[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009131185A1 - Device for measuring viscosity/elasticity and method for measuring viscosity/elasticity - Google Patents

Device for measuring viscosity/elasticity and method for measuring viscosity/elasticity Download PDF

Info

Publication number
WO2009131185A1
WO2009131185A1 PCT/JP2009/058089 JP2009058089W WO2009131185A1 WO 2009131185 A1 WO2009131185 A1 WO 2009131185A1 JP 2009058089 W JP2009058089 W JP 2009058089W WO 2009131185 A1 WO2009131185 A1 WO 2009131185A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
viscosity
elasticity
sample
rotation
Prior art date
Application number
PCT/JP2009/058089
Other languages
French (fr)
Japanese (ja)
Inventor
啓司 酒井
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to CN2009801145236A priority Critical patent/CN102016542B/en
Priority to DE112009001023.7T priority patent/DE112009001023B4/en
Priority to US12/989,612 priority patent/US8365582B2/en
Publication of WO2009131185A1 publication Critical patent/WO2009131185A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/14Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/14Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
    • G01N2011/147Magnetic coupling

Definitions

  • the present invention relates to a viscosity / elasticity measuring apparatus and a viscosity / elasticity measuring method for measuring viscosity and elasticity which are mechanical properties of a substance.
  • Viscosity and elasticity of substances are measured in the manufacturing process of pharmaceuticals, foods, paints, inks, cosmetics, chemical products, paper, adhesives, fibers, plastics, beverages (eg beer), detergents, concrete admixtures, silicon, etc. It is an indispensable measurement technology for management, performance evaluation, raw material management, and research and development. Therefore, conventionally, measurement of viscosity and elasticity has been performed in order to detect the mechanical properties of the target substance (see, for example, Patent Document 1).
  • Conventionally known methods for measuring viscosity include the following methods. (1) In the viscosity tube method, the viscosity of the fluid is measured from the speed at which the fluid flows through the narrow tube. (2) A method in which a vibrator is brought into contact with a sample and viscosity is measured by a change in amplitude. (3) A method for measuring viscosity from the propagation characteristics of surface acoustic waves. (4) A method of measuring viscosity by directly measuring a torque generated by viscous resistance by rotating a rotor in a sample. (5) A method of measuring the viscosity from the falling time of the hard sphere falling in the fluid sample.
  • viscosity is obtained from a diffusion coefficient obtained by irradiating a laser beam to a Brownian moving particle and measuring dynamic scattering.
  • a probe suspended in a sample is rotated, and the viscosity is measured from the rotational torque.
  • the methods described in (1) to (5) have a drawback that a large amount of sample of several cc or more is required for measuring viscosity.
  • the sample needs to have a viscosity of at least 10 cP in order to accurately measure the viscosity. Therefore, these methods have a drawback that the viscosity of a low-viscosity material cannot be measured.
  • the method (6) has a drawback that the measuring apparatus becomes large, and there is a difficulty that it cannot be applied to other than the transparent sample.
  • the method described in (7) has a disadvantage that the probe floated on the surface by buoyancy is rotated, causing ripples on the sample surface, and energy loss for this cannot be ignored. Further, when a molecular adsorption film is formed on the surface of the sample, there is a drawback that a measurement error occurs due to the surface viscoelasticity of the film. Since the rotation of the probe depends on the length of the portion submerged in the fluid sample, there is a restriction that the density of the sample material needs to be known. In any of the methods described in (1) to (7), the sample container is expensive and the container needs to be reused. For this reason, it is necessary to clean the sample container after the measurement. If the previous measurement sample is not completely removed, the influence remains and there is a restriction that high-precision measurement cannot be performed.
  • the viscoelasticity measuring methods generally used until now have a drawback that a certain amount of sample is required in order to obtain a certain measurement accuracy.
  • measurement accuracy is deteriorated for a substance having a viscosity of less than 100 cP.
  • the rotational viscometer and the measurement by light scattering have a restriction that the apparatus becomes large and simple measurement cannot be performed.
  • there were restrictions on measurement efficiency such as the need to clean the measurement container.
  • the present invention has been made in view of such circumstances. Compared to conventional measurement methods, the present invention can measure viscosity and elasticity with a relatively small amount of sample, is a small and simple measuring device, and detects a substance to be detected. It is an object of the present invention to provide a viscosity / elasticity measuring apparatus and a viscosity / elasticity measuring method that can be disposed of at low cost.
  • the viscosity / elasticity measuring apparatus stores a conductive rotor, a sample (a detection symmetric material for detecting viscosity and / or elasticity) and the rotor, and the sample is contained in the sample.
  • a rotation control unit that induces an induced current and applies a rotational torque to the rotor to rotate by Lorentz interaction between the induced current and a magnetic field applied to the rotor, and detects a rotational motion of the rotor
  • Viscosity / elasticity comprising: a rotation detection unit; and a dynamic characteristic detection unit (viscosity / elasticity detection unit) for detecting the viscosity / elasticity of the sample in contact with the rotor based on the rotational torque and the rotational motion It is a measuring device.
  • the viscosity detected in the above apparatus may be indicated by the viscosity coefficient of the sample.
  • the elasticity detected in the device may be indicated by an elastic modulus.
  • the rotation detection unit detects the rotation number of the rotor
  • the mechanical property detection unit detects the viscosity of the sample based on the rotation torque and rotation number of the rotor.
  • -It may be an elasticity measuring device.
  • the rotation detection unit is configured to move from an initial stationary position before the rotational torque is applied to an equilibrium stationary position where the rotor is stationary due to a balance between the rotational torque and the elastic resistance of the sample. It may be a viscosity / elasticity measuring device that detects a rotation angle and detects the elasticity of the sample based on the rotation torque and rotation angle of the rotor.
  • the viscosity / elasticity measuring apparatus further includes a storage unit for storing standard data obtained by measuring in advance a relationship between the rotational torque of the rotor and the rotational speed in a plurality of substances (standard samples) having a known viscosity.
  • a viscosity / elasticity measuring device that detects the viscosity of the sample by comparing the standard data with the relationship between the rotational torque and the rotational speed of the rotor in the sample measured by the mechanical property detection unit. There may be.
  • the viscosity / elasticity measuring apparatus further includes a storage unit for storing standard data in which a relationship between a rotational torque and a rotational angle of the rotor in a plurality of substances having known elasticity is measured in advance, and the mechanical characteristics It may be a viscosity / elasticity measuring device that detects the elasticity of the sample by comparing the relationship between the rotation torque and the rotation angle of the rotor in the sample measured by the detection unit and the standard data. .
  • the viscosity / elasticity measuring apparatus is a viscosity / elasticity measuring apparatus in which a mark is added to the rotor, and the rotation detecting unit detects the rotation of the rotor by detecting the rotation of the mark. Also good.
  • the viscosity / elasticity measuring device at least a part of the bottom of the rotor is in contact with the bottom of the inner surface of the container, and the bottom of the inner surface of the container in contact with the rotor is a smooth flat surface or a smooth concave curved surface.
  • the viscosity / elasticity measuring apparatus may be characterized in that the bottom of the rotor is a smooth convex curved surface.
  • the viscosity / elasticity measuring device may be a viscosity / elasticity measuring device in which the radius of the rotor is determined by the following equation.
  • R is the radius of the rotor
  • g is the acceleration of gravity
  • is the angular velocity
  • is the viscosity coefficient
  • is the density difference between the rotor and the sample
  • is the friction coefficient between the lower part of the rotor and the bottom of the container
  • ⁇ and ⁇ are It is a coefficient.
  • the viscosity coefficient ⁇ may be a condition of R by applying a viscosity coefficient of a substance having a known viscosity similar to the sample (for example, a substance having substantially the same or chemical composition as the sample). .
  • a value slightly higher than the viscosity coefficient of a substance having a known viscosity similar to the sample (about 110 to 150%) may be set as a temporary viscosity coefficient, and R may be obtained by applying the
  • the viscosity / elasticity measuring apparatus may be a viscosity / elasticity measuring apparatus in which the rotor is partially or entirely submerged in the sample.
  • the viscosity / elasticity measuring apparatus may be a viscosity / elasticity measuring apparatus in which the sample is a liquid or a soft material.
  • the process of filling a container with a sample (substance to be detected) whose viscosity / elasticity is to be detected, placing a conductive rotor in the sample, and surrounding the container A process of applying a magnetic field to the rotor by an arranged magnet, and temporally changing the magnetic field, inducing an induced current in the rotor, and applying the induced current to the rotor Based on Lorentz interaction with a magnetic field, a rotation control process for applying rotation torque to the rotor for rotation, a rotation detection process for detecting the rotation movement of the rotor, the rotation torque and the rotation movement, and the rotor And a mechanical property detection process for detecting the viscosity and elasticity of a sample in contact with the sample.
  • the viscosity detected in the above method may be indicated by the viscosity coefficient of the sample.
  • the elasticity detected in the above method may be indicated by an elastic modulus.
  • the viscosity / elasticity measuring method includes rotating the rotor in the rotation control process, detecting the rotation speed of the rotor in the rotation detection process, and determining the viscosity of the sample based on the rotation torque and the rotation speed. Viscosity / elasticity measuring method may be used.
  • the viscosity / elasticity measuring method is an equilibrium stationary position where the rotor is stationary by the balance between elastic resistance and the torque from the initial stationary position before the torque is applied by the rotational torque.
  • the rotor is rotated until the rotation angle from the initial stationary position to the equilibrium stationary position is detected in the rotation detection process, and in the mechanical characteristic detection process, the rotor is moved based on the rotation torque and the rotation angle. It may be a viscosity / elasticity measuring method for detecting the elasticity of the sample in contact.
  • the viscosity / elasticity measuring method further includes a step of preparing standard data by measuring in advance the relationship between the rotational torque of the rotor and the rotational speed in a plurality of substances (standard samples) having a known viscosity.
  • the viscosity / elasticity measuring method for detecting the viscosity of the sample by comparing the relation between the rotational torque of the rotor and the number of rotations in the sample with the standard data.
  • the viscosity / elasticity measuring method further includes a step of preparing standard data by measuring in advance the relationship between the rotational torque and rotational angle of the rotor in a plurality of substances (standard samples) having known elasticity.
  • the viscosity / elasticity measuring method for detecting the elasticity of the sample by comparing the relationship between the rotational torque and the rotation angle of the rotor in the sample with the standard data may be used.
  • the magnetic field may be controlled to be a rotating magnetic field in which the horizontal direction of the magnetic field (the horizontal component of the magnetic field direction) rotates with time.
  • the rotor may be made of a material having a specific gravity greater than that of the sample.
  • the viscosity and / or elasticity is measured from the relationship between the rotational torque applied to the rotor rotating in contact with the sample and the rotational motion of the rotor, a small amount of detection object is detected.
  • the rotor is rotated by applying a rotating magnetic field to the rotor, the rotation speed of the rotor is measured, the viscosity of the sample is detected from the relationship between the rotation torque and the rotation speed of the rotor, and the rotation torque and the rotor are detected.
  • the container which puts a sample can utilize a normal test tube etc., and can be made disposable. Therefore, the labor for washing the container is omitted, and the influence of the immediately preceding measurement substance can be completely eliminated, and highly accurate measurement can be performed.
  • FIG. 1 is a block diagram showing a configuration example of a viscosity / elasticity measuring apparatus according to the embodiment.
  • a container 101 is, for example, a small test tube.
  • the container 101 stores a detection target object for measuring viscosity (that is, viscosity coefficient) as a mechanical physical property.
  • the inner diameter of the container 101 only needs to be slightly larger than the diameter of the rotor 106 described below. Further, the depth of the sample (detection target) stored in the container 101 at the time of measurement may be such that the rotor 106 is immersed.
  • the rotor 106 may be partially or entirely submerged in the sample that is the detection target substance.
  • the rotor 106 is made of a conductor (for example, a metal such as aluminum), and has a shape in which a lower portion in contact with the container 101 has a smooth convex curved surface.
  • the rotor 106 may be spherical or hemispherical (that is, a shape in which a portion in contact with the inner bottom portion of the container 101 (the bottom portion of the container inner surface) has a shape of a part of a spherical surface).
  • the rotor 106 may have a spheroid shape.
  • the rotor 106 is disposed in the container 101 so as to be in contact with the detection target.
  • the rotor 106 is arranged so that part or all of the rotor 106 is immersed in this detection target.
  • the inner bottom portion of the container 101 with which the lower portion of the rotor 106 is in contact may be a smooth flat surface or may have a concave smooth curved surface.
  • a commercially available metal sphere can be used as the rotor 106. Therefore, by using it together with a commercially available test tube of the container 101, the portion in contact with the sample can be made a disposable configuration. For this reason, there is an advantage that post-treatment such as incineration and sterilization can be easily performed even when a substance that requires special attention for disposal, such as biomaterials, is used as a measurement target.
  • the rotor may be a metal sphere having a diameter of 1 cm or less or a diameter of 2 mm or less.
  • viscosity and elasticity can be measured even with a sample having a volume of about 100 to 500 ⁇ l.
  • electromagnets 102, 103, 104, and 105 are arranged.
  • the set A of the electromagnet 102 and the electromagnet 103 is placed in series in the plane perpendicular to the longitudinal direction of the container 101 with the container 101 interposed therebetween.
  • the set B of the electromagnet 104 and the electromagnet 105 is placed in series in the same plane as the set B with the container 101 interposed therebetween in a direction orthogonal to the arrangement direction of the set A. That is, when the longitudinal direction of the container 101 is arranged along the z axis of the orthogonal coordinate system, the set A can be arranged along the x axis and the set B can be arranged along the y axis.
  • the tension direction of the container 106 may be arranged along the vertical direction, and the electromagnet sets A and B may be arranged in a horizontal plane.
  • the electromagnets 102, 103, 104, and 105 are connected to the rotation control unit 107.
  • the rotation control unit 107 alternately drives the electromagnets of the set A and the set B, and alternately generates and varies magnetic fields in two directions (x-axis direction and y-axis direction) orthogonal to each other. For example, when the rotation control unit 107 is driving the electromagnet 102 and the electromagnet 103 of the set A (that is, when a current is passed through the coils of the electromagnet 102 and the electromagnet 103), the electromagnet 104 and the electromagnet of the set B 105 is not driven.
  • the rotation control unit 107 applies a rotating magnetic field to the rotor 106 by the electromagnet control described above, and induces an induced current in the rotor 106. Then, due to the Lorentz interaction between this induced current and the magnetic field applied to the rotor 106, the rotor 106 is rotated by giving a rotational torque.
