[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009128441A1 - Composite resin particles and use of the same - Google Patents

Composite resin particles and use of the same Download PDF

Info

Publication number
WO2009128441A1
WO2009128441A1 PCT/JP2009/057491 JP2009057491W WO2009128441A1 WO 2009128441 A1 WO2009128441 A1 WO 2009128441A1 JP 2009057491 W JP2009057491 W JP 2009057491W WO 2009128441 A1 WO2009128441 A1 WO 2009128441A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite resin
particles
resin particle
particle
silicone resin
Prior art date
Application number
PCT/JP2009/057491
Other languages
French (fr)
Japanese (ja)
Inventor
敏雄 関谷
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Priority to JP2010508213A priority Critical patent/JP5706687B2/en
Priority to KR1020107022645A priority patent/KR101204963B1/en
Priority to CN2009801136487A priority patent/CN102007154B/en
Publication of WO2009128441A1 publication Critical patent/WO2009128441A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/895Polysiloxanes containing silicon bound to unsaturated aliphatic groups, e.g. vinyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties

Definitions

  • the present invention relates to a composite resin particle group containing silicone resin core particles and use thereof. More specifically, the present invention relates to a composite resin particle group formed using silicone resin core particles as seed particles and the use thereof.
  • the acrylic resin particles having an acrylic resin in the outer shell or the resin particles having polystyrene in the outer shell are used for various applications by utilizing the characteristics. Such resin particles are being widely used especially as optical members and cosmetic raw materials because the resin forming the outer shell is transparent.
  • Core particles are manufactured, and the core particles are used as seed particles, and an outer shell made of acrylic resin or styrene resin is formed around the core particles. It can be produced by seed polymerization to form.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-96815
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-138119
  • the silicone fine particles described in Patent Document 1 are obtained by coating the periphery of silicone rubber sphere fine particles with a polyorganosilsesquioxane resin, and the silicone fine particles have rubber elasticity,
  • the outer shell is made of a polyorganosilsesquioxane resin, so that it is not suitable as an optical material.
  • Patent Document 2 discloses that polymer particles in which a silicone compound represented by a specific formula or a partial hydrolysis condensate thereof is included in a polymer have a specific particle size distribution. The cited document 2 does not show in what form the obtained polymer particles include a silicone compound or a hydrolyzate thereof.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-177426
  • High low reflection transparent spherical particles are disclosed.
  • This particle forms a low-refractive index layer such as a fluorine-based polymer layer on the surface layer by two-stage polymerization by, for example, soap-free emulsion polymerization, and there is no description regarding the position of the core layer that forms this low-reflection transparent spherical particle
  • a low-refractive index layer such as a fluorine-based polymer layer
  • soap-free emulsion polymerization there is no description regarding the position of the core layer that forms this low-reflection transparent spherical particle
  • Patent Document 4 Japanese Patent Laid-Open No. 2007-091515 discloses a silica particle having a spherical or substantially spherical outer shell having a hollow structure and an inner shell that is in contact with the outer shell and forms a convex portion toward the center. The invention is disclosed.
  • a polymer is prepared by adding an acrylic monomer to a dispersion of colloidal silica to prepare a polymer, and then a polyalkoxysiloxane oligomer is added thereto to carry out a condensation reaction of the polyalkoxysiloxane oligomer.
  • a silica component derived from the polyalkoxysiloxane oligomer is locally attached to the surface to prepare composite polymer particles, which are baked at a temperature of about 500 ° C. to remove the polymer component.
  • the silica particles disclosed in Patent Document 4 are silica particles that are inorganic substances from which the polymer component has been removed by firing.
  • the object of the present invention is to provide a new composite resin particle group. Furthermore, the present invention provides an assembly of composite resin particles having a resin layer around the core material particles, and the core material particles present in each composite resin particle constituting the composite resin particle group are the composite resin particles. An object of the present invention is to provide a composite resin particle group containing a large number of unevenly distributed particles.
  • an object of the present invention is to provide a use of a composite resin particle group composed of composite resin particles in which core particles are unevenly distributed as described above, particularly a light diffusion sheet and a cosmetic.
  • a monomer component containing an acrylic monomer and / or a styrene monomer is copolymerized in the presence of silicone resin core particles having an average particle diameter in the range of 0.01 to 50 ⁇ m.
  • a composite resin particle group consisting of solid particles containing silicone resin core particles In the cross section of the composite resin particle cut so as to expose the substantially center of the silicone resin core material particle included in the composite resin particle constituting the composite resin particle group, It passes through the center of the cross section of the silicone resin core material particle, passes through the virtual straight line (A) having the longest distance between the intersections with the outer peripheral surface of the composite resin particle, and the center of the cross section of the silicone resin core material particle.
  • the center point (P) of the silicone resin core particle is from the center point (P) of the silicone resin core particle to the point where the virtual straight line (A) or (B) is in contact with the surface of the composite resin particle.
  • the shortest distance (R mini ) and the longest distance (R) from the center point (P) of the silicone resin core particle to the point where the virtual line (A) or (B) contacts the surface of the composite resin particle 50% by number or more of composite resin particles in a position having a relationship represented by the following formulas (1) and (2) with respect to max ).
  • Dsi represents the diameter of the silicone resin core particle in the cross section, and is usually in the range of 0.01 to 50 ⁇ m, preferably in the range of 0.5 to 10 ⁇ m. It is in.
  • the silicone resin core particle is a condensate of a silicone compound, but an alkoxide of titanium / zirconium may be blended in the silicone resin core particle.
  • the cosmetic of the present invention is characterized by being formed using the composite resin particle group as described above.
  • the light diffusion sheet of the present invention is characterized by being formed using the composite resin particle group as a reflective material.
  • the composite resin particles forming the composite resin particle group of the present invention have a shell layer obtained by seed polymerization of an acrylic resin or a styrene resin on a silicone particle core material, and the silicone resin core material forming the core layer includes The composite resin particles are not in the center and are unevenly distributed in either one of them.
  • the light reflection peak angle of each composite resin particle does not show a constant angle, but the reflection peel peels off due to the presence of a large number of particles. The variation in reflected light depending on the angle is reduced.
  • the silicone resin core particles contained in each particle constituting the particle group are not present at the center of the composite resin particle but are present unevenly. For this reason, when the individual particles are viewed, the reflection peaks of the light do not coincide with each other. Therefore, the reflection peaks vary depending on the viewing angle. However, when such a composite resin particle group is applied to form a layer, the reflection peaks that are scattered among the particles cancel each other, and the dispersion of the reflection peaks depending on the viewing angle disappears.
  • the cosmetic of the present invention has a dull and clean finish.
  • the light diffusion sheet of the present invention can obtain a light diffusion sheet with very high uniformity by using the above-described composite resin particles with high reflection uniformity.
  • FIG. 1 is a perspective view having a notch portion showing an example of composite resin particles forming the composite resin particle group of the present invention.
  • 2 is a cross-sectional view taken along the line XX in FIG. 3 is a cross-sectional view taken along the line YY in FIG.
  • FIG. 4 is a cross-sectional view showing the center position of the silicone resin core material particles in the composite resin particles constituting the composite resin particle group of the present invention.
  • FIG. 5 is a cross-sectional view showing an example of composite resin particles having a relatively high sphericity.
  • FIG. 6 is a cross-sectional view showing another example of composite resin particles having a relatively high sphericity.
  • FIG. 7 is a cross-sectional view showing an example of the composite resin of the present invention having a substantially elliptical cross section and a relatively low sphericity.
  • FIG. 8 is a cross-sectional view showing an example of the composite resin particle of the present invention having a low sphericity.
  • FIG. 9 is a cross-sectional view showing an example of composite resin particles having an irregular cross-section.
  • FIG. 10 is an SEM photograph of the composite resin particle group of Example 1.
  • FIG. 11 is an SEM photograph showing a cross section of the composite resin particle shown in FIG. 10 obtained in Example 1.
  • FIG. 12 is an SEM photograph of the composite resin particle group obtained in Example 2.
  • FIG. 13 is an SEM photograph showing a cross section of the composite resin particle shown in FIG. 12 obtained in Example 2.
  • FIG. 14 is an SEM photograph of the composite resin particle group obtained in Example 3.
  • FIG. 15 is an SEM photograph showing a cross section of the composite resin particle shown in FIG. 14 obtained in Example 3.
  • FIG. 16 is an SEM photograph of the composite resin particle group obtained in Example 4.
  • FIG. 17 is an SEM photograph showing a cross section of the composite resin particle shown in FIG. 16 obtained in Example 4.
  • FIG. 18 is an SEM photograph of the composite resin particle group obtained in Example 5.
  • FIG. 19 is an SEM photograph showing a cross section of the composite resin particle shown in FIG. 18 obtained in Example 5.
  • FIG. 20 is an SEM photograph of the composite resin particle group obtained in Example 6.
  • FIG. 21 is a SEM photograph showing a cross section of the composite resin particle shown in FIG. 20 obtained in Example 6.
  • FIG. 22 is an SEM photograph of the composite resin particle group obtained in Example 7.
  • FIG. 23 is a SEM photograph showing a cross section of the composite resin particle shown in FIG. 22 obtained in Example 7.
  • FIG. 24 is a graph showing the rate of change in reflected light of the particle group obtained in Example 6.
  • FIG. 25 is a graph showing the rate of change in reflected light of the particle group obtained in Comparative Example 3.
  • FIG. 26 is a SEM photograph of the silicone resin core particles obtained in Production Example 3 used in Example 8.
  • FIG. 27 is a SEM photograph of the composite resin particle group produced in Example 8.
  • FIG. 28 is a graph showing the rate of change in reflected light of the particle group obtained in Example 8.
  • FIG. 1 is a perspective view having a cutout portion showing an example of composite resin particles forming the composite resin particle group of the present invention
  • FIG. 2 is a sectional view taken along line XX in FIG. 1, and FIG. FIG.
  • the individual composite resin particles 10 constituting the composite resin particle group of the present invention are composed of a silicone resin core particle 30 and an acrylic resin layer (shell layer) 20 formed on the outer periphery of the silicone resin core particle 30. Is formed.
  • the center P of the silicone resin core particle 30 that is the core material of the composite resin particle 10 and the center Q of the composite resin particle 10 do not coincide with each other. Is shifted to either one.
  • the silicone resin core particles 30 are shifted to the right. This state is clearly shown in FIG. 3 showing the YY cross section of FIG. 1, and the center point Q of the composite resin particle 10 and the center point P of the silicone resin core particle do not coincide with each other.
  • the center P of the silicone resin core particle 30 does not coincide with the Q of the composite resin particle 10.
  • the silicone resin core particle 30 is not displaced in the vertical direction, and in FIG. 2 showing the XX cross section in FIG. 1, the center point P of the silicone resin core particle 30 and the composite resin particle 10 It coincides with the center point Q.
  • Such a shift of the silicone resin core particle 30 in the composite resin particle 10 can be expressed as follows. In the cross section of the composite resin particle 10 cut so as to include at least a part of the silicone resin core particle 30, it passes through the center of the silicone resin core particle in this cross section, and the outer peripheral surface of the composite resin particle 10 in this cross section. And the virtual straight line (A) having the longest distance between the intersections with each other and the virtual straight line having the shortest distance between the intersections with the outer peripheral surface of the composite resin particles while passing through the center of the cross section of the silicone resin core particle 30 Virtualize (B).
  • the center point (P) of the silicone resin core particle is from the center point (P) of the silicone resin core particle to the point where the virtual straight line (A) or (B) is in contact with the surface of the composite resin particle.
  • the shortest distance is R mini and the longest distance from the center point (P) of the silicone resin core particle to the point where the virtual line (A) or (B) is in contact with the surface of the composite resin particle is R.
  • R mini and R max are at positions having a relationship represented by the following expressions (1) and (2).
  • Dsi represents the diameter of the silicone resin core particles in the cross section.
  • R mini and R max are equal to R mini and R max because there is no vertical displacement of the composite resin particle 10 of the silicone resin core particle 30, but as shown in FIG. Since the material particles 30 are displaced in the lateral direction of the composite resin particles 10, R mini and R max show different values.
  • the unevenly distributed particles in which the silicone resin core material particles 30 are ubiquitously present in the composite resin particles 10 as described above are at least 50 number /%, preferably 60 number /%. It is contained at a rate in the range of up to 100 pieces /%.
  • the silicone resin core material particles 30 are unevenly distributed in the composite resin particles 10 as described above, light incident on the individual particles is reflected in various directions depending on the uneven distribution state of the silicone resin core material particles 30. At first glance, it seems that the reflected light intensity becomes unstable due to the reflected light coming out in various directions, but the reflection peak is unexpectedly offset and the composite resin particle group of the present invention was applied. The light emitted from the layer is very stable with little fluctuation due to the viewing angle.
  • the virtual straight line (C) is temporarily mounted radially outward from the center point Q with Q being the center point of any composite resin particle constituting the composite resin particle group.
  • the center point P of the silicone resin core particles contained in the composite resin particles is present on the virtual straight line (C).
  • the center point Q of the composite resin particle which is the base point of the virtual line (C)
  • the length between the virtual line (C) and the outer peripheral surface of the composite resin particle is 100.
  • the center point P of the silicone resin core particles contained in the composite resin particles is preferably in the position of more than 0% and 99% or less, and more preferably in the range of 10 to 95%. It is particularly preferred.
  • the composite resin particles in which the silicone resin core particles are unevenly distributed as described above are 50 number /% or more of the entire composite resin particle group, and further 60 to 100 number. /% Is preferable.
  • the composite resin particles constituting the composite resin particle group of the present invention have an average particle diameter ( ⁇ cp) in the range of 0.02 to 100 ⁇ m, preferably in the range of 1 to 20 ⁇ m.
  • the average particle diameter ( ⁇ si) of the silicone resin core particles included in the composite resin particles is in the range of 0.01 to 50 ⁇ m, preferably in the range of 0.5 to 10 ⁇ m.
  • the average particle diameter of the silicone resin core particles usually used for seed polymerization can be applied. It is preferable to obtain the average particle diameter ( ⁇ cp) of the composite resin particles and the average particle diameter ( ⁇ si) of the silicone resin core particles from the SEM photograph of the cross section passing through the approximate center point Q of the composite resin particles.
  • the composite resin particle is not substantially spherical, that is, when the cross-sectional shape is not substantially circular, the diameter of a virtual circle that can be drawn based on the arc of the composite resin particle that can be visually recognized in the SEM photograph is obtained.
  • the center point P of the silicone resin core material particle does not coincide with the center point Q of the composite resin particle and is unevenly distributed, the center point Q of the composite resin particle And a certain distance between the center point P of the silicone resin core particles. In FIG. 4, this distance is indicated by x.
  • the average distance x between the center point Q of the composite resin particles and the center point P of the silicone resin core particles is usually in the range of 0.005 to 50 ⁇ m, preferably in the range of 0.1 to 20 ⁇ m. Is in.
  • the average distance x between the center point Q of the composite resin particles constituting the composite resin particle group and the center point P of the silicone resin core particles, and the average particle diameter ( ⁇ cp of the composite resin particles )) (X / ⁇ cp) is usually in the range of 0.01 to 0.5, preferably in the range of 0.1 to 0.4.
  • the ratio represented by (x / ⁇ cp) represents the degree of uneven distribution of the silicone resin core particles in the composite resin particle group, and as this value approaches 0, the silicone resin core material This means that the uneven distribution of particles is reduced.
  • the ratio represented by (x / ⁇ cp) is set to 0.1 to 0.00. By setting it within the range of 35, it is possible to extract extremely uniform reflected light.
  • the composite resin particle group of the present invention having a large number of composite resin particles in which the silicone resin core particles are unevenly distributed cancels reflected light appropriately, so that when a layer coated with such a composite resin particle group is visually observed Variation in reflected light due to angle does not occur.
  • grains which comprise the composite resin particle group of this invention are not necessarily a sphere.
  • the cross section is substantially elliptical as shown in FIG. 7, there are cases where the cross section is irregular as shown in FIGS. 8 and 9, but in these cases, the convex portions of these particles Assuming the sphere that contacts the most, the above definition is applied with the center point of the virtual sphere as the center point Q of the composite resin sphere.
  • the silicone resin core particles in the composite resin particles constituting such a composite resin particle group are usually covered with an acrylic resin and / or a styrene resin, but the composite resin forming the composite resin particle group
  • the resin particles may contain composite resin particles in which, for example, 10 to 80% by volume of the silicone resin core particles are exposed on the surface of the particles.
  • the composite resin particles constituting the composite resin particle group of the present invention do not particularly need to be a perfect sphere as described above, and the composite resin particle group of the present invention is usually 0.1 to It is desirable to contain composite resin particles having a sphericity in the range of 1.00 in an amount of 50% by number or more.
