[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009131076A1 - 無線通信装置 - Google Patents

無線通信装置 Download PDF

Info

Publication number
WO2009131076A1
WO2009131076A1 PCT/JP2009/057789 JP2009057789W WO2009131076A1 WO 2009131076 A1 WO2009131076 A1 WO 2009131076A1 JP 2009057789 W JP2009057789 W JP 2009057789W WO 2009131076 A1 WO2009131076 A1 WO 2009131076A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
band
signal
wireless communication
converter
Prior art date
Application number
PCT/JP2009/057789
Other languages
English (en)
French (fr)
Inventor
昭生 田中
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US12/920,919 priority Critical patent/US20110026509A1/en
Priority to JP2010509164A priority patent/JP5333446B2/ja
Publication of WO2009131076A1 publication Critical patent/WO2009131076A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems

Definitions

  • the present invention relates to a wireless communication apparatus that performs wireless communication while hopping at high speed between a plurality of ultra-wide band bands.
  • a wireless LAN device conforming to IEEE 802.11a realizes a communication speed of 54 Mbps.
  • UWB Ultra Wide Band
  • UWB wireless communication devices In wireless communication devices that realize such high-speed communication, the frequency band occupied by Shannon's law becomes very wide, and for example, communication devices that realize UWB (hereinafter referred to as UWB wireless communication devices) from 3.1 GHz to 10 Use a wide frequency band of 6 GHz. Thus, no wireless communication device requiring a frequency band of about three times the lower limit frequency has ever existed.
  • Patent Document 1 The basic operation of this UWB wireless communication apparatus is described, for example, in US Patent Application Publication No. 2004/0047285 (hereinafter referred to as Patent Document 1).
  • the UWB wireless communication apparatus includes a plurality of bands consisting of a predetermined (for example, 500 MHz) frequency band used for wireless communication, and hopping each band according to a predetermined sequence while using user data (
  • the UWB signal is transmitted and received, for example, in units of orthogonal frequency division multiplexing (OFDM) symbols f1 to f3.
  • OFDM orthogonal frequency division multiplexing
  • the receiver described in Patent Document 1 adopts a direct conversion method of directly converting a received radio (RF) signal into a baseband signal, and corresponds to the radio frequency of each band in accordance with the hopping operation.
  • a plurality of local signals are generated (FIG. 1 (b)).
  • the received RF signal is down converted to a 500 MHz baseband signal by a mixer using a corresponding local signal, and then converted to a digital signal by an A / D converter with a conversion rate of 500 Msps (Mega samples per second) Ru.
  • the transmitter described in Patent Document 1 includes a D / A converter with a conversion rate of 500 Msps, and, like the receiver, a plurality of local signals corresponding to the radio frequency of each band in accordance with the hopping operation. Generate Then, using the local signal corresponding to each, the mixer up-converts the baseband signal to be transmitted into an RF signal.
  • Patent Document 2 a configuration for transmitting / receiving a UWB signal that hops between each band using a local signal with a fixed frequency is disclosed in Japanese Patent Application Laid-Open No. 2006-121439 (hereinafter referred to as Patent Document 2) (See FIGS. 1 (c) and 2 (c)).
  • IF intermediate frequency
  • the frequency band of each band is 528 MHz
  • IF signals of three bands are collectively A / D converted.
  • the frequency band of the down-converted IF signal is from ⁇ 264 to +1320 MHz
  • the first band IF signal exists around DC (direct current).
  • the IF signal of the second band is present at 528 MHz
  • the IF signal of the third band is present at 1056 MHz. Therefore, in the receiver described in Patent Literature 2, down conversion is performed again by digital signal processing after A / D conversion.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2006-121546 (hereinafter referred to as Patent Document 3) (See FIG. 2 (a)).
  • a so-called multiband generator which needs to generate local signals of each band, is used for a synthesizer that generates local signals included in this wireless communication device.
  • the wireless communication device described in Patent Document 3 implements a low IF wireless communication device in the UWB wireless communication device by including such a multiband generator.
  • Patent Document 4 US Patent Application Publication No. 2006/0051038 (hereinafter referred to as Patent Document 4) describes a configuration example of a receiver that splits multicarriers using a hopping filter (FIG. b) see).
  • a quadrature modulator is disposed at the subsequent stage of the hopping filter.
  • the hopping filter described in Patent Document 4 is not a complex filter, and is configured to switch filter banks in an RF region to separate multicarriers.
  • Patent Document 5 changes the conversion rate of an A / D converter (ADC) to observe a change in error rate (S / N or C / N), and is there an influence of disturbance waves using a power calculator? It is judged whether or not.
  • ADC A / D converter
  • the first problem is that the size and power consumption of the circuit that generates the local signal increase.
  • Patent Document 2 also has a problem that power consumption is increased.
  • it is necessary to perform A / D conversion of the 2112 MHz IF signal at high speed. Therefore, in order to realize high-speed switching operation, it is necessary to supply a large bias current to an amplifier, a buffer and the like. Therefore, the power consumption is increased.
  • the parasitic capacitance present in the circuit is charged and discharged at high speed, power consumption also increases in this respect.
  • the second problem is that unwanted radiation (spurious) increases.
  • Patent Document 1 a plurality of types of frequency signals are combined using a mixer or a frequency divider to generate a local signal of a frequency corresponding to each band. Therefore, frequency components of integral multiples of the frequency signal used for synthesis appear in the local signal.
  • the SSB mixer it is necessary to increase the input amplitude in order to increase the output amplitude, and there is also a problem that harmonics are generated due to the non-linearity of the SSB mixer by increasing the input amplitude.
  • the third problem is that it is difficult to remove mixer and amplifier offsets. In addition, even if the offset can be removed, the circuit size (area) and power consumption of the removal circuit for that purpose become large.
  • This problem is caused by the fact that the offset amount of the mixer (down converter) changes in accordance with hopping.
  • a mixer used as a down converter a phenomenon called self mixing occurs in which a DC component (offset) is generated by multiplying a local signal and an own signal (local signal) reentrant to the antenna or the like. Self-mixing is frequency-dependent, and the amount of offset changes according to the frequency of the local signal.
  • the offset is also changed at high speed accordingly.
  • Such a problem is also a problem that occurs in order to realize high-speed hopping, and has not existed in conventional wireless communication devices.
  • the fourth problem is that it is difficult to remove the local leak of the transmitter mixer (up converter). Moreover, even if the local leak can be removed, the circuit size (area) and power consumption of the removal circuit for that purpose become large.
  • an up-converter in particular, an up-converter using a MOS transistor
  • an up-converter using a MOS transistor there is a problem of local leakage in which an input local signal component is output as it is.
  • the amount of local leakage changes depending on the frequency.
  • Local leakage is transmitted by the local signal component output from the RF port due to the offset voltage input to the baseband port of the up converter, and the local signal jumping into the RF port of the up converter and the power amplifier for transmission
  • the amount is obtained by adding the local signal component mixed in the signal (local field through phenomenon). In particular, since the latter depends on the frequency, the amount of local leakage also changes with the hopping operation.
  • Patent Document 3 describes a wireless communication apparatus using a complex filter.
  • the wireless communication device described in Patent Document 3 it is necessary to use a so-called multiband generator that switches a plurality of local signals at high speed. Therefore, as in the first problem described above, there is a problem that the size and power consumption of the circuit that generates the local signal increase.
  • the local signal of the frequency of each band end is produced
  • wireless communication apparatus is comprised, and the kind of local signal is not reduced.
  • Patent Document 4 describes a wireless communication apparatus using a hopping filter.
  • Patent Document 4 shows a configuration example of a hopping band pass filter used in an RF region, and it is difficult to apply to a UWB wireless communication device using a frequency of GHz band. Even if a hopping band pass filter operating at GHz band frequency can be realized, the performance such as NF will deteriorate and the circuit area will increase. Therefore, in order to separate each band generally composed of frequencies in the GHz band, it is necessary to use a special filter such as a SAW filter or a ceramic filter.
  • Patent Document 5 describes a configuration in which the conversion rate of the A / D converter is changed according to the level of the interference wave. Patent document 5 only shows one method for optimizing the conversion rate according to the level of the disturbance while minimizing the power consumption of the A / D converter.
  • the present invention is to provide a wireless communication device capable of reducing the problem of increasing the circuit area and power consumption, the problem of increasing the spurious, and the problem of large offset and local leak, which occur in order to implement high-speed hopping. To aim.
  • a wireless communication apparatus comprises a band group consisting of a plurality of bands of a predetermined frequency band, which is used for wireless communication, and hopping each band in the band group in a predetermined sequence.
  • a wireless communication apparatus supporting both communication and wireless communication simultaneously using a plurality of bands in the band group, A local generator generating a local signal equal to the center frequency of the band group; A first down converter for down converting radio signals in the band group using a local signal generated by the local generator; A hopping complex filter that changes a passband with the downconverted signal as an input, A control unit that controls a pass band of the hopping complex filter;
  • the radio communication includes a band group consisting of a plurality of bands of a predetermined frequency band used for wireless communication, and hopping each band in the band group in a predetermined sequence, and a plurality of bands in the band group
  • a wireless communication device supporting both of wireless communication used simultaneously, A local generator generating a local signal equal to the center frequency of the band group;
  • a hopping complex filter that changes the passband with the upconverted signal as an input,
  • a control unit that controls a pass band of the hopping complex filter;
  • FIG. 1 is a schematic view showing a hopping operation by the wireless communication device described in Patent Documents 1 and 2.
  • FIG. FIG. 2 is a block diagram showing the configuration of the wireless communication device described in Patent Documents 2 to 5.
  • FIG. 3 is a block diagram showing the configuration of the UWB wireless communication apparatus according to the first embodiment.
  • FIG. 4 is a schematic view showing the hopping operation by the UWB wireless communication apparatus shown in FIG.
  • FIG. 5 is a schematic view showing a configuration example and characteristics of the hopping complex filter.
  • FIG. 6 is a schematic view showing the configuration and operation of the hopping complex filter used in the present invention.
  • FIG. 7 is a schematic view showing how each symbol is cut out by the UWB wireless communication apparatus shown in FIG. FIG.
  • FIG. 8 is a block diagram showing the configuration of the UWB wireless communication apparatus according to the second embodiment.
  • FIG. 9 is a schematic view showing how each symbol is cut out by the UWB wireless communication apparatus shown in FIG.
  • FIG. 10 is a schematic view showing how each symbol is cut out when the A / D converter shown in FIG. 8 is subjected to interleaving operation.
  • FIG. 11 is a schematic view showing the operation of the UWB wireless communication apparatus according to the second embodiment.
  • FIG. 12 is a block diagram showing the configuration of the UWB wireless communication apparatus according to the third embodiment.
  • FIG. 13 is a circuit diagram showing a configuration example of a down converter having blocker removal capability.
  • FIG. 14 is a block diagram showing the configuration of the UWB wireless communication apparatus according to the fourth embodiment.
  • FIG. 9 is a schematic view showing how each symbol is cut out by the UWB wireless communication apparatus shown in FIG.
  • FIG. 10 is a schematic view showing how each symbol is cut out when the A / D converter
  • FIG. 15 is a schematic view showing how each symbol is cut out by the UWB wireless communication apparatus shown in FIG.
  • FIG. 16 is a schematic view showing a state of cutting out each symbol when performing interleaving operation of the D / A converter shown in FIG.
  • FIG. 17 is a block diagram showing the configuration of the UWB wireless communication apparatus according to the fifth embodiment.
  • FIG. 18 is a schematic view showing an example of switching of the characteristics by the filter shown in FIG.
  • FIG. 19 is a block diagram showing the configuration of the UWB wireless communication apparatus according to the sixth embodiment.
  • FIG. 20 is a schematic view showing an operation example of the UWB wireless communication apparatus shown in FIG.
  • FIG. 21 is a schematic view showing another operation example of the UWB wireless communication apparatus shown in FIG. FIG.
  • FIG. 22 is a flowchart of the processing procedure of the UWB wireless communication apparatus according to the sixth embodiment.
  • FIG. 23 is a flowchart showing the processing procedure of the UWB wireless communication apparatus according to the sixth embodiment.
  • FIG. 24 is a block diagram showing the configuration of the UWB wireless communication apparatus according to the sixth embodiment.
  • FIG. 25 is a table showing an example of a wireless communication apparatus using hopping complex filters that can correspond to various modes.
  • FIG. 26 is a schematic view showing a configuration and an operation example of the UWB wireless communication apparatus according to the seventh embodiment.
  • FIG. 27 is a block diagram showing another configuration and operation example of the UWB wireless communication apparatus of the seventh embodiment.
  • FIG. 28 is a block diagram showing another configuration and operation example of the UWB wireless communication apparatus of the seventh embodiment.
  • FIG. 29 is a block diagram showing another configuration and operation example of the UWB wireless communication apparatus of the seventh embodiment.
  • FIG. 30 is a table summarizing settings of the wireless communication device when executing each mode shown in FIG.
  • FIG. 31 is a flowchart of the processing procedure of the UWB wireless communication apparatus according to the seventh embodiment.
  • FIG. 32 is a flowchart showing the processing procedure of the UWB wireless communication apparatus according to the seventh embodiment.
  • FIG. 3 is a block diagram showing the configuration of the wireless communication apparatus according to the first embodiment.
  • the first embodiment shows an example of a receiver for receiving a UWB signal included in a wireless communication apparatus.
  • the receiver includes a receiving antenna 101, a low noise amplifier (LNA) 102, a first down converter 103, a first local generator 104, a hopping complex filter 108, , A second local generator 110, a low pass filter (LPF) 111, a variable gain amplifier (VGA) 112, an A / D converter 113, and a baseband processing circuit 114.
  • the first local generator 104 comprises a voltage controlled oscillator (VCO) 107, a divider 106 and a selector 105.
  • VCO voltage controlled oscillator
  • UWB signals are transmitted and received in band group units configured by three bands. As shown in FIG. 4 (b), frequency hopping is performed between three bands in this band group.
  • FIG. 4B shows an example in which hopping is performed in the order of f1, f2, and f3.
  • hopping sequences there are seven types of hopping sequences, and by using different types of sequences, a plurality of UWB radios existing in the same communication area can be used. It enables wireless communication with a communication device (see, for example, High Rate Ultra Wideband PHY and MAC Standard, ECMA-368).
  • the first local generator 104 outputs 3960 MHz, which is the center frequency of the first band group. Since the first band group 201 is composed of the first band, the second band, and the third band, 3960 MHz is also the center frequency of the second band.
  • the frequency of the local signal is switched as shown in FIG. 1 (b) in accordance with the hopping operation as described above.
  • the frequency of the local signal is fixed at the center frequency of the band group without switching according to the hopping operation.
  • the frequency of the local signal is changed to the center frequency of that band group.
  • high speed performance is not required for band group switching. For example, when changing from the first band group (BG-1) 201 to the sixth band group (BG-6) 202 shown in FIG.
  • the first local generator 104 generates the first band
  • the output frequency is changed from 3960 MHz which is the center frequency of the group 201 to 8184 MHz which is the center frequency of the sixth band group 202.
  • the rate of change of this frequency may be sufficiently slower than the few microseconds required for the VCO to lock at the changed frequency.
  • the center frequency of the first band group 201 and the sixth band group 202 can be accommodated by only slightly changing the oscillation frequency of the VCO 107. Can generate local signals respectively. In that case, the VCO 107 may be locked again at a desired frequency after changing the division ratio and the oscillation frequency.
  • the first local generator 104 shown in FIG. 3 is an example of a circuit that generates a frequency around 8000 MHz by the VCO 107 and halves the output frequency of the VCO 107 by the frequency divider 106.
  • the selector 105 selects the output signal of the frequency divider 106 when the first band group is received, and selects the output signal of the VCO 107 when the sixth band group is received.
  • the VCO 107 has various variations such as process, power supply voltage, and ambient temperature in a range of 7920 MHz which is twice the frequency of the center frequency of the first band group to 8184 MHz which is the center frequency of the sixth band group. It suffices to have a tuning range with a sufficient margin for the factors.
  • the first local generator 104 shown in FIG. 3 has a configuration of an oscillator and a frequency divider. It is also possible to generate local signals of frequencies corresponding to other band groups by changing. Also, the first local generator 104 shown in FIG. 3 may generate local signals corresponding to not only two band groups but also more band groups by changing the configuration of the oscillator and the divider. It is possible.
  • hopping complex filter 108 includes polyphase filter 1001 and selector 1002, and is capable of rapidly switching a plurality of filtering characteristics.
  • the filtering characteristic is switched by, for example, a control signal output from the baseband processing circuit 114.
  • the baseband processing circuit 114 may establish synchronization using information stored in the preamble part of the received UWB signal, and determine the switching timing of the filtering characteristic.
  • the polyphase filter 1001 has a configuration in which a circuit composed of four resistors and four capacitors is connected, for example, in three stages in series.
  • polyphase filter 1001 includes non-inverted signals (I in +, Q in +) of I signal and Q signal and their inversions. Signals (I in- , Q in- ) are input. These signals are equal in absolute value, and each have a phase difference of 90 ° in the order of I in +, Q in +, I in ⁇ , and Q in ⁇ .
  • resistors R 1 are disposed between I in + and I 1 +, between Q in + and Q 1 +, between I in ⁇ and I 1 ⁇ , and between Q in ⁇ and Q 1 ⁇ , respectively.
  • Capacitors C 1 are disposed between I in + and Q 1 +, between Q in + and I 1-, between I in -and Q 1-, and between Q in -and I 1 +, respectively.
  • each resistor R 2 is arranged between, I 1 + and Q 2 + between, Q 1 + and I 2 - between, I 1 - and Q 2 - between, Q 1 - and Q 2 - is the I 2 + respectively capacitor C 2 between are arranged.
  • each resistor R 3 is disposed between, I 2 + And C 3 +, Q 2 + and I 3- , I 2 -and Q 3- , and Q 2 -and I 3 +, respectively, capacitors C 3 are disposed.
  • a signal input from I in + is output to I 1 + through resistor R 1, and a signal input from Q in ⁇ having a phase difference of 270 ° from I in + is a capacitor C 1 Output to I 1 +.
  • the signal input from I in + is output to I 1 + with the same phase, and the signal input from Q in- is rotated in phase by the impedance 1 / jwC 1 of the capacitor C 1 to be I 1 + Output. Therefore, in I 1 +, the signal passing through the resistor R 1 and the signal passing through the capacitor C 1 cancel each other.
  • R 1 C 1 , R 2 C 2 , and R 3 C 3 are set to different values for the resistors and capacitors of each stage provided in the polyphase filter 1001 shown in FIG. 5B. .
  • the frequencies to be blocked in each stage of the polyphase filter 1001 become different values, and as shown in FIG. 5C, a filtering characteristic is obtained to block the passage of signals in a wide frequency range.
  • the blocking performance of the polyphase filter 1001 depends on the orthogonality of the I signal and the Q signal, but can be set to 40 dBc or more.
  • ⁇ f blocking indicates a characteristic (hereinafter, referred to as ⁇ f blocking characteristic) that blocks signal passage in a predetermined frequency range on the negative side (hereinafter, negative frequency)
  • + f blocking characteristic indicates a characteristic (hereinafter referred to as + f blocking characteristic) that blocks signal passing on a predetermined frequency range on the plus side (hereinafter, plus frequency)
  • all pass blocks signal passing of minus frequency and plus frequency
  • all-pass characteristic which allows all frequency signals to pass without performing is shown.
  • the -f and + f rejection characteristics of hopping complex filter 108 are also referred to herein as "one-sided frequency suppression".
  • hopping complex filter 108 When hopping complex filter 108 is set to the -f blocking characteristic, a signal of plus frequency passes as it is, and when it is set to + f blocking characteristic, a signal of minus frequency passes as it is. When hopping complex filter 108 is set to all pass characteristics, signals of minus frequency and plus frequency pass as they are without blocking.
  • the selector 1002 is configured to have a first switch group 1003 and a second switch group 1004, as shown in FIG. 5D, for example.
  • the first switch group 1003 passes the I signal and the Q signal output from the polyphase filter 1001 as it is when it is on.
  • the second switch group 1004 passes the I signal output from the polyphase filter 1001 as it is when it is turned on, and switches and outputs the non-inverted signal and the inverted signal of the Q signal.
  • hopping complex filter 108 is set to the -f blocking characteristic.
  • hopping complex filter 108 is set to the + f blocking characteristic.
  • the parasitic capacitance or the switch of the signal path of the I signal and the Q signal is used in order to pass the I signal as it is and to switch the connection of the normal signal and the inverted signal of the Q signal.
  • Charge injection and gate field-through have different values, phase rotation may occur, and orthogonality between the I signal and the Q signal may not be maintained. Therefore, it is preferable to arrange each switch of the second switch group 1004 so that the charge injection and gate field through values become equal, so that the orthogonality of the I signal and the Q signal is maintained.
  • FIGS. 6 (a) to 6 (e) a configuration in which the order of the selector 1002 and the polyphase filter 1001 can be switched as shown in FIGS. 6 (a) to 6 (e) can also be used.
  • Such a configuration operates in the same manner as the circuit shown in FIGS. 5 (b) to 5 (e).
  • hopping complex filter 108 is provided with third switch group 1009 for connecting input and output terminals (see FIG. 5D), and forward rotation of I and Q signals input to hopping complex filter 108
  • third switch group 1009 for connecting input and output terminals (see FIG. 5D), and forward rotation of I and Q signals input to hopping complex filter 108
  • a signal is output through the resistor when selecting the -f blocking characteristic and the + f blocking characteristic, and a signal is output through the switch when selecting the all-pass characteristic.
  • a difference occurs in the attenuation of the output signal between the -f blocking characteristic and the all pass characteristic.
  • hopping complex filter 108 has only a first polyphase filter 1005 having only -f blocking characteristics, a second polyphase filter 1006 having all pass characteristics, and + f blocking characteristics. It may be configured to have a third polyphase filter 1007 and a selector 1008 for switching the filter output.
  • the polyphase filter 1001 shown in FIG. 5 (b) has -f blocking characteristics and + f blocking characteristics that are in line symmetry with respect to the axis of the reference frequency (0 Hz). Is obtained.
  • Hopping complex filter 108 shown in FIG. 5E is a configuration suitable for the case where the ⁇ f blocking characteristic and the + f blocking characteristic are not in the relation of the above-mentioned line symmetry.
  • the hopping complex filter 108 shows a configuration example for separating a received UWB signal into three band signals, the number of separation is not limited to three, and any number may be used. Good.
  • the UWB signal hops rapidly between the bands shown in FIG. 4B.
  • the square shown in FIG. 4 (b) indicates an OFDM symbol, which has a frequency band of about 500 MHz, and the interval between symbols is about 9.5 ns.
  • This frequency hopping UWB signal is received by the antenna 101 shown in FIG. 3, amplified by the low noise amplifier 102, and then input to the RF port of the first converter 103.
  • the first downconverter 103 when the first band group is received, the first downconverter 103 is supplied with the 3960 MHz local signal generated by the first local generator 104.
  • the UWB signals of the first to third bands input to the RF port of the first downconverter 103 are down converted to an IF (intermediate frequency) signal of about ⁇ 792 MHz to +792 MHz and output.
  • the first down converter 103 outputs an I signal and a Q signal, which are IF signals having a phase difference of 90 °.
  • the I signal and the Q signal can be obtained by supplying local signals to the I side local port and the Q side local port provided in the first down converter 103, respectively.
  • the I signal and the Q signal are differential signals, and each have a phase difference of 90 ° in the order of I +, Q +, I-, and Q-. These four IF signals are input to hopping complex filter 108.
  • hopping complex filter 108 switches to the + f blocking characteristic shown in FIG. 5 (c) under the control of baseband processing circuit 114.
  • hopping complex filter 108 suppresses the signal component of the frequency (+264 to +792 MHz) of symbol f3 which is the image frequency of symbol f1 ( ⁇ 792 to ⁇ 264 MHz) as shown in FIG. 7A.
  • the frequency band of the IF signal passed through hopping complex filter 108 is from -792 to +264 MHz, and includes symbol f1 and symbol f2.
  • the second down converter 109 uses the 528 MHz local signal (second LO) 301 generated by the second local generator 110 to down the -792 to +264 MHz IF signal output from the hopping complex filter 108. Convert At this time, the symbol f1 of -792 to -264 MHz is converted to a baseband signal of -264 to +264 MHz centered on 0 Hz (DC), and the symbol f2 of -264 to +264 MHz moves out of the frequency band of the baseband signal It is done.
  • DC 528 MHz local signal
  • the output signal of the second down converter 109 is input to a low pass filter 111 having a cutoff frequency around 230 MHz, and the low pass filter 111 attenuates the power of the symbol f2 and other interference waves.
  • the output signal of the low pass filter 111 is amplified by the variable gain amplifier 112 to the required amplitude in accordance with the dynamic range of the A / D converter 113.
  • An output signal of the variable gain amplifier 112 is input to an A / D converter 113.
  • the A / D converter 113 converts a -264 to +264 MHz baseband signal (here, symbol f1) into a digital signal at a conversion rate of 528 Msps, for example.
  • the symbol f1 converted to the digital signal is subjected to known synchronization detection processing or demodulation processing of an OFDM signal by the baseband processing circuit 114.
  • hopping complex filter 108 switches to the all pass characteristic shown in FIG. 5 (c) under the control of baseband processing circuit 114.