  • the dynamic characteristic detection unit 108 instructs the rotation control unit 107 about the time period for alternately driving.
  • an electromagnet is used, and a rotating magnetic field is applied to the rotor 106 by driving the electromagnet coil by passing a current sequentially.
  • a pair of permanent magnets are arranged in series via the container 101, and the permanent magnets are rotated around the container 101 by a motor or the like to apply a rotating magnetic field to the rotor 106.
  • the rotor 106 may be configured to be given rotational torque.
  • the rotation control unit 107 controls the rotation speed of the set of permanent magnets in response to an instruction from the mechanical characteristic detection unit 108.
  • the image processing unit 109 includes, for example, an image sensor (CCD) having a microscope.
  • the image processing unit 109 is disposed at the upper part of the opening of the container 101.
  • the image processing unit 109 measures the rotation speed of the rotor 106 by detecting the rotation of the mark added to the rotor 106. Therefore, the image processing unit 109 is arranged above the container 101 so that the imaging direction is a position where a mark added to the upper surface of the rotor 106 can be detected.
  • the standard data storage unit 110 stores standard data indicating the relationship between the rotational torque applied to the rotor 106 and the rotational speed of the rotor 106 for a plurality of standard samples having different viscosities.
  • Standard data can be obtained by putting each standard sample in the container 101 in advance, rotating the rotor 106, and recording the rotational torque applied to the rotor 106 and the rotational speed of the rotor 106. In the measurement of each standard sample, the rotational speed at the rotor 106 is changed, the rotational torque at each rotational speed is calculated, and the slope of the linear curve approximated by the equation (8) described later is obtained as a standard. Set as part of the data.
  • the mechanical property detection unit 108 is connected to the image processing unit 109 and the standard data storage unit.
  • the dynamic characteristic detection unit 108 acquires data on the rotation speed of the rotor 106 output from the image processing unit 109 and the rotation torque corresponding to the rotation speed.
  • the slope of the linear curve represented by the equation (8) described later is obtained for the detection target substance, and the ratio with the slope of the standard data read from the standard data storage unit 110 is obtained. That is, the slope of the primary curve of the standard data is divided by the slope of the primary curve of the detection target substance, and the viscosity ⁇ of the detection target substance is calculated by multiplying the slope of the standard data by the slope ratio.
  • the mechanical property detection unit 108 can also determine the viscosity of the detection target substance based on a plurality of standard data.
  • the mechanical property detection unit 108 may read the slopes of the primary curves in a plurality of different standard samples stored in the standard data storage unit 110.
  • the slope of the primary curve of the standard data is divided by the slope of the primary curve of the substance to be detected, and the viscosity ratio is obtained by multiplying the viscosity of the corresponding standard data by the slope ratio.
  • the viscosity value obtained based on the standard data may be averaged to obtain the viscosity of the detection target substance.
  • the longitudinal direction of the container is a direction parallel to the z axis
  • the arrangement of the set A is a direction parallel to the x axis
  • the arrangement of the set B is a direction parallel to the y axis.
  • B0 is the maximum value of the magnetic field strength
  • is the angular velocity
  • t time.
  • the rotor 106 which is a conductor, has a magnetic field B (rotating magnetic field) that changes over time.
  • rotE -(dB / dt)
  • An electric field that satisfies is generated. This electric field is calculated as in the following equation (1).
  • the radial component around the central axis of the rotor 106 perpendicular to the rotation plane can be calculated by the following equation (3) by integrating over one period of time change.
  • the force F ⁇ expressed by the above equation (3) is a force that rotates the rotor 106 around the vertical central axis of the sphere.
  • the torque T is expressed by the following equation (4).
  • the rotor 106 is rotated by the torque T.
  • the rotation speed there are the following two factors that determine the rotation speed.
  • One is the friction between the rotor 106 and the bottom of the container 101, and the other is the viscous resistance of the substance to be detected that the rotor 106 contacts.
  • the resistance due to the frictional force at the bottom of the container 101 is substantially the same as the viscosity resistance of the detection target substance. Must be about (ie, a similar number) or small.
  • the radius perpendicular to the rotation surface of the rotor 106 is R, and the effective area in the lower area of the rotor 106 in which the lower part of the rotor 106 is in contact with the bottom of the container 101.
  • the radius of the contact surface be ⁇ R (a ⁇ 1).
  • the stress due to gravity applied to the rotor 106 is assumed to be constant.
  • the friction coefficient between the lower part of the rotor 106 and the bottom of the container 101 is ⁇
  • the density difference between the rotor 106 and the detection target substance is ⁇
  • the gravitational acceleration is g
  • the torque T f required for rotation can be calculated by the following equation (5).
  • the torque Tr required for the rotor 106 to rotate at the angular velocity ⁇ in an infinite space filled with the detection target substance is such that the viscosity coefficient is ⁇ and is represented by the following equation (6). is there.
  • the sample whose viscosity is to be measured is obtained by changing the characteristics of a known substance. Therefore, the viscosity coefficient of a known substance similar to the sample (for example, a substance having a similar chemical composition) or a value of about 110 to 150% is applied to ⁇ in the above formula as a temporary viscosity coefficient, and the condition regarding R is obtained. be able to. *
  • R ⁇ 1 mm is a condition at an angular velocity ⁇ of about 10 rad / s at one rotation per second.
  • the torque Tr applied to the aluminum sphere is determined by the rotation speed of the magnetic field (the speed at which the set A and the set B are sequentially driven to change the magnetic field in the x-axis direction or the y-axis direction) and the actual rotation of the aluminum sphere. Proportional to speed difference.
  • the rotational torque T applied to the sphere can be estimated by determining the rotational speed of the magnetic field in advance and measuring the rotational speed of the sphere.
  • the equation (4) may be used, or a calibration curve (inclination of standard data stored in the standard data storage unit 110) obtained using a standard sample with a known viscosity. May be used.
  • the torque T thus obtained is expressed by the following equation (8).
  • the relationship between the applied torque T and the angular velocity ⁇ is a linear curve passing through the intercept. That is, when the angular velocity ⁇ is plotted on the horizontal axis and the torque T is plotted on the vertical axis, the second term of equation (8) can be plotted as an intercept, and a curve passing through one point on the vertical axis. From the intercept (second term in equation (8)), torque due to friction is obtained, and from the slope, viscosity ⁇ (first term in equation (8)) is obtained. The angular velocity ⁇ can be obtained from the measured rotational speed.
  • an expression (8) expressed by the relationship between the amount proportional to the rotational torque measured by the viscosity / elasticity detection device and the rotational speed of the rotor 106. ), The slope of the linear curve, that is, the ratio of the change in rotational torque with respect to the rotational speed.
  • the rotational speed of the rotor 106 is measured by detecting the rotational motion of the mark added to the rotor 106 using the imaging device 111 with a microscope in FIG.
  • the rotation speed may be measured using other methods.
  • the method may be replaced with a method of optically measuring a change in reflection / interference pattern due to rotation by irradiating the rotor 106 with laser light.
  • a part of the rotor 106 is replaced with a dielectric, and a capacitor is configured such that the rotor is sandwiched between the electrodes. From the periodic change in the dielectric constant of the capacitor accompanying the rotation of the rotor 106, A method of measuring the number of rotations of the rotor 106 may be used.
  • the observation with the image sensor 111 may be replaced with a method in which the container 101 is made of a transparent material and observation is performed from the bottom with an inverted microscope. In this case, the observation can be performed through a very thin layer of the detection target substance between the bottom of the container 101 and the lower part of the rotor 106. Therefore, even if the detection target substance is a substance such as an ink material that hardly transmits light, the measurement can be performed. At this time, a mark for detecting the rotational speed is added to the lower portion of the rotor 106.
  • the period and direction of the magnetic field applied to the rotor 106 by the rotation control unit 107 described above may be arbitrarily changed. For example, periodic rotational torque can be applied to the rotor 106 by periodically sweeping the direction and rotational speed of the magnetic field.
  • the viscosity coefficient is changed from a stationary position when a constant torque is applied to a material that has elasticity such as gel or rubber, or a material such as a polymer solution that generates elasticity due to viscosity relaxation.
  • the elastic modulus can be determined simultaneously.
  • the elastic modulus like the spring constant, exerts a restoring force proportional to the rotational deformation. Therefore, when the sample has elasticity in addition to viscosity, the restoring force due to the elastic modulus increases in proportion to the strain. Therefore, when the rotor 106 is rotated to some extent, the elastic force (elastic resistance) and the torque generated by the magnetic field balance and come to rest.
  • the magnitude of the rotating magnetic field generated by the electromagnets 102 to 105 is changed, the magnitude of the rotational torque applied to the rotor 106 is changed by changing the rotation speed, and the equilibrium stationary position of the rotor 106 is measured.
  • the rotation angle is proportional to the applied rotational torque, and the proportionality coefficient is inversely proportional to the elastic modulus.
  • the elastic modulus can be obtained from this.
  • a standard sample having a known elastic modulus is used as in the measurement of the viscosity. From the relationship between the rotational torque and the rotational angle, the proportionality coefficient is obtained for the standard sample.
  • the elastic modulus of the detection target substance can be obtained from the ratio of the proportionality coefficient obtained for the detection target substance (measurement sample) and the proportionality coefficient obtained from the standard sample.
  • the elastic modulus and viscosity can be determined simultaneously. For example, when a constant rotational torque is applied to the rotor 106, the applied magnetic field is erased instantaneously, and the subsequent movement of the rotor 106 is observed, the rotor 106 vibrates due to the elasticity of the sample and vibrates due to the viscosity. The amplitude of is decreasing. It is also possible to determine the elastic modulus and the viscosity from the amplitude, period and duration of the vibration of the rotor 106 in the detection object.
  • the elastic modulus of the detection target substance can be obtained by comparing the amplitude, period and duration of vibration of the rotor 106 in the standard sample with the amplitude, period and duration of vibration of the rotor 106 in the detection target. it can.
  • Periodic rotational torque can be applied to the rotor 106 by periodically sweeping the direction of the magnetic field and the rotational speed.
  • the amplitude and phase of the rotational vibration of the rotor 106 while changing this period, it is possible to uniquely determine the viscosity and the elastic modulus.
  • the damped oscillation after erasing the magnetic field is regarded as a frequency spectrum, and both are the same measurement in principle.
  • the following viscosity detection processing was performed using the viscosity / elasticity measuring apparatus (mechanical property measuring apparatus) shown in FIG.
  • a glass test tube having an inner diameter of 7 mm and a height of 30 mm was used as the container 101, and 0.4 cc of pure water at 20 ° C. was inserted as a measurement target sample (detection target substance) into the glass test tube.
  • the viscosity of this pure water was 1.0 cP, and an aluminum sphere having a diameter of 2 mm was submerged as a rotor 106 in this pure water.
  • a rotating magnetic field was generated by rotating two permanent magnets around the sample container.
  • the image sensor 110 captured the rotation of the aluminum sphere, and this image was recorded on a video tape.
  • the rotational speed of the aluminum sphere was obtained by image processing (image processing unit 109) by a computer. That is, the rotational speed of the aluminum sphere at that time was measured while changing the rotational speed of the rotating magnetic field.
  • FIG. 2 is a graph showing the relationship between the rotational speed of the rotating magnetic field and the rotational speed of the rotor 106 (a parameter proportional to the rotational torque) and the rotational speed of the aluminum sphere.
  • the difference in rotational speed between the magnetic field and the rotating object is proportional to the rotational torque generated in the aluminum sphere. Therefore, the vertical axis of this graph represents an amount proportional to the torque.
  • This relationship is in the form of a linear function expressed by equation (8). It can be seen that the viscosity is obtained from the slope in the first term, and the frictional force is obtained from the intercept (relative to the vertical axis) indicated by the second term. .
  • a glass test tube having an inner diameter of 7 mm and a height of 30 mm was used as a sample container, and 0.4 cc of an aqueous solution of sucrose having a weight ratio of 30% was inserted into the test tube.
  • the viscosity of this aqueous solution is 3.2 cP.
  • a rotor 106 an aluminum sphere having a diameter of 2 mm was submerged in the aqueous solution, and then two permanent magnets were rotated around the container 101 to generate a rotating magnetic field.
  • the imaging element 111 captures the rotation of the aluminum sphere in response to the rotational torque generated by this rotating magnetic field, records this image on a video tape, and then calculates the rotational speed by image processing (image processing unit 109) by a computer. Asked. That is, the rotational speed of the aluminum sphere at that time was measured while changing the rotational speed of the rotating magnetic field.
  • FIG. 3 is a graph showing the relationship between the rotational speed of the rotating magnetic field and the rotational speed of the rotor 106 and the rotational speed of the rotating object. It can be seen that the slope of the graph is larger because the viscosity of the aqueous sucrose solution is larger than that of the pure water of FIG.
  • the rotation speed of the rotating magnetic field in this section is about 0.4 rotation / second, and is derived from the equation (7) that gives the rotation speed corresponding to the frictional force when the viscosity is 3 cP and the diameter of the rotating object is 2 mm. The order is almost the same as the value of 1 rotation / second. This shows that the principle of the present invention is effective.
  • the ratio of the slopes of FIG. 2 and FIG. 3 is 3.26, which is in good agreement with the actual viscosity ratio 3.2, which indicates that a viscosity of about 1 cP can be measured with high accuracy. Further, from this result, by obtaining the ratio of the gradient between the rotational torque and the rotational speed of the detection target substance and the standard sample, the viscosity of the detection target substance can be estimated by multiplying this ratio by the viscosity of the standard sample. It turns out that it is possible.
  • the present invention it is possible to measure viscosity and / or elasticity with high accuracy on a very small amount of sample.
  • a commercially available inexpensive article can be used for the container and the rotor that are in contact with the sample and can be made disposable. Therefore, the cost required for the apparatus can be reduced, and the influence of contamination of other samples can be completely eliminated.
  • post-processing for discarding the sample can be performed easily and reliably.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

A device for measuring viscosity/elasticity is characterized in that the device comprises a conductive rotor, a container containing an object sample for detecting viscosity in which the rotor is arranged, magnets arranged around the container and applying a magnetic field to the rotor, a rotation control section for applying a rotating magnetic field to the rotor by driving the magnets to induce an induction current in the rotor, and rotating the rotor by applying a rotary torque thereto through Lorentz interaction of the induction current and the magnetic field applied to the rotor, a rotation detection section for detecting the number of revolutions of the rotor, and a dynamical characteristics detection section for detecting the viscosity and/or elasticity of the sample touching the rotor from the number of revolutions.

