WO2009132489A1 - 一种发光二极管恒流驱动电路 - Google Patents
一种发光二极管恒流驱动电路 Download PDFInfo
- Publication number
- WO2009132489A1 WO2009132489A1 PCT/CN2008/070865 CN2008070865W WO2009132489A1 WO 2009132489 A1 WO2009132489 A1 WO 2009132489A1 CN 2008070865 W CN2008070865 W CN 2008070865W WO 2009132489 A1 WO2009132489 A1 WO 2009132489A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- output circuit
- power output
- current
- controller
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/10—Controlling the intensity of the light
- H05B45/14—Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
- H05B45/382—Switched mode power supply [SMPS] with galvanic isolation between input and output
Definitions
- the utility model relates to a constant current driving circuit, and more particularly to a high efficiency isolated buck type high brightness LED constant current driving circuit.
- the commonly used switching power supply circuit includes a transformer 2 and a power input circuit connected thereto.
- the power output circuit 3 , the auxiliary power output circuit 4, and the controller 5 further include a voltage feedback circuit 7 connected between the power output circuit 3 and the controller 5.
- the voltage of the power output circuit 3 is sampled by a commonly used constant current driving circuit. For example, using a Zener tube and an optical coupling device, the detected voltage value is the Zener voltage. And the sum of the forward voltages of the light-emitting diodes in the optical coupling device. Then, under the control of this voltage feedback signal, the controller 5 adjusts the current and the magnetic field inside the transformer 2 coil to stabilize the output voltage of the power output circuit 3.
- the output voltage shown in Figure 5 is directly detected by Zener VR1 and optocoupler U2.
- the output voltage is the Zener voltage and the forward voltage drop of the LED in optocoupler U2.
- the sum (the pressure drop across R1 is negligible).
- the output crystal of optocoupler U2 directly drives the control pin, and capacitor C5 is the bypass capacitor of the control pin.
- this technique requires the power management circuit and the LED driver circuit to be divided into two completely independent blocks.
- the above voltage feedback method can only provide a stable output voltage. If used to drive the LED, an LED driver must be additionally configured. The circuit, inevitably leads to an increase in circuit cost and a reduction in power conversion efficiency.
- the technical problem to be solved by the present invention is that the above-mentioned voltage feedback method for the prior art can only provide a stable output voltage, and if used to drive the light emitting diode, an additional LED driving circuit must be configured, which inevitably leads to circuit cost.
- the invention has the advantages of increasing the conversion efficiency of electric energy and reducing the efficiency, and providing a high-efficiency isolated buck type high-brightness LED constant current driving circuit.
- the technical solution adopted by the utility model to solve the technical problem is: constructing a constant current driving circuit of the light emitting diode, comprising a transformer and a power input circuit connected thereto, a power output circuit and an auxiliary power source
- the output circuit and the controller further include a current feedback circuit connected between the power output circuit and the controller for generating a current sample signal to control the auxiliary power output circuit to supply power to the controller.
- the current feedback circuit includes a sample resistor R3 connected to the power output circuit for generating a current sample signal, and is connected to the controller and the auxiliary power source.
- An optocoupler U1 controlled by a current-like signal between the output circuits, a resistor R4 connected to the emitter of the optocoupler U1, and a capacitor C6 connected between the resistor R4 and the ground.
- the auxiliary output circuit includes a diode D3 connected between the transformer and the collector of the optocoupler U1, and is connected to the collector of the optocoupler U1 and the ground. Resistance R2, capacitor C4.
- the transformer includes a main side winding connected to the power input circuit, a negative side winding connected to the power output circuit, and an auxiliary connected to the auxiliary power output circuit. Winding.
- the LED constant current driving circuit of the present invention has the following beneficial effects:
- the stability and consistency of the output current depends on the stability and consistency of the optocoupler and current sample resistor, and The consistency of the light-emitting diode in the optocoupler is very good, and the tube voltage drop (at a current of 2 mA) is IV, and the error does not exceed 10 mV.
