[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009134109A2 - 발광 소자 및 그 제조방법 - Google Patents

발광 소자 및 그 제조방법 Download PDF

Info

Publication number
WO2009134109A2
WO2009134109A2 PCT/KR2009/002352 KR2009002352W WO2009134109A2 WO 2009134109 A2 WO2009134109 A2 WO 2009134109A2 KR 2009002352 W KR2009002352 W KR 2009002352W WO 2009134109 A2 WO2009134109 A2 WO 2009134109A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive semiconductor
light emitting
surface modification
semiconductor layer
Prior art date
Application number
PCT/KR2009/002352
Other languages
English (en)
French (fr)
Other versions
WO2009134109A3 (ko
Inventor
송준오
Original Assignee
엘지이노텍주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20080041102A external-priority patent/KR20090115319A/ko
Priority claimed from KR20080041105A external-priority patent/KR20090115322A/ko
Priority claimed from KR1020080041097A external-priority patent/KR101459770B1/ko
Application filed by 엘지이노텍주식회사 filed Critical 엘지이노텍주식회사
Priority to CN200980115885.7A priority Critical patent/CN102017203B/zh
Priority to US12/990,398 priority patent/US9059338B2/en
Priority to EP09739015.7A priority patent/EP2290708B1/en
Publication of WO2009134109A2 publication Critical patent/WO2009134109A2/ko
Publication of WO2009134109A3 publication Critical patent/WO2009134109A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a light emitting device and a method of manufacturing the same.
  • the light emitting diode is attracting attention in the next generation lighting field because it has a high efficiency of converting electrical energy into light energy and a lifespan of more than 5 years on average, which can greatly reduce energy consumption and maintenance cost.
  • the light emitting diode is formed of a light emitting semiconductor layer including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, and is applied through the first conductive semiconductor layer and the second conductive semiconductor layer. Light is generated in the active layer according to the current.
  • the light emitting diode may be grown on, for example, a sapphire growth substrate, wherein the light emitting semiconductor layer is positioned on c (0001) planes vertically intersecting along the crystal c-axis of the sapphire growth substrate.
  • Symmetric elements included in the wurtzite crystal structure indicate that group III nitride-based semiconductor single crystals have spontaneous polarization along the c-axis.
  • group III nitride-based semiconductor single crystals may additionally exhibit piezoelectric polarization along the c-axis of the crystal.
  • group III nitride semiconductor single crystal growth techniques use group III nitride semiconductor single crystals ending with a group 3-metal polar surface grown along the c-axis direction.
  • group III nitride-based semiconductor single crystal is grown using growth equipment such as MOCVD or HVPE, the surface in contact with the air has a group III metal polarity, whereas the surface in contact with the growth substrate sapphire is nitrogen. It has a polar polarity.
  • the light emitting diode may be classified into a lateral type light emitting diode and a vertical type light emitting diode.
  • a first electrode layer is formed on a semiconductor layer of a first conductivity type having a group 3 metal polar surface.
  • the first electrode layer is formed on the semiconductor layer of the first conductivity type having nitrogen polarity.
  • the embodiment provides a light emitting device having a new structure and a method of manufacturing the same.
  • the embodiment provides a light emitting device having improved electrical characteristics and a method of manufacturing the same.
  • the light emitting device includes a support substrate; A wafer bonding layer on the support substrate; A current spreading layer on the wafer bonding layer; A second conductive semiconductor layer on the current spreading layer; An active layer on the second conductive semiconductor layer; A first conductive semiconductor layer on the active layer; A surface modification layer on the first conductive semiconductor layer; And a first electrode layer on the surface modification layer.
  • the embodiment can provide a light emitting device having a new structure and a method of manufacturing the same.
  • the embodiment can provide a light emitting device having improved electrical characteristics and a method of manufacturing the same.
