[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009133652A1 - 円筒形電池およびその製造方法 - Google Patents

円筒形電池およびその製造方法 Download PDF

Info

Publication number
WO2009133652A1
WO2009133652A1 PCT/JP2009/001045 JP2009001045W WO2009133652A1 WO 2009133652 A1 WO2009133652 A1 WO 2009133652A1 JP 2009001045 W JP2009001045 W JP 2009001045W WO 2009133652 A1 WO2009133652 A1 WO 2009133652A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
current collector
collector plate
projection
core material
Prior art date
Application number
PCT/JP2009/001045
Other languages
English (en)
French (fr)
Inventor
米山聡
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2009801106087A priority Critical patent/CN101978530A/zh
Priority to US12/740,037 priority patent/US8394526B2/en
Publication of WO2009133652A1 publication Critical patent/WO2009133652A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention mainly relates to a cylindrical battery having a wound electrode group and a method for manufacturing the same.
  • a cylindrical battery generally includes an electrode plate group obtained by stacking a belt-like positive electrode plate and a negative electrode plate with a separator for separation interposed therebetween and winding the resulting laminate in a spiral shape.
  • the electrode plate group is accommodated in a metal cylindrical battery case.
  • Such cylindrical batteries are highly reliable and easy to maintain, so they are used in various applications such as power supplies for mobile phones and notebook computers.
  • a current collecting structure suitable for input / output of a large current for example, a positive electrode core material and a negative electrode core material protrude from the upper end surface and the lower end surface of the electrode plate group, respectively, and a plurality of locations on the edge of the positive electrode core material
  • a current collecting structure which is welded to a positive electrode current collector, and a plurality of portions of the edge portion of the negative electrode core member are welded to the negative electrode current collector.
  • Patent Document 1 proposes using a negative electrode current collector provided with a plurality of projections.
  • the negative electrode current collector is disposed between the electrode plate group and the inner bottom surface of the battery case, and one projection is provided at the central portion facing the hollow cylindrical portion of the electrode plate group of the negative electrode current collector.
  • a plurality of projections are provided in a region between the central portion and the peripheral portion. The plurality of projections protrude from the surface of the negative electrode current collector facing the inner bottom surface of the battery case toward the inner bottom surface.
  • the plurality of projections of the negative electrode current collector are welded to the inner bottom surface of the battery case.
  • a negative electrode core material is connected to the surface of the negative electrode current collector opposite to the surface on which the projection is provided.
  • the height of the projection provided at the central portion facing the hollow cylindrical portion of the electrode plate group of the negative electrode current collector is lower than the height of the projection provided at other portions. JP 2005-1000094 A
  • the present invention mainly achieves high production without causing the welding electrode to adhere to the current collector plate even when a large current is passed through the welding electrode in order to weld the current collector plate to the battery case. It is an object of the present invention to provide a method for welding a current collector plate to a battery case.
  • the manufacturing method of the cylindrical battery of the present invention includes: (A) The first core includes a strip-shaped first core material and a first active material layer disposed on the first core material, the first core along one side parallel to the longitudinal direction of the first core material. Producing a first electrode provided with an exposed portion of the material; (B) the second core along one side parallel to the longitudinal direction of the second core material, which includes a band-shaped second core material and a second active material layer disposed on the second core material. Producing a second electrode provided with an exposed portion of the material; (C) A laminate including the first electrode, the second electrode, and a separator disposed therebetween is wound in a spiral shape so that the exposed portion of the first core material and the exposed second core material are exposed.
  • the second current collector plate has one first projection and a plurality of second projections that protrude toward the inner bottom surface side of the cylindrical battery case on a surface facing the inner bottom surface of the cylindrical battery case.
  • the first projection is disposed in a first portion facing the hollow cylindrical portion of the electrode plate group of the second current collector plate, and the plurality of second projections are second ones other than the first portion of the second current collector plate.
  • the height of the first projection is higher than the height of the second projection.
  • the welding electrode is brought into contact with the second current collector plate through the hollow cylindrical portion of the electrode plate group, and the second current collector plate and the cylindrical battery case are in close contact with each other. And welding the second current collector plate and the cylindrical battery case.
  • the maximum diameter of the hollow cylindrical portion of the electrode plate group is 1/6 or more and 2/6 or less of the maximum diameter of the electrode plate group.
  • the maximum diameter of the welding electrode is 60% or more and 100% or less of the maximum diameter of the hollow cylindrical portion of the electrode plate group, and the maximum diameter of the welding electrode is 4 mm or more.
  • the maximum diameter of the electrode plate group and the maximum diameter of the hollow cylindrical portion of the electrode plate group mean the maximum diameter of the electrode plate group and the maximum diameter of the hollow cylindrical portion in a direction perpendicular to the winding axis.
  • the maximum diameter of the welding electrode refers to the maximum diameter in a direction perpendicular to the longitudinal direction of the welding electrode.
  • the second projection is centered at the intersection of the winding axis of the electrode plate group and the second current collector plate, and is arranged on a circle having a diameter of 50 to 80% of the maximum diameter of the electrode plate group. Is preferred.
  • the difference between the height of the first projection and the height of the second projection is preferably 10 to 500 ⁇ m.
  • the maximum diameter of the electrode plate group is preferably 20 to 40 mm.
  • the cylindrical battery of the present invention is (I) a wound electrode group including a first electrode, a second electrode, and a separator disposed between the first electrode and the second electrode; (Ii) a cylindrical battery case that accommodates the wound electrode group; (Iii) a first current collector connected to the first electrode; (Iv) a second current collector plate connected to the second electrode and disposed between the electrode plate group and an inner bottom surface of the cylindrical battery case; and (v) an electrolyte.
  • the first electrode includes a strip-shaped first core material and a first active material layer disposed on the first core material, and the first electrode extends along one side parallel to the longitudinal direction of the first core material.
  • the second electrode includes a strip-shaped second core material and a second active material layer disposed on the second core material, and the second core material along one side parallel to the longitudinal direction of the second core material.
  • the exposed portion is provided.
  • An exposed portion of the first core member and an exposed portion of the second core member are respectively disposed on the two end faces in the winding axis direction of the electrode plate group, and the electrode plate group is provided along the winding axis. Having a hollow cylindrical portion.
  • the second current collector plate has one first projection and a plurality of second projections that protrude toward the inner bottom surface side of the cylindrical battery case on a surface facing the inner bottom surface of the cylindrical battery case.
  • the first projection is disposed in a first portion facing the hollow cylindrical portion of the electrode plate group of the second current collector plate, and the plurality of second projections are disposed in a second portion other than the first portion. Yes.
  • the first projection and the plurality of second projections provided on the second current collector plate are welded to the inner bottom surface of the cylindrical battery case, and the maximum diameter of the hollow cylindrical portion of the electrode plate group is the maximum of the electrode plate group. It is 1/6 or more and 2/6 or less of the diameter.
  • the second projection is centered at the intersection of the winding axis of the electrode plate group and the second current collector plate, and is arranged on a circle having a diameter of 50 to 80% of the maximum diameter of the electrode plate group. Is preferred.
  • the maximum diameter of the electrode plate group is preferably 20 to 40 mm.
  • the maximum diameter of the hollow cylindrical portion of the electrode plate group is made larger than before.
  • a plurality of projections are provided on the current collector plate disposed between the inner bottom surface of the battery case and the electrode plate group, and the height of the projection provided in the central portion of the current collector plate is provided in another portion. The height of the projected projection is higher. Therefore, according to the manufacturing method of the present invention, the maximum diameter of the welding electrode used when the current collector plate is welded to the battery case can be increased, and the current collector plate and the battery case are separated by the projection. It becomes possible to make an electrical connection easily. Furthermore, since it is possible to prevent welding electrodes from adhering to the current collector plate, battery productivity can be improved.
  • the manufacturing method of the present invention it is possible to reliably connect the current collector plate disposed between the battery case and the electrode plate group and the battery case. For this reason, current collection property can be improved. Therefore, the cylindrical battery produced by the manufacturing method of the present invention is excellent in battery characteristics and can maintain the excellent battery characteristics.
  • FIG. 1 is a longitudinal sectional view schematically showing a cylindrical battery according to an embodiment of the present invention. It is a perspective view showing roughly the 2nd current collecting plate contained in the cylindrical battery contained in one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along line III-III of the second current collector plate of FIG. 2.
  • FIG. 3 is a drawing when a surface of the second current collector plate of FIG. 2 provided with a projection is viewed from a direction perpendicular to the surface.
  • the manufacturing method of the cylindrical battery of the present invention includes: (A) The first core includes a strip-shaped first core material and a first active material layer disposed on the first core material, the first core along one side parallel to the longitudinal direction of the first core material. Producing a first electrode provided with an exposed portion of the material; (B) The second core material includes a belt-shaped second core material and a second active material layer disposed on the second core material, and the second core material extends along one side parallel to the longitudinal direction of the second core material.
  • Producing a second electrode provided with an exposed portion of the core material (C) A laminate including the first electrode, the second electrode, and a separator disposed therebetween is wound in a spiral shape so that the exposed portion of the first core material and the exposed second core material are exposed.
  • the second current collector plate has one first projection and a plurality of second projections that protrude toward the inner bottom surface side of the cylindrical battery case on a surface facing the inner bottom surface of the cylindrical battery case.
  • the first projection is disposed in a first portion facing the hollow cylindrical portion of the electrode plate group of the second current collector plate, and the plurality of second projections are second ones other than the first portion of the second current collector plate. Placed in the part.
  • the height of the first projection is higher than the height of the second projection.
  • the maximum diameter of the hollow cylindrical portion of the electrode plate group is 1/6 or more and 2/6 or less of the maximum diameter of the electrode plate group.
  • the welding electrode is welded with the second current collector plate and the cylindrical battery case in close contact with each other through the hollow cylindrical portion of the electrode plate group.
  • the maximum diameter of the welding electrode is 60% or more and 100% or less and 4 mm or more of the maximum diameter of the hollow cylindrical portion of the electrode plate group.
  • a cylindrical battery 1 as shown in FIG. 1 can be manufactured by the manufacturing method of the present invention.