Description

粘性・弾性測定装置および粘性・弾性測定方法Viscosity / elasticity measuring apparatus and viscosity / elasticity measuring method
 本発明は、物質の力学物性である粘性及び弾性を測定するための粘性・弾性測定装置及び粘性・弾性の測定方法に関する。
 本願は、2008年4月25日に、日本に出願された特願2008-116359号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a viscosity / elasticity measuring apparatus and a viscosity / elasticity measuring method for measuring viscosity and elasticity which are mechanical properties of a substance.
This application claims priority based on Japanese Patent Application No. 2008-116359 filed in Japan on April 25, 2008, the contents of which are incorporated herein by reference.
 物質の粘性・弾性測定は、医薬品、食品、塗料、インク、化粧品、化学製品、紙、粘着剤、繊維、プラスチック、飲料(例えばビール)、洗剤、コンクリート混和剤、シリコン等の製造過程で、品質管理、性能評価、原料管理、研究開発に必要不可欠な測定技術である。そのため従来より、対象とする物質の力学物性を検出するため、粘性や弾性の測定が行われている(例えば、特許文献1参照)。 Viscosity and elasticity of substances are measured in the manufacturing process of pharmaceuticals, foods, paints, inks, cosmetics, chemical products, paper, adhesives, fibers, plastics, beverages (eg beer), detergents, concrete admixtures, silicon, etc. It is an indispensable measurement technology for management, performance evaluation, raw material management, and research and development. Therefore, conventionally, measurement of viscosity and elasticity has been performed in order to detect the mechanical properties of the target substance (see, for example, Patent Document 1).
  従来知られている粘性測定法には以下に示すような方法がある。
(1)粘度管法では、流体が細管中を流下する速度から、前記流体の粘度が測定される。
(2)試料に振動子を接触させ、振幅の変化により、粘性を測定する方法。
(3)表面弾性波の伝搬特性より、粘性を測定する方法。
(4)試料中で回転子を回転させ、粘性抵抗により発生するトルクを直接測定して、粘性を測定する方法。
(5)流体試料中を落下する剛体球の落下時間より粘性を測定する方法。
(6)動的光散乱法では、ブラウン運動する粒子にレーザ光を照射して動的散乱の測定より求められる拡散係数から、粘性が求められる。
(7)Zimm型粘度測定法では、試料に浮遊させた探触子を回転させ、その回転トルクから粘性を測定する。
Conventionally known methods for measuring viscosity include the following methods.
(1) In the viscosity tube method, the viscosity of the fluid is measured from the speed at which the fluid flows through the narrow tube.
(2) A method in which a vibrator is brought into contact with a sample and viscosity is measured by a change in amplitude.
(3) A method for measuring viscosity from the propagation characteristics of surface acoustic waves.
(4) A method of measuring viscosity by directly measuring a torque generated by viscous resistance by rotating a rotor in a sample.
(5) A method of measuring the viscosity from the falling time of the hard sphere falling in the fluid sample.
(6) In the dynamic light scattering method, viscosity is obtained from a diffusion coefficient obtained by irradiating a laser beam to a Brownian moving particle and measuring dynamic scattering.
(7) In the Zimm type viscosity measurement method, a probe suspended in a sample is rotated, and the viscosity is measured from the rotational torque.
特開2005-69872号公報JP 2005-69872 A
 しかしながら、上述した粘性測定方法の内、(1)~(5)に記載した方法に関しては、数cc以上の多量の試料が粘性の測定に必要となるという欠点があった。
 また、(2)~(5)に記載した方法では、粘性の計測を精度よく行うためには、試料が少なくとも10cP以上の粘性を有する必要がある。そのため、これらの方法では、低粘度の材料の粘度を測定できないという欠点があった。
 さらに(6)の方法について測定装置が大掛かりになるという欠点、また透明試料以外には適用できないという困難がある。
However, among the above-described methods for measuring viscosity, the methods described in (1) to (5) have a drawback that a large amount of sample of several cc or more is required for measuring viscosity.
In the methods described in (2) to (5), the sample needs to have a viscosity of at least 10 cP in order to accurately measure the viscosity. Therefore, these methods have a drawback that the viscosity of a low-viscosity material cannot be measured.
Furthermore, the method (6) has a drawback that the measuring apparatus becomes large, and there is a difficulty that it cannot be applied to other than the transparent sample.
 また、(7)に記載した方法に関しては、表面に浮力によって浮いた探蝕子を回転させるため、試料表面にさざなみを起こし、このためのエネルギー損失が無視できなくなるという欠点があった。また試料表面に分子吸着膜が形成される場合には、その膜の有する表面粘弾性によって測定誤差が生じるという欠点があった。探触子の回転が、流体試料中に没している部分の長さに依存するため、試料物質の密度が既知である必要があるという制約があった。
 また、(1)~(7)記載のいずれの方法においても、試料容器が高価であり、容器を再利用する必要がある。そのため、測定後の試料容器の洗浄が必要であり、先の測定試料が完全に除去されなければ、その影響が残り、高精度の測定が行えないという制約があった。
In addition, the method described in (7) has a disadvantage that the probe floated on the surface by buoyancy is rotated, causing ripples on the sample surface, and energy loss for this cannot be ignored. Further, when a molecular adsorption film is formed on the surface of the sample, there is a drawback that a measurement error occurs due to the surface viscoelasticity of the film. Since the rotation of the probe depends on the length of the portion submerged in the fluid sample, there is a restriction that the density of the sample material needs to be known.
In any of the methods described in (1) to (7), the sample container is expensive and the container needs to be reused. For this reason, it is necessary to clean the sample container after the measurement. If the previous measurement sample is not completely removed, the influence remains and there is a restriction that high-precision measurement cannot be performed.
 すなわち、これまで一般的に用いられている粘弾性の測定方法では、一定の測定精度を得るためにはある程度以上の量の試料が必要であるという欠点があった。 
 また、粘性が100cPより小さい物質に対しては測定精度が悪くなるという欠点があった。また回転型の粘度計や光散乱による計測では装置が大掛かりになり、簡便な計測が出来ないという制約があった。
 以上の理由により、従来の原理に基づく手法では、液体や他のソフトマテリアルについて普遍的な物理量である粘性・弾性に関して、少量の試料で簡便に測定することが困難であった。また低粘度の試料について高精度で粘性・弾性を測定するとことが困難であった。さらに測定容器の洗浄を必要とするなど、測定効率上の制約もあった。
That is, the viscoelasticity measuring methods generally used until now have a drawback that a certain amount of sample is required in order to obtain a certain measurement accuracy.
In addition, there is a drawback that measurement accuracy is deteriorated for a substance having a viscosity of less than 100 cP. In addition, the rotational viscometer and the measurement by light scattering have a restriction that the apparatus becomes large and simple measurement cannot be performed.
For the reasons described above, it has been difficult to easily measure a small amount of sample with respect to viscosity and elasticity, which are universal physical quantities for liquids and other soft materials, by the method based on the conventional principle. In addition, it was difficult to measure viscosity and elasticity of a low viscosity sample with high accuracy. In addition, there were restrictions on measurement efficiency, such as the need to clean the measurement container.
 本発明は、このような事情に鑑みてなされたもので、従来の測定法に比べ、比較的少量の試料で粘性・弾性を測定でき、小型で簡易な測定装置であり、検出対象の物質を入れる容器を安価なものとして使い捨てを可能とした粘性・弾性測定装置及び粘性・弾性の測定方法を提供することを目的とする。 The present invention has been made in view of such circumstances. Compared to conventional measurement methods, the present invention can measure viscosity and elasticity with a relatively small amount of sample, is a small and simple measuring device, and detects a substance to be detected. It is an object of the present invention to provide a viscosity / elasticity measuring apparatus and a viscosity / elasticity measuring method that can be disposed of at low cost.
 本発明の粘性・弾性測定装置(力学特性測定装置)は、導電性の回転子と、試料(粘性および/または弾性を検出する検出対称物質)および前記回転子を収納し、該試料内に前記回転子が配置される容器と、該容器の周りに配置され、前記回転子に対して磁場を印加する磁石と、該磁石を駆動して前記回転子に回転磁界を与え、前記回転子内に誘導電流を誘起し、該誘導電流と該回転子に印加される磁場とのローレンツ相互作用により、該回転子に回転トルクを与えて回転させる回転制御部と、前記回転子の回転運動を検出する回転検出部と、前記回転トルクと前記回転運動に基づき、前記回転子に接する試料の粘性・弾性を検出する力学特性検出部(粘性・弾性検出部)とを有することを特徴とする粘性・弾性測定装置である。
 上記装置において検出される粘性は、試料の粘性係数で示されるものであってもよい。
 上記装置において検出される弾性は、弾性率で示されるものであってもよい。
The viscosity / elasticity measuring apparatus (mechanical characteristic measuring apparatus) of the present invention stores a conductive rotor, a sample (a detection symmetric material for detecting viscosity and / or elasticity) and the rotor, and the sample is contained in the sample. A container in which the rotor is disposed, a magnet disposed around the container, for applying a magnetic field to the rotor, and driving the magnet to apply a rotating magnetic field to the rotor; A rotation control unit that induces an induced current and applies a rotational torque to the rotor to rotate by Lorentz interaction between the induced current and a magnetic field applied to the rotor, and detects a rotational motion of the rotor Viscosity / elasticity comprising: a rotation detection unit; and a dynamic characteristic detection unit (viscosity / elasticity detection unit) for detecting the viscosity / elasticity of the sample in contact with the rotor based on the rotational torque and the rotational motion It is a measuring device.
The viscosity detected in the above apparatus may be indicated by the viscosity coefficient of the sample.
The elasticity detected in the device may be indicated by an elastic modulus.
 上記粘性・弾性測定装置は、前記回転検出部が前記回転子の回転数を検出し、前記回転子の回転トルクと回転数に基づき、前記力学特性検出部が前記試料の粘性を検出する、粘性・弾性測定装置であってもよい。
 上記粘性・弾性測定装置は、前記回転検出部が、前記回転トルクが付与される前の初期静止位置から前記回転トルクと前記試料の弾性抵抗のつりあいにより前記回転子が静止する平衡静止位置までの回転角度を検出し、前記回転子の回転トルクと回転角度に基づき、前記力学特性検出部が前記試料の弾性を検出する、粘性・弾性測定装置であってもよい。
In the viscosity / elasticity measuring apparatus, the rotation detection unit detects the rotation number of the rotor, and the mechanical property detection unit detects the viscosity of the sample based on the rotation torque and rotation number of the rotor. -It may be an elasticity measuring device.
In the viscosity / elasticity measuring apparatus, the rotation detection unit is configured to move from an initial stationary position before the rotational torque is applied to an equilibrium stationary position where the rotor is stationary due to a balance between the rotational torque and the elastic resistance of the sample. It may be a viscosity / elasticity measuring device that detects a rotation angle and detects the elasticity of the sample based on the rotation torque and rotation angle of the rotor.
 上記粘性・弾性測定装置は、既知の粘性を有する複数の物質(標準試料)中における前記回転子の回転トルクと、回転数との関係を予め測定した標準データを記憶する記憶部を更に有し、前記力学特性検出部が測定した試料中での前記回転子の回転トルクと回転数との関係と、前記標準データとを比較することにより、前記試料の粘性を検出する粘性・弾性測定装置であってもよい。
 上記粘性・弾性測定装置は、既知の弾性を有する複数の物質中における前記回転子の回転トルクと、回転角度との関係を予め測定した標準データを記憶する記憶部を更に有し、前記力学特性検出部が測定した試料中での前記回転子の回転トルクと回転角度との関係と、前記標準データとを比較することにより、前記試料の弾性を検出する粘性・弾性測定装置であってもよい。
The viscosity / elasticity measuring apparatus further includes a storage unit for storing standard data obtained by measuring in advance a relationship between the rotational torque of the rotor and the rotational speed in a plurality of substances (standard samples) having a known viscosity. A viscosity / elasticity measuring device that detects the viscosity of the sample by comparing the standard data with the relationship between the rotational torque and the rotational speed of the rotor in the sample measured by the mechanical property detection unit. There may be.
The viscosity / elasticity measuring apparatus further includes a storage unit for storing standard data in which a relationship between a rotational torque and a rotational angle of the rotor in a plurality of substances having known elasticity is measured in advance, and the mechanical characteristics It may be a viscosity / elasticity measuring device that detects the elasticity of the sample by comparing the relationship between the rotation torque and the rotation angle of the rotor in the sample measured by the detection unit and the standard data. .
 上記粘性・弾性測定装置は、前記回転子にマークが付加されており、前記回転検出部が前記マークの回転を検出することにより、回転子の回転運動を検出する粘性・弾性測定装置であってもよい。
 上記粘性・弾性測定装置は、前記回転子の底部の少なくとも一部が、前記容器内面の底部と接し、前記回転子と接する前記容器内面の底部が滑らかな平面、あるいは滑らかな凹面状の曲面であり、前記回転子の底部が滑らかな凸面状の曲面であることを特徴とする粘性・弾性測定装置であってもよい。
The viscosity / elasticity measuring apparatus is a viscosity / elasticity measuring apparatus in which a mark is added to the rotor, and the rotation detecting unit detects the rotation of the rotor by detecting the rotation of the mark. Also good.
In the viscosity / elasticity measuring device, at least a part of the bottom of the rotor is in contact with the bottom of the inner surface of the container, and the bottom of the inner surface of the container in contact with the rotor is a smooth flat surface or a smooth concave curved surface. In addition, the viscosity / elasticity measuring apparatus may be characterized in that the bottom of the rotor is a smooth convex curved surface.
  上記粘性・弾性測定装置は、前記回転子の半径が以下の式により決定されることを特徴とする粘性・弾性測定装置であってもよい。
Figure JPOXMLDOC01-appb-M000002
 ここで、Rは回転子の半径、gは重力加速度、ωは角速度、ηは粘性係数、Δρは回転子と試料の密度差、μは回転子下部と容器底部の摩擦係数、α及びβは係数である。
 ここで、粘性係数ηには、試料に類似して既知の粘性を有する物質(例えば、試料と実質的に同じか化学組成を有する物質)の粘性係数をあてはめ、Rの条件をもとめてもよい。あるいは、試料に類似して既知の粘性を有する物質の粘性係数より、やや高い値(110~150%程度)を設定して仮の粘性係数とし、上記式にあてはめて、Rをもとめてもよい。
The viscosity / elasticity measuring device may be a viscosity / elasticity measuring device in which the radius of the rotor is determined by the following equation.
Figure JPOXMLDOC01-appb-M000002
Where R is the radius of the rotor, g is the acceleration of gravity, ω is the angular velocity, η is the viscosity coefficient, Δρ is the density difference between the rotor and the sample, μ is the friction coefficient between the lower part of the rotor and the bottom of the container, and α and β are It is a coefficient.
Here, the viscosity coefficient η may be a condition of R by applying a viscosity coefficient of a substance having a known viscosity similar to the sample (for example, a substance having substantially the same or chemical composition as the sample). . Alternatively, a value slightly higher than the viscosity coefficient of a substance having a known viscosity similar to the sample (about 110 to 150%) may be set as a temporary viscosity coefficient, and R may be obtained by applying the above equation. .
 上記粘性・弾性測定装置は、前記回転子が、前記試料内に、一部分あるいは全部分が没していることを特徴とする粘性・弾性測定装置であってもよい。
 上記粘性・弾性測定装置は、前記試料が、液体またはソフトマテリアルである粘性・弾性測定装置であってもよい。
The viscosity / elasticity measuring apparatus may be a viscosity / elasticity measuring apparatus in which the rotor is partially or entirely submerged in the sample.
The viscosity / elasticity measuring apparatus may be a viscosity / elasticity measuring apparatus in which the sample is a liquid or a soft material.