  • hopping complex filter 108 passes the signal component of frequency -264 to +264 MHz of symbol f2 output from first down converter 103 as it is.
  • a DC voltage (second LO) for correcting the offset of second down converter 109 is input to the LO port of second down converter 109. Therefore, the second converter 109 outputs the symbol f2 input from the RF port as it is from the baseband port.
  • the output signal of the hopping complex filter 108 may be supplied as it is to the low pass filter 111 of the next stage without passing through the second down converter 109.
  • the output signal of the second down converter 109 is input to a low pass filter 111 having a cutoff frequency around 230 MHz, and the low pass filter 111 attenuates power such as an unnecessary interference wave.
  • the symbol f2 output from the low pass filter 111 is converted into a digital signal by the A / D converter 113, and the baseband processing circuit 114 performs known synchronization detection processing and demodulation of the OFDM signal in the same manner as processing for the symbol f1. Processing is applied.
  • the hopping complex filter 108 is switched to the ⁇ f blocking characteristic shown in FIG. 5C under the control of the baseband processing circuit 114.
  • hopping complex filter 108 suppresses signal components of frequency -792 to -264 MHz of symbol f1 which is an image frequency of symbol f3 (+264 to +792 MHz) as shown in FIG. 7C. Therefore, the frequency band of the IF signal passed through hopping complex filter 108 is from -264 to +792 MHz, and includes symbol f2 and symbol f3.
  • the second downconverter 109 downconverts the ⁇ 264 to +792 MHz IF signal output from the hopping complex filter 108 using the 528 MHz local signal 302 generated by the second local generator 110. At this time, the symbol f3 of +264 to +792 MHz is converted to a baseband signal of -264 to +264 MHz centered at 0 Hz (DC), and the symbol f2 of -264 to +264 MHz is moved out of the frequency band of the baseband signal .
  • the output signal of the second down converter 109 is input to a low pass filter 111 having a cutoff frequency around 230 MHz, and the low pass filter 111 attenuates the power of the symbol f2 and other interference waves.
  • the symbol f3 output from the low pass filter 111 is converted into a digital signal by the A / D converter 113 and the well-known synchronization detection processing or OFDM signal is processed by the baseband processing circuit 114 as in the processing for the symbols f1 and f2. Demodulation processing is performed.
  • the frequency of the local signal is set to the center frequency of each band as described in Patent Document 1 by setting the frequency of the local signal to the center frequency of each band group.
  • the frequency of the IF signal output from the first down converter can be reduced compared to the configuration.
  • the circuit downstream of the first down converter needs to operate at 1320 MHz, but in the present embodiment, it is sufficient to use 792 MHz which is about 1 / 1.7 of the frequency.
  • the circuit area and power consumption of the local generator 104 can be reduced, and the DC offset and the local leakage can be reduced.
  • the hopping complex filter 108 even when high speed hopping is performed, the image frequency can be removed to cut out the signal power on the negative frequency side or the positive frequency side at high speed. Therefore, compared with the configuration in which the frequency of the local signal is set to the symbol f1 described in Patent Document 2, the operating frequency of the circuit after the first down converter may be narrower. Further, by providing the hopping complex filter 108, it is possible to reduce the influence of interference waves and the like existing outside the baseband. In addition, since the frequency of the second local signal is only 528 MHz, the second down converter 109 can be easily configured.
  • the conversion rate of the A / D converter can be significantly reduced as compared with the background art.
  • the frequency of the local signal to the center frequency of each band group, the negative frequency band of the IF signal and the positive frequency band become equal. Therefore, even if there is only one local signal, it is possible to minimize the conversion rate required by the A / D converter. Therefore, the circuit area and power consumption of the A / D converter 113 can be reduced.
  • the conversion rate of the A / D converter is one symbol. It is about 528Msps required to convert, and it is minimal.
  • the conversion rate of the A / D converter 113 is 2112Msps It becomes. Also in the present embodiment, the conversion rate of the A / D converter 113 may be set to a value necessary for A / D conversion of two or more symbols.
  • the conversion rate required for A / D conversion of one symbol may be 528 Msps.
  • the image frequency is suppressed using hopping complex filter 108, even if radio waves used in other wireless communication devices are mixed in, for example, the frequency band of symbol f3, symbol f1 is largely There is no effect. Also, even if thermal noise or the like occurs in the frequency band of symbol f3, it hardly affects symbol f1.
  • hopping complex filter 108 shown in the present embodiment is composed only of a capacitor, a resistor and a switch, it basically does not require a stationary current and has high linearity. Providing high linearity is significant for a UWB wireless communication apparatus in which there are many interference sources such as a wireless LAN and a cellular phone.
  • a configuration in which noise is not generated due to the use of the active element is also a great advantage particularly for the receiver.
  • a high order is required to obtain the same filtering characteristics as the hopping complex filter 108, and a steady current becomes large, making it difficult to obtain high linearity. There are problems such as large thermal noise and 1 / f noise.
  • the filtering characteristic of hopping complex filter 108 is switched by the control signal output from baseband processing circuit 114 as described above.
  • the baseband processing circuit 114 may establish synchronization using the information stored in the preamble part of the received UWB signal, and determine the switching timing of the filtering characteristic.
  • the hopping sequence can be identified from the header information contained in the preamble part.
  • FIG. 8 is a block diagram showing the configuration of the UWB wireless communication apparatus according to the second embodiment.
  • the second embodiment as in the first embodiment, an example of a receiver for receiving a UWB signal is shown.
  • the receiver includes a receiving antenna 101, a low noise amplifier (LNA) 102, a first down converter 103, a first local generator 104, a hopping complex filter 108, and a base.
  • a band processing circuit 114, a first low pass filter 401, a variable gain amplifier 402, an A / D converter 403, a second down converter 404, and a second low pass filter 405 are included.
  • the receiver according to the second embodiment is an example in which the second down converter 404 and the second low pass filter 405 are realized by digital signal processing.
  • the configuration of the receiving antenna 101, the low noise amplifier (LNA) 102, the first down converter 103, the first local generator 104, the hopping complex filter 108, and the baseband processing circuit 114 is the receiver shown in the first embodiment. The description is omitted because
  • the first low pass filter 401 has a cutoff frequency around 792 MHz, passes frequency components from the symbol f1 to the symbol f3 output from the hopping complex filter 108, and attenuates other frequency components.
  • the first low pass filter 401 is provided to attenuate unnecessary radio waves (so-called blockers), noise and the like existing outside the frequency band used in the UWB wireless communication apparatus.
  • the variable gain amplifier 402 amplifies the output signal of the first low pass filter 401 in accordance with the dynamic range of the A / D converter 403 as in the first embodiment.
  • the variable gain amplifier 402 of this embodiment needs to amplify a signal up to about 792 MHz.
  • the A / D converter 403 of this embodiment has a conversion rate for converting an IF signal of -528 to +528 MHz into a digital signal.
  • a / D conversion is performed at such a conversion rate, signal components outside of the Nyquist frequency, for example, -792 to -528 MHz of the symbol f1 appear at +264 to +528 MHz in the frequency band of the symbol f3. This is due to the occurrence of an aliasing around 528 MHz which is the Nyquist frequency by A / D conversion.
  • the IF signal input to the A / D converter 403 is subjected to A / D conversion by the hopping complex filter 809, for example, since the signal component of the frequency of the symbol f3 has already been removed when receiving the symbol f1. Even if the signal component of the symbol f1 appears in the frequency band of the symbol f3, there is no problem.
  • the second down converter 404 of this embodiment has the same function as the second down converter 109 shown in the first embodiment, and is realized by digital signal processing as described above.
  • the second low pass filter 405 also has the same function as the low pass filter 111 described in the first embodiment, and is realized by digital signal processing as described above.
  • the functions of the second down converter 404 and the second low pass filter 405 are, for example, a reconfigurable device capable of changing a circuit internally configured by a program, a CPU executing processing according to the program, or a DSP executing arithmetic processing It can be realized using
  • hopping complex filter 108 switches to the + f blocking characteristic shown in FIG. 5 (c) under the control of baseband processing circuit 114 as in the first embodiment.
  • hopping complex filter 108 suppresses the signal component of frequency +264 to +792 MHz of symbol f3, which is the image frequency of symbol f1 ( ⁇ 792 to ⁇ 264 MHz). Therefore, the frequency band of the IF signal passed through hopping complex filter 108 is from -792 to +264 MHz, and includes symbol f1 and symbol f2.
  • the IF signal that has passed through hopping complex filter 108 is input to first low pass filter 401.
  • the first low pass filter 401 passes the signal components of the symbol f1 and the symbol f2 and suppresses unnecessary radio waves and noise outside the cutoff frequency.
  • the IF signal that has passed through the first low pass filter 401 is amplified by the variable gain amplifier 402 and input to the A / D converter 403.
  • the A / D converter 403 converts the symbol f1 contained in the IF signal into a digital signal consisting of signal components of -528 to -264 MHz and +264 to +528 MHz, and a digital signal consisting of signal components of -264 to +264 MHz Convert to The IF signal converted to a digital signal by the A / D converter 403 is input to the second down converter 404.
  • the second downconverter 404 downconverts the IF signal converted into the digital signal, similarly to the second downconverter 109 shown in the first embodiment.
  • the symbol f1 consisting of signal components of -528 to -264 MHz and +264 to +528 MHz is converted to a base band signal of -264 to +264 MHz centered on 0 Hz (DC), and the symbol f2 of -264 to +264 MHz is the base It is moved out of the frequency band of the band signal.
  • the output signal of the second down converter 404 is input to a second low pass filter 405 having a cutoff frequency around 230 MHz, and the second low pass filter 405 attenuates the power of the symbol f2 and other interference waves, etc.
  • the symbol f1 that has passed through the second low pass filter 405 is input to the baseband processing circuit 114, and undergoes known synchronization detection processing and OFDM demodulation processing.
  • hopping complex filter 108 is switched to the all pass characteristic shown in FIG. 5 (c) under the control of baseband processing circuit 114.
  • hopping complex filter 108 passes the signal component of frequency -264 to +264 MHz of symbol f2 output from first down converter 103 as it is.
  • the IF signal that has passed through the first low pass filter 401 is amplified by the second variable gain amplifier 402 and input to the A / D converter 403.
  • the A / D converter 403 converts a symbol f2 of -264 to +264 MHz included in the IF signal into a digital signal.
  • the IF signal converted to a digital signal by the A / D converter 403 is input to the second down converter 404.
  • the second down converter 404 converts the symbol f2 converted into a digital signal using a DC voltage as a local signal (second LO). Output as it is without down-converting.
  • the output signal of the second downconverter 404 is input to a second low pass filter 405 having a cutoff frequency around 230 MHz, and the second low pass filter 405 attenuates power such as an unnecessary interference wave.
  • the symbol f2 that has passed through the second low pass filter 405 is input to the baseband processing circuit 114, and undergoes known synchronization detection processing and OFDM demodulation processing.
  • hopping complex filter 108 has the -f blocking characteristics shown in FIG. 5 (c) by the control of baseband processing circuit 114 as in the first embodiment. Switch to In this case, hopping complex filter 108 suppresses signal components of frequency -792 to -264 MHz of symbol f1, which is an image frequency of symbol f3 (+264 to +792 MHz). Therefore, the frequency band of the IF signal passed through hopping complex filter 108 is +264 to +792 MHz, and includes symbol f2 and symbol f3.
  • the IF signal that has passed through hopping complex filter 108 is input to first low pass filter 401.
  • the first low pass filter 401 passes the signal components of the symbol f2 and the symbol f3 and suppresses unnecessary radio waves and noise outside the cutoff frequency.
  • the IF signal that has passed through the first low pass filter 401 is amplified by the variable gain amplifier 402 and input to the A / D converter 403.
  • the A / D converter 403 converts the symbol f3 contained in the IF signal into a digital signal consisting of signal components of -528 to -264 MHz and +264 to +528 MHz, and a symbol f2 a digital signal consisting of signal components of -264 to +264 MHz Convert to The IF signal converted to a digital signal by the A / D converter 403 is input to the second down converter 404.
  • the second downconverter 404 downconverts the IF signal converted into the digital signal, as in the second downconverter 109 described in the first embodiment.
  • the symbol f3 consisting of signal components of -528 to -264 MHz and +264 to +528 MHz is converted to a base band signal of -264 to +264 MHz centered on 0 Hz (DC), and the symbol f2 of -264 to +264 MHz is the base It is moved out of the frequency band of the band signal.
  • the output signal of the second down converter 404 is input to a second low pass filter 405 having a cutoff frequency around 230 MHz, and the second low pass filter 405 attenuates the power of the symbol f2 and other interference waves, etc.
  • the symbol f3 that has passed through the second low pass filter 405 is input to the baseband processing circuit 114, and undergoes known synchronization detection processing and OFDM demodulation processing.
  • the analog circuit is The down conversion used is only once, and the mixer, local signal generator, etc. necessary for the second down conversion are not required. Therefore, the circuit area and power consumption can be reduced.
  • the conversion rate of the A / D converter 403 is also about 1 Gsps, and power consumption can be reduced by about half as compared with the configuration that requires a conversion rate of about 2 Gsps as in Patent Document 2.
  • the frequency of the signal passing through the variable gain amplifier 402 is also required to be about 792 MHz, which is lower than the 1.3 GHz of the background art example.
  • the operating frequency of the variable gain amplifier 402b it is possible to increase the gain per amplifier stage based on the principle that the known gain and band product are constant, thereby reducing the number of amplifier stages. It is possible to reduce the circuit area and power consumption of the variable gain amplifier 402.
  • the A / D converter 403 includes two A / D converters for I signal and Q signal, and performs processing for A / D conversion of I signal and Q signal as it is, I signal or Q signal A conversion rate twice as high as the conversion time of one A / D converter can be realized by the interleaving operation of performing A / D conversion processing of only one of them.
  • I signal and Q signal are usually converted at 1056Msps, and during interleaving, either I signal or Q signal is 2112Msps, which is twice the speed of 1056Msps. Convert.
  • Such a configuration is to pass the I signal and the Q signal as it is immediately before the A / D converter in order to switch the presence or absence of interleaving, or to input only the I signal or the Q signal to the two A / D converters.
  • a configuration is conceivable in which the selector of.
  • the A / D converter 403 interleaves when receiving the symbols f1 and f3, and does not interleave when receiving the symbol f2.
  • the second downconverter 404 downconverts the input -792 to -264 MHz symbol f1 into a -264 to +264 MHz baseband signal (see FIG. 10 (a). At this time, the symbol f2 located at -264 to +264 MHz is moved out of the frequency band of the baseband signal.
  • the symbol f2 passes through the hopping complex filter 108 as it is, and is input to the A / D converter 403 (FIG. 10 (b)).
  • the A / D converter 403 does not perform the interleaving operation, and A / D converts the I signal and the Q signal by each A / D converter.
  • the conversion rate of the I signal and the Q signal is 1056 Msps.
  • the signal of symbol f2 is present at -264 to +264 MHz, and the Nyquist frequency by A / D conversion is 528 MHz, which is 1/2 of 1056 MHz, so that A / D conversion is possible with a sufficient margin.
  • the frequency component of -528 to -792 MHz of the symbol f1 is folded back to -264 to -528 MHz, but this does not cause a problem because it does not overlap with the frequency of the symbol f2.
  • the frequency component of +528 to +792 MHz of the symbol f3 does not matter.
  • the hopping complex filter 108 switches to the -f blocking characteristic and passes the symbol f3 while suppressing the frequency of the symbol f1 as in the first embodiment (FIG. 10 (c)).
  • the A / D converter 403 interleaves in the same manner as the symbol f1, and performs A / D conversion of only one of the I signal and the Q signal.
  • the signal after A / D conversion is input to the second down converter 404, converted to a baseband signal, and output.
  • the conversion rate is about 1 Gsps, and power consumption can be reduced to about half as compared with the case of using a conversion rate of about 2 Gsps as in the background art.
  • the conversion rate of about 1 Gsps is sufficient for A / D conversion of two symbols of about 528 MHz band, so the conversion rate required to convert four symbols as in Patent Document 2 is It is unnecessary.
  • FIG. 11 schematically shows the operation of the present embodiment described above.
  • Third Embodiment Next, a third embodiment of the present invention will be described using the drawings.
  • FIG. 12 is a block diagram showing the configuration of the UWB wireless communication apparatus according to the third embodiment.
  • the third embodiment as in the first and second embodiments, an example of a receiver for receiving a UWB signal is shown.
  • the receiving antenna 101 low noise amplifier (LNA) 102, first down converter 103, first local generator 104, first low pass filter 401, variable gain amplifier 402, second down converter 404, a second low pass filter 405, a baseband processing circuit 114, an A / D converter 601, and a hopping complex filter 602.
  • LNA low noise amplifier
  • the receiver according to the third embodiment is different from the receiver according to the first embodiment in that hopping complex filter 602, second down converter 404 and second low pass filter 405 are realized by digital signal processing.
  • the functions of hopping complex filter 602, second down converter 404 and second low pass filter 405 are, for example, a CPU that executes processing in accordance with a reconfigured device or program that can change a circuit internally configured by a program, or It can be realized using a DSP or the like that executes processing.
  • the configuration and operation of the receiving antenna 101, the low noise amplifier (LNA) 102, the first down converter 103, the first local generator 104, and the baseband processing circuit 114 are the same as those of the receiver shown in the first embodiment. Since the configuration and operation of the first low pass filter 401, the variable gain amplifier 402, the second down converter 404 and the second low pass filter 405 are the same as those of the second embodiment, the description will be omitted.
  • the receiver of this embodiment has a configuration in which the hopping complex filter is not provided downstream of the first downconverter 103.
  • the first low pass filter 401 and the variable gain amplifier 402 operate in the same manner as in the second embodiment.
  • An output signal of the first low pass filter 401 is converted into a digital signal by an A / D converter 601.
  • the A / D converter 601 of the present embodiment has a conversion rate of 1584 Msps, and collectively converts the symbols f1 to f3 into digital signals.
  • the output signal of A / D converter 601 is input to hopping complex filter 602, and the output signal of hopping complex filter 602 is input to second down converter 404.
  • the operation after the second downconverter 404 is the same as that of the second embodiment.
  • hopping complex filter 602 is realized by digital signal processing. Therefore, in addition to the effects shown in the first embodiment and the second embodiment, the analog circuit can be further reduced compared to the second embodiment.
  • Such a configuration can reduce the circuit area as compared with the second embodiment, and can also reduce crosstalk and the like that appear when configured as an analog circuit.
  • the A / D converter 601 of the present embodiment has a conversion rate of 1584 Msps.
  • the conversion rate of the A / D converter 601 may be about 1584 Msps in order to A / D convert three symbols of about 528 MHz band collectively.
  • the conversion rate of the A / D converter 601 is higher than that of the second embodiment, but the conversion rate is about 3/4 that of the background art, so the power consumption is about 3/4. It becomes.
  • the first down converter 103 of the present embodiment has an ability to remove a blocker.
  • An example of the configuration of the downconverter with blocker removal capability suitable for the first downconverter 103 is shown in FIG.
  • the first down converter 103 shown in FIG. 13A is configured to include a differential transistor pair 701 and a tail transistor 702.
  • the differential transistor pair 701 and the tail transistor 702 constitute a single balance type mixer.
  • An inductor 704 and a capacitor 705 connected in series are connected in parallel to the load resistor 703.
  • the inductor 704 and the capacitor 705 have low resistance in the vicinity of the resonance frequency, and the load impedance is reduced to reduce the conversion gain as a mixer. Therefore.
  • the mixer can have the ability to remove the blocker.
  • the frequency of the local signal input to the first down converter 103 is set to 3960 MHz, which is the center frequency.
  • a 5.2 GHz radio wave used in a wireless LAN compliant with 802.11a becomes a blocker. This is a frequency separated from 3960 MHz by about 1.2 GHz.
  • the first downconverter 103 operates in an IF frequency band of about -0.8 to 0.8 GHz. That is, at the IF output of the first downconverter, it is preferable to pass the signal up to 0.8 GHz without attenuation and to attenuate the blocker near 1.2 GHz. Therefore, the blocker can be greatly attenuated by setting the resonance frequency by the inductor 704 and the capacitor 705 shown in FIG. 13A to 1.2 GHz.
  • the first down converter 103 shown in FIG. 13B is a configuration example in which an inductor 706 and a capacitor 707 connected in series are connected between differential outputs. Even with such a configuration, the same effect as the configuration shown in FIG. 13A can be obtained. Although the configuration shown in FIG. 13B can not remove the common mode signal, it can reduce the circuit area because the number of elements can be reduced.
  • the attenuation of the blocker in the vicinity of 1.2 GHz is 40 dB or more.
  • the frequency difference is small between 0.8 GHz and 1.2 GHz, it is necessary to increase the order of the low-pass filter in order to remove blockers such as wireless LAN while passing signals in the frequency band used in the UWB wireless communication device There is. Therefore, the circuit area and power consumption of the low pass filter are increased.
  • FIG. 14 is a block diagram showing the configuration of the UWB wireless communication apparatus according to the fourth embodiment.
  • the fourth embodiment shows an example of a transmitter for transmitting a UWB signal.
  • the transmitter of this embodiment includes a baseband processing circuit 114, a first up-converter 811, a D / A converter 810, a low pass filter 809, a hopping complex filter 808, and a first local generator. And 104, a second up-converter 803, a power amplifier 802, and a transmission antenna 801.
  • the first up-converter 811 is implemented by digital signal processing, and converts, for example, a ⁇ 264 to +264 MHz baseband signal into a +264 to +792 MHz IF signal centered at 528 MHz, using a 528 MHz local signal. As in the case of the receiver, the first up-converter 811 does not need to convert the frequency at the time of transmission of the symbol f 2, and may pass the signal input from the baseband processing circuit 114 as it is.
  • the D / A converter 810 of this embodiment may perform D / A conversion from the center frequency of the symbol f1 to the center frequency of the symbol f3. Specifically, it is sufficient to have a conversion rate capable of D / A conversion of an IF signal of -528 to +528 MHz.
  • the signal component of the frequency of symbol f3 is removed by hopping complex filter 808, for example, at the time of transmission of symbol f1, the signal component of symbol f1 in the frequency band of symbol f3 by D / A conversion. There is no problem even if appears.
  • the low pass filter 809 passes frequency components in the IF band of ⁇ 792 to +792 MHz and attenuates frequency components outside the IF band.
  • the frequency of the symbol f2 is null (null), so that aliases generated at frequencies lower than the symbol f1 and higher than the symbol f3 are null.
  • the null of this alias has a bandwidth of about 528 MHz. That is, at the time of transmission of symbol f1 and symbol f2, a signal exists in the frequency band up to about 792 MHz in absolute value, the frequency band of +792 to +1320 MHz becomes a null section, and steep attenuation characteristics are required for low pass filter 809 I will not. Therefore, the order of the low pass filter 809 can be lowered.
  • Hopping complex filter 809 has the same function as hopping complex filter 108 used in the receiver. However, it is also possible to change the filtering characteristics of the hopping complex filter between the receiver and the transmitter as needed.
  • an OFDM baseband signal for transmission is output and input to the first up-converter 811.
  • the first up-converter 811 When transmitting the symbol f1, the first up-converter 811 converts a baseband signal centered at DC into an IF signal centered at 528 MHz, for example.
  • the IF signal output from the first up-converter 811 is input to the D / A converter 810.
  • the sampling frequency and conversion rate of the D / A converter 810 of this embodiment are 1056 MHz, and the Nyquist frequency is 528 MHz. Therefore, as indicated by the hatched portion in FIG. A signal of +264 to +528 MHz appears as an alias in the frequency band -792 to -528 MHz.
  • the low pass filter 809 eliminates unnecessary signals by providing a cutoff frequency of, for example, 792 MHz or more.
  • An unnecessary signal is the unnecessary alias of 1320 MHz or less described above.
  • the output signal of low pass filter 809 is input to hopping complex filter 808.
  • hopping complex filter 808 When transmitting symbol f1, hopping complex filter 808 switches to + blocking characteristic, suppresses the frequency component of symbol f3, and passes symbol f1.
  • the output signal of hopping complex filter 808 is input to the IF port of second up-converter 803.
  • the second upconverter 803 converts the IF signal into an RF signal using the local signal generated by the first local generator 104.
  • the output signal of the second up-converter 803 is input to the power amplifier 802, amplified to a predetermined transmission level by the power amplifier 802, and radiated to space via the transmission antenna 801.
  • the first up-converter 811 When transmitting the symbol f2, the first up-converter 811 outputs the symbol f2 as it is without up-conversion.
  • a method of stopping the up conversion of the first up converter 811 for example, a method of inputting a DC signal as a local signal to the first up converter 811 or a path not passing through the first up converter 811 using a switch or the like. There is a way to
  • the symbol f 2 that has passed through the first up-converter 811 is converted to an analog signal by the D / A converter 810, and the low pass filter 809 removes unwanted alias.
  • the low-pass filter has a relatively low-order configuration That's it.
  • the cutoff frequency of the low pass filter 809 is lower than when transmitting the symbol f1 and the symbol f3.
  • Hopping complex filter 808 switches to all pass characteristics and passes symbol f 2.
  • hopping complex filter 808 switches to -f blocking characteristics, suppresses the frequency component of symbol f1, and passes symbol f3 (see FIG. 15 (c)).