  • the case where the cylindrical battery 1 shown by FIG. 1 is produced using the manufacturing method of this invention is demonstrated, However, The battery produced by the manufacturing method of this invention is limited to the cylindrical battery of FIG. Not.
  • the strip-shaped first electrode 2 and the strip-shaped second electrode 4 are produced.
  • the first electrode 2 includes a strip-shaped first core material and a first active material layer disposed on the first core material.
  • an exposed portion 2 a of the first core material is provided along one side parallel to the longitudinal direction of the first electrode 2.
  • the second electrode 4 includes a band-shaped second core material and a second active material layer disposed on the second core material.
  • an exposed portion 4 a of the second core member is provided along one side parallel to the longitudinal direction of the second electrode 4.
  • the width of the exposed portion 2a of the first core member in the direction perpendicular to the longitudinal direction of the first electrode 2 is particularly limited as long as the exposed portion 2a of the first core member and the first current collector plate 6 can be connected. Not.
  • the width is preferably 1 to 2 mm.
  • the width of the exposed portion 4a of the second core member in the direction perpendicular to the longitudinal direction of the second electrode 4 is not particularly limited, but is preferably 1 to 2 mm.
  • the types of the first electrode 2 and the second electrode 4 are not particularly limited.
  • the first electrode 2 and the second electrode 4 may be sintered electrodes.
  • the first electrode 2 and the second electrode 4 are non-sintered electrodes, for example, electrodes obtained by applying a mixture paste containing an active material to a core material and drying the mixture (mixture-type electrode). May be.
  • the first electrode 2 may be a sintered electrode
  • the second electrode 4 may be a mixture electrode.
  • the first core material and the second core material may be a metal porous body. The thicknesses of the first active material layer and the second active material layer are appropriately determined according to the battery capacity and the like.
  • the sintered type electrode and the mixture type electrode can be produced using a method known in the art.
  • the first electrode 2 and the second electrode 4 can be, for example, a mixture-type electrode, but are not limited thereto.
  • the electrode plate group 5 is produced using the first electrode 2 and the second electrode 4 obtained as described above. Specifically, a laminate including the first electrode 2, the second electrode 4, and the separator 3 disposed therebetween is wound around a predetermined winding core to obtain a wound body. By removing the winding core from the wound body, the electrode plate group 5 having the hollow cylindrical portion 5a provided along the winding axis can be obtained.
  • the maximum diameter of the hollow cylindrical portion 5 a provided in the electrode plate group 5 is set to 1/6 or more and 2/6 or less of the maximum diameter of the electrode plate group 5.
  • the maximum diameter of the cross section of the hollow cylindrical portion 5a provided in the electrode plate group 5 can be controlled by adjusting the maximum diameter of the cross section of the core.
  • the exposed portion 2a of the first core member is disposed along one side parallel to the longitudinal direction of the laminated body, and the second side along the other side parallel to the longitudinal direction of the laminated body.
  • An exposed portion 4a of the core material is disposed.
  • the first current collector plate 6 is connected to the exposed portion 2a of the first core member disposed on one end face (first end face) of the electrode plate group 5.
  • the second current collector plate 20 is connected to the exposed portion 4 a of the second core member disposed on the other end surface (second end surface) of the electrode plate group 5.
  • the connection of the first current collector plate 6 to the exposed portion 2a of the first core material and the connection of the second current collector plate 20 to the exposed portion 4a of the second core material are as follows: It can be performed using methods known in the art.
  • the electrode plate group 5 to which the first current collector plate 6 and the second current collector plate 20 are connected is formed into a cylindrical battery case 7, and the second current collector plate 20 is formed into a cylindrical battery case. 7 is accommodated in contact with the inner bottom surface.
  • the second current collector plate 20 is connected to the cylindrical battery case 7.
  • the second current collector plate 20 has a plurality of projections on the surface facing the inner bottom surface of the battery case 7.
  • An example of the second current collector plate 20 is shown in FIGS.
  • FIG. 2 is a perspective view of an example of the second current collector.
  • 3 is a cross-sectional view taken along line III-III of the second current collector plate of FIG.
  • FIG. 4 is a view of the surface on which the projection of the second current collector plate of FIG. 2 is provided when viewed from a direction perpendicular to the surface.
  • the second current collector plate 20 shown in FIGS. 2 to 4 has one first projection 22a provided in the first portion 21a facing the hollow cylindrical portion 5a of the electrode plate group 5 of the second current collector 20. . Further, the second current collector plate 20 has a plurality of second projections 22 b provided on the second portion 21 b other than the first portion 21 a of the second current collector plate 20. The height of the first projection 22a is higher than the height of the second projection 22b.
  • the connection of the second current collector plate 20 to the battery case 7 is performed as follows. As shown in FIG. 5, the first welding electrode 51 is brought into contact with the second current collector plate 20 through the hollow cylindrical portion 5 a of the electrode plate group 5, and the second welding electrode 52 is brought into contact with the bottom of the battery case 7. Let The second current collector plate 20 and the battery case 7 are brought into close contact with each other using the first welding electrode 51 and the second welding electrode 52, and the first welding electrode 51 and the second welding electrode 52 are in this state. A current is applied between them. Thus, the second current collector plate 20 is connected to the battery case 7 by resistance welding the second current collector plate 20 to the battery case 7.
  • the current value applied between the first welding electrode 51 and the second welding electrode 52 can be set to 2 to 6 kA, for example.
  • the maximum diameter of the hollow cylindrical portion 5a of the electrode plate group 5 is set to 1/6 or more and 2/6 or less of the maximum diameter of the electrode plate group 5, and the maximum diameter of the first welding electrode 51 is set to the hollow cylindrical portion.
  • the maximum diameter of 5a is 60% or more and 100% and 4 mm or more. That is, the maximum diameter of the hollow cylindrical portion 5a of the electrode plate group 5 and the maximum diameter of the first welding electrode 51 are made larger than before.
  • a core having a diameter smaller than 5 mm is used, and thus the maximum diameter of the formed hollow cylindrical portion is also smaller than 5 mm.
  • the first welding electrode having a diameter smaller than the diameter of the core was used.
  • the second current collector plate 20 can be stably pressurized by using the first welding electrode 51 having a larger maximum diameter than the conventional one. For this reason, the adhesiveness of the 2nd collector plate 20 and the battery case 7 can be improved. Furthermore, since the maximum diameter of the first welding electrode 51 is large, heat dissipation during welding is improved. Therefore, it is possible to prevent the first welding electrode 51 from adhering to the second current collector plate 20 during welding. As a result, the productivity of the battery can be improved. Moreover, since the maximum diameter of the first welding electrode 51 is larger than the conventional one, the first welding electrode 51 can be obtained without processing a commercially available welding electrode or with a little processing.
  • the maximum diameter of the hollow cylindrical portion 5a is preferably 1/5 or more and 2/6 or less of the maximum diameter of the electrode plate group 5.
  • the maximum diameter of the first welding electrode 51 is preferably 80 to 100% of the maximum diameter of the hollow cylindrical portion 5a.
  • the shape of the first welding electrode 51 is not particularly limited. For example, a cylindrical first welding electrode 51 can be used.
  • one first projection 22a is provided on the first portion 21a of the second current collector plate 20, a plurality of second projections 22b are provided on the second portion 21b, and the height of the first projection 22a is provided. Is higher than the height of the second projection 22b.
  • the group configuration step in which the laminated body including the first electrode 2 and the second electrode 4 and the separator 3 disposed therebetween is wound in a spiral shape, the deformation of the electrode, the thickness of the electrode Due to the variation in the accuracy, the accuracy of the equipment, etc., the exposed portion of the core material may be displaced every time it is wound around one turn.
  • the end surface of the electrode plate group 5 in the winding axis direction is not flat, and an exposed portion of a part of the core material may protrude or another part of the core material may be retracted.
  • the second current collector plate 20 is connected to such an end face (exposed portion of the core material), the second current collector plate 20 is unlikely to be flat.
  • the thick first welding electrode 51 is used to achieve a good contact state between the second current collector plate 20 and the battery case 7, and the height of the first projection 22a is set to the second projection 22b.
  • a stable nugget (melting part) can be formed without being affected by the flatness and / or the planar state of the end face of the electrode plate group 5 in the winding axis direction.
  • the second current collector plate 20 and the battery case 7 are reliably in contact with each other, and thus an energization path can be secured. For this reason, the stable connection state of the 2nd collector plate 20 and the battery case 7 can be maintained, As a result, the battery by which the high battery performance was maintained can be obtained.
  • a battery having high battery performance can be obtained with high productivity. If the maximum diameter of the hollow cylindrical portion 5a of the electrode plate group 5 is larger than 2/6 of the maximum diameter of the electrode plate group 5, a sufficient capacity cannot be obtained.
  • the constituent material of the second current collector plate 20 and the battery case 7 for example, iron (Fe) and nickel (Ni) can be used.
  • the 1st current collecting plate 6 is also comprised from the said material.
  • the four second projections 22b are provided on the second current collector plate 20 shown in FIG. 2, but the number of the second projections 22b is not particularly limited. As will be described below, when the second current collector plate 20 is provided with slits and burring portions, a second projection 22b is provided between the slits. When many slits are provided in the 2nd current collecting plate 20, it is possible that the conductivity of the 2nd current collecting plate 20 falls. Therefore, in consideration of the number of slits provided in the second current collector plate 20 and the like, the number of the second projections 22b is preferably 3 to 8.
  • the second projections 22 b are preferably arranged at equal intervals (center angle 90 °) on a concentric circle.
  • the second projection 22b includes a region 25 (two circumferential lines drawn by broken lines) that is 50 to 80% of the maximum diameter of the electrode plate group 5 in the second part 21b facing the electrode plate group 5 part. It is preferable to arrange
  • the second projection 22b has a center at the intersection of the winding axis of the electrode plate group 5 and the surface (lower surface) on which the projection of the second current collector plate 20 is provided in the second current collector plate 20, In addition, it is preferably arranged on a circumference having a diameter of 50 to 80% of the maximum diameter of the electrode plate group 5. Further, the second projection 22b has a center at the intersection of the winding axis of the electrode plate group 5 and the lower surface of the second current collector plate 20, and has a diameter of 65 to 70% of the maximum diameter of the electrode plate group 5. It is particularly preferable to arrange on a circumference having By providing the second projection 22b in the region 25, the weldability can be further improved, and the current collecting property after welding can be further improved.
  • the difference between the height A of the first projection 22a and the height B of the second projection 22b: AB is preferably 10 to 500 ⁇ m depending on the size of the battery, the shape of the battery, and the like.
  • the height of the first projection 22a is preferably 100 to 600 ⁇ m.
  • the height of the first projection 22a can be obtained as a vertical distance from the surface of the second current collector plate 20 where the first projection 22a is provided to the highest position of the first projection 22a.
  • the height of the second projection 22b can also be obtained in the same manner as the height of the first projection 22a.