- the accuracy of the current-controlled current-like resistor can control the output. The accuracy of the current can stabilize the output current, thereby obtaining a constant current effect, and the utility model saves the special reference source and the feedback amplifying circuit, thereby making the circuit structure simpler;
- Figure 1 is a system block diagram of a conventional switching power supply circuit
- Figure 2 is a schematic diagram of a conventional switching power supply circuit
- FIG. 3 is a system block diagram of a constant current driving circuit of the light emitting diode of the present invention.
- FIG. 4 is a schematic diagram of a constant voltage driving circuit of the light emitting diode of the present invention.
- the existing technology is to divide the power management circuit and the LED driving circuit into two completely independent blocks.
- the constant voltage driving circuit of the LED of the present invention replaces the voltage feedback by means of current feedback.
- the diode for the sample voltage is replaced with a resistor for the sample current, and only the precision of the current sample resistor is controlled to obtain a stable constant current output. Because the driving of the LED is directly realized by the secondary of the switching power supply through the rectifying circuit, there is no additional driving circuit, thereby greatly improving the efficiency of the circuit.
- the LED constant current driving circuit of the present invention comprises a transformer 2 and a power input circuit 1, a power output circuit 3 , an auxiliary power output circuit 4, and a controller 5 connected thereto, which also includes a connection.
- a current feedback circuit 6 between the power output circuit 3 and the controller 5 is for generating a current sample signal to control the auxiliary power output circuit 4 to supply power to the controller 5.
- the LED constant current driving circuit of the utility model uses a current feedback circuit, that is, a current in a loop formed by the sample power output circuit 3 and the load, and then controls the auxiliary power output circuit.
- the controller 5 is powered, and the current and magnetic field of the internal coil of the transformer 2 are further controlled by the controller 5, thereby providing a stable current to the power output circuit 3, so that a stable constant can be obtained in the power output circuit 3.
- the output is streamed and the LEDs can be driven directly without the need for additional driver circuitry.
- the current feedback circuit 6 includes a sample resistor R3 connected to the power output circuit 3 for generating a current sample signal, and is connected to the controller 5 (the label used in the circuit shown in FIG. 4 is U2) and the auxiliary power supply output circuit 4 are controlled by a current-like signal, an optocoupler U1, a resistor R4 connected to the emitter of the optocoupler U1, and a capacitor C6 connected between the resistor R4 and the ground.
- the auxiliary output circuit 4 includes a diode D3 connected between the transformer 2 and the collector of the photocoupler U1, a resistor R2 connected to the collector of the photocoupler U1 and the ground, and a capacitor C4.
- the transformer 2 includes a main side winding connected to the power input circuit 1, a negative side winding connected to the power output circuit 3, and an auxiliary winding connected to the auxiliary power output circuit 4.
- the power input circuit 1 is composed of an inductor L 1 , a diode D2 , a capacitor C2 , a resistor R1 , a capacitor C1 , a diode D4 , and the power output circuit 3 is composed of two
- the pole tube D1 and the capacitor C3 are composed.
- the resistance of the current sample resistor R3 is used to set the magnitude of the output current, change the turns ratio of the main side winding and the negative side winding of the transformer 2, and the parameters of the diode D1 and the capacitor C3, which can be changed by the power output circuit 3 The number of series of LEDs.
- the driving LEDs are generally taken in series to improve the efficiency of the driving circuit, wherein the series number refers to the number of LEDs connected in series.
- the current sample resistor R3 will sample the current in the LED series circuit, and this current will be fed back to the optocoupler U1.
- the auxiliary power output circuit 4 supplies power to the controller 5 through the fourth pin of the control 5, and the controller 5 outputs a control signal from the fifth pin to the main side winding of the transformer 2, by controlling the main side
- the current in the winding, coupled to the negative side winding via the core produces the same amount of electrical energy, providing a stable current to the power output circuit 3.
- the driving of the LED is directly realized by the secondary of the switching power supply through the rectifier circuit, no additional driving circuit is added, thereby greatly improving the efficiency of the circuit.