  • FIGS. 5 and 6 show examples of composite resin particles having a relatively high sphericity.
  • FIGS. 7 substantially oval in cross section
  • FIGS. 8 and 9 show the composite of the present invention having a low sphericity.
  • the shape of the composite resin particle which forms the composite resin particle group of this invention is not limited by these.
  • the fluctuation rate of the reflection intensity is a numerical value represented by an average value of reflectance at a light receiving angle of 0 ° / reflectance at a light receiving angle of ⁇ 35 °, and the closer this value is to 1, 0,
  • the individual particles forming the particle group vary depending on the angle of the reflection peak because the position of the silicone resin core particle serving as the core material is different.
  • the composite resin particle group of the present invention which is an aggregate of particles, variations due to the angle of the reflection peak as seen in individual particles cancel each other, and a layer having a very uniform reflection peak regardless of the angle is formed. Can be formed.
  • the composite resin particle group of the present invention is copolymerized with, for example, a silicone resin core material particle as a seed particle and a monomer component containing an acrylic monomer and / or a styrene monomer as a shell layer so that the seed particles are unevenly distributed. Can be manufactured.
  • the silicone resin core particles used in the present invention can be obtained by a known method using a silicon-containing compound such as a silane compound and a silane coupling agent.
  • a silicon-containing compound such as a silane compound and a silane coupling agent.
  • the silane compound include those represented by the general formula (1) in Patent Document 2 (Japanese Patent Laid-Open No. 2002-138119).
  • R 1 O 4-a SiR 2 a
  • R 1 is the same or different, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an acyl group having 1 to 10 carbon atoms
  • R 2 is The same or different alkyl group having 1 to 10 carbon atoms, aryl group having 6 to 10 carbon atoms or aralkyl group having 7 to 10 carbon atoms, a is an integer of 0 to 2) and / or a silicon compound thereof
  • Specific examples of the partial hydrolysis condensate include tetramethyl silicate, methyltrimethoxysilane, methyltriethoxysilane, and phenyltriethoxysilane.
  • silane coupling agent for example, the general formula (2) X 3-n (CH 3 ) n Si (R 3 ) n Y (2) Wherein R 3 is a linear, branched or alicyclic alkyl group having 1 to 10 carbon atoms, X is an alkoxy group or a halogen atom, Y is an amino group, a vinyl group, (meth) acrylic.
  • n is an integer of 0 or 1)
  • Specific examples include 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, 3-methacrylate.
  • silicon-containing compounds include reactive silicone (trade name: Silaplane) manufactured by Chisso Corporation.
  • the above silicon-containing compounds can be used alone or in combination of two or more compounds, but preferably a silane compound and a silane coupling agent are used in combination.
  • the silicone resin core particles may contain an alkoxide such as titanium alkoxide or zirconium alkoxide. These contents are usually 1 to 30 parts by weight with respect to 100 parts by weight of the silicone resin core particles.
  • the silicone resin core particle is a particle made of a hydrolyzate of a silicone compound reacted by a hydrolysis reaction.
  • this reaction At least a part of the ionic double bond is present in the silicone resin core particle in a state where the activity is not lost.
  • the silicone resin core particles in the present invention have a very high affinity with acrylic monomers or styrene monomers that form a shell layer. ing.
  • the slurry thus obtained is passed through, for example, a 200-mesh wire net to remove a lump, and then the reaction solution is separated by filtration under reduced pressure to obtain a silicone resin core particle cake. Silicone resin core particles can be obtained by heating and drying this cake to remove moisture and crush it.
  • the average particle diameter is in the range of 0.01 to 50 ⁇ m, preferably in the range of 0.5 to 20 ⁇ m.
  • the CV value is usually in the range of 1 to 100, preferably 1 to 10.
  • the silicone resin core particles obtained as described above as seed particles, seed polymerization is performed to form a transparent resin layer (shell layer) containing acrylic resin and / or styrene resin on the outer periphery of the silicone resin core particles.
  • the transparent resin layer may be formed by one-stage polymerization, or the transparent resin layer may be formed by multi-stage polymerization such as two-stage polymerization.
  • the transparent resin layer formed on the outer periphery of the silicone resin core particle is formed of an acrylic resin, a styrene resin, or a transparent resin containing a copolymer resin thereof.
  • acrylic resins used here methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylic acid Isobutyl, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, (meth) acrylic (Meth) acrylic acid alkyl ester having a hydrocarbon group having 1 to 20 carbon atoms which may have a branched or unsaturated bond such as
  • styrene resin used in the present invention examples include styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, o-ethyl styrene, m-ethyl styrene, p-ethyl styrene, iso-propyl styrene, iso -Propyl styrene, iso-propyl styrene, pn-butyl styrene, p-tert-butyl styrene, pn-hexyl styrene, pn-hexyl styrene, p-methoxy styrene, pn-nonyl styrene, pn-decyl styrene, 3,4- Examples thereof include a styrene
  • acrylic resin and styrene derivative can be used alone or in combination.
  • other polymerizable monomers can be blended.
  • Examples of such other monomers include vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caproate, vinyl persamic acid, vinyl laurate, vinyl stearate, benzoic acid.
  • Vinyl esters such as vinyl acid, pt-butyl vinyl benzoate and vinyl salicylate; Vinylidene chloride, vinyl chlorohexanecarboxylate, etc .: Unsaturated carboxylic acids such as tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, norbornene dicarboxylic acid, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic acid; And maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic anhydride and the like. These can be used appropriately within a range not impairing the identification of the composite resin particle group of the present invention. Furthermore, these monomers can be used alone or in combination.
  • a polyfunctional monomer in order to form a crosslinked structure in the shell layer, a polyfunctional monomer can be used.
  • polyfunctional monomers include divinylbenzene, ethylene glycol di (meth) acrylate, diethyl glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, dipropylene Di (meth) acrylates of alkylene glycols such as di (meth) acrylates of glycols, di (meth) acrylates of tripropylene glycolose; Examples thereof include polyvalent (meth) acrylates such as trimethylolpropane tri (meth) acrylate. These can be used alone or in combination.
  • the polyfunctional monomer may be used at any stage. However, in order to increase the uneven distribution of the silicone resin core particles, the polyfunctional monomer is used in the first stage. However, it is desirable to use a polyfunctional monomer at a later stage, preferably the last stage.
  • the above-mentioned silicone-based resin core particles are dispersed in an aqueous medium, and the above monomer is added to this dispersion to perform seed polymerization using the silicone-based resin core particles as seed particles.
  • the monomer added to the aqueous medium in which the silicone resin core particles are dispersed is incorporated into the silicone resin particles and polymerized, and the diameter of the silicone resin core particles is 1 of the original particle diameter. .1-10 times.
  • the core particles are thus formed of a silicone-based resin, it is extremely rare for the monomer to be uniformly incorporated into the silicone resin core particles, and the monomer concentration in the silicone resin core particles is uniform.
  • the uneven distribution of such a monomer is not centered in the composite resin particle of the present invention, and the center of the silicone resin core particle is not centered. It is considered that this is not the same as the center of the particles constituting the composite resin particle group to be obtained, and becomes a cause of uneven distribution of the core material particles.
  • the center of the silicone resin core material particles, which are seed particles, and the center of the individual particles constituting the composite resin particle group are not matched, and the silicone resin core material particles are unevenly distributed in the individual particles. Therefore, after the silicone resin core particles as seed particles are uniformly dispersed in an aqueous medium, preferably water, the above monomer components, and if necessary, a dispersant and a surfactant are blended while stirring, The monomer component is dispersed in the medium. After uniformly dispersing the silicone resin core particles and the monomer components as seed particles in the aqueous medium, the monomer component adsorbed on the silicone resin core particles is polymerized by adding a polymerization initiator and heating. Thus, the composite resin particle group of the present invention is obtained.
  • the monomer component is adsorbed in the same manner as described above, and the monomer component is polymerized, whereby the particle diameter of the composite resin particles can be increased.
  • the monomer component is 20 to 5000 parts by weight, preferably 200 to 3000 parts by weight based on 100 parts by weight of seed particles (silicone resin core particles or composite resin particles), and the aqueous medium is seed particles (silicone resin core material). Particles or composite resin particles) and the monomer component in a total amount of 100 parts by weight, 100 to 900 parts by weight, preferably 150 to 300 parts by weight. .1 to 10 parts by weight, preferably 0.2 to 3 parts by weight.
  • polymerization initiator As the polymerization initiator used here, it is desirable to use a polymerization initiator having a 10-hour half-life temperature of usually 40 to 95 ° C., preferably 60 to 85 ° C.
  • examples of such polymerization initiator include: Cumene hydroperoxide (CHP), ditertiary butyl peroxide, dicumyl peroxide, benzoyl peroxide (BPO), lauryl peroxide (LPO), tertiary butyl (2-ethylhexanoyl) peroxide, dimethyl bis (tertiary) Butylperoxy) hexane, dimethylbis (tertiarybutylperoxy) hexyne-3, bis (tertiarybutylperoxyisopropyl) benzene, bis (tertiarybutylperoxy) trimethylcyclohexane, butyl-bis (tertiarybutylperoxy) ) Valerato, Gibe
  • the reaction temperature at this time varies depending on the type of polymerization initiator used, but is usually 50 to 80 ° C., preferably 60 to 75 ° C. Under these conditions, it is usually 2 to 10 hours, preferably 3 to By reacting for 6 hours, the composite resin particle group of the present invention is obtained. This reaction can be carried out in a single stage or in multiple stages.
  • the monomer component infiltrates into the silicone resin core particles that are seed particles in a non-uniform manner and the polymerization reaction proceeds, so that the center of the silicone resin core particles exists at the center of the composite resin particles.
  • the center point of the silicone resin core particle and the center point of each composite resin particle do not coincide with each other, and the refraction property of each particle is not uniform and is individual.
  • the refractive properties of the individual particles cancel each other, and when viewed as a whole of the composite resin particle group, very uniform reflected light can be obtained.
  • the variation rate of reflection intensity measured under the condition of 100 is usually in the range of 0.8 to 1.00 Of these, it is preferably in the range of 0.9 to 1.00, and reflected light with very high uniformity can be obtained.
  • the composite particles of the present invention having an average particle diameter of 5 ⁇ m, in which the core particles are unevenly distributed, obtained by seed polymerization of styrene and methyl methacrylate on the silicone resin core particles are coated with a base material (trade name: The intensity of reflected light measured by applying to the surface of Bioskin # 30 (manufactured by Beaulux Co., Ltd.) and measuring a projection angle of 45 °, a measurement range of ⁇ 85 ° to + 85 °, and a measurement interval of 1 ° is shown.
  • the phenomenon that the reflection intensity becomes uniform as described above by using the composite resin particle group of the present invention cannot be predicted from the reflection intensity of the individual particles constituting the composite resin particle group. This is an effect that is exhibited only for the particle group.
  • the composite resin particle group of the present invention as described above has a characteristic that it can reflect a very uniform reflected light when it is layered as described above.
  • the composite resin particle group of the present invention as described above can be used as a cosmetic raw material. That is, the cosmetic of the present invention is a foundation using the above-mentioned composite resin particle group, or a cosmetic such as a liquid foundation, blusher, or mascara in which the composite resin particle group of the present invention is dispersed in a liquid.
  • the component normally used when manufacturing cosmetics can be used.
  • the cosmetic obtained in this way has high uniformity of light reflection, it has no dullness and has a clean finish.
  • the composite resin particle group of the present invention may be used together with other raw material components that are usually used when manufacturing the cosmetic. it can.
  • a light diffusion sheet with very high uniformity can be produced. That is, by forming the composite resin particle group layer in which the composite resin particle group is disposed on the substrate, the reflection of light in the composite resin particle group layer is made uniform, and the light can be diffused uniformly.
  • a light diffusion layer may be formed using the composite resin particle group of the present invention described in detail above.
  • the slurry was passed through a 200-mesh wire mesh and then filtered under reduced pressure using a filter paper with a Buchner funnel to obtain a cake of silicone resin core particles.
  • the obtained silicone resin core material particles were observed with a scanning electron microscope (SEM), the particle shape was a true sphere, and the average particle size ( ⁇ si) was a monodisperse particle with 2.70 ⁇ m.
  • Production Example 2 In Production Example 1, the same conditions as in Production Example 1 were used, except that 28 parts by weight of methyltrimethoxysilane (KBM-13) and 2 parts by weight of 3-methacryloxypropyltrimethoxysilane (KBM-503) were used. A cake of silicone resin core particles was obtained.
  • KBM-13 methyltrimethoxysilane
  • KBM-503 3-methacryloxypropyltrimethoxysilane
  • Example 1 75 parts by weight of methyl methacrylate, 5 parts by weight of ethylene glycol dimethacrylate, 0.67 parts by weight of benzoyl peroxide, 0.5 parts by weight of sodium dodecylbenzenesulfonate, 0.1 parts by weight of sodium nitrite, and 200 parts by weight of ion-exchanged water was stirred at 10000 rpm for 3 minutes using a homomixer (Special Machine Industries Co., Ltd., model: TK homomixer III, the same applies hereinafter).
  • a homomixer Specific Machine Industries Co., Ltd., model: TK homomixer III, the same applies hereinafter.
  • this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 20 parts by weight of the silicone resin core particles prepared in Production Example 1 and 40 parts by weight of ion-exchanged water were added. The mixture was added and reacted at 75 ° C. for 1 hour, followed by reaction at 90 ° C. for 2 hours.
  • the aqueous dispersion obtained was filtered under reduced pressure using a filter paper with a Buchner funnel to give resin particle cake, and the obtained cake was dried using a hot air dryer set at 105 ° C. to obtain a composite resin particle group (I) was obtained.
  • FIG. 1 SEM photograph of the obtained composite resin particle group (I) is shown in FIG.
  • a microtome is used so that the cross section of the silicone resin core particles that are impregnated with epoxy resin and become the core material of the composite resin particles is exposed. A cross section was cut out. This sectional view is shown in FIG.
  • the diameter (Dsi) of the silicone resin particles is 2.54 ⁇ m
  • the shortest is the point through the center point (P) of the silicone resin particles to the surface of the composite resin particles.
  • a virtual straight line (B) is drawn, and the shortest (R mini ) from the center point (P) of the silicone resin particle in this cross section to the point where the virtual straight line (B) contacts the surface of the composite resin particle is 1. It was 69 ⁇ m.
  • the composite resin particles satisfy the following formulas (1) and (2).
  • the cross section was cut out and the position of the silicone resin core particles was measured as described above. As a result, at least the composite resin particle group (I) was measured. In 95% by number of the particles, the uneven distribution of the silicone resin core particles was observed.
  • Example 2 In Example 1, except that it was changed to 88.33 parts by weight of methyl methacrylate and 6.67 parts by weight of the silicone resin core particles prepared in Production Example 1, it was prepared under the same conditions as in Example 1, and the composite resin particle group ( II) was obtained.
  • FIG. 13 the SEM photograph of the obtained composite resin particle group (II) is shown in FIG.
  • the diameter (Dsi) of the silicone resin particles is 2.83 ⁇ m
  • the shortest is the point through the center point (P) of the silicone resin particles to the surface of the composite resin particles.
  • a virtual straight line (B) is drawn, and the shortest (R mini ) from the center point (P) of the silicone resin particle in this cross section to the point where the virtual straight line (B) contacts the surface of the composite resin particle is 1. It was 46 ⁇ m.
  • the composite resin particles satisfy the following formulas (1) and (2).
  • the cross section was cut out and the position of the silicone resin core particles was measured as described above. As a result, at least the composite resin particle group (I) was measured. In 98% by number of particles, uneven distribution of the silicone resin core particles was observed.
  • Example 3 First stage polymerization> Using the apparatus used in Example 1, 66.6 parts by weight of methyl methacrylate, 0.014 parts by weight of ethylene glycol dimethacrylate, 0.5 parts by weight of benzoyl peroxide, 0.5 parts by weight of sodium dodecylbenzenesulfonate, nitric acid 0.1 part by weight of sodium and 200 parts by weight of ion-exchanged water were stirred at 10,000 rpm for 3 minutes using a homomixer.
  • this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 33.3 parts by weight of the silicone resin particles prepared in Production Example 2 and 40 parts by weight of ion-exchanged water were added. And gently stirred at 50 ° C. for 30 minutes.
  • this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 19.2 parts by weight of the dispersion (III-1) of the composite resin particle group was added, The mixture was reacted at 75 ° C. for 1 hour and subsequently reacted at 90 ° C. for 2 hours to obtain a dispersion of composite resin particle group (III-2).