  • 1 to 5 are views illustrating a light emitting device and a method of manufacturing the same according to the embodiment.
  • each layer (film), region, pattern or structure is “on / on” or “bottom / on” of the substrate, each layer (film), region, pad or patterns
  • “on” and “under” are “directly” or “indirectly” formed through another layer. It includes everything that is done.
  • the criteria for the top or bottom of each layer will be described with reference to the drawings.
  • each layer is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
  • the size of each component does not necessarily reflect the actual size.
  • 1 to 5 are views illustrating a light emitting device and a method of manufacturing the same according to an embodiment.
  • a light emitting semiconductor layer including a first conductive semiconductor layer 20, an active layer 30, and a second conductive semiconductor layer 40 is formed on the growth substrate 10.
  • the current spreading layer 50 and the first wafer bonding layer 60 are formed on the second conductive semiconductor layer 40.
  • the growth substrate 10 includes sapphire (Al 2 O 3 ), silicon carbide (SiC), silicon (Si), aluminum nitride (AlN), gallium nitride (GaN), aluminum gallium nitride (AlGaN), glass (Glass) or gallium arsenide (GaAs) may be used.
  • a buffer layer may be formed between the growth substrate 10 and the semiconductor layer 20 of the first conductivity type, and the buffer layer may be used for lattice matching on the growth substrate 10. It may be formed, for example, at least one of InGaN, AlN, SiC, SiCN, or GaN.
  • the light emitting semiconductor layer may be formed on the buffer layer through a process such as a MOCVD or MBE single crystal growth method.
  • the first conductive semiconductor layer 20 may be formed of Si, Ge, Se, Te, or the like. It may be formed of a doped GaN layer or AlGaN layer, the active layer 30 may be formed of an undoped InGaN layer and GaN layer, the second conductive semiconductor layer 40 is Mg, Zn, Ca, Sr, Ba, etc. may be formed of a doped GaN layer or AlGaN layer.
  • a surface having nitrogen polarity is formed on a surface facing the growth substrate 10, and a surface having metal polarity is formed on a surface facing the current spreading layer 50.
  • the current spreading layer 50 may be formed of a material having high reflectivity of 70% or more in a wavelength region of 600 nm or less, such as aluminum (Al), silver (Ag), rhodium (Rh), and the like.
  • the current spreading layer 50 forms an ohmic contact interface with the second conductive semiconductor layer 40 to facilitate current injection in the vertical direction.
  • the first wafer bonding layer 60 is formed on the current spreading layer 50, and a material having excellent thermal conductivity and strong mechanical bonding strength, such as Au, Ag, Cu, Pt, Pd, Al, or the like, may be used. .
  • a superlattice structure layer may be formed between the second conductive semiconductor layer 40 and the current spreading layer 50.
  • the superlattice structure layer forms an ohmic contact interface with the second conductive semiconductor layer 40 to enable easy current injection in the vertical direction, and the dopant of the second conductive semiconductor layer 40.
  • Lowering the activation energy can increase the effective hole concentration or can lead to quantum mechanical tunneling conduction through energy band-gap engineering.
  • the superlattice structure layer may be formed in a multilayer structure including nitride or carbon nitride including group 2, 3, or 4 element elements, and each layer constituting the superlattice structure layer is 5 nm or less. It may be formed to a thickness of.
  • Each layer constituting the superlattice structure layer may include at least one of InN, InGaN, InAlN, AlGaN, GaN, AlInGaN, AlN, SiC, SiCN, MgN, ZnN, or SiN, and Si, Mg, Zn, or the like may be doped.
  • the superlattice structure layer may be formed of a multilayer structure such as InGaN / GaN, AlGaN / GaN, InGaN / GaN / AlGaN, AlGaN / GaN / InGaN.
  • the superlattice structure layer may be formed in a single layer structure, for example, an InGaN layer, GaN layer, AlInN layer, AlN layer, InN layer, AlGaN layer, AlInGaN layer or p-type impurity doped with n-type impurities
  • the doped InGaN layer, GaN layer, AlInN layer, AlN layer, InN layer, AlGaN layer, AlInGaN layer may be formed.