  • the maximum diameter of the first projection 22a and the second projection 22b is 0.1 to 2 mm.
  • the maximum diameter of the first projection 22a and the second projection 22b refers to the maximum diameter in a direction perpendicular to the height direction.
  • the 1st projection 22a should just have the center in the 1st part 21a.
  • the second projection 22b being disposed in the region 25 means that the center of the second projection 22b is in the region 25.
  • the center of the first projection 22a and the second projection 22b refers to the midpoint of the maximum diameter.
  • the second current collector plate 20 has one first projection 22 a provided on the first portion 21 a of the second current collector plate 20, and a plurality of second projections 22 b provided on the second portion 21 b of the second current collector plate 20. Can be produced.
  • the 1st projection 22a and the 2nd projection 22b can be produced using a well-known method in the said field
  • the second current collecting plate 20 preferably has a plurality of burring portions 23.
  • the burring part 23 protrudes upward from each side edge part of the four slits 24 formed radially from the center part of the second current collector plate 20 toward the outer peripheral side.
  • the first welding electrode 51 is used and, for example, a pressurizing means 53 such as a pressurizer is used to attach the second current collector plate 20 to the battery case 7.
  • the electrode plate group 5 may be pressed against the battery case 7. Thereby, the 2nd current collecting plate 20 and the battery case 7 can be stuck.
  • the pressurizing means 53 is provided with a through hole through which the first welding electrode 51 passes.
  • FIG. 1 shows a battery including a sealing body 9 having a rubber type safety valve including a rubber body 11.
  • the first electrode 2 may be either a positive electrode or a negative electrode.
  • the second electrode 4 is a negative electrode when the first electrode 2 is a positive electrode, and is a positive electrode when the first electrode 2 is a negative electrode.
  • the 2nd electrode 4 is a negative electrode and the 2nd current collecting plate 20 is a negative electrode current collecting plate.
  • the second electrode 4 is a negative electrode.
  • the type of battery produced using the production method of the present invention is not particularly limited.
  • the first core material and the first active material constituting the first electrode 2 and the second core material and the second active material constituting the second electrode 4 are appropriately selected according to the type of battery to be produced.
  • a material known in the art such as nickel oxyhydroxide can be used as the positive electrode active material.
  • the negative electrode active material a material known in the art such as a hydrogen storage alloy can be used.
  • materials known in the art such as lithium-containing composite oxides can be used as the positive electrode active material.
  • a carbon material a material known in the art such as a material containing Si or Sn can be used.
  • the electrolyte used is also appropriately selected according to the type of battery to be produced.
  • an electrolyte for an alkaline storage battery for example, an alkaline aqueous solution is used.
  • an electrolyte for a lithium battery for example, a nonaqueous electrolyte containing a nonaqueous solvent and a lithium salt dissolved therein is used.
  • the non-aqueous solvent and the lithium salt materials known in the art can be used.
  • the positive electrode core material the negative electrode core material, the separator, and the like, those known in the art are appropriately selected according to the type of the battery to be manufactured.
  • the production method of the present invention is particularly suitable for producing a battery including an electrode plate group having a maximum cross-sectional diameter of 20 to 40 mm.
  • the second current collector plate 20 and the battery case 7 are connected with excellent welding quality by the manufacturing method of the present invention. Therefore, the battery obtained by the manufacturing method of the present invention can maintain good battery characteristics.
  • a cylindrical nickel-metal hydride storage battery as shown in FIG. 1 was produced using the first electrode as the positive electrode and the second electrode as the negative electrode.
  • the manufactured battery had a diameter of 32 mm, a height of 60 mm, and a nominal capacity of 6000 mAh.
  • Each of the positive electrode plate and the negative electrode plate was provided with an exposed portion of the core material along one side parallel to the longitudinal direction.
  • the length of the exposed portion of the positive electrode core material in the width direction of the positive electrode plate was 1.5 mm.
  • the length of the exposed portion of the negative electrode core member in the width direction of the negative electrode plate was 1.5 mm.
  • a positive electrode plate and a negative electrode plate were laminated with a separator interposed therebetween to obtain a laminate.
  • the exposed portion of the positive electrode core material is arranged along one side parallel to the longitudinal direction of the laminate, and the exposed portion of the negative electrode core material is arranged along the other side parallel to the longitudinal direction of the laminate.
  • the exposed portion of the positive electrode core material and the exposed portion of the negative electrode core material were projected by 1.5 mm in opposite directions in the width direction of the laminate.
  • the obtained laminate is wound in a spiral shape using a core having a thickness (cross section diameter) of ⁇ 6 mm, and an electrode plate group having a diameter (cross section diameter) of 30 mm and a height of 50 mm.
  • the exposed portion of the positive electrode core material is disposed on one end face (first end face) in the winding axis direction, and the other end face (second end face) in the winding axis direction is The exposed part of the negative electrode core material was arranged.
  • the maximum diameter of the hollow cylindrical portion provided along the winding axis in the center portion of the electrode plate group was 5 mm. That is, the maximum diameter of the hollow cylindrical portion of the electrode plate group was 1/6 of the maximum diameter of the electrode plate group.
  • a rectangular iron positive electrode current collector plate (first current collector plate) having a circular opening with a diameter of 6 mm in the center was welded to the exposed portion of the positive electrode core member disposed on the first end face of the electrode plate group.
  • the diagonal length of the positive electrode current collector plate was 28 mm, and the thickness was 400 ⁇ m.
  • a circular iron negative electrode current collector plate (second current collector plate) having one first projection and four second projections on one side was prepared.
  • the negative electrode current collector plate had a diameter of 29 mm and a thickness of 400 ⁇ m.
  • the first projection was disposed in the central portion of the negative electrode current collector plate, that is, the first portion facing the hollow cylindrical portion of the electrode plate group.
  • the height of the first projection was 380 ⁇ m, and the maximum diameter of the first projection was 180 ⁇ m.
  • the four second projections were arranged at equal intervals on a concentric circle having a diameter of 20 mm.
  • the height of the second projection was 300 ⁇ m, and the maximum diameter of the second projection was 150 ⁇ m.
  • the exposed portion of the negative electrode core material was connected to the surface of the negative electrode current collector plate opposite to the side where the projection was formed. Specifically, a 5 mm ⁇ 8 mm square prismatic welding electrode was brought into contact with the negative electrode current collector plate, and the negative electrode current collector plate and the exposed portion of the negative electrode core material were electrically welded.
  • the electrode plate group welded with the positive electrode current collector plate and the negative electrode current collector plate was housed in an iron battery case.
  • the columnar first welding electrode was brought into contact with the negative electrode current collector plate through the opening provided at the center of the positive electrode current collector plate and the hollow cylindrical portion of the electrode plate group.
  • the second welding electrode was brought into contact with the bottom of the battery case. Using the first welding electrode and the second welding electrode, the five projections of the negative electrode current collector plate and the battery case were brought into close contact with each other. At this time, the electrode plate group was further pressed onto the battery case from above the first current collector plate with a force of 150 N by the group pressurizer.
  • the negative electrode current collector plate was welded to the inner bottom surface of the battery case by applying a welding current of 4 kA between the first welding electrode and the second welding electrode.
  • the maximum diameter of the first welding electrode was 4.0 mm. That is, the maximum diameter of the first welding electrode was 80% of the maximum diameter of the hollow cylindrical portion of the electrode plate group.
  • a predetermined amount of a predetermined alkaline electrolyte was injected into the battery case from the opening at the center of the positive electrode current collector plate. Thereafter, one end of a nickel connection lead was connected to the positive electrode current collector plate, and the other end of the connection lead was welded to a sealing body having a positive electrode terminal. Subsequently, the opening part of the battery case was sealed using the sealing body.
  • the alkaline storage battery thus produced was designated as battery A.
  • Comparative battery B was produced in the same manner as battery A, except that the first welding electrode having a maximum diameter of 3 mm was used.
  • the battery A and the comparative battery B were each produced 1000 pieces, and the adhesion occurrence rate of the first welding electrode to the negative electrode current collector plate was determined for each of the battery A and the comparative battery B. The obtained results are shown in Table 1. Table 1 also shows the maximum diameter of the first welding electrode and the number of adhesion of the first welding electrode to the negative electrode current collector plate.
  • Comparative Battery B the ratio of the first welding electrode adhering to the negative electrode current collector plate is high.
  • the ratio of the first welding electrode attached to the negative electrode current collector plate was 0%. This increases the maximum diameter of the hollow cylindrical portion provided in the central portion of the electrode plate group and increases the maximum diameter of the first welding electrode, thereby improving the heat dissipation of the welding electrode. This is thought to be because adhesion of the first welding electrode to the negative electrode current collector plate was reduced.
  • the first welding electrode having a maximum diameter smaller than 3 mm is used and a welding current of 4 kA is applied between the first welding electrode and the second welding electrode, as in the case of the comparative battery B, It was confirmed that the ratio of adhesion between the first welding electrode and the battery case was high due to the heat generated by the welding electrode. Further, when the maximum diameter of the first welding electrode is 3 mm or less and a welding current of 2 kA is applied between the first welding electrode and the second welding electrode, the first welding electrode adheres to the battery case. lost. However, it was confirmed that some of the five projections may not be welded to the battery case. This is because the welding current flowing between the first welding electrode and the second welding electrode is relatively small, so that sufficient heat generation cannot be obtained. As a result, the projection and the battery case are not sufficiently melted (welded). This is thought to be because the adhesiveness of the resin deteriorated.
  • the present invention it is possible to prevent the welding electrode from adhering to the current collector plate when the current collector plate is connected to the battery case. For this reason, the productivity of the battery can be improved. Furthermore, according to the present invention, it is possible to reliably connect the current collector plate disposed between the battery case and the electrode plate group and the battery case, and thus it is possible to improve the current collecting performance. As a result, the battery produced by the production method of the present invention is excellent in battery characteristics and can maintain the excellent battery characteristics. Moreover, since the battery produced with the manufacturing method of this invention can maintain a favorable battery characteristic, it can be used suitably as power supplies, such as an electronic device, an electric tool, an electric vehicle, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 本発明は、主として捲回型極板群を備えた円筒形電池およびその製造方法に関する。本発明は、集電板を電池ケースに接続するときに、溶接用電極が集電板に付着することなく、高い生産性で円筒形電池を作製できる製造方法を提供することを目的とする。  本発明においては、極板群の中空円筒部の最大径を極板群の最大径の1/6以上2/6以下とし、1つの第1プロジェクションと複数の第2プロジェクションとを有する集電体を用いる。1つの第1プロジェクションと複数の第2プロジェクションは、集電板の電池ケースの内底面と対向する面に配置され、かつ電池ケースの内底面側に突出する。第1プロジェクションの高さは第2プロジェクションの高さよりも高い。さらに、前記集電板を電池ケースに接続するときに、最大径が極板群の中空円筒部の最大径の60%以上、100%以下であり、かつ4mm以上の溶接用電極を用いる。

