[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010041436A1 - アンテナ装置 - Google Patents

アンテナ装置 Download PDF

Info

Publication number
WO2010041436A1
WO2010041436A1 PCT/JP2009/005202 JP2009005202W WO2010041436A1 WO 2010041436 A1 WO2010041436 A1 WO 2010041436A1 JP 2009005202 W JP2009005202 W JP 2009005202W WO 2010041436 A1 WO2010041436 A1 WO 2010041436A1
Authority
WO
WIPO (PCT)
Prior art keywords
parasitic
elements
antenna
conductor
feeding
Prior art date
Application number
PCT/JP2009/005202
Other languages
English (en)
French (fr)
Inventor
新海宗太郎
野口渡
万木弘之
汐月昭彦
名越方彦
田中宏一郎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/123,063 priority Critical patent/US8604994B2/en
Priority to JP2010532813A priority patent/JP5282097B2/ja
Publication of WO2010041436A1 publication Critical patent/WO2010041436A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/32Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being end-fed and elongated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/005Antennas or antenna systems providing at least two radiating patterns providing two patterns of opposite direction; back to back antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface

Definitions

  • the present invention relates to a directivity variable antenna apparatus that can electrically switch a main radiation direction.
  • IEEE802.11a and IEEE802.11g have a data transmission rate of 54 Mbps, but recently, research and development of wireless systems for realizing a higher transmission rate has become active.
  • a MIMO (Multi-Input Multi-Output) communication system is attracting attention as one of the technologies for realizing high-speed wireless communication systems.
  • This is a technology that increases the transmission capacity and improves the communication speed by providing a plurality of antenna elements on both the transmitter side and the receiver side and realizing a spatially multiplexed transmission path.
  • next-generation wireless communication systems such as mobile phone communication systems and IEEE 802.16e (WiMAX).
  • transmission data is distributed to a plurality of antenna elements in a transmitter, and transmission is performed at the same frequency at the same time.
  • the transmitted radio wave passes through various propagation paths in the space and then reaches a plurality of receiving antenna elements.
  • the transfer function between the transmission antenna and the reception antenna is estimated, and the original data is restored by performing arithmetic processing.
  • a plurality of omnidirectional feeding elements such as a dipole antenna and a sleeve antenna are used. In this case, the correlation between the feed elements increases and the transmission quality increases unless the distance between the feed elements is sufficiently separated or the feed elements are tilted in different directions and combined with different polarizations. There was a problem that became worse.
  • an array antenna device which is a directional adaptive antenna disclosed in Patent Document 1.
  • the array antenna device of Patent Document 1 is configured by arranging three printed wiring boards so as to surround the periphery of a half-wavelength dipole antenna installed vertically on a dielectric support substrate. A high-frequency signal is supplied to the half-wave dipole antenna via a balanced feed cable.
  • two sets of parasitic elements are provided in parallel, each including two printed antenna elements (elements made of a conductor pattern). The two printed antenna elements are provided to face each other with a predetermined gap.
  • a through-hole conductor is provided at the opposite end of each printed antenna element, and is connected to the electrode terminal on the front side of the printed wiring board.
  • a variable capacitance diode is mounted between two electrode terminals, each electrode terminal is further connected to a pair cable via a high-frequency blocking high resistance, and the pair cable has a directivity characteristic of the antenna device. It is connected to the applied bias voltage terminals DC + and DC ⁇ of the controller to be controlled. By switching the applied bias voltage from the controller, the reactance value of the variable capacitance diode connected to the parasitic element changes. Thereby, the electrical length of each parasitic element is changed as compared with the half-wave dipole antenna, and the plane directivity of the array antenna apparatus is changed.
  • An object of the present invention is to solve the above-mentioned conventional problems, and provide a directional variable antenna device for MIMO communication in which a space required for installation is small and the electric field strength in the direction perpendicular to the substrate can be changed. There is to do.
  • the antenna device is A first dielectric substrate having first and second surfaces parallel to each other; A second dielectric substrate having first and second surfaces parallel to each other; A first feeding element that is provided on at least one of the first and second surfaces of the first dielectric substrate and transmits and receives a radio signal; A first parasitic element provided on at least one of the first and second surfaces of the first dielectric substrate; A second feeding element that is provided on at least one of the first and second surfaces of the second dielectric substrate and transmits and receives a radio signal; A second parasitic element provided on at least one of the first and second surfaces of the second dielectric substrate; Control means for switching whether or not to operate each of the first and second parasitic elements as a reflector, The first parasitic element is disposed in close proximity so as to be electromagnetically coupled to the first and second feeder elements, The antenna device according to claim 1, wherein the second parasitic element is disposed adjacent to the first and second feeder elements so as to be electromagnetically coupled.
  • the first feeding element and the first parasitic element are provided on a first surface of the first dielectric substrate
  • the second feeding element and the second parasitic element are provided on the first surface of the second dielectric substrate
  • the first and second dielectric substrates are integrated with each other so that the second surface of the first dielectric substrate and the second surface of the second dielectric substrate face each other. It is characterized by.
  • each of the first and second parasitic elements is a dipole element in which two parasitic conductor elements having an electrical length of 1 ⁇ 4 wavelength are provided on a straight line
  • the control means includes A PIN diode connected in series between the two parasitic conductor elements of the first parasitic element; And a PIN diode connected in series between the two parasitic conductor elements of the second parasitic element.
  • each of the first and second parasitic elements is a dipole element in which two parasitic conductor elements having an electrical length of 1 ⁇ 4 wavelength are provided on a straight line
  • the control means includes A variable capacitance diode connected in series between two parasitic conductor elements of the first parasitic element; And a variable capacitance diode connected in series between the two parasitic conductor elements of the second parasitic element.
  • each of the first and second parasitic elements is a monopole in which one parasitic conductor element having an electrical length of 1 ⁇ 4 wavelength is provided perpendicular to the ground conductor.
  • the control means includes A PIN diode connected between the parasitic conductor element of the first parasitic element and the ground conductor; A PIN diode connected between the parasitic conductor element of the second parasitic element and the ground conductor is provided.
  • each of the first and second parasitic elements is a monopole element in which one parasitic conductor element having an electrical length of 1 ⁇ 4 wavelength is provided perpendicular to the ground conductor.
  • the control means includes A variable capacitance diode connected between the parasitic conductor element of the first parasitic element and the ground conductor; A variable capacitance diode connected between the parasitic conductor element of the second parasitic element and the ground conductor is provided.
  • each of the first and second feeding elements is a dipole antenna.
  • each of the first and second feeding elements is a sleeve antenna.
  • each of the first and second feeding elements is a monopole antenna.
  • the first parasitic element is provided apart from the first and second feeder elements by a distance of 1 ⁇ 4 wavelength
  • the second parasitic element is provided at a distance of 1 ⁇ 4 wavelength from the first and second feeder elements.
  • one first feeding element, two first parasitic elements, two second feeding elements, and two second parasitic elements are provided. It is characterized by having.
  • At least one first feeding element at least one first parasitic element, at least one second feeding element, and at least one second parasitic element. And an element.
  • the first parasitic element disposed on the first dielectric substrate and the second parasitic element disposed on the second dielectric substrate include each parasitic element.
  • An electrical length switching circuit for switching whether or not to operate as a reflector is connected as the control means.
  • Each electrical length switching circuit is configured by a PIN diode or a variable reactance element.
  • the parasitic element connected to the electrical length switching circuit operates as a reflector.
  • the first parasitic element is disposed in close proximity so as to be electromagnetically coupled to the first and second feeder elements, and the second parasitic element is the first and second feeder elements. Therefore, by operating one parasitic element as a reflector, the main radiation directions of the first and second feeding elements are changed.
  • first and second dielectric substrates are integrated blocks (which are dielectric substrates) and all the elements are provided on this single block, the blocks are soldered to the wireless module substrate. Therefore, it is possible to ignore the propagation loss usually caused by the coaxial cable.
  • FIG. 3 is a top view of the antenna device of FIGS. 1 and 2.
  • FIG. 3 is an enlarged view of an electrical length adjustment circuit 402 in the antenna device of FIG. 2.
  • It is a top view of the antenna apparatus which concerns on the 1st modification of the 1st Embodiment of this invention.
  • It is a top view of the antenna apparatus which concerns on the 2nd modification of the 1st Embodiment of this invention.
  • FIG. 11 is a front view showing a layout example of a first surface 22b-s1 of the printed wiring board 22b of FIG.
  • FIG. 11 is a front view showing a layout example of a second surface 22b-s2 of the printed wiring board 22b of FIG.
  • FIG. 10 is a front view showing a layout example of the first surface 22a-s1 of the printed wiring board 22a of FIG. 9;
  • FIG. 10 is a front view showing a layout example of second surfaces 22a-s2 of the printed wiring board 22a of FIG. 9;
  • FIG. 10 is a horizontal plane directivity characteristic diagram when parasitic antenna elements 401, 501, 601, and 701 are not operated in the antenna device of FIG. 8 (OFF state).
  • FIG. 9 is a horizontal plane directivity characteristic diagram when parasitic antenna elements 401, 501, 601, and 701 are operated in the antenna device of FIG. 8 (ON state).
  • It is a perspective view which shows schematic structure of the radio
  • FIG. 18 is an enlarged view of an electrical length adjustment circuit 402A in the antenna device of FIG. It is an enlarged view of the electrical length adjustment circuit 402C which concerns on the 1st modification of the 3rd Embodiment of this invention. It is an enlarged view of the electrical length adjustment circuit 402B which concerns on the 4th modification of the 1st Embodiment of this invention. It is a perspective view when the antenna apparatus which concerns on the 4th Embodiment of this invention is seen from the front surface. It is a perspective view when the antenna apparatus of FIG. 24 is seen from the back surface.
  • FIG. 26 is a top view of the antenna device of FIGS. 24 and 25. It is a top view of the antenna apparatus which concerns on the 1st modification of the 4th Embodiment of this invention. It is a top view of the antenna apparatus which concerns on the 2nd modification of the 4th Embodiment of this invention. It is a top view of the antenna apparatus which concerns on the 3rd modification of the 4th Embodiment of this invention. It is a top view of the antenna device which concerns on the 4th modification of the 4th Embodiment of this invention.
  • FIG. 1 is a perspective view when the antenna device according to the first embodiment of the present invention is viewed from the front surface
  • FIG. 2 is a perspective view when the antenna device of FIG. 1 is viewed from the back surface
  • FIG. 3 is a top view of the antenna device of FIGS.
  • the antenna device according to the present embodiment includes three dipole antenna elements 101, 201, 301 and four parasitic antenna elements (which are parasitic elements) 401, 501, 601, 701 on a dielectric substrate 21. Configured. Also, as shown in FIGS. 1 to 3, three-dimensional XYZ coordinates are introduced.
  • the antenna device includes a dielectric substrate 21, a feeding antenna element 101 that is provided on one surface of the dielectric substrate 21 and transmits and receives a radio signal, and one of the dielectric substrates 21.
  • the feed antenna element 401 is disposed in close proximity so as to be electromagnetically coupled to the feed antenna elements 101 and 201, and the parasitic antenna element 50.
  • the parasitic antenna element 601 is arranged in close proximity to be electromagnetically coupled to the feeding antenna elements 101 and 301.
  • the element 701 is arranged in close proximity so as to be electromagnetically coupled to the feeding antenna elements 101 and 301.
  • the dipole antenna element 101 is composed of two strip-shaped feed conductor elements 101a and 101b formed as conductor patterns on the surface of the dielectric substrate 21, and the feed conductor elements 101a and 101b are in a straight line with a predetermined distance from each other. Is arranged.
  • a feeding point 102 provided on the opposite side of each of the feeding conductor elements 101 a and 101 b is connected to a wireless communication circuit (not shown), whereby a wireless signal is transmitted and received via the dipole antenna element 101.
  • the parasitic antenna elements 401 and 701 are arranged on parallel lines that are separated from each other by a quarter of the operating wavelength ⁇ at the time of communication with respect to the straight line on which the dipole antenna element 101 is positioned so as to sandwich the dipole antenna element 101. Be placed.
  • the parasitic antenna elements 501 and 601 are parallel lines separated from the straight line on which the dipole antenna element 101 is located by a distance of a quarter of the operating wavelength ⁇ at the time of communication, and on the dielectric substrate.
  • the dipole antenna element 101 is disposed on a surface opposite to the surface on which the dipole antenna element 101 is disposed.
  • the distance of 1 ⁇ 4 of the operating wavelength ⁇ is a distance at which the dipole antenna element and the parasitic antenna element are electromagnetically coupled to each other, and varies depending on the dielectric constant of the dielectric substrate used. The higher the value, the shorter.
  • the parasitic antenna element 401 is a dipole element composed of two strip-shaped parasitic conductor elements 401 a and 401 b formed as a conductor pattern of the dielectric substrate 21.
  • the parasitic conductor elements 401a and 401b have an electrical length of 1 ⁇ 4 wavelength ( ⁇ / 4), and are arranged on a straight line with a predetermined interval therebetween.
  • An electrical length adjustment circuit 402 is provided on the opposite side of each parasitic conductor element 401a, 401b.
  • FIG. 4 is an enlarged view of the electrical length adjustment circuit 402 in the antenna apparatus of FIG. That is, FIG. 4 shows a portion including the electrical length adjusting circuit 402 and the parasitic conductor elements 401a and 401b adjacent thereto.
  • a pair of PIN diodes 403a and 403b are provided on opposite sides of the parasitic conductor elements 401a and 401b.
  • the cathode terminal of the PIN diode 403a is connected to the parasitic conductor element 401a
  • the cathode terminal of the PIN diode 403b is connected to the parasitic conductor element 401b
  • the anode terminals of the PIN diodes 403a and 403b are connected to each other.
  • the anode terminals of the PIN diodes 403a and 403b are connected via a control line 404a to an applied bias voltage terminal (DC terminal) DC4 of the controller 1 that applies a control voltage (that is, a bias voltage) to control the directivity of the antenna device.
  • the cathode terminals of the PIN diodes 403a and 403b are connected to the ground terminal (GND terminal) GND of the controller 1 through the control line 404b. Therefore, the control lines 404a and 404b are a DC voltage supply line and a GND line for controlling the parasitic antenna element 401, respectively.
  • An inductor (coil) 405b having an inductance of, for example, about several tens of nH is provided on the control line 404a so as to be close to the anode terminals of the PIN diodes 403a and 403b, and further on the control line 404a.
  • a resistance 406 for current control of about several kilohms is provided on the control line 404b.