  • the frequency of the local signal generated by the first local generator 104 is set to the center frequency of each band group as in the receivers shown in the first to third embodiments, and the frequency is hopped. Even in this case, the frequency is fixed for each band group. That is, the frequency of the local signal is only one per band group.
  • the transmitter it is possible to reduce the local leak occurring due to the variation between the elements constituting the second up-converter 803. For example, when there are three local signals, it is necessary to correct the local leak at each of the three frequencies, so that the size of the correction circuit such as the D / A converter used for the correction becomes large.
  • the local leak to be corrected is only one frequency, and it is not necessary to switch the correction amount in accordance with hopping. Therefore, the size and power consumption of the correction circuit can be dramatically reduced. Further, in the present embodiment, since D / A conversion is performed on two symbols having a frequency band of about 528 MHz, the conversion rate of the D / A converter may be about 1 Gsps.
  • the transmitter of this embodiment by setting the frequency of the local signal generated by the local generator at the center frequency of the band group, the negative frequency band and the positive frequency band of the IF signal become equal. . Therefore, even if there is only one local signal, the conversion rate required for the D / A converter can be minimized. Further, by setting the frequency of the local signal to one for each band group, it is not necessary to generate the local signal using a mixer or a divider.
  • a hopping complex filter that can switch the filtering characteristic, it is possible to remove an image signal that changes for each band hopping, and it is possible to cut out a signal of a desired band. Therefore, it is not necessary to use a circuit having a large scale or a circuit operating at high speed as a local generator or a D / A converter. Therefore, the circuit area and power consumption of a local generator, D / A converter, etc. can be reduced, and local leaks and spurs generated for performing high-speed hopping can be reduced.
  • FIG. 16 shows an example of the configuration for switching the presence / absence of interleaving operation by two D / A converters.
  • the two D / A converters shown in FIG. 16 may have a conversion rate about 1/2 or more of the conversion rate required to D / A convert the symbols f1 to f3. Specifically, since the symbols f1 to f3 are approximately -792 to +792 MHz, usually, 1584 Msps covering this range is necessary as a conversion rate, but in the present embodiment it is about 792 MHz or more in this embodiment. Good.
  • the unnecessary band is removed by hopping complex filter 808 having + f blocking characteristics or ⁇ f blocking characteristics.
  • the D / A converter 810 performs an interleaving operation.
  • interleaving operation of two A / D converters having a conversion rate of 792 Msps it is possible to obtain a conversion rate of 1584 Msps, which is twice that of the D / A converter 810.
  • I signal or Q signal for example, only I signal is D / A converted, an image signal generated by D / A converting only one signal (symbol f 3 in the case of symbol f 1) ) Is removed by hopping complex filter 808. That is, by providing the hopping complex filter 808, only the symbol f1 is cut out.
  • the D / A converter 810 D / A converts the I signal and the Q signal with two D / A converters without performing interleaving operation.
  • the conversion rate at this time is 792 Msps, and the Nyquist frequency is 1/2, which is 396 MHz.
  • the symbol f2 since the symbol f2 is in the range up to 264 MHz in absolute value, it can be converted into an analog signal with a sufficient margin.
  • the D / A converter 810 performs an interleaving operation as at the time of transmission of the symbol f1.
  • hopping complex filter 808 is switched to the -f blocking characteristic to block the frequency component of symbol f1 and pass symbol f3.
  • FIG. 17 is a block diagram showing the configuration of the UWB wireless communication apparatus according to the fifth embodiment.
  • the fifth embodiment is an example of a receiver for receiving a UWB signal as in the first to third embodiments.
  • the receiver according to the fifth embodiment includes the receiving antenna 101, the low noise amplifier (LNA) 102, the first down converter 103, and the first local generation shown in the first embodiment.
  • a selection filter 1101, a variable gain amplifier 1102 and an A / D converter 1103 are provided in addition to the unit 104, the hopping complex filter 108 and the baseband processing circuit 114.
  • the receiver according to the fifth embodiment has a configuration in which a selection filter 1101 capable of changing the filtering characteristic is connected downstream of the hopping complex filter 108 instead of the second down converter described in the first embodiment. It is.
  • the configuration of the receiving antenna 101, the low noise amplifier (LNA) 102, the first down converter 103, the first local generator 104, the hopping complex filter 108, and the baseband processing circuit 114 is the receiver shown in the first embodiment. The description is omitted because
  • the selection filter 1101 operates as a band pass filter that passes frequencies of, for example, 264 to 792 MHz and attenuates the others when receiving the symbol f1 and the symbol f3.
  • the selection filter 1101 when the symbol f2 is received, the selection filter 1101 operates as a low pass filter that passes up to, for example, a frequency around 264 MHz and attenuates the others.
  • the filtering characteristic of the selection filter 1101 is switched at high speed in accordance with the hopping operation of the UWB signal in accordance with, for example, the control signal from the baseband processing circuit 114, like the hopping complex filter 108.
  • variable gain amplifier 1102 amplifies, for example, frequency signals up to about 792 MHz through which the symbol f1 to the symbol f3 pass, as in the second embodiment.
  • the A / D converter 1103 converts a frequency signal up to about 792 MHz, for example, like the variable gain amplifier 1102, but sets the conversion rate to, for example, 528 Msps. That is, the Nyquist frequency is set to 264 MHz.
  • this is a band necessary for converting only the symbol f2 near DC, but in the present embodiment, the symbols f1 and f3 are undersampled at this conversion rate.
  • up to hopping complex filter 108 operates in the same manner as in the first embodiment.
  • the selection filter 1101 When receiving the symbol f1, the selection filter 1101 operates as a band pass filter (BPF) that passes the frequency component of the symbol f1 as shown in FIG. 18A and suppresses other signals and noise.
  • BPF band pass filter
  • Variable gain amplifier 1102 amplifies the IF signal output from filter 1101 to a necessary level in accordance with the dynamic range of A / D converter 1103, and outputs the amplified signal to A / D conversion 1103.
  • the A / D conversion 1103 undersamples the symbol f1 as described above.
  • a / D conversion 1103 can be undersampled is that only the symbol f1 is cut out by the hopping complex filter 108 and the filter 1101.
  • hopping complex filter 108 switches to the all pass characteristic, and filter 1101 operates as a low pass filter (LPF) to cut out symbol f2 (see FIG. 18B).
  • LPF low pass filter
  • the symbol f 2 is within the Nyquist frequency of the A / D converter 1103, it is A / D converted without any problem by the A / D converter 1103.
  • hopping complex filter 108 switches to the -f blocking characteristic, and filter 1101 operates as a band pass filter (BPF) that cuts out symbol f3 (see FIG. 18C).
  • BPF band pass filter
  • the symbol f3 is outside the Nyquist frequency of the A / D converter 1103. However, since only the symbol f3 is cut out by the hopping complex filter 108 and the filter 1101, the A / D converter 1103 causes no problem. It is converted.
  • the circuit area and power consumption of the A / D converter 1103 are minimized. It can be limited.
  • the receiver of this embodiment has the effect of minimizing the circuit area and power consumption of the entire receiver, in addition to the same effects as the receivers of the first to third embodiments.
  • the band group is described as being constituted of three bands, but the number of bands constituting the band group is limited to three. If the frequency of the local signal is set to the center frequency of the band group instead, the number of bands constituting the band group can be the same as above regardless of the odd number or the even number. .
  • the frequency of the local signal may be set to the center frequency of the second band as in the first to fifth embodiments. Just do it.
  • the frequency of the local signal may be set to the frequency between the second band and the third band.
  • the conversion rate of the A / D converter and the D / A converter can be minimized by suppressing the image signal using the hopping complex filter.
  • the superior effect of the present invention can be obtained by filtering the image signal using the hopping complex filter as long as the image signal clashes.
  • FIG. 19 is a block diagram showing the configuration of the UWB wireless communication apparatus of the sixth embodiment.
  • FIG. 19 shows a configuration example of a UWB wireless communication apparatus capable of coping with both a communication scheme in which a plurality of bands are sequentially hopped and a communication scheme in which a plurality of bands are simultaneously used.
  • the UWB wireless communication apparatus shown in FIG. 19 outputs the output signal of the A / D converter comprising two sets corresponding to the I signal and the Q signal to the UWB wireless communication apparatus shown in FIG. 8 as it is, or A switch 2001 for outputting only one of the I signal and the Q signal and a control unit 2005 capable of communicating with the upper layer are added.
  • the control unit 2005 includes a signal processing circuit 2003 that performs baseband signal processing, and a control circuit 2002 that controls each component of the wireless communication apparatus.
  • Control unit 2005 includes hopping complex filter 108, local generator 104, low pass filter 401, variable gain amplifier 402, A / D converter 403, switch 2001, second down converter (orthogonal modulator) 404, and second low pass The operation of the filter 405 is controlled.
  • control unit 2005 changes the frequency of the local signal, controls the pass band of the hopping complex filter 108, changes the conversion rate of the A / D converter 403, and the power supply of each component. Turn OFF to stop the operation.
  • each signal of the symbols f1 to f3 can be sequentially cut out by switching the characteristics of the hopping complex filter at high speed as described above. This applies to both transmitters and receivers.
  • the UWB wireless communication apparatus of the sixth embodiment operates in the same manner as the second embodiment (FIG. 8, FIG. 9, FIG. 10, FIG. 11).
  • Device bandwidth the low pass filter pass band (band), and the operation of stopping the I signal and the Q signal.
  • the A / D converter 403 is provided with a conversion rate that covers all bands hopping.
  • a conversion rate that covers all bands hopping.
  • an A / D converter capable of A / D conversion of signals in frequency bands of three bands is provided.
  • the conversion rate of the A / D converter 403 is 1584 Msps.
  • the conversion rate of the A / D converter 403 is not changed during hopping of the symbols f1 to f3. However, for the symbol f 1 and the symbol f 3, since the signal exists in the real area (real area) by the processing of the hopping complex filter 108, any one of the A / D converter 403 provided with two for I signal and Q signal Operation can be stopped.
  • the first low pass filter 401 of this embodiment has a frequency characteristic that passes frequency components of three bands in the complex region, and frequency components of 1.5 bands in the real region. It has a frequency characteristic that allows
  • the UWB has a frequency characteristic of passing frequency components of ⁇ 792 MHz (three bands) in the complex region, and has a frequency characteristic of passing frequency components of 792 MHz (1.5 bands) in the real region.
  • the operation shown in FIG. 20 is that the operation of the path for Q signal can be stopped when symbols f1 and f3 are received, and power consumption can be reduced accordingly.
  • the control unit 2005 issues an instruction to each unit in accordance with the hopping of the symbols f1 to f3.
  • the switch 2001 is set to a mode in which only either the I signal or the Q signal is allowed to pass. For example, s1 shown in FIG. 20 is turned off and s2 is turned on.
  • the output signal of the A signal for I signal 403 is input to both inputs of the second down converter 404 for I signal and Q signal of the next stage.
  • the A / D converter 403 for the Q signal, the variable gain amplifier 402 for the Q signal, and the first low pass filter 401 for the Q signal are not used, they can be stopped. This can reduce the power consumption necessary for the operation of the Q signal path.
  • control unit 2005 sets the symbol f2 at the time of switching from the symbol f1 to the symbol f2.
  • This switching time is as short as about 10 ns, but in the present embodiment, it can be coped with by the high speed that the hopping complex filter 108 and the switch 2001 have.
  • the switch 2001 is switched to a mode in which both the I signal and the Q signal are allowed to pass.
  • s1 shown in FIG. 20 is turned on and s2 is turned off. In this case, the operation of the path for the stopped Q signal is resumed, and processing is performed on each of the I signal and the Q signal.
  • the symbol f3 operates in the same manner as the symbol f1 except that the stop band of the hopping complex filter 108 is made negative (the pass band is positive).
  • FIG. 21 shows an operation in the case of operating three bands simultaneously.
  • the frequency of the local signal is set to the center of the band group, here the center frequency of the frequency bands of multiple bands operating simultaneously.
  • Control unit 2005 controls hopping complex filter 108 to all pass characteristics.
  • the first low pass filter 401 and the A / D converter 403 are controlled to correspond to the 3-band frequency band, and the switch 2001 is controlled to a mode in which both the I signal and the Q signal are allowed to pass.
  • the operation of the analog unit differs from the operation shown in FIG. 20 only in that hopping complex filter 108 is made to have an all-pass characteristic over all symbols.
  • the hopping complex filter 108 can shift from the mode shown in FIG. 20 to the mode shown in FIG. 21 at high speed by the benefit of the high speed of the hopping complex filter 108.
  • Setting the frequency of the local signal in the middle of the band group, ie, in the middle of the frequency range of the band to be used, which is a feature of the present invention, enables high-speed transition between both modes.
  • the former is a logic circuit for processing information
  • the latter is a low noise amplifier, a mixer, a local generator or the like provided in the RF unit.
  • the multiband communication which carries information as much as possible and transmits at one time has a remarkable effect. This is based on the fact that selecting multiple bands does not require changing the operation of the low noise amplifier, mixer, local generator, etc. In other words, the power consumption of the low noise amplifier, mixer and local generator does not change.
  • the first method is to provide FFT bits for three bands. For example, although FFT processing for normal 1-band UWB communication has 128 bits, it is possible to execute FFT processing for three bands at a time by providing triple 384 bits.
  • the second method is a method of performing FFT processing by dividing into predetermined units.
  • the division into one band is preferable because it is possible to use an FFT block having the same configuration as in one band communication.
  • a method of dividing each band there are a method using two sets of SSB mixers, that is, four multipliers, and a method using complex operation.
  • the second down converter 404 is configured of four multipliers.
  • the signal input to the I input of the second downconverter 404 is input to the two multipliers.
  • the second local signal of cos ⁇ t is input to one of the multipliers, and the second local signal of sin ⁇ t is input to the other of the multipliers, and is multiplied by the signal input to the I input.
  • is set to the center frequency of the symbol f1 or the symbol f3, and is set to 528 MHz in UWB.
  • the same operation is performed on the Q input signal, and the result of adding the cos multiplication result of the I input and the cos multiplication result of the Q input is the I output of the second down converter, and the sin multiplication result of the I input
  • the subtraction result of the Q input with the sin multiplication result is the Q output of the second orthogonal transformer
  • the second down converter 404 can be configured with complex operation and two mixers.
  • the image frequency can be suppressed.
  • the complex operation for removing the image frequency can be realized, for example, by replacing the function equivalent to the capacitor with the differential operator because the rotation operator with the phase of 90 ° is used.
  • the differential operation in digital processing corresponds to the deviation between data of time series data.
  • the second low pass filter 405 is used to remove the signal components of the symbol f1 and the symbol f3 present on the high frequency side when extracting the signal of the symbol f2.
  • switching between single band operation such as high speed hopping and multiple band simultaneous operation is instructed from the MAC (media access control) layer to the baseband processing circuit 114.
  • MAC media access control
  • the control unit 2005 illustrated in FIG. 19 may have only a function as a baseband processing circuit, and may also have a MAC layer function.
  • the MAC layer monitors the amount of data traffic and determines the PHY (physical layer) transmission rate according to the instruction from the higher layer.
  • the multiple band simultaneous operation since the multiple bands are occupied, it is determined whether to shift to the multiple band operation on the condition that wireless communication of another piconet or another standard is not performed in the corresponding band. In order to realize this, it is preferable to be able to acquire the use situation of the frequency in real time. It is preferable to be able to acquire the usage status of the three bands by collectively performing A / D conversion on the three bands in the superframe period and the like. Such a function consumes power to some extent, and may be implemented only in the host computer, for example, in an environment where the host computer and the device terminal exist.
  • a battery drive device for example, a device terminal
  • packets may not be filled with meaningful data. In such a case, it is preferable to select one band operation. Conversely, if traffic rises and packets are filled with valid data, it is possible to reduce the power required to transmit the same amount of data by selecting the multiple band operation and transmitting in a short time. The selection of the one band operation and the multiple band operation may be determined according to such transfer data amount.
  • C / N carrier and noise
  • the operation mode to be used may be selected by analyzing the amount of C / N in each band from data obtained by A / D conversion in three bands.
  • this band can be used even if it does not disturb other stations. If it is determined that the utilization efficiency of power does not improve, multiband communication or single band communication not including this band may be used.
  • the operation mode can be determined according to the process of calculating, the process of calculating the communication rate and the power consumption relationship from the maximum ratio combining calculation, and the process of determining the communication rate and the operation mode.
  • Maximum ratio combining is used in space diversity and MIMO (multi-input / multi-output) communication with multiple antennas, and when the use space and use frequency are determined, the maximum communication rate obtained under the communication environment Can be determined.
  • a specific frequency for example, the 50th tone of the OFDM symbol of the symbol f1 is used by another communication (such as narrowband communication).
  • the communication rate and the operation mode are determined so as to avoid the specific tone of the specific band by the same procedure as the process shown in FIG.
  • the detection of the used tone has a method of carrying out the FFT process of the several band output from A / D converter collectively, and a method which performs an FFT process in order for every band, and investigates the condition of each tone.
  • C / N may be calculated for each tone, or C / N may be calculated in band units or multiple tone units, but the control is performed in tone units, which is the same. .
  • the receiver In the three-band simultaneous communication, signals are simultaneously present in the three bands of the symbols f1 to f3, and transmission and reception using the three bands becomes possible by making the hopping complex filter all pass.
  • the receiver In order to use three bands simultaneously, the receiver needs an A / D converter (D / A converter in the transmitter) that can cover three or more bands.
  • the band of three bands is 1584 MHz ( ⁇ 792 MHz which is the band in the complex domain) which is three times 528 MHz, and A / D of 1584 Msps to convert this band.
  • a converter and a D / A converter are required. Since the frequency of the local signal is at the center of the three bands, and the band of three bands (1584 MHz) exists at ⁇ 792 MHz around the frequency of this local signal, the Nyquist frequency of 792 MHz is good.
  • the A / D converter and the D / A converter in the hopping communication and the 3-band simultaneous communication may have the same conversion rate or may change the conversion rate.
  • the minimum conversion rate required for three-band simultaneous communication is the conversion rate (1584Msps) corresponding to the above-described three-band frequency band (for example, 1584 MHz).
  • the same conversion rate can be applied to hopping communication because it can be handled.
  • a conversion rate for example, 528 Msps or 1056 Msps
  • a conversion rate capable of converting one band (for example 528 MHz) or two bands (for example 1056 MHz) is provided.
  • the conversion rate is switched in the hopping communication by switching the conversion rate such that the conversion rate for three bands (for example, (1584Msps) for three bands simultaneous communication and the conversion rate for one band or two bands (for example 528Msps or 1056Msps) for hopping communication). Power consumption can be reduced.
  • FIG. 24 is an example of a transmitter performing one band operation and multiple band operation.
  • the transmitter of the sixth embodiment has a configuration for pausing either one of the I signal and Q signal paths, as in the configuration shown in FIG.
  • the control unit 2005 acts on each component of the path for I signal or the path for Q signal to cut off the power supply or cut off the supply of the bias current to stop one of the paths.
  • the transmitter is provided with the switch 2101 and the D / A converter is interleaved to supply the output to either the I signal or Q signal path. Is also possible.
  • FIG. 24 shows an example in which hopping complex filter 808 shown in FIG. 5 is used
  • hopping complex filter 808 uses the configuration shown in FIG. 6 as appropriate according to the intended operation or the like. It is also good.
  • the A / D converter is changed to a D / A converter, and the signal is processed from the baseband processing circuit toward the transmitting antenna It can be realized by For example, the operation can be expressed by replacing the A / D converter shown in FIG. 20 or 21 with a D / A converter and reversing the direction of the filter or amplifier. Seventh Embodiment By further extending the single band operation and the multiple band operation described above, the present invention can maximize the effect of the hopping complex filter.
  • FIG. 25 shows an example of a wireless communication apparatus using hopping complex filters that can cope with various modes.
  • the table shown in FIG. 25 shows usage modes of frequencies of one band operation, even band simultaneous operation, and odd band simultaneous operation in the horizontal direction, and represents high speed hopping and frequency fixing operation in the vertical direction.
  • the figure shows an operation focused on high-speed operation and an operation focused on low power during fixed frequency operation.
  • an error correction (FEC) function is implemented in a wireless communication device.
  • FEC error correction
  • redundancy is given not only in the time direction but also in the frequency direction.
  • redundancy is provided between the time direction and tones in the band.
  • frequency redundancy fast hopping, which can use distant frequencies, can have relatively high redundancy.
  • a host terminal apparatus performing coordination of a piconet may place emphasis on high-speed operation.
  • device terminals that have large power consumption limitations may be focused on low power consumption operation.
  • FIG. 1 An example configuration of one band communication, fixed frequency communication, and high speed operation is shown in FIG.
  • the frequency of the local signal is set at the center of the band group. Furthermore, in the example shown in FIG. 26, the complex filter is fixed to positive frequency blocking. Further, the A / D converter is set to the 1.5 band, and the low pass filter is also set to the 1.5 band.
  • FIG. 21 differs from the operation shown in FIG. 20 and FIG. 21 only in the setting of the hopping complex filter, and from the one-band communication and frequency fixed communication operation shown in FIG. 26, the hopping operation shown in FIG. It is possible to rapidly shift to the three bands simultaneous operation shown in FIG. Transition between the operations shown in FIGS. 20, 21 and 26 can also be performed at high speed.
  • FIG. 1 An example of even band simultaneous communication, fixed frequency, and high speed operation is shown in FIG.
  • FIG. 1 A configuration example of fixed frequency, low power consumption, and one band is shown in FIG.
  • the frequency of the local signal is set at the center of the symbol f1.
  • the hopping complex filter is set to all pass, the A / D converter is set to two band band, and the low pass filter is set to one band band. This makes it possible to lower the conversion rate of the A / D converter, and power consumption can be reduced accordingly.
  • FIG. 1 A configuration example of fixed frequency, low power consumption, and even band simultaneous is shown in FIG.
  • the frequency of the local signal is set between the symbol f1 and the symbol f2.
  • the frequency of the local signal is set to the center of the frequency range from the symbol f1 to the symbol f2 to be simultaneously operated.
  • the hopping complex filter is set to all pass characteristics, the A / D converter is set to two band bands, and the low pass filter is set to two band bands.
  • FIG. 30 is a table summarizing settings of the wireless communication apparatus when executing each mode shown in FIG.
  • Each mode of the wireless communication apparatus determines the use band, the transmission rate, the power consumption, and the interleaving mode according to the procedure shown in FIG. 31, and determines the operation mode. Then, according to the procedure shown in FIG. 32, the interleave mode, used band, complex filter, I / Q operation, low pass filter and A / D converter are respectively shown in FIG. 30 in order to shift to the operation mode.
  • the mode of the wireless communication apparatus can be switched by controlling the hopping complex filter, the local generator, the low pass filter, the A / D converter, the down converter, the D / A converter, the selector, and the like by the control unit 2005.
  • the control unit of the present invention described above can be realized by, for example, a sequential circuit configured by a logic circuit or a computer that operates according to a program.
  • the sequential circuit may be a circuit whose operation is defined in advance, or a circuit whose logic or order can be changed.
  • a microcontroller, a microprocessor, a DSP (digital signal processor), a personal computer, a work station or the like can be used, but the present invention is not limited thereto.
  • the configuration using only one local signal frequency reduces power consumption and reduces the circuit area while the controller
  • Various modes can be coped with by controlling the / D converter, I / Q path, LPF and the like.
  • high throughput can be obtained by simultaneous operation of a plurality of bands, and it is possible to cope with changes in traffic and improve the frequency utilization efficiency.
  • power consumption can be minimized according to the required transmission rate.
  • Conventionally there has been a method of reducing power consumption by stopping one of the I path and the Q path.
  • simultaneous operation of multiple bands and high speed hopping operation can be handled by the same circuit.
  • the LO frequency used in the simultaneous operation of a plurality of bands and the fast hopping operation can be made identical, and it is possible to switch between the two at high speed. The reason is that although the complex filter is switched in three conditions (+ f blocking, all pass, -f blocking) at the time of high speed hopping, it can be coped with by using one of the conditions (all pass) in multiple band simultaneous operation. is there. By sharing circuit resources, the chip area can be minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