Description

円筒形電池およびその製造方法
 本発明は、主として、捲回型極板群を備えた円筒形電池およびその製造方法に関する。
 円筒形電池には、ニッケル-カドミウム電池、ニッケル-水素電池などの各種電池が知られている。円筒形電池は、一般的に、帯状の正極板と負極板とを隔離用のセパレータを介在させて重ね合わせ、得られた積層体を渦巻状に捲回して得られた極板群を備える。前記極板群は、金属製の円筒形電池ケースに収容されている。
 このような円筒形電池は、信頼性が高く、メンテナンスも容易であることから、携帯電話、ノートパソコン用の電源など、各種用途に使用されている。近年では、電動アシスト自転車、芝刈機、電気自動車などの電源として、大電流放電に適した円筒形電池の開発が要望されている。
 大電流の出入力に適した集電構造としては、例えば、極板群の上端面および下端面からそれぞれ正極芯材および負極芯材が突出し、かつ前記正極芯材の端縁部の複数箇所が正極集電体に溶接され、前記負極芯材の端縁部の複数箇所が負極集電体に溶接されている集電構造が知られている。
 さらに、特許文献1には、複数のプロジェクションが設けられた負極集電体を用いることが提案されている。特許文献1において、負極集電体は、極板群と電池ケースの内底面との間に配置されており、負極集電体の極板群の中空円筒部に対向する中心部分に1つのプロジェクションが設けられており、前記中心部分と周縁部との間の領域に複数のプロジェクションが設けられている。前記複数のプロジェクションは、負極集電体の電池ケースの内底面に対向している面から、前記内底面に向かって突出している。負極集電体の前記複数のプロジェクションが、電池ケースの内底面に溶接されている。前記負極集電体のプロジェクションが設けられた面と反対側の面には、負極芯材が接続されている。特許文献1において、負極集電体の極板群の中空円筒部に対向する中心部分に設けられたプロジェクションの高さは、他の部分に設けられたプロジェクションの高さよりも低い。
特開2005-100949号公報
 しかしながら、特許文献1に開示されるような技術において、集電板に設けられた複数のプロジェクションを電池ケースの内底面に点溶接するためには、溶接用電極を通して溶接部に流す溶接電流が大きくなる。そのため、細い溶接用電極を使用すると、溶接時に溶接用電極の先端に熱が発生して、溶接用電極と集電板とが融合して、溶接用電極が集電板に付着するという問題が生じる。さらには、溶接用電極を付着部から外すために、生産性が低下するという問題も生じる。
 本発明は、上記問題に鑑み、主として、集電板を電池ケースに溶接するために、溶接用電極に大電流を流した場合でも、溶接用電極が集電板に付着することなく、高い生産性で集電板を電池ケースに溶接できる方法を提供することを目的とする。
 本発明の円筒形電池の製造方法は、
 (a)帯状の第1芯材と、前記第1芯材に配された第1活物質層とを含み、前記第1芯材の長手方向に平行な一方の辺に沿って前記第1芯材の露出部が設けられている第1電極を作製する工程、
 (b)帯状の第2芯材と、前記第2芯材に配された第2活物質層とを含み、前記第2芯材の長手方向に平行な一方の辺に沿って前記第2芯材の露出部が設けられている第2電極を作製する工程、
 (c)前記第1電極と前記第2電極とそれらの間に配置されたセパレータとを含む積層体を渦巻状に捲回して、前記第1芯材の露出部および前記第2芯材の露出部が捲回軸方向の2つの端面にそれぞれ配置され、かつ捲回軸に沿って設けられた中空円筒部を有する極板群を得る工程、
 (d)前記第1芯材の露出部に、第1集電板を接続する工程、
 (e)前記第2芯材の露出部に、第2集電板を接続する工程、
 (f)前記第1集電板および前記第2集電板が接続された極板群を、円筒形電池ケースに、前記第2集電板が前記円筒形電池ケースの内底面に接するように、収容する工程、ならびに
 (g)前記第2集電板を、前記円筒形電池ケースに接続する工程
を含む。第2集電板は、円筒形電池ケースの内底面と対向する面に、円筒形電池ケースの内底面側に突出する1つの第1プロジェクションと複数の第2プロジェクションとを有する。第1プロジェクションは、第2集電板の極板群の中空円筒部に対向する第1部分に配置されており、複数の第2プロジェクションは、第2集電板の第1部分以外の第2部分に配置されており、かつ第1プロジェクションの高さは、第2プロジェクションの高さよりも高い。工程(g)は、溶接用電極を、極板群の中空円筒部を通して、第2集電板に接触させ、第2集電板と円筒形電池ケースとを密着させた状態で、溶接用電極を用いて、第2集電板と前記円筒形電池ケースとを溶接する工程を有する。極板群の中空円筒部の最大径は、極板群の最大径の1/6以上、2/6以下である。溶接用電極の最大径は、極板群の中空円筒部の最大径の60%以上、100%以下であり、かつ前記溶接用電極の最大径は、4mm以上である。
 ここで、極板群の最大径および極板群の中空円筒部の最大径とは、捲回軸に垂直な方向における極板群の最大径および中空円筒部の最大径のことをいう。溶接用電極の最大径とは、溶接用電極の長手方向に垂直な方向における最大径のことをいう。
 第2プロジェクションは、極板群の捲回軸と第2集電板との交点に中心があり、極板群の最大径の50~80%の直径を有する円周上に配置されていることが好ましい。
 第1プロジェクションの高さと、第2プロジェクションの高さとの差は、10~500μmであることが好ましい。
 極板群の最大径は、20~40mmであることが好ましい。
 また、本発明は、上記製造方法で作製された円筒形電池に関する。具体的には、本発明の円筒形電池は、
 (i)第1電極と、第2電極と、前記第1電極と前記第2電極との間に配置されたセパレータを含む捲回型極板群、
 (ii)前記捲回型極板群を収容する円筒形電池ケース、
 (iii)前記第1電極に接続される第1集電板、
 (iv)前記第2電極に接続され、かつ前記極板群と前記円筒形電池ケースの内底面との間に配置された第2集電板、および
 (v)電解質
を備える。第1電極は、帯状の第1芯材と、前記第1芯材に配された第1活物質層とを含み、第1芯材の長手方向に平行な一方の辺に沿って前記第1芯材の露出部が設けられている。第2電極は、帯状の第2芯材と、第2芯材に配された第2活物質層とを含み、第2芯材の長手方向に平行な一方の辺に沿って第2芯材の露出部が設けられている。極板群の捲回軸方向の2つの端面には、それぞれ第1芯材の露出部および第2芯材の露出部が配置されており、かつ極板群は、捲回軸に沿って設けられた中空円筒部を有する。第2集電板は、円筒形電池ケースの内底面と対向する面に、円筒形電池ケースの内底面側に突出する1つの第1プロジェクションと複数の第2プロジェクションとを有する。第1プロジェクションは、第2集電板の極板群の中空円筒部に対向する第1部分に配置されており、複数の第2プロジェクションは、前記第1部分以外の第2部分に配置されている。第2集電板に設けられた第1プロジェクションおよび複数の第2プロジェクションが、円筒形電池ケースの内底面に溶接されており、極板群の中空円筒部の最大径は、極板群の最大径の1/6以上、2/6以下である。
 第2プロジェクションは、極板群の捲回軸と第2集電板との交点に中心があり、極板群の最大径の50~80%の直径を有する円周上に配置されていることが好ましい。
 極板群の最大径は、20~40mmであることが好ましい。
 本発明においては、極板群の中空円筒部の最大径を、従来より大きくしている。さらに、電池ケースの内底面と極板群との間に配置された集電板に複数のプロジェクションを設けるとともに、集電板の中心部に設けられたプロジェクションの高さを、他の部分に設けられたプロジェクションの高さよりも高くしている。よって、本発明の製造方法によれば、集電板を電池ケースに溶接するときに用いる溶接用電極の最大径を大きくすることができるとともに、前記プロジェクションにより、前記集電板と電池ケースとを容易に電気的に接続することが可能になる。さらには、前記集電板に、溶接用電極が付着することを防止することができるため、電池の生産性を向上することができる。
 また、本発明の製造方法により、電池ケースと極板群との間に配置された集電板と、電池ケースとを、確実に接続することが可能となる。このため、集電性を向上させることができる。よって、本発明の製造方法により作製された円筒形電池は、電池特性に優れ、かつその優れた電池特性を維持することができる。