 本発明の粘性・弾性検出方法は、容器に粘性・弾性を検出する対象の試料(検出対象物質)を充填し、該試料内に導電性の回転子を配置する過程と、該容器の周りに配置された磁石により、前記回転子に対して磁場を印加する過程と、該磁場を時間的に変動させ、前記回転子内に誘導電流を誘起し、該誘導電流と該回転子に印加される磁場とのローレンツ相互作用により、該回転子に回転トルクを与えて回転させる回転制御過程と、前記回転子の回転運動を検出する回転検出過程と、前記回転トルクと回転運動に基づき、前記回転子に接する試料の粘性・弾性を検出する力学特性検出過程とを有することを特徴とする粘性・弾性測定方法である。
  上記方法において検出される粘性は、試料の粘性係数で示されるものであってもよい。
 上記方法において検出される弾性は、弾性率で示されるものであってもよい。
In the viscosity / elasticity detection method of the present invention, the process of filling a container with a sample (substance to be detected) whose viscosity / elasticity is to be detected, placing a conductive rotor in the sample, and surrounding the container A process of applying a magnetic field to the rotor by an arranged magnet, and temporally changing the magnetic field, inducing an induced current in the rotor, and applying the induced current to the rotor Based on Lorentz interaction with a magnetic field, a rotation control process for applying rotation torque to the rotor for rotation, a rotation detection process for detecting the rotation movement of the rotor, the rotation torque and the rotation movement, and the rotor And a mechanical property detection process for detecting the viscosity and elasticity of a sample in contact with the sample.
The viscosity detected in the above method may be indicated by the viscosity coefficient of the sample.
The elasticity detected in the above method may be indicated by an elastic modulus.
 上記粘性・弾性測定方法は、前記回転制御過程において、前記回転子を回転させ、前記回転子の回転数を前記回転検出過程で検出し、前記回転トルクと前記回転数に基づき、前記試料の粘性を検出する、粘性・弾性測定方法であってもよい。
 上記粘性・弾性測定方法は、前記回転制御過程において、前記回転トルクにより、前記トルクを付与される前の初期静止位置から、弾性抵抗と前記トルクのつりあいにより、前記回転子が静止する平衡静止位置まで前記回転子を回転させ、前記初期静止位置から前記平衡静止位置までの回転角度を前記回転検出過程で検出し、前記力学特性検出過程において、前記回転トルクと回転角度に基づき、前記回転子に接する試料の弾性を検出する粘性・弾性測定方法であってもよい。
The viscosity / elasticity measuring method includes rotating the rotor in the rotation control process, detecting the rotation speed of the rotor in the rotation detection process, and determining the viscosity of the sample based on the rotation torque and the rotation speed. Viscosity / elasticity measuring method may be used.
In the rotation control process, the viscosity / elasticity measuring method is an equilibrium stationary position where the rotor is stationary by the balance between elastic resistance and the torque from the initial stationary position before the torque is applied by the rotational torque. The rotor is rotated until the rotation angle from the initial stationary position to the equilibrium stationary position is detected in the rotation detection process, and in the mechanical characteristic detection process, the rotor is moved based on the rotation torque and the rotation angle. It may be a viscosity / elasticity measuring method for detecting the elasticity of the sample in contact.
 上記粘性・弾性測定方法は、既知の粘度を有する複数の物質(標準試料)中における前記回転子の回転トルクと、回転数との関係を予め測定して標準データを作製する過程をさらに有し、前記試料中での前記回転子の回転トルクと回転数との関係を、前記標準データとを比較することにより、前記試料の粘性を検出する粘性・弾性測定方法であってもよい。
 上記粘性・弾性測定方法は、既知の弾性を有する複数の物質(標準試料)中における前記回転子の回転トルクと、回転角度との関係を予め測定して標準データを作製する過程をさらに有し、前記試料中での前記回転子の回転トルクと回転角度との関係を、前記標準データとを比較することにより、前記試料の弾性を検出する粘性・弾性測定方法であってもよい。
 上記粘性・弾性測定方法の前記回転制御過程において、前記磁場を該磁場の水平方向の向き(磁場の向きの水平成分)が経時的に回転する回転磁場とするように制御してもよい。
 上記粘性・弾性測定方法において、前記回転子は、前記試料の比重より大きな比重を有する材料からなるものであってもよい。
The viscosity / elasticity measuring method further includes a step of preparing standard data by measuring in advance the relationship between the rotational torque of the rotor and the rotational speed in a plurality of substances (standard samples) having a known viscosity. The viscosity / elasticity measuring method for detecting the viscosity of the sample by comparing the relation between the rotational torque of the rotor and the number of rotations in the sample with the standard data.
The viscosity / elasticity measuring method further includes a step of preparing standard data by measuring in advance the relationship between the rotational torque and rotational angle of the rotor in a plurality of substances (standard samples) having known elasticity. The viscosity / elasticity measuring method for detecting the elasticity of the sample by comparing the relationship between the rotational torque and the rotation angle of the rotor in the sample with the standard data may be used.
In the rotation control process of the viscosity / elasticity measuring method, the magnetic field may be controlled to be a rotating magnetic field in which the horizontal direction of the magnetic field (the horizontal component of the magnetic field direction) rotates with time.
In the above viscosity / elasticity measuring method, the rotor may be made of a material having a specific gravity greater than that of the sample.
 以上説明したように、本発明によれば、試料と接して回転する回転子に印加する回転トルクと、回転子の回転運動の関係から粘性及び/または弾性を測定するため、少量の検出対象物の試料で、低粘度から高粘度にいたる広い領域にわたる粘性を測定することができる。また回転子に回転磁界を与えることにより回転子を回転させ、この回転子の回転数を測定し、回転トルクと回転子の回転数との関係から試料の粘性を検出し、回転トルクと回転子の回転角度との関係から試料の弾性を検出するため、従来に比較して簡便な装置により粘性・弾性を測定することが出来る。さらに、試料を入れる容器に通常の試験管などを利用し、使い捨てとすることができる。そのため、容器を洗浄する手間を省略し、直前の測定物質の影響を完全に排除して、高精度な測定を行うことができる。 As described above, according to the present invention, since the viscosity and / or elasticity is measured from the relationship between the rotational torque applied to the rotor rotating in contact with the sample and the rotational motion of the rotor, a small amount of detection object is detected. With this sample, the viscosity over a wide range from low viscosity to high viscosity can be measured. The rotor is rotated by applying a rotating magnetic field to the rotor, the rotation speed of the rotor is measured, the viscosity of the sample is detected from the relationship between the rotation torque and the rotation speed of the rotor, and the rotation torque and the rotor are detected. Since the elasticity of the sample is detected from the relationship with the rotation angle, the viscosity and elasticity can be measured with a simpler apparatus than in the past. Furthermore, the container which puts a sample can utilize a normal test tube etc., and can be made disposable. Therefore, the labor for washing the container is omitted, and the influence of the immediately preceding measurement substance can be completely eliminated, and highly accurate measurement can be performed.
本発明の実施形態による粘性・弾性検出装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the viscosity and elasticity detection apparatus by embodiment of this invention. 検出対象物質が水の場合における回転磁場の回転速度及び回転子(球)の回転速度の差と、回転子の回転速度(回転数)との関係を表すグラフである。It is a graph showing the relationship between the difference between the rotational speed of the rotating magnetic field and the rotational speed of the rotor (sphere) when the detection target substance is water, and the rotational speed (rotational speed) of the rotor. 検出対象物質がショ糖の場合における回転磁場の回転速度及び回転子(球)の回転速度の差と、回転子の回転速度(回転数)との関係を表すグラフである。It is a graph showing the relationship between the rotational speed of a rotating magnetic field and the rotational speed of a rotor (sphere) when the detection target substance is sucrose, and the rotational speed (number of rotations) of the rotor.
 以下、本発明の一実施形態による粘性・弾性測定装置を図面を参照して説明する。図1は同実施形態による粘性・弾性測定装置の構成例を示すブロック図である。
 この図において、容器101は、例えば小型の試験管などである。容器101には、力学的物性としての粘性(すなわち、粘性係数)を測定する対象の検出対象物が収納される。容器101の内径は下記に説明する回転子106の直径よりわずかに大きければよい。また測定時に容器101に収納される試料(検出対象物)の深さは回転子106が没する程度でよい。このため、きわめて微量の試料で計測が可能になる。例えば回転子106として1mmの導体球を用いる場合、必要な試料の量は100μリットルあれば十分である。ここで、回転子106は、検出対象物質である試料内に、一部分あるいは全部分が没していてもよい。
Hereinafter, a viscosity / elasticity measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration example of a viscosity / elasticity measuring apparatus according to the embodiment.
In this figure, a container 101 is, for example, a small test tube. The container 101 stores a detection target object for measuring viscosity (that is, viscosity coefficient) as a mechanical physical property. The inner diameter of the container 101 only needs to be slightly larger than the diameter of the rotor 106 described below. Further, the depth of the sample (detection target) stored in the container 101 at the time of measurement may be such that the rotor 106 is immersed. For this reason, it is possible to measure with a very small amount of sample. For example, when a 1 mm conductor sphere is used as the rotor 106, it is sufficient that the required amount of sample is 100 μL. Here, the rotor 106 may be partially or entirely submerged in the sample that is the detection target substance.
 回転子106は、導体(例えば、アルミニウムなどの金属)で構成されており、容器101に接する下部が滑らかな凸状の曲面を有する形状を有する。例えば、回転子106は、球状、あるいは半球状(すなわち、上記容器101の内底部(容器内面の底部)と接する部分が、球面の一部分の形状を有する形状)であってもよい。また回転子106は、回転楕円体状の形状を有してもよい。回転子106は、上記容器101内において、検出対象物内に接するように配置される。すなわち、回転子106は、一部または全部が、この検出対象物に没するように配置される。回転子106の下部が接する容器101の内底部も滑らかな平面でもよいし、凹状の滑らかな曲面を有していてもよい。
 回転子106としては市販の金属球を用いることが出来る。そのため、容器101の市販の試験管とあわせて使用することにより、試料に接する部分をディスポーザブルな構成とすることが出来る。このため、生体材料など、廃棄に特段の注意を要する物質を測定対象とする場合でも、焼却・滅菌などの後処理が容易に行えるという利点がある。
 本発明によれば、小さな回転子を用い、微量の試料の粘性・弾性の測定を行うことができる。例えば、回転子は直径1cm以下、または直径2mm以下程度の金属球であってもよい。本発明によれば、容積100~500μリットル程度の試料でも、粘性・弾性の測定を行うことができる。
The rotor 106 is made of a conductor (for example, a metal such as aluminum), and has a shape in which a lower portion in contact with the container 101 has a smooth convex curved surface. For example, the rotor 106 may be spherical or hemispherical (that is, a shape in which a portion in contact with the inner bottom portion of the container 101 (the bottom portion of the container inner surface) has a shape of a part of a spherical surface). The rotor 106 may have a spheroid shape. The rotor 106 is disposed in the container 101 so as to be in contact with the detection target. That is, the rotor 106 is arranged so that part or all of the rotor 106 is immersed in this detection target. The inner bottom portion of the container 101 with which the lower portion of the rotor 106 is in contact may be a smooth flat surface or may have a concave smooth curved surface.
A commercially available metal sphere can be used as the rotor 106. Therefore, by using it together with a commercially available test tube of the container 101, the portion in contact with the sample can be made a disposable configuration. For this reason, there is an advantage that post-treatment such as incineration and sterilization can be easily performed even when a substance that requires special attention for disposal, such as biomaterials, is used as a measurement target.
According to the present invention, it is possible to measure the viscosity and elasticity of a very small amount of sample using a small rotor. For example, the rotor may be a metal sphere having a diameter of 1 cm or less or a diameter of 2 mm or less. According to the present invention, viscosity and elasticity can be measured even with a sample having a volume of about 100 to 500 μl.
 容器の回りには、電磁石102、103、104、105が配置されている。
 電磁石102及び電磁石103の組Aは、容器101の長尺方向に直交する平面内において、上記容器101を間に配置して、直列に置かれている。
 電磁石104及び電磁石105の組Bは、組Bと同一の平面内において、組Aの配置方向と直交する方向に、上記容器101を間に配置して、直列に置かれている。
 すなわち、容器101の長尺方向を直交座標系のz軸に沿って配置した場合、組Aをx軸に沿って配置し、組Bをy軸に沿って配置することができる。
 例えば、容器106の張尺方向を鉛直方向に沿って配置し、電磁石の組Aおよび組Bを、水平面内に配置してもよい。
Around the container, electromagnets 102, 103, 104, and 105 are arranged.
The set A of the electromagnet 102 and the electromagnet 103 is placed in series in the plane perpendicular to the longitudinal direction of the container 101 with the container 101 interposed therebetween.
The set B of the electromagnet 104 and the electromagnet 105 is placed in series in the same plane as the set B with the container 101 interposed therebetween in a direction orthogonal to the arrangement direction of the set A.
That is, when the longitudinal direction of the container 101 is arranged along the z axis of the orthogonal coordinate system, the set A can be arranged along the x axis and the set B can be arranged along the y axis.
For example, the tension direction of the container 106 may be arranged along the vertical direction, and the electromagnet sets A and B may be arranged in a horizontal plane.
 電磁石102、103、104、105は、回転制御部107に接続されている。回転制御部107は、交互に組A、組Bの電磁石を駆動し、互いに直交する2方向(x軸方向、y軸方向)の磁場を時間的に交互に生成して変動させる。
 例えば、回転制御部107で、組Aの電磁石102及び電磁石103を駆動している際(すなわち、電磁石102および電磁石103のコイルに電流が流されている際)は、組Bの電磁石104及び電磁石105は駆動しない。組Bの電磁石104及び電磁石105が駆動される際は、組Aの電磁石102及び電磁石103は駆動されない。
 回転制御部107は、上記の電磁石制御により、回転子106に対して回転磁界を与え、回転子106内に誘導電流を誘起する。そして、この誘導電流と、回転子106に印加される磁場とのローレンツ相互作用により、回転子106に対して回転トルクを与えて回転させる。
 この交互に駆動させる時間周期は、力学特性検出部108が回転制御部107に対して指示する。
The electromagnets 102, 103, 104, and 105 are connected to the rotation control unit 107. The rotation control unit 107 alternately drives the electromagnets of the set A and the set B, and alternately generates and varies magnetic fields in two directions (x-axis direction and y-axis direction) orthogonal to each other.
For example, when the rotation control unit 107 is driving the electromagnet 102 and the electromagnet 103 of the set A (that is, when a current is passed through the coils of the electromagnet 102 and the electromagnet 103), the electromagnet 104 and the electromagnet of the set B 105 is not driven. When the electromagnet 104 and the electromagnet 105 of the set B are driven, the electromagnet 102 and the electromagnet 103 of the set A are not driven.
The rotation control unit 107 applies a rotating magnetic field to the rotor 106 by the electromagnet control described above, and induces an induced current in the rotor 106. Then, due to the Lorentz interaction between this induced current and the magnetic field applied to the rotor 106, the rotor 106 is rotated by giving a rotational torque.
The dynamic characteristic detection unit 108 instructs the rotation control unit 107 about the time period for alternately driving.