 無線通信装置に、バンドグループの中心周波数付近に配置された第1のローカル周波数を発生させる第1ローカル発生器と、第1ローカル発生器からローカル信号の供給を受ける第1のダウンコンバータと、周波数ホッピングに応じて高速にその濾波特性を変化させる複素フィルタとを備える。ホッピングするバンドの中のローカル周波数をまたぐバンドにおける無線通信と複数のバンドを同時に使用する無線通信ではホッピング複素フィルタを全通過とさせ、それ以外の無線通信ではホッピング複素フィルタを片側周波数抑圧とさせる制御を行う。

Description

無線通信装置
 本発明は、超広帯域の複数のバンド間を高速にホッピングしつつ無線通信を行う無線通信装置に関する。
 近年の無線通信には高速なデータ伝送能力が要求され、例えばIEEE802.11aに準拠した無線LAN装置では54Mbpsの通信速度を実現している。さらに、より高速な480Mbpsクラスの通信速度を実現する技術として、UWB(Ultra Wide Band)がIEEE802.15.TG3aにて策定されている。
 このような高速通信を実現する無線通信装置では、シャノンの法則により占有する周波数帯域が非常に広くなり、例えばUWBを実現する通信装置(以下、UWB無線通信装置と称す)では3.1GHzから10.6GHzの広い周波数帯域を使用する。このように下限の周波数の約3倍の周波数帯域を必要とする無線通信装置はこれまで存在しなかった。
 このUWB無線通信装置の基本的な動作については、例えば米国特許出願公開第2004/0047285号明細書(以下、特許文献1と称す)に記載されている。
 UWB無線通信装置では、例えば図1(a)に示すように無線通信に用いる所定(例えば500MHz)の周波数帯域から成る複数のバンドを備え、各バンドを所定のシーケンスにしたがってホッピングしつつユーザデータ(以下、UWB信号と称す)を、例えばOFDM(Orthogonal Frequency Division Multiplexing)シンボルf1~f3単位で送受信する。
 特許文献1に記載された受信機は、受信した無線(RF:Radio Frequency)信号をベースバンド信号に直接変換するダイレクトコンバージョン方式を採用し、上記ホッピング動作に合わせて各バンドの無線周波数に対応する複数のローカル信号を生成する(図1(b))。受信したRF信号は、対応するローカル信号を用いてミキサにより500MHz帯のベースバンド信号にダウンコンバートされた後、変換レートが500Msps(Mega samples per second)のA/D変換器によってデジタル信号に変換される。
 一方、特許文献1に記載された送信機は、変換レートが500MspsのD/A変換器を備え、受信機と同様に上記ホッピング動作に合わせて各バンドの無線周波数に対応する複数のローカル信号を生成する。そして、各々に対応するローカル信号を用いてミキサにより送信対象のベースバンド信号をRF信号にアップコンバートする。
 また、UWB無線通信装置の他の背景技術例として、周波数が固定のローカル信号を用いて、各バンド間をホッピングするUWB信号を送受信する構成が特開2006-121439号公報(以下、特許文献2と称す)に記載されている(図1(c)及び図2(c)参照)。
 特許文献2に記載された受信機では、周波数帯域が2112MHzのIF(中間周波数)を高速にA/D変換する。このUWB無線通信装置では、各バンドの周波数帯域が528MHzであり、3つのバンド(第1~第3のバンド)のIF信号を一括してA/D変換する。ダウンコンバート後のIF信号の周波数帯域は-264~+1320MHzであり、第1のバンドのIF信号はDC(直流)を中心に存在する。それに対して第2のバンドのIF信号は528MHzを中心に存在し、第3のバンドのIF信号は1056MHzを中心に存在する。そのため、特許文献2に記載された受信機では、A/D変換後、デジタル信号処理にて再度ダウンコンバートを行っている。
 さらに、無線通信装置の他の背景技術例として、複素フィルタを用いてIF信号の周波数が比較的低いロウIF無線通信装置を構成する例が特開2006-121546号公報(以下、特許文献3と称す)に記載されている(図2(a)参照)。この無線通信装置が備えるローカル信号を生成するシンセサイザには、各バンドのローカル信号を発生する必要がある、いわゆるマルチバンド発生器が用いられる。特許文献3に記載された無線通信装置では、このようなマルチバンド発生器を備えることで、UWB無線通信装置におけるロウIF無線通信装置を実現している。
 また、米国特許出願公開第2006/0051038号明細書(以下、特許文献4と称す)には、ホッピングフィルタを用いてマルチキャリアを分波する受信機の構成例が記載されている(図2(b)参照)。特許文献4では、ホッピングフィルタの後段に直交変調器を配置している。特許文献4に記載のホッピングフィルタは複素フィルタではなく、RF領域でフィルタバンクを切り換えてマルチキャリアを分離する構成である。
 さらに、妨害波(ブロッカ)対策について検討したUWB無線通信装置が、例えば特開2004-096141号公報(以下、特許文献5と称す)に記載されている(図2(d)参照)。特許文献5では、A/D変換器(ADC)の変換レートを変化させて誤り率(S/NやC/N)の変化を観測し、電力算出器を用いて妨害波の影響があるか否かを判定している。特許文献5に記載のUWB無線通信装置は、妨害波の影響がある場合、A/D変換器の変換レートを高くすることで対処している。
 上述した特許文献1及び特許文献2に記載されたUWB無線通信装置では以下に記載する問題がある。
 第1の問題はローカル信号を生成する回路の規模や消費電力が大きくなることである。
 特許文献1に記載された受信機では、9.5ns程度のインターバル内でホッピング先の無線周波数に対応するローカル信号を生成する必要がある。通常、複数の周波数信号を生成するにはPLL(Phase Locked Loop)回路を用いるが、PLL回路は所望の周波数でロックするまでに数μ秒程度の時間を必要とする。したがって、ローカル信号の周波数を数nsで切り替えるためには、多数のSSB(Single Side Band amplitude modulation)ミキサや分周器を用いて各バンド用のローカル信号を合成する必要がある。そのため、回路面積や消費電力が非常に大きくなる。このような高速に周波数がホッピングする動作は、これまでの無線通信装置には存在しなかった。
 また、特許文献2に記載された構成も消費電力が大きくなる問題がある。上述したように、特許文献2では2112MHzのIF信号を高速にA/D変換する必要がある。そのため、高速なスイッチング動作を実現するためにアンプやバッファ等に大きなバイアス電流を供給する必要がある。そのため、消費電力が大きくなってしまう。また、回路内に存在する寄生容量を高速に充放電することになるため、この点でも消費電力が大きくなってしまう。
 第2の問題は不要輻射(スプリアス)が大きくなることである。
 上述したように、特許文献1では複数種類の周波数信号をミキサや分周器を用いて合成することで各バンドに対応する周波数のローカル信号を生成する。そのため、合成に用いる周波数信号の整数倍の周波数成分がローカル信号に現れてしまう。特にSSBミキサは、その出力振幅を大きくするために入力振幅も大きくする必要があり、入力振幅を大きくすることでSSBミキサの非線形性によって高調波が発生する問題もある。
 また、SSBミキサに入力した周波数成分がそのままSSBミキサの出力に現れるローカルフィールドスルーもスプリアスの増大要因となる。この問題も高速なホッピングを実現するために非線形素子であるミキサを用いることで発生する問題であり、これまでの無線通信装置には存在しなかった。
 第3の問題はミキサやアンプのオフセットを除去するのが困難なことである。また、オフセットを除去できても、そのための除去回路の回路規模(面積)や消費電力が大きくなってしまう。
 この問題はホッピングに応じてミキサ(ダウンコンバータ)のオフセット量が変化することに起因する。ダウンコンバータとして用いるミキサでは、ローカル信号とアンテナ等へ回り込んで再混入する自信号(ローカル信号)とを乗算することでDC成分(オフセット)を生成するセルフミキシングと呼ばれる現象が起きる。セルフミキシングには周波数依存性があり、ローカル信号の周波数によってオフセット量が変化する。上述したように、UWB無線通信装置ではローカル信号の周波数が高速に切り替わるため、それに伴ってオフセットも高速に変化する。このような問題も高速なホッピングを実現するために発生する問題であり、これまでの無線通信装置には存在しなかった。
 第4の問題は送信機のミキサ(アップコンバータ)のローカルリークを除去するのが困難なことである。また、ローカルリークを除去できても、そのための除去回路の回路規模(面積)や消費電力が大きくなってしまう。
 通常、アップコンバータ(特に、MOSトランジスタを用いたアップコンバータ)では、入力されたローカル信号成分がそのまま出力されるローカルリークの問題がある。特にUWB無線通信装置ではローカルリーク量が周波数に依存して変化する。
 ローカルリークは、アップコンバータのベースバンドポートに入力されるオフセット電圧に起因してRFポートから出力されるローカル信号成分と、アップコンバータのRFポートや送信用の電力増幅器へローカル信号が飛び込むことで送信信号に混入する(ローカルフィールドスルー現象)ローカル信号成分とを加算した量になる。特に、後者は周波数に依存するため、上記ホッピング動作に伴ってローカルリーク量も変化する。
 通常、ローカルリークを補正するには、アップコンバータのベースバンドポートにローカルリークを打ち消すためのDC電圧を印加する構成が採用される。しかしながら、そのような構成では、バンドが切り替わる度に、異なるDC電圧を、高速にかつ精度よくアップコンバータのベースバンドポートに供給する必要がある。すなわち、ローカルリークを補正する回路の実現は困難であり、実現できても回路規模(面積)や消費電力が大きくなる。この問題も高速なホッピングを実施するために発生する問題であり、これまでの無線通信装置には存在しなかった。
 さらに、上述した特許文献3~5に記載されたUWB無線通信装置では以下に記載する問題がある。
 上述したように、特許文献3には複素フィルタを用いた無線通信装置が記載されている。特許文献3に記載された無線通信装置では、複数のローカル信号を高速に切り換える、いわゆるマルチバンド発生器を使用する必要がある。そのため、上記第1の問題と同様に、ローカル信号を生成する回路の規模や消費電力が大きくなる問題がある。特許文献3では、各バンド端の周波数のローカル信号を生成してロウIF無線通信装置を構成しており、ローカル信号の種類を低減するものではない。
 上述したように、特許文献4にはホッピングフィルタを用いた無線通信装置が記載されている。特許文献4では、RF領域で使用するホッピングバンドパスフィルタの構成例を示しており、GHz帯の周波数を使用するUWB無線通信装置に適用するのは困難である。仮にGHz帯の周波数で動作するホッピングバンドパスフィルタを実現できても、NFなどの性能が悪化し、また回路面積が大きくなってしまう。そのため、一般的にはGHz帯の周波数で構成される各バンドを分離するには、SAWフィルタやセラミックフィルタ等の特殊なフィルタを用いる必要がある。
 上述したように、特許文献5には妨害波のレベルに応じてA/D変換器の変換レートを変化させる構成が記載されている。特許文献5は、A/D変換器の消費電力を最小限にしつつ、妨害波のレベルに応じて変換レートを最適化するための一手法を示しているに過ぎない。
 そこで本発明は、高速なホッピングを実施するために発生する、回路面積や消費電力が大きくなる問題、スプリアスが大きくなる問題、オフセットやローカルリークが大きい問題を低減できる無線通信装置を提供することを目的とする。
 上記目的を達成するため本発明の無線通信装置は、無線通信に用いる、所定の周波数帯域から成る複数のバンドから成るバンドグループを備え、前記バンドグループ内の各バンドを所定のシーケンスでホッピングする無線通信と、前記バンドグループ内の複数のバンドを同時に使用する無線通信の両方に対応する無線通信装置であって、
 前記バンドグループの中心周波数に等しいローカル信号を生成するローカル発生器と、
 前記ローカル発生器で生成されたローカル信号を用いて前記バンドグループ内の無線信号をダウンコンバートする第1のダウンコンバータと、
 前記ダウンコンバートされた信号を入力として通過域を変化させるホッピング複素フィルタと、
 前記ホッピング複素フィルタの通過域を制御する制御部と、
を有し、
 前記制御部は、
 前記ホッピングするバンドの中のローカル周波数をまたぐバンドにおける無線通信と前記複数のバンドを同時に使用する無線通信では前記ホッピング複素フィルタを全通過とさせ、それ以外の無線通信では前記ホッピング複素フィルタを片側周波数抑圧とさせる制御を行う。
 または、無線通信に用いる、所定の周波数帯域から成る複数のバンドから成るバンドグループを備え、前記バンドグループ内の各バンドを所定のシーケンスでホッピングする無線通信と、前記バンドグループ内の複数のバンドを同時に使用する無線通信の両方に対応する無線通信装置であって、
 前記バンドグループの中心周波数に等しいローカル信号を生成するローカル発生器と、
 前記ローカル発生器で生成されたローカル信号を用いて前記バンドグループ内の無線信号をアップコンバートする第1のアップコンバータと、
 前記アップコンバートされた信号を入力として通過域を変化させるホッピング複素フィルタと、
 前記ホッピング複素フィルタの通過域を制御する制御部と、
を有し、
 前記制御部は、
 前記ホッピングするバンドの中のローカル周波数をまたぐバンドにおける無線通信と前記複数のバンドを同時に使用する無線通信では前記ホッピング複素フィルタを全通過とさせ、それ以外の無線通信では前記ホッピング複素フィルタを片側周波数抑圧とさせる制御を行う。
図1は、特許文献1,2に記載された無線通信装置によるホッピング動作を示す模式図である。 図2は、特許文献2~5に記載された無線通信装置の構成を示すブロック図である。 図3は、第1の実施の形態のUWB無線通信装置の構成を示すブロック図である。 図4は、図3に示したUWB無線通信装置によるホッピング動作を示す模式図である。 図5は、ホッピング複素フィルタの構成例及び特性を示す模式図である。 図6は、本発明で用いるホッピング複素フィルタの構成と動作を示す模式図である。 図7は、図3に示したUWB無線通信装置によって各シンボルを切り出す様子を示す模式図である。 図8は、第2の実施の形態のUWB無線通信装置の構成を示すブロック図である。 図9は、図8に示したUWB無線通信装置によって各シンボルを切り出す様子を示す模式図である。 図10は、図8に示したA/D変換器をインターリーブ動作させるときに各シンボルを切り出す様子を示す模式図である。 図11は、第2の実施の形態のUWB無線通信装置の動作を示す模式図である。 図12は、第3の実施の形態のUWB無線通信装置の構成を示すブロック図である。 図13は、ブロッカの除去能力を備えたダウンコンバータの構成例を示す回路図である。 図14は、第4の実施の形態のUWB無線通信装置の構成を示すブロック図である。 図15は、図14に示したUWB無線通信装置によって各シンボルを切り出す様子を示す模式図である。 図16は、図14に示したD/A変換器をインターリーブ動作させるときに各シンボルを切り出す様子を示す模式図である。 図17は、第5の実施の形態のUWB無線通信装置の構成を示すブロック図である。 図18は、図17に示したフィルタによる特性の切り替え例を示す模式図である。 図19は、第6の実施の形態のUWB無線通信装置の構成を示すブロック図である。 図20は、図19に示したUWB無線通信装置の動作例を示す模式図である。 図21は、図19に示したUWB無線通信装置の他の動作例を示す模式図である。 図22は、第6の実施の形態のUWB無線通信装置の処理手順を示すフローチャートである。 図23は、第6の実施の形態のUWB無線通信装置の処理手順を示すフローチャートである。 図24は、第6の実施の形態のUWB無線通信装置の構成を示すブロック図である。 図25は、様々なモードに対応できるホッピング複素フィルタを用いた無線通信装置の一例を示す表である。 図26は、第7の実施の形態のUWB無線通信装置の構成及び動作例を示す模式図である。 図27は、第7の実施の形態のUWB無線通信装置の他の構成及び動作例を示すブロック図である。 図28は、第7の実施の形態のUWB無線通信装置の他の構成及び動作例を示すブロック図である。 図29は、第7の実施の形態のUWB無線通信装置の他の構成及び動作例を示すブロック図である。 図30は、図25に示した各モードを実行する時の無線通信装置の設定をまとめて示した表である。 図31は、第7の実施の形態のUWB無線通信装置の処理手順を示すフローチャートである。 図32は、第7の実施の形態のUWB無線通信装置の処理手順を示すフローチャートである。
 次に本発明について図面を参照して説明する。
(第1の実施の形態)
 図3は第1の実施の形態の無線通信装置の構成を示すブロック図である。第1の実施の形態では、無線通信装置が備えるUWB信号を受信する受信機の例を示す。
 図3に示すように、第1の実施の形態の受信機は、受信アンテナ101、ローノイズアンプ(LNA)102、第1のダウンコンバータ103、第1のローカル発生器104、ホッピング複素フィルタ108、第2のダウンコンバータ109、第2のローカル発生器110、ローパスフィルタ(LPF)111、可変ゲインアンプ(VGA)112、A/D変換器113及びベースバンド処理回路114を有する。第1のローカル発生器104は、電圧制御発振器(VCO)107、分周器106及びセレクタ105を備えている。
 まず、図3に示す第1のローカル発生器104について説明する。
 UWB無線通信装置では、3つのバンドによって構成されるバンドグループ単位でUWB信号が送受信される。図4(b)に示すように、周波数のホッピングは、このバンドグループ内の3つのバンド間で実施される。
 図4(b)では、f1、f2、f3の順にホッピングする例を示しているが、ホッピングのシーケンスは7種類あり、異なる種類のシーケンスを使い分けることで同じ通信領域内に存在する複数のUWB無線通信装置と無線通信が可能になる(例えば、High Rate Ultra Wideband PHY and MAC Standard, ECMA-368参照)。
 以下では、図4(a)に示す第1のバンドグループ201を使用する場合を例にして、受信機の動作を説明する。
 第1のローカル発生器104は、第1のバンドグループの中心周波数である3960MHzを出力する。第1のバンドグループ201は、第1のバンド、第2のバンド、第3のバンドで構成されるため、3960MHzは第2のバンドの中心周波数でもある。
 背景技術のUWB無線通信装置では、上述したようにホッピング動作に合わせて、図1(b)に示したようにローカル信号の周波数を切り替えていた。本実施形態では、図4(b)に示すようにローカル信号の周波数をホッピング動作に合わせて切り替えずにバンドグループの中心周波数で固定する。但し、異なるバンドグループを用いる場合は、ローカル信号の周波数をそのバンドグループの中心周波数に変更する。UWB技術では、バンドグループの切り替えには高速性能が要求されていない。例えば、図4(a)に示す第1のバンドグループ(BG-1)201から第6のバンドグループ(BG-6)202へ変更する場合、第1のローカル発生器104は、第1のバンドグループ201の中心周波数である3960MHzから第6のバンドグループ202の中心周波数である8184MHzへ出力周波数を変更する。この周波数の変更速度は、変更後の周波数にてVCOがロックするのに必要な数μ秒よりも十分に遅くてよい。
 ここで、第1のバンドグループ201の中心周波数である3960MHzと第6のバンドグループ202の中心周波数である8184MHzとは整数倍の関係にはないが、8284MHzは3960MHzのおよそ2倍である。したがって、第1のローカル発生器104に1/2分周器を備えていれば、VCO107の発振周波数をわずかに変えるだけで第1のバンドグループ201と第6のバンドグループ202の中心周波数に対応するローカル信号をそれぞれ生成できる。その場合、分周比や発振周波数を変えた後、所要の周波数にVCO107を再びロックさせればよい。
 図3に示した第1のローカル発生器104は、VCO107にて8000MHz付近の周波数を生成し、分周器106にてVCO107の出力周波数を1/2にする回路例である。セレクタ105は、第1のバンドグループを受信した場合は分周器106の出力信号を選択し、第6のバンドグループを受信した場合はVCO107の出力信号を選択する。このとき、VCO107は、第1のバンドグループの中心周波数の2倍の周波数である7920MHzから第6のバンドグループの中心周波数である8184MHzの範囲で、プロセス、電源電圧、周辺温度等の各種の変動要因に対して十分なマージンを持つチューニングレンジを備えていればよい。
 なお、上記説明では、第1のバンドグループと第6のバンドグループで用いるローカル信号を生成する例を示したが、図3に示す第1のローカル発生器104は、発振器や分周器の構成を変えることで、他のバンドグループに対応する周波数のローカル信号を生成することも可能である。また、図3に示す第1のローカル発生器104は、発振器や分周器の構成を変えることで、2つのバンドグループだけでなく、より多くのバンドグループに対応するローカル信号を生成することも可能である。
 次に図3に示したホッピング複素フィルタ108について説明する。
 図5(a)に示すように、ホッピング複素フィルタ108は、ポリフェイズフィルタ1001及びセレクタ1002を備え、複数の濾波特性を高速に切り替えることが可能である。濾波特性は、例えばベースバンド処理回路114から出力される制御信号によって切り替えられる。ベースバンド処理回路114は、例えば受信したUWB信号のプリアンブル部に格納された情報を用いて同期を確立し、濾波特性の切り替えタイミングを決定すればよい。
 ポリフェイズフィルタ1001は、図5(b)に示すように、4個の抵抗器と4個のキャパシタとで構成された回路が、例えば直列に3段接続された構成である。
 図5(a)では省略されているが、ポリフェイズフィルタ1001には、図5(b)に示すように、I信号及びQ信号の正転信号(Iin+、Qin+)とその反転信号(Iin-、Qin-)とが入力される。これらの信号は、絶対値が等しく、Iin+、Qin+、Iin-、Qin-の順に各々90°の位相差を備えている。
 図5(b)に示すポリフェイズフィルタ1001は、各段の4個の抵抗器がそれぞれ等しい値で構成され、各段の4個のキャパシタがそれぞれ等しい値で構成されている。具体的には、Iin+とI+間、Qin+とQ+間、Iin-とI-間、Qin-とQ-間にそれぞれ抵抗器Rが配置され、Iin+とQ+間、Qin+とI-間、Iin-とQ-間、Qin-とI+間にそれぞれキャパシタCが配置されている。
 同様に、I+とI+間、Q+とQ+間、I-とI-間、Q-とQ-間にそれぞれ抵抗器Rが配置され、I+とQ+間、Q+とI-間、I-とQ-間、Q-とI+間にそれぞれキャパシタCが配置されている。
 また、I+とI+間、Q+とQ+間、I-とI-間、Q-とQ-間にそれぞれ抵抗器Rが配置され、I+とQ+間、Q+とI-間、I-とQ-間、Q-とI+間にそれぞれキャパシタCが配置されている。
 このような構成では、例えばIin+から入力された信号は抵抗器Rを通してI+へ出力され、Iin+と270°の位相差を持つQin-から入力された信号はキャパシタC1を通してI+へ出力される。このとき、Iin+から入力された信号はそのままの位相でI+へ出力され、Qin-から入力された信号はキャパシタCのインピーダンス1/jwCによって位相が回転してI+へ出力される。そのため、I+では抵抗器R1を通過した信号とキャパシタC1を通過した信号とが打消し合う。
 以上の処理は、Iin+、Qin+、Iin-、Qin-から入力された各信号に対して同様に実施され、さらに各段の回路においても同様の処理が実施される。そのため、図5(b)に示すポリフェイズフィルタ1001を用いると、I信号とQ信号の直交性を保ちつつ、所定の周波数信号の通過を阻止できる。
 本実施形態では、図5(b)に示すポリフェイズフィルタ1001が備える各段の抵抗器及びキャパシタについて、R、R、Rが異なる値となるように設定する。これによりポリフェイズフィルタ1001の各段で阻止する周波数が異なる値となり、図5(c)に示すように広い周波数範囲の信号の通過を阻止する濾波特性が得られる。ポリフェイズフィルタ1001による阻止性能は、I信号とQ信号の直交性にも依存するが、40dBc以上に設定可能である。
 なお、図5(c)に示す下向きの3つのピークは図5(b)に示したポリフェイズフィルタ1001の各段で阻止する周波数を示している。また、図5(c)に示す「-f阻止」はマイナス側の所定の周波数範囲(以下、マイナス周波数)の信号通過を阻止する特性(以下、-f阻止特性と称す)を示し、「+f阻止」はプラス側の所定の周波数範囲(以下、プラス周波数)の信号通過を阻止する特性(以下、+f阻止特性と称す)を示し、「全通過」はマイナス周波数及びプラス周波数の信号通過を阻止することなく全ての周波数信号を通過させる特性(以下、全通過特性と称す)を示している。
 ホッピング複素フィルタ108の-f阻止特性及び+f阻止特性を、本明細書では「片側周波数抑圧」とも称す。
 ホッピング複素フィルタ108を-f阻止特性に設定した場合はプラス周波数の信号がそのまま通過し、+f阻止特性に設定した場合はマイナス周波数の信号がそのまま通過する。また、ホッピング複素フィルタ108を全通過特性に設定した場合はマイナス周波数及びプラス周波数の信号が阻止されることなくそのまま通過する。
 例えばC=C=C=1pF、R=216Ω、R=320Ω、R=567Ωに設定すれば、後述するイメージ周波数の除去に必要な264~794MHz(または-264~-792MHz)の広帯域の阻止特性が得られる。
 このホッピング複素フィルタ108の-f阻止特性、+f阻止特性の切り替えはセレクタ1002を用いて実現する。セレクタ1002は、例えば図5(d)に示すように、第1のスイッチ群1003及び第2のスイッチ群1004を備えた構成である。
 第1のスイッチ群1003は、オン時にポリフェイズフィルタ1001から出力されたI信号及びQ信号をそのまま通過させる。第2のスイッチ群1004は、オン時にポリフェイズフィルタ1001から出力されたI信号をそのまま通過させ、Q信号の正転信号と反転信号とを入れ替えて出力する。
 このような構成では、第1のスイッチ群1003の各スイッチをオンにし、第2のスイッチ群1004の各スイッチをオフにすると、ホッピング複素フィルタ108が-f阻止特性に設定される。また、第1のスイッチ群1003の各スイッチをオフにし、第2のスイッチ群1004の各スイッチをオンにすると、ホッピング複素フィルタ108が+f阻止特性に設定される。
 なお、上述したように、第2のスイッチ群1004では、I信号をそのまま通過させ、Q信号の正転信号と反転信号の接続を入れ替えるため、I信号とQ信号の信号経路の寄生容量あるいはスイッチのチャージインジェクションやゲートフィールドスルーが異なる値となり、位相回転が起きてI信号とQ信号の直交性が維持できないおそれがある。したがって、第2のスイッチ群1004の各スイッチは、I信号とQ信号の直交性が維持されるように、上記チャージインジェクションやゲートフィールドスルーの値が等しくなるように配置するのが好ましい。
 また、無線通信装置の構成によっては、図6(a)~(e)に示すようにセレクタ1002とポリフェイズフィルタ1001の順序を入れ替える構成も用いることができる。このような構成でも図5(b)~(e)に示した回路と同様に動作する。
 ホッピング複素フィルタ108を全通過特性に設定する方法としては、以下が考えられる。
 例えば、ホッピング複素フィルタ108に、入出力端子間を接続するための第3のスイッチ群1009を備え(図5(d)参照)、ホッピング複素フィルタ108に入力されるI信号及びQ信号の正転信号と反転信号をそのまま出力するための経路を設ける構成がある。また、図5(b)に示したポリフェイズフィルタ1001が備える各キャパシタC~Cの接続をスイッチによって切り離す構成がある。
 上記第3のスイッチ群1009を備える構成は、-f阻止特性及び+f阻止特性の選択時に抵抗器を介して信号が出力され、全通過特性の選択時にスイッチを介して信号が出力されるため、-f阻止特性と全通過特性とで出力信号の減衰量に差が生じる。
 それに対してポリフェイズフィルタ1001の各キャパシタの接続をスイッチで切り離す構成では、全通過特性の選択時も抵抗器を介して信号が出力されるため、-f阻止特性及び+f阻止特性と全通過特性とで出力信号の減衰量に差が生じない効果がある。なお、上記第3のスイッチ群1009を備える構成でも、全通過特性の選択時に抵抗器等の減衰器にホッピング複素フィルタ108の入出力端子間を接続すれば、上記の問題は回避できる。
 さらに、ホッピング複素フィルタ108は、図5(e)に示すように、-f阻止特性のみ持つ第1のポリフェイズフィルタ1005、全通過特性を持つ第2のポリフェイズフィルタ1006、+f阻止特性のみ持つ第3のポリフェイズフィルタ1007及びそれらのフィルタ出力を切り替えるセレクタ1008を有する構成でもよい。
 図5(b)に示したポリフェイズフィルタ1001は、図5(c)に示したように、基準周波数(0Hz)の軸に対して線対称の関係にある-f阻止特性と+f阻止特性とが得られる。図5(e)に示すホッピング複素フィルタ108は、-f阻止特性と+f阻止特性とを上記線対称の関係にしない場合に適した構成である。
 なお、上記ホッピング複素フィルタ108は、受信したUWB信号を3つのバンドの信号に分離するための構成例を示しているが、分離数は3つに限定されるものではなく、いくつであってもよい。
 次に第1の実施の形態の受信機の動作について説明する。
 上述したように、UWB無線通信装置では、UWB信号が図4(b)に示した各バンド間で高速にホッピングする。図4(b)に示す四角はOFDMシンボルを示し、約500MHzの周波数帯域を備え、シンボル間のインターバルは約9.5nsである。
 この周波数がホッピングするUWB信号は、図3に示したアンテナ101で受信され、ローノイズアンプ102で増幅された後、第1のコンバータ103のRFポートに入力される。
 例えば第1のバンドグループを受信した場合、第1のダウンコンバータ103には第1のローカル発生器104で生成された3960MHzのローカル信号が供給される。第1のダウンコンバータ103のRFポートに入力された第1のバンド~第3のバンドのUWB信号は、約-792MHzから+792MHzのIF(中間周波数)信号にダウンコンバートされて出力される。このとき、第1のダウンコンバータ103からは位相差が90°のIF信号であるI信号とQ信号がそれぞれ出力される。
 I信号及びQ信号は、第1のダウンコンバータ103が備えるI側ローカルポート及びQ側ローカルポートへそれぞれローカル信号を供給することで得られる。I信号とQ信号は差動信号であり、I+、Q+、I-、Q-の順に各々90°の位相差を備えている。これら4つのIF信号がホッピング複素フィルタ108へ入力される。
 図4(b)に示したシンボルf1の受信時、ホッピング複素フィルタ108はベースバンド処理回路114の制御により図5(c)に示す+f阻止特性に切り替わる。この場合、ホッピング複素フィルタ108は、図7(a)に示すようにシンボルf1(-792~-264MHz)のイメージ周波数であるシンボルf3の周波数(+264~+792MHz)の信号成分を抑圧する。ホッピング複素フィルタ108を通過したIF信号の周波数帯域は-792~+264MHzであり、シンボルf1及びシンボルf2を含んでいる。
 第2のダウンコンバータ109は、第2のローカル発生器110で生成された528MHzのローカル信号(第2のLO)301を用いてホッピング複素フィルタ108から出力された-792~+264MHzのIF信号をダウンコンバートする。このとき、-792~-264MHzのシンボルf1は0Hz(DC)を中心周波数とする-264~+264MHzのベースバンド信号に変換され、-264~+264MHzのシンボルf2はベースバンド信号の周波数帯域外へ移動させられる。
 第2のダウンコンバータ109の出力信号は、230MHz付近にカットオフ周波数を有するローパスフィルタ111に入力され、ローパスフィルタ111はシンボルf2の電力及びその他の干渉波等の電力を減衰させる。
 ローパスフィルタ111の出力信号は、可変ゲインアンプ112によってA/D変換器113のダイナミックレンジに合わせて所要の振幅まで増幅される。可変ゲインアンプ112の出力信号はA/D変換器113へ入力される。
 A/D変換器113は、例えば528Mspsの変換レートで-264~+264MHzのベースバンド信号(ここでは、シンボルf1)をデジタル信号に変換する。デジタル信号に変換されたシンボルf1にはベースバンド処理回路114によって周知の同期検出処理やOFDM信号の復調処理が施される。
 一方、図4(b)に示したシンボルf2の受信時、ホッピング複素フィルタ108はベースバンド処理回路114の制御により図5(c)に示した全通過特性に切り替わる。この場合、ホッピング複素フィルタ108は、図7(b)に示すように第1のダウンコンバータ103から出力されたシンボルf2の周波数-264~+264MHzの信号成分をそのまま通過させる。
