接着力を、実施例21~28においてはポリイミドフィルムとアルミ板製補強板との接着力を測定した。 (3) Adhesive strength The samples of the examples were measured for peel strength at a peel angle of 90 degrees with Tensilon manufactured by Toyo Baldwin. In Examples 1 to 10 and Comparative Example 4, the adhesive force between the polyimide film and the electrolytic copper foil (mat surface) was used. In Examples 11 to 20 and Comparative Examples 1 to 3, the polyimide film and the rolled copper foil (shine surface) were used. In Examples 21 to 28, the adhesive force between the polyimide film and the aluminum plate reinforcing plate was measured.
実施例のサンプルを東洋ボールドウイン社製テンシロンで剥離角度90度で剥離強度を測定した。実施例1~10、比較例4においてはポリイミドフィルムと電解銅箔(マット面)との接着力を、実施例11~20、比較例1~3においてはポリイミドフィルムと圧延銅箔(シャイン面)との接着力を、実施例21~28においてはポリイミドフィルムとアルミ板製補強板との接着力を測定した。 (3) Adhesive strength The samples of the examples were measured for peel strength at a peel angle of 90 degrees with Tensilon manufactured by Toyo Baldwin. In Examples 1 to 10 and Comparative Example 4, the adhesive force between the polyimide film and the electrolytic copper foil (mat surface) was used. In Examples 11 to 20 and Comparative Examples 1 to 3, the polyimide film and the rolled copper foil (shine surface) were used. In Examples 21 to 28, the adhesive force between the polyimide film and the aluminum plate reinforcing plate was measured.
(4)加湿後の耐ハンダ性
接着力を測定したのと同じサンプルを40℃、80%RH雰囲気下に48hrに静置した後、260℃の半田浴に30秒フロートさせたときの状態を観察した。判定は以下のとおりとした。
○:フクレや剥離が見られない。
×:フクレや剥離が発生した。 (4) The same sample that was measured for the solder-resistant adhesive strength after humidification was allowed to stand for 48 hours in an atmosphere of 40 ° C. and 80% RH and then floated in a solder bath at 260 ° C. for 30 seconds. Observed. The judgment was as follows.
○: No swelling or peeling.
X: Dandruff or peeling occurred.
接着力を測定したのと同じサンプルを40℃、80%RH雰囲気下に48hrに静置した後、260℃の半田浴に30秒フロートさせたときの状態を観察した。判定は以下のとおりとした。
○:フクレや剥離が見られない。
×:フクレや剥離が発生した。 (4) The same sample that was measured for the solder-resistant adhesive strength after humidification was allowed to stand for 48 hours in an atmosphere of 40 ° C. and 80% RH and then floated in a solder bath at 260 ° C. for 30 seconds. Observed. The judgment was as follows.
○: No swelling or peeling.
X: Dandruff or peeling occurred.
(5)耐マイグレーション性
実施例1~10、比較例4で作成した各種銅張り積層板をエッチングしてライン/スペースが70/70μmの回路を形成し、接続端子部以外を市販ポリイミドカバーレイ(ニッカン工業製CISV)を150℃で2分ヒートプレスで張り合わせ、150℃で2時間硬化させた。これらに端子間電圧50Vを印加しつつ、85℃,85%RHの雰囲気に2週間放置した後の絶縁抵抗値を測定した。
また一方、実施例11~20、比較例1~3においては、絶縁層が20μmで18μm圧延銅箔を用いた銅張積層板バイロフレックス(東洋紡製)にライン/スペースが70/70μmとなるように回路を形成し、各種ポリアミドイミド樹脂溶液を用いた接着剤を塗布したカバーレイフィルムを上記回路面に張り合わせ、サンプルの端子間に50Vの電圧を印加した状態で85℃、85%HRの雰囲気に2週間放置した後の絶縁抵抗値の変化を測定した。
判定は以下のとおりである。
○:線間絶縁抵抗値が1E+08Ω以上
×:線間絶縁抵抗値が1E+08Ω以下 (5) Migration resistance Various copper-clad laminates prepared in Examples 1 to 10 and Comparative Example 4 were etched to form a circuit having a line / space of 70/70 μm. Niskan Kogyo CISV) was laminated at 150 ° C. for 2 minutes with a heat press and cured at 150 ° C. for 2 hours. While applying a terminal voltage of 50 V to these, the insulation resistance value was measured after being left in an atmosphere of 85 ° C. and 85% RH for 2 weeks.
On the other hand, in Examples 11 to 20 and Comparative Examples 1 to 3, the line / space becomes 70/70 μm in a copper-clad laminate Viroflex (manufactured by Toyobo) using an 18 μm rolled copper foil with an insulating layer of 20 μm. A circuit is formed, and a cover lay film coated with adhesives using various polyamideimide resin solutions is laminated on the circuit surface, and an atmosphere of 85 ° C. and 85% HR is applied with a voltage of 50 V applied between the terminals of the sample. The change in the insulation resistance value after being left for 2 weeks was measured.
The determination is as follows.
○: Insulation resistance value between lines is 1E + 08Ω or more ×: Insulation resistance value between lines is 1E + 08Ω or less
実施例1~10、比較例4で作成した各種銅張り積層板をエッチングしてライン/スペースが70/70μmの回路を形成し、接続端子部以外を市販ポリイミドカバーレイ(ニッカン工業製CISV)を150℃で2分ヒートプレスで張り合わせ、150℃で2時間硬化させた。これらに端子間電圧50Vを印加しつつ、85℃,85%RHの雰囲気に2週間放置した後の絶縁抵抗値を測定した。
また一方、実施例11~20、比較例1~3においては、絶縁層が20μmで18μm圧延銅箔を用いた銅張積層板バイロフレックス(東洋紡製)にライン/スペースが70/70μmとなるように回路を形成し、各種ポリアミドイミド樹脂溶液を用いた接着剤を塗布したカバーレイフィルムを上記回路面に張り合わせ、サンプルの端子間に50Vの電圧を印加した状態で85℃、85%HRの雰囲気に2週間放置した後の絶縁抵抗値の変化を測定した。
判定は以下のとおりである。
○:線間絶縁抵抗値が1E+08Ω以上
×:線間絶縁抵抗値が1E+08Ω以下 (5) Migration resistance Various copper-clad laminates prepared in Examples 1 to 10 and Comparative Example 4 were etched to form a circuit having a line / space of 70/70 μm. Niskan Kogyo CISV) was laminated at 150 ° C. for 2 minutes with a heat press and cured at 150 ° C. for 2 hours. While applying a terminal voltage of 50 V to these, the insulation resistance value was measured after being left in an atmosphere of 85 ° C. and 85% RH for 2 weeks.
On the other hand, in Examples 11 to 20 and Comparative Examples 1 to 3, the line / space becomes 70/70 μm in a copper-clad laminate Viroflex (manufactured by Toyobo) using an 18 μm rolled copper foil with an insulating layer of 20 μm. A circuit is formed, and a cover lay film coated with adhesives using various polyamideimide resin solutions is laminated on the circuit surface, and an atmosphere of 85 ° C. and 85% HR is applied with a voltage of 50 V applied between the terminals of the sample. The change in the insulation resistance value after being left for 2 weeks was measured.
The determination is as follows.
○: Insulation resistance value between lines is 1E + 08Ω or more ×: Insulation resistance value between lines is 1E + 08Ω or less
(6)アルキレングリコールの数平均分子量
JISK-0070に準拠して水酸基価を測定し、以下の計算で求める。
Mn=56110×2/水酸基価 (6) Number average molecular weight of alkylene glycol The hydroxyl value is measured according to JISK-0070, and is determined by the following calculation.
Mn = 56110 × 2 / hydroxyl value
JISK-0070に準拠して水酸基価を測定し、以下の計算で求める。
Mn=56110×2/水酸基価 (6) Number average molecular weight of alkylene glycol The hydroxyl value is measured according to JISK-0070, and is determined by the following calculation.