  • inductors 405a and 405c having an inductance of, for example, about several tens of nH are provided so as to be close to the cathode terminals of the PIN diodes 403a and 403b.
  • the inductors 405a, 405b, and 405c have a role of preventing the high-frequency signal excited by the parasitic antenna element 401 from leaking onto the control lines 404a and 404b.
  • the parasitic antenna elements 501, 601 and 701 are also configured in the same manner as the parasitic antenna element 401.
  • the parasitic antenna element 501 includes two strip-shaped parasitic conductor elements 501a and 501b and an electrical length adjusting circuit 502 on the opposite side of the parasitic conductor elements 501a and 501b.
  • the parasitic antenna element 601 includes two strip-shaped parasitic conductor elements 601a and 601b and an electrical length adjusting circuit 602 on the opposite side of the parasitic conductor elements 601a and 601b.
  • the parasitic antenna element 701 includes two strip-shaped parasitic conductor elements 701a and 701b and an electrical length adjustment circuit 702 on the opposite side of the parasitic conductor elements 701a and 701b.
  • the electrical length adjustment circuits 502, 602, and 702 are also configured in the same manner as the electrical length adjustment circuit 402.
  • the anode terminals of the two PIN diodes of the electrical length adjusting circuit 502 are connected to the applied bias voltage terminal DC5 of the controller 1, while the cathode terminals are connected to the ground terminal GND.
  • the anode terminals of the two PIN diodes of the electrical length adjusting circuit 602 are connected to the applied bias voltage terminal DC6 of the controller 1, while the cathode terminals are connected to the ground terminal GND.
  • the anode terminals of the two PIN diodes of the electrical length adjusting circuit 702 are connected to the applied bias voltage terminal DC7 of the controller 1, while the cathode terminals are connected to the ground terminal GND.
  • the dipole antenna elements 201 and 301 are also configured in the same manner as the dipole antenna element 101.
  • FIG. 3 is a plan view of the antenna device according to the first embodiment of the present invention as viewed from above.
  • the parasitic antenna elements 401, 501, 601, and 701 are installed at a distance from the dipole antenna element 101 that is a quarter of the operating wavelength ⁇ during communication. This distance depends on the dielectric constant of the dielectric substrate used.
  • the dipole antenna element 201 is installed at a position that is a distance of a quarter of the operating wavelength ⁇ during communication from the parasitic antenna element 401 and the parasitic antenna element 501.
  • the dipole antenna element 301 is installed at a position that is a distance from the parasitic antenna element 601 and a quarter of the operating wavelength ⁇ during communication from the parasitic antenna element 701.
  • the antenna device configured as described above, when the control voltage of the controller 1 is OFF, no voltage is applied to the PIN diodes in all the electrical length adjustment circuits 402, 502, 602, and 702.
  • the elements 401, 501, 601, and 701 are not excited, and the parasitic antenna elements 401, 501, 601, and 701 do not affect the directivity characteristics of the dipole antenna elements 101, 201, and 301.
  • the controller 1 turns on the control voltage to the parasitic antenna element 401
  • the bias voltage applied from the DC terminal DC4 is applied to the anode side of the PIN diodes 403a and 403b via the control line 404a.
  • the operating voltage of the PIN diodes 403a and 403b is about 0.8 V
  • the PIN diodes 403a and 403b become conductive.
  • the parasitic antenna element 401 is excited by the radio wave radiated from the dipole antenna element 101 and re-radiates the radio wave.
  • the radio wave reradiated from the parasitic antenna element 401 is more than the radio wave radiated from the dipole antenna element 101.
  • the phase is delayed by 90 degrees.
  • the parasitic antenna element 401 is also excited by the radio wave radiated from the dipole antenna element 201 and re-radiates the radio wave. Since the distance between the dipole antenna element 201 and the parasitic antenna element 401 is a quarter of the operating wavelength ⁇ , the radio wave reradiated from the parasitic antenna element 401 is more than the radio wave radiated from the dipole antenna element 201. The phase is delayed by 90 degrees. By superimposing the two radio waves, the radio wave in the ⁇ (X + Y) direction is canceled out from the parasitic antenna element 401, and the radio wave in the + (X + Y) direction is strengthened from the dipole antenna element 101.
  • the parasitic antenna element 401 when a bias voltage is applied to the electrical length adjustment circuit 402 connected to the parasitic antenna element 401, the parasitic antenna element 401 operates as a reflector with respect to the dipole antenna elements 101 and 201.
  • the directivity of the antenna element 101 can be switched to a state where the main radiation is directed in the ⁇ Y direction, and the directivity of the dipole antenna element 201 can be switched to a state where the main radiation is directed to the + (X + Y) direction.
  • the directivity can be controlled similarly.
  • the directivity of the dipole antenna element 101 is such that the main radiation is directed in the ⁇ (X + Y) direction.
  • the directivity characteristic of the dipole antenna element 101 is -The main radiation is directed in the -X direction.
  • FIG. 5 is a top view of the antenna device according to the first modification of the first embodiment of the present invention.
  • FIG. 5 shows a modification including two dipole antenna elements 101 and 201 and four parasitic antenna elements 401, 501, 601 and 701.
  • FIG. 6 is a top view of an antenna device according to a second modification of the first embodiment of the present invention.
  • a modification including three dipole antenna elements 101, 201, 301 and five parasitic antenna elements 401, 501, 601, 701, 801 is illustrated.
  • FIG. 7 is a top view of an antenna device according to a third modification of the first embodiment of the present invention.
  • a modification including five dipole antenna elements 101, 201, 301, 901, 1001 and five parasitic antenna elements 401, 501, 601, 701, 801 is shown.
  • the dipole antenna elements 101, 201, and 301 are used as the feeding elements.
  • the dipole antenna elements 101, 201, and 301 can be used as long as the horizontal plane (XY plane) directivity is close to omnidirectional. Therefore, even when a sleeve antenna, a collinear antenna, or a monopole antenna is used, an antenna device that operates in the same manner as in this embodiment can be realized.
  • an example in which two to five excitation antenna elements and four to five parasitic antenna elements are arranged on the dielectric substrate 1 is shown. However, the number of each element increases or decreases. May be.
  • the conduction / non-conduction of the PIN diode is used to adjust the electrical length.
  • varicap diodes variable capacitance diodes
  • 403av and 403bv are used.
  • the electrical length may be switched by changing the reactance value.
  • FIG. 23 is an enlarged view of an electrical length adjustment circuit 402B according to a fourth modification of the first embodiment of the present invention.
  • the electrical length adjustment circuit 402B is different from the electrical length adjustment circuit 402A in that varicap diodes 40av and 403bv are provided instead of the PIN diodes 403a and 403b.
  • the cathode terminal of the varicap diode 403av is connected to the parasitic conductor element 401a
  • the cathode terminal of the varicap diode 403bv is connected to the parasitic conductor element 401b
  • the anode terminals of the varicap diodes 403av and 403bv are connected to each other. Is done.
  • the anode terminals of the varicap diodes 403av and 403bv are connected to the applied bias voltage terminal DC4 of the controller 1 through the inductor 405b, the resistor 406, and the control line 404a.
  • the cathode terminal of the varicap diode 403av is connected to the ground terminal GND of the controller 1 via the inductor 405a and the control line 404b, and the cathode terminal of the varicap diode 403bv is connected via the inductor 405c and the control line 404b. Connected to the ground terminal GND of the controller 1.
  • the controller 1 changes the capacitance values of the varicap diodes 403av and 403bv by continuously changing the bias voltage applied to the varicap diodes 403av and 403bv, and continuously changes the electrical length of the parasitic antenna element 401.
  • the parasitic antenna elements 401, 501, 601, 701 are located on the second surface and the feeder element 101 on the first surface of the dielectric substrate 21.
  • One of the feed elements 201 and 301 is arranged at a position where the directivity can be changed at the same time, and each feed element 101, 201, and 301 is connected to one of the parasitic antenna elements 401 and 701 on the first surface.
  • the parasitic antenna elements 501 and 601 on the second surface are arranged at positions affected by one of them. More specifically, the parasitic antenna element 401 is disposed close to the feeding antenna elements 101 and 201 so as to be electromagnetically coupled, and the parasitic antenna element 501 is electromagnetically coupled to the feeding antenna elements 101 and 201.
  • the parasitic antenna element 601 is disposed in close proximity so as to be electromagnetically coupled to the feeding antenna elements 101 and 301, and the parasitic antenna element 701 is electromagnetically coupled to the feeding antenna elements 101 and 301. Placed in close proximity to bond. Accordingly, it is possible to increase / decrease the electric power in the perpendicular direction of the dielectric substrate 21 and control so that the combination of directivities of the power feeding elements 101, 201, 301 is optimum, which is suitable for the MIMO communication system. A small antenna device having a directivity switching function can be provided. In addition, since all the elements are located on an integral block (which is the dielectric substrate 21), it can be surface-mounted by soldering or the like on the wireless module substrate, so that passage loss normally generated by a coaxial cable should be ignored. Is possible.
  • FIG. 8 is a perspective view of an antenna apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a front view of a printed wiring board 22a according to the second embodiment of the present invention
  • FIG. 10 is a front view of a printed wiring board 22b according to the second embodiment of the present invention.
  • the antenna device includes two dielectrics provided in parallel to each other, which are arranged along a portion in which the metal casing 23 of the display is cut out and the resin window 24 is incorporated.
  • the printed wiring board 22a has a first surface 22a-s1 and a second surface 22a-s2 parallel to each other
  • the printed wiring board 22b has a first surface 22b-s1 and a second surface parallel to each other. 22b-s2.
  • the second surface 22a-s2 of the printed wiring board 22a and the second surface 22b-s2 of the printed wiring board 22b are opposed to each other.
  • the antenna device includes sleeve antenna elements 101A, 201A, and 301A, which are feed antenna elements, and parasitic antenna elements 401, 501, 601, and 701.
  • the sleeve antenna element 101A and the parasitic antenna elements 401 and 701 are The sleeve antenna elements 201A and 301A and the parasitic antenna elements 501 and 601 are provided on the first surface 22b-s1 of the printed wiring board 22b.
  • the signal input / output terminal 26-1 on the wireless module substrate 25 and the connector C101 connected to the sleeve antenna element 101A of the printed wiring board 22b are connected via a high-frequency coaxial cable 27-1, thereby the sleeve antenna element. Power is supplied to 101A.
  • the signal input / output terminal 26-2 on the wireless module substrate 25 and the connector C201 connected to the sleeve antenna element 201A of the printed wiring board 22a are connected via a high-frequency coaxial cable 27-2. Power is supplied to the antenna element 201A.
  • the signal input / output terminal 26-3 on the wireless module board 25 and the connector C301 connected to the sleeve antenna element 301A of the printed wiring board 22a are connected via a high-frequency coaxial cable 27-3, thereby the sleeve. Power is supplied to the antenna element 301A.
  • the intervals between the sleeve antenna elements 101A, 201A, and 301A and the parasitic antenna elements 401, 501, 601, and 701 are set in the same manner as in the first embodiment.
  • the parasitic antenna elements 401, 501, 601, and 701 are installed at positions that are a distance of a quarter of the operating wavelength ⁇ during communication from the sleeve antenna element 101A.
  • the sleeve antenna element 201A is installed at a position that is a distance from the parasitic antenna element 401 and a quarter of the operating wavelength ⁇ during communication from the parasitic antenna element 501.
  • the sleeve antenna element 301A is installed at a position that is a distance of a quarter of the operating wavelength ⁇ during communication from the parasitic antenna element 601 and the parasitic antenna element 701.
  • the distance between the dielectric substrates 22a and 22b is set so that the distance between the elements of the sleeve antenna elements 101A, 201A, and 301A and the parasitic antenna elements 401, 501, 601, and 701 is the above-described distance.
  • the directivity of the sleeve antenna element 101A is XY in FIG. It spreads omnidirectionally on the surface, that is, the display installation surface.
  • a voltage is applied to the electrical length adjustment circuits 502 and 602.
  • the parasitic antenna elements 501 and 601 are excited to operate as a reflector of the sleeve antenna element 101A, and the radio wave amplitude is weakened in the + X direction and the amplitude is increased in the ⁇ X direction as compared with the sleeve antenna element 101A. .
  • the directivity of the sleeve antenna element 101A is directed in the ⁇ X direction.
  • the parasitic antenna element 501 also operates as a reflector for the sleeve antenna element 201A, and changes the directivity of the sleeve antenna element 201A in the + Y direction.
  • the parasitic antenna element 601 changes the directivity of the sleeve antenna element 301A in the ⁇ Y direction.
  • FIG. 11 is a front view showing a layout example of the first surface 22b-s1 of the printed wiring board 22b of FIG. 10
  • FIG. 12 is a layout example of the second surface 22b-s2 of the printed wiring board 22b of FIG.
  • FIG. 13 is a front view showing a layout example of the first surface 22a-s1 of the printed wiring board 22a of FIG. 9, and
  • FIG. 14 is a layout of the second surface 22a-s2 of the printed wiring board 22a of FIG.
  • It is a front view which shows an example.
  • 15 is a horizontal plane directivity characteristic diagram when the parasitic antenna elements 401, 501, 601, and 701 are not operated (off state) in the antenna apparatus of FIG. 8
  • FIG. 16 is a parasitic antenna in the antenna apparatus of FIG. It is a horizontal plane directivity characteristic figure at the time of operating element 401, 501, 601 and 701 (ON state).
  • FIGS. 15 and 16 show the directivity characteristics of the antenna elements on the printed wiring boards of FIGS. 11 to 14 in an anechoic chamber. It is a result of actual measurement.
  • FIG. 15 is a graph showing the directivity characteristics of the sleeve antenna elements 101A, 201A, and 301A when the control voltage to the parasitic antenna elements 401, 501, 601, and 701 is turned off.
  • FIG. It is a graph which shows the directivity of sleeve antenna element 101A, 201A, 301A when the control voltage to 401, 501, 601, 701 is turned on.
  • the main radiation is directed in the ⁇ X direction by operating the parasitic antenna elements 501 and 601 positioned in the + X direction with respect to the sleeve antenna element 101A as reflectors.
  • the parasitic antenna elements 401, 501, 601, and 701 are connected to the feeding element 101A and the printed wiring board on the first surface 22b-s1 of the printed wiring board 22b.
  • the directivity of one of the feeding elements 201A and 301A on the first surface 22a-s1 of 22a is arranged at a position where the directivity can be changed at the same time, and each of the feeding elements 101A, 201A and 301A is parasitic on the surface 22b-s1.
  • One of the antenna elements 401 and 701 and one of the parasitic antenna elements 501 and 601 on the surface 22a-s1 are arranged at a position affected by the influence.
  • the parasitic antenna element 401 is disposed close to the feeding antenna elements 101A and 201A so as to be electromagnetically coupled, and the parasitic antenna element 501 is electromagnetically coupled to the feeding antenna elements 101A and 201A.
  • the parasitic antenna element 601 is disposed in close proximity so as to be electromagnetically coupled to the feeding antenna elements 101A and 301A, and the parasitic antenna element 701 is electromagnetically coupled to the feeding antenna elements 101A and 301A. Placed in close proximity to bond. Thereby, it is possible to increase / decrease the power in the perpendicular direction of the printed wiring boards 22a, 22b, and control can be performed so that the combination of directivities of the power feeding elements 101A, 201A, 301A is optimized. It is possible to provide a small antenna device having a directivity switching function suitable for the above.
  • one feeding element 101A and two parasitic antenna elements 401 and 701 are arranged on both sides of the feeding element 101A by about a quarter wavelength ( ⁇ / 4)