本発明の一実施形態に係る円筒形電池を概略的に示す縦断面図である。 本発明の一実施形態に含まれる円筒形電池に含まれる第2集電板を概略的に示す斜視図である。 図2の第2集電板のIII-III線における断面図である。 図2の第2集電板のプロジェクションが設けられた面を、その面に垂直な方向から見たときの図面である。 第2集電板を電池ケースに接続するときに用いられる第1溶接用電極の配置を概略的に示す縦断面図である。
 本発明を、図面を参照しながら説明する。
 本発明の円筒形電池の製造方法は、
 (a)帯状の第1芯材と、前記第1芯材に配された第1活物質層とを含み、前記第1芯材の長手方向に平行な一方の辺に沿って前記第1芯材の露出部が設けられている第1電極を作製する工程、
 (b)帯状の第2芯材と、前記第2芯材上に配された第2活物質層とを含み、前記第2芯材の長手方向に平行な一方の辺に沿って前記第2芯材の露出部が設けられている第2電極を作製する工程、
 (c)前記第1電極と前記第2電極とそれらの間に配置されたセパレータとを含む積層体を渦巻状に捲回して、前記第1芯材の露出部および前記第2芯材の露出部が捲回軸方向の2つの端面にそれぞれ配置され、かつ捲回軸に沿って設けられた中空円筒部を有する極板群を得る工程、
 (d)前記第1芯材の露出部に、第1集電板を接続する工程、
 (e)前記第2芯材の露出部に、第2集電板を接続する工程、
 (f)前記第1集電板および前記第2集電板が接続された極板群を、円筒形電池ケースに、前記第2集電板が前記円筒形電池ケースの内底面に接するように、収容する工程、ならびに
 (g)前記第2集電板を、前記円筒形電池ケースに接続する工程
を含む。第2集電板は、円筒形電池ケースの内底面と対向する面に、円筒形電池ケースの内底面側に突出する1つの第1プロジェクションと複数の第2プロジェクションとを有する。第1プロジェクションは、第2集電板の極板群の中空円筒部に対向する第1部分に配置されており、複数の第2プロジェクションは、第2集電板の第1部分以外の第2部分に配置されている。第1プロジェクションの高さは、第2プロジェクションの高さよりも高い。極板群の中空円筒部の最大径は、極板群の最大径の1/6以上、2/6以下である。
 さらに、工程(g)は、溶接用電極を、極板群の中空円筒部を通して、第2集電板に接触させ、第2集電板と円筒形電池ケースとを密着させた状態で、溶接用電極を用いて、第2集電板と前記円筒形電池ケースとを溶接する工程を有する。溶接用電極の最大径は、極板群の中空円筒部の最大径の60%以上、100%以下であり、かつ4mm以上である。
 本発明の製造方法により、例えば、図1に示されるような円筒形電池1を作製することができる。以下では、本発明の製造方法を用いて、図1に示される円筒形電池1を作製する場合について説明するが、本発明の製造方法により作製される電池は、図1の円筒形電池に限定されない。
 工程(a)および工程(b)で、帯状の第1電極2および帯状の第2電極4が作製される。第1電極2は、帯状の第1芯材と、第1芯材に配された第1活物質層を含む。第1電極2において、第1電極2の長手方向に平行な一方の辺に沿って第1芯材の露出部2aが設けられている。同様に、第2電極4は、帯状の第2芯材と、第2芯材に配された第2活物質層を含む。第2電極4において、第2電極4の長手方向に平行な一方の辺に沿って第2芯材の露出部4aが設けられている。
 第1電極2の長手方向に対して垂直な方向における第1芯材の露出部2aの幅は、第1芯材の露出部2aと第1集電板6とが接続できるならば、特に限定されない。例えば、前記幅は、1~2mmであることが好ましい。同様に、第2電極4の長手方向に対して垂直な方向における第2芯材の露出部4aの幅は、特に限定されないが、1~2mmであることが好ましい。
 本発明の製造方法によって作製される電池1が、例えば、アルカリ蓄電池である場合、第1電極2および第2電極4の種類は、特に限定されない。例えば、第1電極2および第2電極4は、焼結型電極であってもよい。または、第1電極2および第2電極4は、非焼結型電極、例えば、活物質を含む合剤ペーストを芯材に塗布し、乾燥して得られた電極(合剤型電極)であってもよい。あるいは、第1電極2が焼結型電極であり、第2電極4が合剤型電極であってもよい。第1芯材および第2芯材は、金属多孔体であってもよい。第1活物質層および第2活物質層の厚さは、電池容量等に応じて、適宜決定される。
 焼結型電極および合剤型電極は、当該分野で公知の方法を用いて作製することができる。
 リチウム二次電池が作製される場合、第1電極2および第2電極4は、例えば、合剤型電極とすることができるが、これに限定されない。
 工程(c)において、上記のようにして得られた第1電極2および第2電極4を用いて、極板群5が作製される。具体的には、第1電極2と第2電極4とそれらの間に配置されたセパレータ3とを含む積層体を、所定の巻芯の周りに捲回して、捲回体を得る。前記捲回体から巻芯を除いて、捲回軸に沿って設けられた中空円筒部5aを有する極板群5を得ることができる。極板群5に設けられた中空円筒部5aの最大径は、極板群5の最大径の1/6以上、2/6以下とされる。
 極板群5に設けられた中空円筒部5aの横断面の最大径は、巻芯の横断面の最大径を調節することにより制御することができる。
 前記積層体においては、前記積層体の長手方向に平行な一方の辺に沿って第1芯材の露出部2aが配置され、前記積層体の長手方向に平行な他方の辺に沿って第2芯材の露出部4aが配置されている。第1芯材の露出部2aおよび第2芯材の露出部4aを前記のように配置することにより、得られた極板群5において、第1芯材の露出部2aは、捲回軸方向の一方の端面(第1端面)に配置され、第2芯材の露出部4aは、捲回軸方向の他方の端面(第2端面)に配置される。
 工程(d)において、極板群5の一方の端面(第1端面)に配置された第1芯材の露出部2aに、第1集電板6が接続される。工程(e)において、極板群5の他方の端面(第2端面)に配置された第2芯材の露出部4aに、第2集電板20が接続される。工程(d)および工程(e)において、第1芯材の露出部2aへの第1集電板6の接続および第2芯材の露出部4aへの第2集電板20の接続は、当該分野で公知の方法を用いて行うことができる。
 次に、工程(f)において、第1集電板6および第2集電板20が接続された極板群5が、円筒形電池ケース7に、第2集電板20が円筒形電池ケース7の内底面に接するように収容される。次いで、工程(g)において、第2集電板20が、円筒形電池ケース7に接続される。
 本発明において、第2集電板20は、電池ケース7の内底面に対向する面に、複数のプロジェクションを有する。図2~4に、第2集電板20の一例を示す。ここで、図2は、第2集電体の一例の斜視図である。図3は、図2の第2集電板のIII-III線における断面図である。図4は、図2の第2集電板のプロジェクションが設けられた面を、その面に対して垂直な方向から見たときの図面である。
 図2~4に示される第2集電板20は、第2集電体20の極板群5の中空円筒部5aに対向する第1部分21aに設けられた1つの第1プロジェクション22aを有する。さらに、第2集電板20は、第2集電板20の第1部分21a以外の第2部分21bに設けられた複数の第2プロジェクション22bを有する。第1プロジェクション22aの高さは、第2プロジェクション22bの高さよりも高い。
 第2集電板20の電池ケース7への接続は、以下のようにして行われる。図5に示されるように、第1溶接用電極51を、極板群5の中空円筒部5aを通して第2集電板20に接触させ、第2溶接用電極52を電池ケース7の底部に接触させる。第1溶接用電極51および第2溶接用電極52を用いて第2集電板20と電池ケース7とを密着させ、その状態で、第1溶接用電極51と第2溶接用電極52との間に電流を印加する。こうして、第2集電板20を電池ケース7に抵抗溶接することにより、第2集電板20が電池ケース7に接続される。第1溶接用電極51と第2溶接用電極52との間に印加する電流値は、例えば、2~6kAとすることができる。