  • the support substrate 80 having the second wafer bonding layer 70 formed thereon is bonded to the first wafer bonding layer 60.
  • the support substrate 80 is prepared, and after forming the second wafer bonding layer 70 on the support substrate 80, the first wafer bonding layer 60 and the second wafer bonding layer 70 Can be combined.
  • the second wafer bonding layer 70 may be omitted, and the support substrate 80 may be directly bonded on the first wafer bonding layer 60.
  • the second wafer bonding layer 70 may be formed of a material having excellent thermal conductivity and strong mechanical bonding force such as Au, Ag, Cu, Pt, Pd, Al, or the like.
  • the support substrate 80 may include sapphire (Al 2 O 3 ), silicon carbide (SiC), silicon (Si), gallium arsenide (GaAs), Cu, Ni, NiCu, NiCr, Nb, Au, Ta, Ti, or metal At least one of the silicides may be included and formed.
  • the growth substrate 10 is separated from the structure of FIG. 2.
  • the first conductive semiconductor layer 20 is exposed to the outside. At this time, the first conductive semiconductor layer 20 has a surface having nitrogen polarity, Nitrogen (N). ) -face is exposed.
  • a surface modification layer 90 is formed on the first conductive semiconductor layer 20 with the surface having the nitrogen polarity exposed, and a first electrode layer on the surface modification layer 90. Form 100.
  • the surface modification layer 90 and the first electrode layer 100 are formed on the entire surface of the first conductive semiconductor layer 20, but the first conductive semiconductor layer 20 is formed. It is also possible to form the surface modification layer 90 and the first electrode layer 100 partially on the substrate.
  • the surface modification layer 90 is formed on a surface having nitrogen polarity of the first conductive semiconductor layer 20 to allow the first electrode layer 100 to form an ohmic contact interface.
  • the surface modification layer 90 may be formed of a metallic compound having a thickness of 5 nm or less.
  • the metal compound may include at least one of sulfur (S), selenium (Se), telelium (Te), and fluorine (F), indium (In), magnesium (Mg), aluminum (Al), and gallium (Ga).
  • Lanthanum (La) may be formed of a material combining at least one.
  • the surface modification layer 90 may be formed of In 2 S 3
  • the first electrode layer 100 may be formed of an ITO / Cr / Al / Ni / Au stacked structure.
  • the surface modification layer 90 may be formed of a metal compound containing a gallium (Ga) element.
  • the metal compound may be formed of any one of gallium oxide, Ga-S, Ga-Se, and Ga-Te.
  • the surface modification layer 90 may be formed of Ga 2 O 3
  • the first electrode layer 100 may be formed of an ITO / Cr / Al / Ni / Au stacked structure.
  • the surface modification layer 90 is formed of a metal having an atomic radius greater than that of gallium (Ga) or an alloy including a metal having an atomic radius greater than that of gallium (Ga). ) Or solid solution.
  • Metals having an atomic radius larger than the gallium (Ga) element are Ge, Y, Zr, Nb, Mo, Fe, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Lu, Hf, Ta, It may be W, Re, Os, Ir, Pt, Au, Bi, La-based metal.
  • the surface modification layer 90 may be formed of Rh (Rhodium), and the first electrode layer 100 may be formed of a Cr / Al / Ni / Au stacked structure.
  • the surface modification layer 90 and the first electrode layer 100 are electron beam deposition, physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma laser deposition (PLD), and dual-type thermal evaporator. It may be formed by sputtering or the like. For example, the surface modification layer 90 and the first electrode layer 100 may be formed at a temperature of 20 ° C to 1500 ° C and a pressure of atmospheric pressure to 10 -12 torr.
  • a heat treatment process may be performed in a chamber. It may be performed for about 2 to 3 hours.
  • the gas injected into the chamber may be at least one of nitrogen, argon, helium, oxygen, hydrogen, and air.
  • the light emitting device according to the embodiment can be manufactured.
  • the light emitting device may form a good ohmic contact interface by forming the surface modification layer 90 on the first conductive semiconductor layer 20 having nitrogen polarity, thereby improving electrical characteristics. have.
  • the embodiment can be applied to a light emitting device used as a light source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