Mn = 56110 × 2 / hydroxyl value
(7)リン原子含有量:(湿式分解・モリブデンブルー比色法によるリンの定量)
試料中のリン濃度にあわせて試料を三角フラスコに量りとり、硫酸3ml、過塩素酸0.5mlおよび硝酸3.5mlを加え、電熱器で半日かけて徐々に加熱分解した。溶液が透明になったら、さらに加熱して硫酸白煙を生じさせ、室温まで放冷し、この分解液を50mlメスフラスコに移し、2%モリブデン酸アンモニウム溶液5mlおよび0.2%硫酸ヒドラジン溶液2mlを加え、純水にてメスアップし、内容物をよく混合した。沸騰水浴中に10分間フラスコをつけて加熱発色した後、室温まで水冷し、超音波にて脱気し、溶液を吸収セル10mmに採り、分光光度計(波長830nm)にて空試験液を対照にして吸光度を測定した。先に作成しておいた検量線からリン含有量を求め、試料中のP濃度を算出した。 (7) Phosphorus atom content: (wet decomposition, determination of phosphorus by molybdenum blue colorimetric method)
The sample was weighed in an Erlenmeyer flask in accordance with the phosphorus concentration in the sample, 3 ml of sulfuric acid, 0.5 ml of perchloric acid and 3.5 ml of nitric acid were added, and the mixture was gradually decomposed by heating with an electric heater over a half day. When the solution becomes clear, it is further heated to produce white sulfuric acid smoke, allowed to cool to room temperature, this decomposition solution is transferred to a 50 ml volumetric flask, 5 ml of 2% ammonium molybdate solution and 2 ml of 0.2% hydrazine sulfate solution. Was added, and the contents were mixed well with pure water. After heating and coloring in a boiling water bath for 10 minutes, the solution is cooled to room temperature, degassed with ultrasonic waves, the solution is taken into an absorption cell 10 mm, and a blank test solution is controlled with a spectrophotometer (wavelength 830 nm). Then, the absorbance was measured. The phosphorus content was obtained from the calibration curve prepared previously, and the P concentration in the sample was calculated.
試料中のリン濃度にあわせて試料を三角フラスコに量りとり、硫酸3ml、過塩素酸0.5mlおよび硝酸3.5mlを加え、電熱器で半日かけて徐々に加熱分解した。溶液が透明になったら、さらに加熱して硫酸白煙を生じさせ、室温まで放冷し、この分解液を50mlメスフラスコに移し、2%モリブデン酸アンモニウム溶液5mlおよび0.2%硫酸ヒドラジン溶液2mlを加え、純水にてメスアップし、内容物をよく混合した。沸騰水浴中に10分間フラスコをつけて加熱発色した後、室温まで水冷し、超音波にて脱気し、溶液を吸収セル10mmに採り、分光光度計(波長830nm)にて空試験液を対照にして吸光度を測定した。先に作成しておいた検量線からリン含有量を求め、試料中のP濃度を算出した。 (7) Phosphorus atom content: (wet decomposition, determination of phosphorus by molybdenum blue colorimetric method)
The sample was weighed in an Erlenmeyer flask in accordance with the phosphorus concentration in the sample, 3 ml of sulfuric acid, 0.5 ml of perchloric acid and 3.5 ml of nitric acid were added, and the mixture was gradually decomposed by heating with an electric heater over a half day. When the solution becomes clear, it is further heated to produce white sulfuric acid smoke, allowed to cool to room temperature, this decomposition solution is transferred to a 50 ml volumetric flask, 5 ml of 2% ammonium molybdate solution and 2 ml of 0.2% hydrazine sulfate solution. Was added, and the contents were mixed well with pure water. After heating and coloring in a boiling water bath for 10 minutes, the solution is cooled to room temperature, degassed with ultrasonic waves, the solution is taken into an absorption cell 10 mm, and a blank test solution is controlled with a spectrophotometer (wavelength 830 nm). Then, the absorbance was measured. The phosphorus content was obtained from the calibration curve prepared previously, and the P concentration in the sample was calculated.
(8)ガラス転移温度
ポリアミドイミド樹脂溶液をポリプロピレンフィルムに乾燥膜厚が約30μmとなるように塗布、乾燥した後プロピレンフィルムから剥離したフィルムをアイテ計測制御(株)社製動的粘弾性測定装置を用い、110Hz周波数で測定を行い、貯蔵弾性率の変曲点から求めた。 (8) Glass transition temperature Polyamideimide resin solution is applied to a polypropylene film so that the dry film thickness is about 30 μm, dried, and then peeled off from the propylene film. Was measured at a frequency of 110 Hz and obtained from the inflection point of the storage elastic modulus.
ポリアミドイミド樹脂溶液をポリプロピレンフィルムに乾燥膜厚が約30μmとなるように塗布、乾燥した後プロピレンフィルムから剥離したフィルムをアイテ計測制御(株)社製動的粘弾性測定装置を用い、110Hz周波数で測定を行い、貯蔵弾性率の変曲点から求めた。 (8) Glass transition temperature Polyamideimide resin solution is applied to a polypropylene film so that the dry film thickness is about 30 μm, dried, and then peeled off from the propylene film. Was measured at a frequency of 110 Hz and obtained from the inflection point of the storage elastic modulus.
〔実施例1~10〕
〔ポリアミドイミド樹脂Aの製造〕
冷却管と窒素ガス導入口のついた4ツ口フラスコにトリメリット酸無水物(TMA)0.87モル、トリメリット酸0.1モル、分子量3500のジカルボキシポリ(アクリロニトリルーブタジエン)(宇部興産CTBN1300×13)0.03モルとジフェニルメタンー4,4’-ジイソシアネート(MDI)1.02モルを固形分濃度が40%となるようにN,N’-ジメチルアセトアミド(DMAc)と共に仕込み、攪拌しながら80℃に昇温して約2時間、更に150℃に昇温して約3時間反応させた。この溶液を冷却しながらトルエンを加え固形分濃度を30%とした。これをポリアミドイミド樹脂A溶液とした。得られたポリアミドイミド樹脂のガラス転移温度は205℃、対数粘度は0.35dl/g、酸価は588eq/106gであった。 [Examples 1 to 10]
[Production of polyamideimide resin A]
Dicarboxypoly (acrylonitrile-butadiene) with 0.87 mol trimellitic anhydride (TMA), 0.1 mol trimellitic acid, and 3500 molecular weight (Ube Industries) in a four-necked flask with a condenser and nitrogen gas inlet CTBN 1300 × 13) 0.03 mol and diphenylmethane-4,4′-diisocyanate (MDI) 1.02 mol were charged with N, N′-dimethylacetamide (DMAc) to a solid content concentration of 40% and stirred. The temperature was raised to 80 ° C. for about 2 hours, and the temperature was further raised to 150 ° C. for about 3 hours. While cooling this solution, toluene was added to adjust the solid content concentration to 30%. This was designated as polyamideimide resin A solution. The obtained polyamideimide resin had a glass transition temperature of 205 ° C., a logarithmic viscosity of 0.35 dl / g, and an acid value of 588 eq / 10 6 g.
〔ポリアミドイミド樹脂Aの製造〕
冷却管と窒素ガス導入口のついた4ツ口フラスコにトリメリット酸無水物(TMA)0.87モル、トリメリット酸0.1モル、分子量3500のジカルボキシポリ(アクリロニトリルーブタジエン)(宇部興産CTBN1300×13)0.03モルとジフェニルメタンー4,4’-ジイソシアネート(MDI)1.02モルを固形分濃度が40%となるようにN,N’-ジメチルアセトアミド(DMAc)と共に仕込み、攪拌しながら80℃に昇温して約2時間、更に150℃に昇温して約3時間反応させた。この溶液を冷却しながらトルエンを加え固形分濃度を30%とした。これをポリアミドイミド樹脂A溶液とした。得られたポリアミドイミド樹脂のガラス転移温度は205℃、対数粘度は0.35dl/g、酸価は588eq/106gであった。 [Examples 1 to 10]
[Production of polyamideimide resin A]
Dicarboxypoly (acrylonitrile-butadiene) with 0.87 mol trimellitic anhydride (TMA), 0.1 mol trimellitic acid, and 3500 molecular weight (Ube Industries) in a four-necked flask with a condenser and nitrogen gas inlet CTBN 1300 × 13) 0.03 mol and diphenylmethane-4,4′-diisocyanate (MDI) 1.02 mol were charged with N, N′-dimethylacetamide (DMAc) to a solid content concentration of 40% and stirred. The temperature was raised to 80 ° C. for about 2 hours, and the temperature was further raised to 150 ° C. for about 3 hours. While cooling this solution, toluene was added to adjust the solid content concentration to 30%. This was designated as polyamideimide resin A solution. The obtained polyamideimide resin had a glass transition temperature of 205 ° C., a logarithmic viscosity of 0.35 dl / g, and an acid value of 588 eq / 10 6 g.