  • the aqueous dispersion thus obtained was filtered under reduced pressure using a filter paper with a Buchner funnel to obtain a resin particle cake.
  • the obtained cake was dried using a hot air dryer set at 105 ° C. to obtain a composite resin particle group ( III-2) was obtained.
  • FIG. 15 An SEM photograph of the obtained composite resin particle group (III-2) is shown in FIG. With respect to the composite resin particles constituting the composite resin particle group (III-2) thus obtained, the cross section was cut out so that the cross section of the silicone resin core material particles serving as the core material of the composite resin particles was exposed.
  • This sectional view is shown in FIG.
  • the diameter (Dsi) of the silicone resin particles is 2.76 ⁇ m
  • the shortest distance is from the center point (P) of the silicone resin particles to the point of contact with the surface of the composite resin particles.
  • the virtual straight line (B) is drawn, and the shortest (R mini ) from the center point (P) of the silicone resin particle in this cross section to the point where the virtual straight line (B) contacts the surface of the composite resin particle is 1. It was 50 ⁇ m.
  • the composite resin particles satisfy the following formulas (1) and (2).
  • the cross section of the composite resin particles constituting the composite resin particle group (III-2) was cut out and the position of the silicone resin core particles was measured as described above.
  • Example 4 First stage polymerization> Using the apparatus used in Example 1, 93.35 parts by weight of methyl methacrylate, 0.0185 parts by weight of ethylene glycol dimethacrylate, 1.0 part by weight of benzoyl peroxide, 0.5 parts by weight of sodium dodecylbenzenesulfonate, nitric acid 0.1 part by weight of sodium and 200 parts by weight of ion-exchanged water were stirred at 10,000 rpm for 3 minutes using a homomixer.
  • this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 6.65 parts by weight of the silicone resin particles prepared in Production Example 1 and 40 parts by weight of ion-exchanged water were added. And gently stirred at 50 ° C. for 30 minutes.
  • this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 76.2 parts by weight of the dispersion liquid (IV-1) of the composite resin particle group was added.
  • the mixture was reacted at 75 ° C. for 3 hours, and subsequently reacted at 90 ° C. for 3 hours to obtain a dispersion of composite resin particle group (IV-2).
  • the aqueous dispersion thus obtained was filtered under reduced pressure using a filter paper with a Buchner funnel to obtain a resin particle cake.
  • the obtained cake was dried using a hot air dryer set at 105 ° C. to obtain a composite resin particle group ( IV-2) was obtained.
  • FIG. 17 An SEM photograph of the obtained composite resin particle group (IV-2) is shown in FIG. With respect to the composite resin particles constituting the composite resin particle group (IV-2) thus obtained, the cross section was cut out so that the cross section of the silicone resin core material particles serving as the core material of the composite resin particles was exposed.
  • This sectional view is shown in FIG.
  • the diameter (Dsi) of the silicone resin particles is 2.25 ⁇ m
  • the shortest distance is from the center point (P) of the silicone resin particles to the point of contact with the surface of the composite resin particles.
  • the virtual straight line (B) is drawn, and the shortest (R mini ) from the center point (P) of the silicone resin particle in this cross section to the point where the virtual straight line (B) contacts the surface of the composite resin particle is 1. It was 51 ⁇ m.
  • an imaginary straight line (A) that passes through the center of the cross section of the silicone resin core particle and has the longest distance between the intersection points with the outer peripheral surface of the composite resin particle is drawn, and the center of the silicone resin core particle in this cross section is drawn.
  • the longest distance (R max ) from the point (P) to the point where the virtual straight line (A) is in contact with the surface of the composite resin particles was 9.81 ⁇ m.
  • the composite resin particles satisfy the following formulas (1) and (2).
  • the cross section of the composite resin particles constituting the composite resin particle group (IV-2) was cut out and the positions of the silicone resin core particles were measured as described above.
  • Example 5 First stage polymerization> Using the apparatus used in Example 1, 66.7 parts by weight of methyl methacrylate, 0.0078 parts by weight of ethylene glycol dimethacrylate, 1.0 part by weight of benzoyl peroxide, 0.5 parts by weight of sodium dodecylbenzenesulfonate, nitric acid 0.1 part by weight of sodium and 200 parts by weight of ion-exchanged water were stirred at 10,000 rpm for 3 minutes using a homomixer.
  • this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 33.3 parts by weight of the silicone resin particles prepared in Production Example 1 and 40 parts by weight of ion-exchanged water were added. And gently stirred at 50 ° C. for 30 minutes.
  • this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 76.2 parts by weight of the dispersion liquid (V-1) of the composite resin particle group was added.
  • the mixture was reacted at 75 ° C. for 3 hours, and subsequently reacted at 90 ° C. for 3 hours to obtain a dispersion of composite resin particle group (V-2).
  • the aqueous dispersion thus obtained was filtered under reduced pressure using a filter paper with a Buchner funnel to obtain a resin particle cake.
  • the obtained cake was dried using a hot air dryer set at 105 ° C. to obtain a composite resin particle group ( V-2) was obtained.
  • FIG. 19 An SEM photograph of the obtained composite resin particle group (V-2) is shown in FIG. With respect to the composite resin particles constituting the composite resin particle group (V-2) thus obtained, the cross section was cut out so that the cross section of the silicone resin core material particles serving as the core material of the composite resin particles was exposed.
  • This sectional view is shown in FIG.
  • the diameter (Dsi) of the silicone resin particles is 2.45 ⁇ m
  • the shortest is the point through the center point (P) of the silicone resin particles to the surface of the composite resin particles.
  • the virtual straight line (B) is drawn, and the shortest (R mini ) from the center point (P) of the silicone resin particle in this cross section to the point where the virtual straight line (B) contacts the surface of the composite resin particle is 1. It was 23 ⁇ m.
  • an imaginary straight line (A) that passes through the center of the cross section of the silicone resin core particle and has the longest distance between the intersection points with the outer peripheral surface of the composite resin particle is drawn, and the center of the silicone resin core particle in this cross section is drawn.
  • the longest distance (R max ) from the point (P) to the point where the virtual straight line (A) is in contact with the surface of the composite resin particle was 3.92 ⁇ m.
  • the composite resin particles satisfy the following formulas (1) and (2).
  • Example 6 First stage polymerization> Using the apparatus used in Example 1, 93.3 parts by weight of methyl methacrylate, 0.02 part by weight of ethylene glycol dimethacrylate, 1.0 part by weight of benzoyl peroxide, 0.5 part by weight of sodium dodecylbenzenesulfonate, nitric acid 0.1 parts by weight of sodium and 200 parts by weight of ion-exchanged water were stirred at 10,000 rpm for 3 minutes using a homomixer.
  • this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 6.7 parts by weight of the silicone resin particles prepared in Production Example 1 and 40 parts by weight of ion-exchanged water were added. And gently stirred at 50 ° C. for 30 minutes.
  • this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas introduction tube, and 37.7 parts by weight of the dispersion liquid (VI-1) of the composite resin particle group was added.
  • the mixture was reacted at 75 ° C. for 3 hours and then reacted at 90 ° C. for 3 hours to obtain a dispersion of composite resin particle group (VI-2).
  • the aqueous dispersion thus obtained was filtered under reduced pressure using a filter paper with a Buchner funnel to obtain a resin particle cake.
  • the obtained cake was dried using a hot air dryer set at 105 ° C. to obtain a composite resin particle group ( VI-2) was obtained.
  • FIG. 1 An SEM photograph of the obtained composite resin particle group (VI-2) is shown in FIG. With respect to the composite resin particles constituting the composite resin particle group (VI-2) thus obtained, the cross section was cut out so that the cross section of the silicone resin core material particles serving as the core material of the composite resin particles was exposed. This sectional view is shown in FIG.
  • the diameter (Dsi) of the silicone resin particles is 2.50 ⁇ m, and the shortest distance is from the center point (P) of the silicone resin particles to the point of contact with the surface of the composite resin particles.
  • a virtual straight line (B) is drawn, and the shortest (R mini ) from the center point (P) of the silicone resin particle in this cross section to the point where the virtual straight line (B) contacts the surface of the composite resin particle is 2. It was 69 ⁇ m.
  • an imaginary straight line (A) that passes through the center of the cross section of the silicone resin core particle and has the longest distance between the intersection points with the outer peripheral surface of the composite resin particle is drawn, and the center of the silicone resin core particle in this cross section is drawn.
  • the longest distance (R max ) from the point (P) to the point where the virtual straight line (A) is in contact with the surface of the composite resin particle was 9.04 ⁇ m.
  • the composite resin particles satisfy the following formulas (1) and (2).
  • the cross section of the composite resin particles constituting the composite resin particle group (IV-2) was cut out and the positions of the silicone resin core particles were measured as described above.
  • Example 7 The change rate of the reflection intensity of the particle group obtained here is shown in FIG. Example 7 ⁇ First stage polymerization> Using the apparatus used in Example 1, 66.7 parts by weight of methyl methacrylate, 0.013 parts by weight of ethylene glycol dimethacrylate, 1.0 part by weight of benzoyl peroxide, 0.05 part by weight of sodium dodecylbenzenesulfonate, nitric acid 0.01 parts by weight of sodium and 200 parts by weight of ion-exchanged water were stirred at 10,000 rpm for 3 minutes using a homomixer.
  • this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 33.6 parts by weight of the silicone resin particles prepared in Production Example 1 and 40 parts by weight of ion-exchanged water were added. And gently stirred at 50 ° C. for 30 minutes.
  • this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas introduction tube, and 76.9 parts by weight of the dispersion (V-1) of the composite resin particle group was added.
  • the mixture was reacted at 75 ° C. for 3 hours, and subsequently reacted at 90 ° C. for 3 hours to obtain a dispersion of composite resin particle group (V-2).
  • the aqueous dispersion thus obtained was filtered under reduced pressure using a filter paper with a Buchner funnel to obtain a resin particle cake.
  • the obtained cake was dried using a hot air dryer set at 105 ° C. to obtain a composite resin particle group ( V-2) was obtained.
  • FIG. 23 An SEM photograph of the obtained composite resin particle group (V-2) is shown in FIG. With respect to the composite resin particles constituting the composite resin particle group (V-2) thus obtained, the cross section was cut out so that the cross section of the silicone resin core material particles serving as the core material of the composite resin particles was exposed.
  • This sectional view is shown in FIG.
  • the diameter (Dsi) of the silicone resin particles is 2.63 ⁇ m
  • the shortest is the point through the center point (P) of the silicone resin particles to the surface of the composite resin particles.
  • the virtual straight line (B) is drawn, and the shortest (R mini ) from the center point (P) of the silicone resin particle in this cross section to the point where the virtual straight line (B) contacts the surface of the composite resin particle is 1. It was 38 ⁇ m.
  • an imaginary straight line (A) that passes through the center of the cross section of the silicone resin core particle and has the longest distance between the intersection points with the outer peripheral surface of the composite resin particle is drawn, and the center of the silicone resin core particle in this cross section is drawn.
  • the longest distance (R max ) from the point (P) to the point where the virtual straight line (A) is in contact with the surface of the composite resin particles was 4.06 ⁇ m.
  • the composite resin particles satisfy the following formulas (1) and (2).
  • the cross section of the composite resin particles constituting the composite resin particle group (V-2) was cut out and the positions of the silicone resin core particles were measured as described above.
  • the composite resin particle group (V- In at least 95% by number of the particles of 2) uneven distribution of the silicone resin core particles was observed.
  • the sphericity was determined by the following method.
  • the composite resin particle group is photographed using an electron microscope, and the obtained image is measured for circularity using image analysis software (Mitani Corporation, WinROOF). About 50 measurement values are averaged, and this is defined as sphericity.
  • the circularity is calculated by the following formula.
  • Circularity 4 ⁇ ⁇ area / (perimeter length ⁇ perimeter length)
  • Example 8 40 parts by weight of MMA, 10 parts by weight of EGDMA, 1 part by weight of benzoyl peroxide, 0.3 part by weight of sodium lauryl sulfate, 300 parts by weight of ion-exchanged water, and 0.1 part by weight of sodium nitrite are mixed at 10000 rpm with a homomixer. Stir for minutes.
  • this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 50 parts by weight of the polyorganosiloxane particles prepared in Production Example 3 were added, followed by stirring at 40 ° C. for 30 minutes. .
  • the obtained cake was dried using a hot air dryer set at 105 ° C. to obtain core-shell particles.
  • the shortest distance (R mini ) from the point of contact with the composite particle through the center point P of the silicone resin particle to the point of contact with the composite particle is 1.
  • An imaginary straight line A having the longest distance between the intersections with the outer surface of the silicone core particle is drawn, and the imaginary straight line (A) is drawn from the center point (P) of the silicone resin core particle in this cross section.
  • the longest distance (R max ) to the contact point on the surface of the composite resin particle was 2.68 ⁇ m.
  • Table 1 shows the characteristics of the obtained composite particle group.
  • the SEM photograph of the silicone resin core particles used in Example 8 is shown in FIG. 26, the SEM particle group of the composite resin particle group is shown in FIG. 27, and the reflected light of the particle group obtained in Example 8 is shown in FIG. Indicates the rate of change.
  • Comparative Examples 1 to 3 As comparative examples, commercially available silicone particles (Comparative Example 1, manufactured by Momentive Performance Materials Japan, trade name: Tospearl 145A, average particle size ( ⁇ si) 4.5 ⁇ m), crosslinked polymethyl methacrylate particles (Comparative Example 2) , Manufactured by Soken Chemical Co., Ltd., trade name: MX-500, average particle diameter 5.0 ⁇ m), styrene particles (Comparative Example 3, manufactured by Soken Chemical Co., Ltd., trade name: SX-500H, average particle diameter 5. Table 1 shows the rate of change in the reflection intensity of these particles.
  • the change rate of the reflection intensity of the particle group obtained in Comparative Example 3 is shown in FIG. [Comparative Example 4]
  • the mixed particles were adjusted by mixing at a ratio of 6.7 parts by weight of the particles of Comparative Example 1, 13.3 parts by weight of the particles of Comparative Example 2, and 80 parts by weight of the particles of Comparative Example 3, and the change in reflection intensity of the mixed particles The rates are shown in Table 1.
  • the core material particles are composed of silicone resin particles, and in the composite resin particles constituting the composite resin particles of the present invention, the silicone resin particles as the core material particles are the center of the composite resin particles. It is ubiquitously present. That is, despite the seed polymerization using resin core particles, the center point of the silicone resin core particles, which are seed particles, matches the center point of the composite resin particles obtained as a result of seed polymerization.
  • the silicone resin core particles are present in a biased direction in any direction in the composite resin particles, and the composite resin particles occupy more than half, preferably the majority.
  • the unified reflection direction is not shown, but the composite of the present invention containing a large number of these composite resin particles.
  • the resin particle group when the reflection direction of the light is viewed, the reflected light cooperates to obtain reflected light with very high uniformity.
  • the reflection characteristics of each particle become obvious, and the reflection characteristics that each particle does not have deteriorated.
  • the reflected light does not weaken and uniform reflected light can be obtained over all wavelengths.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Dermatology (AREA)
  • Graft Or Block Polymers (AREA)
  • Cosmetics (AREA)
  • Polymerisation Methods In General (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Composite resin particles having a silicone resin core particle enclosed therein which are obtained by copolymerizing monomer components including an acrylic monomer and so on in the presence of silicone rein core particles having an average particle diameter ranging from 0.01 to 50 μm. A layer comprising these composite resin particles uniformly reflects an incident light.

Description

複合樹脂粒子群およびその用途Composite resin particles and their uses
 本発明はシリコーン樹脂芯材粒子を含有する複合樹脂粒子群およびその用途に関する。さらに詳しくは本発明は、シリコーン樹脂芯材粒子をシード粒子として形成される複合樹脂粒子群およびその用途に関する。 The present invention relates to a composite resin particle group containing silicone resin core particles and use thereof. More specifically, the present invention relates to a composite resin particle group formed using silicone resin core particles as seed particles and the use thereof.
 アクリル系樹脂を外殻に有するアクリル系樹脂粒子あるいはポリスチレンを外殻に有する樹脂粒子は、その特性を利用して種々の用途に使用されている。このような樹脂粒子は、外殻を形成する樹脂が透明であることから、特に光学部材、化粧料原料などとして広汎に使用されつつある。 The acrylic resin particles having an acrylic resin in the outer shell or the resin particles having polystyrene in the outer shell are used for various applications by utilizing the characteristics. Such resin particles are being widely used especially as optical members and cosmetic raw materials because the resin forming the outer shell is transparent.