 本発明においては、極板群5の中空円筒部5aの最大径を極板群5の最大径の1/6以上、2/6以下とし、第1溶接用電極51の最大径を中空円筒部5aの最大径の60%以上100%とし、かつ4mm以上としている。つまり、極板群5の中空円筒部5aの最大径および第1溶接用電極51の最大径を、従来よりも大きくしている。なお、従来、最大径が30mm程度の極板群を作製する場合、径が5mmより小さい巻芯が用いられ、よって、形成される中空円筒部の最大径も5mmより小さくなる。その結果、径が巻芯の径よりも小さい第1溶接用電極が用いられていた。
 上記のように最大径が従来よりも大きい第1溶接用電極51を用いることにより、第2集電板20を安定して加圧することができる。このため、第2集電板20と電池ケース7との密着性を高めることができる。さらには、第1溶接用電極51の最大径が大きいため、溶接時の放熱性も良化する。よって、溶接時に第1溶接用電極51が第2集電板20に付着することを防止することができる。この結果、電池の生産性を向上することができる。また、第1溶接用電極51の最大径が従来と比較して大きいため、市販の溶接用電極を加工せずに、または少しの加工で、第1溶接用電極51を得ることができる。
 前記効果が十分に得られるため、中空円筒部5aの最大径は、極板群5の最大径の1/5以上、2/6以下であることが好ましい。第1溶接用電極51の最大径は、中空円筒部5aの最大径の80~100%であることが好ましい。
 なお、第1溶接用電極51の形状は、特に限定されない。例えば、円柱状の第1溶接用電極51を用いることができる。
 さらに、本発明においては、第2集電板20の第1部分21aに1つの第1プロジェクション22aを設け、第2部分21bに複数の第2プロジェクション22bを設けるとともに、第1プロジェクション22aの高さを、第2プロジェクション22bの高さよりも高くしている。
 第1電極2と第2電極4とそれらの間に配置されたセパレータ3とを含む積層体を渦巻状に捲回する群構成工程(上記工程(c))において、電極の変形、電極の厚みのバラツキ、設備の精度などによって、1周ずつ捲回するごとに、芯材の露出部にズレが生じることがある。この場合、極板群5の捲回軸方向における端面が、平面状にならず、一部の芯材の露出部が突出したり、別の一部の芯材が引っ込んだりすることがある。このような端面(芯材の露出部)に、第2集電板20を接続した場合、第2集電板20がフラットになりにくい。
 本発明においては、太い第1溶接用電極51を用いて、第2集電板20と電池ケース7との良好な密着状態を実現すると共に、第1プロジェクション22aの高さを、第2プロジェクション22bの高さよりも高くすることにより、極板群5の捲回軸方向の端面の平面度および/または平面状態に影響されずに、安定したナゲット(溶融部)を形成することができる。つまり、第1プロジェクション22aの高さを、第2プロジェクション22bの高さより高くすることにより、第2集電板20と電池ケース7とが確実に接触し、よって、通電経路を確保できる。このため、第2集電板20と電池ケース7との安定した接続状態を維持することができ、その結果、高い電池性能が維持された電池を得ることができる。
 以上のように、本発明の製造方法を用いることにより、高い電池性能の電池を、高い生産性で得ることができる。
 なお、極板群5の中空円筒部5aの最大径が、極板群5の最大径の2/6より大きいと、十分な容量が得られない。
 第2集電板20および電池ケース7の構成材料としては、例えば、鉄(Fe)およびニッケル(Ni)を用いることができる。なお、第1集電板6も、前記材料から構成されることが好ましい。
 図2に示される第2集電板20には、4つの第2プロジェクション22bが設けられているが、第2プロジェクション22bの数は特に限定されない。なお、以下で説明するように、第2集電板20に、スリットおよびバーリング部が設けられている場合、スリットとスリットとの間に第2プロジェクション22bが設けられる。第2集電板20に多くのスリットが設けられた場合、第2集電板20の導電性が低下することが考えられる。よって、第2集電板20に設けられるスリットの数等を考慮して、第2プロジェクション22bの数は、3~8個であることが好ましい。
 第2集電板20において、第2プロジェクション22bは、同心円上に等間隔(中心角90°)に配置されることが好ましい。また、第2プロジェクション22bは、極板群5の部分に対向する第2部分21bのうち、極板群5の最大径の50~80%である領域25(破線で描かれた2つの円周の間の領域)に配置されることが好ましい。なかでも、第2部分21bのうち、極板群5の最大径の65~70%である領域に、第2プロジェクション22bが配置されることが特に好ましい。つまり、第2プロジェクション22bは、第2集電板20において、極板群5の捲回軸と第2集電板20のプロジェクションが設けられた面(下面)との交点に中心を有し、かつ極板群5の最大径の50~80%の直径を有する円周上に配置されることが好ましい。さらには、第2プロジェクション22bは、極板群5の捲回軸と第2集電板20の下面との交点に中心を有し、かつ極板群5の最大径の65~70%の直径を有する円周上に配置されることが特に好ましい。前記領域25に第2プロジェクション22bを設けることにより、溶接性をさらに向上できるとともに、溶接後の集電性をもさらに向上させることができる。
 第1プロジェクション22aの高さAと、第2プロジェクション22bの高さBとの差:A-Bは、電池の大きさ、電池の形状等に応じて、10~500μmとすることが好ましい。第1プロジェクション22aの高さは、100~600μmであることが好ましい。第1プロジェクション22aの高さは、第2集電板20の第1プロジェクション22aが設けられている面から、第1プロジェクション22aの最も高い位置までの垂直距離として求めることができる。第2プロジェクション22bの高さも、第1プロジェクション22aの高さと同様にして求めることができる。
 第1プロジェクション22aおよび第2プロジェクション22bの最大径は、0.1~2mmであることがさらに好ましい。ここで、第1プロジェクション22aおよび第2プロジェクション22bの最大径とは、その高さ方向に垂直な方向における最大径のことをいう。
 なお、第1プロジェクション22aは、その中心が第1部分21aに入っていればよい。また、第2プロジェクション22bが領域25内に配置されるとは、第2プロジェクション22bの中心が、前記領域25内に入っていることをいう。ここで、第1プロジェクション22aおよび第2プロジェクション22bの中心とは、それぞれ最大径の中点のことをいう。
 第2集電板20は、1つの第1プロジェクション22aを第2集電板20の第1部分21aに設け、複数の第2プロジェクション22bを第2集電板20の第2部分21bに設けることにより、作製することができる。第1プロジェクション22aおよび第2プロジェクション22bは、当該分野で公知の方法を用いて作製することができる。
 第2集電板20は、複数のバーリング部23を有することが好ましい。バーリング部23は、第2集電板20の中心部から外周側に向かって放射状に形成された4つのスリット24の各側縁部から上方に突出している。バーリング部23と極板群5に含まれる第2電極4の芯材の露出部4aとを、バーリング部23を第2電極4の芯材の露出部4aに食い込ませた状態で溶接することで、第2電極4と第2集電板20とを、低抵抗で接続することができる。
 なお、第2集電板20と電池ケース7とを接続するとき、第1溶接用電極51を用いるとともに、例えば加圧機のような加圧手段53を用いて、第1集電板6の上から極板群5を電池ケース7に押さえ付けてもよい。これにより、第2集電板20と電池ケース7と密着させることができる。なお、加圧手段53には、第1溶接用電極51が通過する貫通孔が設けられている。
 第2集電板20を電池ケース7に接続したのち、電池ケース7には、電解質(図示せず)が注入される。次いで、第1端子を兼ねたキャップ10を備えた封口体9を用いて、電池ケース7の開口部を封口して、電池が作製される。第1集電板6と封口板9とは、接続リード8により接続されている。電池ケース7と封口体9との間には、絶縁性ガスケット12が配置されている。なお、図1は、ゴム体11を備えるゴム方式の安全弁を有する封口体9を含む電池を示している。
 本発明において、第1電極2は、正極または負極のいずれであってもよい。第2電極4は、第1電極2が正極である場合、負極であり、第1電極2が負極である場合、正極である。