 シンボルf2の受信時、第2のダウンコンバータ109のLOポートには、例えば第2のダウンコンバータ109のオフセットを補正するためのDC電圧(第2のLO)が入力される。したがって、第2のコンバータ109は、RFポートから入力されたシンボルf2をそのままベースバンドポートから出力する。なお、シンボルF2の受信時、第2のダウンコンバータ109を通過させずに、ホッピング複素フィルタ108の出力信号をそのまま次段のローパスフィルタ111へ供給してもよい。
 第2のダウンコンバータ109の出力信号は、230MHz付近にカットオフ周波数を有するローパスフィルタ111に入力され、ローパスフィルタ111は不要な干渉波等の電力を減衰させる。
 以降、シンボルf1に対する処理と同様に、ローパスフィルタ111から出力されたシンボルf2は、A/D変換器113によってデジタル信号に変換され、ベースバンド処理回路114によって周知の同期検出処理やOFDM信号の復調処理が施される。
 また、図4(b)に示したシンボルf3の受信時、ホッピング複素フィルタ108はベースバンド処理回路114の制御により図5(c)に示した-f阻止特性に切り替わる。この場合、ホッピング複素フィルタ108は、図7(c)に示すようにシンボルf3(+264~+792MHz)のイメージ周波数であるシンボルf1の周波数-792~-264MHzの信号成分を抑圧する。したがって、ホッピング複素フィルタ108を通過したIF信号の周波数帯域は-264~+792MHzであり、シンボルf2及びシンボルf3を含んでいる。
 第2のダウンコンバータ109は、第2のローカル発生器110で生成された528MHzのローカル信号302を用いてホッピング複素フィルタ108から出力された-264~+792MHzのIF信号をダウンコンバートする。このとき、+264~+792MHzのシンボルf3は0Hz(DC)を中心周波数とする-264~+264MHzのベースバンド信号に変換され、-264~+264MHzのシンボルf2はベースバンド信号の周波数帯域外へ移動させられる。
 第2のダウンコンバータ109の出力信号は、230MHz付近にカットオフ周波数を有するローパスフィルタ111に入力され、ローパスフィルタ111はシンボルf2の電力及びその他の干渉波等の電力を減衰させる。
 以降、シンボルf1及びf2に対する処理と同様に、ローパスフィルタ111から出力されたシンボルf3は、A/D変換器113によってデジタル信号に変換され、ベースバンド処理回路114によって周知の同期検出処理やOFDM信号の復調処理が施される。
 第1の実施の形態の無線通信装置によれば、ローカル信号の周波数を各バンドグループの中心周波数に設定することで、特許文献1のように各バンドの中心周波数にローカル信号の周波数を設定する構成に比べて第1のダウンコンバータから出力されるIF信号の周波数を下げることができる。また、特許文献2では第1のダウンコンバータの後段の回路が1320MHzで動作する必要があるが、本実施形態ではその周波数の約1/1.7である792MHzで済む。さらに、ローカル信号の周波数をバンドグループ毎に1つとすることで、ローカル信号をミキサや分周器を用いて生成する必要がない。したがって、ローカル発生器104の回路面積や消費電力を低減できると共にDCオフセットやローカルリークを低減できる。
 また、ホッピング複素フィルタ108を備えることで、高速なホッピングを実施する場合でもイメージ周波数を除去してマイナス周波数またはプラス周波数側の信号電力を高速に切り出すことができる。そのため、特許文献2に記載されたシンボルf1にローカル信号の周波数を設定する構成と比べても、第1のダウンコンバータの後段の回路の動作周波数が狭くて済む。また、ホッピング複素フィルタ108を備えることで、ベースバンド帯域外に存在する干渉波等の影響も低減できる。また、第2のローカル信号の周波数も528MHzだけで済むため、第2のダウンコンバータ109を容易に構成できる。
 さらに、本実施形態では、背景技術と比べてA/D変換器の変換レートを大幅に下げることができる。本実施形態では、ローカル信号の周波数を各バンドグループの中心周波数に設定することで、IF信号のマイナス側の周波数帯域とプラス側の周波数帯域とが等しくなる。そのため、ローカル信号が1つであってもA/D変換器で必要な変換レートを最小限に抑制できる。したがって、A/D変換器113の回路面積や消費電力を低減できる。
 具体的には、本実施形態では周波数帯域が約528MHz(-264~+264MHz)の1つのバンドのシンボルのみをA/D変換すればよいため、A/D変換器の変換レートは1つのシンボルを変換するのに必要な約528Mspsとなり、最小限で済む。
 それに対して、特許文献2ではローカル信号の周波数をシンボルf1の周波数に合わせて設定しているため、4つのシンボルを一括して変換する必要があり、A/D変換器113の変換レートは2112Mspsとなる。なお、本実施形態でもA/D変換器113の変換レートを2つ以上のシンボルのA/D変換に必要な値に設定してもよい。
 ところで、UWB無線通信装置で用いるシンボルのトーン間隔は4.125MHzであり、トーン数が128本であるため、1シンボルをA/D変換するのに必要な変換レートは528Mspsあればよい。しかしながら、必要に応じて変換レートを約1.1倍あるいは1.2倍のように非整数倍に設定することも可能である。このことは、後述する第4の実施の形態で示す送信機が備えるD/A変換器にも適用される。
 本実施形態では、ホッピング複素フィルタ108を用いてイメージ周波数を抑圧するため、他の無線通信装置で使用している電波が、例えばシンボルf3の周波数帯域に混入していても、シンボルf1には大きく影響することが無い。また、シンボルf3の周波数帯域で熱雑音等が発生していてもシンボルf1にはほとんど影響しない。
 また、本実施形態で示したホッピング複素フィルタ108は、キャパシタ、抵抗器及びスイッチのみで構成されているため、基本的に定常電流を必要とせず、また高いリニアリティを持っている。無線LANや携帯電話機のような多くの干渉源が存在するUWB無線通信装置にとって高いリニアリティを備えていることの意義は大きい。また、能動素子を用いることによるノイズが発生しない構成も、特に受信機にとって大きなメリットとなる。例えば、トランスコンダクタンスアンプを用いて構成されたアクティブフィルタでは、上記ホッピング複素フィルタ108と同様の濾波特性を得るのに高い次数が必要であり、定常電流が大きくなり、高いリニアリティを得るのが困難であり、熱雑音や1/fノイズが大きい等の問題がある。
 なお、ホッピング複素フィルタ108の濾波特性は、上述したようにベースバンド処理回路114から出力される制御信号によって切り替えられる。ベースバンド処理回路114は、受信したUWB信号のプリアンブル部に格納された情報を用いて同期を確立し、濾波特性の切り替えタイミングを決定すればよい。ホッピングシーケンスはプリアンブル部に含まれるヘッダー情報から識別できる。
(第2の実施の形態)
 次に本発明の第2の実施の形態について図面を用いて説明する。
 図8は第2の実施の形態のUWB無線通信装置の構成を示すブロック図である。第2の実施の形態では、第1の実施の形態と同様に、UWB信号を受信する受信機の例を示す。
 図8に示すように、第2の実施の形態の受信機は、受信アンテナ101、ローノイズアンプ(LNA)102、第1のダウンコンバータ103、第1のローカル発生器104、ホッピング複素フィルタ108、ベースバンド処理回路114、第1のローパスフィルタ401、可変ゲインアンプ402、A/D変換器403、第2のダウンコンバータ404及び第2のローパスフィルタ405を有する。
 第2の実施の形態の受信機は、第2のダウンコンバータ404及び第2のローパスフィルタ405をデジタル信号処理で実現する例である。受信アンテナ101、ローノイズアンプ(LNA)102、第1のダウンコンバータ103、第1のローカル発生器104、ホッピング複素フィルタ108及びベースバンド処理回路114の構成は第1の実施の形態で示した受信機と同様であるため、その説明は省略する。
 第1のローパスフィルタ401は、792MHz付近にカットオフ周波数を持ち、ホッピング複素フィルタ108から出力されたシンボルf1からシンボルf3までの周波数成分を通過させ、それ以外の周波数成分を減衰させる。第1のローパスフィルタ401は、UWB無線通信装置で使用する周波数帯外に存在する不要な電波(いわゆるブロッカ)及びノイズ等を減衰させるために備えている。
 可変ゲインアンプ402は、第1の実施の形態と同様にA/D変換器403のダイナミックレンジに合わせて第1のローパスフィルタ401の出力信号を増幅する。本実施形態の可変ゲインアンプ402は、約792MHzまでの信号を増幅する必要がある。
 本実施形態のA/D変換器403は、-528~+528MHzのIF信号をデジタル信号に変換する変換レートを備えている。このような変換レートでA/D変換を行うと、そのナイキスト周波数よりも外側にある、例えばシンボルf1の-792~-528MHzの信号成分がシンボルf3の周波数帯域内の+264~+528MHzに現れる。これは、A/D変換によってナイキスト周波数である528MHzを中心にエイリアスが発生することに起因する。
 ここで、A/D変換器403に入力されるIF信号は、ホッピング複素フィルタ809によって、例えばシンボルf1の受信時、シンボルf3の周波数の信号成分は既に除去されているため、A/D変換によってシンボルf3の周波数帯域にシンボルf1の信号成分が現れても問題になることが無い。
 本実施形態の第2のダウンコンバータ404は、第1の実施の形態で示した第2のダウンコンバータ109と同様の機能を備え、上述したようにデジタル信号処理によって実現される。同様に、第2のローパスフィルタ405も、第1の実施の形態で示したローパスフィルタ111と同様の機能を備え、上述したようにデジタル信号処理によって実現される。第2のダウンコンバータ404及び第2のローパスフィルタ405の機能は、例えばプログラムによって内部に構成する回路の変更が可能な再構成デバイスやプログラムにしたがって処理を実行するCPU、あるいは演算処理を実行するDSP等を用いて実現できる。
 次に図8に示した第2の実施の形態の受信機の動作について図面を用いて説明する。
 シンボルf1の受信時(図9(a))、ホッピング複素フィルタ108は、第1の実施の形態と同様にベースバンド処理回路114の制御により図5(c)に示した+f阻止特性に切り替わる。この場合、ホッピング複素フィルタ108は、シンボルf1(-792~-264MHz)のイメージ周波数であるシンボルf3の周波数+264~+792MHzの信号成分を抑圧する。したがって、ホッピング複素フィルタ108を通過したIF信号の周波数帯は-792~+264MHzであり、シンボルf1及びシンボルf2を含んでいる。
 ホッピング複素フィルタ108を通過したIF信号は第1のローパスフィルタ401に入力される。第1のローパスフィルタ401はシンボルf1及びシンボルf2の信号成分を通過させると共にそのカットオフ周波数外の不要な電波やノイズを抑圧する。
 第1のローパスフィルタ401を通過したIF信号は可変ゲインアンプ402で増幅され、A/D変換器403に入力される。
 A/D変換器403は、IF信号に含まれるシンボルf1を-528~-264MHzと+264~+528MHzの信号成分から成るデジタル信号に変換し、シンボルf2を-264~+264MHzの信号成分から成るデジタル信号に変換する。A/D変換器403でデジタル信号に変換されたIF信号は第2のダウンコンバータ404へ入力される。
 第2のダウンコンバータ404は、第1の実施の形態で示した第2のダウンコンバータ109と同様に、デジタル信号に変換されたIF信号をダウンコンバートする。このとき、-528~-264MHzと+264~+528MHzの信号成分から成るシンボルf1は0Hz(DC)を中心周波数とする-264~+264MHzのベースバンド信号に変換され、-264~+264MHzのシンボルf2はベースバンド信号の周波数帯域外へ移動させられる。
 第2のダウンコンバータ404の出力信号は、230MHz付近にカットオフ周波数を有する第2のローパスフィルタ405に入力され、第2のローパスフィルタ405はシンボルf2の電力及びその他の干渉波等の電力を減衰させる。
 第2のローパスフィルタ405を通過したシンボルf1は、ベースバンド処理回路114へ入力され、周知の同期検出処理やOFDM復調処理が施される。
 一方、シンボルf2の受信時(図9(b))、ホッピング複素フィルタ108はベースバンド処理回路114の制御により図5(c)に示した全通過特性に切り替わる。この場合、ホッピング複素フィルタ108は、第1のダウンコンバータ103から出力されたシンボルf2の周波数-264~+264MHzの信号成分をそのまま通過させる。
 第1のローパスフィルタ401を通過したIF信号は第2の可変ゲインアンプ402で増幅され、A/D変換器403に入力される。
 A/D変換器403は、IF信号に含まれる-264~+264MHzのシンボルf2をデジタル信号に変換する。A/D変換器403でデジタル信号に変換されたIF信号は第2のダウンコンバータ404へ入力される。
 第2のダウンコンバータ404は、第1の実施の形態で示した第2のダウンコンバータ109と同様に、ローカル信号(第2のLO)としてDC電圧を用いてデジタル信号に変換されたシンボルf2をダウンコンバートすることなく、そのまま出力する。
 第2のダウンコンバータ404の出力信号は、230MHz付近にカットオフ周波数を有する第2のローパスフィルタ405に入力され、第2のローパスフィルタ405は不要な干渉波等の電力を減衰させる。
 第2のローパスフィルタ405を通過したシンボルf2は、ベースバンド処理回路114へ入力され、周知の同期検出処理やOFDM復調処理が施される。
 また、シンボルf3の受信時(図9(c))、ホッピング複素フィルタ108は、第1の実施の形態と同様にベースバンド処理回路114の制御により図5(c)に示した-f阻止特性に切り替わる。この場合、ホッピング複素フィルタ108は、シンボルf3(+264~+792MHz)のイメージ周波数であるシンボルf1の周波数-792~-264MHzの信号成分を抑圧する。したがって、ホッピング複素フィルタ108を通過したIF信号の周波数帯は+264~+792MHzであり、シンボルf2及びシンボルf3を含んでいる。
 ホッピング複素フィルタ108を通過したIF信号は第1のローパスフィルタ401に入力される。第1のローパスフィルタ401はシンボルf2及びシンボルf3の信号成分を通過させると共にそのカットオフ周波数外の不要な電波やノイズを抑圧する。
 第1のローパスフィルタ401を通過したIF信号は可変ゲインアンプ402で増幅され、A/D変換器403に入力される。
 A/D変換器403は、IF信号に含まれるシンボルf3を-528~-264MHzと+264~+528MHzの信号成分から成るデジタル信号に変換し、シンボルf2を-264~+264MHzの信号成分から成るデジタル信号に変換する。A/D変換器403でデジタル信号に変換されたIF信号は第2のダウンコンバータ404へ入力される。
 第2のダウンコンバータ404は、第1の実施の形態で示した第2のダウンコンバータ109と同様にデジタル信号に変換されたIF信号をダウンコンバートする。このとき、-528~-264MHzと+264~+528MHzの信号成分から成るシンボルf3は0Hz(DC)を中心周波数とする-264~+264MHzのベースバンド信号に変換され、-264~+264MHzのシンボルf2はベースバンド信号の周波数帯域外へ移動させられる。
 第2のダウンコンバータ404の出力信号は、230MHz付近にカットオフ周波数を有する第2のローパスフィルタ405に入力され、第2のローパスフィルタ405はシンボルf2の電力及びその他の干渉波等の電力を減衰させる。
 第2のローパスフィルタ405を通過したシンボルf3は、ベースバンド処理回路114へ入力され、周知の同期検出処理やOFDM復調処理が施される。
 第2の実施の形態の受信機によれば、第1の実施の形態で示したローカル周波数を各バンドグループで固定することによる効果やホッピング複素フィルタを用いることによる効果に加えて、アナログ回路を用いたダウンコンバージョンが1度だけとなり、第2のダウンコンバージョンのために必要なミキサやローカル信号発生器等が不要になる。したがって、そのための回路面積や消費電力を低減できる。
 また、A/D変換器403の変換レートも約1Gspsであり、特許文献2のように約2Gspsの変換レートを必要とする構成に比べて消費電力を約半分に低減できる。
 さらに、可変ゲインアンプ402を通過する信号の周波数も792MHz程度までで済むため、背景技術例の1.3GHzよりも低くなる。可変ゲインアンプ402bの動作周波数が低くなることで、周知のゲイン・帯域積が一定であるとの原理に基づきアンプ1段あたりのゲインを大きくすることが可能になるため、アンプの段数を低減することが可能であり、可変ゲインアンプ402の回路面積や消費電力を低減できる。
 なお、本実施形態の受信機では、A/D変換器403としてインターリーブを実施する構成を用いることも可能である。その場合、A/D変換器403は、I信号用及びQ信号用の2つのA/D変換器を備え、I信号及びQ信号をそのままA/D変換する処理と、I信号またはQ信号のいずれか一方のみをA/D変換する処理とを実施するインターリーブ動作によって、1つのA/D変換器の変換時間の2倍の変換レートを実現できる。
 例えばA/D変換器の変換レートが1056Mspsの場合、通常はI信号及びQ信号を1056Mspsで変換し、インターリーブ時はI信号またはQ信号のいずれか一方を1056Mspsの2倍の速度である2112Mspsで変換する。
 このような構成は、インターリーブの有無を切り替えるためにA/D変換器の直前にI信号及びQ信号をそのまま通過させたり、I信号またはQ信号のみを2つのA/D変換器へ入力するためのセレクタを配置する構成が考えられる。
 その場合、A/D変換器の出力側にも、変換後のI信号及びQ信号をそのまま通過させたり、インターリーブ時に各A/D変換器から交互に出力される信号を適正な順序に並び替えるためのセレクタを配置すればよい。
 インターリーブを実施する場合のA/D変換器の動作について図10に示す。
 以下では、シンボルf1、f3の受信時、A/D変換器403がインターリーブ動作し、シンボルf2の受信時はインターリーブ動作しないものとする。
 シンボルf1の受信時、A/D変換器403からはシンボルf1のI信号またはQ信号のいずれか一方のみが出力され、第2のダウンコンバータ404に入力される。
 第2のダウンコンバータ404は、第1の実施の形態の第2のダウンコンバータと同様に、入力された-792~-264MHzのシンボルf1を-264~+264MHzのベースバンド信号にダウンコンバートする(図10(a))。このとき、-264~+264MHzにあったシンボルf2はベースバンド信号の周波数帯域外へ移動させられる。
 シンボルf2の受信時、シンボルf2はホッピング複素フィルタ108をそのまま通過し、A/D変換器403へ入力される(図10(b))。
 この場合、A/D変換器403は、インターリーブ動作を行わず、各A/D変換器によりI信号及びQ信号をそれぞれA/D変換する。ここでは、インターリーブを行わないため、I信号及びQ信号の変換レートは1056Mspsとなる。シンボルf2の信号は-264~+264MHzに存在し、A/D変換によるナイキスト周波数は1056MHzの1/2である528MHzになるため、十分なマージンを有してA/D変換が可能である。
 上述したように、本実施形態ではシンボルf1の-528~-792MHzの周波数成分が-264~-528MHzに折り返すが、シンボルf2の周波数と重ならないため問題とはならない。同様に、シンボルf3の+528~+792MHzの周波数成分も問題とはならない。
 シンボルf3の受信時、第1の実施の形態と同様に、ホッピング複素フィルタ108は-f阻止特性に切り替わり、シンボルf1の周波数を抑圧しながらシンボルf3を通過させる(図10(c))。
 A/D変換器403は、シンボルf1と同様にインターリーブ動作し、I信号またはQ信号のいずれか一方のみA/D変換を行う。A/D変換後の信号は第2のダウンコンバータ404に入力され、ベースバンド信号に変換されて出力される。
 A/D変換器403がインターリーブ動作する場合でも、その変換レートは約1Gspsであり、背景技術のように約2Gspsの変換レートを用いる場合に比べて消費電力を約半分にできる。
 本実施形態によれば、約528MHz帯域の2つのシンボルをA/D変換する際に約1Gspsの変換レートで済むため、特許文献2のように4つのシンボルを変換するのに必要な変換レートは不要である。
 図11に以上説明した本実施形態の動作を模式的に示す。
(第3の実施の形態)
 次に本発明の第3の実施の形態について図面を用いて説明する。
 図12は第3の実施の形態のUWB無線通信装置の構成を示すブロック図である。第3の実施の形態では、第1及び第2の実施の形態と同様に、UWB信号を受信する受信機の例を示す。
 図12に示すように、受信アンテナ101、ローノイズアンプ(LNA)102、第1のダウンコンバータ103、第1のローカル発生器104、第1のローパスフィルタ401、可変ゲインアンプ402、第2のダウンコンバータ404、第2のローパスフィルタ405、ベースバンド処理回路114、A/D変換器601及びホッピング複素フィルタ602を有する。
 第3の実施の形態の受信機は、ホッピング複素フィルタ602、第2のダウンコンバータ404及び第2のローパスフィルタ405をデジタル信号処理で実現する点で第1の実施の形態と異なっている。ホッピング複素フィルタ602、第2のダウンコンバータ404及び第2のローパスフィルタ405の機能は、例えばプログラムによって内部に構成する回路の変更が可能な再構成デバイスやプログラムにしたがって処理を実行するCPU、あるいは演算処理を実行するDSP等を用いて実現できる。受信アンテナ101、ローノイズアンプ(LNA)102、第1のダウンコンバータ103、第1のローカル発生器104及びベースバンド処理回路114の構成及び動作は第1の実施の形態で示した受信機と同様であり、第1のローパスフィルタ401、可変ゲインアンプ402、第2のダウンコンバータ404及び第2のローパスフィルタ405の構成及び動作は第2の実施の形態と同様であるため、その説明は省略する。
 図12に示すように、本実施形態の受信機は、第1のダウンコンバータ103の後段にホッピング複素フィルタを備えていない構成である。第1のローパスフィルタ401及び可変ゲインアンプ402は第2の実施の形態と同様に動作する。第1のローパスフィルタ401の出力信号はA/D変換器601によりデジタル信号に変換される。
 本実施形態のA/D変換器601は、1584Mspsの変換レートを備え、シンボルf1からシンボルf3を一括してデジタル信号に変換する。A/D変換器601の出力信号はホッピング複素フィルタ602に入力され、ホッピング複素フィルタ602の出力信号は第2のダウンコンバータ404に入力される。第2のダウンコンバータ404以降の動作は第2の実施の形態と同様である。
 本実施形態では、ホッピング複素フィルタ602をデジタル信号処理によって実現する。そのため、第1の実施の形態及び第2の実施の形態で示した効果に加えて、第2の実施の形態よりもさらにアナログ回路を低減できる。このような構成は、第2の実施の形態よりも回路面積を低減することが可能であり、アナログ回路で構成した際に現れるクロストーク等も低減できる。
 上述したように本実施形態のA/D変換器601は、1584Mspsの変換レートを備えている。本実施形態では、約528MHz帯域の3つのシンボルを一括してA/D変換するために、A/D変換器601の変換レートが約1584Mspsで済む。本実施形態では第2の実施の形態よりもA/D変換器601の変換レートが高くなるが、背景技術例に対して約3/4の変換レートで済むため、消費電力も約3/4となる。
 なお、本実施形態の第1のダウンコンバータ103は、ブロッカを除去する能力を備えていることが好ましい。第1のダウンコンバータ103に適した、ブロッカの除去能力を備えたダウンコンバータの構成例を図13に示す。
 図13(a)に示す第1のダウンコンバータ103は差動トランジスタペア701及びテイルトランジスタ702を備えた構成である。
 差動トランジスタペア701とテイルトランジスタ702とはシングルバランス型ミキサを構成している。負荷抵抗703には、直列に接続されたインダクタ704及びキャパシタ705が並列に接続されている。
 図13(a)に示す構成では、インダクタ704及びキャパシタ705が共振周波数近傍にて低抵抗となり、負荷インピーダンスを低下させてミキサとしての変換ゲインを低下させる。したがって。この共振周波数をブロッカの周波数に設定することでミキサにブロッカを除去する能力を持たせることができる。
 例えば、上述した第1のバンドグループを受信する場合、第1のダウンコンバータ103へ入力するローカル信号の周波数は中心周波数である3960MHzに設定される。この場合、802.11aに準拠した無線LANで用いる5.2GHzの電波がブロッカとなる。これは、3960MHzから約1.2GHz離れた周波数である。
 一方、第1のダウンコンバータ103は、約-0.8~0.8GHzのIF周波数帯で動作する。つまり、第1のダウンコンバータのIF出力では、0.8GHzまでの信号を減衰することなく通過させ、かつ1.2GHz付近のブロッカを減衰させることが好ましい。したがって、図13(a)に示すインダクタ704とキャパシタ705による共振周波数を1.2GHzに設定することで、ブロッカを大きく減衰させることができる。
 図13(b)に示す第1のダウンコンバータ103は、直列に接続されたインダクタ706及びキャパシタ707を差動出力間に接続した構成例である。このような構成でも図13(a)に示す構成と同様の効果が得られる。図13(b)に示す構成は、コモンモード信号を除去することができないが、素子数を低減できるため、回路面積を小さくできる効果がある。
 通常、無線LANでは送信電力が大きいため、1.2GHz付近のブロッカの減衰量は40dB以上であることが好ましい。しかしながら、0.8GHzと1.2GHzとでは周波数差が少ないため、UWB無線通信装置で用いる周波数帯域の信号を通過させつつ無線LAN等のブロッカを除去するためにはローパスフィルタの次数を大きくする必要がある。そのため、ローパスフィルタの回路面積や消費電力が増大する。
 本実施形態のように、第1のダウンコンバータ103に、図13(a)や図13(b)に示した回路を用いればローパスフィルタの回路面積や消費電力を低減できる。
(第4の実施の形態)
 図14は第4の実施の形態のUWB無線通信装置の構成を示すブロック図である。第4の実施の形態ではUWB信号を送信する送信機の例を示す。
 図14に示すように、本実施形態の送信機は、ベースバンド処理回路114、第1のアップコンバータ811、D/A変換器810、ローパスフィルタ809、ホッピング複素フィルタ808、第1のローカル発生器104、第2のアップコンバータ803、パワーアンプ802及び送信アンテナ801を有する。
 第1のアップコンバータ811は、デジタル信号処理で実現され、例えば528MHzのローカル信号を用いて、-264~+264MHzのベースバンド信号を、528MHzを中心周波数とする+264~+792MHzのIF信号に変換する。第1のアップコンバータ811は、受信機と同様に、シンボルf2の送信時は周波数を変換する必要がないため、ベースバンド処理回路114から入力された信号をそのまま通過させればよい。
 本実施形態のD/A変換器810は、シンボルf1の中心周波数からシンボルf3の中心周波数までをD/A変換すればよい。具体的には-528~+528MHzのIF信号をD/A変換できる変換レートを備えていればよい。
 このような変換レートでD/A変換を行うと、そのナイキスト周波数よりも外側にある、例えばシンボルf1の-792~-528MHzの信号成分がシンボルf3の周波数帯域内の+264~+528MHzに現れる。これは、D/A変換によってナイキスト周波数である528MHzを中心にエイリアスが発生することに起因する。
 本実施形態の送信機では、ホッピング複素フィルタ808によって、例えばシンボルf1の送信時、シンボルf3の周波数の信号成分が除去されるため、D/A変換によってシンボルf3の周波数帯域にシンボルf1の信号成分が現れても問題となることが無い。
 ローパスフィルタ809は-792~+792MHzのIF帯域内の周波数成分を通過させ、該IF帯域外の周波数成分を減衰させる。シンボルf1またはシンボルf3の送信時、シンボルf2の周波数は無信号(ヌル)となるため、シンボルf1以下、及びシンボルf3以上の周波数で発生するエイリアスもヌルとなる。
 シンボルf2の帯域は約528MHzであるため、このエイリアスのヌルは約528MHzの帯域幅を持つ。すなわち、シンボルf1及びシンボルf2の送信時は、絶対値で約792MHzまでの周波数帯域で信号が存在し、+792~+1320MHzの周波数帯域がヌルの区間となり、ローパスフィルタ809には急峻な減衰特性が要求されない。したがって、ローパスフィルタ809の次数を下げることができる。
 一方、シンボルf2の送信時は、792MHz以上の周波数でエイリアスが発生するが、+264~+792MHzの信号がヌルとなる。したがって、シンボルf2の送信時、ローパスフィルタ809のカットオフ周波数は、シンボルf1及びシンボルf3の送信時よりも低く設定することが好ましい。これによりシンボルf2の送信時も比較的低い次数のローパスフィルタ809を使用できる。但し、高次のフィルタを用いても送信機全体の消費電力や回路面積等に影響を与えない場合は、カットオフ周波数を792MHzで固定したローパスフィルタを用いてもよい。
 ホッピング複素フィルタ809は、受信機で用いるホッピング複素フィルタ108と同様の機能を備えている。但し、必要に応じて受信機と送信機でホッピング複素フィルタの濾波特性を変えることも可能である。
 次に第4の実施の形態の送信機の動作について説明する。
 図14に示したベースバンド処理回路114からは、送信用のOFDMベースバンド信号が出力され、第1のアップコンバータ811に入力される。
 シンボルf1の送信時、第1のアップコンバータ811は、DCを中心とするバースバンド信号を、例えば528MHzを中心とするIF信号に変換する。第1のアップコンバータ811から出力されたIF信号はD/A変換器810に入力される。
 上述したように、本実施形態のD/A変換器810のサンプリング周波数や変換レートは1056MHzであり、ナイキスト周波数が528MHzになるため、図15(a)の斜線部で示すように、シンボルf1の周波数帯域-792~-528MHzに、+264~+528MHzの信号がエイリアスとして現れる。
 ローパスフィルタ809は、例えばカットオフ周波数を792MHz以上に備えることで不要な信号を除去する。不要な信号としては上述した1320MHz以下の不要なエイリアスである。ローパスフィルタ809の出力信号はホッピング複素フィルタ808に入力される。
 ホッピング複素フィルタ808は、シンボルf1の送信時は+阻止特性に切り替わり、シンボルf3の周波数成分を抑圧すると共にシンボルf1を通過させる。ホッピング複素フィルタ808の出力信号は第2のアップコンバータ803のIFポートに入力される。
 第2のアップコンバータ803は、第1のローカル発生器104で生成されたローカル信号を用いてIF信号をRF信号に変換する。第2のアップコンバータ803の出力信号はパワーアンプ802に入力され、パワーアンプ802により所定の送信レベルまで増幅され、送信アンテナ801を介して空間に放射される。
 シンボルf2の送信時、第1のアップコンバータ811はシンボルf2をアップコンバージョンせずにそのまま出力する。第1のアップコンバータ811のアップコンバージョンを停止させる方法としては、例えば第1のアップコンバータ811にローカル信号としてDC信号を入力する方法、あるいはスイッチ等を用いて第1のアップコンバータ811を通過しない経路を設ける方法がある。
 第1のアップコンバータ811を通過したシンボルf2は、D/A変換器810でアナログ信号に変換され、ローパスフィルタ809により不要なエイリアスが除去される。
 図15(b)に示すように、このときシンボルf1及びシンボルf3には信号が無いため、上述したようにこの領域に遷移域を設けることが可能であり、ローパスフィルタは比較的低次の構成で済む。好ましくは、シンボルf2の選択時は、シンボルf1及びシンボルf3の送信時よりもローパスフィルタ809のカットオフ周波数が低くなるように切り替える。ホッピング複素フィルタ808は、全通過特性に切り替わり、シンボルf2を通過させる。
 ホッピング複素フィルタ808は、シンボルf3の送信時、-f阻止特性に切り替わり、シンボルf1の周波数成分を抑圧すると共にシンボルf3を通過させる(図15(c)参照)。
 第1のローカル発生器104で生成するローカル信号の周波数は、第1の実施の形態~第3の実施の形態で示した受信機と同様に各バンドグループの中心周波数に設定され、周波数をホッピングする場合でもバンドグループ毎に固定の周波数とする。すなわち、ローカル信号の周波数はバンドグループ毎に1つのみとなる。
 したがって、本実施形態の送信機では、第2のアップコンバータ803を構成する素子間のばらつきに起因して発生するローカルリークを低減できる。例えばローカル信号が3つである場合、3つの周波数それぞれにおいてローカルリークを補正する必要があるため、補正に用いるD/A変換器等の補正回路の規模が大きくなる。