 こうした樹脂粒子を製造する方法には種々の方法があるが、芯材粒子を製造し、この芯材粒子をシード粒子として、芯材粒子の周囲にアクリル系樹脂あるいはスチレン系樹脂からなる外殻を形成するシード重合により製造することができる。 There are various methods for manufacturing such resin particles. Core particles are manufactured, and the core particles are used as seed particles, and an outer shell made of acrylic resin or styrene resin is formed around the core particles. It can be produced by seed polymerization to form.
 一般に、このようなシード重合により樹脂粒子を製造すると、シード粒子を中心にして外殻形成樹脂が均一に成長することから、シード粒子を中心にしてシード粒子の周辺に均一な外殻層(シェル層)が形成される。このようなシード重合に使用されるシード粒子として、シリコーン系樹脂粒子が使用されており、例えば特許文献1(特開平7-196815号公報)、特許文献2(特開2002-138119号公報)などには、シリコーン系樹脂粒子の周囲を被覆した樹脂粒子が記載されている。 In general, when resin particles are produced by such seed polymerization, the outer shell-forming resin grows uniformly around the seed particles. Therefore, a uniform outer shell layer (shell) is formed around the seed particles around the seed particles. Layer) is formed. Silicone resin particles are used as seed particles used in such seed polymerization. For example, Patent Document 1 (Japanese Patent Laid-Open No. 7-96815), Patent Document 2 (Japanese Patent Laid-Open No. 2002-138119), etc. Describes resin particles covering the periphery of silicone resin particles.
 しかしながら、特許文献1に記載のシリコーン系微粒子は、シリコーンゴム球体微粒子の周囲をポリオルガノシルセスキオキサン樹脂で被覆したものであり、このシリコーン系微粒子は、ゴム弾性を有しており、粒子内に生ずる内部応力を吸収することができるが、外殻がポリオルガノシルセスキオキサン樹脂から形成されていることから、光学材料としては適していない。 However, the silicone fine particles described in Patent Document 1 are obtained by coating the periphery of silicone rubber sphere fine particles with a polyorganosilsesquioxane resin, and the silicone fine particles have rubber elasticity, However, the outer shell is made of a polyorganosilsesquioxane resin, so that it is not suitable as an optical material.
 また、特許文献2には、特定の式で表わされるシリコーン化合物あるいはその部分加水分解縮合物が重合体中に包含された重合体粒子が特定の粒子径分布を有することが開示されている。この引用文献2には、得られた重合体粒子が、シリコーン化合物あるいはその加水分解物を包含することがどのような形態で包含されているかは示されていない。 Patent Document 2 discloses that polymer particles in which a silicone compound represented by a specific formula or a partial hydrolysis condensate thereof is included in a polymer have a specific particle size distribution. The cited document 2 does not show in what form the obtained polymer particles include a silicone compound or a hydrolyzate thereof.
 特許文献3(特開2004-177426号公報)には、球状コア粒子とその外殻にある厚さ100±50nmのシェル層とからなり、コア粒子の屈折率が、コア層の屈折率よりも高い低反射透明球状粒子が開示されている。この粒子は、たとえばソープフリー乳化重合による二段重合により表層にフッ素系ポリマー層などを低屈折率層を形成するものであり、この低反射透明球状粒子を形成するコア層の位置に関しては何ら記載されておらず、たとえば特許文献3の実施例で示されるようなソープフリー乳化重合で粒子を製造した場合、コア層が粒子内で偏在するといった現象は発生しない。 Patent Document 3 (Japanese Patent Application Laid-Open No. 2004-177426) includes a spherical core particle and a shell layer having a thickness of 100 ± 50 nm in its outer shell, and the refractive index of the core particle is higher than the refractive index of the core layer. High low reflection transparent spherical particles are disclosed. This particle forms a low-refractive index layer such as a fluorine-based polymer layer on the surface layer by two-stage polymerization by, for example, soap-free emulsion polymerization, and there is no description regarding the position of the core layer that forms this low-reflection transparent spherical particle For example, when the particles are produced by soap-free emulsion polymerization as shown in the example of Patent Document 3, the phenomenon that the core layer is unevenly distributed in the particles does not occur.
 特許文献4(特開2007-091515号公報)には中空構造を有する球状又は略球状の外殻と、該外殻と接しかつ中心に向かって凸部を形成する内殻とを有するシリカ粒子の発明が開示されている。この特許文献4は、コロイダルシリカの分散液にアクリルモノマーを加えて重合させて重合体を調製し、次いでここにポリアルコキシシロキサンオリゴマーを加えてポリアルコキシシロキサンオリゴマーの縮合反応を行って、重合体の表面にポリアルコキシシロキサンオリゴマーに由来するシリカ成分が局在的に付着して複合重合体粒子を調製し、これを500℃程度の温度で焼成することにより、重合体成分を除去したものである。 Patent Document 4 (Japanese Patent Laid-Open No. 2007-091515) discloses a silica particle having a spherical or substantially spherical outer shell having a hollow structure and an inner shell that is in contact with the outer shell and forms a convex portion toward the center. The invention is disclosed. In this Patent Document 4, a polymer is prepared by adding an acrylic monomer to a dispersion of colloidal silica to prepare a polymer, and then a polyalkoxysiloxane oligomer is added thereto to carry out a condensation reaction of the polyalkoxysiloxane oligomer. A silica component derived from the polyalkoxysiloxane oligomer is locally attached to the surface to prepare composite polymer particles, which are baked at a temperature of about 500 ° C. to remove the polymer component.
 従って、この特許文献4に開示されているシリカ粒子は、焼成により重合体成分が除去された無機物であるシリカの粒子である。 Therefore, the silica particles disclosed in Patent Document 4 are silica particles that are inorganic substances from which the polymer component has been removed by firing.
特開平7-196815号公報Japanese Laid-Open Patent Publication No.7-196815 特開2002-138119号公報JP 2002-138119 A 特開2004-177426号公報JP 2004-177426 A 特開2007-091515号公報JP 2007-091515 A
 本発明は、新規な複合樹脂粒子群を提供することを目的としている。さらに本発明は、芯材粒子の周囲に樹脂層を有する複合樹脂粒子の集合体であって、この複合樹脂粒子群を構成する各複合樹脂粒子中に存在する芯材粒子が、その複合樹脂粒子の中で偏在している粒子を多数含有する複合樹脂粒子群を提供することを目的としている。 The object of the present invention is to provide a new composite resin particle group. Furthermore, the present invention provides an assembly of composite resin particles having a resin layer around the core material particles, and the core material particles present in each composite resin particle constituting the composite resin particle group are the composite resin particles. An object of the present invention is to provide a composite resin particle group containing a large number of unevenly distributed particles.
 さらに、本発明は、上記のように芯材粒子が偏在した複合樹脂粒子からなる複合樹脂粒子群の用途、特に、光拡散シート、化粧料を提供することを目的としている。 Furthermore, an object of the present invention is to provide a use of a composite resin particle group composed of composite resin particles in which core particles are unevenly distributed as described above, particularly a light diffusion sheet and a cosmetic.
 本発明の複合樹脂粒子群は、平均粒子径が0.01~50μmの範囲内にあるシリコーン樹脂芯材粒子の存在下に、アクリル系モノマーおよび/またはスチレン系モノマーを含むモノマー成分を共重合させて得られる、シリコーン樹脂芯材粒子が包摂されている中実粒子からなる複合樹脂粒子群であって、
 該複合樹脂粒子群を構成する複合樹脂粒子中に包摂されるシリコーン樹脂芯材粒子の略中心が露出するように切断された該複合樹脂粒子の断面において、
 該シリコーン樹脂芯材粒子の断面の中心を通るとともに、該複合樹脂粒子の外周面との交点間の距離が最も長い仮想直線(A)、および、該シリコーン樹脂芯材粒子の断面の中心を通るとともに、該複合樹脂粒子の外周面との交点間の距離が最も短い仮想直線(B)を想定したときに、
 上記シリコーン樹脂芯材粒子の中心点(P)が、該シリコーン樹脂芯材粒子の中心点(P)から上記仮想直線(A)または(B)が複合樹脂粒子の表面と接する点までのうちの最も短い距離(Rmini)、および、該シリコーン樹脂芯材粒子の中心点(P)から上記仮想直線(A)または(B)が複合樹脂粒子の表面と接する点までのうち最も長い距離(Rmax)に対して、次式(1)および式(2)で示す関係を有する位置にある複合樹脂粒子を50個数%以上含有することを特徴としている。
In the composite resin particle group of the present invention, a monomer component containing an acrylic monomer and / or a styrene monomer is copolymerized in the presence of silicone resin core particles having an average particle diameter in the range of 0.01 to 50 μm. A composite resin particle group consisting of solid particles containing silicone resin core particles,
In the cross section of the composite resin particle cut so as to expose the substantially center of the silicone resin core material particle included in the composite resin particle constituting the composite resin particle group,
It passes through the center of the cross section of the silicone resin core material particle, passes through the virtual straight line (A) having the longest distance between the intersections with the outer peripheral surface of the composite resin particle, and the center of the cross section of the silicone resin core material particle. And when assuming a virtual straight line (B) with the shortest distance between the intersections with the outer peripheral surface of the composite resin particles,
The center point (P) of the silicone resin core particle is from the center point (P) of the silicone resin core particle to the point where the virtual straight line (A) or (B) is in contact with the surface of the composite resin particle. The shortest distance (R mini ) and the longest distance (R) from the center point (P) of the silicone resin core particle to the point where the virtual line (A) or (B) contacts the surface of the composite resin particle 50% by number or more of composite resin particles in a position having a relationship represented by the following formulas (1) and (2) with respect to max ).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ただし、上記式(1)および(2)において、Dsiは、その断面におけるシリコーン樹脂芯材粒子の直径を表し、通常は0.01~50μmの範囲内、好ましくは0.5~10μmの範囲内にある。また、シリコーン樹脂芯材粒子は、シリコーン化合物の縮合物であるが、このシリコーン樹脂芯材粒子中にチタン・ジルコニウムのアルコキシドが配合されていてもよい。 In the above formulas (1) and (2), Dsi represents the diameter of the silicone resin core particle in the cross section, and is usually in the range of 0.01 to 50 μm, preferably in the range of 0.5 to 10 μm. It is in. The silicone resin core particle is a condensate of a silicone compound, but an alkoxide of titanium / zirconium may be blended in the silicone resin core particle.
 本発明の化粧料は、上記のような複合樹脂粒子群を用いて形成されてなることを特徴としている。
 また、本発明の光拡散シートは、上記の複合樹脂粒子群を反射材料として用いて形成されてなることを特徴としている。
The cosmetic of the present invention is characterized by being formed using the composite resin particle group as described above.
The light diffusion sheet of the present invention is characterized by being formed using the composite resin particle group as a reflective material.
 本発明の複合樹脂粒子群を形成する複合樹脂粒子は、シリコーン粒子芯材にアクリル系樹脂あるいはスチレン系樹脂をシード重合して得られるシェル層を有し、コア層を形成するシリコーン樹脂芯材が、この複合樹脂粒子の中心にあることはなく、いずれか一方に偏在している。 The composite resin particles forming the composite resin particle group of the present invention have a shell layer obtained by seed polymerization of an acrylic resin or a styrene resin on a silicone particle core material, and the silicone resin core material forming the core layer includes The composite resin particles are not in the center and are unevenly distributed in either one of them.
 この複合樹脂粒子を塗布すると、個々の複合樹脂粒子では、光の反射ピーク角度が一定の角度を示さずバラバラであるが、多数の粒子が存在することにより、反射ピールが打ち消し合うため、視認する角度による反射光のばらつきは小さくなる。 When this composite resin particle is applied, the light reflection peak angle of each composite resin particle does not show a constant angle, but the reflection peel peels off due to the presence of a large number of particles. The variation in reflected light depending on the angle is reduced.
 本発明の複合樹脂粒子群は、この粒子群を構成する各粒子中に含有されるシリコーン樹脂芯材粒子が、その複合樹脂粒子の中心にはなく、偏在して存在している。このため個々の粒子を見ると、光の反射ピークは一致していないので、視認する角度によって反射ピークはバラバラである。ところが、このような複合樹脂粒子群を塗布して層を形成すると、各粒子でバラバラであった反射ピークが打ち消し合って、視認する角度による反射ピークのばらつきが消失する。 In the composite resin particle group of the present invention, the silicone resin core particles contained in each particle constituting the particle group are not present at the center of the composite resin particle but are present unevenly. For this reason, when the individual particles are viewed, the reflection peaks of the light do not coincide with each other. Therefore, the reflection peaks vary depending on the viewing angle. However, when such a composite resin particle group is applied to form a layer, the reflection peaks that are scattered among the particles cancel each other, and the dispersion of the reflection peaks depending on the viewing angle disappears.
 従って、本発明の複合樹脂粒子を塗布した層における角度による光の反射ピークのバラツキはほとんど生じないとの効果を奏する。
 本発明の化粧料は、上記のような複合樹脂粒子群を用いることにより、くすみがなく、クッキリとした仕上がりの化粧料となる。
Therefore, there is an effect that there is almost no variation in the light reflection peak due to the angle in the layer coated with the composite resin particles of the present invention.
By using the composite resin particle group as described above, the cosmetic of the present invention has a dull and clean finish.
 さらに、本発明の光拡散シートは、反射の均一性の高い上述の複合樹脂粒子を用いることにより、非常に均一性の高い光拡散シートを得ることができる。 Furthermore, the light diffusion sheet of the present invention can obtain a light diffusion sheet with very high uniformity by using the above-described composite resin particles with high reflection uniformity.
図1は、図1は、本発明の複合樹脂粒子群を形成する複合樹脂粒子の一例を示す切欠き部を有する斜視図である。FIG. 1 is a perspective view having a notch portion showing an example of composite resin particles forming the composite resin particle group of the present invention. 図2は、図1におけるX-X断面図である。2 is a cross-sectional view taken along the line XX in FIG. 図3は、図1におけるY-Y断面図である。3 is a cross-sectional view taken along the line YY in FIG. 図4は、本発明の複合樹脂粒子群を構成する複合樹脂粒子における、シリコーン樹脂芯材粒子の中心の位置を示す断面図である。FIG. 4 is a cross-sectional view showing the center position of the silicone resin core material particles in the composite resin particles constituting the composite resin particle group of the present invention. 図5は、比較的真球度の高い複合樹脂粒子の例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of composite resin particles having a relatively high sphericity. 図6は、比較的真球度の高い複合樹脂粒子の他の例を示す断面図である。FIG. 6 is a cross-sectional view showing another example of composite resin particles having a relatively high sphericity. 図7は、断面略楕円形の比較的真球度の低い本発明の複合樹脂の例を示す断面図である。FIG. 7 is a cross-sectional view showing an example of the composite resin of the present invention having a substantially elliptical cross section and a relatively low sphericity. 図8は、真球度の低い本発明の複合樹脂粒子の例を示す断面図である。FIG. 8 is a cross-sectional view showing an example of the composite resin particle of the present invention having a low sphericity. 図9は、断面不定形の複合樹脂粒子の例を示す断面図である。FIG. 9 is a cross-sectional view showing an example of composite resin particles having an irregular cross-section. 図10は、実施例1の複合樹脂粒子群のSEM写真である。FIG. 10 is an SEM photograph of the composite resin particle group of Example 1. 図11は、実施例1で得られた図10に示す複合樹脂粒子の断面を示すSEM写真である。FIG. 11 is an SEM photograph showing a cross section of the composite resin particle shown in FIG. 10 obtained in Example 1. 図12は、実施例2で得られた複合樹脂粒子群のSEM写真である。FIG. 12 is an SEM photograph of the composite resin particle group obtained in Example 2. 図13は、実施例2で得られた図12に示す複合樹脂粒子の断面を示すSEM写真である。FIG. 13 is an SEM photograph showing a cross section of the composite resin particle shown in FIG. 12 obtained in Example 2. 図14は、実施例3で得られた複合樹脂粒子群のSEM写真である。FIG. 14 is an SEM photograph of the composite resin particle group obtained in Example 3. 図15は、実施例3で得られた図14に示す複合樹脂粒子の断面を示すSEM写真である。FIG. 15 is an SEM photograph showing a cross section of the composite resin particle shown in FIG. 14 obtained in Example 3. 図16は、実施例4で得られた複合樹脂粒子群のSEM写真である。FIG. 16 is an SEM photograph of the composite resin particle group obtained in Example 4. 図17は、実施例4で得られた図16に示す複合樹脂粒子の断面を示すSEM写真である。FIG. 17 is an SEM photograph showing a cross section of the composite resin particle shown in FIG. 16 obtained in Example 4. 図18は、実施例5で得られた複合樹脂粒子群のSEM写真である。FIG. 18 is an SEM photograph of the composite resin particle group obtained in Example 5. 図19は、実施例5で得られた図18に示す複合樹脂粒子の断面を示すSEM写真である。FIG. 19 is an SEM photograph showing a cross section of the composite resin particle shown in FIG. 18 obtained in Example 5. 図20は、実施例6で得られた複合樹脂粒子群のSEM写真である。FIG. 20 is an SEM photograph of the composite resin particle group obtained in Example 6. 図21は、実施例6で得られた図20に示す複合樹脂粒子の断面を示すSEM写真である。FIG. 21 is a SEM photograph showing a cross section of the composite resin particle shown in FIG. 20 obtained in Example 6. 図22は、実施例7で得られた複合樹脂粒子群のSEM写真である。FIG. 22 is an SEM photograph of the composite resin particle group obtained in Example 7. 図23は、実施例7で得られた図22に示す複合樹脂粒子の断面を示すSEM写真である。FIG. 23 is a SEM photograph showing a cross section of the composite resin particle shown in FIG. 22 obtained in Example 7. 図24は、実施例6で得られた粒子群の反射光の変化率を示す図である。FIG. 24 is a graph showing the rate of change in reflected light of the particle group obtained in Example 6. 図25は、比較例3で得られた粒子群の反射光の変化率を示す図である。FIG. 25 is a graph showing the rate of change in reflected light of the particle group obtained in Comparative Example 3. 図26は、実施例8で使用した製造例3で得られたシリコーン樹脂芯材粒子のSEM写真である。FIG. 26 is a SEM photograph of the silicone resin core particles obtained in Production Example 3 used in Example 8. 図27は、実施例8で製造した複合樹脂粒子群のSEM写真である。FIG. 27 is a SEM photograph of the composite resin particle group produced in Example 8. 図28は、実施例8で得られた粒子群の反射光の変化率を示す図である。FIG. 28 is a graph showing the rate of change in reflected light of the particle group obtained in Example 8.