  • 601 are arranged so that the distance between each element is about a quarter wavelength ( ⁇ / 4).
  • the number of parasitic antenna elements is not limited to four, and a configuration including three or less parasitic antenna elements or five or more parasitic antenna elements is also possible.
  • the number of sleeve antenna elements is not limited to three.
  • the feeding antenna element is configured as a sleeve antenna element.
  • an antenna device that operates in the same manner as in this embodiment can be realized using a dipole antenna or a collinear antenna.
  • the feeding antenna element and the parasitic antenna element may be configured as a monopole antenna element provided on the ground conductor.
  • FIG. 17 is a perspective view showing a schematic configuration of a wireless module substrate 25 provided with an antenna device according to the third embodiment of the present invention.
  • 18 is a perspective view when the dielectric substrate 21 of FIG. 17 is viewed from the front surface
  • FIG. 19 is a perspective view when the dielectric substrate 21 of FIG. 17 is viewed from the back surface
  • 20 is a perspective view when the dielectric substrate 21 of FIG. 17 is viewed from the lower surface.
  • FIG. 17 shows a usage pattern of the antenna device according to the third embodiment of the present invention.
  • the antenna device of this embodiment includes three monopole antenna elements 101B, 201B, and 301B and four parasitic antenna elements 401A, 501A, 601A, and 701A on a dielectric substrate 21.
  • the monopole antenna element 101B and the parasitic antenna elements 401A and 701A are provided on the surface of the dielectric substrate 21, and the monopole antenna elements 201B and 301B and the parasitic antenna elements 501A and 601A are provided on the dielectric substrate 21.
  • the dielectric substrate 21 is mounted on the wireless module substrate 25 by soldering the power feeding unit 28.
  • the intervals between the monopole antenna elements 101B, 201B, and 301B and the parasitic antenna elements 401A, 501A, 601A, and 701A are set in the same manner as in the first embodiment. That is, the parasitic antenna elements 401A, 501A, 601A, and 701A are installed at a position that is a distance of a quarter of the operating wavelength ⁇ during communication from the monopole antenna element 101B.
  • the monopole antenna element 201B is installed at a position that is a distance of a quarter of the operating wavelength ⁇ during communication from the parasitic antenna element 401A and the parasitic antenna element 501A.
  • the monopole antenna element 301B is installed at a position that is a distance of a quarter of the operating wavelength ⁇ during communication from the parasitic antenna element 601A and the parasitic antenna element 701A.
  • the parasitic antenna element 401 ⁇ / b> A is a monopole element composed of one strip-shaped parasitic conductor element formed as a conductor pattern of the dielectric substrate 21, and is perpendicular to the ground conductor 10 of the dielectric substrate 21. Is provided.
  • the parasitic antenna element 401A has an electrical length of 1 ⁇ 4 wavelength.
  • an electrical length adjustment circuit 402A is provided between the parasitic antenna element 401A and the ground conductor 10.
  • FIG. 21 is an enlarged view of the electrical length adjustment circuit 402A in the antenna device of FIG. That is, FIG. 21 shows a portion including an electrical length adjustment circuit 402A and a parasitic antenna element 401A that is a parasitic conductor element adjacent to the electrical length adjustment circuit 402A.
  • a PIN diode 403b is connected between the parasitic antenna element 401A and the ground conductor.
  • the cathode terminal of the PIN diode 403b is connected to the ground conductor 10
  • the anode terminal of the PIN diode 403b is connected to the parasitic antenna element 401A.
  • An anode terminal of the PIN diode 403b is connected to an applied bias voltage terminal DC4 of the controller 1 that applies a control voltage (that is, a bias voltage) to control the directivity of the antenna device via a control line 404a.
  • the cathode terminal is connected to the ground terminal GND of the controller controller 1 through the ground conductor 10 and the control line 404b. Therefore, the control lines 404a and 404b are a DC voltage supply line and a GND line for controlling the parasitic antenna element 401A, respectively.
  • an inductor (coil) 405b having an inductance of, for example, about several tens of nH is provided so as to be close to the anode terminal of the PIN diode 403b, and several more on the control line 404a.
  • a resistor 406 for current control of about kilo ohm is provided.
  • an inductor 405c having an inductance of, for example, about several tens of nH is provided so as to be close to the cathode terminal of the PIN diode 403b.
  • the inductors 405b and 405c have a role of preventing the high-frequency signal excited by the parasitic antenna element 401A from leaking onto the control lines 404a and 404b.
  • the parasitic antenna elements 501A, 601A, and 701A are also configured similarly to the parasitic antenna element 401A. That is, each of the parasitic antenna elements 501A, 601A, and 701A is connected to one strip-shaped parasitic conductor element provided perpendicular to the ground conductor 10, and between the parasitic conductor element and the ground conductor 10.
  • the electric length adjusting circuits 502A, 602A, and 702A are configured. Furthermore, the electrical length adjustment circuits 502A, 602A, and 702A are configured similarly to the electrical length adjustment circuit 402A.
  • the anode terminal of the PIN diode of the electrical length adjusting circuit 502A is connected to the applied bias voltage terminal DC5 of the controller 1, while the cathode terminal is connected to the ground terminal GND.
  • the anode terminal of one PIN diode of the electrical length adjusting circuit 602A is connected to the applied bias voltage terminal DC6 of the controller 1, while the cathode terminal is connected to the ground terminal GND.
  • the anode terminal of one PIN diode of the electrical length adjusting circuit 702A is connected to the applied bias voltage terminal DC7 of the controller 1, while the cathode terminal is connected to the ground terminal GND.
  • the directivity of the monopole antenna element 101B is as shown in FIG. It spreads omnidirectionally on the XY plane, that is, the installation surface of the wireless module substrate.
  • a voltage is applied to the electrical length adjustment circuits 502A and 602A.
  • the parasitic antenna elements 501A and 601A are excited and operate as a reflector of the monopole antenna element 101B.
  • the amplitude of the radio wave is weakened in the + X direction and the amplitude in the ⁇ X direction is smaller than that of the monopole antenna element 101B.
  • the directivity of the monopole antenna element 101B is directed in the ⁇ X direction.
  • the parasitic antenna element 501A also operates as a reflector for the monopole antenna element 201B, and changes the directivity of the monopole antenna element 201B in the + Y direction.
  • the parasitic antenna element 601A changes the directivity of the monopole antenna element 301B in the ⁇ Y direction.
  • the conduction / non-conduction of the PIN diode is used to adjust the electrical length.
  • a varicap diode 403bv variable capacitance diode
  • the electrical length may be switched by changing the value.
  • FIG. 22 is an enlarged view of an electrical length adjustment circuit 402C according to a first modification of the third embodiment of the present invention.
  • the electrical length adjustment circuit 402C is different from the electrical length adjustment circuit 402A in that a varicap diode 403bv is provided instead of the PIN diode 403b.
  • a varicap diode 403bv is provided instead of the PIN diode 403b.
  • the anode terminal of the varicap diode 403bv is connected to the parasitic antenna element 401A, and the cathode terminal is connected to the ground conductor 10.
  • the anode terminal of the varicap diode 403bv is connected to the applied bias voltage terminal DC4 of the controller 1 via the inductor 405b, the resistor 406, and the control line 404a.
  • the cathode terminal of the varicap diode 403bv is connected to the ground terminal GND of the controller 1 through the ground conductor 10, the inductor 405c, and the control line 404b.
  • the controller 1 changes the capacitance value of the varicap diode 403bv by continuously changing the bias voltage applied to the varicap diode 403bv, and continuously changes the electrical length of the parasitic antenna element 401A.
  • the parasitic antenna elements 401A, 501A, 601A, and 701A are on the second surface with the feeder element 101B on the first surface of the dielectric substrate 21.
  • the directional characteristics of one of the feed elements 201B and 301B are arranged at a position where the directivity can be changed at the same time, and each of the feed elements 101B, 201B and 301B is connected to one of the parasitic antenna elements 401A and 701A on the first surface.
  • the parasitic antenna elements 501 ⁇ / b> A and 601 ⁇ / b> A on the surface 2 are arranged at positions affected by one of them.
  • the parasitic antenna element 401A is disposed close to the feeding antenna elements 101B and 201B so as to be electromagnetically coupled, and the parasitic antenna element 501A is electromagnetically coupled to the feeding antenna elements 101B and 201B.
  • the parasitic antenna element 601A is disposed so as to be electromagnetically coupled to the feeding antenna elements 101B and 301B, and the parasitic antenna element 701A is electromagnetically coupled to the feeding antenna elements 101B and 301B. Placed in close proximity to bond. Thereby, it is possible to increase / decrease the electric power in the perpendicular direction of the dielectric substrate 21, and it can be controlled so that the combination of directivity of each of the power feeding elements 101B, 201B, 301B is optimum, which is suitable for the MIMO communication system.
  • a small antenna device having a directivity switching function can be provided.
  • the feeding antenna elements 101B, 201B, and 301B are illustrated as monopole antenna elements. However, even if a sleeve antenna, an inverted F antenna, or a dipole antenna is used, An antenna device that operates similarly can be realized.
  • FIG. 24 is a perspective view of the antenna device according to the fourth embodiment of the present invention when viewed from the front surface
  • FIG. 25 is a perspective view of the antenna device of FIG. 24 when viewed from the back surface
  • FIG. 26 is a top view of the antenna device of FIGS.
  • the antenna device according to this embodiment is characterized in that the dipole antenna element 301 and the parasitic antenna elements 601 and 701 are removed as compared with the antenna device according to the first embodiment.
  • the antenna device according to the present embodiment has the same effects as the antenna device according to the first embodiment.
  • FIG. 27 is a top view of an antenna device according to a first modification of the fourth embodiment of the present invention.
  • the antenna device according to this modification example is replaced with two printed wiring boards provided in parallel to each other in the same manner as in the second embodiment, instead of the printed wiring board 21. It is characterized by using 22a and 22b.
  • the distance between the printed wiring boards 22a and 22b is set so that the element spacing between the dipole antenna elements 101 and 201 and the parasitic antenna elements 401 and 501 is equal to the element spacing described above.
  • the dipole antenna element 101 and the parasitic antenna element 401 are provided on the first surface 22a-s1 of the printed wiring board 22b, and the dipole antenna element 201 and the parasitic antenna element 501 are the first surface of the printed wiring board 22a. 22b-s1.
  • FIG. 28 is a top view of an antenna device according to a second modification of the fourth embodiment of the present invention. At this time, the distance between the printed wiring boards 22a and 22b is set so that the element spacing between the dipole antenna elements 101 and 201 and the parasitic antenna elements 401 and 501 is the element spacing described above.
  • FIG. 29 is a top view of an antenna apparatus according to a third modification of the fourth embodiment of the present invention.
  • the dipole antenna element 101 is provided on the first surface 22b-s1 of the printed wiring board 22b
  • the parasitic antenna element 401 is provided on the second surface 22b-s2 of the printed wiring board 22b.
  • the dipole antenna element 201 may be provided on the first surface 22a-s1 of the printed wiring board 22a
  • the parasitic antenna element 501 may be provided on the second surface 22a-s2 of the printed wiring board 22a.
  • FIG. 30 is a top view of an antenna device according to a fourth modification of the fourth embodiment of the present invention.
  • the dipole antenna element 101 and the parasitic antenna element 401 are respectively formed on both surfaces of the printed wiring board 22b
  • the dipole antenna element 102 and the parasitic antenna element 501 are respectively formed on both surfaces of the printed wiring board 22a.
  • the feed conductor element 101a (see FIG. 25) of the dipole antenna element 101 is a feed conductor element formed on each of the first surface 22b-s1 and the second surface 22b-s2 of the printed wiring board 22b. 101a-1 and 101a-2, and via conductors 101v that electrically connect the power supply conductor elements 101a-1 and 101a-2.
  • the parasitic conductor element 401a (see FIG. 25) of the parasitic antenna element 401 is a parasitic conductor element formed on each of the first surface 22b-s1 and the second surface 22b-s2 of the printed wiring board 22b. 401a-1 and 401a-2 and a via conductor 401v that electrically connects the parasitic conductor elements 401a-1 and 401a-2. Furthermore, the feed conductor element 201a (see FIG. 24) of the dipole antenna element 201 is a feed conductor element 201a-1 formed on each of the first surface 22a-s1 and the second surface 22a-s2 of the printed wiring board 22a.
  • the parasitic conductor element 501a (see FIG. 24) of the parasitic antenna element 501 is a parasitic conductor element formed on each of the first surface 22a-s1 and the second surface 22a-s2 of the printed wiring board 22a. 501a-1 and 501a-2 and a via conductor 501v that electrically connects the parasitic conductor elements 501a-1 and 501a-2.
  • An integral dielectric substrate 21 may be used as in the fourth embodiment.
  • a feeding antenna element 201 is provided on at least one of the first and second surfaces 22a-s1 and 22a-s2 of the printed wiring board 22a.
  • a parasitic antenna element 501 is provided on at least one of the first and second surfaces 22a-s1, 22a-s2 of the substrate 22a, and the first and second surfaces 22b-s1, 22b-s2 of the printed circuit board 22b are provided.
  • the feeding antenna element 101 may be provided on at least one of them, and the parasitic antenna element 401 may be provided on at least one of the first and second surfaces 22b-s1 and 22b-s2 of the printed wiring board 22b. Furthermore, at least one feeding antenna element 101 (which is a first feeding element), at least one feeding antenna element 201 (which is a second feeding element), and at least one parasitic antenna element 401 (the first feeding element). 1), at least one parasitic antenna element 501 (second parasitic element), the first parasitic element and the first and second feeding elements and electromagnetic And the second parasitic element may be arranged close to each other so as to be electromagnetically coupled to the first and second feeder elements.
  • the sleeve antenna element 101A in FIG. 10 or the monopole antenna element 101B in FIG. 18 may be used instead of the dipole antenna elements 101 and 201.
  • the parasitic antenna elements 401 and 501 that are monopole elements the parasitic antenna element 401 that is a dipole element of FIG. 18 may be used.
  • the electrical length adjustment circuit 402A in FIG. 21 or the electrical length adjustment circuit 402C in FIG. 22 is used.
  • an electrical length switching circuit for switching whether or not to operate each parasitic element as a reflector is connected as the control means.
  • Each electrical length switching circuit is configured by a PIN diode or a variable reactance element.
  • the parasitic element connected to the electrical length switching circuit operates as a reflector.
  • the first parasitic element is disposed in close proximity so as to be electromagnetically coupled to the first and second feeder elements, and the second parasitic element is the first and second feeder elements. Therefore, by operating one parasitic element as a reflector, the main radiation directions of the first and second feeding elements are changed.
  • the antenna device according to the present invention is useful as a method of installing a plurality of variable directivity antennas close to each other because a combination of many directivity patterns can be realized with a simple configuration.
  • Controller, 10 Ground conductor, 21 ... dielectric substrate, 22a, 22b ... printed wiring board, 23. Metal housing, 24 ... Resin window, 25 ... Wireless module board, 26-1, 26-2, 26-3, signal input / output terminals, 27-1, 27-2, 27-3 ... high frequency coaxial cable, 28 ... power feeding part, 101, 201, 301, 151, 1001 ... dipole antenna elements, 101A, 201A, 301A ... Sleeve antenna element, 101B, 201B, 301B ... monopole antenna elements, 401, 501, 601, 701, 801, 401A, 501A, 601A, 701A ... parasitic antenna elements, 102, 202, 302 ...