 上述した構成においては、電磁石を用い、電磁石のコイルに対して順次電流を流して駆動することにより、回転子106に対して回転磁界を与えている。これに替えて、一組の永久磁石を容器101を介して直列に配置し、この永久磁石をモータなどにより容器101の周りを回転させて、回転子106に対して、回転磁界を印加することにより、回転子106に回転トルクを与えるように構成してもよい。この際、永久磁石の組の回転数は、力学特性検出部108の指示に対応して回転制御部107が制御する。 In the above-described configuration, an electromagnet is used, and a rotating magnetic field is applied to the rotor 106 by driving the electromagnet coil by passing a current sequentially. Instead, a pair of permanent magnets are arranged in series via the container 101, and the permanent magnets are rotated around the container 101 by a motor or the like to apply a rotating magnetic field to the rotor 106. Thus, the rotor 106 may be configured to be given rotational torque. At this time, the rotation control unit 107 controls the rotation speed of the set of permanent magnets in response to an instruction from the mechanical characteristic detection unit 108.
 画像処理部109は、例えば、顕微鏡を有する撮像素子(CCD)から構成されている。画像処理部109は、上記容器101の開口部上部に配置される。画像処理部109は、回転子106に付加されているマークの回転を検出することにより、回転子106の回転数を測定する。そのため、画像処理部109は、撮像方向が回転子106の上部面に付加されたマークを検出できる位置となるように、容器101の上方に配置されている。 The image processing unit 109 includes, for example, an image sensor (CCD) having a microscope. The image processing unit 109 is disposed at the upper part of the opening of the container 101. The image processing unit 109 measures the rotation speed of the rotor 106 by detecting the rotation of the mark added to the rotor 106. Therefore, the image processing unit 109 is arranged above the container 101 so that the imaging direction is a position where a mark added to the upper surface of the rotor 106 can be detected.
 標準データ記憶部110には、粘度の異なる複数の標準試料について、回転子106に印加される回転トルクと、回転子106の回転数の関係を示す標準データが記憶されている。
 標準データは、あらかじめ各標準試料を容器101に入れ、回転子106を回転させて、回転子106に印加した回転トルクと、回転子106の回転数を記録することにより、得ることができる。
 この各標準試料の測定においては、回転子106回転数を変化させ、それぞれの回転数における回転トルクを算出し、後述される(8)式により近似される一次曲線の傾きを求めたものが標準データの一部として設定される。
The standard data storage unit 110 stores standard data indicating the relationship between the rotational torque applied to the rotor 106 and the rotational speed of the rotor 106 for a plurality of standard samples having different viscosities.
Standard data can be obtained by putting each standard sample in the container 101 in advance, rotating the rotor 106, and recording the rotational torque applied to the rotor 106 and the rotational speed of the rotor 106.
In the measurement of each standard sample, the rotational speed at the rotor 106 is changed, the rotational torque at each rotational speed is calculated, and the slope of the linear curve approximated by the equation (8) described later is obtained as a standard. Set as part of the data.
 力学特性検出部108は、画像処理部109および標準データ記憶部に接続されている。力学特性検出部108は、画像処理部109の出力する回転子106の回転数と、その回転数に対応する回転トルクとのデータを取得する。次いで、後述する(8)式で示される一次曲線の傾きを、検出対象物質に対して求め、標準データ記憶部110から読み出した標準データの傾きとの比を求める。すなわち検出対象物質の一次曲線の傾きにより、標準データの一次曲線の傾きを除算し、この傾きの比を標準データの粘度に乗算することにより、検出対象物質の粘度ηを算出する。
 このとき、力学特性検出部108は、複数の標準データに基づいて、検出対象物質の粘度を決定することもできる。例えば、力学特性検出部108は、標準データ記憶部110に記憶されている複数の異なる標準試料における一次曲線の傾きを読み出してもよい。この場合、各標準データ毎に、標準データの一次曲線の傾きを検出対象物質の一次曲線の傾きにより除算し、傾きの比を対応する標準データの粘度に乗算して粘度値を求め、複数の標準データに基づいて求められた粘度値を平均して、検出対象物質の粘度としても良い。
The mechanical property detection unit 108 is connected to the image processing unit 109 and the standard data storage unit. The dynamic characteristic detection unit 108 acquires data on the rotation speed of the rotor 106 output from the image processing unit 109 and the rotation torque corresponding to the rotation speed. Next, the slope of the linear curve represented by the equation (8) described later is obtained for the detection target substance, and the ratio with the slope of the standard data read from the standard data storage unit 110 is obtained. That is, the slope of the primary curve of the standard data is divided by the slope of the primary curve of the detection target substance, and the viscosity η of the detection target substance is calculated by multiplying the slope of the standard data by the slope ratio.
At this time, the mechanical property detection unit 108 can also determine the viscosity of the detection target substance based on a plurality of standard data. For example, the mechanical property detection unit 108 may read the slopes of the primary curves in a plurality of different standard samples stored in the standard data storage unit 110. In this case, for each standard data, the slope of the primary curve of the standard data is divided by the slope of the primary curve of the substance to be detected, and the viscosity ratio is obtained by multiplying the viscosity of the corresponding standard data by the slope ratio. The viscosity value obtained based on the standard data may be averaged to obtain the viscosity of the detection target substance.
 以下に、回転子106に与える回転トルクと、回転子106の回転数とにより、粘度を測定する理論について説明する。
 ここでは、直交座標系に基づいて説明するため、容器の長尺方向をz軸に平行な方向、組Aの配置をx軸に平行な方向、組Bの配置をy軸に平行な方向としている。
 例えば、容器101周辺には、組Aの電磁石102及び103により、x軸に平行な磁場をB=(B0cosωt,0,0)で示されるように生じ、組Bの電磁石104及び105によりy軸に平行な磁場がB=(0、B0sinωt,0)で示されるように生じてもよい。ここで、B0は、磁場強度の最大値、ωは角速度、tは時間である。
 導体である回転子106内部には、時間的に変化する磁場B(回転磁場)により、
 rotE=-(dB/dt)
 を満たす電界が生じる。
 この電界は、以下の(1)式のように計算される。
Hereinafter, the theory of measuring the viscosity based on the rotational torque applied to the rotor 106 and the rotational speed of the rotor 106 will be described.
Here, in order to explain based on an orthogonal coordinate system, the longitudinal direction of the container is a direction parallel to the z axis, the arrangement of the set A is a direction parallel to the x axis, and the arrangement of the set B is a direction parallel to the y axis. Yes.
For example, a magnetic field parallel to the x axis is generated around the container 101 by the electromagnets 102 and 103 of the set A as indicated by B = (B 0 cosωt, 0, 0), and the y axis is generated by the electromagnets 104 and 105 of the set B. May be generated as shown by B = (0, B 0 sin ωt, 0). Here, B0 is the maximum value of the magnetic field strength, ω is the angular velocity, and t is time.
The rotor 106, which is a conductor, has a magnetic field B (rotating magnetic field) that changes over time.
rotE =-(dB / dt)
An electric field that satisfies is generated.
This electric field is calculated as in the following equation (1).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 これにより、回転子106内部には、導体の電気伝導度をσとして、
 I=σE
 の電流が流れる。この電流Iと磁場Bとのローレンツ相互作用により、回転子106には、以下の(2)式にて示される力F(ローレンツ力)が働く。
Thereby, in the rotor 106, the electrical conductivity of the conductor is σ,
I = σE
Current flows. Due to the Lorentz interaction between the current I and the magnetic field B, the rotor 106 is subjected to a force F (Lorentz force) represented by the following equation (2).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記Fにおいて、回転面に対して鉛直な回転子106の中心軸の周りの、動径方向の成分は、時間変化の一周期にわたって積分することにより、以下の(3)式により計算できる。 In F above, the radial component around the central axis of the rotor 106 perpendicular to the rotation plane can be calculated by the following equation (3) by integrating over one period of time change.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記(3)式により表される力Fθは、回転子106を球の鉛直な中心軸の周りに回転させる力となる。そのトルクTは、以下の(4)式により表される。 The force expressed by the above equation (3) is a force that rotates the rotor 106 around the vertical central axis of the sphere. The torque T is expressed by the following equation (4).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上記トルクTにより回転子106は回転する。しかしながら、その回転速度を決定する要因には次の二つがある。
 一つは回転子106と容器101の底部との間の摩擦であり、もう一つは回転子106が接する検出対象物質の粘性抵抗である。
 回転子106の回転から、この回転子106に接する検出対象物質の粘性を精度よく求めるためには、容器101の底部における摩擦力による抵抗が、検出対象物質の粘性抵抗に比べ、実質的に同程度(すなわち同様の数値)か、あるいは小さい必要がある。
The rotor 106 is rotated by the torque T. However, there are the following two factors that determine the rotation speed.
One is the friction between the rotor 106 and the bottom of the container 101, and the other is the viscous resistance of the substance to be detected that the rotor 106 contacts.
In order to accurately obtain the viscosity of the detection target substance in contact with the rotor 106 from the rotation of the rotor 106, the resistance due to the frictional force at the bottom of the container 101 is substantially the same as the viscosity resistance of the detection target substance. Must be about (ie, a similar number) or small.
 ここで、式を簡略化するため、回転子106の回転面に対して垂直な半径をRとし、回転子106の下部が容器101の底部に接触している、回転子106の下部面積における有効接触面の半径をαR(a<1)とする。
 この有効接触半径内においては、回転子106にかかる重力による応力は一定であるとする。
 また、回転子106の下部と、容器101の底部との間の摩擦計数をμ、回転子106と検出対象物質との密度差を△ρ、重力加速度をgとすると、摩擦に打ち勝って球を回転させるために必要なトルクTは、以下の(5)式により計算できる。
Here, in order to simplify the formula, the radius perpendicular to the rotation surface of the rotor 106 is R, and the effective area in the lower area of the rotor 106 in which the lower part of the rotor 106 is in contact with the bottom of the container 101. Let the radius of the contact surface be αR (a <1).
Within this effective contact radius, the stress due to gravity applied to the rotor 106 is assumed to be constant.
Further, if the friction coefficient between the lower part of the rotor 106 and the bottom of the container 101 is μ, the density difference between the rotor 106 and the detection target substance is Δρ, and the gravitational acceleration is g, the friction is overcome and the ball is overcome. The torque T f required for rotation can be calculated by the following equation (5).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 また、検出対象物質により満たされた無限の空間内において、回転子106が角速度ωで回転するのに要するトルクTは、粘性係数をηとして、以下の(6)式にて示される程度である。 Further, the torque Tr required for the rotor 106 to rotate at the angular velocity ω in an infinite space filled with the detection target substance is such that the viscosity coefficient is η and is represented by the following equation (6). is there.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 回転子106の下部が容器101の平面状ないし曲面状の底部と接している場合、さらに要するトルクTは大きくなる。この係数をβとするとβは1のオーダーであり、1より大きい。このβには、回転子106の回転により、検出対象物質が回転する際の、回転子106と、容器101の側壁との間接的な相互作用の係数も含まれている。(6)式まではβ=1としている。
 以上より、摩擦力より粘性抵抗が強く働くための条件はT>Tであることがわかる。トルクTはRの4乗に比例し、トルクTはRの3乗に比例する。そのため、十分に小さいRを選べばこの条件を満たすことが出来る。
 すなわち、粘性係数(粘度)ηの液体の粘性を測定するための条件は、以下の(7)式により決定される。
When the lower portion of the rotor 106 is in contact with the flat or curved bottom of the container 101, the required torque Tf further increases. If this coefficient is β, β is on the order of 1 and is larger than 1. Β includes a coefficient of an indirect interaction between the rotor 106 and the side wall of the container 101 when the detection target substance rotates due to the rotation of the rotor 106. Up to equation (6), β = 1.
From the above, it can be seen that the condition for the viscous resistance to work stronger than the frictional force is T r > T f . The torque T f is proportional to the fourth power of R, and the torque T r is proportional to the third power of R. Therefore, this condition can be satisfied if a sufficiently small R is selected.
That is, the condition for measuring the viscosity of the liquid having a viscosity coefficient (viscosity) η is determined by the following equation (7).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 多くの場合、粘性の測定対象となる試料は、既知の物質の特性を変化させてものである。したがって、試料に類似する既知の物質(たとえば、類似する化学組成を有する物質)の粘性係数、またはその110~150%程度の数値を仮粘性係数として上式のηにあてはめ、Rに関する条件をもとめることができる。  In many cases, the sample whose viscosity is to be measured is obtained by changing the characteristics of a known substance. Therefore, the viscosity coefficient of a known substance similar to the sample (for example, a substance having a similar chemical composition) or a value of about 110 to 150% is applied to η in the above formula as a temporary viscosity coefficient, and the condition regarding R is obtained. be able to. *
 例えば、対象物質を水と想定してη=10-3Pasとし、回転子106としてアルミニウム球を想定してΔρ~2000kg/mとし、またα~1/100の程度であるとし、β~1の程度とし、μ~0.1の程度であるとすると、毎秒一回転程度の角速度ω~10rad/sではR<1mmが条件となる。
 アルミニウム球にかかるトルクTは、磁場の回転速度(組Aと組Bとを順次駆動して、磁場をx軸方向またはy軸方向として変化させる速度)と、実際にアルミニウム球の回転する回転速度の差に比例する。
For example, assuming that the target substance is water, η = 10 −3 Pas, an aluminum sphere is assumed as the rotor 106, Δρ˜2000 kg / m 3, and α˜about 1/100, β˜ If it is about 1 and μ is about 0.1, then R <1 mm is a condition at an angular velocity ω of about 10 rad / s at one rotation per second.
The torque Tr applied to the aluminum sphere is determined by the rotation speed of the magnetic field (the speed at which the set A and the set B are sequentially driven to change the magnetic field in the x-axis direction or the y-axis direction) and the actual rotation of the aluminum sphere. Proportional to speed difference.
 このため磁場の回転速度をあらかじめ決定し、球の回転速度を計測すれば球にかかる回転トルクTを推定することができる。
 この回転トルクTの計算には、(4)式を用いてもよいし、あるいは粘度が既知の標準試料を用いて得られる校正曲線(標準データ記憶部110に記憶されている標準データの傾き)を用いてもよい。
 このようにして得られたトルクTは、以下に示す(8)式にて表される。
Therefore, the rotational torque T applied to the sphere can be estimated by determining the rotational speed of the magnetic field in advance and measuring the rotational speed of the sphere.
For the calculation of the rotational torque T, the equation (4) may be used, or a calibration curve (inclination of standard data stored in the standard data storage unit 110) obtained using a standard sample with a known viscosity. May be used.
The torque T thus obtained is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 これより印加されたトルクTと角速度ωの関係は、切片を通る一次曲線となる。すなわち、角速度ωを横軸に、トルクTを縦軸にとって図示すると、(8)式の第2項を切片として、縦軸上の一点を通る曲線として図示することができる。その切片((8)式の第2項)から摩擦によるトルクが、また傾きから粘性η((8)式の第1項)が求められる。なお、角速度ωは、測定された回転数から求めることができる。
 標準データ記憶部110には、粘性が既知の標準試料について、この粘性・弾性検出装置にて測定した回転トルクに比例する量と、回転子106の回転数との関係により表される式(8)の一次曲線の傾き、すなわち回転数に対する回転トルクの変化の割合が、記憶されている。これらのデータは、粘度の異なる複数の標準試料について、それぞれ、粘度の数値とともに記憶されている。
Thus, the relationship between the applied torque T and the angular velocity ω is a linear curve passing through the intercept. That is, when the angular velocity ω is plotted on the horizontal axis and the torque T is plotted on the vertical axis, the second term of equation (8) can be plotted as an intercept, and a curve passing through one point on the vertical axis. From the intercept (second term in equation (8)), torque due to friction is obtained, and from the slope, viscosity η (first term in equation (8)) is obtained. The angular velocity ω can be obtained from the measured rotational speed.