 以下、本発明の複合樹脂粒子群について、図面を参照しながら説明する。
 図1は、本発明の複合樹脂粒子群を形成する複合樹脂粒子の一例を示す切欠き部を有する斜視図であり、図2は、図1におけるX-X断面図であり、図3はY-Y断面図である。
Hereinafter, the composite resin particle group of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view having a cutout portion showing an example of composite resin particles forming the composite resin particle group of the present invention, FIG. 2 is a sectional view taken along line XX in FIG. 1, and FIG. FIG.
 本発明の複合樹脂粒子群を構成する個々の複合樹脂粒子10は、シリコーン樹脂芯材粒子30と、このシリコーン樹脂芯材粒子30の外周に形成されたアクリル系樹脂層(シェル層)20とから形成されている。そして、本発明においては、この複合樹脂粒子10の芯材であるシリコーン樹脂芯材粒子30の中心Pと、この複合樹脂粒子10の中心Qとが一致しておらず、シリコーン樹脂芯材粒子30がいずれか一方にずれている。図1においては、シリコーン樹脂芯材粒子30は右方向にずれている。この状態は、図1のY-Y断面を示す図3において明確に表わされており、複合樹脂粒子10の中心点Qとシリコーン樹脂芯材粒子の中心点Pとは一致しておらず、シリコーン樹脂芯材粒子30の中心Pが複合樹脂粒子10のQとは一致していない。しかしながら、この例では、シリコーン樹脂芯材粒子30は縦方向にはずれておらず、図1におけるX-X断面を示す図2では、シリコーン樹脂芯材粒子30の中心点Pと複合樹脂粒子10の中心点Qとは一致している。 The individual composite resin particles 10 constituting the composite resin particle group of the present invention are composed of a silicone resin core particle 30 and an acrylic resin layer (shell layer) 20 formed on the outer periphery of the silicone resin core particle 30. Is formed. In the present invention, the center P of the silicone resin core particle 30 that is the core material of the composite resin particle 10 and the center Q of the composite resin particle 10 do not coincide with each other. Is shifted to either one. In FIG. 1, the silicone resin core particles 30 are shifted to the right. This state is clearly shown in FIG. 3 showing the YY cross section of FIG. 1, and the center point Q of the composite resin particle 10 and the center point P of the silicone resin core particle do not coincide with each other. The center P of the silicone resin core particle 30 does not coincide with the Q of the composite resin particle 10. However, in this example, the silicone resin core particle 30 is not displaced in the vertical direction, and in FIG. 2 showing the XX cross section in FIG. 1, the center point P of the silicone resin core particle 30 and the composite resin particle 10 It coincides with the center point Q.
 複合樹脂粒子10内におけるこのようなシリコーン樹脂芯材粒子30のずれは、次のようにして表わすことができる。
 シリコーン樹脂芯材粒子30の少なくとも一部を含むように切断されたこの複合樹脂粒子10の断面において、この断面におけるシリコーン樹脂芯材粒子の中心を通るとともに、この断面における複合樹脂粒子10の外周面との交点間の距離が最も長い仮想直線(A)、および、このシリコーン樹脂芯材粒子30の断面の中心を通るとともに、この複合樹脂粒子の外周面との交点間の距離が最も短い仮想直線(B)を仮想する。
Such a shift of the silicone resin core particle 30 in the composite resin particle 10 can be expressed as follows.
In the cross section of the composite resin particle 10 cut so as to include at least a part of the silicone resin core particle 30, it passes through the center of the silicone resin core particle in this cross section, and the outer peripheral surface of the composite resin particle 10 in this cross section. And the virtual straight line (A) having the longest distance between the intersections with each other and the virtual straight line having the shortest distance between the intersections with the outer peripheral surface of the composite resin particles while passing through the center of the cross section of the silicone resin core particle 30 Virtualize (B).
 そして、上記シリコーン樹脂芯材粒子の中心点(P)が、該シリコーン樹脂芯材粒子の中心点(P)から上記仮想直線(A)または(B)が複合樹脂粒子の表面と接する点までのうちの最も短い距離をRminiとし、このシリコーン樹脂芯材粒子の中心点(P)から上記仮想直線(A)または(B)が複合樹脂粒子の表面と接する点までのうち最も長い距離をRmaxとしたときに、RminiとRmaxとが次式(1)および式(2)で示す関係を有する位置にある。 And, the center point (P) of the silicone resin core particle is from the center point (P) of the silicone resin core particle to the point where the virtual straight line (A) or (B) is in contact with the surface of the composite resin particle. The shortest distance is R mini and the longest distance from the center point (P) of the silicone resin core particle to the point where the virtual line (A) or (B) is in contact with the surface of the composite resin particle is R. When it is set to max , R mini and R max are at positions having a relationship represented by the following expressions (1) and (2).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ただし、上記式((1)、(1-1)、(2)、(2-1)~(2-3))において、Dsiは、その断面におけるシリコーン樹脂芯材粒子の直径を表す。
 図2においてRminiとRmaxとは、シリコーン樹脂芯材粒子30の複合樹脂粒子10の縦方向のずれはないのでRminiとRmaxとは等しいが、図3に示すように、シリコーン樹脂芯材粒子30は、複合樹脂粒子10の横方向にずれているので、RminiとRmaxとは異なる値を示す。
In the above formulas ((1), (1-1), (2), (2-1) to (2-3)), Dsi represents the diameter of the silicone resin core particles in the cross section.
In FIG. 2, R mini and R max are equal to R mini and R max because there is no vertical displacement of the composite resin particle 10 of the silicone resin core particle 30, but as shown in FIG. Since the material particles 30 are displaced in the lateral direction of the composite resin particles 10, R mini and R max show different values.
 本発明の複合樹脂粒子群においては、上記のようにシリコーン樹脂芯材粒子30が複合樹脂粒子10の中で遍在して存在する偏在粒子は、少なくとも50個数/%、好ましくは60個数/%~100個数/%の範囲内の割合で含有されている。このようにシリコーン樹脂芯材粒子30が複合樹脂粒子10中で偏在すると、個々の粒子に入射した光はシリコーン樹脂芯材粒子30の偏在の状態によって様々な方向に反射する。一見すると様々な方向に反射光が出ることにより、光の反射光強度が不安定になるようにも思えるが、意外にも反射ピークが相殺しあって、本発明の複合樹脂粒子群を塗布した層から出射する光は、視認する角度による変動が少なく、極めて安定している。 In the composite resin particle group of the present invention, the unevenly distributed particles in which the silicone resin core material particles 30 are ubiquitously present in the composite resin particles 10 as described above are at least 50 number /%, preferably 60 number /%. It is contained at a rate in the range of up to 100 pieces /%. When the silicone resin core material particles 30 are unevenly distributed in the composite resin particles 10 as described above, light incident on the individual particles is reflected in various directions depending on the uneven distribution state of the silicone resin core material particles 30. At first glance, it seems that the reflected light intensity becomes unstable due to the reflected light coming out in various directions, but the reflection peak is unexpectedly offset and the composite resin particle group of the present invention was applied. The light emitted from the layer is very stable with little fluctuation due to the viewing angle.
 さらに、本発明の複合樹脂粒子群においては、この複合樹脂粒子群を構成する任意の複合樹脂粒子の中心点をQとしてこの中心点Qから外側方向に向かって放射状に仮想直線(C)を仮装した際に、この複合樹脂粒子に含有されるシリコーン樹脂芯材粒子の中心点Pは、仮想直線(C)上に存在する。そして、図4に示すように、上記仮想直線(C)の基点である複合樹脂粒子の中心点Qを0%とし、この仮想直線(C)と複合樹脂粒子の外周面との長さを100%としたときに、この複合樹脂粒子中に含まれるシリコーン樹脂芯材粒子の中心点Pが、0%を超え99%以下の位置にあることが好ましく、さらに10~95%の範囲内にあることが特に好ましい。 Furthermore, in the composite resin particle group of the present invention, the virtual straight line (C) is temporarily mounted radially outward from the center point Q with Q being the center point of any composite resin particle constituting the composite resin particle group. In this case, the center point P of the silicone resin core particles contained in the composite resin particles is present on the virtual straight line (C). As shown in FIG. 4, the center point Q of the composite resin particle, which is the base point of the virtual line (C), is set to 0%, and the length between the virtual line (C) and the outer peripheral surface of the composite resin particle is 100. %, The center point P of the silicone resin core particles contained in the composite resin particles is preferably in the position of more than 0% and 99% or less, and more preferably in the range of 10 to 95%. It is particularly preferred.
 そして、本発明の複合樹脂粒子群においては、上記のようにシリコーン樹脂芯材粒子が偏在している複合樹脂粒子が、複合樹脂粒子群全体の50個数/%以上であり、さらに60~100個数/%の範囲内にあることが好ましい。 In the composite resin particle group of the present invention, the composite resin particles in which the silicone resin core particles are unevenly distributed as described above are 50 number /% or more of the entire composite resin particle group, and further 60 to 100 number. /% Is preferable.
 また、本発明の複合樹脂粒子群を構成する複合樹脂粒子は、平均粒子径(φcp)が、0.02~100μmの範囲内、好ましくは1~20μmの範囲内にある。また、この複合樹脂粒子に包摂されているシリコーン樹脂芯材粒子の平均粒子径(φsi)は、0.01~50μmの範囲内、好ましくは0.5~10μmの範囲内にある。このときのシリコーン樹脂芯材粒子の平均粒子径としては、通常はシード重合に用いたシリコーン樹脂芯材粒子の平均粒子径を適用することができるが、シリコーン樹脂芯材粒子の略中心点Pを通るとともに、複合樹脂粒子の略中心点Qを通る断面のSEM写真から、複合樹脂粒子の平均粒子径(φcp)およびシリコーン樹脂芯材粒子の平均粒子径(φsi)を求めることが好ましい。 The composite resin particles constituting the composite resin particle group of the present invention have an average particle diameter (φcp) in the range of 0.02 to 100 μm, preferably in the range of 1 to 20 μm. The average particle diameter (φsi) of the silicone resin core particles included in the composite resin particles is in the range of 0.01 to 50 μm, preferably in the range of 0.5 to 10 μm. As the average particle diameter of the silicone resin core particles at this time, the average particle diameter of the silicone resin core particles usually used for seed polymerization can be applied. It is preferable to obtain the average particle diameter (φcp) of the composite resin particles and the average particle diameter (φsi) of the silicone resin core particles from the SEM photograph of the cross section passing through the approximate center point Q of the composite resin particles.
 なお、複合樹脂粒子が略真球状でない場合、すなわち、断面形状が略真円状でない場合には、SEM写真で視認できる複合樹脂粒子の円弧に基づき描画できる仮想の円の直径を、複合樹脂粒子の平均粒子径(φcp)とすることができる。 When the composite resin particle is not substantially spherical, that is, when the cross-sectional shape is not substantially circular, the diameter of a virtual circle that can be drawn based on the arc of the composite resin particle that can be visually recognized in the SEM photograph is obtained. Average particle diameter (φcp).
 この場合、図6に示すように、前述の仮想直線Aおよび仮想直線Bが共に複合樹脂粒子の中心点Qおよびシリコーン樹脂芯材粒子の中心点Pを通る場合には、この仮想直線上における複合樹脂粒子の直径およびシリコーン樹脂粒子の直径を求めることができるが、図5に示すように仮想線上に中心点Q、中心点Pのいずれか一方が存在しない場合には、中心点Qと中心点Pとの距離を直接測定して求めることができる。 In this case, as shown in FIG. 6, when both the virtual straight line A and the virtual straight line B pass through the center point Q of the composite resin particle and the center point P of the silicone resin core particle, The diameter of the resin particle and the diameter of the silicone resin particle can be obtained. However, as shown in FIG. 5, when either the center point Q or the center point P does not exist on the imaginary line, the center point Q and the center point It can be obtained by directly measuring the distance to P.
 そして、本発明の複合樹脂粒子群においては、シリコーン樹脂芯材粒子の中心点Pが、複合樹脂粒子の中心点Qと一致せず、偏在しているのであるから、複合樹脂粒子の中心点Qと、シリコーン樹脂芯材粒子の中心点Pとの間に一定の間隔が生ずる。図4では、この距離がxで示されている。本発明において、この複合樹脂粒子の中心点Qと、シリコーン樹脂芯材粒子の中心点Pとの平均距離xが、通常は0.005~50μmの範囲内、好ましくは0.1~20μmの範囲内にある。 And in the composite resin particle group of the present invention, since the center point P of the silicone resin core material particle does not coincide with the center point Q of the composite resin particle and is unevenly distributed, the center point Q of the composite resin particle And a certain distance between the center point P of the silicone resin core particles. In FIG. 4, this distance is indicated by x. In the present invention, the average distance x between the center point Q of the composite resin particles and the center point P of the silicone resin core particles is usually in the range of 0.005 to 50 μm, preferably in the range of 0.1 to 20 μm. Is in.
 そして、本発明では、この複合樹脂粒子群を構成する複合樹脂粒子の中心点Qと、シリコーン樹脂芯材粒子の中心点Pとの平均距離xと、この該複合樹脂粒子の平均粒子径(φcp)との比(x/φcp)が、通常は0.01~0.5の範囲内、好ましくは0.1~0.4の範囲内にある。この(x/φcp)で表わされる比は、その複合樹脂粒子群においてシリコーン樹脂芯材粒子がどの程度偏在して存在するかの程度を表しており、この値が0に近づくにつれてシリコーン樹脂芯材粒子の偏在が小さくなることを意味する。 In the present invention, the average distance x between the center point Q of the composite resin particles constituting the composite resin particle group and the center point P of the silicone resin core particles, and the average particle diameter (φcp of the composite resin particles )) (X / φcp) is usually in the range of 0.01 to 0.5, preferably in the range of 0.1 to 0.4. The ratio represented by (x / φcp) represents the degree of uneven distribution of the silicone resin core particles in the composite resin particle group, and as this value approaches 0, the silicone resin core material This means that the uneven distribution of particles is reduced.
 そして、本発明の複合樹脂粒子群を光学部材あるいは化粧料原料のような均一は反射光得るために使用する場合には、この(x/φcp)で表わされる比を、0.1~0.35の範囲内にすることにより、極めて均一な反射光を取り出すことができる。 When the composite resin particle group of the present invention is used for obtaining uniform reflected light such as an optical member or a cosmetic material, the ratio represented by (x / φcp) is set to 0.1 to 0.00. By setting it within the range of 35, it is possible to extract extremely uniform reflected light.
 このようにシリコーン樹脂芯材粒子が偏在した複合樹脂粒子を多数有する本発明の複合樹脂粒子群は、反射光が好適に相殺されるので、こうした複合樹脂粒子群を塗布した層を視認したときに角度による反射光のばらつきが発生しない。 In this way, the composite resin particle group of the present invention having a large number of composite resin particles in which the silicone resin core particles are unevenly distributed cancels reflected light appropriately, so that when a layer coated with such a composite resin particle group is visually observed Variation in reflected light due to angle does not occur.