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

 アンテナ装置は、誘電体基板(21)の第1の面に設けられたアンテナ素子(101)及び無給電素子(401)と、誘電体基板(21)の第2の面に設けられたアンテナ素子(501)及び無給電素子(201)とを備える。無給電素子(401,501)はそれぞれ、アンテナ素子(101,201)から、通信時の動作波長λの4分の1の距離の各位置に設けられる。

Description

アンテナ装置
 本発明は、電気的に主放射方向を切り替え可能である指向性可変なアンテナ装置に関する。
 IEEE802.11a/b/g規格に準拠した無線LANシステムやBluetoothなど、無線技術を応用した機器が近年急速に普及している。IEEE802.11aやIEEE802.11gは、データの伝送速度が54Mbpsとされているが、最近では、さらに高速な伝送速度を実現するための無線方式の研究開発が盛んになっている。
 無線通信システムの高速化を実現する技術の1つとして、MIMO(Multi-Input Multi-Output)通信システムが注目を集めている。これは、送信機側と受信機側の双方において複数のアンテナ素子を備え、空間多重した伝送路を実現することにより、伝送容量の拡大を図り、通信速度向上を達成する技術であり、無線LANのみならず、携帯電話通信システムや、IEEE802.16e(WiMAX)など、次世代無線通信システムにおいて必須の技術とされる。
 MIMO通信方式は、送信機において複数のアンテナ素子に送信データを分配し、同時刻に、同一周波数にて送出を行う。送出された電波は、それぞれ空間中の様々な伝搬路を経由後、複数の受信アンテナ素子に到達する。受信機では、送信アンテナと受信アンテナとの間の伝達関数を推定し、演算処理を行うことで元のデータを復元する。一般的に、MIMO通信方式を使用した無線機器の場合、ダイポールアンテナやスリーブアンテナなど無指向性給電素子が複数本使用される。この場合、給電素子間の距離を十分に離す、若しくは各給電素子を別の方向に傾け異なる偏波の組み合わせにするといった工夫を行わない限り、互いの給電素子間の相関が大きくなり、伝送品質が悪くなるといった問題点があった。
 この問題点を解決するための従来技術として、例えば、特許文献1に開示された指向性適応型アンテナであるアレーアンテナ装置を使用することが考えられる。特許文献1のアレーアンテナ装置は、誘電体支持基板上に垂直に設置された半波長ダイポールアンテナの周囲を取り囲むように、3つのプリント配線基板が配置されて構成されている。半波長ダイポールアンテナへは、平衡型給電ケーブルを介して高周波信号が供給される。また、各プリント配線基板の裏面には、2つのプリントアンテナ素子(導体パターンにてなる素子)を一組として、2組の無給電素子が平行に設けられており、各無給電素子において、2つのプリントアンテナ素子は所定の隙間を有して対向するように設けられている。各プリントアンテナ素子の対向側端部にはスルーホール導体が設けられ、プリント配線基板の表側の電極端子に接続されている。各無給電素子において、2つの電極端子間には可変容量ダイオードが実装され、各電極端子はさらに高周波阻止用高抵抗を介してペアケーブルに接続され、ペアケーブルは、当該アンテナ装置の指向特性を制御するコントローラの印加バイアス電圧端子DC+及びDC-に接続されている。コントローラからの印加バイアス電圧を切り替えることにより、無給電素子に接続された可変容量ダイオードのリアクタンス値が変化する。これにより、各無給電素子の電気長を、半波長ダイポールアンテナと比較して変化させ、当該アレーアンテナ装置の平面指向特性を変化させている。
 特許文献1のアレーアンテナ装置のような指向性適応型アンテナをMIMO通信用アンテナとして採用し、アンテナ間の相関が発生しないよう、それぞれの指向性を設定することで、給電素子間の距離を小さくすることが可能となる。
特開2002-261532号公報。
 特許文献1に記載の適応型アンテナをMIMO通信に使用することにより、給電素子間の距離を狭めることができる。しかしながら、前記従来の適応型アンテナを複数配置された場合、それぞれの給電素子の周囲に無給電素子を配置する必要があるので、設置に必要な空間が非常に大きくなる。小型化のために、給電素子と無給電素子を一枚の基板上に設置することが考えられるが、その場合、基板の垂線方向への電界強度は変化しないという問題点があった。
 本発明の目的は、前述した従来の問題点を解決するもので、設置に必要な空間が小さく、基板の垂線方向への電界強度も変化することができるMIMO通信用指向性可変アンテナ装置を提供することにある。
 本発明に係るアンテナ装置は、
 互いに平行な第1及び第2の面を有する第1の誘電体基板と、
 互いに平行な第1及び第2の面を有する第2の誘電体基板と、
 上記第1の誘電体基板の第1及び第2の面のうちの少なくとも一方に設けられ、無線信号を送受信する第1の給電素子と、
 上記第1の誘電体基板の第1及び第2の面のうちの少なくとも一方に設けられた第1の無給電素子と、
 上記第2の誘電体基板の第1及び第2の面のうちの少なくとも一方に設けられ、無線信号を送受信する第2の給電素子と、
 上記第2の誘電体基板の第1及び第2の面のうちの少なくとも一方に設けられた第2の無給電素子と、
 上記各第1及び第2の無給電素子を反射器として動作させるか否かを切り換える制御手段とを備え、
 上記第1の無給電素子は、上記第1及び第2の給電素子と電磁的に結合するように近接して配置され、
 上記第2の無給電素子は、上記第1及び第2の給電素子と電磁的に結合するように近接して配置されたことを特徴とするアンテナ装置。
 上記アンテナ装置において、上記第1の給電素子及び第1の無給電素子は、上記第1の誘電体基板の第1の面に設けられ、
 上記第2の給電素子及び第2の無給電素子は、上記第2の誘電体基板の第1の面に設けられ、
 上記第1の誘電体基板の第2の面と上記第2の誘電体基板の第2の面とは互いに対向するように、上記第1及び第2の誘電体基板は一体の誘電体基板にてなることを特徴とする。
 また、上記アンテナ装置において、上記第1及び第2の無給電素子はそれぞれ、1/4波長の電気長を有する2本の無給電導体素子が一直線上に設けられたダイポール素子であり、
 上記制御手段は、
 上記第1の無給電素子の2本の無給電導体素子の間に直列に接続されたPINダイオードと、
 上記第2の無給電素子の2本の無給電導体素子の間に直列に接続されたPINダイオードとを備えたことを特徴とする。
 さらに、上記アンテナ装置において、上記第1及び第2の無給電素子はそれぞれ、1/4波長の電気長を有する2本の無給電導体素子が一直線上に設けられたダイポール素子であり、
 上記制御手段は、
 上記第1の無給電素子の2本の無給電導体素子の間に直列に接続された可変容量ダイオードと、
 上記第2の無給電素子の2本の無給電導体素子の間に直列に接続された可変容量ダイオードとを備えたことを特徴とする。
 またさらに、上記アンテナ装置において、上記第1及び第2の無給電素子はそれぞれ、1/4波長の電気長を有する1本の無給電導体素子が接地導体に対して垂直に設けられたモノポール素子であり、
 上記制御手段は、
 上記第1の無給電素子の無給電導体素子と上記接地導体との間に接続されたPINダイオードと、
 上記第2の無給電素子の無給電導体素子と上記接地導体との間に接続されたPINダイオードとを備えたことを特徴とする。
 また、上記アンテナ装置において、上記第1及び第2の無給電素子はそれぞれ、1/4波長の電気長を有する1本の無給電導体素子が接地導体に対して垂直に設けられたモノポール素子であり、
 上記制御手段は、
 上記第1の無給電素子の無給電導体素子と上記接地導体との間に接続された可変容量ダイオードと、
 上記第2の無給電素子の無給電導体素子と上記接地導体との間に接続された可変容量ダイオードとを備えたことを特徴とする。
 さらに、上記アンテナ装置において、上記第1及び第2の給電素子はそれぞれ、ダイポールアンテナであることを特徴とする。
 またさらに、上記アンテナ装置において、上記第1及び第2の給電素子はそれぞれ、スリーブアンテナであることを特徴とする。
 また、上記アンテナ装置において、上記第1及び第2の給電素子はそれぞれ、モノポールアンテナであることを特徴とする。
 さらに、上記アンテナ装置において、上記第1の無給電素子は、上記第1及び第2の給電素子から1/4波長の距離だけ離れて設けられ、
 上記第2の無給電素子は、上記第1及び第2の給電素子から1/4波長の距離だけ離れて設けられたことを特徴とする。
 またさらに、上記アンテナ装置において、1つの上記第1の給電素子と、2つの上記第1の無給電素子と、2つの上記第2の給電素子と、2つの上記第2の無給電素子とを備えたことを特徴とする。
 また、上記アンテナ装置において、少なくとも1つの上記第1の給電素子と、少なくとも1つの上記第1の無給電素子と、少なくとも1つの上記第2の給電素子と、少なくとも1つの上記第2の無給電素子とを備えたことを特徴とする。
 本発明のアンテナ装置によれば、第1の誘電体基板に配された第1の無給電素子と、第2の誘電体基板に配された第2の無給電素子には、各無給電素子を反射器として動作させるか否かを切り換えるための電気長切り替え回路が上記制御手段として接続されている。各電気長切り替え回路は、PINダイオードや、可変リアクタンス素子によって構成されており、回路に適切な電圧を印加することで、当該電気長切り換え回路に接続された無給電素子は反射器として動作する。ここで、第1の無給電素子は、第1及び第2の給電素子と電磁的に結合するように近接して配置され、かつ第2の無給電素子は、第1及び第2の給電素子と電磁的に結合するように近接して配置されているので、一つの無給電素子を反射器として動作させることで、第1及び第2の給電素子の主放射方向が変化する。
 これにより、第1及び第2の誘電体基板の垂線方向への放射電力を増減することが可能であり、各給電素子の指向性の組み合わせが最適になるように制御できるので、MIMO通信方式に適した指向性切り替え機能を備えたアンテナ装置を提供することができる。また、第1及び第2の誘電体基板を一体のブロック(誘電体基板である)とし、全ての素子をこの1枚のブロック上に設けた場合には、当該ブロックを無線モジュール基板に半田付けすることなどによって表面実装可能な為、通常同軸ケーブルによって発生する伝搬損失を無視することが可能となる。
本発明の第1の実施形態に係るアンテナ装置をおもて面から見たときの斜視図である。 図1のアンテナ装置を裏面から見たときの斜視図である。 図1及び図2のアンテナ装置の上面図である。 図2のアンテナ装置における電気長調整回路402の拡大図である。 本発明の第1の実施形態の第1の変形例に係るアンテナ装置の上面図である。 本発明の第1の実施形態の第2の変形例に係るアンテナ装置の上面図である。 本発明の第1の実施形態の第3の変形例に係るアンテナ装置の上面図である。 本発明の第2の実施形態に係るアンテナ装置の斜視図である。 本発明の第2の実施形態に係るプリント配線基板22aの正面図である。 本発明の第2の実施形態に係るプリント配線基板22bの正面図である。 図10のプリント配線基板22bの第1の面22b-s1のレイアウト例を示す正面図である。 図10のプリント配線基板22bの第2の面22b-s2のレイアウト例を示す正面図である。 図9のプリント配線基板22aの第1の面22a-s1のレイアウト例を示す正面図である。 図9のプリント配線基板22aの第2の面22a-s2のレイアウト例を示す正面図である。 図8のアンテナ装置において無給電アンテナ素子401、501、601、701を動作させない場合(オフ状態)の水平面指向特性図である。 図8のアンテナ装置において無給電アンテナ素子401、501、601、701を動作させた場合(オン状態)の水平面指向特性図である。 本発明の第3の実施形態に係るアンテナ装置を備えた無線モジュール基板25の概略構成を示す斜視図である。 図17の誘電体基板21をおもて面から見たときの斜視図である。 図17の誘電体基板21を裏面から見たときの斜視図である。 図17の誘電体基板21を下面から見たときの斜視図である。 図17のアンテナ装置における電気長調整回路402Aの拡大図である。 本発明の第3の実施形態の第1の変形例に係る電気長調整回路402Cの拡大図である。 本発明の第1の実施形態の第4の変形例に係る電気長調整回路402Bの拡大図である。 本発明の第4の実施形態に係るアンテナ装置をおもて面から見たときの斜視図である。 図24のアンテナ装置を裏面から見たときの斜視図である。 図24及び図25のアンテナ装置の上面図である。 本発明の第4の実施形態の第1の変形例に係るアンテナ装置の上面図である。 本発明の第4の実施形態の第2の変形例に係るアンテナ装置の上面図である。 本発明の第4の実施形態の第3の変形例に係るアンテナ装置の上面図である。 本発明の第4の実施形態の第4の変形例に係るアンテナ装置の上面図である。
 以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。明細書及び図面を通じて、同様の構成要素には同様の符号を用い、繰り返しの説明は省略する。
第1の実施形態.
 図1は本発明の第1の実施形態に係るアンテナ装置をおもて面から見たときの斜視図であり、図2は図1のアンテナ装置を裏面から見たときの斜視図である。また、図3は図1及び図2のアンテナ装置の上面図である。本実施形態に係るアンテナ装置は、誘電体基板21上に3つのダイポールアンテナ素子101,201,301と、4つの無給電アンテナ素子(無給電素子である。)401,501,601,701を備えて構成される。また、図1乃至図3に示すように、3次元のXYZ座標を導入する。