〔ポリアミドイミド樹脂Bの製造〕
冷却管と窒素ガス導入口のついた4ツ口フラスコにTMA0.97モルとCTBN1300×13を0.03モルと水0.1モルを固形分濃度が40%となるようにDMAcと共に仕込み、60℃で1時間加熱攪拌させてTMAの一部を開環させた後MDI1.02モルを固形分濃度が40%となるようにDMAcと共に仕込み、攪拌しながら80℃に昇温して約2時間、150℃で約3時間反応させた。この溶液を冷却しながらトルエンを加え、固形分濃度が30%とした。これをポリアミドイミド樹脂B溶液とした。得られたポリアミドイミド樹脂のガラス転移温度は203℃、対数粘度は0.36dl/g、酸価は578eq/106gであった。 [Production of polyamide-imide resin B]
A four-necked flask equipped with a condenser and a nitrogen gas inlet was charged with 0.97 mol of TMA, 0.03 mol of CTBN1300 × 13 and 0.1 mol of water together with DMAc so that the solid content concentration would be 40%. After stirring for 1 hour at ℃ to open a part of TMA, 1.02 mol of MDI was charged with DMAc so that the solid content concentration would be 40%, and the temperature was raised to 80 ℃ while stirring for about 2 hours. The mixture was reacted at 150 ° C. for about 3 hours. While this solution was cooled, toluene was added to adjust the solid content concentration to 30%. This was designated as polyamideimide resin B solution. The obtained polyamideimide resin had a glass transition temperature of 203 ° C., a logarithmic viscosity of 0.36 dl / g, and an acid value of 578 eq / 10 6 g.
冷却管と窒素ガス導入口のついた4ツ口フラスコにTMA0.97モルとCTBN1300×13を0.03モルと水0.1モルを固形分濃度が40%となるようにDMAcと共に仕込み、60℃で1時間加熱攪拌させてTMAの一部を開環させた後MDI1.02モルを固形分濃度が40%となるようにDMAcと共に仕込み、攪拌しながら80℃に昇温して約2時間、150℃で約3時間反応させた。この溶液を冷却しながらトルエンを加え、固形分濃度が30%とした。これをポリアミドイミド樹脂B溶液とした。得られたポリアミドイミド樹脂のガラス転移温度は203℃、対数粘度は0.36dl/g、酸価は578eq/106gであった。 [Production of polyamide-imide resin B]
A four-necked flask equipped with a condenser and a nitrogen gas inlet was charged with 0.97 mol of TMA, 0.03 mol of CTBN1300 × 13 and 0.1 mol of water together with DMAc so that the solid content concentration would be 40%. After stirring for 1 hour at ℃ to open a part of TMA, 1.02 mol of MDI was charged with DMAc so that the solid content concentration would be 40%, and the temperature was raised to 80 ℃ while stirring for about 2 hours. The mixture was reacted at 150 ° C. for about 3 hours. While this solution was cooled, toluene was added to adjust the solid content concentration to 30%. This was designated as polyamideimide resin B solution. The obtained polyamideimide resin had a glass transition temperature of 203 ° C., a logarithmic viscosity of 0.36 dl / g, and an acid value of 578 eq / 10 6 g.
〔ポリアミドイミド樹脂Cの製造〕
冷却管と窒素ガス導入口のついた4ツ口フラスコにTMA0.82モル、分子量850のポリテトラメチレングリコール(PTG850)0.1モル、CTBN1300×13を0.03モルとジメチロールブタン酸(DMBA)0.05モルとMDI、1.04モルを固形分濃度が50%となるようにDMAcと共に仕込み、攪拌しながら60℃に昇温して2時間、更に120℃に昇温して約5時間反応させた後、冷却しながら固形分濃度が30%となるようにトルエンで希釈した。これをポリアミドイミド樹脂C溶液とした。得られたポリアミドイミド樹脂のガラス転移温度は201℃、対数粘度は0.43dl/g、酸価は488eq/106gであった。 [Production of polyamide-imide resin C]
In a four-necked flask equipped with a condenser and a nitrogen gas inlet, 0.82 mol of TMA, 0.1 mol of polytetramethylene glycol (PTG850) having a molecular weight of 850, 0.03 mol of CTBN1300 × 13 and dimethylolbutanoic acid (DMBA) ) 0.05 mol, MDI, and 1.04 mol were charged together with DMAc so that the solid concentration would be 50%. The temperature was raised to 60 ° C. with stirring for 2 hours, and further raised to 120 ° C. for about 5 After reacting for a period of time, it was diluted with toluene so that the solid content concentration became 30% while cooling. This was designated as polyamideimide resin C solution. The obtained polyamideimide resin had a glass transition temperature of 201 ° C., a logarithmic viscosity of 0.43 dl / g, and an acid value of 488 eq / 10 6 g.
冷却管と窒素ガス導入口のついた4ツ口フラスコにTMA0.82モル、分子量850のポリテトラメチレングリコール(PTG850)0.1モル、CTBN1300×13を0.03モルとジメチロールブタン酸(DMBA)0.05モルとMDI、1.04モルを固形分濃度が50%となるようにDMAcと共に仕込み、攪拌しながら60℃に昇温して2時間、更に120℃に昇温して約5時間反応させた後、冷却しながら固形分濃度が30%となるようにトルエンで希釈した。これをポリアミドイミド樹脂C溶液とした。得られたポリアミドイミド樹脂のガラス転移温度は201℃、対数粘度は0.43dl/g、酸価は488eq/106gであった。 [Production of polyamide-imide resin C]
In a four-necked flask equipped with a condenser and a nitrogen gas inlet, 0.82 mol of TMA, 0.1 mol of polytetramethylene glycol (PTG850) having a molecular weight of 850, 0.03 mol of CTBN1300 × 13 and dimethylolbutanoic acid (DMBA) ) 0.05 mol, MDI, and 1.04 mol were charged together with DMAc so that the solid concentration would be 50%. The temperature was raised to 60 ° C. with stirring for 2 hours, and further raised to 120 ° C. for about 5 After reacting for a period of time, it was diluted with toluene so that the solid content concentration became 30% while cooling. This was designated as polyamideimide resin C solution. The obtained polyamideimide resin had a glass transition temperature of 201 ° C., a logarithmic viscosity of 0.43 dl / g, and an acid value of 488 eq / 10 6 g.
〔ポリアミドイミド樹脂Dの製造〕
ポリアミドイミド樹脂Cを製造する方法で、TMAを0.72モルに、DMBAを0.15モルにした以外は同じ条件で製造し、ポリアミドイミド樹脂D溶液を得た。これから得られたポリアミドイミド樹脂Dのガラス移転温度は185℃、対数粘度は0.48dl/g、酸価は736eq/106gであった。 [Production of polyamide-imide resin D]
The polyamideimide resin C was produced by the same method except that TMA was changed to 0.72 mol and DMBA was changed to 0.15 mol to obtain a polyamideimide resin D solution. Polyamideimide resin D thus obtained had a glass transition temperature of 185 ° C., a logarithmic viscosity of 0.48 dl / g, and an acid value of 736 eq / 10 6 g.
ポリアミドイミド樹脂Cを製造する方法で、TMAを0.72モルに、DMBAを0.15モルにした以外は同じ条件で製造し、ポリアミドイミド樹脂D溶液を得た。これから得られたポリアミドイミド樹脂Dのガラス移転温度は185℃、対数粘度は0.48dl/g、酸価は736eq/106gであった。 [Production of polyamide-imide resin D]
The polyamideimide resin C was produced by the same method except that TMA was changed to 0.72 mol and DMBA was changed to 0.15 mol to obtain a polyamideimide resin D solution. Polyamideimide resin D thus obtained had a glass transition temperature of 185 ° C., a logarithmic viscosity of 0.48 dl / g, and an acid value of 736 eq / 10 6 g.
〔ポリアミドイミド樹脂Eの製造〕
ポリアミドイミド樹脂Cの製造においてTMAを0.57モルに、DMBAを0.3モルにした以外はポリアミドイミド樹脂Cと同じ条件で製造し、ポリアミドイミド樹脂E溶液を得た。これから得られたポリアミドイミド樹脂Eのガラス転移温度は177℃、対数粘度は0.37dl/gで酸価値は976eq/106gであった。 [Production of polyamide-imide resin E]
Manufactured under the same conditions as in the polyamideimide resin C except that TMA was changed to 0.57 mol and DMBA was changed to 0.3 mol in the manufacture of the polyamideimide resin C, and a polyamideimide resin E solution was obtained. Polyamideimide resin E thus obtained had a glass transition temperature of 177 ° C., a logarithmic viscosity of 0.37 dl / g and an acid value of 976 eq / 10 6 g.
ポリアミドイミド樹脂Cの製造においてTMAを0.57モルに、DMBAを0.3モルにした以外はポリアミドイミド樹脂Cと同じ条件で製造し、ポリアミドイミド樹脂E溶液を得た。これから得られたポリアミドイミド樹脂Eのガラス転移温度は177℃、対数粘度は0.37dl/gで酸価値は976eq/106gであった。 [Production of polyamide-imide resin E]
Manufactured under the same conditions as in the polyamideimide resin C except that TMA was changed to 0.57 mol and DMBA was changed to 0.3 mol in the manufacture of the polyamideimide resin C, and a polyamideimide resin E solution was obtained. Polyamideimide resin E thus obtained had a glass transition temperature of 177 ° C., a logarithmic viscosity of 0.37 dl / g and an acid value of 976 eq / 10 6 g.