 なかでも、第2電極4が負極であり、第2集電板20が負極集電板であることが好ましい。例えば、アルカリ蓄電池を含む水系二次電池では、充放電中に発生する酸素を吸収させるため、負極活物質を、正極容量よりも負極容量が大きくなるように、負極に充填する必要がある。その結果、負極の長さが、正極の長さよりも長くなる。このため、電池ケース7に接する極板群5の最外周は必然的に負極になる。よって、第2電極4が負極である方が好ましい。
 本発明の製造方法を用いて作製される電池の種類は、特に限定されない。第1電極2を構成する第1芯材および第1活物質、ならびに第2電極4を構成する第2芯材および第2活物質は、作製される電池の種類に応じて、適宜選択される。
 例えば、アルカリ蓄電池を作製する場合、正極活物質としては、オキシ水酸化ニッケルなど、当該分野で公知の材料を用いることができる。負極活物質としては、水素吸蔵合金など、当該分野で公知の材料を用いることができる。
 リチウム二次電池を作製する場合、正極活物質としては、リチウム含有複合酸化物などの当該分野で公知の材料を用いることができる。負極活物質としては、炭素材料、SiまたはSnを含む材料などの当該分野公知の材料を用いることができる。
 用いられる電解質も、作製される電池の種類に応じて適宜選択される。アルカリ蓄電池用の電解質としては、例えば、アルカリ水溶液が用いられる。リチウム電池用の電解質としては、例えば、非水溶媒とそれに溶解したリチウム塩とを含む非水電解質が用いられる。非水溶媒およびリチウム塩には、当該分野で公知の材料を用いることができる。
 さらに、正極芯材、負極芯材、セパレータ等についても、作製される電池の種類に応じて、当該分野で公知のものが適宜選択される。
 本発明の製造方法は、横断面の最大径が20~40mmである極板群を含む電池を作製する場合に特に適している。
 また、本発明の製造方法によって、第2集電板20と電池ケース7とが、優れた溶接品質で接続される。よって、本発明の製造方法によって得られた電池は、電池特性を良好に維持することができる。
 次に、本発明を、実施例を参照しながら具体的に説明する。以下の実施例では、第1電極を正極とし、第2電極を負極として、図1に示されるような円筒型ニッケル水素蓄電池を作製した。作製した電池の直径は32mmとし、高さは60mmとし、公称容量は6000mAhとした。
 当該分野で一般的な帯状の厚さ0.5mmの焼結式ニッケル正極板および帯状の厚さ0.3mmの水素吸蔵合金負極板を用いた。正極板および負極板には、それぞれ長手方向に平行な一方の辺に沿って芯材の露出部を設けておいた。正極板の幅方向における、正極芯材の露出部の長さは、1.5mmであった。負極板の幅方向における、負極芯材の露出部の長さは、1.5mmであった。
 正極板と負極板とを、それらの間にセパレータを介在させて積層して、積層体を得た。このとき、正極芯材の露出部を積層体の長手方向に平行な一方の辺に沿って配置し、負極芯材の露出部を積層体の長手方向に平行な他方の辺に沿って配置した。正極芯材の露出部および負極芯材の露出部は、積層体の幅方向において、それぞれ反対方向に、1.5mmずつ突出させておいた。
 次に、得られた積層体を、太さ(横断面の径)がφ6mmの巻芯を用いて、渦巻状に捲回して、直径(横断面の径)30mm、高さ50mmの極板群を得た。得られた極板群において、捲回軸方向の一方の端面(第1端面)には、正極芯材の露出部が配置され、捲回軸方向の他方の端面(第2端面)には、負極芯材の露出部が配置されていた。極板群の中央部に捲回軸に沿って設けられた中空円筒部の最大径は、5mmであった。つまり、極板群の中空円筒部の最大径は、極板群の最大径の1/6であった。
 極板群の第1端面に配置された正極芯材の露出部に、中央部に直径φ6mmの円形開口部を有する矩形の鉄製正極集電板(第1集電板)を溶接した。正極集電板の対角の長さは28mmであり、厚みは400μmであった。
 片面に1つの第1プロジェクションと4つの第2プロジェクションを備える、円形の鉄製負極集電板(第2集電板)を用意した。負極集電板の直径は29mmであり、厚みは400μmであった。
 第1プロジェクションは、負極集電板の中央部、つまり極板群の中空円筒部に対向する第1部分に配置されていた。第1プロジェクションの高さは380μmであり、第1プロジェクションの最大径は、180μmであった。
 4つの第2プロジェクションは、直径20mmの同心円上に等間隔に配置されていた。第2プロジェクションの高さは300μmであり、第2プロジェクションの最大径は、150μmであった。
 負極集電板のプロジェクションが形成されている側とは反対側の面に、負極芯材の露出部を接続した。具体的には、5mm×8mm角の角柱状溶接用電極を、負極集電板に接触させて、負極集電板と負極芯材の露出部とを電気的に溶接した。
 正極集電板および負極集電板が溶接された極板群を、鉄製の電池ケースに収容した。円柱状の第1溶接用電極を、正極集電板の中央部に設けられた開口部および極板群の中空円筒部を通して、負極集電板に接触させた。第2溶接用電極を、電池ケースの底部に接触させた。第1溶接用電極および第2溶接用電極を用いて、負極集電板の5つのプロジェクションと電池ケースとを密着させた。このとき、群加圧機によって、第1集電板の上から極板群を電池ケースに150Nの力でさらに押さえ付けた。第1溶接用電極と第2溶接用電極との間に4kAの溶接電流を印加することによって、負極集電板を、電池ケースの内底面に溶接した。第1溶接用電極の最大径は4.0mmとした。つまり、第1溶接用電極の最大径は、極板群の中空円筒部の最大径の80%とした。
 次に、所定のアルカリ電解質を、正極集電板の中央部の開口部から、電池ケース内に、所定量注入した。この後、正極集電板に、ニッケル製接続リードの一端を接続し、接続リードの他端を、正極端子を備える封口体に溶接した。次いで、封口体を用いて、電池ケースの開口部を密閉した。こうして作製したアルカリ蓄電池を電池Aとした。
 最大径が3mmの第1溶接用電極を用いたこと以外、電池Aと同様にして、比較電池Bを作製した。
 電池Aおよび比較電池Bを各1000個ずつ作製し、電池Aと比較電池Bについて、第1溶接用電極の負極集電板への付着発生率をそれぞれ求めた。得られた結果を表1に示す。表1には、第1溶接用電極の最大径および第1溶接用電極の負極集電板への付着数も示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、比較電池Bにおいて、第1溶接用電極が負極集電板に付着する割合が高い。一方、本発明の製造方法で作製された電池Aにおいては、第1溶接用電極が負極集電板に付着する割合が0%であった。これは、極板群の中央部に設けられる中空円筒部の最大径を大きくし、かつ第1溶接用電極の最大径を大きくすることにより、溶接用電極の放熱性が良くなり、その結果、第1溶接用電極の負極集電板への付着が低減したためと考えられる。
 なお、最大径が3mmより小さい第1溶接用電極を用い、第1溶接用電極と第2溶接用電極との間に4kAの溶接電流を印加した場合、比較電池Bの場合と同様に、第1溶接用電極の発熱により、第1溶接用電極と電池ケースとが付着する割合が高いことが確認された。
 また、第1溶接用電極の最大径を3mm以下とし、第1溶接用電極と第2溶接用電極との間に2kAの溶接電流を印加すると、第1溶接用電極の電池ケースへの付着はなくなった。しかし、5つのプロジェクションの内、いくつかのプロジェクションが電池ケースに溶接されないことがあることが確認された。これは、第1溶接用電極と第2溶接用電極との間に流れる溶接電流が比較的小さいために十分な発熱が得られず、その結果、溶け込み(溶着)不十分でプロジェクションと電池ケースとの密着性が低下したからであると考えられる。
 本発明により、集電板を電池ケースに接続するときに、溶接用電極が集電板に付着することを防止することができる。このため、電池の生産性を向上することができる。さらに、本発明により、電池ケースと極板群との間に配置された集電板と、電池ケースとを、確実に接続することが可能となり、よって、集電性を向上させることができる。その結果、本発明の製造方法により作製された電池は、電池特性に優れ、かつその優れた電池特性を維持することができる。また、本発明の製造方法により作製された電池は、良好な電池特性を維持することができるため、例えば、電子機器、電動工具、電気自動車などの電源として好適に用いることができる。