In the standard data storage unit 110, for a standard sample with a known viscosity, an expression (8) expressed by the relationship between the amount proportional to the rotational torque measured by the viscosity / elasticity detection device and the rotational speed of the rotor 106. ), The slope of the linear curve, that is, the ratio of the change in rotational torque with respect to the rotational speed. These data are stored with a numerical value of viscosity for each of a plurality of standard samples having different viscosities.
 回転子106の回転運動の観察には、図1における顕微鏡のついた撮像素子111を用い、回転子106に付加されたマークの回転運動を検出して、回転子106の回転数を測定する。
 回転数の測定は、他の方法を用いて行ってもよい。例えば、回転子106に対し、レーザー光を照射して回転による反射・干渉パターンの変化を光学的に計測する方法に替えてもよい。あるいは回転子106の一部を誘電体で置き換え、電極間にこの回転子が挟まれる構成となるコンデンサを構成して、回転子106の回転に伴う、このコンデンサの誘電率の周期的変化から、回転子106の回転数を計測する方法に替えてもよい。
For observation of the rotational motion of the rotor 106, the rotational speed of the rotor 106 is measured by detecting the rotational motion of the mark added to the rotor 106 using the imaging device 111 with a microscope in FIG.
The rotation speed may be measured using other methods. For example, the method may be replaced with a method of optically measuring a change in reflection / interference pattern due to rotation by irradiating the rotor 106 with laser light. Alternatively, a part of the rotor 106 is replaced with a dielectric, and a capacitor is configured such that the rotor is sandwiched between the electrodes. From the periodic change in the dielectric constant of the capacitor accompanying the rotation of the rotor 106, A method of measuring the number of rotations of the rotor 106 may be used.
 また、撮像素子111による観察は、容器101を透明な素材とし、底部から倒立型顕微鏡により観察を行う方法に替えてもよい。この場合、観察は容器101の底部と、回転子106の下部との間のごく薄い検出対象物質の層を通して行うことができる。そのため、仮に検出対象物質が光をほとんど透過しないインク材料のような物質であっても、測定を行うことができる。このとき、回転数を検出するためのマークは回転子106の下部に付加することになる。
 上述した回転制御部107が回転子106に対し、印加する磁場の周期および向きは、任意に変化させてもよい。
 例えば、磁場の向きと回転速度を周期的に掃引することにより、回転子106に対して、周期的な回転トルクを印加することができる。
The observation with the image sensor 111 may be replaced with a method in which the container 101 is made of a transparent material and observation is performed from the bottom with an inverted microscope. In this case, the observation can be performed through a very thin layer of the detection target substance between the bottom of the container 101 and the lower part of the rotor 106. Therefore, even if the detection target substance is a substance such as an ink material that hardly transmits light, the measurement can be performed. At this time, a mark for detecting the rotational speed is added to the lower portion of the rotor 106.
The period and direction of the magnetic field applied to the rotor 106 by the rotation control unit 107 described above may be arbitrarily changed.
For example, periodic rotational torque can be applied to the rotor 106 by periodically sweeping the direction and rotational speed of the magnetic field.
 また、粘性に加えてゲルやゴムなどのように弾性を有する物質、あるいは粘性の緩和により弾性が生じる高分子溶液のような物質に対し、一定トルクを与えたときの静止位置から、粘性率に加えて弾性率をも同時に決定することが可能である。
 ここで、弾性率はバネ定数と同様、回転変形に比例した復元力を及ぼす。したがって、試料に粘性に加えて弾性がある場合、弾性率による復元力は、歪に比例して大きくなる。そのため、回転子106はある程度回転したところで弾性力(弾性抵抗)と磁場によるトルクが釣り合って静止する。
In addition to viscosity, the viscosity coefficient is changed from a stationary position when a constant torque is applied to a material that has elasticity such as gel or rubber, or a material such as a polymer solution that generates elasticity due to viscosity relaxation. In addition, the elastic modulus can be determined simultaneously.
Here, the elastic modulus, like the spring constant, exerts a restoring force proportional to the rotational deformation. Therefore, when the sample has elasticity in addition to viscosity, the restoring force due to the elastic modulus increases in proportion to the strain. Therefore, when the rotor 106 is rotated to some extent, the elastic force (elastic resistance) and the torque generated by the magnetic field balance and come to rest.
 すなわち、電磁石102~105が生成する回転磁場の大きさを変化させるとともに、回転速度を変化させて回転子106に印加する回転トルクの大きさを変化させ、回転子106の平衡静止位置を計測することにより、回転トルクを印加しない初期状態からこの静止位置までの回転角度が検出される。この回転角度は印加された回転トルクに比例し、その比例係数は弾性率に逆比例する。これより弾性率を求めることが出来る。この際、粘度の測定と同様に、弾性率の分かっている標準試料が用いられる。回転トルクと回転角度との関係から、標準試料について比例係数を求める。そして、検出対象物質(測定試料)について求められた比例係数と、標準試料から得られた比例係数の比より、検出対象物質の弾性率を求めることができる。 In other words, the magnitude of the rotating magnetic field generated by the electromagnets 102 to 105 is changed, the magnitude of the rotational torque applied to the rotor 106 is changed by changing the rotation speed, and the equilibrium stationary position of the rotor 106 is measured. Thus, the rotation angle from the initial state where no rotational torque is applied to this stationary position is detected. The rotation angle is proportional to the applied rotational torque, and the proportionality coefficient is inversely proportional to the elastic modulus. The elastic modulus can be obtained from this. At this time, a standard sample having a known elastic modulus is used as in the measurement of the viscosity. From the relationship between the rotational torque and the rotational angle, the proportionality coefficient is obtained for the standard sample. The elastic modulus of the detection target substance can be obtained from the ratio of the proportionality coefficient obtained for the detection target substance (measurement sample) and the proportionality coefficient obtained from the standard sample.
 回転子106に加える回転トルクを時間的に変化させることにより、弾性率と粘性率とを同時に決定することも可能である。
 例えば、回転子106に一定の回転トルクを印加後、瞬時に印加磁場を消去し、その後の回転子106の運動を観察すると、回転子106は試料の弾性により振動し、かつ粘性率によってその振動の振幅は減衰してゆく。この検出対象物における回転子106の振動の振幅、周期及び持続時間から、弾性率と粘性率とを決定することも可能である。たとえば、標準試料における回転子106の振動の振幅、周期及び持続時間を、検出対象物における回転子106の振動の振幅、周期及び持続時間を比較して、検出対象物質の弾性率を求めることができる。
By changing the rotational torque applied to the rotor 106 with time, the elastic modulus and viscosity can be determined simultaneously.
For example, when a constant rotational torque is applied to the rotor 106, the applied magnetic field is erased instantaneously, and the subsequent movement of the rotor 106 is observed, the rotor 106 vibrates due to the elasticity of the sample and vibrates due to the viscosity. The amplitude of is decreasing. It is also possible to determine the elastic modulus and the viscosity from the amplitude, period and duration of the vibration of the rotor 106 in the detection object. For example, the elastic modulus of the detection target substance can be obtained by comparing the amplitude, period and duration of vibration of the rotor 106 in the standard sample with the amplitude, period and duration of vibration of the rotor 106 in the detection target. it can.
 磁場の向きと回転速度とを周期的に掃引することにより、回転子106には周期的な回転トルクを印加することができる。
 この周期を変化させながら、回転子106の回転振動の振幅と位相とを観察することによっても、粘性率と弾性率とを独自に決定することが可能である。
 この観察は、上記の磁場を消去した後の減衰振動を、周波数スペクトルとして捉えるものであり、両者は原理的には同じ測定である。
Periodic rotational torque can be applied to the rotor 106 by periodically sweeping the direction of the magnetic field and the rotational speed.
By observing the amplitude and phase of the rotational vibration of the rotor 106 while changing this period, it is possible to uniquely determine the viscosity and the elastic modulus.
In this observation, the damped oscillation after erasing the magnetic field is regarded as a frequency spectrum, and both are the same measurement in principle.
<応用例>
 以下、本実施形態による、具体的応用例についてさらに詳しく説明する。ただし、本発明は、以下に示す応用例に何ら限定されるものではない。
 図1に示す粘性・弾性測定装置(力学物性測定装置)を用いて以下の粘性検出の処理を行った。
 容器101として内径7mm、高さ30mmのガラス製試験管を用い、このガラス製試験管に測定対象試料(検出対象物質)として20℃の純水を0.4cc挿入した。
 この純水の粘性は1.0cPであり、この純水に回転子106として直径2mmのアルミニウム球を沈めた。
<Application example>
Hereinafter, specific application examples according to the present embodiment will be described in more detail. However, the present invention is not limited to the following application examples.
The following viscosity detection processing was performed using the viscosity / elasticity measuring apparatus (mechanical property measuring apparatus) shown in FIG.
A glass test tube having an inner diameter of 7 mm and a height of 30 mm was used as the container 101, and 0.4 cc of pure water at 20 ° C. was inserted as a measurement target sample (detection target substance) into the glass test tube.
The viscosity of this pure water was 1.0 cP, and an aluminum sphere having a diameter of 2 mm was submerged as a rotor 106 in this pure water.
 ついで、2個の永久磁石を試料容器の周りで回転させることにより、回転磁場を生じさせた。
 この回転磁場により生じる回転トルクを受け、上記アルミニウム球が回転する様子を撮像素子110にて捉え、この画像をビデオテープに録画した。その後、コンピュータによる画像処理(画像処理部109)により、アルミニウム球の回転数を求めた。すなわち、回転磁場の回転速度を変化させながら、そのときのアルミニウム球の回転速度を計測した。
Next, a rotating magnetic field was generated by rotating two permanent magnets around the sample container.
In response to the rotational torque generated by this rotating magnetic field, the image sensor 110 captured the rotation of the aluminum sphere, and this image was recorded on a video tape. Thereafter, the rotational speed of the aluminum sphere was obtained by image processing (image processing unit 109) by a computer. That is, the rotational speed of the aluminum sphere at that time was measured while changing the rotational speed of the rotating magnetic field.
 図2はこのときの回転磁場の回転速度と回転子106の回転速度の差(回転トルクに比例するパラメータ)と、アルミニウム球の回転数との関係を表すグラフである。
 磁場及び回転物体のそれぞれの回転速度の差は、上述したように、アルミニウム球に生じる回転トルクに比例する。
 したがって、このグラフの縦軸はトルクに比例する量を表している。この関係は(8)式で表される一次関数の形をしており、第1項における傾きから粘性が、また第2項の示す切片(縦軸に対する)から摩擦力が求められることがわかる。
FIG. 2 is a graph showing the relationship between the rotational speed of the rotating magnetic field and the rotational speed of the rotor 106 (a parameter proportional to the rotational torque) and the rotational speed of the aluminum sphere.
As described above, the difference in rotational speed between the magnetic field and the rotating object is proportional to the rotational torque generated in the aluminum sphere.
Therefore, the vertical axis of this graph represents an amount proportional to the torque. This relationship is in the form of a linear function expressed by equation (8). It can be seen that the viscosity is obtained from the slope in the first term, and the frictional force is obtained from the intercept (relative to the vertical axis) indicated by the second term. .
 さらに、図1に示す力学物性測定装置を用いて以下の操作を行った。すなわち、試料容器として内径7mm、高さ30mmのガラス製試験管を用い、これに測定対象試料として重量比30%のショ糖の水溶液を0.4cc挿入した。この水溶液の粘性は3.2cPである。
 これに回転子106として、直径2mmのアルミニウム球を、上記水溶液に沈め、ついで2個の永久磁石を容器101の周りで回転させることにより、回転する回転磁場を生じさせた。
 この回転磁場により生じる回転トルクを受け、アルミニウム球が回転する様子を撮像素子111にて捉え、この画像をビデオテープに録画し、その後にコンピュータによる画像処理(画像処理部109)により、回転数を求めた。すなわち、回転磁場の回転速度を変化させながら、そのときのアルミニウム球の回転速度を計測した。
Furthermore, the following operation was performed using the mechanical property measuring apparatus shown in FIG. Specifically, a glass test tube having an inner diameter of 7 mm and a height of 30 mm was used as a sample container, and 0.4 cc of an aqueous solution of sucrose having a weight ratio of 30% was inserted into the test tube. The viscosity of this aqueous solution is 3.2 cP.
As a rotor 106, an aluminum sphere having a diameter of 2 mm was submerged in the aqueous solution, and then two permanent magnets were rotated around the container 101 to generate a rotating magnetic field.
The imaging element 111 captures the rotation of the aluminum sphere in response to the rotational torque generated by this rotating magnetic field, records this image on a video tape, and then calculates the rotational speed by image processing (image processing unit 109) by a computer. Asked. That is, the rotational speed of the aluminum sphere at that time was measured while changing the rotational speed of the rotating magnetic field.
 図3はこのときの回転磁場の回転速度及び回転子106の回転速度の差と、回転物体の回転数との関係を表すグラフである。
 図2の純水に比べ、ショ糖水溶液の粘性が大きいため、グラフの傾きが大きくなっていることがわかる。
 この切片における回転磁場の回転数は、約0.4回転/秒であり、粘性を3cP、回転物体の直径を2mmとしたときの摩擦力に相当する回転数を与える(7)式から導かれる値である1回転/秒とオーダーがほぼ一致している。このことから、本発明の原理が有効であることがわかる。
FIG. 3 is a graph showing the relationship between the rotational speed of the rotating magnetic field and the rotational speed of the rotor 106 and the rotational speed of the rotating object.
It can be seen that the slope of the graph is larger because the viscosity of the aqueous sucrose solution is larger than that of the pure water of FIG.
The rotation speed of the rotating magnetic field in this section is about 0.4 rotation / second, and is derived from the equation (7) that gives the rotation speed corresponding to the frictional force when the viscosity is 3 cP and the diameter of the rotating object is 2 mm. The order is almost the same as the value of 1 rotation / second. This shows that the principle of the present invention is effective.
 また、図2と図3の傾きの比は、3.26であり、実際の粘度の比3.2と極めてよく一致していることから、1cP程度の粘性が精度よく測定できることがわかる。
 また、この結果から、検出対象物質と標準試料との回転トルクと回転数との傾きの比を求めることにより、この比を標準試料の粘度に乗じて、検出対象物質の粘度を推定することが可能であることが分かる。
Further, the ratio of the slopes of FIG. 2 and FIG. 3 is 3.26, which is in good agreement with the actual viscosity ratio 3.2, which indicates that a viscosity of about 1 cP can be measured with high accuracy.
Further, from this result, by obtaining the ratio of the gradient between the rotational torque and the rotational speed of the detection target substance and the standard sample, the viscosity of the detection target substance can be estimated by multiplying this ratio by the viscosity of the standard sample. It turns out that it is possible.
 本発明によれば、微量の試料について、高精度で粘性及び/または弾性の測定を行うことができる。その際、試料に接触する容器、回転子には市販の安価な物品を用い、使い捨てとすることが可能である。そのため、装置に要するコストを低減できるとともに、他の試料のコンタミネーションによる影響を完全に排除することができる。また、試料の廃棄にかかる後処理も簡便かつ確実に行うことが可能となる。 According to the present invention, it is possible to measure viscosity and / or elasticity with high accuracy on a very small amount of sample. In that case, a commercially available inexpensive article can be used for the container and the rotor that are in contact with the sample and can be made disposable. Therefore, the cost required for the apparatus can be reduced, and the influence of contamination of other samples can be completely eliminated. In addition, post-processing for discarding the sample can be performed easily and reliably.