실시예에 따른 발광 소자는 지지 기판; 상기 지지 기판 상에 웨이퍼 결합층; 상기 웨이퍼 결합층 상에 전류 퍼짐층; 상기 전류 퍼짐층 상에 제2 도전형의 반도체층; 상기 제2 도전형의 반도체층 상에 활성층; 상기 활성층 상에 제1 도전형의 반도체층; 상기 제1 도전형의 반도체층 상에 표면 개질층; 및 상기 표면 개질층 상에 제1 전극층을 포함한다.

Description

발광 소자 및 그 제조방법
본 발명은 발광 소자 및 그 제조방법에 관한 것이다.
최근, 발광 소자로서 발광 다이오드(Light Emitting Diode; LED)가 각광 받고 있다. 발광 다이오드는 전기에너지를 빛에너지로 변환하는 효율이 높고 수명이 평균 5년 이상으로 길기 때문에, 에너지 소모와 유지보수 비용을 크게 절감할 수 있는 장점이 있어 차세대 조명 분야에서 주목받고 있다.
상기 발광 다이오드는 제1 도전형의 반도체층, 활성층 및 제2 도전형의 반도체층을 포함하는 발광 반도체층으로 형성되며, 상기 제1 도전형의 반도체층 및 제2 도전형의 반도체층을 통해 인가되는 전류에 따라 상기 활성층에서 빛이 발생된다.
한편, 상기 발광 다이오드는 예를 들어, 사파이어 성장기판 상에서 성장시킬 수 있는데, 상기 발광 반도체층은 사파이어 성장기판의 결정 c-축을 따라 수직으로 교차되는 c(0001)면들에 위치한다. 섬유아연석(wurtzite) 결정구조 내에 포함된 대칭 요소들은 그룹 3족 질화물계 반도체 단결정이 상기 c-축을 따라 자발적인(spontaneous) 분극을 가지는 것을 나타낸다. 또한, 섬유아연석 결정구조가 비-중앙대칭(non-centrosymmetric)인 경우에는 그룹 3족 질화물계 반도체 단결정들은 결정의 c-축을 따라 압전 분극(piezoelectric polarization)을 추가적으로 보일 수 있다.
현재, 그룹 3족 질화물계 반도체 단결정 성장기술은 c-축 방향을 따라 성장한 그룹 3족 금속 극성 표면(group 3-metal polar surface)으로 끝나는 그룹 3족 질화물계 반도체 단결정들을 이용한다. 즉, MOCVD 또는 HVPE 등의 성장 장비를 이용하여 그룹 3족 질화물계 반도체 단결정을 성장시키면 대기(air)와 접하는 표면은 그룹 3족 금속 극성을 띠는 반면에, 성장 기판인 사파이어와 접하는 표면은 질소 극성(nitrogen polarity)을 갖게 된다.
따라서, 그룹 3족 금속인 갈륨(gallium) 극성을 갖는 질화갈륨의 표면과 질소(nitrogen) 극성을 갖는 질화갈륨의 표면에 동일한 전극 물질인 Ti/Al을 적층하면, 열처리 온도에 따라 접촉 계면(contacting interface)이 다른 거동을 나타내게 된다.
한편, 상기 발광 다이오드는 래터럴 타입의 발광 다이오드와 버티컬 타입의 발광 다이오드로 구분될 수 있는데, 래터럴 타입의 발광 다이오드에서는 그룹 3족 금속 극성 표면을 갖는 제1 도전형의 반도체층 상에 제1 전극층이 형성되고, 버티컬 타입의 발광 다이오드에서는 질소 극성을 갖는 제1 도전형의 반도체층 상에 제1 전극층이 형성된다.
따라서, 상기 버티컬 타입의 발광 다이오드에서 상기 래터럴 타입의 발광 다이오드와 동일하게 제1 전극층을 형성하는 경우, 양호한 오믹 접촉 계면을 형성할 수 없고, 높은 구동 전압 강하가 발생되어 다량의 열 발생 및 발광 다이오드의 수명 단축 등의 문제가 발생될 수 있다.
실시예는 새로운 구조의 발광 소자 및 그 제조방법을 제공한다.
실시예는 전기적 특성이 향상된 발광 소자 및 그 제조방법을 제공한다.
실시예에 따른 발광 소자는 지지 기판; 상기 지지 기판 상에 웨이퍼 결합층; 상기 웨이퍼 결합층 상에 전류 퍼짐층; 상기 전류 퍼짐층 상에 제2 도전형의 반도체층; 상기 제2 도전형의 반도체층 상에 활성층; 상기 활성층 상에 제1 도전형의 반도체층; 상기 제1 도전형의 반도체층 상에 표면 개질층; 및 상기 표면 개질층 상에 제1 전극층을 포함한다.
실시예는 새로운 구조의 발광 소자 및 그 제조방법을 제공할 수 있다.
실시예는 전기적 특성이 향상된 발광 소자 및 그 제조방법을 제공할 수 있다.
도 1 내지 도 5는 실시예에 따른 발광 소자 및 그 제조방법을 설명하는 도면.
본 발명에 따른 실시예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on)"에 또는 "하/아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on)"와 "하/아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 위 또는 아래에 대한 기준은 도면을 기준으로 설명한다.
도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