Claims (7)

  1.  (a)帯状の第1芯材と、前記第1芯材に配された第1活物質層とを含み、前記第1芯材の長手方向に平行な一方の辺に沿って前記第1芯材の露出部が設けられている第1電極を作製する工程、
     (b)帯状の第2芯材と、前記第2芯材に配された第2活物質層とを含み、前記第2芯材の長手方向に平行な一方の辺に沿って前記第2芯材の露出部が設けられている第2電極を作製する工程、
     (c)前記第1電極と前記第2電極とそれらの間に配置されたセパレータとを含む積層体を渦巻状に捲回して、前記第1芯材の露出部および前記第2芯材の露出部が捲回軸方向の2つの端面にそれぞれ配置され、かつ捲回軸に沿って設けられた中空円筒部を有する極板群を得る工程、
     (d)前記第1芯材の露出部に、第1集電板を接続する工程、
     (e)前記第2芯材の露出部に、第2集電板を接続する工程、
     (f)前記第1集電板および前記第2集電板が接続された極板群を、円筒形電池ケースに、前記第2集電板が前記円筒形電池ケースの内底面に接するように、収容する工程、ならびに
     (g)前記第2集電板を、前記円筒形電池ケースに接続する工程
    を含み、
     前記第2集電板は、前記円筒形電池ケースの内底面と対向する面に、前記円筒形電池ケースの内底面側に突出する1つの第1プロジェクションと複数の第2プロジェクションとを有し、前記第1プロジェクションは、前記第2集電板の前記極板群の中空円筒部に対向する第1部分に配置されており、前記複数の第2プロジェクションは、前記第2集電板の前記第1部分以外の第2部分に配置されており、かつ前記第1プロジェクションの高さは、前記第2プロジェクションの高さよりも高く、
     前記極板群の中空円筒部の最大径は、前記極板群の最大径の1/6以上、2/6以下であり、
     前記工程(g)は、溶接用電極を、前記極板群の中空円筒部を通して、前記第2集電板に接触させ、前記第2集電板と前記円筒形電池ケースとを密着させた状態で、前記溶接用電極を用いて、前記第2集電板と前記円筒形電池ケースとを溶接する工程を有し、
     前記溶接用電極の最大径が、前記極板群の中空円筒部の最大径の60%以上、100%以下であり、かつ前記溶接用電極の最大径が、4mm以上である、円筒形電池の製造方法。
  2.  前記第2プロジェクションが、前記極板群の捲回軸と前記第2集電板との交点に中心があり、かつ前記極板群の最大径の50~80%の直径を有する円周上に配置されている、請求項1記載の円筒形電池の製造方法。
  3.  前記第1プロジェクションの高さと、前記第2プロジェクションの高さとの差が、10~500μmである、請求項1記載の円筒形電池の製造方法。
  4.  前記極板群の最大径が、20~40mmである、請求項1記載の円筒形電池の製造方法。
  5.  (i)第1電極と、第2電極と、前記第1電極と前記第2電極との間に配置されたセパレータを含む捲回型極板群、
     (ii)前記捲回型極板群を収容する円筒形電池ケース、
     (iii)前記第1電極に接続される第1集電板、
     (iv)前記第2電極に接続され、かつ前記極板群と前記円筒形電池ケースの内底面との間に配置された第2集電板、および
     (v)電解質
    を備え、
     前記第1電極は、帯状の第1芯材と、前記第1芯材に配された第1活物質層とを含み、前記第1芯材の長手方向に平行な一方の辺に沿って前記第1芯材の露出部が設けられており、
     前記第2電極は、帯状の第2芯材と、前記第2芯材に配された第2活物質層とを含み、前記第2芯材の長手方向に平行な一方の辺に沿って前記第2芯材の露出部が設けられており、
     前記極板群の捲回軸方向の2つの端面には、それぞれ前記第1芯材の露出部および前記第2芯材の露出部が配置されており、かつ前記極板群は、捲回軸に沿って設けられた中空円筒部を有し、
     前記第2集電板は、前記円筒形電池ケースの内底面と対向する面に、前記円筒形電池ケースの内底面側に突出する1つの第1プロジェクションと複数の第2プロジェクションとを有し、前記第1プロジェクションは、前記第2集電板の前記極板群の中空円筒部に対向する第1部分に配置されており、前記複数の第2プロジェクションは、前記第2集電板の前記第1部分以外の第2部分に配置されており、かつ前記第2集電板に設けられた前記第1プロジェクションおよび前記複数の第2プロジェクションが、前記円筒形電池ケースの内底面に溶接されており、
     前記極板群の中空円筒部の最大径は、前記極板群の最大径の1/6以上、2/6以下である、円筒形電池。
  6.  前記第2プロジェクションが、前記極板群の捲回軸と前記第2集電板との交点に中心があり、かつ前記極板群の最大径の50~80%の直径を有する円周上に配置されている、請求項5記載の円筒形電池。
  7.  前記極板群の最大径が、20~40mmである、請求項5記載の円筒形電池。
PCT/JP2009/001045 2008-04-28 2009-03-09 円筒形電池およびその製造方法 WO2009133652A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801106087A CN101978530A (zh) 2008-04-28 2009-03-09 圆筒形电池及其制造方法
US12/740,037 US8394526B2 (en) 2008-04-28 2009-03-09 Cylindrical battery and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-117417 2008-04-28
JP2008117417A JP5198134B2 (ja) 2008-04-28 2008-04-28 円筒形電池の製造方法

Publications (1)

Publication Number Publication Date
WO2009133652A1 true WO2009133652A1 (ja) 2009-11-05

Family

ID=41254879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001045 WO2009133652A1 (ja) 2008-04-28 2009-03-09 円筒形電池およびその製造方法

Country Status (4)

Country Link
US (1) US8394526B2 (ja)
JP (1) JP5198134B2 (ja)
CN (1) CN101978530A (ja)
WO (1) WO2009133652A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132266A1 (ja) * 2011-03-31 2012-10-04 パナソニック株式会社 非水電解液電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7340804B2 (ja) * 2018-02-23 2023-09-08 パナソニックIpマネジメント株式会社 蓄電デバイス及び蓄電モジュール
EP3576184B1 (en) * 2018-05-31 2023-05-31 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
KR102616467B1 (ko) * 2018-09-27 2023-12-21 삼성에스디아이 주식회사 이차 전지
JP7465817B2 (ja) * 2018-12-28 2024-04-11 パナソニックエナジー株式会社 円筒形電池
JP3239502U (ja) * 2020-08-31 2022-10-20 中山市小万能源科技有限公司 電池
US20240297418A1 (en) * 2021-07-16 2024-09-05 Panasonic Holdings Corporation Collector plate and power storage device using same
JP7512426B2 (ja) * 2021-08-23 2024-07-08 寧徳時代新能源科技股▲分▼有限公司 電池セル、その製造方法及び製造システム、電池並びに電力消費装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106165A (ja) * 1998-09-28 2000-04-11 Japan Storage Battery Co Ltd 円筒形電池
JP2006100214A (ja) * 2004-09-30 2006-04-13 Sanyo Electric Co Ltd 電池とその製造方法
JP2008251207A (ja) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd 円筒型電池及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117908A (ja) * 2000-10-06 2002-04-19 Sony Corp 非水電解液電池
JP3709197B2 (ja) * 2003-08-25 2005-10-19 松下電器産業株式会社 円筒形電池及びその製造方法
JP4977951B2 (ja) 2004-11-30 2012-07-18 株式会社Gsユアサ 密閉形電池とその製造方法及び密閉形電池の複数個で構成した組電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106165A (ja) * 1998-09-28 2000-04-11 Japan Storage Battery Co Ltd 円筒形電池
JP2006100214A (ja) * 2004-09-30 2006-04-13 Sanyo Electric Co Ltd 電池とその製造方法
JP2008251207A (ja) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd 円筒型電池及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132266A1 (ja) * 2011-03-31 2012-10-04 パナソニック株式会社 非水電解液電池

Also Published As

Publication number Publication date
US20100255358A1 (en) 2010-10-07
CN101978530A (zh) 2011-02-16
JP2009266738A (ja) 2009-11-12
JP5198134B2 (ja) 2013-05-15
US8394526B2 (en) 2013-03-12

Similar Documents

Publication Publication Date Title
US20110086258A1 (en) Method for manufacturing secondary battery and secondary battery
CN101578722B (zh) 二次电池及其制造方法
US8815426B2 (en) Prismatic sealed secondary cell and method of manufacturing the same
WO2009133652A1 (ja) 円筒形電池およびその製造方法
KR20100089092A (ko) 이차 전지
WO2011001639A1 (ja) 非水電解質二次電池
WO2014097586A1 (ja) 円筒形二次電池及びその製造方法
US8337572B2 (en) Battery and method for producing the same
US20140212718A1 (en) Prismatic battery
JP3627645B2 (ja) リチウム二次電池
JP2001283824A (ja) リチウム二次電池
JP2011054380A (ja) 円筒型電池
KR101476523B1 (ko) 2차 전지의 전극
JP2010165689A (ja) 円筒形電池およびその製造方法
JP3511476B2 (ja) リチウム二次電池
JP2007213948A (ja) 角型電池用電極群の製造方法および角形電池用電極群
JP7316520B2 (ja) 電池
JP2020068172A (ja) 二次電池
US11824168B2 (en) Battery
JP2001023605A (ja) 電池の製造方法
US11984623B2 (en) Battery, method of manufacturing battery, and molding die
JP7216750B2 (ja) 電池およびその製造方法
JP7232229B2 (ja) 二次電池
JP2012134108A (ja) 電池
JP6729127B2 (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110608.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738589

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12740037

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09738589

Country of ref document: EP

Kind code of ref document: A1