〔ポリアミドイミド樹脂F〕
冷却管と窒素導入口のついた反応容器にTMA0.97モル、CTBN1300×13を0.03モル、MDIを0.9モルを固形分濃度が50%となるようにDMAcと共に仕込み、80℃で2時間反応させた後、PTG850、0.1モルを固形分濃度が40%となるように追加し、150℃に昇温して3時間反応させた。冷却しながら固形分濃度が30%となるようにトルエンで希釈した。これをポリアミドイミド樹脂F溶液とした。得られたポリアミドイミド樹脂Fのガラス転移温度は192℃、対数粘度は0.36dl/g、酸価は824eq/106gであった。 [Polyamideimide resin F]
A reaction vessel equipped with a condenser and a nitrogen inlet was charged with TMA 0.97 mol, CTBN 1300 × 13 0.03 mol, MDI 0.9 mol together with DMAc so that the solid concentration would be 50%, and at 80 ° C. After reacting for 2 hours, 0.1 mol of PTG850 was added so that the solid concentration would be 40%, and the temperature was raised to 150 ° C. and reacted for 3 hours. While cooling, the mixture was diluted with toluene so that the solid content concentration became 30%. This was designated as polyamideimide resin F solution. The obtained polyamideimide resin F had a glass transition temperature of 192 ° C., a logarithmic viscosity of 0.36 dl / g, and an acid value of 824 eq / 10 6 g.
冷却管と窒素導入口のついた反応容器にTMA0.97モル、CTBN1300×13を0.03モル、MDIを0.9モルを固形分濃度が50%となるようにDMAcと共に仕込み、80℃で2時間反応させた後、PTG850、0.1モルを固形分濃度が40%となるように追加し、150℃に昇温して3時間反応させた。冷却しながら固形分濃度が30%となるようにトルエンで希釈した。これをポリアミドイミド樹脂F溶液とした。得られたポリアミドイミド樹脂Fのガラス転移温度は192℃、対数粘度は0.36dl/g、酸価は824eq/106gであった。 [Polyamideimide resin F]
A reaction vessel equipped with a condenser and a nitrogen inlet was charged with TMA 0.97 mol, CTBN 1300 × 13 0.03 mol, MDI 0.9 mol together with DMAc so that the solid concentration would be 50%, and at 80 ° C. After reacting for 2 hours, 0.1 mol of PTG850 was added so that the solid concentration would be 40%, and the temperature was raised to 150 ° C. and reacted for 3 hours. While cooling, the mixture was diluted with toluene so that the solid content concentration became 30%. This was designated as polyamideimide resin F solution. The obtained polyamideimide resin F had a glass transition temperature of 192 ° C., a logarithmic viscosity of 0.36 dl / g, and an acid value of 824 eq / 10 6 g.
〔ポリアミドイミド樹脂G〕
ポリアミドイミド樹脂Cの製造においてTMAを0.84モルに、DMBAを0.03モルにした以外はポリアミドイミド樹脂Cと同じ条件で製造し、ポリアミドイミド樹脂G溶液を得た。これから得られたポリアミドイミド樹脂Gのガラス転移温度は205℃、対数粘度は0.5dl/g、酸価は410eq/106gであった。 [Polyamideimide resin G]
A polyamideimide resin G solution was obtained under the same conditions as the polyamideimide resin C except that TMA was changed to 0.84 mol and DMBA was changed to 0.03 mol in the production of the polyamideimide resin C. Polyamideimide resin G obtained from this had a glass transition temperature of 205 ° C., a logarithmic viscosity of 0.5 dl / g, and an acid value of 410 eq / 10 6 g.
ポリアミドイミド樹脂Cの製造においてTMAを0.84モルに、DMBAを0.03モルにした以外はポリアミドイミド樹脂Cと同じ条件で製造し、ポリアミドイミド樹脂G溶液を得た。これから得られたポリアミドイミド樹脂Gのガラス転移温度は205℃、対数粘度は0.5dl/g、酸価は410eq/106gであった。 [Polyamideimide resin G]
A polyamideimide resin G solution was obtained under the same conditions as the polyamideimide resin C except that TMA was changed to 0.84 mol and DMBA was changed to 0.03 mol in the production of the polyamideimide resin C. Polyamideimide resin G obtained from this had a glass transition temperature of 205 ° C., a logarithmic viscosity of 0.5 dl / g, and an acid value of 410 eq / 10 6 g.
〔ポリアミドイミド樹脂H〕
ポリアミドイミドDの製造においてMDIを1.07モルとした以外はポリアミドイミド樹脂Dと同じ条件で製造し、ポリアミドイミド樹脂H溶液を得た。得られたポリアミドイミド樹脂Hのガラス転移温度は188℃、対数粘度は0.95dl/g、酸価は433eq/106gであった。 [Polyamideimide resin H]
Manufactured under the same conditions as the polyamideimide resin D except that MDI was changed to 1.07 mol in the manufacture of the polyamideimide D to obtain a polyamideimide resin H solution. The obtained polyamideimide resin H had a glass transition temperature of 188 ° C., a logarithmic viscosity of 0.95 dl / g, and an acid value of 433 eq / 10 6 g.
ポリアミドイミドDの製造においてMDIを1.07モルとした以外はポリアミドイミド樹脂Dと同じ条件で製造し、ポリアミドイミド樹脂H溶液を得た。得られたポリアミドイミド樹脂Hのガラス転移温度は188℃、対数粘度は0.95dl/g、酸価は433eq/106gであった。 [Polyamideimide resin H]
Manufactured under the same conditions as the polyamideimide resin D except that MDI was changed to 1.07 mol in the manufacture of the polyamideimide D to obtain a polyamideimide resin H solution. The obtained polyamideimide resin H had a glass transition temperature of 188 ° C., a logarithmic viscosity of 0.95 dl / g, and an acid value of 433 eq / 10 6 g.
<接着剤組成物の製造-1>
上記で製造したポリアミドイミド樹脂A,B,C、D,E,F,G,H溶液100gにフェノールノボラック型エポキシ化合物(ジャパンエポキシ製エピコート152)を15g、ジアミノジフェニルスルホンを1.5g、ホスフィン酸誘導体(難燃剤BCA、三光(株)製)を10g、ホスファゼン化合物(難燃剤SPB100L)を5g配合して接着剤組成物a,b,c,d,e、f、g、hとした。 各接着剤組成物の全固形分に対するリン含有量は、それぞれ2.7重量%であった。
<接着剤組成物の製造-2>
ポリアミドイミド樹脂A,B溶液100gに3官能イソシアネート化合物コロネートEH(日本ポリウレタン製)10g配合して接着剤組成物a’、b’とした。
<銅張り積層板の製造>
接着剤組成物a,b,c,d,e,f、g、h、a’、b’を1/2oz電解銅箔に間隙100μmで塗布、60℃で5分、130℃で10分乾燥した後接着剤面にポリイミドフィルム(カネカ製アピカルNPI 12.5μm)を重ね合わせて180℃のロールラミネーターで張り合わせた後、ロールに巻いた状態で150℃のオーブン中に15時間放置してフレキシブル銅張り積層板を得た。接着力、加湿後の耐半田性、耐マイグレーション性の測定結果を表1に示す。 <Manufacture of adhesive composition-1>
Polyamideimide resin A, B, C, D, E, F, G, H solution produced above 100g, phenol novolac epoxy compound (Japan Epoxy Epicoat 152) 15g, diaminodiphenylsulfone 1.5g, phosphinic acid 10 g of a derivative (a flame retardant BCA, manufactured by Sanko Co., Ltd.) and 5 g of a phosphazene compound (a flame retardant SPB100L) were blended to obtain adhesive compositions a, b, c, d, e, f, g, and h. The phosphorus content relative to the total solid content of each adhesive composition was 2.7% by weight.
<Manufacture of adhesive composition-2>
10 g of trifunctional isocyanate compound coronate EH (manufactured by Nippon Polyurethane) was blended with 100 g of the polyamideimide resin A and B solutions to obtain adhesive compositions a ′ and b ′.
<Manufacture of copper-clad laminates>
Adhesive composition a, b, c, d, e, f, g, h, a ′, b ′ was applied to a 1/2 oz electrolytic copper foil with a gap of 100 μm, dried at 60 ° C. for 5 minutes, and 130 ° C. for 10 minutes. After that, a polyimide film (Akane NPI 12.5 μm made by Kaneka) was superposed on the adhesive surface and pasted with a roll laminator at 180 ° C., and then left in a 150 ° C. oven for 15 hours while wound on a roll. A tension laminate was obtained. Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance.