- This efficiency can be basically converted into the efficiency of the switching power supply circuit itself. In 3-5W, the efficiency can reach 75%, and in 5-15W, up to 85%, and in the case of multiple LEDs connected in series, the efficiency of the power supply is improved in more than 10 LEDs in series, efficiency It will be as high as 90% or more, which also facilitates the thermal design of the product.
- the feedback element is composed of optocoupler U1 and current sample resistor R3.
- the stability and consistency of the output current depend on the stability and consistency of optocoupler U1 and current sample resistor R3, while optocoupler U1
- the consistency of the LED is very good.
- the voltage drop of the conduction tube (at a current of 2 mA) is IV, and the error does not exceed 10 mV.
- the accuracy of the current-controlled resistor R3 can control the accuracy of the output current. Therefore, the stability and consistency of this current feedback method are very high.
- the input stage and the output stage of the utility model are separated by a transformer and an optocoupler, so that the design fully meets the safety requirements, and the circuit design of the direct drive LED of the commercial power is realized.
- the utility model saves a dedicated reference source and a feedback amplifying circuit, which makes the circuit structure simpler.
Landscapes
- Dc-Dc Converters (AREA)
- Led Devices (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
Description
说明书 一种发光二极管恒流驱动电路
#細或
[1] 本实用新型涉及恒流驱动电路, 更具体地说, 涉及一种高效隔离式降压型高亮 发光二极管恒流驱动电路。
[2] 如图 1所示, 常用的开关电源电路包括变压器 2以及与其连接的功率输入电路 1
、 功率输出电路 3、 辅助电源输出电路 4、 控制器 5, 还包括连接在功率输出电路 3和控制器 5之间的电压反馈电路 7。 在电路的工作过程中, 常用的恒流驱动电路 釆用的电压釆样的方式对功率输出电路 3的电压进行釆样, 例如利用齐纳管和光 耦合器件, 检测到的电压值就是齐纳电压和光耦合器件中发光二极管的正向电 压之和。 然后, 在这个电压反馈信号的控制下, 使控制器 5对变压器 2线圏内部 的电流和磁场进行调节, 以稳定功率输出电路 3的输出电压。
[3] 如图 2所示, 图中示出的输出电压 5V由齐纳管 VR1及光耦 U2直接进行检测, 输 出的电压值为齐纳电压及光耦 U2中发光二极管的正向压降之和 (R1上的压降可忽 略不计)。 然后, 光耦 U2的输出晶体直接驱动控制引脚, 电容 C5为控制引脚的旁 路电容。 然而, 这种技术需要把电源管理电路与发光二极管驱动电路分成两个 完全独立的块来实现, 而上述电压反馈方式只能提供稳定的输出电压, 如果用 来驱动发光二极管必须另外配置发光二极管驱动电路, 所以必然导致电路成本 的增加和电能的转换效率降低。
應 靈