Claims (17)

  1.  導電性の回転子と、
     試料および前記回転子を収納し、該試料内に前記回転子が配置される容器と、
     該容器の周りに配置され、前記回転子に対して磁場を印加する磁石と、
     該磁石を駆動して前記回転子に回転磁界を与え、前記回転子内に誘導電流を誘起し、該誘導電流と該回転子に印加される磁場とのローレンツ相互作用により、該回転子に回転トルクを与えて回転させる回転制御部と、
     前記回転子の回転運動を検出する回転検出部と、
     前記回転トルクと前記回転運動に基づき、前記回転子に接する試料の粘性・弾性を検出する力学特性検出部と
     を有することを特徴とする粘性・弾性測定装置。
    A conductive rotor,
    A container that houses the sample and the rotor, and in which the rotor is disposed;
    A magnet disposed around the vessel for applying a magnetic field to the rotor;
    The magnet is driven to apply a rotating magnetic field to the rotor, an induced current is induced in the rotor, and the rotor is rotated by Lorentz interaction between the induced current and a magnetic field applied to the rotor. A rotation control unit that rotates by applying torque;
    A rotation detector for detecting the rotational movement of the rotor;
    A viscosity / elasticity measuring apparatus comprising: a mechanical property detection unit that detects viscosity / elasticity of a sample in contact with the rotor based on the rotational torque and the rotational motion.
  2.  前記回転検出部が前記回転子の回転数を検出し、前記回転子の回転トルクと回転数に基づき、前記力学特性検出部が前記試料の粘性を検出することを特徴とする、請求項1に記載の粘性・弾性測定装置。 The rotation detection unit detects the rotation speed of the rotor, and the mechanical property detection unit detects the viscosity of the sample based on the rotation torque and rotation speed of the rotor. The viscosity / elasticity measuring device described.
  3.  前記回転検出部が、前記トルクが付与される前の初期静止位置から前記回転トルクと前記検出対称物質の弾性抵抗のつりあいにより前記回転子が静止する平衡静止位置までの回転角度を検出し、前記回転子の回転トルクと回転角度に基づき、前記力学特性検出部が前記試料の弾性を検出することを特徴とする、請求項1に記載の粘性・弾性測定装置。 The rotation detection unit detects a rotation angle from an initial stationary position before the torque is applied to an equilibrium stationary position where the rotor is stationary due to a balance between the rotational torque and an elastic resistance of the detection symmetric material, The viscosity / elasticity measuring apparatus according to claim 1, wherein the mechanical property detection unit detects the elasticity of the sample based on a rotational torque and a rotational angle of a rotor.
  4.  既知の粘性を有する複数の物質中における前記回転子の回転トルクと、回転数との関係を予め測定した標準データを記憶する記憶部を更に有し、
     前記力学特性検出部が測定した試料中での前記回転子の回転トルクと回転との関係と、前記標準データとを比較することにより、前記試料の粘性を検出することを特徴とする請求項2に記載の粘性・弾性測定装置。
    A storage unit for storing standard data obtained by measuring in advance the relationship between the rotational torque of the rotor in a plurality of substances having a known viscosity and the rotational speed;
    The viscosity of the sample is detected by comparing the relationship between the rotation torque and the number of rotations of the rotor in the sample measured by the mechanical property detection unit and the standard data. 2. The viscosity / elasticity measuring apparatus according to 2.
  5.  既知の弾性を有する複数の物質中における前記回転子の回転トルクと、回転角度との関係を予め測定した標準データを記憶する記憶部を更に有し、
     前記力学特性検出部が測定した試料中での前記回転子の回転トルクと回転角度との関係と、前記標準データとを比較することにより、前記試料の弾性を検出することを特徴とする請求項3に記載の粘性・弾性測定装置。
    A storage unit for storing standard data obtained by measuring in advance the relationship between the rotational torque of the rotor in a plurality of substances having known elasticity and the rotational angle;
    The elasticity of the sample is detected by comparing the relation between the rotation torque and the rotation angle of the rotor in the sample measured by the mechanical characteristic detection unit and the standard data. 3. The viscosity / elasticity measuring apparatus according to 3.
  6.  前記回転子にマークが付加されており、
     前記回転検出部が前記マークの回転を検出することにより、回転子の回転運動を検出することを特徴とする請求項1乃至請求項5いずれか一項に記載の粘性・弾性測定装置。
    A mark is added to the rotor,
    The rotation detecting section by detecting the rotation of the mark, the viscosity and elasticity measuring device according to any one of claims 1 to claim 5, characterized in that for detecting the rotational movement of the rotor.
  7.  前記回転子の底部の少なくとも一部が、前記容器内面の底部と接し、
     前記回転子と接する前記容器内面の底部が滑らかな平面、あるいは滑らかな凹面状の曲面であり、
     前記回転子の底部が滑らかな凸面状の曲面である
     ことを特徴とする請求項1乃至請求項5いずれか一項に記載の粘性・弾性測定装置。
    At least a portion of the bottom of the rotor is in contact with the bottom of the inner surface of the container;
    The bottom of the inner surface of the container in contact with the rotor is a smooth flat surface or a smooth concave curved surface,
    The viscosity / elasticity measuring apparatus according to any one of claims 1 to 5, wherein the bottom of the rotor is a smooth convex curved surface.
  8.  前記回転子の半径が以下の式により決定されることを特徴とする請求項1乃至5いずれか一項に記載の粘性・弾性測定装置。
    Figure JPOXMLDOC01-appb-M000001
     ここで、Rは回転子の半径、gは重力加速度、ωは角速度、ηは粘性係数、Δρは回転子と試料の密度差、μは回転子下部と容器底部の摩擦係数、α及びβは係数である。
    The viscosity / elasticity measuring apparatus according to claim 1, wherein a radius of the rotor is determined by the following equation.
    Figure JPOXMLDOC01-appb-M000001
    Where R is the radius of the rotor, g is the acceleration of gravity, ω is the angular velocity, η is the viscosity coefficient, Δρ is the density difference between the rotor and the sample, μ is the friction coefficient between the lower part of the rotor and the bottom of the container, and α and β are It is a coefficient.
  9.  前記回転子が、前記試料内に、一部分あるいは全部分が没していることを特徴とする請求項1乃至請求項5いずれか一項に記載の粘性・弾性測定装置。 The viscosity / elasticity measuring apparatus according to any one of claims 1 to 5, wherein a part or all of the rotor is submerged in the sample.
  10.  前記試料が、液体またはソフトマテリアルであることを特徴とする請求項1乃至請求項5いずれか1項に記載の粘性・弾性測定装置。 The viscosity / elasticity measuring apparatus according to any one of claims 1 to 5, wherein the sample is a liquid or a soft material.
  11.  容器に粘性・弾性を検出する対象の試料を充填し、該試料内に導電性の回転子を配置する過程と、
     該容器の周りに配置された磁石により、前記回転子に対して磁場を印加する過程と、
     該磁場を時間的に変動させ、前記回転子内に誘導電流を誘起し、該誘導電流と該回転子に印加される磁場とのローレンツ相互作用により、該回転子に回転トルクを与えて回転させる回転制御過程と、
     前記回転子の回転運動を検出する回転検出過程と、
     前記回転トルクと回転運動に基づき、前記回転子に接する試料の粘性・弾性を検出する力学特性検出過程と
     を有することを特徴とする粘性・弾性測定方法。
    Filling a container with a sample to be detected for viscosity and elasticity, and placing a conductive rotor in the sample; and
    Applying a magnetic field to the rotor by a magnet disposed around the vessel;
    The magnetic field is changed with time, an induced current is induced in the rotor, and a rotational torque is applied to the rotor by Lorentz interaction between the induced current and a magnetic field applied to the rotor. Rotation control process,
    A rotation detection process for detecting the rotational movement of the rotor;
    A viscosity / elasticity measuring method comprising: a mechanical property detection process for detecting the viscosity / elasticity of a sample in contact with the rotor based on the rotational torque and rotational motion.
  12.  前記回転制御過程において、前記回転子を回転させ、
     前記回転子の回転数を前記回転検出過程で検出し、
     前記力学特性検出過程において、前記回転トルクと前記回転数に基づき、前記試料の粘性を検出することを特徴とする請求項11に記載の粘性・弾性測定方法。
    In the rotation control process, the rotor is rotated,
    Detecting the number of rotations of the rotor in the rotation detection process;
    The viscosity / elasticity measuring method according to claim 11, wherein, in the mechanical characteristic detection process, the viscosity of the sample is detected based on the rotational torque and the rotational speed.
  13.  前記回転制御過程において、前記回転トルクにより、前記トルクを付与される前の初期静止位置から、弾性抵抗と前記トルクのつりあいにより、前記回転子が静止する平衡静止位置まで前記回転子を回転させ、
     前記初期静止位置から前記平衡静止位置までの回転角度を前記回転検出過程で検出し、
     前記力学特性検出過程において、前記回転トルクと回転角度に基づき、前記回試料の弾性を検出することを特徴とする請求項11に記載の粘性・弾性測定方法。
    In the rotation control process, by rotating torque, the rotor is rotated from an initial stationary position before the torque is applied to an equilibrium stationary position where the rotor is stationary by a balance between elastic resistance and the torque,
    Detecting a rotation angle from the initial stationary position to the equilibrium stationary position in the rotation detection process;
    12. The viscosity / elasticity measuring method according to claim 11, wherein, in the mechanical characteristic detection process, the elasticity of the sample is detected based on the rotational torque and the rotational angle.
  14.  既知の粘度を有する複数の物質中における前記回転子の回転トルクと、回転数との関係を予め測定して標準データを作製する過程をさらに有し、
     前記試料中での前記回転子の回転トルクと回転数との関係を、前記標準データとを比較することにより、前記試料の粘性を検出することを特徴とする請求項12に記載の粘性・弾性測定方法。
    Further comprising the step of preparing standard data by measuring in advance the relationship between the rotational torque of the rotor in a plurality of substances having a known viscosity and the rotational speed,
    13. The viscosity / elasticity according to claim 12, wherein the viscosity of the sample is detected by comparing the relation between the rotational torque and the rotation speed of the rotor in the sample with the standard data. Measuring method.
  15.  既知の弾性を有する複数の物質中における前記回転子の回転トルクと、回転角度との関係を予め測定して標準データを作製する過程をさらに有し、
     前記試料中での前記回転子の回転トルクと回転角度との関係を、前記標準データとを比較することにより、前記試料の弾性を検出することを特徴とする請求項14に記載の粘性・弾性測定方法。
    Further comprising the step of preparing standard data by measuring in advance the relationship between the rotational torque of the rotor and the rotational angle in a plurality of substances having known elasticity,
    The viscosity / elasticity according to claim 14, wherein the elasticity of the sample is detected by comparing the relationship between the rotational torque and the rotation angle of the rotor in the sample with the standard data. Measuring method.
  16. 前記回転制御過程において、前記磁場を該磁場の水平方向の向きが経時的に回転する回転磁場とするように制御することを特徴とする、請求項11乃至請求項15いずれか1項記載の粘性・弾性測定方法。 The viscosity according to any one of claims 11 to 15, wherein, in the rotation control process, the magnetic field is controlled to be a rotating magnetic field whose horizontal direction rotates with time. -Elasticity measurement method.
  17.  前記回転子は、前記試料の比重より大きな比重を有する材料からなることを特徴とする、請求項11乃至請求項15いずれか1項記載の粘性・弾性測定方法。 16. The viscosity / elasticity measuring method according to claim 11, wherein the rotor is made of a material having a specific gravity greater than that of the sample.
PCT/JP2009/058089 2008-04-25 2009-04-23 Device for measuring viscosity/elasticity and method for measuring viscosity/elasticity WO2009131185A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801145236A CN102016542B (en) 2008-04-25 2009-04-23 Device for measuring viscosity/elasticity and method for measuring viscosity/elasticity
DE112009001023.7T DE112009001023B4 (en) 2008-04-25 2009-04-23 Device for measuring viscosity and / or elasticity and method for measuring viscosity and / or elasticity
US12/989,612 US8365582B2 (en) 2008-04-25 2009-04-23 Device for measuring viscosity/elasticity and method for measuring viscosity/elasticity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008116359A JP5093599B2 (en) 2008-04-25 2008-04-25 Viscosity / elasticity measuring apparatus and method
JP2008-116359 2008-04-25