上記で製造したポリアミドイミド樹脂A,B,C、D,E,F,G,H溶液100gにフェノールノボラック型エポキシ化合物(ジャパンエポキシ製エピコート152)を15g、ジアミノジフェニルスルホンを1.5g、ホスフィン酸誘導体(難燃剤BCA、三光(株)製)を10g、ホスファゼン化合物(難燃剤SPB100L)を5g配合して接着剤組成物a,b,c,d,e、f、g、hとした。 各接着剤組成物の全固形分に対するリン含有量は、それぞれ2.7重量%であった。
<接着剤組成物の製造-2>
ポリアミドイミド樹脂A,B溶液100gに3官能イソシアネート化合物コロネートEH(日本ポリウレタン製)10g配合して接着剤組成物a’、b’とした。
<銅張り積層板の製造>
接着剤組成物a,b,c,d,e,f、g、h、a’、b’を1/2oz電解銅箔に間隙100μmで塗布、60℃で5分、130℃で10分乾燥した後接着剤面にポリイミドフィルム(カネカ製アピカルNPI 12.5μm)を重ね合わせて180℃のロールラミネーターで張り合わせた後、ロールに巻いた状態で150℃のオーブン中に15時間放置してフレキシブル銅張り積層板を得た。接着力、加湿後の耐半田性、耐マイグレーション性の測定結果を表1に示す。 <Manufacture of adhesive composition-1>
Polyamideimide resin A, B, C, D, E, F, G, H solution produced above 100g, phenol novolac epoxy compound (Japan Epoxy Epicoat 152) 15g, diaminodiphenylsulfone 1.5g, phosphinic acid 10 g of a derivative (a flame retardant BCA, manufactured by Sanko Co., Ltd.) and 5 g of a phosphazene compound (a flame retardant SPB100L) were blended to obtain adhesive compositions a, b, c, d, e, f, g, and h. The phosphorus content relative to the total solid content of each adhesive composition was 2.7% by weight.
<Manufacture of adhesive composition-2>
10 g of trifunctional isocyanate compound coronate EH (manufactured by Nippon Polyurethane) was blended with 100 g of the polyamideimide resin A and B solutions to obtain adhesive compositions a ′ and b ′.
<Manufacture of copper-clad laminates>
Adhesive composition a, b, c, d, e, f, g, h, a ′, b ′ was applied to a 1/2 oz electrolytic copper foil with a gap of 100 μm, dried at 60 ° C. for 5 minutes, and 130 ° C. for 10 minutes. After that, a polyimide film (Akane NPI 12.5 μm made by Kaneka) was superposed on the adhesive surface and pasted with a roll laminator at 180 ° C., and then left in a 150 ° C. oven for 15 hours while wound on a roll. A tension laminate was obtained. Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance.
〔実施例11~20〕
<接着剤組成物の製造-1>
上記で製造したポリアミドイミド樹脂A,B,C、D,E,F、G,H溶液100gにフェノールノボラック型エポキシ化合物(ジャパンエポキシ製エピコート152)を15g、ジアミノジフェニルスルホンを1.5g、ホスフィン酸誘導体(難燃剤BCA、三光(株)製)を10g、ホスファゼン化合物(難燃剤SPB100L)を5g配合して接着剤組成物a,b,c,d,e、f、g、hとした。
<接着剤組成物の製造-2>
ポリアミドイミド樹脂A,B溶液100gに3官能イソシアネート化合物コロネートEH(日本ポリウレタン製)10g配合して接着剤組成物a’、b’とした。
<カバーレイフィルムの製造>
接着剤組成物a,b,c,d,e,f,g、h、a’,b’を12.5μmのポリイミドフィルム(カネカ製アピカルNPI 12.5μm)に間隙150μmで塗布、60℃で5分、130℃で5分乾燥させてカバーレイフィルムを作成した。このカバーレイフィルムを絶縁層20μm、18μm圧延銅箔を用いた東洋紡製銅張り積層板バイロフレックスの回路面に重ね、150℃で2分熱プレスを行い、150℃で2時間熱処理を行った。尚、上記作成したカバーレイフィルムのうちa,b,c,d,e,f、g、hは難燃レベルがUL規格のVTM-0を満たした。接着力、加湿後の耐半田性、耐マイグレーション性の測定結果を表1に示す。 [Examples 11 to 20]
<Manufacture of adhesive composition-1>
Polyamideimide resins A, B, C, D, E, F, G, and H produced above are 100 g of phenol novolac epoxy compound (Japan Epoxy Epicoat 152), 1.5 g of diaminodiphenylsulfone, and phosphinic acid. 10 g of a derivative (a flame retardant BCA, manufactured by Sanko Co., Ltd.) and 5 g of a phosphazene compound (a flame retardant SPB100L) were blended to obtain adhesive compositions a, b, c, d, e, f, g, and h.
<Manufacture of adhesive composition-2>
10 g of trifunctional isocyanate compound coronate EH (manufactured by Nippon Polyurethane) was blended with 100 g of the polyamideimide resin A and B solutions to obtain adhesive compositions a ′ and b ′.
<Manufacture of coverlay film>
Adhesive composition a, b, c, d, e, f, g, h, a ′, b ′ was applied to a 12.5 μm polyimide film (Kaneka Apical NPI 12.5 μm) with a gap of 150 μm at 60 ° C. A coverlay film was prepared by drying for 5 minutes at 130 ° C. for 5 minutes. This cover lay film was laminated on the circuit surface of Toyobo copper-clad laminate Viroflex using an insulating layer of 20 μm and 18 μm rolled copper foil, heat-pressed at 150 ° C. for 2 minutes, and heat-treated at 150 ° C. for 2 hours. Of the prepared coverlay films, a, b, c, d, e, f, g, and h satisfy the VTM-0 of UL standard in flame retardancy. Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance.
<接着剤組成物の製造-1>
上記で製造したポリアミドイミド樹脂A,B,C、D,E,F、G,H溶液100gにフェノールノボラック型エポキシ化合物(ジャパンエポキシ製エピコート152)を15g、ジアミノジフェニルスルホンを1.5g、ホスフィン酸誘導体(難燃剤BCA、三光(株)製)を10g、ホスファゼン化合物(難燃剤SPB100L)を5g配合して接着剤組成物a,b,c,d,e、f、g、hとした。
<接着剤組成物の製造-2>
ポリアミドイミド樹脂A,B溶液100gに3官能イソシアネート化合物コロネートEH(日本ポリウレタン製)10g配合して接着剤組成物a’、b’とした。
<カバーレイフィルムの製造>
接着剤組成物a,b,c,d,e,f,g、h、a’,b’を12.5μmのポリイミドフィルム(カネカ製アピカルNPI 12.5μm)に間隙150μmで塗布、60℃で5分、130℃で5分乾燥させてカバーレイフィルムを作成した。このカバーレイフィルムを絶縁層20μm、18μm圧延銅箔を用いた東洋紡製銅張り積層板バイロフレックスの回路面に重ね、150℃で2分熱プレスを行い、150℃で2時間熱処理を行った。尚、上記作成したカバーレイフィルムのうちa,b,c,d,e,f、g、hは難燃レベルがUL規格のVTM-0を満たした。接着力、加湿後の耐半田性、耐マイグレーション性の測定結果を表1に示す。 [Examples 11 to 20]
<Manufacture of adhesive composition-1>
Polyamideimide resins A, B, C, D, E, F, G, and H produced above are 100 g of phenol novolac epoxy compound (Japan Epoxy Epicoat 152), 1.5 g of diaminodiphenylsulfone, and phosphinic acid. 10 g of a derivative (a flame retardant BCA, manufactured by Sanko Co., Ltd.) and 5 g of a phosphazene compound (a flame retardant SPB100L) were blended to obtain adhesive compositions a, b, c, d, e, f, g, and h.
<Manufacture of adhesive composition-2>
10 g of trifunctional isocyanate compound coronate EH (manufactured by Nippon Polyurethane) was blended with 100 g of the polyamideimide resin A and B solutions to obtain adhesive compositions a ′ and b ′.
<Manufacture of coverlay film>
Adhesive composition a, b, c, d, e, f, g, h, a ′, b ′ was applied to a 12.5 μm polyimide film (Kaneka Apical NPI 12.5 μm) with a gap of 150 μm at 60 ° C. A coverlay film was prepared by drying for 5 minutes at 130 ° C. for 5 minutes. This cover lay film was laminated on the circuit surface of Toyobo copper-clad laminate Viroflex using an insulating layer of 20 μm and 18 μm rolled copper foil, heat-pressed at 150 ° C. for 2 minutes, and heat-treated at 150 ° C. for 2 hours. Of the prepared coverlay films, a, b, c, d, e, f, g, and h satisfy the VTM-0 of UL standard in flame retardancy. Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance.