 詳細後述するように、本実施形態に係るアンテナ装置は、誘電体基板21と、誘電体基板21の一方の面に設けられ無線信号を送受信する給電アンテナ素子101と、誘電体基板21の一方の面に設けられた無給電アンテナ素子401,701と、誘電体基板21の他方の面に設けられ無線信号を送受信する給電アンテナ素子201,301と、誘電体基板の他方の面に設けられた無給電アンテナ素子501,601と、各無給電素子401,501,601,701をそれぞれ反射器として動作させるか否かを切り換えるコントローラ1及び電気長調整回路401,502,602,702とを備え、無給電アンテナ素子401は給電アンテナ素子101及び201と電磁的に結合するように近接して配置され、無給電アンテナ素子501は給電アンテナ素子101及び201と電磁的に結合するように近接して配置され、無給電アンテナ素子601は給電アンテナ素子101及び301と電磁的に結合するように近接して配置され、無給電アンテナ素子701を給電アンテナ素子101及び301と電磁的に結合するように近接して配置されたことを特徴としている。
 ダイポールアンテナ素子101は、誘電体基板21の表面に導体パターンとして形成された2つのストリップ形状の給電導体素子101a,101bから構成され、給電導体素子101a,101bは互いに所定間隔を有して一直線上に配置されている。各給電導体素子101a,101bの対向した側に設けた給電点102は、無線通信回路(図示せず)と接続され、これによりダイポールアンテナ素子101を介して無線信号が送受信される。
 無給電アンテナ素子401,701は、ダイポールアンテナ素子101を挟むように、ダイポールアンテナ素子101が位置する直線に対して、通信時の動作波長λの4分の1の距離だけ離れた平行線上にそれぞれ配置される。また、無給電アンテナ素子501,601は、ダイポールアンテナ素子101が位置する直線に対して、通信時の動作波長λの4分の1の距離だけ離れた平行線上であり、誘電体基板上の、ダイポールアンテナ素子101が配置された面と対向する面に、それぞれ配置される。ここで、動作波長λの4分の1の距離は、ダイポールアンテナ素子と無給電アンテナ素子とが互いに電磁的に結合する距離であって、使用する誘電体基板の誘電率によって変化し、誘電率が高いほど短くなる。
 無給電アンテナ素子401は、誘電体基板21の導体パターンとして形成された2つのストリップ形状の無給電導体素子401a,401bから構成されたダイポール素子である。ここで、無給電導体素子401a,401bは、1/4波長(λ/4)の電気長を有し、互いに所定間隔を有して一直線上に配置されている。各無給電導体素子401a,401bの対向した側には、電気長調整回路402が設けられる。
 図4は図2のアンテナ装置における電気長調整回路402の拡大図である。すなわち、図4において、電気長調整回路402と、それに近接した無給電導体素子401a,401bとを含む部分を示す。
 図4において、無給電導体素子401a,401bの対向した側には、一対のPINダイオード403a,403bが設けられる。PINダイオード403aのカソード端子は無給電導体素子401aに接続され、PINダイオード403bのカソード端子は無給電導体素子401bに接続され、PINダイオード403a,403bのアノード端子は互いに接続される。PINダイオード403a,403bのアノード端子は、制御線404aを介して、制御電圧(すなわちバイアス電圧)を印加してアンテナ装置の指向特性を制御するコントローラ1の印加バイアス電圧端子(DC端子)DC4に接続され、PINダイオード403a,403bのカソード端子は、制御線404bを介して、コントローラ1の接地端子(GND端子)GNDに接続される。従って、制御線404a,404bはそれぞれ、無給電アンテナ素子401制御用の直流電圧供給線路とGND線路である。制御線404a上において、PINダイオード403a,403bのアノード端子に近接するように、高周波阻止用の、例えば数十nH程度のインダクタンスを有するインダクタ(コイル)405bが設けられ、制御線404a上にはさらに、数キロオーム程度の電流制御用の抵抗406が設けられる。また、制御線404b上において、PINダイオード403a,403bのカソード端子に近接するように、高周波阻止用の、例えば数十nH程度のインダクタンスを有するインダクタ405a,405cが設けられる。ここで、インダクタ405a,405b,405cは、無給電アンテナ素子401にて励振した高周波信号が、制御線404a,404b上に漏洩することを防ぐ役割を持つ。
 無給電アンテナ素子501,601,701もまた、無給電アンテナ素子401と同様に構成される。無給電アンテナ素子501は、2つのストリップ形状の無給電導体素子501a,501bと、各無給電導体素子501a,501bの対向した側の電気長調整回路502から構成される。無給電アンテナ素子601は、2つのストリップ形状の無給電導体素子601a,601bと、各無給電導体素子601a,601bの対向した側の電気長調整回路602から構成される。無給電アンテナ素子701は、2つのストリップ形状の無給電導体素子701a,701bと、各無給電導体素子701a,701bの対向した側の電気長調整回路702から構成される。また、電気長調整回路502,602,702もまた、電気長調整回路402と同様に構成される。ここで、電気長調整回路502の2つのPINダイオードの各アノード端子はコントローラ1の印加バイアス電圧端子DC5に接続される一方、各カソード端子はグランド端子GNDに接続される。電気長調整回路602の2つのPINダイオードの各アノード端子はコントローラ1の印加バイアス電圧端子DC6に接続される一方、各カソード端子はグランド端子GNDに接続される。電気長調整回路702の2つのPINダイオードの各アノード端子はコントローラ1の印加バイアス電圧端子DC7に接続される一方、各カソード端子はグランド端子GNDに接続される。
 さらに、ダイポールアンテナ素子201,301もまた、ダイポールアンテナ素子101と同様に構成される。
 図3は、本発明の第1の実施形態に係るアンテナ装置を、上から見た平面図である。前述のように、無給電アンテナ素子401,501,601,701は、ダイポールアンテナ素子101から通信時の動作波長λの4分の1の距離の位置に設置されている。この距離は、使用する誘電体基板の誘電率に依存する。
 ダイポールアンテナ素子201は、無給電アンテナ素子401と、無給電アンテナ素子501から通信時の動作波長λの4分の1の距離の位置に設置されている。また、ダイポールアンテナ素子301は、無給電アンテナ素子601と、無給電アンテナ素子701から通信時の動作波長λの4分の1の距離の位置に設置されている。
 以上のように構成されたアンテナ装置において、コントローラ1の制御電圧がオフの場合には、全ての電気長調整回路402,502,602,702内のPINダイオードに電圧が印加されないので、無給電アンテナ素子401,501,601,701は励振されず、無給電アンテナ素子401,501,601,701がダイポールアンテナ素子101,201,301の指向特性に影響しない。
 一方、コントローラ1が、例えば無給電アンテナ素子401への制御電圧をオンにする場合には、DC端子DC4からの印加バイアス電圧を、制御線404aを介してPINダイオード403a,403bのアノード側に印加し、例えば0.8V程度のPINダイオード403a,403bの動作電圧よりも大きくすることによって、PINダイオード403a,403bは導通状態になる。この時、無給電アンテナ素子401は、ダイポールアンテナ素子101から放射される電波によって励振され、電波を再放射する。ダイポールアンテナ素子101と無給電アンテナ素子401との間隔は動作波長λの4分の1であるので、無給電アンテナ素子401から再放射される電波は、ダイポールアンテナ素子101から放射される電波よりも位相が90度遅れたものとなる。2つの電波の重ね合わせにより、無給電アンテナ素子401よりも+Y方向に向かう電波は打ち消され、ダイポールアンテナ素子101よりも-Y方向に向かう電波は強められる。
 またこのとき、無給電アンテナ素子401は、ダイポールアンテナ素子201から放射される電波によっても励振され、電波を再放射する。ダイポールアンテナ素子201と無給電アンテナ素子401との間隔は動作波長λの4分の1であるので、無給電アンテナ素子401から再放射される電波は、ダイポールアンテナ素子201から放射される電波よりも位相が90度遅れたものとなる。2つの電波の重ね合わせにより、無給電アンテナ素子401よりも-(X+Y)方向に向かう電波は打ち消され、ダイポールアンテナ素子101よりも+(X+Y)方向に向かう電波は強められる。このように、無給電アンテナ素子401に接続された電気長調整回路402にバイアス電圧が印加されたとき当該無給電アンテナ素子401はダイポールアンテナ素子101,201に対して反射器として動作するので、ダイポールアンテナ素子101の指向特性を、-Y方向に主放射が向いた状態へと切り替え、ダイポールアンテナ素子201の指向特性を、+(X+Y)方向に主放射が向いた状態へと切り替えることができる。
 他の無給電アンテナ素子501,601,701をオンにする場合にも、同様に指向特性を制御することができ、例えば無給電アンテナ素子401と無給電アンテナ素子501を同時にオンした場合には、ダイポールアンテナ素子101の指向特性は-(X+Y)方向に主放射が向き、別の例として無給電アンテナ素子501と無給電アンテナ素子601を同時にオンした場合には、ダイポールアンテナ素子101の指向特性は-X方向に主放射が向く。
 つまり、ダイポールアンテナ素子101がとりうる指向性形状の数は、ダイポールアンテナ素子101に対して影響を与える無給電アンテナ素子の本数が4本であることから、2=8通りであり、ダイポールアンテナ素子201,301がとりうる指向性形状の数は、影響を与える無給電アンテナ素子の本数が2本であることから、2=4通りとなる。
 図5は本発明の第1の実施形態の第1の変形例に係るアンテナ装置の上面図である。図5において、2つのダイポールアンテナ素子101,201と4つの無給電アンテナ素子401,501,601,701を備えた変形例を図示している。
 図6は本発明の第1の実施形態の第2の変形例に係るアンテナ装置の上面図である。図6において、3つのダイポールアンテナ素子101,201,301と5つの無給電アンテナ素子401,501,601,701,801を備えた変形例を図示している。
 図7は本発明の第1の実施形態の第3の変形例に係るアンテナ装置の上面図である。図7において、5つのダイポールアンテナ素子101,201,301,901,1001と5つの無給電アンテナ素子401,501,601,701,801を備えた変形例を図示している。
 なお、本実施形態では、給電素子としてダイポールアンテナ素子101,201,301を用いた場合を示したが、水平面(X-Y面)指向特性が無指向性に近いものであれば使用可能であるため、スリーブアンテナ、コリニアアンテナ又はモノポールアンテナを用いても、本実施形態と同様に動作するアンテナ装置を実現できる。また、本実施形態では、誘電体基板1上に2つ~5つの励振アンテナ素子と4つ~5つの無給電アンテナ素子を配置された例を示したが、それぞれの素子の数は、増減してもよい。
 さらに、本実施形態では、電気長を調整するために、PINダイオードの導通/非導通を利用したが、例えば、図23に示すように、バリキャップダイオード(可変容量ダイオード)403av、403bvを使用し、リアクタンス値を変化させることで電気長を切り替えても良い。図23は、本発明の第1の実施形態の第4の変形例に係る電気長調整回路402Bの拡大図である。電気長調整回路402Bは、電気長調整回路402Aに比較して、PINダイオード403a,403bに代えてバリキャップダイオード40av,403bvを設けた点が異なる。図23において、バリキャップダイオード403avのカソード端子は無給電導体素子401aに接続され、バリキャップダイオード403bvのカソード端子は無給電導体素子401bに接続され、バリキャップダイオード403av,403bvのアノード端子は互いに接続される。バリキャップダイオード403av,403bvのアノード端子は、インダクタ405b、抵抗406及び制御線404aを介して、コントローラ1の印加バイアス電圧端子DC4に接続される。さらに、バリキャップダイオード403avのカソード端子は、インダクタ405a及び制御線404bを介して、コントローラ1の接地端子GNDに接続され、バリキャップダイオード403bvのカソード端子は、インダクタ405c及び制御線404bを介して、コントローラ1の接地端子GNDに接続される。コントローラ1は、バリキャップダイオード403av、403bvに印加するバイアス電圧を連続的に変化させることによりバリキャップダイオード403av、403bvの各容量値を変化させ、無給電アンテナ素子401の電気長を連続的に変化させる。