도 1 내지 도 5는 실시예에 따른 발광 소자 및 그 제조방법을 설명하는 도면이다.
도 1을 참조하면, 성장 기판(10) 상에 제1 도전형의 반도체층(20), 활성층(30) 및 제2 도전형의 반도체층(40)을 포함하는 발광 반도체층이 형성되고, 상기 제2 도전형의 반도체층(40) 상에 전류 퍼짐층(50) 및 제1 웨이퍼 결합층(60)이 형성된다.
예를 들어, 상기 성장 기판(10)은 사파이어(Al2O3), 실리콘 카바이드(SiC), 실리콘(Si), 질화알루미늄(AlN), 질화갈륨(GaN), 질화알루미늄갈륨(AlGaN), 유리(Glass), 또는 갈륨아세나이드(GaAs) 중 어느 하나가 사용될 수 있다.
비록 도시되지 않았지만 상기 성장 기판(10)과 상기 제1 도전형의 반도체층(20) 사이에는 버퍼층이 형성될 수 있으며, 상기 버퍼층은 상기 성장 기판(10) 상에 격자 정합(lattice match)을 위해 형성되며, 예를 들어, InGaN, AlN, SiC, SiCN, 또는 GaN 중 적어도 어느 하나로 형성될 수 있다.
상기 발광 반도체층은 MOCVD 또는 MBE 단결정 성장법 등의 공정을 통해 상기 버퍼층 상에 형성될 수 있으며, 예를 들어, 상기 제1 도전형의 반도체층(20)은 Si, Ge, Se, Te 등이 도핑된 GaN층 또는 AlGaN층으로 형성될 수 있고, 상기 활성층(30)은 언도프된(undoped) InGaN층 및 GaN층으로 형성될 수 있으며, 상기 제2 도전형의 반도체층(40)은 Mg, Zn, Ca, Sr, Ba 등이 도핑된 GaN층 또는 AlGaN층으로 형성될 수 있다.
상기 발광 반도체층은 상기 성장 기판(10)에 대향하는 면에 질소 극성을 갖는 표면이 형성되고, 상기 전류 퍼짐층(50)에 대향하는 면에 금속 극성을 갖는 표면이 형성된다.
상기 전류 퍼짐층(50)은 알루미늄(Al), 은(Ag), 로듐(Rh) 등과 같이 600nm 이하의 파장 영역에서 70% 이상의 높은 반사율 특성을 가지는 물질로 형성될 수 있다.
상기 전류 퍼짐층(50)은 상기 제2 도전형의 반도체층(40)과 오믹 접촉 계면을 형성하여 수직 방향으로의 전류 주입이 용이하도록 한다.
상기 제1 웨이퍼 결합층(60)은 상기 전류 퍼짐층(50) 상에 형성되며, Au, Ag, Cu, Pt, Pd, Al등 과 같이 열전도성이 우수하고 기계적 결합력이 강한 물질이 사용될 수 있다.
비록 도시되지는 않았지만, 상기 제2 도전형의 반도체층(40)과 상기 전류 퍼짐층(50) 사이에 슈퍼래티스 구조층이 형성될 수 있다.
상기 슈퍼래티스 구조층은 상기 제2 도전형의 반도체층(40)과 오믹 접촉 계면을 형성하여 수직 방향으로의 용이한 전류 주입이 가능하도록 하고, 상기 제2 도전형의 반도체층(40)의 도펀트 활성화 에너지를 낮추어 유효 정공 농도를 증가시키거나 에너지 밴드갭 조절(band-gap engineering)을 통해 양자 역학적인 터널링 전도 현상을 일으킬 수 있다.
상기 슈퍼래티스 구조층은 그룹 2족, 3족, 또는 4족 원소 성분을 포함하는 질화물 또는 탄소질화물을 포함하는 다층 구조로 형성될 수 있으며, 상기 슈퍼래티스 구조층을 구성하는 각각의 층은 5nm 이하의 두께로 형성될 수 있다. 상기 슈퍼래티스 구조층을 구성하는 각각의 층은 InN, InGaN, InAlN, AlGaN, GaN, AlInGaN, AlN, SiC, SiCN, MgN, ZnN, 또는 SiN 중 적어도 어느 하나가 포함되어 형성될 수 있으며, Si, Mg, Zn 등이 도핑될 수도 있다. 예를 들어, 상기 슈퍼래티스 구조층은 InGaN/GaN, AlGaN/GaN, InGaN/GaN/AlGaN, AlGaN/GaN/InGaN 과 같은 다층 구조로 형성될 수 있다.
또한, 상기 슈퍼래티스 구조층은 단층 구조로 형성될 수 있으며, 예를 들어, n형 불순물이 도핑된 InGaN층, GaN층, AlInN층, AlN층, InN층, AlGaN층, AlInGaN층 또는 p형 불순물이 도핑된 InGaN층, GaN층, AlInN층, AlN층, InN층, AlGaN층, AlInGaN층으로 형성될 수도 있다.
도 2를 참조하면, 상기 제1 웨이퍼 결합층(60) 상에 제2 웨이퍼 결합층(70)이 형성된 지지 기판(80)이 결합된다.
먼저, 지지 기판(80)이 준비되고, 상기 지지 기판(80) 상에 제2 웨이퍼 결합층(70)을 형성한 후, 상기 제1 웨이퍼 결합층(60)과 제2 웨이퍼 결합층(70)을 결합시킬 수 있다. 또는, 상기 제2 웨이퍼 결합층(70)은 생략될 수 있으며, 상기 제1 웨이퍼 결합층(60) 상에 바로 상기 지지 기판(80)을 결합시키는 것도 가능하다.