〔実施例21~28〕
<接着シートの製造>
上記接着剤組成物a,b,c,d,e、f、g、hを50μmのポリプロピレンフィルムに塗布して、60℃で5分、130℃で10分乾燥した後剥離して膜厚20μmの接着シートa’’,b’’,c’’,d’’,e’’、f’’、g’’、h’’を得た。
次に、接着剤組成物bを用いて作成した銅張り積層板のポリイミドフィルム面に接着シートa’’,b’’,c’’,d’’,e’’、f’’、g’’、h’’各々を介して0.3mmのアルミ板製補強板を重ね合わせて、150℃のヒートプレスを用い、2分間圧着した。その後同じ温度で加圧下、2時間熱処理を行った。接着力、加湿後の耐半田性、耐マイグレーション性の測定結果を表1に示す。 [Examples 21 to 28]
<Manufacture of adhesive sheet>
The adhesive compositions a, b, c, d, e, f, g, and h are applied to a 50 μm polypropylene film, dried at 60 ° C. for 5 minutes and 130 ° C. for 10 minutes, and then peeled off to give a film thickness of 20 μm. Adhesive sheets a ″, b ″, c ″, d ″, e ″, f ″, g ″, h ″.
Next, the adhesive sheets a ″, b ″, c ″, d ″, e ″, f ″, g ′ are applied to the polyimide film surface of the copper-clad laminate prepared using the adhesive composition b. A reinforcing plate made of 0.3 mm aluminum was overlapped through each of ', h'', and crimped for 2 minutes using a heat press at 150 ° C. Thereafter, heat treatment was performed for 2 hours under pressure at the same temperature. Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance.
<接着シートの製造>
上記接着剤組成物a,b,c,d,e、f、g、hを50μmのポリプロピレンフィルムに塗布して、60℃で5分、130℃で10分乾燥した後剥離して膜厚20μmの接着シートa’’,b’’,c’’,d’’,e’’、f’’、g’’、h’’を得た。
次に、接着剤組成物bを用いて作成した銅張り積層板のポリイミドフィルム面に接着シートa’’,b’’,c’’,d’’,e’’、f’’、g’’、h’’各々を介して0.3mmのアルミ板製補強板を重ね合わせて、150℃のヒートプレスを用い、2分間圧着した。その後同じ温度で加圧下、2時間熱処理を行った。接着力、加湿後の耐半田性、耐マイグレーション性の測定結果を表1に示す。 [Examples 21 to 28]
<Manufacture of adhesive sheet>
The adhesive compositions a, b, c, d, e, f, g, and h are applied to a 50 μm polypropylene film, dried at 60 ° C. for 5 minutes and 130 ° C. for 10 minutes, and then peeled off to give a film thickness of 20 μm. Adhesive sheets a ″, b ″, c ″, d ″, e ″, f ″, g ″, h ″.
Next, the adhesive sheets a ″, b ″, c ″, d ″, e ″, f ″, g ′ are applied to the polyimide film surface of the copper-clad laminate prepared using the adhesive composition b. A reinforcing plate made of 0.3 mm aluminum was overlapped through each of ', h'', and crimped for 2 minutes using a heat press at 150 ° C. Thereafter, heat treatment was performed for 2 hours under pressure at the same temperature. Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance.
〔比較例-1〕
ポリアミドイミド樹脂Cの製造例において原料の仕込みをTMA0.85モル、DMBAを0.02モルとした以外はポリアミドイミド樹脂製造例Cと同じ条件で製造して得られたガラス転移温度が208℃、対数粘度が0.50dl/g、酸価が329eq/106gのポリアミドイミド樹脂Iを用いて実施例1の接着剤組成物の製造―1と同じ配合の接着剤組成物iを作成し、実施例11~20と同様に、カバーレイフィルムを作成しテストを行った。接着力、加湿後の耐半田性、耐マイグレーション性の測定結果を表1に示す。なお、接着剤組成物の全固形分に対するリン含有量は、2.7重量%であった。 [Comparative Example-1]
In the production example of the polyamideimide resin C, the glass transition temperature obtained by producing the polyamideimide resin under the same conditions as in the polyamideimide resin production example C is 208 ° C., except that TMA is 0.85 mol and DMBA is 0.02 mol. Production of the adhesive composition of Example 1 using the polyamide-imide resin I having a logarithmic viscosity of 0.50 dl / g and an acid value of 329 eq / 10 6 g. Coverlay films were prepared and tested as in Examples 11-20. Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance. In addition, phosphorus content with respect to the total solid of an adhesive composition was 2.7 weight%.
ポリアミドイミド樹脂Cの製造例において原料の仕込みをTMA0.85モル、DMBAを0.02モルとした以外はポリアミドイミド樹脂製造例Cと同じ条件で製造して得られたガラス転移温度が208℃、対数粘度が0.50dl/g、酸価が329eq/106gのポリアミドイミド樹脂Iを用いて実施例1の接着剤組成物の製造―1と同じ配合の接着剤組成物iを作成し、実施例11~20と同様に、カバーレイフィルムを作成しテストを行った。接着力、加湿後の耐半田性、耐マイグレーション性の測定結果を表1に示す。なお、接着剤組成物の全固形分に対するリン含有量は、2.7重量%であった。 [Comparative Example-1]
In the production example of the polyamideimide resin C, the glass transition temperature obtained by producing the polyamideimide resin under the same conditions as in the polyamideimide resin production example C is 208 ° C., except that TMA is 0.85 mol and DMBA is 0.02 mol. Production of the adhesive composition of Example 1 using the polyamide-imide resin I having a logarithmic viscosity of 0.50 dl / g and an acid value of 329 eq / 10 6 g. Coverlay films were prepared and tested as in Examples 11-20. Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance. In addition, phosphorus content with respect to the total solid of an adhesive composition was 2.7 weight%.
〔比較例-2〕
ポリアミドイミド樹脂Cの製造例においてTMAを0.47モル、DMBAを0.40モルとした以外は同じ条件で製造した、ガラス転移温度が169℃、対数粘度が0.29dl/g、酸価が1130eq/106gのポリアミドイミド樹脂Jを用いて実施例1の接着剤組成物の製造―1と同じ配合の接着剤組成物jを作成し、実施例11~20と同様に、カバーレイフィルムを作成しテストを行った。接着力、加湿後の耐半田性、耐マイグレーション性の測定結果を表1に示す。なお、接着剤組成物の全固形分に対するリン含有量は、2.7重量%であった。 [Comparative Example-2]
Manufactured under the same conditions except that TMA is 0.47 mol and DMBA is 0.40 mol in the production example of polyamide-imide resin C, glass transition temperature is 169 ° C., logarithmic viscosity is 0.29 dl / g, acid value is Production of adhesive composition of Example 1 using 1130 eq / 10 6 g of polyamideimide resin J. An adhesive composition j having the same composition as in Example 1 was prepared, and coverlay film was prepared in the same manner as in Examples 11-20. Created and tested. Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance. The phosphorus content relative to the total solid content of the adhesive composition was 2.7% by weight.
ポリアミドイミド樹脂Cの製造例においてTMAを0.47モル、DMBAを0.40モルとした以外は同じ条件で製造した、ガラス転移温度が169℃、対数粘度が0.29dl/g、酸価が1130eq/106gのポリアミドイミド樹脂Jを用いて実施例1の接着剤組成物の製造―1と同じ配合の接着剤組成物jを作成し、実施例11~20と同様に、カバーレイフィルムを作成しテストを行った。接着力、加湿後の耐半田性、耐マイグレーション性の測定結果を表1に示す。なお、接着剤組成物の全固形分に対するリン含有量は、2.7重量%であった。 [Comparative Example-2]
Manufactured under the same conditions except that TMA is 0.47 mol and DMBA is 0.40 mol in the production example of polyamide-imide resin C, glass transition temperature is 169 ° C., logarithmic viscosity is 0.29 dl / g, acid value is Production of adhesive composition of Example 1 using 1130 eq / 10 6 g of polyamideimide resin J. An adhesive composition j having the same composition as in Example 1 was prepared, and coverlay film was prepared in the same manner as in Examples 11-20. Created and tested. Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance. The phosphorus content relative to the total solid content of the adhesive composition was 2.7% by weight.