[4] 本实用新型要解决的技术问题在于, 针对现有技术的上述电压反馈方式只能提 供稳定的输出电压, 如果用来驱动发光二极管必须另外配置发光二极管驱动电 路, 从而必然导致电路成本的增加和电能的转换效率降低的缺陷, 提供一种高 效隔离式降压型高亮发光二极管恒流驱动电路。
[5] 本实用新型解决其技术问题所釆用的技术方案是: 构造一种发光二极管恒流驱 动电路, 包括变压器以及与其连接的功率输入电路、 功率输出电路、 辅助电源
输出电路、 控制器, 其还包括连接在功率输出电路和控制器之间的用于产生电 流釆样信号以控制辅助电源输出电路为控制器供电的电流反馈电路。
[6] 在本实用新型所述的发光二极管恒流驱动电路中, 所述电流反馈电路包括与功 率输出电路连接的用于产生电流釆样信号的釆样电阻 R3、 连接在控制器和辅助 电源输出电路之间的受电流釆样信号控制的光耦 U1、 与光耦 U1的发射极连接的 电阻 R4以及连接在电阻 R4与地之间的电容 C6。
[7] 在本实用新型所述的发光二极管恒流驱动电路中, 所述辅助输出电路包括连接 在变压器和光耦 U1的集电极之间的二极管 D3、 连接在光耦 U1的集电极与地之间 的电阻 R2、 电容 C4。
[8] 在本实用新型所述的发光二极管恒流驱动电路中, 所述变压器包括与功率输入 电路连接的主边绕组、 与功率输出电路连接的负边绕组以及与辅助电源输出电 路连接的辅助绕组。
[9] 实施本实用新型的发光二极管恒流驱动电路, 具有以下有益效果:
[10] 1、 因为发光二极管的驱动直接由开关电源的次级通过整流电路实现, 并没有 另外的驱动电路, 从而大大提高了电路的效率, 此效率基本可以折合为开关电 源本身的效率, 一般在 3-5W吋效率可达 75% , 在 5-15W吋可达 85%, 而在多个发 光二极管串联的情况下, 由于电源的整流效率的提高在 10个以上发光二极管串 联应用中, 效率会高至 90%以上, 如此也方便了产品的热设计;
[11] 2、 釆用电流反馈的方式, 通过光耦及电流釆样电阻组成反馈元件, 其输出电 流的稳定性与一致性取决于光耦及电流釆样电阻的稳定性与一致性, 而光耦中 的发光二极管的一致性非常好, 其导通吋的管压降 (在电流为 2mA吋)为 IV, 而且 误差不会超过 10mV, 此吋控制电流釆样电阻的精度就可控制输出电流的精度, 如此可以稳定输出电流, 从而获得恒流效果, 本实用新型节省了专用参考源及 反馈放大电路, 使电路结构更加简单;
[12] 3、 本实用新型的输入级与输出级釆用变压器及光耦隔离, 从而使设计完全符 合安规要求, 实现了市电直接驱动发光二极管的电路设计。
國删
[13] 下面将结合附图及实施例对本实用新型作进一步说明, 附图中:
[14] 图 1是传统的开关电源电路的系统框图;
[15] 图 2是传统的开关电源电路的原理图;
[16] 图 3是本实用新型的发光二极管恒流驱动电路的系统框图;
[17] 图 4是本实用新型的发光二极管恒压驱动电路的原理图。
難
[18] 现有的技术是把电源管理电路与发光二极管驱动电路分成两个完全独立的块来 实现, 本实用新型的发光二极管恒压驱动电路釆用电流反馈的方式取代电压反 馈的方式, 在电路中将用于釆样电压的二极管换为用于釆样电流的电阻, 只需 要控制电流釆样电阻的精度就可获得稳定的恒流输出。 因为发光二极管的驱动 直接由开关电源的次级通过整流电路实现, 并没有另外的驱动电路, 从而大大 提高了电路的效率。
[19] 如图 3所示, 本实用新型的发光二极管恒流驱动电路包括变压器 2以及与其连接 的功率输入电路 1、 功率输出电路 3、 辅助电源输出电路 4、 控制器 5, 其还包括 连接在功率输出电路 3和控制器 5之间的电流反馈电路 6, 用于产生电流釆样信号 以控制辅助电源输出电路 4为控制器 5供电。 相比常用的电压反馈方式, 本实用 新型的发光二极管恒流驱动电路釆用的是电流反馈电路, 也就是通过釆样功率 输出电路 3与负载形成的回路中的电流, 然后控制辅助电源输出电路 4为控制器 5 供电, 进一步由控制器 5对变压器 2的内部线圏的电流和磁场进行控制, 以此给 功率输出电路 3提供稳定的电流, 如此便可以在功率输出电路 3获得稳定的恒流 输出, 而不需要增加额外的驱动电路就可以直接驱动发光二极管。
[20] 如图 4所示, 电流反馈电路 6包括与功率输出电路 3连接的用于产生电流釆样信 号的釆样电阻 R3、 连接在控制器 5(图 4所示电路中使用的标号是 U2)和辅助电源 输出电路 4之间的受电流釆样信号控制的光耦 U1、 与光耦 U1的发射极连接的电阻 R4以及连接在电阻 R4与地之间的电容 C6。 辅助输出电路 4包括连接在变压器 2和 光耦 U1的集电极之间的二极管 D3、 连接在光耦 U1的集电极与地之间的电阻 R2、 电容 C4。 变压器 2包括与功率输入电路 1连接的主边绕组、 与功率输出电路 3连接 的负边绕组以及与辅助电源输出电路 4连接的辅助绕组。 功率输入电路 1由电感 L 1、 二极管 D2、 电容 C2、 电阻 Rl、 电容 Cl、 二极管 D4组成, 功率输出电路 3由二