상기 제2 웨이퍼 결합층(70)은 상기 제1 웨이퍼 결합층(60)과 마찬가지로 Au, Ag, Cu, Pt, Pd, Al등 과 같이 열전도성이 우수하고 기계적 결합력이 강한 물질이 사용될 수 있다.
상기 지지 기판(80)은 사파이어(Al2O3), 실리콘카바이드(SiC), 실리콘(Si), 갈륨비소(GaAs), Cu, Ni, NiCu, NiCr, Nb, Au, Ta, Ti, 또는 금속 실리사이드 중 적어도 어느 하나가 포함되어 형성될 수 있다.
도 3과 도 4를 참조하면, 도 2의 구조물로부터 상기 성장 기판(10)을 분리한다.
상기 성장 기판(10)을 분리함에 따라 상기 제1 도전형의 반도체층(20)이 외부로 노출되며, 이때, 상기 제1 도전형의 반도체층(20)은 질소 극성을 갖는 표면, Nitrogen(N)-face가 노출된다.
도 5를 참조하면, 상기 질소 극성을 갖는 표면이 노출된 상기 제1 도전형의 반도체층(20) 상에 표면 개질층(90)을 형성하고, 상기 표면 개질층(90) 상에 제1 전극층(100)을 형성한다.
도 5에는 상기 제1 도전형의 반도체층(20)의 전체면에 상기 표면 개질층(90) 및 제1 전극층(100)이 형성된 것이 개시되어 있으나, 상기 제1 도전형의 반도체층(20) 상에 부분적으로 상기 표면 개질층(90) 및 제1 전극층(100)이 형성되는 것도 가능하다.
상기 표면 개질층(90)은 상기 제1 도전형의 반도체층(20)의 질소 극성을 갖는 표면에 형성되어 상기 제1 전극층(100)이 오믹 접촉 계면을 형성할 수 있도록 한다.
제1 실시예에서, 상기 표면 개질층(90)은 5nm 이하의 두께를 갖는 금속 화합물(metallic compound)로 형성될 수 있다. 상기 금속 화합물은 황(S), 셀레륨(Se), 텔레륨(Te), 불소(F) 중 적어도 어느 하나와, 인듐(In), 마그네슘(Mg), 알루미늄(Al), 갈륨(Ga), 란탄늄(La) 중 적어도 어느 하나를 결합한 물질로 형성될 수 있다. 예를 들어, 상기 표면 개질층(90)은 In2S3로 형성되고, 상기 제1 전극층(100)은 ITO/Cr/Al/Ni/Au 적층 구조로 형성될 수 있다.
제2 실시예에서, 상기 표면 개질층(90)은 갈륨(Ga) 원소가 포함된 금속 화합물로 형성될 수 있다. 상기 금속 화합물은 갈륨 산화물(Gallium-oxide), Ga-S, Ga-Se, Ga-Te 중 어느 하나로 형성될 수 있다. 예를 들어, 상기 표면 개질층(90)은 Ga2O3로 형성되고, 상기 제1 전극층(100)은 ITO/Cr/Al/Ni/Au 적층 구조로 형성될 수 있다.
제3 실시예에서, 상기 표면 개질층(90)은 갈륨(Ga) 원소보다 큰 원자 반경을 갖는 금속(metal)로 형성되거나 갈륨(Ga) 원소보다 큰 원자 반경을 갖는 금속이 포함된 합금(alloy) 또는 고용체(solid solution)로 형성될 수 있다. 상기 갈륨(Ga) 원소보다 큰 원자 반경을 갖는 금속은 Ge, Y, Zr, Nb, Mo, Fe, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Bi, La 계열 금속이 될 수 있다. 예를 들어, 상기 표면 개질층(90)은 Rh(Rhodium)으로 형성되고, 상기 제1 전극층(100)은 Cr/Al/Ni/Au 적층 구조로 형성될 수 있다.
상기 표면 개질층(90)과 제1 전극층(100)은 전자빔 증착, PVD(physical vapor deposition), CVD(chemical vapor deposition), PLD(plasma laser deposition), 이중형의 열증착기(dual-type thermal evaporator) 스퍼터링(sputtering) 등에 의해 형성될 수 있다. 예를 들어, 상기 표면 개질층(90)과 제1 전극층(100)은 20℃ 내지 1500℃의 온도와, 대기압 내지 10-12torr의 압력에서 형성될 수 있다.
또한, 상기 표면 개질층(90)과 제1 전극층(100)을 형성한 후, 챔버 내에서 열처리 공정을 수행할 수 있으며, 열처리 공정은 100℃ 내지 800℃의 온도와, 진공 또는 가스 분위기에서 10초 내지 3시간 정도 수행될 수 있다. 상기 챔버에 투입되는 가스는 질소, 아르곤, 헬륨, 산소, 수소, 공기 중 적어도 어느 하나의 기체가 될 수 있다.
따라서, 상기 실시예에 따른 발광 소자가 제조될 수 있다.
실시예에 따른 발광 소자는 질소 극성을 갖는 제1 도전형의 반도체층(20) 상에 표면 개질층(90)을 형성함으로써 양호한 오믹 접촉 계면을 형성할 수 있고, 그에 따라 전기적 특성이 향상될 수 있다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
실시예는 광원으로 사용되는 발광 소자에 적용될 수 있다.