 なお、上記の説明は、本発明の複合樹脂粒子群を構成する複合樹脂粒子が球体であるとの前提で説明したが、本発明の複合樹脂粒子群を構成する粒子は、必ずしも球体であるとは限らず、例えば図7に示すような断面略楕円形である場合、図8、図9のように断面不定形である場合などがあるが、これらの場合には、これらの粒子の凸部が最も多く接する球体を想定して、この仮想球体の中心点を上記の複合樹脂球体の中心点Qとして、上記規定を適用するものとする。 In addition, although said description demonstrated on the premise that the composite resin particle which comprises the composite resin particle group of this invention is a sphere, the particle | grains which comprise the composite resin particle group of this invention are not necessarily a sphere. For example, when the cross section is substantially elliptical as shown in FIG. 7, there are cases where the cross section is irregular as shown in FIGS. 8 and 9, but in these cases, the convex portions of these particles Assuming the sphere that contacts the most, the above definition is applied with the center point of the virtual sphere as the center point Q of the composite resin sphere.
 このような複合樹脂粒子群を構成する複合樹脂粒子中のシリコーン樹脂芯材粒子は、通常は、アクリル系樹脂および/またはスチレン系樹脂によって覆われているが、複合樹脂粒子群を形成する複合樹脂粒子の表面にシリコーン樹脂芯材粒子の例えば10~80体積%が露出している複合樹脂粒子を含有していてもよい。 The silicone resin core particles in the composite resin particles constituting such a composite resin particle group are usually covered with an acrylic resin and / or a styrene resin, but the composite resin forming the composite resin particle group The resin particles may contain composite resin particles in which, for example, 10 to 80% by volume of the silicone resin core particles are exposed on the surface of the particles.
 そして、本発明の複合樹脂粒子群を構成する複合樹脂粒子は、上述のように完全球体であることを特に必要とするものではなく、本発明の複合樹脂粒子群は、通常は0.1~1.00の範囲内にある真球度を有する複合樹脂粒子を50個数%以上の量で含有していることが望ましい。 The composite resin particles constituting the composite resin particle group of the present invention do not particularly need to be a perfect sphere as described above, and the composite resin particle group of the present invention is usually 0.1 to It is desirable to contain composite resin particles having a sphericity in the range of 1.00 in an amount of 50% by number or more.
 図5,6には、比較的真球度の高い複合樹脂粒子の例が示されており、図7(断面略楕円形),図8,図9には真球度の低い本発明の複合樹脂粒子の例が示されているが、本発明の複合樹脂粒子群を形成する複合樹脂粒子の形状はこれらによって限定されるものではない。 FIGS. 5 and 6 show examples of composite resin particles having a relatively high sphericity. FIGS. 7 (substantially oval in cross section), FIGS. 8 and 9 show the composite of the present invention having a low sphericity. Although the example of the resin particle is shown, the shape of the composite resin particle which forms the composite resin particle group of this invention is not limited by these.
 本発明の複合樹脂粒子群の特異的な特性は、本発明の複合樹脂粒子群0.1gを採り、この複合樹脂粒子群を、幅30mm、長さ50mm、厚さ3mmのウレタン製シートに均一に塗布して複合樹脂粒子群からなる層を形成し、この層について変角光度計を用いて反射強度を測定することにより、明確になる。即ち、上記のようにして形成された層に入射角-45°、試行回数n=100の条件で測定した反射強度の平均の変動率を求めると、通常は0.81~1.00の範囲内の値を示す。ここで、反射強度の変動率とは、受光角0°での反射率/受光角-35°での反射率の平均値で表わされる数値であり、この値が1,0に近いほど、反射むらが小さく、さらにその幅が小さいほど、反射むらが小さいことを意味している。 The specific characteristic of the composite resin particle group of the present invention is that 0.1 g of the composite resin particle group of the present invention is used, and this composite resin particle group is uniformly formed on a urethane sheet having a width of 30 mm, a length of 50 mm and a thickness of 3 mm It is clarified by forming a layer composed of a composite resin particle group by coating the layer and measuring the reflection intensity of the layer using a goniophotometer. That is, when the average variation rate of the reflection intensity measured on the layer formed as described above under the conditions of an incident angle of −45 ° and the number of trials n = 100 is usually in the range of 0.81 to 1.00. The value in is shown. Here, the fluctuation rate of the reflection intensity is a numerical value represented by an average value of reflectance at a light receiving angle of 0 ° / reflectance at a light receiving angle of −35 °, and the closer this value is to 1, 0, The smaller the unevenness and the smaller the width, the smaller the unevenness of reflection.
 このように本発明の複合樹脂粒子群において、この粒子群を形成する個々の粒子は、芯材となるシリコーン樹脂芯材粒子の位置が異なることから反射ピークの角度によりばらつくが、これらの複合樹脂粒子の集合である本発明の複合樹脂粒子群においては、個々の粒子に見られるような反射ピークの角度によるバラツキは相互に打ち消し合って、角度に拘りなく非常に均一な反射ピークを有する層を形成することができる。 As described above, in the composite resin particle group of the present invention, the individual particles forming the particle group vary depending on the angle of the reflection peak because the position of the silicone resin core particle serving as the core material is different. In the composite resin particle group of the present invention, which is an aggregate of particles, variations due to the angle of the reflection peak as seen in individual particles cancel each other, and a layer having a very uniform reflection peak regardless of the angle is formed. Can be formed.
 本発明の複合樹脂粒子群は、例えば、シリコーン樹脂芯材粒子をシード粒子として、このシード粒子が偏在するように、アクリル系モノマーおよび/またはスチレン系モノマーとを含むモノマー成分をシェル層として共重合させることにより製造することができる。 The composite resin particle group of the present invention is copolymerized with, for example, a silicone resin core material particle as a seed particle and a monomer component containing an acrylic monomer and / or a styrene monomer as a shell layer so that the seed particles are unevenly distributed. Can be manufactured.
 本発明で使用するシリコーン樹脂芯材粒子は、シラン化合物およびシランカップリング剤などのケイ素含有化合物を用い、公知の方法により得ることができる。
シラン化合物としては、たとえば特許文献2(特開2002-138119号公報)の一般式(1)
 (R1O)4-aSiR2 a (1)
(式中、R1は同じかまたは異なり炭素数1~10のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基または炭素数1~10のアシル基、R2は同じかまたは異なり炭素数1~10のアルキル基、炭素数6~10のアリール基または炭素数7~10のアラルキル基、aは0~2の整数。)で表されるシリコン化合物および/またはその部分加水分解縮合物であって、具体例としては、テトラメチルシリケート、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシランなどが挙げられる。
The silicone resin core particles used in the present invention can be obtained by a known method using a silicon-containing compound such as a silane compound and a silane coupling agent.
Examples of the silane compound include those represented by the general formula (1) in Patent Document 2 (Japanese Patent Laid-Open No. 2002-138119).
(R 1 O) 4-a SiR 2 a (1)
(Wherein R 1 is the same or different, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an acyl group having 1 to 10 carbon atoms, R 2 is The same or different alkyl group having 1 to 10 carbon atoms, aryl group having 6 to 10 carbon atoms or aralkyl group having 7 to 10 carbon atoms, a is an integer of 0 to 2) and / or a silicon compound thereof Specific examples of the partial hydrolysis condensate include tetramethyl silicate, methyltrimethoxysilane, methyltriethoxysilane, and phenyltriethoxysilane.
 また、シランカップリング剤としては、たとえば一般式(2)
 X3-n(CH3nSi(R3nY   (2)
(式中、R3は炭素数1~10の直鎖状、分岐状、脂環状のアルキル基であり、Xはアルコキシ基またはハロゲン原子であり、Yはアミノ基、ビニル基、(メタ)アクリル基、イソシアネート基、エポキシ基、メルカプト基、サルファー基、ウレイド基のいずれかであり、nは0または1の整数)
で表される化合物であり、具体例としては、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、ビニルトリクロルシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-オクタノイルチオ-1-プロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシランなどが挙げられる。
As the silane coupling agent, for example, the general formula (2)
X 3-n (CH 3 ) n Si (R 3 ) n Y (2)
Wherein R 3 is a linear, branched or alicyclic alkyl group having 1 to 10 carbon atoms, X is an alkoxy group or a halogen atom, Y is an amino group, a vinyl group, (meth) acrylic. Group, isocyanate group, epoxy group, mercapto group, sulfur group, ureido group, n is an integer of 0 or 1)
Specific examples include 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, 3-methacrylate. Roxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-octanoylthio Examples thereof include 1-propyltriethoxysilane and 3-ureidopropyltriethoxysilane.
 その他のケイ素含有化合物としては、チッソ社製の反応性シリコーン(商品名:サイラプレーン)などが挙げられる。
 上記のケイ素含有化合物は、1種または2種以上の化合物を組み合わせて使用することができるが、好ましくは、シラン化合物とシランカップリング剤とを組み合わせて使用することである。
Other silicon-containing compounds include reactive silicone (trade name: Silaplane) manufactured by Chisso Corporation.
The above silicon-containing compounds can be used alone or in combination of two or more compounds, but preferably a silane compound and a silane coupling agent are used in combination.
 なお、本発明において、シリコーン樹脂芯材粒子が、チタンアルコキシド、あるいは、ジルコニウムアルコキシドなどのアルコキシド類を含有していてもよい。これらの含有量は、シリコーン樹脂芯材粒子100重量部に対して通常は1~30重量部である。 In the present invention, the silicone resin core particles may contain an alkoxide such as titanium alkoxide or zirconium alkoxide. These contents are usually 1 to 30 parts by weight with respect to 100 parts by weight of the silicone resin core particles.
 本発明において、シリコーン樹脂芯材粒子は、加水分解反応により反応したシリコーン化合物の加水分解物からなる粒子であり、原料となるシリコーン化合物中に反応性二重結合が存在する場合には、この反応性二重結合の少なくとも一部は活性を失わない状態でシリコーン樹脂芯材粒子中に存在している。こうしたシリコーン樹脂芯材粒子中に反応性二重結合が残存することにより、本発明におけるシリコーン樹脂芯材粒子は、シェル層を形成するアクリル系モノマーあるいはスチレン系モノマーと非常に高い親和性を有している。 In the present invention, the silicone resin core particle is a particle made of a hydrolyzate of a silicone compound reacted by a hydrolysis reaction. When a reactive double bond is present in the raw silicone compound, this reaction At least a part of the ionic double bond is present in the silicone resin core particle in a state where the activity is not lost. By leaving reactive double bonds in such silicone resin core particles, the silicone resin core particles in the present invention have a very high affinity with acrylic monomers or styrene monomers that form a shell layer. ing.
 こうして得られたスラリーを例えば200メッシュの金網を通過させて、塊状物を除去した後、減圧濾過などにより、反応液を分離してシリコーン樹脂芯材粒子のケイキを得る。このケイキを加熱乾燥して水分を除去して解砕することにより、シリコーン樹脂芯材粒子を得ることができる。 The slurry thus obtained is passed through, for example, a 200-mesh wire net to remove a lump, and then the reaction solution is separated by filtration under reduced pressure to obtain a silicone resin core particle cake. Silicone resin core particles can be obtained by heating and drying this cake to remove moisture and crush it.
 こうして得られたシリコーン樹脂芯材粒子をSEMで観察してその平均粒子径を求めると、その平均粒子径は、0.01~50μmの範囲内、好ましくは0.5~20μmの範囲内にあり、CV値は通常は1~100、好ましくは1~10の範囲内にある。 When the average particle diameter is determined by observing the silicone resin core particles thus obtained with an SEM, the average particle diameter is in the range of 0.01 to 50 μm, preferably in the range of 0.5 to 20 μm. The CV value is usually in the range of 1 to 100, preferably 1 to 10.
 上記にようにして得られたシリコーン樹脂芯材粒子をシード粒子として、シード重合を行い、シリコーン樹脂芯材粒子の外周にアクリル系樹脂および/またはスチレン樹脂を含む透明樹脂層(シェル層)を形成する。この透明樹脂層を形成する際には、一段重合で透明樹脂層を形成してもよいし、二段重合等の多段重合で、透明樹脂層を形成することもできる。 Using the silicone resin core particles obtained as described above as seed particles, seed polymerization is performed to form a transparent resin layer (shell layer) containing acrylic resin and / or styrene resin on the outer periphery of the silicone resin core particles. To do. When forming this transparent resin layer, the transparent resin layer may be formed by one-stage polymerization, or the transparent resin layer may be formed by multi-stage polymerization such as two-stage polymerization.
 このようにシリコーン樹脂芯材粒子の外周に形成される透明樹脂層は、アクリル系樹脂、スチレン樹脂、あるいはこれらの共重合樹脂を含む透明樹脂によって形成されている。
 ここで使用するアクリル系樹脂としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ラウリルのような分岐あるいは不飽和結合を有していてもよい炭素数が1~20の炭化水素基を有する(メタ)アクリル酸アルキルエステル;
 ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレートのような(メタ)アクリル酸アリールエステル;
 (メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸プロポキシエチル、(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸エトキシプロピルのような(メタ)アクリル酸アルコキシアルキルエステル;
 ジエチルアミノエチル(メタ)アクリレートのようなジアルキルアミノアルキル(メタ)アクリレート;
 (メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、ジアセトンアクリルアミドのような(メタ)アクリルアミド類;
 グリシジル(メタ)アクリレートのようなエポキシ基含有(メタ)アクリレート;
 (メタ)アクリル酸のようなアクリル酸類;
 (メタ)アクリル酸-2-クロロエチルのようなハロゲン化アルキル基を有する(メタ)アアクリル酸エステル;
 (メタ)アクリロニトリル;
 (メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチルのようなアクリル酸もしくはメタクリル酸の誘導体を挙げることができる。これらは単独であるいは組み合わせて使用することができる。
Thus, the transparent resin layer formed on the outer periphery of the silicone resin core particle is formed of an acrylic resin, a styrene resin, or a transparent resin containing a copolymer resin thereof.
As acrylic resins used here, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylic acid Isobutyl, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, (meth) acrylic (Meth) acrylic acid alkyl ester having a hydrocarbon group having 1 to 20 carbon atoms which may have a branched or unsaturated bond such as dodecyl acid or lauryl (meth) acrylate;
(Meth) acrylic acid aryl esters such as benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate;
(Meth) acrylic acid alkoxyalkyl esters such as methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, propoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, ethoxypropyl (meth) acrylate ;
Dialkylaminoalkyl (meth) acrylates such as diethylaminoethyl (meth) acrylate;
(Meth) acrylamides such as (meth) acrylamide, N-methylol (meth) acrylamide, diacetone acrylamide;
Epoxy group-containing (meth) acrylates such as glycidyl (meth) acrylate;
Acrylic acids such as (meth) acrylic acid;
(Meth) acrylic acid ester having a halogenated alkyl group such as (meth) acrylic acid-2-chloroethyl;
(Meth) acrylonitrile;
Derivatives of acrylic acid or methacrylic acid such as 2-hydroxyethyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate Can be mentioned. These can be used alone or in combination.
 本発明で使用するスチレン樹脂としては、たとえば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、iso-プロピルスチレン、iso-プロピルスチレン、iso-プロピルスチレン、p-n-ブチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-n-ヘキシルスチレン、p-メトキシスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、3,4-ジクロルスチレンなどのような分岐を有していてもよく、さらにハロゲン原子で置換されたアルキル基を有するスチレン誘導体などを挙げることができる。これらは単独であるいは組み合わせて使用することができる。 Examples of the styrene resin used in the present invention include styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, o-ethyl styrene, m-ethyl styrene, p-ethyl styrene, iso-propyl styrene, iso -Propyl styrene, iso-propyl styrene, pn-butyl styrene, p-tert-butyl styrene, pn-hexyl styrene, pn-hexyl styrene, p-methoxy styrene, pn-nonyl styrene, pn-decyl styrene, 3,4- Examples thereof include a styrene derivative having an alkyl group substituted with a halogen atom, which may have a branch such as dichlorostyrene. These can be used alone or in combination.
 さらに上述のアクリル系樹脂とスチレン誘導体とを、それぞれ単独で使用することも可能であるし、また両者を混合して使用することもできる。
 本発明の複合樹脂粒子群を製造するに際しては、上記のようなモノマー成分に加えて、他の重合性モノマーを配合することができる。
Furthermore, the above-mentioned acrylic resin and styrene derivative can be used alone or in combination.