〔比較例-3〕
ポリアミドイミド樹脂Aの製造においてMDIの仕込みを0.95モルにした以外はポリアミドイミド樹脂Aと同じ方法でポリアミドイミド樹脂Kを製造した。得られた樹脂の対数粘度は0.13dl/g、酸価は1866eq/106gであった。この樹脂は分子量が低く、フィルムを形成しないためガラス転移温度は測定できなかった。このポリアミドイミド樹脂Kを用いて、実施例1の接着剤組成物の製造―1と同じ接着剤組成物kを作成し、実施例11~20と同様に、カバーレイフィルムを作成しテストを行った。接着力、加湿後の耐半田性、耐マイグレーション性の測定結果を表1に示す。なお、接着剤組成物の全固形分に対するリン含有量は、2.7重量%であった。 [Comparative Example-3]
A polyamide-imide resin K was produced in the same manner as the polyamide-imide resin A except that the amount of MDI charged in the production of the polyamide-imide resin A was 0.95 mol. The logarithmic viscosity of the obtained resin was 0.13 dl / g, and the acid value was 1866 eq / 10 6 g. Since this resin has a low molecular weight and does not form a film, the glass transition temperature could not be measured. Using this polyamideimide resin K, the same adhesive composition k as in Production of the adhesive composition of Example 1 was prepared, and a coverlay film was prepared and tested in the same manner as in Examples 11 to 20. It was. Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance. The phosphorus content relative to the total solid content of the adhesive composition was 2.7% by weight.
ポリアミドイミド樹脂Aの製造においてMDIの仕込みを0.95モルにした以外はポリアミドイミド樹脂Aと同じ方法でポリアミドイミド樹脂Kを製造した。得られた樹脂の対数粘度は0.13dl/g、酸価は1866eq/106gであった。この樹脂は分子量が低く、フィルムを形成しないためガラス転移温度は測定できなかった。このポリアミドイミド樹脂Kを用いて、実施例1の接着剤組成物の製造―1と同じ接着剤組成物kを作成し、実施例11~20と同様に、カバーレイフィルムを作成しテストを行った。接着力、加湿後の耐半田性、耐マイグレーション性の測定結果を表1に示す。なお、接着剤組成物の全固形分に対するリン含有量は、2.7重量%であった。 [Comparative Example-3]
A polyamide-imide resin K was produced in the same manner as the polyamide-imide resin A except that the amount of MDI charged in the production of the polyamide-imide resin A was 0.95 mol. The logarithmic viscosity of the obtained resin was 0.13 dl / g, and the acid value was 1866 eq / 10 6 g. Since this resin has a low molecular weight and does not form a film, the glass transition temperature could not be measured. Using this polyamideimide resin K, the same adhesive composition k as in Production of the adhesive composition of Example 1 was prepared, and a coverlay film was prepared and tested in the same manner as in Examples 11 to 20. It was. Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance. The phosphorus content relative to the total solid content of the adhesive composition was 2.7% by weight.
〔比較例4〕
上記反応容器にTMA 0.7モル、CTBN1300×13 0.03モル、ダイマー酸 0.25モル、MDI 1.02モルを固形分濃度が40%となるようにDMAcと共に仕込み、120℃で2時間、150℃で3時間反応させた後、冷却しながら固形分濃度が30%となるようにトルエンで希釈した。得られたポリアミドイミド樹脂Lのガラス転移温度は164℃、対数粘度は0.47dl/g、酸価は187eq/106gであった。このポリアミドイミド樹脂Lを用いて実施例1の接着剤組成物の製造―1と同じ配合の接着剤組成物lを作成し、実施例1~10と同様に、銅張り積層板を作成しテストを行った。接着力、加湿後の耐半田性、耐マイグレーション性の測定結果を表1に示す。なお、接着剤組成物の全固形分に対するリン含有量は、2.7重量%であった。 [Comparative Example 4]
TMA 0.7 mol, CTBN 1300 × 13 0.03 mol, dimer acid 0.25 mol, and MDI 1.02 mol were charged into the above reaction vessel together with DMAc so that the solid concentration would be 40%, and at 120 ° C. for 2 hours. The mixture was reacted at 150 ° C. for 3 hours, and then diluted with toluene so that the solid content concentration became 30% while cooling. The obtained polyamideimide resin L had a glass transition temperature of 164 ° C., a logarithmic viscosity of 0.47 dl / g, and an acid value of 187 eq / 10 6 g. Using this polyamide-imide resin L, an adhesive composition 1 having the same composition as that of Example 1 was prepared, and a copper-clad laminate was prepared and tested in the same manner as in Examples 1 to 10. Went. Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance. The phosphorus content relative to the total solid content of the adhesive composition was 2.7% by weight.
上記反応容器にTMA 0.7モル、CTBN1300×13 0.03モル、ダイマー酸 0.25モル、MDI 1.02モルを固形分濃度が40%となるようにDMAcと共に仕込み、120℃で2時間、150℃で3時間反応させた後、冷却しながら固形分濃度が30%となるようにトルエンで希釈した。得られたポリアミドイミド樹脂Lのガラス転移温度は164℃、対数粘度は0.47dl/g、酸価は187eq/106gであった。このポリアミドイミド樹脂Lを用いて実施例1の接着剤組成物の製造―1と同じ配合の接着剤組成物lを作成し、実施例1~10と同様に、銅張り積層板を作成しテストを行った。接着力、加湿後の耐半田性、耐マイグレーション性の測定結果を表1に示す。なお、接着剤組成物の全固形分に対するリン含有量は、2.7重量%であった。 [Comparative Example 4]
TMA 0.7 mol, CTBN 1300 × 13 0.03 mol, dimer acid 0.25 mol, and MDI 1.02 mol were charged into the above reaction vessel together with DMAc so that the solid concentration would be 40%, and at 120 ° C. for 2 hours. The mixture was reacted at 150 ° C. for 3 hours, and then diluted with toluene so that the solid content concentration became 30% while cooling. The obtained polyamideimide resin L had a glass transition temperature of 164 ° C., a logarithmic viscosity of 0.47 dl / g, and an acid value of 187 eq / 10 6 g. Using this polyamide-imide resin L, an adhesive composition 1 having the same composition as that of Example 1 was prepared, and a copper-clad laminate was prepared and tested in the same manner as in Examples 1 to 10. Went. Table 1 shows the measurement results of adhesive strength, solder resistance after humidification, and migration resistance. The phosphorus content relative to the total solid content of the adhesive composition was 2.7% by weight.
上記例の結果をまとめて表1に示す。
The results of the above examples are summarized in Table 1.
実施例の結果からも明らかなように本発明によれば、金属やポリイミドフィルムへの低温接着性と耐熱性、特に加湿処理後の耐半田性及び高温高湿下での耐マイグーション特性に優れた、回路基板に有用なインキ、接着剤組成物及び接着シート、カバーレイフィルム、ガラスクロス含浸プレプレグならびにこれらを用いたプリント回路基板を提供することができる。
As is apparent from the results of the examples, according to the present invention, low temperature adhesion and heat resistance to metal and polyimide films, particularly solder resistance after humidification treatment and migration resistance characteristics under high temperature and high humidity. It is possible to provide excellent inks, adhesive compositions and adhesive sheets useful for circuit boards, coverlay films, glass cloth impregnated prepregs, and printed circuit boards using these.
Claims (12)
- 対数粘度が0.2dl/g以上であり、かつ酸価が400当量/106g~1000当量/106gである側鎖にカルボキシル基を有することを特徴とするポリアミドイミド樹脂。 A polyamide-imide resin having a carboxyl group in a side chain having a logarithmic viscosity of 0.2 dl / g or more and an acid value of 400 equivalent / 10 6 g to 1000 equivalent / 10 6 g.
- ポリアミドイミド樹脂の全酸成分を100モル%とした場合に、酸成分の3~30モル%がトリメリット酸であることを特徴とする請求項1に記載のポリアミドイミド樹脂。 The polyamideimide resin according to claim 1, wherein 3 to 30 mol% of the acid component is trimellitic acid when the total acid component of the polyamideimide resin is 100 mol%.
- 前記トリメリット酸は、トリメリット酸無水物に水を加えることによりトリメリット酸無水物が開環したものであることを特徴とする請求項2記載のポリアミドイミド樹脂。 The polyamide-imide resin according to claim 2, wherein the trimellitic acid is obtained by opening the trimellitic acid anhydride by adding water to the trimellitic acid anhydride.
- ポリアミドイミド樹脂の全酸成分を100モル%とした場合に、酸成分の3~30モル%がジメチロールブタン酸であることを特徴とする請求項1に記載のポリアミドイミド樹脂。 The polyamideimide resin according to claim 1, wherein 3 to 30 mol% of the acid component is dimethylolbutanoic acid when the total acid component of the polyamideimide resin is 100 mol%.
- トリメリット酸無水物及び/又はテトラカルボン酸無水物とジアミン成分及び/又はジイソシアネート成分とを反応させてプレポリマーにした後、該プレポリマーをアルキレングリコールで鎖延長させることにより得られる請求項1に記載のポリアミドイミド樹脂。 Claim 1 obtained by reacting trimellitic anhydride and / or tetracarboxylic anhydride with a diamine component and / or diisocyanate component to form a prepolymer, and then chain-extending the prepolymer with alkylene glycol. The polyamide-imide resin described.