极管 Dl、 电容 C3组成。 电流釆样电阻 R3的阻值用于设定输出电流的大小, 改变 变压器 2的主边绕组与负边绕组的匝数比和二极管 D1及电容 C3的参数, 即可改变 由功率输出电路 3驱动的发光二极管的串联级数。
[21] 驱动发光二极管吋一般釆取串联的方式来提高驱动电路的效率, 其中串联级数 指的是发光二极管串联的个数。 在电路工作吋, 电流釆样电阻 R3会对发光二极 管串联电路中的电流进行釆样, 然后这个电流会反馈到光耦 U1处。 在反馈电流 的控制下, 辅助电源输出电路 4会通过控制 5的第 4脚对控制器 5进行供电, 控制 器 5从第 5脚输出一个控制信号到变压器 2的主边绕组, 通过控制主边绕组中的电 流, 经磁芯偶合在负边绕组产生相同能量的电能, 为功率输出电路 3提供一个稳 定的电流。
[22] 因为发光二极管的驱动直接由开关电源的次级通过整流电路实现, 并没有增加 另外的驱动电路, 从而大大提高了电路的效率, 这个效率基本可以折合为开关 电源电路本身的效率, 一般在 3-5W吋效率可以达到 75% , 在 5-15W吋可达 85% , 而在多个发光二极管串联的情况下, 由于电源的整流效率的提高在 10个以上发 光二极管串联应用中, 效率会高至 90%以上, 如此也方便了产品的热设计。
[23] 通过光耦 U1及电流釆样电阻 R3组成反馈元件, 其输出电流的稳定性与一致性 取决于光耦 U1及电流釆样电阻 R3的稳定性与一致性, 而光耦 U1中的发光二极管 的一致性非常好, 其导通吋的管压降 (在电流为 2mA吋)为 IV, 而且误差不会超过 10mV, 此吋控制电流釆样电阻 R3的精度就可控制输出电流的精度, 因此这种电 流反馈方式的稳定性与一致性都非常高。
[24] 本实用新型的输入级与输出级釆用变压器及光耦隔离, 从而使设计完全符合安 规要求, 实现了市电直接驱动发光二极管的电路设计。 另外, 本实用新型节省 了专用参考源及反馈放大电路, 使电路结构更加简单。
Claims
1、 一种发光二极管恒流驱动电路, 包括变压器 以及与其连接的功率输 入电路 (1)、 功率输出电路 (3)、 辅助电源输出电路 (4)、 控制器 (5), 其特征 在于, 还包括连接在功率输出电路 (3)和控制器 (5)之间的用于产生电流釆样 信号以控制辅助电源输出电路 (4)为控制器 (5)供电的电流反馈电路 (6)。
2、 根据权利要求 1所述的发光二极管恒流驱动电路, 其特征在于, 所述电 流反馈电路 (6)包括与功率输出电路 (3)连接的用于产生电流釆样信号的釆样 电阻 R3、 连接在控制器 (5)和辅助电源输出电路 (4)之间的受电流釆样信号控 制的光耦 Ul、 与光耦 U1的发射极连接的电阻 R4以及连接在电阻 R4与地之 间的电容 C6。
3、 根据权利要求 2所述的发光二极管恒流驱动电路, 其特征在于, 所述辅 助输出电路 (4)包括连接在变压器 (2)和光耦 U1的集电极之间的二极管 D3、 连接在光耦 U1的集电极与地之间的电阻 R2、 电容 C4。
4、 根据权利要求 1所述的发光二极管恒流驱动电路, 其特征在于, 所述变 压器 (5)包括与功率输入电路 (1)连接的主边绕组、 与功率输出电路 (3)连接的 负边绕组以及与辅助电源输出电路 (4)连接的辅助绕组。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2008/070865 WO2009132489A1 (zh) | 2008-04-30 | 2008-04-30 | 一种发光二极管恒流驱动电路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2008/070865 WO2009132489A1 (zh) | 2008-04-30 | 2008-04-30 | 一种发光二极管恒流驱动电路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009132489A1 true WO2009132489A1 (zh) | 2009-11-05 |
Family
ID=41254762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/070865 WO2009132489A1 (zh) | 2008-04-30 | 2008-04-30 | 一种发光二极管恒流驱动电路 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009132489A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1719958A (zh) * | 2004-12-31 | 2006-01-11 | 彭洲龙 | 节能、长寿led照明灯及其制造方法 |
JP2007108192A (ja) * | 2005-10-11 | 2007-04-26 | Citizen Electronics Co Ltd | 大電流用補助電源 |