In producing the composite resin particle group of the present invention, in addition to the monomer components as described above, other polymerizable monomers can be blended.
 このような他のモノマーの例としては、酢酸ビニル,プロピオン酸ビニル,n-酪酸ビニル,イソ酪酸ビニ ル,ピバリン酸ビニル,カプロン酸ビニル,パーサティック酸ビニル,ラウリル酸ビニル,ステアリン酸ビニル,安息香酸ビニル,p-t-ブチル安息香酸ビニル、サリチル酸ビニル等のビニルエステル類;
 塩化ビニリデン、クロロヘキサンカルボン酸ビニル等:
 テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸等の不飽和カルボン酸;
 無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビ シクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸無水物等を挙げることがでいる。これらは本発明の複合樹脂粒子群の特定を損なわない範囲内で適宜使用することができる。さらにこれらのモノマーは単独であるいは組み合わせて使用することができる。
Examples of such other monomers include vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caproate, vinyl persamic acid, vinyl laurate, vinyl stearate, benzoic acid. Vinyl esters such as vinyl acid, pt-butyl vinyl benzoate and vinyl salicylate;
Vinylidene chloride, vinyl chlorohexanecarboxylate, etc .:
Unsaturated carboxylic acids such as tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, norbornene dicarboxylic acid, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic acid;
And maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic anhydride and the like. These can be used appropriately within a range not impairing the identification of the composite resin particle group of the present invention. Furthermore, these monomers can be used alone or in combination.
 また、シェル層に架橋構造を形成するために、多官能モノマーを使用することができる。このような多官能モノマーの例としては、ジビニルベンゼン、エチレングリコールのジ(メタ)アクリル酸エステル、ジエチルグリコールのジ(メタ)アクリル酸エステル、トリエチレングリコールのジ(メタ)アクリル酸エステル、ジプロピレングリコールのジ(メタ)アクリル酸エステル、トリプロピレングリコースのジ(メタ)アクリル酸エステルのようなアルキレングリコールのジ(メタ)アクリル酸エステル;
 トリメチロールプロパントリ(メタ)アクリル酸エステルのような多価(メタ)アクリル酸エステル等を挙げることができる。これらは単独であるいは組み合わせて使用することができる。さらにシェル層を多段で形成する場合、いずれの段階で多官能モノマーを用いてもよいが、シリコーン樹脂芯材粒子の偏在をより大きくするためには、最初の段階で多官能モノマーを使用するよりも、後の段階、好適には最終段で多官能モノマーを使用することが望ましい。
Moreover, in order to form a crosslinked structure in the shell layer, a polyfunctional monomer can be used. Examples of such polyfunctional monomers include divinylbenzene, ethylene glycol di (meth) acrylate, diethyl glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, dipropylene Di (meth) acrylates of alkylene glycols such as di (meth) acrylates of glycols, di (meth) acrylates of tripropylene glycolose;
Examples thereof include polyvalent (meth) acrylates such as trimethylolpropane tri (meth) acrylate. These can be used alone or in combination. Further, when the shell layer is formed in multiple stages, the polyfunctional monomer may be used at any stage. However, in order to increase the uneven distribution of the silicone resin core particles, the polyfunctional monomer is used in the first stage. However, it is desirable to use a polyfunctional monomer at a later stage, preferably the last stage.
 本発明の複合樹脂粒子群は、上述のシリコーン系樹脂芯材粒子を水性媒体に分散させ、この分散液に上記のモノマーを添加してシリコーン系樹脂芯材粒子をシード粒子としてシード重合を行うことにより製造することができる。そして、このときシリコーン系樹脂芯材粒子が分散している水性媒体に添加されるモノマーは、シリコーン系樹脂粒子内に取り込まれて重合し、シリコーン樹脂芯材粒子の直径が元の粒子径の1.1~10倍になる。このようにモノマーを重合させることにより、シリコーン樹脂芯材粒子の偏在が生ずるものと思われ、本発明でシェル層を形成するモノマーは、シリコーン樹脂芯材粒子との親和性の良いモノマーを使用することが好ましい。このように芯材粒子がシリコーン系の樹脂により形成されていることから、シリコーン樹脂芯材粒子中にモノマーが均一に取り込まれることは極めて稀で、シリコーン樹脂芯材粒子中におけるモノマーの濃度が均一にはなり難く、こうしたモノマーの偏在が本発明の複合樹脂粒子群において、シリコーン系樹脂芯材粒子が、本発明の複合樹脂粒子中において、中心に位置せず、シリコーン樹脂芯材粒子の中心が、得られる複合樹脂粒子群を構成する粒子の中心と一致せず、芯材粒子が偏在する要因になると考えられる。 In the composite resin particle group of the present invention, the above-mentioned silicone-based resin core particles are dispersed in an aqueous medium, and the above monomer is added to this dispersion to perform seed polymerization using the silicone-based resin core particles as seed particles. Can be manufactured. At this time, the monomer added to the aqueous medium in which the silicone resin core particles are dispersed is incorporated into the silicone resin particles and polymerized, and the diameter of the silicone resin core particles is 1 of the original particle diameter. .1-10 times. By polymerizing the monomer in this way, it is considered that the uneven distribution of the silicone resin core material particles occurs, and the monomer forming the shell layer in the present invention uses a monomer having a good affinity with the silicone resin core material particles. It is preferable. Since the core particles are thus formed of a silicone-based resin, it is extremely rare for the monomer to be uniformly incorporated into the silicone resin core particles, and the monomer concentration in the silicone resin core particles is uniform. In the composite resin particle group of the present invention, the uneven distribution of such a monomer is not centered in the composite resin particle of the present invention, and the center of the silicone resin core particle is not centered. It is considered that this is not the same as the center of the particles constituting the composite resin particle group to be obtained, and becomes a cause of uneven distribution of the core material particles.
 本発明において、上記のようにシード粒子であるシリコーン樹脂芯材粒子の中心と複合樹脂粒子群を構成する個々の粒子の中心とを一致させず、シリコーン樹脂芯材粒子を個々の粒子において偏在させるために、シード粒子であるシリコーン樹脂芯材粒子を水性媒体、好ましくは水に均一に分散させた後、撹拌しながら上記モノマー成分、必要に応じて分散剤および界面活性剤を配合して、水性媒体中にモノマー成分を分散させる。水性媒体中にシード粒子であるシリコーン樹脂芯材粒子とモノマー成分を均一に分散させた後、重合開始剤を添加し、加熱することにより、シリコーン樹脂芯材粒子に吸着されたモノマー成分が重合して、本発明の複合樹脂粒子群が得られる。 In the present invention, as described above, the center of the silicone resin core material particles, which are seed particles, and the center of the individual particles constituting the composite resin particle group are not matched, and the silicone resin core material particles are unevenly distributed in the individual particles. Therefore, after the silicone resin core particles as seed particles are uniformly dispersed in an aqueous medium, preferably water, the above monomer components, and if necessary, a dispersant and a surfactant are blended while stirring, The monomer component is dispersed in the medium. After uniformly dispersing the silicone resin core particles and the monomer components as seed particles in the aqueous medium, the monomer component adsorbed on the silicone resin core particles is polymerized by adding a polymerization initiator and heating. Thus, the composite resin particle group of the present invention is obtained.
 また、この得られた複合樹脂粒子をシード粒子として、上記と同様にモノマー成分を吸着させ、モノマー成分を重合させることにより、複合樹脂粒子の粒子径を大きくすることができる。 Further, by using the obtained composite resin particles as seed particles, the monomer component is adsorbed in the same manner as described above, and the monomer component is polymerized, whereby the particle diameter of the composite resin particles can be increased.
 上記反応において、モノマー成分はシード粒子(シリコーン樹脂芯材粒子または複合樹脂粒子)100重量部に対して20~5000重量部、好ましくは200~3000重量部、水性媒体はシード粒子(シリコーン樹脂芯材粒子または複合樹脂粒子)とモノマー成分との総量を100重量部としたときに100~900重量部、好ましくは150~300重量部、分散剤および界面活性剤はモノマー成分100重量部に対して0.1~10重量部、好ましくは0.2~3重量部の範囲内の量で配合する。 In the above reaction, the monomer component is 20 to 5000 parts by weight, preferably 200 to 3000 parts by weight based on 100 parts by weight of seed particles (silicone resin core particles or composite resin particles), and the aqueous medium is seed particles (silicone resin core material). Particles or composite resin particles) and the monomer component in a total amount of 100 parts by weight, 100 to 900 parts by weight, preferably 150 to 300 parts by weight. .1 to 10 parts by weight, preferably 0.2 to 3 parts by weight.
 ここで使用する重合開始剤は、10時間半減期温度が通常は40~95℃、好ましくは60~85℃の重合開始剤を使用することが望ましく、このような重合開始剤の例としては、クメンハイドロパーオキサイド(CHP)、ジターシャリーブチルパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド(BPO)、ラウリルパーオキサイド(LPO)、ターシャリーブチル(2-エチルヘキサノイル)ペルオキシド、ジメチルビス(ターシャリーブチルパーオキシ)ヘキサン、ジメチルビス(ターシャリーブチルパーオキシ)ヘキシン-3、ビス(ターシャリーブチルパーオキシイソプロピル)ベンゼン、ビス(ターシャリーブチルパーオキシ)トリメチルシクロヘキサン、ブチル-ビス(ターシャリーブチルパーオキシ)バレラート、ジベンゾイルパーオキシベンゾアートを挙げることができ、アゾ系開始剤の例としては、2,2-アゾビスイソブチロニトリル、2,2-アゾビス-2-メチルブチロニトリル2,2-アゾビス-2,4-ジメチルバレロニトリル、2,2-アゾビス-4-メトキシ-2,4-ジメチルバレロニトリル、2,2-アゾビス(2-メチルプロピオン酸)ジメチル等を挙げることができる。これらは単独であるいは組み合わせて使用することができる。 As the polymerization initiator used here, it is desirable to use a polymerization initiator having a 10-hour half-life temperature of usually 40 to 95 ° C., preferably 60 to 85 ° C. Examples of such polymerization initiator include: Cumene hydroperoxide (CHP), ditertiary butyl peroxide, dicumyl peroxide, benzoyl peroxide (BPO), lauryl peroxide (LPO), tertiary butyl (2-ethylhexanoyl) peroxide, dimethyl bis (tertiary) Butylperoxy) hexane, dimethylbis (tertiarybutylperoxy) hexyne-3, bis (tertiarybutylperoxyisopropyl) benzene, bis (tertiarybutylperoxy) trimethylcyclohexane, butyl-bis (tertiarybutylperoxy) ) Valerato, Gibe Examples of azo initiators include 2,2-azobisisobutyronitrile, 2,2-azobis-2-methylbutyronitrile 2,2-azobis-2. 2,2-dimethylvaleronitrile, 2,2-azobis-4-methoxy-2,4-dimethylvaleronitrile, 2,2-azobis (2-methylpropionic acid) dimethyl, and the like. These can be used alone or in combination.
 このときの反応温度は、使用する重合開始剤の種類によって異なるが、通常は50~80℃、好ましくは60~75℃であり、このような条件で通常は2~10時間、好ましくは3~6時間反応させることにより、本発明の複合樹脂粒子群が得られる。この反応は、一段で行うこともできるし、多段に分けて行うこともできる。 The reaction temperature at this time varies depending on the type of polymerization initiator used, but is usually 50 to 80 ° C., preferably 60 to 75 ° C. Under these conditions, it is usually 2 to 10 hours, preferably 3 to By reacting for 6 hours, the composite resin particle group of the present invention is obtained. This reaction can be carried out in a single stage or in multiple stages.
 このような反応において、シード粒子であるシリコーン樹脂芯材粒子にモノマー成分が不均一に侵入して重合反応が進行するために、シリコーン樹脂芯材粒子の中心が複合樹脂粒子の中心には存在しにくくなり、複合樹脂粒子群を構成する個々の複合樹脂の50個数%以上、好ましくは60~100個数%の粒子において、シード粒子であるシリコーン樹脂芯材粒子の中心点と個々の複合樹脂粒子の中心点とは一致しない。 In such a reaction, the monomer component infiltrates into the silicone resin core particles that are seed particles in a non-uniform manner and the polymerization reaction proceeds, so that the center of the silicone resin core particles exists at the center of the composite resin particles. 50% by number or more, preferably 60 to 100% by number of the individual composite resins constituting the composite resin particle group, and the center points of the silicone resin core particles as seed particles and the individual composite resin particles Does not match the center point.
 このようにシリコーン樹脂芯材粒子の中心点と個々の複合樹脂粒子の中心点とは一致しない粒子は、個々の粒子における屈折性に関しては統一性はなく個々バラバラであるが、これを集合体としてみた場合、個々の粒子の屈折性が相互に相殺しあって複合樹脂粒子群全体としてみると非常に均一性の高い反射光が得られる。 As described above, the center point of the silicone resin core particle and the center point of each composite resin particle do not coincide with each other, and the refraction property of each particle is not uniform and is individual. When viewed, the refractive properties of the individual particles cancel each other, and when viewed as a whole of the composite resin particle group, very uniform reflected light can be obtained.
 たとえば、上記複合樹脂粒子群0.1gを、幅30mm、長さ50mm、厚さ3mmのウレタン製シートに均一に塗布して、変角光度計を用いて、入射角-45°、試行回数n=100の条件で測定した反射強度の変動率(受光角0°での反射率/受光角-35°での反射率の平均値)を測定すると、通常は0.8~1.00の範囲内、好ましくは0.9~1.00の範囲内になり、非常に均一性の高い反射光が得られる。図24にシリコーン樹脂芯材粒子に、スチレン及びメチルメタクリレートをシード重合して得られた、芯材粒子が偏在している平均粒子径が5μmの本発明の複合粒子を塗布基材(商品名:バイオスキン#30、(株)ビューラックス製)の表面に塗布して投光角45°、測定範囲-85°~+85°、測定間隔1°で測定した反射光強度を示す。本発明の複合樹脂粒子群を用いることにより上述のように反射強度が均一化するという現象は、この複合樹脂粒子群を構成する個々の粒子についての反射強度からは予測不可能であり、複合樹脂粒子群となって初めて奏される効果である。 For example, 0.1 g of the composite resin particle group is uniformly applied to a urethane sheet having a width of 30 mm, a length of 50 mm, and a thickness of 3 mm, and the incident angle is −45 °, the number of trials is n, using a goniophotometer. = The variation rate of reflection intensity measured under the condition of 100 (the reflectance at the light receiving angle of 0 ° / the average value of the reflectance at the light receiving angle of -35 °) is usually in the range of 0.8 to 1.00 Of these, it is preferably in the range of 0.9 to 1.00, and reflected light with very high uniformity can be obtained. In FIG. 24, the composite particles of the present invention having an average particle diameter of 5 μm, in which the core particles are unevenly distributed, obtained by seed polymerization of styrene and methyl methacrylate on the silicone resin core particles are coated with a base material (trade name: The intensity of reflected light measured by applying to the surface of Bioskin # 30 (manufactured by Beaulux Co., Ltd.) and measuring a projection angle of 45 °, a measurement range of −85 ° to + 85 °, and a measurement interval of 1 ° is shown. The phenomenon that the reflection intensity becomes uniform as described above by using the composite resin particle group of the present invention cannot be predicted from the reflection intensity of the individual particles constituting the composite resin particle group. This is an effect that is exhibited only for the particle group.
 上記のような本発明の複合樹脂粒子群は、上記のように層状にしたときに非常に均一な反射光を反射させることができるとの特性を有している。
 上記のような本発明の複合樹脂粒子群を、化粧料原料として用いることができる。即ち、本発明の化粧料は、上述の複合樹脂粒子群を用いた、ファンデーション、あるいは、本発明の複合樹脂粒子群を液体に分散させたリキッドファンデーション、頬紅、マスカラなどの化粧料である。本発明の複合樹脂粒子群を化粧料原料として使用する場合、化粧料を製造する際に通常使用される成分を用いることができる。
The composite resin particle group of the present invention as described above has a characteristic that it can reflect a very uniform reflected light when it is layered as described above.
The composite resin particle group of the present invention as described above can be used as a cosmetic raw material. That is, the cosmetic of the present invention is a foundation using the above-mentioned composite resin particle group, or a cosmetic such as a liquid foundation, blusher, or mascara in which the composite resin particle group of the present invention is dispersed in a liquid. When using the composite resin particle group of this invention as a cosmetic raw material, the component normally used when manufacturing cosmetics can be used.