Claims (15)

  1. 지지 기판;
    상기 지지 기판 상에 웨이퍼 결합층;
    상기 웨이퍼 결합층 상에 전류 퍼짐층;
    상기 전류 퍼짐층 상에 제2 도전형의 반도체층;
    상기 제2 도전형의 반도체층 상에 활성층;
    상기 활성층 상에 제1 도전형의 반도체층;
    상기 제1 도전형의 반도체층 상에 표면 개질층; 및
    상기 표면 개질층 상에 제1 전극층을 포함하는 발광 소자.
  2. 제 1항에 있어서,
    상기 제1 도전형의 반도체층은 상기 표면 개질층에 대향하는 면이 질소 극성을 갖는 발광 소자.
  3. 제 1항에 있어서,
    상기 제2 도전형의 반도체층과 상기 전류 퍼짐층 사이에 슈퍼래티스 구조층을 포함하는 발광 소자.
  4. 제 3항에 있어서,
    상기 슈퍼래티스 구조층은 그룹 2족, 3족, 또는 4족 원소 성분을 포함하는 질화물 또는 탄소질화물을 포함하는 다층 구조로 형성된 발광 소자.
  5. 제 4항에 있어서,
    상기 슈퍼래티스 구조층은 InGaN/GaN, AlGaN/GaN, InGaN/GaN/AlGaN, 또는 AlGaN/GaN/InGaN 중 어느 하나의 다층 구조로 형성된 발광 소자.
  6. 제 1항에 있어서,
    상기 웨이퍼 결합층은 제1 웨이퍼 결합층과 제2 웨이퍼 결합층을 포함하는 발광 소자.
  7. 제 6항에 있어서,
    상기 웨이퍼 결합층은 Au, Ag, Al, Cu, Pd, 또는 Pt 중 적어도 어느 하나를 포함하는 발광 소자.
  8. 제 1항에 있어서,
    상기 전류 퍼짐층은 Al, Ag, 또는 Rh 중 적어도 어느 하나를 포함하는 발광 소자.
  9. 제 1항에 있어서,
    상기 표면 개질층은 S, Se, Te, 또는 F 중 적어도 어느 하나와, In, Mg, Al, Ga, 또는 La 중 적어도 어느 하나를 결합한 금속 화합물을 포함하는 발광 소자.
  10. 제 9항에 있어서,
    상기 표면 개질층은 In2S3을 포함하는 발광 소자.
  11. 제 1항에 있어서,
    상기 표면 개질층은 갈륨(Ga) 원소가 포함된 금속 화합물을 포함하는 발광 소자.
  12. 제 11항에 있어서,
    상기 금속 화합물은 갈륨 산화물, Ga-S, Ga-Se, 또는 Ga-Te 중 어느 하나를 포함하는 발광 소자.
  13. 제 1항에 있어서,
    상기 표면 개질층은 갈륨(Ga) 원소보다 큰 원자 반경을 갖는 금속, 갈륨 원소보다 큰 원자 반경을 갖는 금속의 합금, 또는 갈륨 원소보다 큰 원자 반경을 갖는 금속의 고용체 중 어느 하나를 포함하는 발광 소자.
  14. 제 13항에 있어서,
    상기 갈륨 원소보다 큰 원자 반경을 갖는 금속은 Ge, Y, Zr, Nb, Mo, Fe, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Bi, 또는 La 중 어느 하나를 포함하는 발광 소자.
  15. 제 1항에 있어서,
    상기 표면 개질층 및 제1 전극층은 상기 제1 도전형의 반도체층 상에 부분적으로 형성되는 발광 소자.
PCT/KR2009/002352 2008-05-02 2009-05-04 발광 소자 및 그 제조방법 WO2009134109A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980115885.7A CN102017203B (zh) 2008-05-02 2009-05-04 发光器件和制造发光器件的方法
US12/990,398 US9059338B2 (en) 2008-05-02 2009-05-04 Light emitting element and a production method therefor
EP09739015.7A EP2290708B1 (en) 2008-05-02 2009-05-04 Light-emitting element and a production method therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2008-0041102 2008-05-02
KR20080041102A KR20090115319A (ko) 2008-05-02 2008-05-02 그룹 3족 질화물계 반도체 소자
KR20080041105A KR20090115322A (ko) 2008-05-02 2008-05-02 그룹 3족 질화물계 반도체 소자
KR10-2008-0041105 2008-05-02
KR1020080041097A KR101459770B1 (ko) 2008-05-02 2008-05-02 그룹 3족 질화물계 반도체 소자
KR10-2008-0041097 2008-05-02

Publications (2)

Publication Number Publication Date
WO2009134109A2 true WO2009134109A2 (ko) 2009-11-05
WO2009134109A3 WO2009134109A3 (ko) 2010-02-25

Family

ID=41255584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002352 WO2009134109A2 (ko) 2008-05-02 2009-05-04 발광 소자 및 그 제조방법

Country Status (4)