Publications (1)

Publication Number Publication Date
WO2009131185A1 true WO2009131185A1 (en) 2009-10-29

Family

ID=41216914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058089 WO2009131185A1 (en) 2008-04-25 2009-04-23 Device for measuring viscosity/elasticity and method for measuring viscosity/elasticity

Country Status (5)

Country Link
US (1) US8365582B2 (en)
JP (1) JP5093599B2 (en)
CN (1) CN102016542B (en)
DE (1) DE112009001023B4 (en)
WO (1) WO2009131185A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164081A (en) * 2010-01-15 2011-08-25 Sysmex Corp Sample preparation device
WO2011102129A1 (en) * 2010-02-17 2011-08-25 京都電子工業株式会社 Method of measuring viscosity and visicosity measuring device
WO2012157572A1 (en) * 2011-05-16 2012-11-22 財団法人生産技術研究奨励会 Viscosity/resilience measurement device and measurement method
WO2013161390A1 (en) * 2012-04-24 2013-10-31 国立大学法人東京大学 Viscosity measurement device and measurement method therefor
US20160161387A1 (en) * 2013-07-23 2016-06-09 Kyoto Electronics Manufacturing Co., Ltd. Rotational speed detection device, viscosity measurement device using the device, rotational speed detection method, and rotating object used in the method
CN112252377A (en) * 2020-09-29 2021-01-22 中建东设岩土工程有限公司 Concrete-slurry interface detection device and method for cast-in-place pile

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9389159B2 (en) * 2008-08-01 2016-07-12 Malvern Instruments Ltd. Expert-system-based rheology
JP5533589B2 (en) * 2010-11-22 2014-06-25 セイコーエプソン株式会社 Fluid ejecting device and fluid stirring method thereof, and fluid storage device and fluid stirring method thereof
DE112012003121B4 (en) * 2011-07-27 2016-01-14 Kyoto Electronics Manufacturing Co., Ltd. Viscosity measuring device
CN103234869B (en) * 2013-04-26 2015-09-09 中国石油天然气股份有限公司 Oil reservoir fluid on-line high-pressure rotary viscometer
JP6095005B2 (en) * 2013-08-29 2017-03-15 国立大学法人 東京大学 Viscosity / elasticity measuring apparatus and method
US10823743B1 (en) 2013-10-28 2020-11-03 Ifirst Medical Technologies, Inc. Methods of measuring coagulation of a biological sample
CN103760066B (en) * 2014-01-08 2017-09-22 煤炭科学技术研究院有限公司 A kind of high temperature high pressure liquid device for measuring viscosity and measuring method
AT515077B1 (en) * 2014-02-04 2015-06-15 Johannes Kepler Uni Linz Method for determining the viscosity of a liquid
JP6425116B2 (en) * 2014-07-30 2018-11-21 一般財団法人生産技術研究奨励会 Viscosity and elasticity measuring device and viscosity and elasticity measuring method
EP3150987A1 (en) 2015-09-30 2017-04-05 University Of Oulu Method for monitoring viscoelastic properties of fluids and its use in measuring biofilms
CN105954150A (en) * 2016-06-16 2016-09-21 广州立邦涂料有限公司 Method for rapidly evaluating freeze-thaw resistance of water-based polymer coating material
EP3382370A1 (en) * 2017-03-30 2018-10-03 University Of Oulu Probe arrangement and method for rheometric measurements with a disposable probe and remote readability
CN110374564B (en) * 2019-07-25 2021-08-17 东北石油大学 Pressure dividing device capable of measuring and adjusting pressure and viscosity in real time and measuring method thereof
CN114324063A (en) * 2021-12-28 2022-04-12 南京航空航天大学 Anti-magnetic suspension gas viscometer based on eddy current effect and measurement method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312936A (en) * 1986-07-04 1988-01-20 Mitsubishi Heavy Ind Ltd Viscosity measuring method
JPH01263533A (en) * 1988-04-15 1989-10-20 Tokyo Keiki Co Ltd Rotary-type viscometer
JP2001343316A (en) * 2000-03-31 2001-12-14 Isowa Corp Ink visocosity measuring device, and ink viscosity adjusting method and its device
JP2008080888A (en) * 2006-09-26 2008-04-10 Japan Aerospace Exploration Agency Non- contact type rigid body rotation control device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221639A (en) 1983-05-31 1984-12-13 Keisuke Hirata Viscometer
US5394739A (en) * 1994-06-06 1995-03-07 Computational Systems, Inc. Viscosity tester and method with orbiting object
JP3553255B2 (en) * 1996-01-31 2004-08-11 Ntn株式会社 Magnetic levitation pump with viscosity measurement function
EP1243315A1 (en) * 2001-03-22 2002-09-25 Avantium International B.V. Stirring device and method for measuring a parameter of the substance to be stirred
US6691560B2 (en) * 2001-11-02 2004-02-17 Albert C. Abnett Free rotor viscometer
GB2414808A (en) * 2002-02-08 2005-12-07 Uni Chemical Co Ltd A magnetic stirring device for viscosity measurement
JP2005069872A (en) 2003-08-25 2005-03-17 Ngk Spark Plug Co Ltd Viscosity measuring apparatus
GB0419152D0 (en) * 2004-08-27 2004-09-29 Kernow Instr Technology Ltd A contactless magnetic rotary bearing and a rheometer incorporating such bearing
JP4882678B2 (en) 2006-11-06 2012-02-22 富士通株式会社 Wind direction and wind speed monitoring method, wind direction and wind speed monitoring device
EP2461465B1 (en) * 2009-07-29 2018-12-19 Thoratec Corporation Rotation drive device and centrifugal pump device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312936A (en) * 1986-07-04 1988-01-20 Mitsubishi Heavy Ind Ltd Viscosity measuring method
JPH01263533A (en) * 1988-04-15 1989-10-20 Tokyo Keiki Co Ltd Rotary-type viscometer
JP2001343316A (en) * 2000-03-31 2001-12-14 Isowa Corp Ink visocosity measuring device, and ink viscosity adjusting method and its device
JP2008080888A (en) * 2006-09-26 2008-04-10 Japan Aerospace Exploration Agency Non- contact type rigid body rotation control device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIKULAS BANO ET AL.: "A viscosity and density meter with a magnetically suspended rotor", REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 74, no. 11, November 2003 (2003-11-01), pages 4788 - 4793 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9329111B2 (en) 2010-01-15 2016-05-03 Sysmex Corporation Sample preparation apparatus
JP2011164081A (en) * 2010-01-15 2011-08-25 Sysmex Corp Sample preparation device
DE112011100569B4 (en) * 2010-02-17 2014-07-10 Kyoto Electronics Manufacturing Co., Ltd. METHOD OF MEASURING VISCOSITY AND DEVICE FOR MEASURING VISCOSITY
WO2011102129A1 (en) * 2010-02-17 2011-08-25 京都電子工業株式会社 Method of measuring viscosity and visicosity measuring device
US9442057B2 (en) 2010-02-17 2016-09-13 Kyoto Electronics Manufacturing Co., Ltd. Method of measuring viscosity and viscosity measuring apparatus
DE112011100569T5 (en) 2010-02-17 2012-11-29 Kyoto Electronics Manufacturing Co., Ltd. METHOD OF MEASURING VISCOSITY AND DEVICE FOR MEASURING VISCOSITY
JP5816163B2 (en) * 2010-02-17 2015-11-18 京都電子工業株式会社 Viscosity measuring method and viscosity measuring apparatus
DE112012002120B4 (en) * 2011-05-16 2016-01-14 The Foundation For The Promotion Of Industrial Science Viscosity / elasticity measuring device and measuring method
JP2012242137A (en) * 2011-05-16 2012-12-10 Foundation For The Promotion Of Industrial Science Viscosity and elasticity measuring device, and method therefor
WO2012157572A1 (en) * 2011-05-16 2012-11-22 財団法人生産技術研究奨励会 Viscosity/resilience measurement device and measurement method
US10184872B2 (en) 2011-05-16 2019-01-22 The Foundation For The Promotion Of Industrial Science Viscosity/elasticity measurement device and measurement method
JP2013242297A (en) * 2012-04-24 2013-12-05 Univ Of Tokyo Viscosity measurement device and measurement method of the same
WO2013161390A1 (en) * 2012-04-24 2013-10-31 国立大学法人東京大学 Viscosity measurement device and measurement method therefor
US20160161387A1 (en) * 2013-07-23 2016-06-09 Kyoto Electronics Manufacturing Co., Ltd. Rotational speed detection device, viscosity measurement device using the device, rotational speed detection method, and rotating object used in the method
CN112252377A (en) * 2020-09-29 2021-01-22 中建东设岩土工程有限公司 Concrete-slurry interface detection device and method for cast-in-place pile

Also Published As

Publication number Publication date
CN102016542B (en) 2013-07-24
US20110036150A1 (en) 2011-02-17
DE112009001023B4 (en) 2016-06-23
US8365582B2 (en) 2013-02-05
DE112009001023T5 (en) 2011-07-07
JP2009264982A (en) 2009-11-12
JP5093599B2 (en) 2012-12-12
CN102016542A (en) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2009131185A1 (en) Device for measuring viscosity/elasticity and method for measuring viscosity/elasticity
JP5842246B2 (en) Viscosity / elasticity measuring apparatus and method
Pollard et al. [20] Methods to characterize actin filament networks
Sharp Resonant properties of sessile droplets; contact angle dependence of the resonant frequency and width in glycerol/water mixtures
KR920003532B1 (en) Vibration type rheometer apparatus
WO2013080813A1 (en) Vibrating physical property measurement device and method
WO2013002380A1 (en) Analysis device
JP6425116B2 (en) Viscosity and elasticity measuring device and viscosity and elasticity measuring method
JP6894111B2 (en) Viscosity / elasticity measuring device and viscosity / elasticity measuring method
JP6209757B2 (en) Viscosity measuring apparatus and measuring method thereof
JP6095005B2 (en) Viscosity / elasticity measuring apparatus and method
JP7453678B2 (en) Viscosity or elasticity measuring device and method
EP3382370A1 (en) Probe arrangement and method for rheometric measurements with a disposable probe and remote readability
JP7287670B2 (en) Apparatus and method for measuring viscosity or elasticity
JP2006153535A (en) Measuring method of dynamic physical properties and measuring instrument therefor
WO2020194734A1 (en) Resonance shear measurement device
Isakov et al. Real-time rheological monitoring with the smart stirrer
Hirano et al. Noncontact manipulation and delivery technique for a spherical object
RU2373516C2 (en) Viscosity measuring element
EP3150987A1 (en) Method for monitoring viscoelastic properties of fluids and its use in measuring biofilms
JP2009204318A (en) Vibration-type viscometer
JP2022090116A (en) Resonance shear measurement device
JP2022166876A (en) Method and device for measuring mechanical properties of liquid
SE518255C2 (en) Measuring properties of blood sample in container, using oscillating rotor and stator supplied with amplitude modulated sinusoidal current
CZ25212U1 (en) Levitation-vibrating device for measuring viscosity, density and interfacial tension

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114523.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12989612

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09735000

Country of ref document: EP

Kind code of ref document: A1