 以上説明したように、本実施形態のアンテナ装置によれば、無給電アンテナ素子401,501,601,701を、誘電体基板21の第1の面にある給電素子101と第2の面にある給電素子201,301のうちの1つの指向特性を同時に変化できる位置に配置し、各給電素子101,201,301を、第1の面にある無給電アンテナ素子401,701のうちの1つと第2の面にある無給電アンテナ素子501,601のうちの1つの影響を受ける位置に配置した。より具体的には、無給電アンテナ素子401を給電アンテナ素子101及び201と電磁的に結合するように近接して配置し、無給電アンテナ素子501を給電アンテナ素子101及び201と電磁的に結合するように近接して配置し、無給電アンテナ素子601を給電アンテナ素子101及び301と電磁的に結合するように近接して配置し、無給電アンテナ素子701を給電アンテナ素子101及び301と電磁的に結合するように近接して配置した。これにより、誘電体基板21の垂線方向への電力を増減することが可能であり、各給電素子101,201,301の指向性の組み合わせが最適になるように制御できるので、MIMO通信方式に適した指向性切り替え機能を備えた小型なアンテナ装置を提供することができる。また、全ての素子が一体のブロック(誘電体基板21である)上に位置することから、無線モジュール基板に半田付けなどによって表面実装可能な為、通常同軸ケーブルによって発生する通過損失を無視することが可能となる。
第2の実施形態.
 図8は本発明の第2の実施形態に係るアンテナ装置の斜視図である。また、図9は本発明の第2の実施形態に係るプリント配線基板22aの正面図であり、図10は本発明の第2の実施形態に係るプリント配線基板22bの正面図である。
 図8に示すように、本実施形態のアンテナ装置は、ディスプレイの金属筐体23を切り欠き、樹脂窓24を組み込んだ部分に沿うように配置された、互いに平行に設けられた2つの誘電体にてなるプリント配線基板22a,22bとして構成される。ここで、プリント配線基板22aは互いに平行な第1の面22a-s1及び第2の面22a-s2を有し、プリント配線基板22bは互いに平行な第1の面22b-s1及び第2の面22b-s2を有する。さらに、プリント配線基板22aの第2の面22a-s2とプリント配線基板22bの第2の面22b-s2とは対向する。アンテナ装置は、給電アンテナ素子であるスリーブアンテナ素子101A,201A,301Aと、無給電アンテナ素子401,501,601,701とを備えて構成され、スリーブアンテナ素子101A及び無給電アンテナ素子401,701は、プリント配線基板22aの第1の面22a-s1上に設けられ、スリーブアンテナ素子201A,301A及び無給電アンテナ素子501,601はプリント配線基板22bの第1の面22b-s1上に設けられる。無線モジュール基板25上の信号入出力端子26-1と、プリント配線基板22bのスリーブアンテナ素子101Aに接続されたコネクタC101とは、高周波同軸ケーブル27-1を介して接続され、これによりスリーブアンテナ素子101Aに給電される。また、無線モジュール基板25上の信号入出力端子26-2と、プリント配線基板22aのスリーブアンテナ素子201Aに接続されたコネクタC201とは、高周波同軸ケーブル27-2を介して接続され、これによりスリーブアンテナ素子201Aに給電される。さらに、無線モジュール基板25上の信号入出力端子26-3と、プリント配線基板22aのスリーブアンテナ素子301Aに接続されたコネクタC301とは、高周波同軸ケーブル27-3を介して接続され、これによりスリーブアンテナ素子301Aに給電される。
 スリーブアンテナ素子101A,201A,301A及び、無給電アンテナ素子401,501,601,701の素子同士の間隔は、第1の実施形態の場合と同様に設定される。すなわち、無給電アンテナ素子401,501,601,701は、スリーブアンテナ素子101Aから通信時の動作波長λの4分の1の距離の位置に設置されている。スリーブアンテナ素子201Aは、無給電アンテナ素子401と、無給電アンテナ素子501から通信時の動作波長λの4分の1の距離の位置に設置されている。また、スリーブアンテナ素子301Aは、無給電アンテナ素子601と、無給電アンテナ素子701から通信時の動作波長λの4分の1の距離の位置に設置されている。誘電体基板22a、22b間の距離は、スリーブアンテナ素子101A,201A,301A及び、無給電アンテナ素子401,501,601,701の素子同士の間隔が上述した間隔になるように設定される。
 本実施形態のアンテナ装置の動作を、図9及び図10を参照して以下説明する。例えば無給電アンテナ素子401,501,601,701にそれぞれ接続した、電気長調整回路402,502,602,702への制御電圧が印加されない場合、スリーブアンテナ素子101Aの指向性は、図8のXY面、即ち、ディスプレイの設置面において無指向に広がる。スリーブアンテナ素子101Aの指向性を-X方向に向けたい場合、電気長調整回路502,602へ電圧を印加する。これにより、無給電アンテナ素子501,601が励振されて、スリーブアンテナ素子101Aの反射器として動作し、スリーブアンテナ素子101Aよりも+X方向では電波の振幅が弱められ、-X方向では振幅が強められる。これにより、スリーブアンテナ素子101Aの指向性は、-X方向を向くことになる。なお、この時無給電アンテナ素子501は、スリーブアンテナ素子201Aに対しても反射器として動作し、スリーブアンテナ素子201Aの指向性を、+Y方向に変化させる。また、同様に無給電アンテナ素子601は、スリーブアンテナ素子301Aの指向性を-Y方向に変化させる。
 同様にして、励振させる(すなわち反射器として動作させる)無給電アンテナ素子の組み合わせを変えることで、2=16通りに指向性を組み合わせることが可能である。
 図11は図10のプリント配線基板22bの第1の面22b-s1のレイアウト例を示す正面図であり、図12は図10のプリント配線基板22bの第2の面22b-s2のレイアウト例を示す正面図である。また、図13は図9のプリント配線基板22aの第1の面22a-s1のレイアウト例を示す正面図であり、図14は図9のプリント配線基板22aの第2の面22a-s2のレイアウト例を示す正面図である。さらに、図15は図8のアンテナ装置において無給電アンテナ素子401、501、601、701を動作させない場合(オフ状態)の水平面指向特性図であり、図16は図8のアンテナ装置において無給電アンテナ素子401、501、601、701を動作させた場合(オン状態)の水平面指向特性図である。
 すなわち、図11から図14は、本実施形態におけるプリント配線基板のレイアウトであり、図15及び図16は、図11乃至図14のプリント配線基板上のアンテナ素子の指向特性を、電波暗室にて実測した結果である。図15は、無給電アンテナ素子401、501、601、701への制御電圧をオフにしたときのスリーブアンテナ素子101A、201A,301Aの指向特性を示すグラフであり、図16は、無給電アンテナ素子401、501、601、701への制御電圧をオンにしたときのスリーブアンテナ素子101A、201A,301Aの指向特性を示すグラフである。
 図16を参照すると、スリーブアンテナ素子101Aに対して+X方向に位置した無給電アンテナ素子501,601を反射器として動作させることにより、主放射が-X方向に向かうことがわかる。
 以上説明したように、本実施形態のアンテナ装置によれば、無給電アンテナ素子401,501,601,701を、プリント配線基板22bの第1の面22b-s1にある給電素子101Aとプリント配線基板22aの第1の面22a-s1にある給電素子201A,301Aのうちの1つの指向特性を同時に変化できる位置に配置し、各給電素子101A,201A,301Aを、面22b-s1にある無給電アンテナ素子401,701のうちの1つと面22a-s1にある無給電アンテナ素子501,601のうちの1つの影響を受ける位置に配置した。より具体的には、無給電アンテナ素子401を給電アンテナ素子101A及び201Aと電磁的に結合するように近接して配置し、無給電アンテナ素子501を給電アンテナ素子101A及び201Aと電磁的に結合するように近接して配置し、無給電アンテナ素子601を給電アンテナ素子101A及び301Aと電磁的に結合するように近接して配置し、無給電アンテナ素子701を給電アンテナ素子101A及び301Aと電磁的に結合するように近接して配置した。これにより、プリント配線基板22a,22bの垂線方向への電力を増減することが可能であり、各給電素子101A,201A,301Aの指向性の組み合わせが最適になるように制御できるので、MIMO通信方式に適した指向性切り替え機能を備えた小型なアンテナ装置を提供することができる。
 ここで、誘電体基板22bの第の面22b-s1には、1つの給電素子101Aと、2つの無給電アンテナ素子401,701を前記給電素子101Aの両側に約4分の1波長(λ/4)離隔して配置し、誘電体基板22aの第1の面22a-s1には、2つの給電素子201A,301Aと、前記2つの給電素子201A,301A間に、2つの無給電アンテナ素子501,601を配置し、各素子の間隔が約4分の1波長(λ/4)になるように配置することを特徴としている。
 本実施形態において、無給電アンテナ素子の個数は4つに限定されず、3本以下の無給電アンテナ素子又は5本以上の無給電アンテナ素子を備えた構成も可能である。同様に、スリーブアンテナ素子も、3本に限定されない。
 また、説明した実施形態では、給電アンテナ素子は、スリーブアンテナ素子として構成した例を示したが、ダイポールアンテナやコリニアアンテナを用いても、本実施形態と同様に動作するアンテナ装置を実現できる。また、給電アンテナ素子及び無給電アンテナ素子は、接地導体上に設けられたモノポールアンテナ素子として構成されてもよい。
第3の実施形態.
 図17は本発明の第3の実施形態に係るアンテナ装置を備えた無線モジュール基板25の概略構成を示す斜視図である。また、図18は図17の誘電体基板21をおもて面から見たときの斜視図であり、図19は図17の誘電体基板21を裏面から見たときの斜視図であり、図20は図17の誘電体基板21を下面から見たときの斜視図である。ここで、図17は、本発明の第3の実施形態に係るアンテナ装置の使用形態を示す。
 図17乃至図20において、本実施形態のアンテナ装置は、誘電体基板21上に3つのモノポールアンテナ素子101B,201B,301Bと、4つの無給電アンテナ素子401A,501A,601A,701Aを備えて構成され、モノポールアンテナ素子101B及び無給電アンテナ素子401A,701Aは、誘電体基板21の表面上に設けられ、モノポールアンテナ素子201B,301B及び無給電アンテナ素子501A,601Aは誘電体基板21の裏面上に設けられる。ここで、誘電体基板21は、給電部28を半田付けすることにより無線モジュール基板25上に実装される。
 モノポールアンテナ素子101B,201B,301B及び、無給電アンテナ素子401A,501A,601A,701Aの素子同士の間隔は、第1の実施形態の場合と同様に設定される。すなわち、無給電アンテナ素子401A,501A,601A,701Aは、モノポールアンテナ素子101Bから通信時の動作波長λの4分の1の距離の位置に設置されている。モノポールアンテナ素子201Bは、無給電アンテナ素子401Aと、無給電アンテナ素子501Aから通信時の動作波長λの4分の1の距離の位置に設置されている。また、モノポールアンテナ素子301Bは、無給電アンテナ素子601Aと、無給電アンテナ素子701Aから通信時の動作波長λの4分の1の距離の位置に設置されている。
 無給電アンテナ素子401Aは、誘電体基板21の導体パターンとして形成された1つのストリップ形状の無給電導体素子から構成されたモノポール素子であって、誘電体基板21の接地導体10に対して垂直に設けられる。ここで、無給電アンテナ素子401Aは1/4波長の電気長を有する。さらに、無給電アンテナ素子401Aと接地導体10との間に電気長調整回路402Aが設けられる。
 図21は、図17のアンテナ装置における電気長調整回路402Aの拡大図である。すなわち、図21において、電気長調整回路402Aと、それに近接した無給電導体素子である無給電アンテナ素子401Aとを含む部分を示す。図21において、無給電アンテナ素子401Aと接地導体との間には、PINダイオード403bが接続される。PINダイオード403bのカソード端子は接地導体10に接続され、PINダイオード403bのアノード端子は無給電アンテナ素子401Aに接続される。PINダイオード403bのアノード端子は、制御線404aを介して、制御電圧(すなわちバイアス電圧)を印加してアンテナ装置の指向特性を制御するコントローラ1の印加バイアス電圧端子DC4に接続され、PINダイオード403bのカソード端子は、接地導体10及び制御線404bを介して、コントローラコントローラ1の接地端子GNDに接続される。従って、制御線404a,404bはそれぞれ、無給電アンテナ素子401A制御用の直流電圧供給線路とGND線路である。制御線404a上において、PINダイオード403bのアノード端子に近接するように、高周波阻止用の、例えば数十nH程度のインダクタンスを有するインダクタ(コイル)405bが設けられ、制御線404a上にはさらに、数キロオーム程度の電流制御用の抵抗406が設けられる。また、制御線404b上において、PINダイオード403bのカソード端子に近接するように、高周波阻止用の、例えば数十nH程度のインダクタンスを有するインダクタ405cが設けられる。ここで、インダクタ405b,405cは、無給電アンテナ素子401Aにて励振した高周波信号が、制御線404a,404b上に漏洩することを防ぐ役割を持つ。
 無給電アンテナ素子501A,601A,701Aもまた、無給電アンテナ素子401Aと同様に構成される。すなわち、無給電アンテナ素子501A,601A,701Aはそれぞれ、接地導体10に対して垂直に設けられた1つのストリップ形状の無給電導体素子と、当該無給電導体素子と接地導体10との間に接続された電気長調整回路502A,602A,702Aとから構成される。さらに、電気長調整回路502A,602A,702Aはそれぞれ電気長調整回路402Aと同様に構成される。ここで、電気長調整回路502AのPINダイオードのアノード端子はコントローラ1の印加バイアス電圧端子DC5に接続される一方、カソード端子はグランド端子GNDに接続される。電気長調整回路602Aの1つのPINダイオードのアノード端子はコントローラ1の印加バイアス電圧端子DC6に接続される一方、カソード端子はグランド端子GNDに接続される。電気長調整回路702Aの1つのPINダイオードのアノード端子はコントローラ1の印加バイアス電圧端子DC7に接続される一方、カソード端子はグランド端子GNDに接続される。