Country Link
US (1) US9059338B2 (ko)
EP (1) EP2290708B1 (ko)
CN (1) CN102017203B (ko)
WO (1) WO2009134109A2 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579428B (zh) * 2012-07-30 2016-08-17 比亚迪股份有限公司 一种led外延片及其制备方法
CN113491020B (zh) 2019-02-28 2024-08-16 波主有限公司 高纯度压电薄膜以及制造利用该薄膜的元件的方法
CN110379895B (zh) * 2019-07-25 2022-04-22 湘能华磊光电股份有限公司 Led外延生长方法
CN112320838B (zh) * 2019-08-05 2022-09-06 Tcl科技集团股份有限公司 纳米材料及其制备方法和应用
CN114823999B (zh) * 2022-06-24 2023-02-28 江西兆驰半导体有限公司 一种具有氮极性接触层的led外延结构及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680558B2 (ja) * 1998-05-25 2005-08-10 日亜化学工業株式会社 窒化物半導体素子
US7193246B1 (en) * 1998-03-12 2007-03-20 Nichia Corporation Nitride semiconductor device
KR20010000545A (ko) 2000-10-05 2001-01-05 유태경 펌핑 층이 집적된 다 파장 AlGaInN계 반도체LED 소자 및 그 제조 방법
JP2002329877A (ja) * 2001-04-27 2002-11-15 National Institute Of Advanced Industrial & Technology Cu(Ga及び(又は)In)Se2薄膜層、Cu(InGa)(S、Se)2薄膜層、太陽電池、Cu(Ga及び(又は)In)Se2薄膜層の形成方法
JP4055053B2 (ja) * 2002-03-26 2008-03-05 本田技研工業株式会社 化合物薄膜太陽電池およびその製造方法
KR101030068B1 (ko) * 2002-07-08 2011-04-19 니치아 카가쿠 고교 가부시키가이샤 질화물 반도체 소자의 제조방법 및 질화물 반도체 소자
KR100543696B1 (ko) * 2002-09-09 2006-01-20 삼성전기주식회사 고효율 발광 다이오드
US7897993B2 (en) * 2004-08-31 2011-03-01 Sumitomo Chemical Company, Limited GaN based luminescent device on a metal substrate
KR100706952B1 (ko) * 2005-07-22 2007-04-12 삼성전기주식회사 수직 구조 질화갈륨계 발광다이오드 소자 및 그 제조방법
KR100635157B1 (ko) * 2005-09-09 2006-10-17 삼성전기주식회사 질화물계 반도체 발광소자
CN100375303C (zh) * 2005-10-27 2008-03-12 晶能光电(江西)有限公司 含有金锗镍的欧姆电极、铟镓铝氮半导体发光元件及制造方法
KR100815225B1 (ko) * 2006-10-23 2008-03-19 삼성전기주식회사 수직구조 발광다이오드 소자 및 그 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2290708A4

Also Published As

Publication number Publication date
US9059338B2 (en) 2015-06-16
EP2290708B1 (en) 2015-09-02
WO2009134109A3 (ko) 2010-02-25
CN102017203A (zh) 2011-04-13
US20110163294A1 (en) 2011-07-07
EP2290708A2 (en) 2011-03-02
CN102017203B (zh) 2013-04-10
EP2290708A4 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
US8502193B2 (en) Light-emitting device and fabricating method thereof
US7675077B2 (en) Light-emitting diode and method for manufacturing the same
EP2262012B1 (en) Light-emitting diode and a method of manufacturing thereof
US8519414B2 (en) III-nitride based semiconductor structure with multiple conductive tunneling layer
EP2280427B1 (en) Light emitting diode
JP2009514197A (ja) N極性InGaAlN表面のための電極を備えた半導体発光デバイス
US8633508B2 (en) Semiconductor element and a production method therefor
KR100872276B1 (ko) 수직구조 질화물 반도체 발광 소자 및 제조방법
WO2009134109A2 (ko) 발광 소자 및 그 제조방법
KR20100058018A (ko) 수직구조를 갖는 반도체 발광소자 제조용 지지기판, 이를 이용한 수직구조를 갖는 반도체 발광소자 제조방법 및 수직구조를 갖는 반도체 발광소자
KR101064068B1 (ko) 발광소자의 제조방법
KR20090115322A (ko) 그룹 3족 질화물계 반도체 소자
KR101231118B1 (ko) 반도체 발광소자용 지지기판 및 상기 지지기판을 이용한고성능 수직구조의 반도체 발광소자
JP2001313421A (ja) 半導体発光素子及びその製造方法
WO2005117151A1 (en) Positive electrode structure and gallium nitride-based compound semiconductor light-emitting device
KR101459770B1 (ko) 그룹 3족 질화물계 반도체 소자
KR20090109598A (ko) 수직구조의 그룹 3족 질화물계 반도체 발광다이오드 소자및 제조방법
JP2003188414A (ja) 半導体発光素子の製造方法
JP2002246644A (ja) 発光素子及びその製造方法
KR20050081208A (ko) 기판 분해 방지막을 사용한 단결정 질화물계 반도체 성장및 이를 이용한 고품위 질화물계 발광소자 제작
TW202315157A (zh) 發光元件及其製造方法
KR101534845B1 (ko) 고성능의 그룹 3족 질화물계 반도체 발광다이오드 소자 및이의 제조 방법
KR101510383B1 (ko) 고성능의 그룹 3족 질화물계 반도체 발광다이오드 소자 및이의 제조 방법
KR100813602B1 (ko) 질화물 반도체 발광소자의 제조방법
KR20090115830A (ko) 수직구조의 그룹 3족 질화물계 반도체 발광다이오드 소자및 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115885.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09739015

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009739015

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12990398

Country of ref document: US