- 前記アルキレングリコールが、数平均分子量400~10000のポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコールからなる群より選ばれた1種以上であることを特徴とする請求項5に記載のポリアミドイミド樹脂。 6. The polyamideimide resin according to claim 5, wherein the alkylene glycol is at least one selected from the group consisting of polyethylene glycol, polypropylene glycol and polytetramethylene glycol having a number average molecular weight of 400 to 10,000.
- 請求項1~6のいずれか記載のポリアミドイミド樹脂に多官能エポキシ化合物、多官能イソシアネート化合物及びメラミン化合物からなる群より選ばれた1種以上の化合物を含むことを特徴とする接着剤組成物。 An adhesive composition comprising the polyamide-imide resin according to any one of claims 1 to 6 containing at least one compound selected from the group consisting of a polyfunctional epoxy compound, a polyfunctional isocyanate compound, and a melamine compound.
- 接着剤組成物の全固形分に対して、有機リン化合物をリン含有量で1重量%以上3重量%以下含むことを特徴とする請求項7に記載の接着剤組成物。 The adhesive composition according to claim 7, comprising an organic phosphorus compound in a phosphorus content of 1 wt% or more and 3 wt% or less based on the total solid content of the adhesive composition.
- 請求項7又は8に記載の接着剤組成物に、無機及び/又は有機微粒子が含有され、チキソ指数が1.2以上3.0以下であることを特徴とするプリント回路基板用インク。 An ink for printed circuit boards, wherein the adhesive composition according to claim 7 or 8 contains inorganic and / or organic fine particles, and has a thixotropic index of 1.2 or more and 3.0 or less.
- 請求項7又は8に記載の接着剤組成物を用いたカバーレイフィルム。 A coverlay film using the adhesive composition according to claim 7 or 8.
- 請求項7又は8に記載の接着剤組成物を、ポリプロピレンフィルム、離型紙又は離型フィルム上に塗布、乾燥した接着剤シート。 An adhesive sheet obtained by applying and drying the adhesive composition according to claim 7 or 8 on a polypropylene film, a release paper, or a release film.
- 請求項7又は8に記載の接着剤組成物を用いたプリント回路基板。
A printed circuit board using the adhesive composition according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009546591A JPWO2010041644A1 (en) | 2008-10-10 | 2009-10-06 | Polyamideimide resin, adhesive composition using the resin, printed circuit board ink using the adhesive composition, coverlay film, adhesive sheet, and printed circuit board |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008263723 | 2008-10-10 | ||
JP2008-263723 | 2008-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010041644A1 true WO2010041644A1 (en) | 2010-04-15 |
Family
ID=42100594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/067379 WO2010041644A1 (en) | 2008-10-10 | 2009-10-06 | Polyamideimide resin, adhesive composition using the resin, ink for printed circuit board using the adhesive composition, cover lay film, adhesive sheet and printed circuit board |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2010041644A1 (en) |
TW (1) | TW201026750A (en) |
WO (1) | WO2010041644A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018135431A1 (en) * | 2017-01-20 | 2018-07-26 | 住友化学株式会社 | Polyamide-imide resin and optical member containing polyamide-imide resin |
JP2018119132A (en) * | 2017-01-20 | 2018-08-02 | 住友化学株式会社 | Polyamide-imide resin and optical member containing polyamide-imide resin |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07292319A (en) * | 1994-04-27 | 1995-11-07 | Toyobo Co Ltd | Coating composition for coating inner surface of chemical agent can |
JPH07324163A (en) * | 1994-05-30 | 1995-12-12 | Unitika Ltd | Polyamic acid solution and its production |
JP2000103961A (en) * | 1998-09-28 | 2000-04-11 | Hitachi Chem Co Ltd | Heat-resistant resin composition, coating material and aluminum substrate |
JP2001240670A (en) * | 2000-03-01 | 2001-09-04 | Arakawa Chem Ind Co Ltd | Silane modified polyamide-imide resin, its resin composition and method for producing the resin |
JP2001316469A (en) * | 2000-05-01 | 2001-11-13 | Dainippon Ink & Chem Inc | Amide-imide resin containing carboxyl group and/or imide resin containing carboxyl group |
JP2004515565A (en) * | 2000-04-10 | 2004-05-27 | ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン | Impact resistant epoxy resin composition |
JP2004204134A (en) * | 2002-12-26 | 2004-07-22 | Dainippon Ink & Chem Inc | Thermosetting polyimide resin composition, method for producing polyimide resin, and polyimide resin |
-
2009
- 2009-10-06 WO PCT/JP2009/067379 patent/WO2010041644A1/en active Application Filing
- 2009-10-06 JP JP2009546591A patent/JPWO2010041644A1/en active Pending
- 2009-10-09 TW TW098134272A patent/TW201026750A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07292319A (en) * | 1994-04-27 | 1995-11-07 | Toyobo Co Ltd | Coating composition for coating inner surface of chemical agent can |
JPH07324163A (en) * | 1994-05-30 | 1995-12-12 | Unitika Ltd | Polyamic acid solution and its production |
JP2000103961A (en) * | 1998-09-28 | 2000-04-11 | Hitachi Chem Co Ltd | Heat-resistant resin composition, coating material and aluminum substrate |
JP2001240670A (en) * | 2000-03-01 | 2001-09-04 | Arakawa Chem Ind Co Ltd | Silane modified polyamide-imide resin, its resin composition and method for producing the resin |
JP2004515565A (en) * | 2000-04-10 | 2004-05-27 | ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン | Impact resistant epoxy resin composition |
JP2001316469A (en) * | 2000-05-01 | 2001-11-13 | Dainippon Ink & Chem Inc | Amide-imide resin containing carboxyl group and/or imide resin containing carboxyl group |
JP2004204134A (en) * | 2002-12-26 | 2004-07-22 | Dainippon Ink & Chem Inc | Thermosetting polyimide resin composition, method for producing polyimide resin, and polyimide resin |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018135431A1 (en) * | 2017-01-20 | 2018-07-26 | 住友化学株式会社 | Polyamide-imide resin and optical member containing polyamide-imide resin |
JP2018119132A (en) * | 2017-01-20 | 2018-08-02 | 住友化学株式会社 | Polyamide-imide resin and optical member containing polyamide-imide resin |
US11274206B2 (en) | 2017-01-20 | 2022-03-15 | Sumitomo Chemical Company, Limited | Polyamideimide resin and optical member including polyamideimide resin |
JP7084710B2 (en) | 2017-01-20 | 2022-06-15 | 住友化学株式会社 | Polyamide-imide resin and an optical member containing the polyamide-imide resin. |
Also Published As
Publication number | Publication date |
---|---|
TW201026750A (en) | 2010-07-16 |
JPWO2010041644A1 (en) | 2012-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101312754B1 (en) | Polyamide resin, resin composition thereof, flame-retardant adhesive composition and adhesive sheet made of said composition, coverlay film, and printed wiring board | |
TWI614306B (en) | Polyurethane resin composition and adhesive composition, laminate and printed circuit board using the same | |
CN108368412B (en) | Adhesive composition using polyamideimide resin | |
JP5092452B2 (en) | Modified polyamideimide resin, adhesive using the same, and printed circuit board | |
CN112313302B (en) | Adhesive composition comprising acrylonitrile butadiene rubber co-polyamideimide resin | |
TWI710617B (en) | Adhesive composition comprising polyamideimide resin copolymerized with acrylonitrile butadiene rubber | |
TWI804680B (en) | Adhesive composition using resin having imide bond and phosphorus compound, adhesive film using the adhesive composition, cover layer film, copper clad laminate, and flexible printed wiring board | |
TWI749090B (en) | Polycarbonate imine resin and resin composition containing the resin | |
WO2010041644A1 (en) | Polyamideimide resin, adhesive composition using the resin, ink for printed circuit board using the adhesive composition, cover lay film, adhesive sheet and printed circuit board | |
JP2003292930A (en) | Adhesive composition, adhesive sheet and printed circuit board using the same | |
JP2008045036A (en) | Polyamide resin, and composition and adhesive each using the same, adhesive sheet using the adhesive, and printed circuit board using the adhesive sheet | |
WO2020071364A1 (en) | Adhesive composition using imide bond-containing resin and phosphorous compound | |
JP3223894B2 (en) | Metal foil laminate | |
JP6130980B1 (en) | Adhesive composition using polyamideimide resin | |
JP2003163451A (en) | Substrate for flexible printed wiring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2009546591 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09819178 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09819178 Country of ref document: EP Kind code of ref document: A1 |