CN200980189Y (zh) * | 2006-12-05 | 2007-11-21 | 鹤山丽得电子实业有限公司 | 一种调频式恒压恒流大功率led灯泡 |
EP1871144A1 (en) * | 2006-06-22 | 2007-12-26 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | A drive device for LED's and related method |
-
2008
- 2008-04-30 WO PCT/CN2008/070865 patent/WO2009132489A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1719958A (zh) * | 2004-12-31 | 2006-01-11 | 彭洲龙 | 节能、长寿led照明灯及其制造方法 |
JP2007108192A (ja) * | 2005-10-11 | 2007-04-26 | Citizen Electronics Co Ltd | 大電流用補助電源 |
EP1871144A1 (en) * | 2006-06-22 | 2007-12-26 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | A drive device for LED's and related method |
CN200980189Y (zh) * | 2006-12-05 | 2007-11-21 | 鹤山丽得电子实业有限公司 | 一种调频式恒压恒流大功率led灯泡 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101815388B (zh) | Led灯具控制电路及led灯具 | |
CN101668363A (zh) | 高效率led驱动控制方法 | |
Shen et al. | Constant current LED driver based on flyback structure with primary side control | |
CN104717784A (zh) | 光源驱动电路 | |
CN102143629B (zh) | 用于市电led灯驱动的高压单片集成电路(xl5002) | |
CN102333406A (zh) | 照明用led驱动器 | |
CN202404873U (zh) | Led显示屏的恒压恒流驱动电路 | |
CN201336746Y (zh) | 一种交流电源led稳流稳压驱动电路 | |
CN104702095A (zh) | 开关电源控制器及包含该开关电源控制器的开关电源 | |
CN112865549B (zh) | 一种原边调制的非对称半桥反激变换器的恒流控制方法 | |
CN201928475U (zh) | 具有升压和升降压功能的大功率led灯驱动单片集成电路 | |
CN201860494U (zh) | 具调光时序控制的发光二极管驱动电路 | |
WO2016004853A1 (zh) | 高功率因数低总谐波失真准有源功率因数校正电路及方法 | |
CN205912289U (zh) | 一种宽电压可调led灯驱动电路 | |
CN202268152U (zh) | 显示屏背光恒流恒压驱动电路 | |
CN101600277A (zh) | 一种led电路 | |
CN103872917A (zh) | 基于双电感器的高效ac-dc离线功率转换器 | |
CN102291887A (zh) | 一种大功率led驱动电路 | |
CN202425146U (zh) | 一种led照明装置驱动电路 | |
CN201403226Y (zh) | Led背光驱动装置 | |
CN201893979U (zh) | 一种大功率高效恒流led驱动器 | |
CN211184343U (zh) | 一种led驱动器 | |
CN202035185U (zh) | 一种led电流反馈控制电路及电视机 | |
TW200919921A (en) | Synchronous self-driven power converter | |
CN201259180Y (zh) | 高效led照明筒灯 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08734221 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - EPO FORM 1205A SENT ON 01.04.2011 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08734221 Country of ref document: EP Kind code of ref document: A1 |