 本実施形態のアンテナ装置の動作を、図18乃至図20を参照して以下説明する。例えば無給電アンテナ素子401A,501A,601A,701Aにそれぞれ接続した、電気長調整回路402A,502A,602A,702Aへの制御電圧が印加されない場合、モノポールアンテナ素子101Bの指向性は、図17のXY面、即ち、無線モジュール基板の設置面において無指向に広がる。モノポールアンテナ素子101の指向性を-X方向に向けたい場合、電気長調整回路502A,602Aへ電圧を印加する。これにより、無給電アンテナ素子501A,601Aが励振されて、モノポールアンテナ素子101Bの反射器として動作し、モノポールアンテナ素子101Bよりも+X方向では電波の振幅が弱められ、-X方向では振幅が強められる。これにより、モノポールアンテナ素子101Bの指向性は、-X方向を向くことになる。なお、この時無給電アンテナ素子501Aは、モノポールアンテナ素子201Bに対しても反射器として動作し、モノポールアンテナ素子201Bの指向性を、+Y方向に変化させる。また、同様に無給電アンテナ素子601Aは、モノポールアンテナ素子301Bの指向性を-Y方向に変化させる。
 同様にして、励振させる(すなわち反射器として動作させる)無給電アンテナ素子の組み合わせを変えることで、2=16通りに指向性を組み合わせることが可能である。
 なお、本実施形態では、電気長を調整するために、PINダイオードの導通/非導通を利用したが、例えば、図22に示すように、バリキャップダイオード403bv(可変容量ダイオード)を使用し、リアクタンス値を変化させることで電気長を切り替えても良い。図22は、本発明の第3の実施形態の第1の変形例に係る電気長調整回路402Cの拡大図である。電気長調整回路402Cは、電気長調整回路402Aに比較して、PINダイオード403bに代えてバリキャップダイオード403bvを設けた点が異なる。図22において、バリキャップダイオード403bvのアノード端子は無給電アンテナ素子401Aに接続され、カソード端子は接地導体10に接続される。バリキャップダイオード403bvのアノード端子は、インダクタ405b、抵抗406及び制御線404aを介して、コントローラ1の印加バイアス電圧端子DC4に接続される。さらに、バリキャップダイオード403bvのカソード端子は、接地導体10、インダクタ405c及び制御線404bを介して、コントローラ1の接地端子GNDに接続される。コントローラ1は、バリキャップダイオード403bvに印加するバイアス電圧を連続的に変化させることによりバリキャップダイオード403bvの容量値を変化させ、無給電アンテナ素子401Aの電気長を連続的に変化させる。
 以上説明したように、本実施形態のアンテナ装置によれば、無給電アンテナ素子401A,501A,601A,701Aを、誘電体基板21の第1の面にある給電素子101Bと第2の面にある給電素子201B,301Bのうちの1つの指向特性を同時に変化できる位置に配置し、各給電素子101B,201B,301Bを、第1の面にある無給電アンテナ素子401A,701Aのうちの1つと第2の面にある無給電アンテナ素子501A,601Aのうちの1つの影響を受ける位置に配置した。より具体的には、無給電アンテナ素子401Aを給電アンテナ素子101B及び201Bと電磁的に結合するように近接して配置し、無給電アンテナ素子501Aを給電アンテナ素子101B及び201Bと電磁的に結合するように近接して配置し、無給電アンテナ素子601Aを給電アンテナ素子101B及び301Bと電磁的に結合するように近接して配置し、無給電アンテナ素子701Aを給電アンテナ素子101B及び301Bと電磁的に結合するように近接して配置した。これにより、誘電体基板21の垂線方向への電力を増減することが可能であり、各給電素子101B,201B,301Bの指向性の組み合わせが最適になるように制御できるので、MIMO通信方式に適した指向性切り替え機能を備えた小型なアンテナ装置を提供することができる。
 また、説明した実施形態では、給電アンテナ素子101B,201B,301Bは、モノポールアンテナ素子として構成した例を示したが、スリーブアンテナ、逆F型アンテナ又はダイポールアンテナを用いても、本実施形態と同様に動作するアンテナ装置を実現できる。
第4の実施形態.
 図24は本発明の第4の実施形態に係るアンテナ装置をおもて面から見たときの斜視図であり、図25は図24のアンテナ装置を裏面から見たときの斜視図である。また、図26は図24及び図25のアンテナ装置の上面図である。本実施形態に係るアンテナ装置は、第1の実施形態に係るアンテナ装置に比較して、ダイポールアンテナ素子301ならびに無給電アンテナ素子601及び701を除去したことを特徴としている。
 無給電アンテナ素子401及び501はそれぞれ、ダイポールアンテナ素子101から通信時の動作波長λの4分の1の距離であり、かつ、ダイポールアンテナ素子201から通信時の動作波長λの4分の1の距離である2つの位置に設置されている。これにより、ダイポールアンテナ素子101がとりうる指向性形状の数は、ダイポールアンテナ素子101に対して影響を与える無給電アンテナ素子の本数が2本であることから、2=4通りとなる。同様に、ダイポールアンテナ素子201がとりうる指向性形状の数は4通りとなる。本実施形態に係るアンテナ装置は、第1の実施形態に係るアンテナ装置と同様の効果を奏する。
 なお、図27に示すように、プリント配線基板21に代えて、2つのプリント配線基板22a,22bを用いてもよい。図27は、本発明の第4の実施形態の第1の変形例に係るアンテナ装置の上面図である。本変形例に係るアンテナ装置は、第4の実施形態に係るアンテナ装置に比較して、プリント配線基板21に代えて、第2の実施形態と同様に互いに平行に設けられた2つのプリント配線基板22a,22bを用いたことを特徴としている。ここで、プリント配線基板22a,22b間の距離は、ダイポールアンテナ素子101及び201ならびに無給電アンテナ素子401及び501間の素子間隔が上述した素子間隔になるように設定される。また、ダイポールアンテナ素子101及び無給電アンテナ素子401はプリント配線基板22bの第1の面22a-s1上に設けられ、ダイポールアンテナ素子201及び無給電アンテナ素子501はプリント配線基板22aの第1の面22b-s1上に設けられる。
 また、図28に示すように、ダイポールアンテナ素子101及び無給電アンテナ素子401をプリント配線基板22bの第2の面22b-s2上に設け、ダイポールアンテナ素子201及び無給電アンテナ素子501をプリント配線基板22aの第2の面22a-s2上に設けてもよい。図28は、本発明の第4の実施形態の第2の変形例に係るアンテナ装置の上面図である。このとき、プリント配線基板22a,22b間の距離は、ダイポールアンテナ素子101及び201ならびに無給電アンテナ素子401及び501間の素子間隔が上述した素子間隔になるように設定される。
 さらに、図29は本発明の第4の実施形態の第3の変形例に係るアンテナ装置の上面図である。図29に示すように、ダイポールアンテナ素子101をプリント配線基板22bの第1の面22b-s1上に設け、無給電アンテナ素子401をプリント配線基板22bの第2の面22b-s2上に設け、ダイポールアンテナ素子201をプリント配線基板22aの第1の面22a-s1上に設け、無給電アンテナ素子501をプリント配線基板22aの第2の面22a-s2上に設けてもよい。
 またさらに、図30は本発明の第4の実施形態の第4の変形例に係るアンテナ装置の上面図である。図30において、ダイポールアンテナ素子101及び無給電アンテナ素子401はそれぞれプリント配線基板22bの両面に形成され、ダイポールアンテナ素子102及び無給電アンテナ素子501はそれぞれプリント配線基板22aの両面に形成されている。具体的には、ダイポールアンテナ素子101の給電導体素子101a(図25参照。)は、プリント配線基板22bの第1の面22b-s1及び第2の面22b-s2にそれぞれ形成された給電導体素子101a-1及び101a-2と、給電導体素子101a-1及び101a-2を電気的に接続するビア導体101vとを備える。また、無給電アンテナ素子401の無給電導体素子401a(図25参照。)は、プリント配線基板22bの第1の面22b-s1及び第2の面22b-s2にそれぞれ形成された無給電導体素子401a-1及び401a-2と、無給電導体素子401a-1及び401a-2を電気的に接続するビア導体401vとを備える。さらに、ダイポールアンテナ素子201の給電導体素子201a(図24参照。)は、プリント配線基板22aの第1の面22a-s1及び第2の面22a-s2にそれぞれ形成された給電導体素子201a-1及び201a-2と、給電導体素子201a-1及び201a-2を電気的に接続するビア導体201vとを備える。また、無給電アンテナ素子501の無給電導体素子501a(図24参照。)は、プリント配線基板22aの第1の面22a-s1及び第2の面22a-s2にそれぞれ形成された無給電導体素子501a-1及び501a-2と、無給電導体素子501a-1及び501a-2を電気的に接続するビア導体501vとを備える。
 すなわち、第2の実施形態及び第4の実施形態の各変形例のように、2つのプリント配線基板22a及び22bを用い、又は、第1の実施形態及びその変形例、第3の実施形態、第4の実施形態のように、一体の誘電体基板21を用いてもよい。また、2つのプリント配線基板22a及び22bを用いる場合には、プリント配線基板22aの第1及び第2の面22a-s1,22a-s2のうちの少なくとも一方に給電アンテナ素子201を設け、プリント配線基板22aの第1及び第2の面22a-s1,22a-s2のうちの少なくとも一方に無給電アンテナ素子501を設け、プリント配線基板22bの第1及び第2の面22b-s1,22b-s2のうちの少なくとも一方に給電アンテナ素子101を設け、プリント配線基板22bの第1及び第2の面22b-s1,22b-s2のうちの少なくとも一方に無給電アンテナ素子401を設ければよい。さらに、少なくとも1つの給電アンテナ素子101(第1の給電素子である。)と、少なくとも1つの給電アンテナ素子201(第2の給電素子である。)と、少なくとも1つの無給電アンテナ素子401(第1の無給電素子である。)と、少なくとも1つの無給電アンテナ素子501(第2の無給電素子である。)とを、第1の無給電素子が第1及び第2の給電素子と電磁的に結合し、かつ第2の無給電素子が第1及び第2の給電素子と電磁的に結合するように近接して配置すればよい。
 本実施形態において、ダイポールアンテナ素子101,201に代えて、図10のスリーブアンテナ素子101A又は図18のモノポールアンテナ素子101Bを用いてもよい。また、モノポール素子である無給電アンテナ素子401,501に代えて、図18のダイポール素子である無給電アンテナ素子401を用いてもよい。このときは、電気長調整回路402に代えて、図21の電気長調整回路402A又は図22の電気長調整回路402Cを用いる。
 以上詳述したように、本発明のアンテナ装置によれば、第1の誘電体基板に配された第1の無給電素子と、第2の誘電体基板に配された第2の無給電素子には、各無給電素子を反射器として動作させるか否かを切り換えるための電気長切り替え回路が上記制御手段として接続されている。各電気長切り替え回路は、PINダイオードや、可変リアクタンス素子によって構成されており、回路に適切な電圧を印加することで、当該電気長切り換え回路に接続された無給電素子は反射器として動作する。ここで、第1の無給電素子は、第1及び第2の給電素子と電磁的に結合するように近接して配置され、かつ第2の無給電素子は、第1及び第2の給電素子と電磁的に結合するように近接して配置されているので、一つの無給電素子を反射器として動作させることで、第1及び第2の給電素子の主放射方向が変化する。
 本発明に係るアンテナ装置は、簡単な構成で、数多くの指向性パターンの組み合わせが実現可能であるので、複数の可変指向性アンテナを近接して設置する方法として有用である。
1…コントローラ、
10…接地導体、
21…誘電体基板、
22a,22b…プリント配線基板、
23…金属筐体、
24…樹脂窓、
25…無線モジュール基板、
26-1,26-2,26-3…信号入出力端子、
27-1,27-2,27-3…高周波同軸ケーブル、
28…給電部、
101,201,301,151,1001…ダイポールアンテナ素子、
101A,201A,301A…スリーブアンテナ素子、
101B,201B,301B…モノポールアンテナ素子、
401,501,601,701,801,401A,501A,601A,701A…無給電アンテナ素子、
102,202,302…給電点、
402,502,602,702,402A,402B,402C,502A,602A,702A…電気長調整回路、
101a,101b,201a,201b,301a,301b…アンテナ導体素子
401a,401b,501a,501b,601a,601b,701a,701b…無給電導体素子、
403a,403b…PINダイオード、
403av,403bv…バリキャップダイオード、
404a,404b…制御線
405a,405b…インダクタ、
406…抵抗、
C101,C201,C301…コネクタ。