 一方、本実施形態の送信機では、補正すべきローカルリークが1つの周波数のみであり、ホッピングに合わせて補正量を切り換える必要はない。したがって、補正用の回路の規模や消費電力を飛躍的に小さくできる。また、本実施形態では、周波数帯域が約528MHzの2つのシンボルをD/A変換するため、D/A変換器の変換レートが約1Gspsで済む。
 本実施形態の送信機によれば、バンドグループの中心周波数にローカル発生器で生成するローカル信号の周波数を設定することで、IF信号のマイナス側の周波数帯域とプラス側の周波数帯域とが等しくなる。そのため、ローカル信号が1つであってもD/A変換器に必要とされる変換レートを最小限に抑制できる。また、ローカル信号の周波数をバンドグループ毎に1つとすることで、ローカル信号をミキサや分周器を用いて生成する必要がなくなる。
 さらに、濾波特性を切り替えることが可能なホッピング複素フィルタを備えることで、バンドのホッピング毎に変化するイメージ信号を除去することが可能となり、所望のバンドの信号を切り出すことができる。そのため、ローカル発生器やD/A変換器等に規模が大きい回路や高速に動作する回路を用いる必要がない。したがって、ローカル発生器やD/A変換器等の回路面積や消費電力を低減できると共に、高速なホッピングを実施するために発生するローカルリークやスプリアスを低減できる。
 以上、図14及び図15に関する説明では、図5に示したホッピング複素フィルタ808を使用する場合を想定しているが、ホッピング複素フィルタ808には、目的とする動作に応じて、適宜、図6に示した構成を使用してもよい。
 なお、本実施形態の送信機では、D/A変換器810にインターリーブを実施する構成を用いることも可能である。その動作について図16を用いて説明する。
 図16は2つのD/A変換器によるインターリーブ動作の有無を切り替える構成例である。
 図16に示す2つのD/A変換器は、シンボルf1からシンボルf3をD/A変換するのに必要な変換レートの約1/2程度、あるいはそれ以上の変換レートを備えていればよい。具体的には、シンボルf1からシンボルf3までは概ね-792~+792MHzであるため、通常、変換レートとしては、この範囲をカバーする1584Mspsが必要であるが、本実施形態では792MHz程度かそれ以上でよい。
 これは、+f阻止特性あるいは-f阻止特性を備えるホッピング複素フィルタ808によって不要な帯域が除去されることによる。例えばシンボルf1の送信時、D/A変換器810はインターリーブ動作をする。この場合、792Mspsの変換レートを備えた2つのA/D変換器をインターリーブ動作させることで、D/A変換器810として2倍の1584Mspsの変換レートを得ることができる。これによりI信号またはQ信号のいずれか一方、例えばI信号のみをD/A変換することになるが、一方の信号のみをD/A変換することで生じるイメージ信号(シンボルf1の場合はシンボルf3)はホッピング複素フィルタ808によって除去される。つまりホッピング複素フィルタ808を備えることでシンボルf1のみが切り出される。
 一方、シンボルf2の送信時、D/A変換器810は、インターリーブ動作することなくI信号及びQ信号を2つのD/A変換器でそれぞれD/A変換する。このときの変換レートは792Mspsであり、ナイキスト周波数は1/2の396MHzとなる。この場合、シンボルf2は絶対値で264MHzまでの範囲に存在するので、十分なマージンを持ってアナログ信号に変換できる。
 シンボルf3の送信時、D/A変換器810は、シンボルf1の送信時と同様にインターリーブ動作を行う。このときホッピング複素フィルタ808は-f阻止特性に切り替わり、シンボルf1の周波数成分を阻止すると共にシンボルf3を通過させる。
 このようにD/A変換器810にてインターリーブ動作を行うと共にホッピング複素フィルタ808を備えることで、D/A変換器810の変換レートを下げることができるため、D/A変換器810の消費電力や回路面積を低減できる。
(第5の実施の形態)
 図17は第5の実施の形態のUWB無線通信装置の構成を示すブロック図である。第5の実施の形態は、第1~第3の実施の形態と同様にUWB信号を受信する受信機の例である。
 図17に示すように、第5の実施の形態の受信機は、第1の実施の形態で示した受信アンテナ101、ローノイズアンプ(LNA)102、第1のダウンコンバータ103、第1のローカル発生器104、ホッピング複素フィルタ108及びベースバンド処理回路114に加えて、選択フィルタ1101、可変ゲインアンプ1102及びA/D変換器1103を有する。
 第5の実施の形態の受信機は、第1の実施の形態で示した第2のダウンコンバータに変えてホッピング複素フィルタ108の後段に濾波特性の変更が可能な選択フィルタ1101が接続された構成である。受信アンテナ101、ローノイズアンプ(LNA)102、第1のダウンコンバータ103、第1のローカル発生器104、ホッピング複素フィルタ108及びベースバンド処理回路114の構成は第1の実施の形態で示した受信機と同様であるため、その説明は省略する。
 選択フィルタ1101は、シンボルf1及びシンボルf3の受信時、例えば264~792MHzの周波数を通過させ、それ以外を減衰させるバンドパスフィルタとして動作する。
 一方、シンボルf2の受信時、選択フィルタ1101は、例えば264MHz付近の周波数までを通過させ、それ以外を減衰させるローパスフィルタとして動作する。選択フィルタ1101の濾波特性は、ホッピング複素フィルタ108と同様に、例えばベースバンド処理回路114からの制御信号にしたがって、UWB信号のホッピング動作に合わせて高速に切り替えられる。
 可変ゲインアンプ1102は、第2の実施の形態と同様に、例えばシンボルf1からシンボルf3が通過する792MHz程度までの周波数信号を増幅する。
 本実施形態のA/D変換器1103では、例えば可変ゲインアンプ1102と同様に792MHz程度までの周波数信号をA/D変換するが、変換レートを、例えば528Mspsに設定する。つまりナイキスト周波数を264MHzに設定する。
 通常、これはDC付近のシンボルf2のみ変換する場合に必要な帯域であるが、本実施形態ではシンボルf1及びシンボルf3をこの変換レートでアンダーサンプリングする。
 本実施形態ではホッピング複素フィルタ108までは第1の実施の形態と同様に動作する。
 選択フィルタ1101は、シンボルf1の受信時、図18(a)に示すようにシンボルf1の周波数成分を通過させ、その他の信号やノイズを抑圧するバンドパスフィルタ(BPF)として動作する。
 可変ゲインアンプ1102は、フィルタ1101から出力されたIF信号をA/D変換器1103のダイナミックレンジに合わせて必要なレベルまで増幅し、A/D変換1103へ出力する。
 A/D変換1103は、上述したようにシンボルf1をアンダーサンプリングする。
 A/D変換1103がアンダーサンプリング可能なのは、ホッピング複素フィルタ108とフィルタ1101によって、ほぼシンボルf1のみが切り出されているからである。
 同様に、シンボルf2の受信時、ホッピング複素フィルタ108は全通過特性に切り替わり、フィルタ1101はシンボルf2を切り出すためにローパスフィルタ(LPF)として動作する(図18(b)参照)。
 シンボルf2は、A/D変換器1103のナイキスト周波数内にあるため、A/D変換器1103によって問題なくA/D変換される。
 同様に、シンボルf3の受信時、ホッピング複素フィルタ108は-f阻止特性に切り替わり、フィルタ1101はシンボルf3を切り出すバンドパスフィルタ(BPF)として動作する(図18(c)参照)。
 シンボルf3は、A/D変換器1103のナイキスト周波数外にあるが、ホッピング複素フィルタ108とフィルタ1101によって、ほぼシンボルf3のみが切り出されているため、A/D変換器1103によって問題なくA/D変換される。
本実施形態によれば、A/D変換器113が1つのシンボルを変換するのに必要な最低限の変換レート(528Msps)で済むため、A/D変換器1103の回路面積や消費電力を最小限にできる。
 本実施形態の受信機は、第1の実施の形態~第3の実施の形態の受信機と同様の効果に加えて、受信機全体の回路面積や消費電力を最小限にできる効果がある。
 なお、上記第1の実施の形態~第5の実施の形態では、バンドグループが3つのバンドから構成される例で説明したが、バンドグループを構成するバンドの数は3つに限定されるものではなく、ローカル信号の周波数をバンドグループの中心周波数に設定すれば、バンドグループを構成するバンドの数は、奇数または偶数に関係なく、いくつであっても上記と同様の効果を得ることができる。
 例えばバンドグループが3つ(奇数)のバンドで構成される場合は、第1の実施の形態~第5の実施の形態と同様に、ローカル信号の周波数を第2のバンドの中心周波数に設定すればよい。また、バンドグループが4つ(偶数)のバンドで構成される場合は、ローカル信号の周波数を第2のバンドと第3のバンド間の周波数に設定すればよい。
 本発明のUWB無線通信装置によれば、ホッピング複素フィルタを用いてイメージ信号を抑圧することで、A/D変換器やD/A変換器の変換レートを最小限に抑制できる。このとき、ローカル信号の周波数がバンドグループの中心周波数から多少離れていても、イメージ信号のぶつかり合いがある限り、ホッピング複素フィルタを用いてイメージ信号を濾波することによる本発明の優れた効果が得られる。
(第6の実施の形態)
 第1の実施の形態~第5の実施の形態では、3つのバンド間を順次ホッピングするUWB無線通信装置の構成例を示したが、より高速な通信を実現するために複数のバンドを同時に使用する通信方式も考えられる。
 図19は第6の実施の形態のUWB無線通信装置の構成を示すブロック図である。図19は、複数のバンド間を順次ホッピングする通信方式と複数のバンドを同時に使用する通信方式の両方に対応できるUWB無線通信装置の構成例を示している。
 図19に示すUWB無線通信装置は、図8に示したUWB無線通信装置に、I信号及びQ信号に対応して2組備えるA/D変換器の出力信号をそのまま次段に出力する、あるいはI信号またはQ信号のいずれか一方のみ出力するためのスイッチ2001及び上位レイヤとの通信が可能な制御部2005を追加した構成である。
 制御部2005は、ベースバンド信号処理を行う信号処理回路2003と無線通信装置が備える各構成要素を制御する制御回路2002とを備えている。
 制御部2005は、ホッピング複素フィルタ108、ローカル発生器104、ローパスフィルタ401、可変ゲインアンプ402、A/D変換器403、スイッチ2001、第2のダウンコンバータ(直交変調器)404及び第2のローパスフィルタ405の動作を制御する。
 具体的には、制御部2005は、ローカル信号の周波数を変化させたり、ホッピング複素フィルタ108の通過帯域を制御したり、A/D変換器403の変換レートを変化させたり、各構成要素の電源をOFFして動作を停止させたりする。
 次に第6の実施の形態の動作について図20及び図21を用いて説明する。
 ホッピング通信においては、上述したようにホッピング複素フィルタの特性を高速に切り換えることで、シンボルf1~f3の各信号を順次切り出すことができる。これは送信機にも受信機にも当てはまる。
 図20に示すように、第6の実施の形態のUWB無線通信装置は、第2の実施の形態(図8、図9、図10、図11)と同様に動作するが、A/D変換器のバンド幅(帯域)、ローパスフィルタの通過域(帯域)、I信号及びQ信号を停止する動作などが異なる。
 本実施形態のUWB無線通信装置では、A/D変換器403に、ホッピングする全てのバンドをカバーする変換レートを備える。例えば、UWBでは3バンドの周波数帯域の信号をA/D変換可能なA/D変換器を備える。本実施形態の場合、A/D変換器403の変換レートは1584Mspsとなる。
 本実施形態では、このA/D変換器403の変換レートをシンボルf1~f3のホッピング中に変化させない。但し、シンボルf1とシンボルf3とでは、ホッピング複素フィルタ108の処理によって信号が実領域(リアル領域)に存在するため、I信号及びQ信号用に2つ備えるA/D変換器403のいずれか一方の動作を停止できる。
 A/D変換器403のいずれか一方のみを動作させる場合、複素領域(±792MHz)の片側領域を変換するため、変換レートは同じでも変換できる帯域は両側動作の1/2となる。すなわち、I信号用及びQ信号用のA/D変換器403にて3バンドの信号成分をA/D変換できるため、一方のA/D変換器403で1.5バンド分の信号成分をA/D変換できる。
 第1のローパスフィルタ401に関しても同様であり、本実施形態の第1のローパスフィルタ401は、複素領域で3バンドの周波数成分を通過させる周波数特性を備え、リアル領域で1.5バンドの周波数成分を通過させる周波数特性を備える。例えば、UWBでは、複素領域で±792MHz(3バンド分)の周波数成分を通過させる周波数特性を備え、リアル領域で792MHz(1.5バンド分)の周波数成分を通過させる周波数特性を備えている。
 図20に示す動作は、シンボルf1及びf3の受信時にQ信号用のパスの動作を停止させて、その分だけ消費電力を低減できることにある。
 制御部2005は、シンボルf1~f3のホッピングに合わせて各部に指示を出す。シンボルf1においては、スイッチ2001をI信号またはQ信号のいずれか一方のみ通過させるモードにする。例えば、図20に示すs1をオフにし、s2をオンにする。
 これにより次段のI信号及びQ信号用の第2のダウンコンバータ404の両方の入力に、それぞれI信号用のA/D変換器403の出力信号が入力される。このとき、Q信号用のA/D変換器403やQ信号用の可変ゲインアンプ402、Q信号用の第1のローパスフィルタ401は使用しないため停止できる。これによりQ信号用のパスの動作で必要な消費電力を削減できる。
 次に、制御部2005は、シンボルf1からシンボルf2への切替時においてシンボルf2の設定を行う。この切替時間は約10nsと短い時間であるが、本実施形態では、ホッピング複素フィルタ108やスイッチ2001が備える高速性によって対処可能である。
 シンボルf2では、スイッチ2001をI信号及びQ信号の両方を通過させるモードに切り換える。例えば、図20に示すs1をオンにし、s2をオフとする。この場合、停止しているQ信号用のパスの動作を再開させて、I信号及びQ信号それぞれに対して処理が実行される。
 シンボルf3では、ホッピング複素フィルタ108の阻止域をマイナス周波数(通過域をプラス周波数)にする以外は上記シンボルf1の場合と同様に動作する。
 次に複数のバンドを同時に使用してデータを送受信する複数バンド同時動作について説明する。
 図21は3バンド同時に動作する場合の動作を示したものである。
 図20に示した場合と同様に、ローカル信号の周波数はバンドグループの中央、ここでは同時に動作する複数バンドの周波数帯域の中央の周波数に設定する。制御部2005は、ホッピング複素フィルタ108を全通過特性に制御する。
 第1のローパスフィルタ401及びA/D変換器403は3バンドの周波数帯域に対応するように制御され、スイッチ2001はI信号及びQ信号の両方を通過させるモードに制御される。
 アナログ部の動作として図20に示した動作と異なるところは、ホッピング複素フィルタ108を全てのシンボルにわたって全通過特性にすることのみである。
 本発明では、ホッピング複素フィルタ108の高速性の恩恵により、ホッピング複素フィルタ108は図20に示すモードから図21に示すモードに高速に移行できる。本発明の特徴である、バンドグループの中央、つまり使用するバンドの周波数範囲の中央にローカル信号の周波数を設定することが、両モード間の高速な移行を可能にしている。
 これにより、プリアンブルの送受信には1つのバンドを用い、ペイロードの送受信には複数のバンドを用いるというように、連続するシンボルの途中で1バンド通信と複数バンド通信とを切り換えることが可能である。
 これは、消費電力を最小にすると共に、情報量の少ないプリアンブルの送受信には最小限のバンドを使用し、情報量が多いペイロードの送受信には最大限のバンドを利用して情報を送信するという観点でも好ましい。
 一般に、情報を送信する場合、情報量に比例して電力を消費する構成要素と、情報量に比例しないで電力を消費する構成要素とがある。例えば前者は情報を処理する論理回路であり、後者はRF部が備えるローノイズアンプやミキサあるいはローカル発生器等がある。
 この後者の情報に比例することなく消費される電力の割合を低減するには、可能な限り情報を搭載して一度に送信する複数バンド通信の方が顕著な効果が得られる。これは複数バンドを選択してもローノイズアンプ、ミキサ、ローカル発生器等の動作を変化させる必要がない、つまりはローノイズアンプ、ミキサ及びローカル発生器の消費電力が変化しないことに基づいている。
 別の観点として、コグニティブな無線通信環境において、空いているバンドを効率よく使う観点からも、例え短時間でも空いているバンドを速やかに使用できる点で意義が大きい。
 複数バンドのベースバンド信号にFFT処理を実施するには2つの方法がある。
 第1の方法は3バンド分のFFTビット数を持たせることである。例えば通常の1バンドのUWB通信のFFT処理では128bのビット数を持つが、3倍である384bのビット数を持たせることで一度に3バンド分のFFT処理を実行できる。
 第2の方法は、所定の単位毎に分割してFFT処理を実施する方法である。
 1バンド毎に分割すれば、1バンド通信と同じ構成のFFTブロックを使用することができるために好ましい。1バンド毎に分割する方法としては、SSBミキサを2組、つまりは4つの乗算器を使う方法と、複素演算を利用する方法とがある。
 SSBミキサを2組利用する方法では、第2のダウンコンバータ404が4個の乗算器で構成される。
 第2のダウンコンバータ404のI入力に入力された信号は2つの乗算器に入力される。一方の乗算器にはcosωtの第2のローカル信号が入力され、他方の乗算器にはsinωtの第2のローカル信号が入力され、それぞれI入力に入力された信号と乗算される。このとき、ωはシンボルf1やシンボルf3の中心周波数に設定され、UWBでは528MHzに設定される。
 例えばQ入力の信号に対しても同様の演算を行い、I入力のcos乗算結果とQ入力のcos乗算結果を加算した結果を第2のダウンコンバータのI出力とし、I入力のsin乗算結果とQ入力のsin乗算結果との減算結果を第2の直交変換器のQ出力とすることで、複素領域のプラス周波数のみをダウンコンバード、あるいはマイナス周波数のみをダウンコンバートできる。これは互いにイメージ周波数の関係にあるシンボルf1の周波数とシンボルf3の周波数が重ならないように独立に取り出す動作となる。
 第2のダウンコンバータ404は、複素演算と2つのミキサで構成することができる。
 第2のダウンコンバータ404のI/Q入力に対して、ホッピング複素フィルタ108と同様のデジタル処理を実施すれば、イメージ周波数を抑圧できる。前述したようにイメージ周波数を除去するための複素演算は、位相90°の回転演算子を用いるため、例えばキャパシタに相当する機能を微分演算子に置き換えることで実現できる。デジタル処理における微分演算は、時系列データのデータ間の偏差に相当する。このようにしてイメージ周波数を除去した信号を2つのミキサ(SSBミキサ)で処理することで、イメージ周波数を除去しながらダウンコンバートできる。
 第2のローパスフィルタ405は、シンボルf2の信号を取り出す時に、高周波側に存在するシンボルf1やシンボルf3の信号成分を除去するのに用いる。シンボルf2を取り出す時、第2のダウンコンバータ404にはローカル信号としてDCを与える、または第2のダウンコンバータ404を通過させないことで、周波数変換を行わないようにできる。
 シンボルf1またはf3を取り出す時は、上記の方法で周波数変換を行うが、DC付近にあったシンボルf1の信号はシンボルf1またはf3の高周波側に移動するため、シンボルf1またはf3を除去するために第2のローパスフィルタ405を使用する。
 高速ホッピングなどの1バンド動作と複数バンド同時動作の切り替えは、例えばMAC(メディアアクセスコントロール)レイヤからベースバンド処理回路114に指示される。
 図19に示した制御部2005は、ベースバンド処理回路としての機能のみを備えていてもよく、MACレイヤの機能も合わせて備えていてもよい。MACレイヤでは、データのトラフィック量を監視すると共に、さらに上位のレイヤからの指示にしたがって、PHY(物理層)の伝送レートを決定する。
 複数バンド同時動作では、複数のバンドを占有するため、他のピコネットや他の規格の無線通信が該当バンドで行われていないことを条件に複数バンド動作に移行するか否かを判断する。これを実現するためには、周波数の利用状況をリアルタイムに取得できることが好ましい。スーパーフレームの期間などにおいて、3バンドを一括してA/D変換して、3バンドの利用状況を取得できることが好ましい。このような機能は、ある程度電力を消費するため、例えばホストコンピュータとデバイス端末が存在する環境においては、ホストコンピュータにのみ実装してもよい。
 さらに、複数バンド同時動作では、1バンド動作よりもある程度多く電力を消費する。そのため、消費電力の制限が厳しいバッテリ駆動装置(例えばデバイス端末)等においては、バッテリの容量等に応じて、複数バンド同時動作に移行するか否かを判断してもよい。
 また、端末装置間の簡単な通信では、パケットが意味のあるデータで埋まっていない場合もある。そのような場合は1バンド動作を選択することが好ましい。逆にトラフィックが上昇して、パケットが有効なデータで埋まっている場合は、複数バンド動作を選択して短時間で送信することで、同じデータ量を送信するのに必要な電力を低減できる。このような転送データ量に応じて1バンド動作と複数バンド動作の選択を判断してもよい。
 無線通信では、通信する端末間の距離や、周辺の無線周波数の利用状況、ノイズレベル、アンテナの配置、空間の状況(例えばフェージングやマルチパス)などによって、通信のC/N(キャリアとノイズの比)が異なっている。例えば各バンドにおけるC/N量を、3バンド一括でA/D変換したデータから分析することで、使用する動作モードを選択してもよい。
 具体的には、シンボルf1のC/Nが、空間の状況や無線周波数の利用状況などに起因して悪いと仮定したとき、他局に妨害を与えないとしても、このバンドを使用しても電力の利用効率か向上しないと判断した場合は、このバンドを含めない複数バンド通信または1バンド通信を用いればよい。
 さらに具体的には、図22に示すように、複数バンドを一括してA/D変換する処理と、各バンドの利用状況から使用可能なバンドを決定する処理と、使えるバンドのC/Nを計算する処理と、最大比合成計算から通信レートと消費電力関係を算出する処理と、通信レート、動作モードを決定する処理にしたがって動作モードを決定できる。
 最大比合成は、アンテナを複数備えた空間ダイバーシティやMIMO(マルチ入力・マルチ出力)通信で使われており、利用空間や利用周波数が決定されると、その通信環境下で得られる最大の通信レートを割り出すことができる。
 さらに具体的には、図23に示すように、特定の周波数、例えばシンボルf1のOFDMシンボルの50トーン目が、他の通信(狭帯域通信など)によって使われているとする。
 この場合、図22に示す処理と同様の手順により特定バンドの特定トーンを避けるように、通信レート、動作モードを決定する。使われているトーンの検知は、A/D変換器からの複数バンド出力を一括してFFT処理する方法や、1バンド毎に順番にFFT処理を行って各トーンの状況を調べる方法がある。
 C/Nの算出では、トーン毎にC/Nを算出してもよく、バンド単位や複数トーン単位でC/Nを算出してもよいが、トーン単位で制御する点で同一のものである。
 3バンド同時通信においては、シンボルf1~f3の3バンドに信号が同時に存在しており、ホッピング複素フィルタを全通過とすることで3バンドを用いた送受信が可能になる。3バンドを同時に使用するには、受信装置においては3バンド以上をカバーできるA/D変換器(送信装置においてはD/A変換器)が必要となる。
 例えば、バンド幅が528MHzであるUWBにおいては、3バンドの帯域は528MHzの3倍である1584MHz(複素領域での帯域である±792MHz)となり、この帯域を変換するために、1584MspsのA/D変換器、及びD/A変換器が必要になる。3バンドの中心にローカル信号の周波数があり、3バンドの帯域(1584MHz)は、このローカル信号の周波数を中心に±792MHzに存在するため、ナイキスト周波数としては792MHzで良いことになる。
 これらホッピング通信と3バンド同時通信におけるA/D変換器及びD/A変換器は、変換レートを同じにしてもよく、変換レートを変えてもよい。
 3バンド同時通信において最低限必要な変換レートは、前述した3バンドの周波数帯域(例えば1584MHz)に相当する変換レート(1584Msps)であり、これだけ広い変換レートを持っていれば、ホッピング通信の信号も扱うことができるため、同じ変換レートをホッピング通信に適用できる。
 ホッピング通信における消費電力を低減するために、ホッピング通信において変換レートを下げることもできる。第1の実施の形態や第4の実施の形態で述べたように、ホッピング通信において、1バンド(例えば528MHz)や2バンド(例えば1056MHz)を変換できる変換レート(例えば528Mspsや1056Msps)を持たせてもよい。つまり、3バンド同時通信では3バンド分の変換レート(例えば(1584Msps)、ホッピング通信においては1バンドまたは2バンド分の変換レート(例えば528Mspsや1056Msps)というように、変換レートを切り換えてホッピング通信における消費電力を低減できる。
 以上の説明は送信機にも当てはまる。
 図24は1バンド動作と複数バンド動作を行う送信機の例である。
 図24に示すように、第6の実施の形態の送信機は、図19に示した構成と同様にI信号またはQ信号用のパスのいずれか一方を休止させるための構成を備えている。制御部2005は、I信号用のパスあるいはQ信号用のパスの各構成要素に働きかけて、電源供給を切断したり、バイアス電流の供給を切断したりすることで、いずれか一方のパスを停止させる。また、図16で説明したように、送信機にスイッチ2101を備え、D/A変換器をインターリーブ動作させることで、その出力をI信号用あるいはQ信号用のいずれか一方のパスに供給することも可能である。
 図24では図5に示したホッピング複素フィルタ808を使用する例を示しているが、ホッピング複素フィルタ808には、目的とする動作等に応じて、適宜、図6に示した構成を使用してもよい。
 1バンド動作と複数バンド動作に関しても、上述した受信器に関して行った説明のうち、A/D変換器をD/A変換器に変更し、信号をベースバンド処理回路から送信アンテナに向かって処理することで実現できる。例えば図20や図21に示したA/D変換器をD/A変換器へ置き換え、フィルタやアンプの向きを逆にすることで動作を表現できる。
(第7の実施の形態)
 上述した1バンド動作や複数バンド動作をさらに拡張することで、本発明は、ホッピング複素フィルタによる効果を最大限に引き出すことが可能である。
 図25に様々なモードに対応できるホッピング複素フィルタを用いた無線通信装置の一例を示す。
 図25に示す表は、横方向に1バンド動作、偶数バンド同時動作、奇数バンド同時動作の周波数の利用形態を示し、縦方向に高速ホッピングや周波数固定動作を表している。
 周波数固定動作中に高速動作に重点を置いた動作と、低電力に重点を置いた動作を示している。
 通常、無線通信装置には誤り訂正(FEC)機能が実装されている。誤り訂正機能により、時間方向や周波数方向に情報の冗長性を持たせることで、特定の周波数におけるC/Nの低下や、特定の時間におけるC/Nの低下に対処できる。
 高速ホッピングでは時間方向だけでなく周波数方向にも冗長性を持たせている。周波数固定通信では、時間方向と、バンド内のトーン間に冗長性を持たせている。周波数の冗長性としては、離れた周波数を利用できる高速ホッピングの方が比較的高い冗長性を持たせることができる。
 周波数固定通信には高速動作と低消費電力動作があるが、一般に、ピコネットのコーディネートを行うホスト端末装置では高速動作に重点が置かれる場合がある。また、消費電力の制限が大きいデバイス端末装置では低消費電力動作に重点が置かれる場合がある。
 1バンド通信、周波数固定通信、高速動作の構成例を図26に示す。
 図20及び図21で示したホッピング動作や3バンド同時動作と同様に、ローカル信号の周波数をバンドグループの中央に設定する。さらに、図26に示す例では、複素フィルタをプラス周波数阻止に固定する。さらにA/D変換器を1.5バンド帯域に設定し、ローパスフィルタも1.5バンド帯域に設定する。
 これは第6の実施の形態のホッピング動作において述べたように、Q信号用のパスの動作を停止させることで実現できる。
 この例で図20や図21で示した動作と異なるのは、ホッピング複素フィルタの設定のみであり、図26に示す1バンド通信、周波数固定通信動作から、図20に示したホッピング動作や図21に示した3バンド同時動作に高速に移行することができる。図20、21、26に示す動作間の移行も高速に行える。
 偶数バンド同時通信、周波数固定、高速動作の例を図27に示す。
 この場合も変化させるのはホッピング複素フィルタのみであり、図20、21、26に示す動作と図27に示す動作とを高速に切り替えることができる。
 周波数固定、低消費電力、1バンドの構成例を図28に示す。
 図28に示す例では、ローカル信号の周波数をシンボルf1の中央に設定する。ホッピング複素フィルタは全通過に設定し、A/D変換器は2バンド帯域、ローパスフィルタは1バンド帯域に設定する。これによりA/D変換器の変換レートを下げることが可能であり、その分だけ消費電力を低減できる。
 さらに、デジタル領域のダウンコンバータ(送信機においてはアップコンバータ)を、停止させることも可能であり、その分だけ消費電力を低減できる。
 周波数固定、低消費電力、偶数バンド同時の構成例を図29に示す。
 図29に示す例では、ローカル信号の周波数をシンボルf1とシンボルf2間に設定する。この場合、ローカル信号の周波数を、同時動作させるシンボルf1からシンボルf2の周波数範囲の中央に設定することになる。ホッピング複素フィルタは全通過特性に設定し、A/D変換機は2バンド帯域、ローパスフィルタは2バンド帯域に設定する。これにより、図27に示した動作よりもA/D変換器の変換レートを下げることが可能であり、その分だけ消費電力を低減できる。
 図30は図25に示した各モードを実行する時の無線通信装置の設定をまとめて示した表である。
 無線通信装置の各モードは、図31に示す手順にしたがって、使用バンド、伝送レート、消費電力及びインターリーブモードを決定し、その動作モードを判定する。そして、該動作モードに移行するため、図32に示す手順にしたがって、インターリーブモード、使用バンド、複素フィルタ、I/Q動作、ローパスフィルタ及びA/D変換器を、それぞれ図30で示したように設定する。
 無線通信装置のモードは、制御部2005によりホッピング複素フィルタやローカル発生器、ローパスフィルタ、A/D変換器、ダウンコンバータ、D/A変換器、セレクタ等を制御することで切り換えることができる。
 本発明では、複素フィルタの高速かつフレキシブルな動作によって、このような制御が可能となっている。
<順序回路、プログラム及び記憶媒体>
 以上で説明した本発明の制御部は、例えば、論理回路で構成された順序回路やプログラムにしたがって動作するコンピュータで実現できる。順序回路は、予め動作が規定された回路あるいは論理や順序を変更可能な回路であってもよい。コンピュータには、マイクロコントローラ、マイクロプロセッサ、DSP(デジタルシグナルプロセッサ)、あるいはパーソナルコンピュータやワークステーション等が使用できるが、本発明はこれに限定されるものではない。
 以上説明したように、本発明の特徴であるホッピング複素フィルタの高速性により、ローカル信号の周波数を1つしか使わない構成により、消費電力を低減し、回路面積を小さくしつつ、制御部によりA/D変換器、I/Qパス、LPF等を制御することで様々なモードに対応できる。また、複数バンドの同時動作によって高いスループットを得ることが可能であり、トラフィックの変化に対応できると共に、周波数の利用効率が向上する。
 また、本発明によれば、要求伝送レートに応じて消費電力を最小限にすることができる。従来からIパス、Qパスの片方を停止させて消費電力を低減する方法はあった。しかしながら、本発明では、ホッピング複素フィルタの通過域を周波数ホッピングに合わせて高速に変化させ、それに合わせてI/Qパスの片方をあるホッピングシンボルにおいて停止させることを可能にしている。
 さらに、本発明によれば、複数バンドの同時動作と高速ホッピング動作を、同一の回路で対応できる。しかも複数バンドの同時動作と高速ホッピング動作で使用するLO周波数は同一にすることができ、両者の間を高速に切り換えることができる。その理由は、高速ホッピング時に複素フィルタを3条件(+f阻止、全通過、-f阻止)切り換えるが、複数バンド同時動作時においてその内の1条件(全通過)を使用することで対応できるからである。回路資源を共有することで、チップ面積を最小限にすることができる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細は本願発明のスコープ内で当業者が理解し得る様々な変更が可能である。
 この出願は、2008年4月25日に出願された特願2008-115389号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (16)

  1.  無線通信に用いる、所定の周波数帯域から成る複数のバンドから成るバンドグループを備え、前記バンドグループ内の各バンドを所定のシーケンスでホッピングする無線通信と、前記バンドグループ内の複数のバンドを同時に使用する無線通信の両方に対応する無線通信装置であって、
     前記バンドグループの中心周波数に等しいローカル信号を生成するローカル発生器と、
     前記ローカル発生器で生成されたローカル信号を用いて前記バンドグループ内の無線信号をダウンコンバートする第1のダウンコンバータと、
     前記ダウンコンバートされた信号を入力として通過域を変化させるホッピング複素フィルタと、
     前記ホッピング複素フィルタの通過域を制御する制御部と、
    を有し、
     前記制御部は、
     前記ホッピングするバンドの中のローカル周波数をまたぐバンドにおける無線通信と前記複数のバンドを同時に使用する無線通信では前記ホッピング複素フィルタを全通過とさせ、それ以外の無線通信では前記ホッピング複素フィルタを片側周波数抑圧とさせる制御を行う無線通信装置。
  2.  前記ホッピング複素フィルタから出力された信号をデジタル信号に変換する、変換レートが制御可能なA/D変換器をさらに有する請求項1記載の無線通信装置。
  3.  前記A/D変換器に入力する信号の帯域を制限し、通過域が制御可能な第1のフィルタをさらに有する請求項2記載の無線通信装置。
  4.  前記制御部は、
     前記A/D変換器の変換レート、前記第1のフィルタの通過域を制御する請求項3記載の無線通信装置。
  5.  前記ローカル発生器は、
     前記ローカル信号の周波数をバンドグループ内でシフトさせる構成を備え、
     前記制御部は、
     前記ローカル発生器で生成する前記ローカル信号の周波数を制御する請求項4記載の無線通信装置。
  6.  前記制御部は、
     前記バンドグループ内の周波数利用状況に応じて、前記ホッピング複素フィルタの特性、前記A/D変換器の変換レート、前記第1のフィルタの通過域、前記ローカル発生器で生成する前記ローカル信号の周波数を制御する請求項5記載の無線通信装置。
  7.  前記制御部は、
     要求伝送レートに応じて前記ホッピング複素フィルタの特性、前記A/D変換器の変換レート、前記第1のフィルタの通過域、前記ローカル発生器で生成する前記ローカル信号の周波数を制御する請求項5記載の無線通信装置。
  8.  無線通信に用いる、所定の周波数帯域から成る複数のバンドから成るバンドグループを備え、前記バンドグループ内の各バンドを所定のシーケンスでホッピングする無線通信と、前記バンドグループ内の複数のバンドを同時に使用する無線通信の両方に対応する無線通信装置であって、
     前記バンドグループの中心周波数に等しいローカル信号を生成するローカル発生器と、
     前記ローカル発生器で生成されたローカル信号を用いて前記バンドグループ内の無線信号をアップコンバートする第1のアップコンバータと、
     前記アップコンバートされた信号を入力として通過域を変化させるホッピング複素フィルタと、
     前記ホッピング複素フィルタの通過域を制御する制御部と、
    を有し、
     前記制御部は、
     前記ホッピングするバンドの中のローカル周波数をまたぐバンドにおける無線通信と前記複数のバンドを同時に使用する無線通信では前記ホッピング複素フィルタを全通過とさせ、それ以外の無線通信では前記ホッピング複素フィルタを片側周波数抑圧とさせる制御を行う無線通信装置。
  9.  前記ホッピング複素フィルタに信号を供給し、変換レートが制御可能なD/A変換器をさらに有する請求項8記載の無線通信装置。
  10.  前記D/A変換器から出力された信号の帯域を制限し、通過域が制御可能な第2のフィルタをさらに有する請求項9記載の無線通信装置。
  11.  前記制御部は、
     前記D/A変換器の変換レート、前記第2のフィルタの通過域を制御する請求項10記載の無線通信装置。
  12.  前記ローカル発生器は、前記ローカル信号の周波数をバンドグループ内でシフトさせる構成を備え、
     前記制御部は、
     前記ローカル発生器のローカル周波数を制御する請求項11記載の無線通信装置。
  13.  前記制御部は、
     前記バンドグループ内の周波数利用状況に応じて、前記ホッピング複素フィルタの特性、前記D/A変換器の変換レート、前記第1のフィルタの通過域、前記ローカル発生器で生成する前記ローカル信号の周波数を制御する請求項12記載の無線通信装置。
  14.  前記制御部は、
     要求伝送レートに応じて前記ホッピング複素フィルタの特性、前記D/A変換器の変換レート、前記第1のフィルタの通過域、前記ローカル発生器で生成する前記ローカル信号の周波数を制御する請求項12記載の無線通信装置。
  15.  前記A/D変換は、
     複数バンドを一括してA/D変換し、
     前記制御部は、
     各バンドの利用状況から使用可能なバンドを決定し、
     使用可能なバンドのC/Nを計算し、
     通信レートと消費電力の関係を算出し、
     通信レート、動作モードを決定する請求項2記載の無線通信装置。
  16.  前記A/D変換は、
     複数バンドを一括してA/D変換し、
     前記制御部は、
     各トーンの利用状況から使用可能なトーンを決定し、
     使用可能なトーンのC/Nを計算し、
     通信レートと消費電力の関係を算出し、
     通信レート、動作モードを決定する請求項2記載の無線通信装置。
PCT/JP2009/057789 2008-04-25 2009-04-17 無線通信装置 WO2009131076A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/920,919 US20110026509A1 (en) 2008-04-25 2009-04-17 Wireless communication apparatus
JP2010509164A JP5333446B2 (ja) 2008-04-25 2009-04-17 無線通信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-115389 2008-04-25
JP2008115389 2008-04-25