Claims (12)

  1.  互いに平行な第1及び第2の面を有する第1の誘電体基板と、
     互いに平行な第1及び第2の面を有する第2の誘電体基板と、
     上記第1の誘電体基板の第1及び第2の面のうちの少なくとも一方に設けられ、無線信号を送受信する第1の給電素子と、
     上記第1の誘電体基板の第1及び第2の面のうちの少なくとも一方に設けられた第1の無給電素子と、
     上記第2の誘電体基板の第1及び第2の面のうちの少なくとも一方に設けられ、無線信号を送受信する第2の給電素子と、
     上記第2の誘電体基板の第1及び第2の面のうちの少なくとも一方に設けられた第2の無給電素子と、
     上記各第1及び第2の無給電素子を反射器として動作させるか否かを切り換える制御手段とを備え、
     上記第1の無給電素子は、上記第1及び第2の給電素子と電磁的に結合するように近接して配置され、
     上記第2の無給電素子は、上記第1及び第2の給電素子と電磁的に結合するように近接して配置されたことを特徴とするアンテナ装置。
  2.  上記第1の給電素子及び第1の無給電素子は、上記第1の誘電体基板の第1の面に設けられ、
     上記第2の給電素子及び第2の無給電素子は、上記第2の誘電体基板の第1の面に設けられ、
     上記第1の誘電体基板の第2の面と上記第2の誘電体基板の第2の面とは互いに対向するように、上記第1及び第2の誘電体基板は一体の誘電体基板にてなることを特徴とする請求項1記載のアンテナ装置。
  3.  上記第1及び第2の無給電素子はそれぞれ、1/4波長の電気長を有する2本の無給電導体素子が一直線上に設けられたダイポール素子であり、
     上記制御手段は、
     上記第1の無給電素子の2本の無給電導体素子の間に直列に接続されたPINダイオードと、
     上記第2の無給電素子の2本の無給電導体素子の間に直列に接続されたPINダイオードとを備えたことを特徴とする請求項1又は2記載のアンテナ装置。
  4.  上記第1及び第2の無給電素子はそれぞれ、1/4波長の電気長を有する2本の無給電導体素子が一直線上に設けられたダイポール素子であり、
     上記制御手段は、
     上記第1の無給電素子の2本の無給電導体素子の間に直列に接続された可変容量ダイオードと、
     上記第2の無給電素子の2本の無給電導体素子の間に直列に接続された可変容量ダイオードとを備えたことを特徴とする請求項1又は2記載のアンテナ装置。
  5.  上記第1及び第2の無給電素子はそれぞれ、1/4波長の電気長を有する1本の無給電導体素子が接地導体に対して垂直に設けられたモノポール素子であり、
     上記制御手段は、
     上記第1の無給電素子の無給電導体素子と上記接地導体との間に接続されたPINダイオードと、
     上記第2の無給電素子の無給電導体素子と上記接地導体との間に接続されたPINダイオードとを備えたことを特徴とする請求項1又は2記載のアンテナ装置。
  6.  上記第1及び第2の無給電素子はそれぞれ、1/4波長の電気長を有する1本の無給電導体素子が接地導体に対して垂直に設けられたモノポール素子であり、
     上記制御手段は、
     上記第1の無給電素子の無給電導体素子と上記接地導体との間に接続された可変容量ダイオードと、
     上記第2の無給電素子の無給電導体素子と上記接地導体との間に接続された可変容量ダイオードとを備えたことを特徴とする請求項1又は2記載のアンテナ装置。
  7.  上記第1及び第2の給電素子はそれぞれ、ダイポールアンテナであることを特徴とする請求項1から6記載のうちのいずれか1つに記載のアンテナ装置。
  8.  上記第1及び第2の給電素子はそれぞれ、スリーブアンテナであることを特徴とする請求項1から6記載のうちのいずれか1つに記載のアンテナ装置。
  9.  上記第1及び第2の給電素子はそれぞれ、モノポールアンテナであることを特徴とする請求項1から6記載のうちのいずれか1つに記載のアンテナ装置。
  10.  上記第1の無給電素子は、上記第1及び第2の給電素子から1/4波長の距離だけ離れて設けられ、
     上記第2の無給電素子は、上記第1及び第2の給電素子から1/4波長の距離だけ離れて設けられたことを特徴とする請求項1から9記載のうちのいずれか1つに記載のアンテナ装置。
  11.  1つの上記第1の給電素子と、
     2つの上記第1の無給電素子と、
     2つの上記第2の給電素子と、
     2つの上記第2の無給電素子とを備えたことを特徴とする請求項1から10のうちのいずれか1つに記載のアンテナ装置。
  12.  少なくとも1つの上記第1の給電素子と、
     少なくとも1つの上記第1の無給電素子と、
     少なくとも1つの上記第2の給電素子と、
     少なくとも1つの上記第2の無給電素子とを備えたことを特徴とする請求項1から10のうちのいずれか1つに記載のアンテナ装置。
PCT/JP2009/005202 2008-10-07 2009-10-07 アンテナ装置 WO2010041436A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/123,063 US8604994B2 (en) 2008-10-07 2009-10-07 Antenna apparatus including feeding elements and parasitic elements activated as reflectors
JP2010532813A JP5282097B2 (ja) 2008-10-07 2009-10-07 アンテナ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008260376 2008-10-07
JP2008-260376 2008-10-07

Publications (1)

Publication Number Publication Date
WO2010041436A1 true WO2010041436A1 (ja) 2010-04-15

Family

ID=42100398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005202 WO2010041436A1 (ja) 2008-10-07 2009-10-07 アンテナ装置

Country Status (3)

Country Link
US (1) US8604994B2 (ja)
JP (1) JP5282097B2 (ja)
WO (1) WO2010041436A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073355A1 (ja) * 2012-11-07 2014-05-15 株式会社村田製作所 アレーアンテナ
WO2016021544A1 (ja) * 2014-08-06 2016-02-11 三菱電機株式会社 アンテナ装置およびアレーアンテナ装置
JPWO2014112357A1 (ja) * 2013-01-15 2017-01-19 パナソニックIpマネジメント株式会社 アンテナ装置
JP2018048852A (ja) * 2016-09-20 2018-03-29 カシオ計算機株式会社 方向推定装置、方向推定方法、飛行装置、飛行方法及びプログラム
JP2021506165A (ja) * 2017-12-06 2021-02-18 華為技術有限公司Huawei Technologies Co.,Ltd. アンテナアレイ及び無線通信デバイス
US11309641B2 (en) 2016-07-26 2022-04-19 Murata Manufacturing Co., Ltd. Antenna and wireless module
JP2022066544A (ja) * 2017-04-17 2022-04-28 株式会社ヨコオ アンテナ装置
CN114583456A (zh) * 2022-03-08 2022-06-03 微网优联科技(成都)有限公司 一种小型化平面方向图可重构天线、物联网设备及路由器

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9007178B2 (en) * 2008-02-14 2015-04-14 Intermec Ip Corp. Utilization of motion and spatial identification in RFID systems
JP5557853B2 (ja) * 2009-12-28 2014-07-23 パナソニック株式会社 可変指向性アンテナ装置
US9597516B2 (en) * 2012-01-27 2017-03-21 Medtronic, Inc. Wireless communication device for medical telemetry
US9379453B2 (en) 2012-12-20 2016-06-28 Deere & Company Antenna for a satellite navigation receiver
US9509053B2 (en) * 2013-07-08 2016-11-29 Asustek Computer Inc. Electronic device
CN104538738B (zh) * 2014-05-06 2018-12-04 康凯科技(杭州)股份有限公司 应用于无线通信中的可切换天线
KR102138841B1 (ko) 2014-05-13 2020-08-11 삼성전자 주식회사 안테나 장치
USD768115S1 (en) * 2015-02-05 2016-10-04 Armen E. Kazanchian Module
KR101524528B1 (ko) * 2015-02-17 2015-06-10 주식회사 감마누 다중대역 복사소자
CN105490008B (zh) * 2016-01-29 2018-08-07 康凯科技(杭州)股份有限公司 具有动态辐射方向图的天线系统
TWI619313B (zh) * 2016-04-29 2018-03-21 和碩聯合科技股份有限公司 電子裝置及其雙頻印刷式天線
US10868371B2 (en) * 2017-03-24 2020-12-15 Ethertronics, Inc. Null steering antenna techniques for advanced communication systems
TWI648912B (zh) * 2017-11-09 2019-01-21 泓博無線通訊技術有限公司 可控天線模組及具有可控天線模組的電子裝置
JP6608976B2 (ja) * 2018-01-24 2019-11-20 ヤマハ発動機株式会社 指向性アンテナ
TWI671951B (zh) * 2018-03-09 2019-09-11 啟碁科技股份有限公司 智慧型天線裝置
JP7298600B2 (ja) 2018-04-24 2023-06-27 Agc株式会社 車両用アンテナ、車両用アンテナ付き窓ガラス及びアンテナシステム
KR102573221B1 (ko) * 2018-10-25 2023-08-31 현대자동차주식회사 안테나 및 이를 포함하는 차량
US20230113397A1 (en) * 2020-02-27 2023-04-13 Sony Semiconductor Solutions Corporation Antenna device
US11431102B2 (en) * 2020-09-04 2022-08-30 Dell Products L.P. Pattern reflector network for a dual slot antenna
CN116937143B (zh) * 2023-09-19 2023-12-26 成都频岢微电子有限公司 一种可重构的小型化ais全向天线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299952A (ja) * 2001-01-24 2002-10-11 Atr Adaptive Communications Res Lab アレーアンテナ装置とその測定方法及びアンテナ装置の測定方法
JP2005244890A (ja) * 2004-02-27 2005-09-08 Advanced Telecommunication Research Institute International アレーアンテナ装置及びテレビ受像機
JP2005253043A (ja) * 2004-02-03 2005-09-15 Advanced Telecommunication Research Institute International アレーアンテナ装置
JP2007013692A (ja) * 2005-06-30 2007-01-18 Sony Corp アンテナ装置、無線通信装置、その制御方法、コンピュータ処理可能なプログラム及びその記録媒体
JP2008109214A (ja) * 2006-10-23 2008-05-08 Matsushita Electric Ind Co Ltd アンテナ装置
JP2008177728A (ja) * 2007-01-17 2008-07-31 National Institute Of Information & Communication Technology アンテナ装置
JP2008211586A (ja) * 2007-02-27 2008-09-11 Nippon Telegr & Teleph Corp <Ntt> 無線通信用アンテナ装置及び無線通信方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820107B2 (ja) 2001-02-28 2006-09-13 株式会社国際電気通信基礎技術研究所 アレーアンテナ装置
KR20050078991A (ko) 2004-02-03 2005-08-08 가부시키가이샤 고쿠사이 덴키 츠신 기소 기주츠 겐큐쇼 안테나 특성을 제어 가능한 어레이 안테나
EP2070157B1 (en) * 2006-08-25 2017-10-25 Tyco Electronics Services GmbH Antennas based on metamaterial structures
US7505002B2 (en) * 2006-12-04 2009-03-17 Agc Automotive Americas R&D, Inc. Beam tilting patch antenna using higher order resonance mode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299952A (ja) * 2001-01-24 2002-10-11 Atr Adaptive Communications Res Lab アレーアンテナ装置とその測定方法及びアンテナ装置の測定方法
JP2005253043A (ja) * 2004-02-03 2005-09-15 Advanced Telecommunication Research Institute International アレーアンテナ装置
JP2005244890A (ja) * 2004-02-27 2005-09-08 Advanced Telecommunication Research Institute International アレーアンテナ装置及びテレビ受像機
JP2007013692A (ja) * 2005-06-30 2007-01-18 Sony Corp アンテナ装置、無線通信装置、その制御方法、コンピュータ処理可能なプログラム及びその記録媒体
JP2008109214A (ja) * 2006-10-23 2008-05-08 Matsushita Electric Ind Co Ltd アンテナ装置
JP2008177728A (ja) * 2007-01-17 2008-07-31 National Institute Of Information & Communication Technology アンテナ装置
JP2008211586A (ja) * 2007-02-27 2008-09-11 Nippon Telegr & Teleph Corp <Ntt> 無線通信用アンテナ装置及び無線通信方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101744605B1 (ko) * 2012-11-07 2017-06-08 가부시키가이샤 무라타 세이사쿠쇼 어레이 안테나
WO2014073355A1 (ja) * 2012-11-07 2014-05-15 株式会社村田製作所 アレーアンテナ
US9698487B2 (en) 2012-11-07 2017-07-04 Murata Manufacturing Co., Ltd. Array antenna
JPWO2014073355A1 (ja) * 2012-11-07 2016-09-08 株式会社村田製作所 アレーアンテナ
JPWO2014112357A1 (ja) * 2013-01-15 2017-01-19 パナソニックIpマネジメント株式会社 アンテナ装置
US10361483B2 (en) 2014-08-06 2019-07-23 Mitsubishi Electric Corporation Antenna device and array antenna device
JP5933871B1 (ja) * 2014-08-06 2016-06-15 三菱電機株式会社 アンテナ装置およびアレーアンテナ装置
WO2016021544A1 (ja) * 2014-08-06 2016-02-11 三菱電機株式会社 アンテナ装置およびアレーアンテナ装置
US11309641B2 (en) 2016-07-26 2022-04-19 Murata Manufacturing Co., Ltd. Antenna and wireless module
JP2018048852A (ja) * 2016-09-20 2018-03-29 カシオ計算機株式会社 方向推定装置、方向推定方法、飛行装置、飛行方法及びプログラム
JP2022066544A (ja) * 2017-04-17 2022-04-28 株式会社ヨコオ アンテナ装置
JP7302057B2 (ja) 2017-04-17 2023-07-03 株式会社ヨコオ アンテナ装置
US11799196B2 (en) 2017-04-17 2023-10-24 Yokowo Co., Ltd. Antenna apparatus
JP2021506165A (ja) * 2017-12-06 2021-02-18 華為技術有限公司Huawei Technologies Co.,Ltd. アンテナアレイ及び無線通信デバイス
US11264731B2 (en) 2017-12-06 2022-03-01 Huawei Technologies Co., Ltd. Antenna array and wireless communications device
CN114583456A (zh) * 2022-03-08 2022-06-03 微网优联科技(成都)有限公司 一种小型化平面方向图可重构天线、物联网设备及路由器
CN114583456B (zh) * 2022-03-08 2024-02-09 微网优联科技(成都)有限公司 一种小型化平面方向图可重构天线、物联网设备及路由器

Also Published As

Publication number Publication date
US8604994B2 (en) 2013-12-10
JPWO2010041436A1 (ja) 2012-03-08
US20110193761A1 (en) 2011-08-11
JP5282097B2 (ja) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5282097B2 (ja) アンテナ装置
JP5314704B2 (ja) アレーアンテナ装置
JP6607260B2 (ja) 無線電子機器のための二重放射素子及び電力分配器のアレイを含むアンテナ
US8314749B2 (en) Dual band dual polarization antenna array
US10181655B2 (en) Antenna with polarization diversity
US7498996B2 (en) Antennas with polarization diversity
US7965252B2 (en) Dual polarization antenna array with increased wireless coverage
US9692112B2 (en) Antennas including dual radiating elements for wireless electronic devices
US8068068B2 (en) Coverage antenna apparatus with selectable horizontal and vertical polarization elements
EP1964209B1 (en) Antennas with polarization diversity
US20100231453A1 (en) Array antenna apparatus including multiple steerable antennas and capable of avoiding affection among steerable antennas
CN103201908A (zh) 双极化天线和可安装天线元件
CN113597713B (zh) 天线结构及其制造方法
US9525207B2 (en) Reconfigurable antenna structure with parasitic elements
US20140354510A1 (en) Antenna system providing simultaneously identical main beam radiation characteristics for independent polarizations
JPWO2006025248A1 (ja) アンテナ装置
CN104600422A (zh) 一种双极化共轴八木天线系统
WO2007024698A2 (en) Directional antenna system with multi-use elements
JP2010161612A (ja) アンテナ装置
JP7158606B2 (ja) アンテナ装置および無線通信機能付きセンサ
US9761956B2 (en) Antenna systems providing simultaneously identical main beam radiation characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09818976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010532813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13123063

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09818976

Country of ref document: EP

Kind code of ref document: A1