Publications (1)

Publication Number Publication Date
WO2009131076A1 true WO2009131076A1 (ja) 2009-10-29

Family

ID=41216812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057789 WO2009131076A1 (ja) 2008-04-25 2009-04-17 無線通信装置

Country Status (3)

Country Link
US (1) US20110026509A1 (ja)
JP (1) JP5333446B2 (ja)
WO (1) WO2009131076A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114385A (ja) * 2009-11-24 2011-06-09 Renesas Electronics Corp プリアンブル検出装置、方法及びプログラム
WO2012014876A1 (ja) * 2010-07-27 2012-02-02 日本電気株式会社 信号検出装置、その制御方法、プログラム及び無線通信装置
JP2012231451A (ja) * 2011-04-26 2012-11-22 Intel Corp 低電力無線ネットワーク用の方法及び装置
JP5777641B2 (ja) * 2010-12-28 2015-09-09 パナソニック株式会社 時分割受信機及び時分割受信方法
US9276799B2 (en) 2014-04-18 2016-03-01 Fujitsu Limited Wireless transmission apparatus and distortion compensation method

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8306096B2 (en) * 2009-06-26 2012-11-06 Qualcomm Incorporated Interference reduction using variable digital-to-analog converter (DAC) sampling rates
JP5755067B2 (ja) * 2010-07-30 2015-07-29 株式会社半導体エネルギー研究所 無線給電システム、及び無線給電方法
US10284356B2 (en) 2011-02-03 2019-05-07 The Board Of Trustees Of The Leland Stanford Junior University Self-interference cancellation
US9331737B2 (en) 2012-02-08 2016-05-03 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for cancelling interference using multiple attenuation delays
US9887728B2 (en) 2011-02-03 2018-02-06 The Board Of Trustees Of The Leland Stanford Junior University Single channel full duplex wireless communications
US10243719B2 (en) 2011-11-09 2019-03-26 The Board Of Trustees Of The Leland Stanford Junior University Self-interference cancellation for MIMO radios
US9325432B2 (en) 2012-02-08 2016-04-26 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for full-duplex signal shaping
US9088298B2 (en) * 2013-05-02 2015-07-21 Skyworks Solutions, Inc. Mixed mode time interleaved digital-to-analog converter for radio-frequency applications
KR102222353B1 (ko) 2013-08-09 2021-03-03 쿠무 네트웍스, 아이엔씨. 비선형 디지털 자기 간섭 제거를 위한 시스템 및 방법
US9698860B2 (en) 2013-08-09 2017-07-04 Kumu Networks, Inc. Systems and methods for self-interference canceller tuning
US11163050B2 (en) 2013-08-09 2021-11-02 The Board Of Trustees Of The Leland Stanford Junior University Backscatter estimation using progressive self interference cancellation
US9054795B2 (en) 2013-08-14 2015-06-09 Kumu Networks, Inc. Systems and methods for phase noise mitigation
US10673519B2 (en) 2013-08-29 2020-06-02 Kuma Networks, Inc. Optically enhanced self-interference cancellation
EP3039798A4 (en) 2013-08-29 2017-05-03 Kumu Networks, Inc. Full-duplex relays
US9774405B2 (en) 2013-12-12 2017-09-26 Kumu Networks, Inc. Systems and methods for frequency-isolated self-interference cancellation
US10230422B2 (en) 2013-12-12 2019-03-12 Kumu Networks, Inc. Systems and methods for modified frequency-isolation self-interference cancellation
US9712312B2 (en) 2014-03-26 2017-07-18 Kumu Networks, Inc. Systems and methods for near band interference cancellation
WO2015168700A1 (en) 2014-05-02 2015-11-05 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for tracing motion using radio frequency signals
US9712313B2 (en) 2014-11-03 2017-07-18 Kumu Networks, Inc. Systems for multi-peak-filter-based analog self-interference cancellation
US9673854B2 (en) 2015-01-29 2017-06-06 Kumu Networks, Inc. Method for pilot signal based self-inteference cancellation tuning
EP3067887A1 (en) 2015-03-09 2016-09-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoder for encoding a multichannel signal and audio decoder for decoding an encoded audio signal
EP3304754B1 (en) * 2015-06-01 2024-06-05 Transfert Plus Limited Partnership Systems and methods for spectrally efficient and energy efficient ultra- wideband impulse radios with scalable data rates
EP3342046B1 (en) * 2015-08-27 2019-07-03 Telefonaktiebolaget LM Ericsson (PUBL) Method and dual band radio receiver for handling analog dual band radio signal
US9634823B1 (en) 2015-10-13 2017-04-25 Kumu Networks, Inc. Systems for integrated self-interference cancellation
US10666305B2 (en) 2015-12-16 2020-05-26 Kumu Networks, Inc. Systems and methods for linearized-mixer out-of-band interference mitigation
WO2017106766A1 (en) 2015-12-16 2017-06-22 Kumu Networks, Inc. Time delay filters
US9800275B2 (en) 2015-12-16 2017-10-24 Kumu Networks, Inc. Systems and methods for out-of band-interference mitigation
US9742593B2 (en) 2015-12-16 2017-08-22 Kumu Networks, Inc. Systems and methods for adaptively-tuned digital self-interference cancellation
US10454444B2 (en) 2016-04-25 2019-10-22 Kumu Networks, Inc. Integrated delay modules
WO2017189592A1 (en) 2016-04-25 2017-11-02 Kumu Networks, Inc. Integrated delay modules
US10338205B2 (en) 2016-08-12 2019-07-02 The Board Of Trustees Of The Leland Stanford Junior University Backscatter communication among commodity WiFi radios
EP3532981A4 (en) 2016-10-25 2020-06-24 The Board of Trustees of the Leland Stanford Junior University BACKGROUND OF ENVIRONMENT ISM BAND SIGNALS
US10050664B1 (en) 2017-03-27 2018-08-14 Kumu Networks, Inc. Enhanced linearity mixer
US10103774B1 (en) 2017-03-27 2018-10-16 Kumu Networks, Inc. Systems and methods for intelligently-tuned digital self-interference cancellation
EP3602800A4 (en) 2017-03-27 2020-11-18 Kumu Networks, Inc. OUT-BAND INTERFERENCE MITIGATION SYSTEMS AND METHODS
US10200076B1 (en) 2017-08-01 2019-02-05 Kumu Networks, Inc. Analog self-interference cancellation systems for CMTS
JP7096346B2 (ja) 2018-02-27 2022-07-05 クム ネットワークス,インコーポレイテッド 設定可能なハイブリッド自己干渉キャンセルシステムおよび方法
CN110896315A (zh) * 2018-09-12 2020-03-20 宁德时代新能源科技股份有限公司 无线射频通信系统
US10868661B2 (en) 2019-03-14 2020-12-15 Kumu Networks, Inc. Systems and methods for efficiently-transformed digital self-interference cancellation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029226B2 (ja) * 1993-08-09 2000-04-04 エヌ・ティ・ティ移動通信網株式会社 周波数ダイバーシチ伝送装置
JP3388508B2 (ja) * 1994-07-27 2003-03-24 日本電信電話株式会社 ディジタル復調器
WO2006077733A1 (ja) * 2005-01-21 2006-07-27 Sony Corporation 無線通信装置
JP2007243236A (ja) * 2006-03-03 2007-09-20 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP2007258904A (ja) * 2006-03-22 2007-10-04 Sony Corp 無線通信装置
WO2008056616A1 (fr) * 2006-11-10 2008-05-15 Nec Corporation Appareil de communication sans fil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3836650B2 (ja) * 1999-10-04 2006-10-25 三菱電機株式会社 通信装置および通信方法
JP3874241B2 (ja) * 2001-07-27 2007-01-31 株式会社ルネサステクノロジ 電子部品および設計方法
US7532564B2 (en) * 2002-09-11 2009-05-12 Intel Corporation Sub-banded ultra-wideband communications systems
US7809067B2 (en) * 2003-10-01 2010-10-05 Nxp B.V. Multi-carrier OFDM UWB communications systems
JP4809097B2 (ja) * 2006-03-29 2011-11-02 ルネサスエレクトロニクス株式会社 受信回路及び受信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029226B2 (ja) * 1993-08-09 2000-04-04 エヌ・ティ・ティ移動通信網株式会社 周波数ダイバーシチ伝送装置
JP3388508B2 (ja) * 1994-07-27 2003-03-24 日本電信電話株式会社 ディジタル復調器
WO2006077733A1 (ja) * 2005-01-21 2006-07-27 Sony Corporation 無線通信装置
JP2007243236A (ja) * 2006-03-03 2007-09-20 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP2007258904A (ja) * 2006-03-22 2007-10-04 Sony Corp 無線通信装置
WO2008056616A1 (fr) * 2006-11-10 2008-05-15 Nec Corporation Appareil de communication sans fil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114385A (ja) * 2009-11-24 2011-06-09 Renesas Electronics Corp プリアンブル検出装置、方法及びプログラム
WO2012014876A1 (ja) * 2010-07-27 2012-02-02 日本電気株式会社 信号検出装置、その制御方法、プログラム及び無線通信装置
US9020078B2 (en) 2010-07-27 2015-04-28 Nec Corporation Signal detection device, method of controlling same, program, and wireless communication device
JP5777641B2 (ja) * 2010-12-28 2015-09-09 パナソニック株式会社 時分割受信機及び時分割受信方法
JP2012231451A (ja) * 2011-04-26 2012-11-22 Intel Corp 低電力無線ネットワーク用の方法及び装置
US8989102B2 (en) 2011-04-26 2015-03-24 Intel Corporation Methods and arrangements for low power wireless networks
US9276799B2 (en) 2014-04-18 2016-03-01 Fujitsu Limited Wireless transmission apparatus and distortion compensation method

Also Published As

Publication number Publication date
JP5333446B2 (ja) 2013-11-06
US20110026509A1 (en) 2011-02-03
JPWO2009131076A1 (ja) 2011-08-18

Similar Documents

Publication Publication Date Title
WO2009131076A1 (ja) 無線通信装置
JP6591611B2 (ja) 無線周波数受信機および受信方法
US8583170B2 (en) Multi-band aggregated spectrum receiver employing frequency source reuse
JP5168148B2 (ja) 無線通信装置
EP0968570B1 (en) A multi-carrier radio system and radio transceiver implementation
US9065537B2 (en) Method and system for calibrating a multi-mode, multi-standard transmitter and receiver
EP2611031B1 (en) Signal filtering
US8194718B2 (en) Receiving apparatus and signal processing method
US11031962B2 (en) Carrier aggregated signal transmission and reception
KR20170007283A (ko) 캐리어 어그리게이션 트랜시버 내의 다수의 합성기들을 가지는 멀티-웨이 다이버시티 수신기
JP2009077420A (ja) 通信装置、マルチバンド受信装置及び受信装置
US11064446B2 (en) Apparatus and methods for wideband receivers
US10355729B2 (en) Single receiver intra-band non-contiguous carrier aggregation
US10439593B2 (en) Multi-band filter architectures
JP2005518757A (ja) 3g無線受信機
JP4338526B2 (ja) 3g無線受信機
US10951445B2 (en) Radio frequency integrated circuit supporting carrier aggregation and wireless communication device including the same
Wu et al. A 14-nm low-cost IF transceiver IC with low-jitter LO and flexible calibration architecture for 5G FR2 mobile applications
US11258506B2 (en) Method and apparatus for transmitting and receiving multiple carriers with multiple antennas
US20070121740A1 (en) Selective attenuation in spectral notching
Bourdi et al. Wireless Communication Systems: An Overview

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735858

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12920919

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010509164

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09735858

Country of ref document: EP

Kind code of ref document: A1