 このようにして得られた化粧料は、光の反射の均一性が高いので、くすみがなく、クッキリとした仕上がりの化粧料となる。このような化粧料に本発明の複合樹脂粒子群を使用する場合には、化粧料を製造する際に通常使用している他の原料成分とともに、本発明の複合樹脂粒子群を使用することができる。 Since the cosmetic obtained in this way has high uniformity of light reflection, it has no dullness and has a clean finish. When the composite resin particle group of the present invention is used for such a cosmetic, the composite resin particle group of the present invention may be used together with other raw material components that are usually used when manufacturing the cosmetic. it can.
 この特性を利用することにより非常に均一性の高い光拡散シートを製造することができる。
 すなわち、上記の複合樹脂粒子群を基板上に配置した複合樹脂粒子群層を形成することにより、この複合樹脂粒子群層における光の反射が均一化し、光を均一に拡散することができる。このような本発明の光拡散シートは、上記詳述した本発明の複合樹脂粒子群を使用して光拡散層を形成すればよい。
By utilizing this characteristic, a light diffusion sheet with very high uniformity can be produced.
That is, by forming the composite resin particle group layer in which the composite resin particle group is disposed on the substrate, the reflection of light in the composite resin particle group layer is made uniform, and the light can be diffused uniformly. In such a light diffusion sheet of the present invention, a light diffusion layer may be formed using the composite resin particle group of the present invention described in detail above.
 次に本発明の複合樹脂粒子について、実施例を示して説明するが本発明はこれらによって限定されるものではない。
  <シリコーン樹脂芯材粒子の調製>
 〔製造例1〕
 温度計と窒素ガス導入管を装着した容量1リットルの四つ口フラスコに、イオン交換水200重量部およびイソプロピルアルコール5重量部を投入した。この水溶液を25℃で撹拌しながら、メチルトリメトキシシラン(信越化学工業(株)製、商品名:KBM-13)25重量部、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製、商品名:KBM-503)5重量部を添加したところ、加水分解反応が進行し、15分後に液温が34℃に上昇した。
Next, the composite resin particles of the present invention will be described with reference to examples, but the present invention is not limited thereto.
<Preparation of silicone resin core particles>
[Production Example 1]
200 parts by weight of ion-exchanged water and 5 parts by weight of isopropyl alcohol were charged into a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas introduction tube. While stirring this aqueous solution at 25 ° C., 25 parts by weight of methyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-13), 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) , Trade name: KBM-503) When 5 parts by weight were added, the hydrolysis reaction proceeded, and the liquid temperature rose to 34 ° C. after 15 minutes.
 さらに撹拌を2時間継続して、液温を25℃にまで冷却させ、攪拌しながら0.5%アンモニア水5重量部を添加し、1分間攪拌した後、攪拌を停止し4時間静置して、シリコーン樹脂芯材粒子のスラリーを調製した。 Stirring is continued for 2 hours, the liquid temperature is cooled to 25 ° C., 5 parts by weight of 0.5% ammonia water is added with stirring, and the mixture is stirred for 1 minute, and then stirred for 4 hours. Thus, a slurry of silicone resin core particles was prepared.
 このスラリーを200メッシュの金網を通過させてから、ブフナーロートで濾紙を用いて減圧濾過して、シリコーン樹脂芯材粒子のケーキを得た。
 得られたシリコーン樹脂芯材粒子を走査型電子顕微鏡(SEM)で観察したところ、粒子形状は真球状であり、平均粒子径(φsi)は、2.70μmの単分散粒子であった。
The slurry was passed through a 200-mesh wire mesh and then filtered under reduced pressure using a filter paper with a Buchner funnel to obtain a cake of silicone resin core particles.
When the obtained silicone resin core material particles were observed with a scanning electron microscope (SEM), the particle shape was a true sphere, and the average particle size (φsi) was a monodisperse particle with 2.70 μm.
 〔製造例2〕
 製造例1において、メチルトリメトキシシラン(KBM-13)を28重量部、3-メタクリロキシプロピルトリメトキシシラン(KBM-503)を2重量部に代えた以外は、製造例1と同様の条件でシリコーン樹脂芯材粒子のケーキを得た。
[Production Example 2]
In Production Example 1, the same conditions as in Production Example 1 were used, except that 28 parts by weight of methyltrimethoxysilane (KBM-13) and 2 parts by weight of 3-methacryloxypropyltrimethoxysilane (KBM-503) were used. A cake of silicone resin core particles was obtained.
 得られたシリコーン樹脂芯材粒子を走査型電子顕微鏡(SEM)で観察したところ、粒子形状は真球状であり、平均粒子径(φsi)は、2.6μmの単分散粒子であった。
 〔製造例3〕
 容量二リットルのガラスフラスコに、イオン交換水200重量部を投入し、25℃で攪拌しながらメチルトリメトキシシラン(KBM-13)35重量部を添加して、一時間攪拌した。
When the obtained silicone resin core particle was observed with a scanning electron microscope (SEM), the particle shape was a true sphere, and the average particle size (φsi) was a monodisperse particle having a size of 2.6 μm.
[Production Example 3]
Into a glass flask having a capacity of 2 liters, 200 parts by weight of ion-exchanged water was added, 35 parts by weight of methyltrimethoxysilane (KBM-13) was added with stirring at 25 ° C., and the mixture was stirred for 1 hour.
 その後、0.4%アンモニア水3.5重量部を添加して、一分間攪拌した後、攪拌を停止し、三時間静置してポリオルガノシロキサン粒子を得た。得られたスラリーを200メッシュの金網で濾過した後、ブフナーロートで濾紙を用いて、減圧濾過してポリオルガノシロキサンのケイキを得た。このケイキは、平均粒子径(φsi)が、2.5μmの単分散分子であった。 Thereafter, 3.5 parts by weight of 0.4% aqueous ammonia was added and stirred for 1 minute, and then the stirring was stopped and left for 3 hours to obtain polyorganosiloxane particles. The obtained slurry was filtered through a 200-mesh wire mesh, and then filtered under reduced pressure using a filter paper with a Buchner funnel to obtain a polyorganosiloxane cake. This cake was a monodisperse molecule having an average particle diameter (φ si ) of 2.5 μm.
 〔実施例1〕
 メチルメタクリレート75重量部、エチレングリコールジメタクリレート5重量部、過酸化ベンゾイル0.67重量部、ドデシルベンゼンスルホン酸ナトリウム0.5重量部、亜硝酸ナトリウム0.1重量部、およびイオン交換水200重量部をホモミキサー(特殊機化工業(株)製、型式:TKホモミキサーIII、以下同様)を用いて、10000rpmで3分間撹拌した。
[Example 1]
75 parts by weight of methyl methacrylate, 5 parts by weight of ethylene glycol dimethacrylate, 0.67 parts by weight of benzoyl peroxide, 0.5 parts by weight of sodium dodecylbenzenesulfonate, 0.1 parts by weight of sodium nitrite, and 200 parts by weight of ion-exchanged water Was stirred at 10000 rpm for 3 minutes using a homomixer (Special Machine Industries Co., Ltd., model: TK homomixer III, the same applies hereinafter).
 次いで、この混合物を、温度計と窒素ガス導入管を装着した容量1リットルの四つ口フラスコに移し、製造例1で調製したシリコーン樹脂芯材粒子20重量部、およびイオン交換水40重量部を添加し、75℃で1時間反応させ、続いて90℃で2時間反応させた。 Next, this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 20 parts by weight of the silicone resin core particles prepared in Production Example 1 and 40 parts by weight of ion-exchanged water were added. The mixture was added and reacted at 75 ° C. for 1 hour, followed by reaction at 90 ° C. for 2 hours.
 次いで、得られた水性分散液をブフナーロートで濾紙を用いて減圧濾過して樹脂粒子のケーキとし、得られたケイキを105℃に設定された熱風乾燥機を用いて乾燥させて複合樹脂粒子群(I)を得た。 Next, the aqueous dispersion obtained was filtered under reduced pressure using a filter paper with a Buchner funnel to give resin particle cake, and the obtained cake was dried using a hot air dryer set at 105 ° C. to obtain a composite resin particle group (I) was obtained.
 得られた複合樹脂粒子群(I)について、上記と同様の方法で複合樹脂粒子の平均粒子径(φcp)、複合樹脂粒子群を構成する複合樹脂粒子の中心とシリコーン樹脂芯材粒子の中心との距離(x)、比率(x/φcp)、変動率および真球度を測定し、その結果を表1に示す。 About the obtained composite resin particle group (I), the average particle diameter (φcp) of the composite resin particles in the same manner as described above, the center of the composite resin particles constituting the composite resin particle group, and the center of the silicone resin core material particles Distance (x), ratio (x / φcp), variation rate, and sphericity were measured, and the results are shown in Table 1.
 また、得られた複合樹脂粒子群(I)のSEM写真を図10に示す。
 こうして得られた複合樹脂粒子群(I)を構成する複合樹脂粒子について、エポキシ樹脂に含浸してその複合樹脂粒子の芯材となっているシリコーン樹脂芯材粒子の断面が露出するようにミクロトームで断面を切り出した。この断面図を図11に示す。
Moreover, the SEM photograph of the obtained composite resin particle group (I) is shown in FIG.
With respect to the composite resin particles constituting the composite resin particle group (I) thus obtained, a microtome is used so that the cross section of the silicone resin core particles that are impregnated with epoxy resin and become the core material of the composite resin particles is exposed. A cross section was cut out. This sectional view is shown in FIG.
 図11に示すように、このシリコーン樹脂粒子の直径(Dsi)は、2.54μmであり、このシリコーン樹脂粒子の中心点(P)を通ってこの複合樹脂粒子の表面と接する点までが最も短い仮想直線(B)を描画し、この断面におけるシリコーン樹脂粒子の中心点(P)から、この仮想直線(B)が複合樹脂粒子の表面と接する点までの最も短い(Rmini)は、1.69μmであった。 As shown in FIG. 11, the diameter (Dsi) of the silicone resin particles is 2.54 μm, and the shortest is the point through the center point (P) of the silicone resin particles to the surface of the composite resin particles. A virtual straight line (B) is drawn, and the shortest (R mini ) from the center point (P) of the silicone resin particle in this cross section to the point where the virtual straight line (B) contacts the surface of the composite resin particle is 1. It was 69 μm.
 また、シリコーン樹脂芯材粒子の断面の中心を通るとともに、該複合樹脂粒子の外周面との交点間の距離が最も長い仮想直線(A)を描画したところ、仮想直線(A)は仮想直線(B)と一致した。この仮想直線(B)において、この断面におけるシリコーン樹脂芯材粒子の中心点(P)から、この仮想直線(B)が複合樹脂粒子の表面と接する点までの最も長い距離(Rmax)は、2.81μmであった。 Further, when the virtual straight line (A) passing through the center of the cross section of the silicone resin core particle and having the longest distance between the intersection points with the outer peripheral surface of the composite resin particle is drawn, Consistent with B). In the virtual straight line (B), the longest distance (Rmax) from the center point (P) of the silicone resin core particle in this cross section to the point where the virtual straight line (B) contacts the surface of the composite resin particle is 2 .81 μm.
 これらの値から、この複合樹脂粒子が次式(1)、(2)を満足するものである。 From these values, the composite resin particles satisfy the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 同様にしてこの複合樹脂粒子群(I)を構成する複合樹脂粒子について、断面を切り出して上記のようにしてシリコーン樹脂芯材粒子の位置を測定したところ、この複合樹脂粒子群(I)の少なくとも95個数%の粒子において、上記のシリコーン樹脂芯材粒子の偏在が認められた。 Similarly, for the composite resin particles constituting the composite resin particle group (I), the cross section was cut out and the position of the silicone resin core particles was measured as described above. As a result, at least the composite resin particle group (I) was measured. In 95% by number of the particles, the uneven distribution of the silicone resin core particles was observed.
 〔実施例2〕
 実施例1において、メチルメタクリレート88.33重量部、製造例1で調製したシリコーン樹脂芯材粒子6.67重量部にした以外は、実施例1と同様の条件で調製し、複合樹脂粒子群(II)を得た。
[Example 2]
In Example 1, except that it was changed to 88.33 parts by weight of methyl methacrylate and 6.67 parts by weight of the silicone resin core particles prepared in Production Example 1, it was prepared under the same conditions as in Example 1, and the composite resin particle group ( II) was obtained.
 得られた複合樹脂粒子群(II)について、上記と同様の方法で複合樹脂粒子の平均粒子径(φcp)、複合樹脂粒子群(II)を構成する複合樹脂粒子の中心とシリコーン樹脂芯材粒子の中心との距離(x)、比率(x/φcp)、変動率および真球度を測定し、その結果を表1に示す。 About the obtained composite resin particle group (II), the average particle diameter (φcp) of the composite resin particles, the center of the composite resin particles constituting the composite resin particle group (II), and the silicone resin core particles in the same manner as described above The distance (x), the ratio (x / φcp), the variation rate, and the sphericity of the center of the sample were measured, and the results are shown in Table 1.
 また、得られた複合樹脂粒子群(II)のSEM写真を図12に示す。
 こうして得られた複合樹脂粒子群(II)を構成する複合樹脂粒子について、その複合樹脂粒子の芯材となっているシリコーン樹脂芯材粒子の断面が露出するように断面を切り出した。この断面図を図13に示す。図13に示すように、このシリコーン樹脂粒子の直径(Dsi)は、2.83μmであり、このシリコーン樹脂粒子の中心点(P)を通ってこの複合樹脂粒子の表面と接する点までが最も短い仮想直線(B)を描画し、この断面におけるシリコーン樹脂粒子の中心点(P)から、この仮想直線(B)が複合樹脂粒子の表面と接する点までの最も短い(Rmini)は、1.46μmであった。
Moreover, the SEM photograph of the obtained composite resin particle group (II) is shown in FIG.
With respect to the composite resin particles constituting the composite resin particle group (II) thus obtained, a cross section was cut out so that a cross section of the silicone resin core material particles serving as the core material of the composite resin particles was exposed. This sectional view is shown in FIG. As shown in FIG. 13, the diameter (Dsi) of the silicone resin particles is 2.83 μm, and the shortest is the point through the center point (P) of the silicone resin particles to the surface of the composite resin particles. A virtual straight line (B) is drawn, and the shortest (R mini ) from the center point (P) of the silicone resin particle in this cross section to the point where the virtual straight line (B) contacts the surface of the composite resin particle is 1. It was 46 μm.
 また、シリコーン樹脂芯材粒子の断面の中心を通るとともに、該複合樹脂粒子の外周面との交点間の距離が最も長い仮想直線(A)を描画したところ、仮想直線(A)は仮想直線(B)と一致した。この仮想直線(B)において、この断面におけるシリコーン樹脂芯材粒子の中心点(P)から、この仮想直線(B)が複合樹脂粒子の表面と接する点までの最も長い距離(Rmax)は、4.86μmであった。 Further, when the virtual straight line (A) passing through the center of the cross section of the silicone resin core particle and having the longest distance between the intersection points with the outer peripheral surface of the composite resin particle is drawn, Consistent with B). In this virtual straight line (B), the longest distance (R max ) from the center point (P) of the silicone resin core particle in this cross section to the point where this virtual straight line (B) contacts the surface of the composite resin particle is: It was 4.86 μm.
 これらの値から、この複合樹脂粒子が次式(1)、(2)を満足するものである。 From these values, the composite resin particles satisfy the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 同様にしてこの複合樹脂粒子群(II)を構成する複合樹脂粒子について、断面を切り出して上記のようにしてシリコーン樹脂芯材粒子の位置を測定したところ、この複合樹脂粒子群(I)の少なくとも98個数%の粒子において、上記のシリコーン樹脂芯材粒子の偏在が認められた。 Similarly, for the composite resin particles constituting the composite resin particle group (II), the cross section was cut out and the position of the silicone resin core particles was measured as described above. As a result, at least the composite resin particle group (I) was measured. In 98% by number of particles, uneven distribution of the silicone resin core particles was observed.
 〔実施例3〕
 <1段目の重合>
 実施例1で使用した装置を用いて、メチルメタクリレート66.6重量部、エチレングリコールジメタクリレート0.014重量部、過酸化ベンゾイル0.5重量部、ドデシルベンゼンスルホン酸ナトリウム0.5重量部、硝酸ナトリウム0.1重量部およびイオン交換水200重量部を、ホモミキサーを用い10000rpmで3分間撹拌した。
Example 3
<First stage polymerization>
Using the apparatus used in Example 1, 66.6 parts by weight of methyl methacrylate, 0.014 parts by weight of ethylene glycol dimethacrylate, 0.5 parts by weight of benzoyl peroxide, 0.5 parts by weight of sodium dodecylbenzenesulfonate, nitric acid 0.1 part by weight of sodium and 200 parts by weight of ion-exchanged water were stirred at 10,000 rpm for 3 minutes using a homomixer.
 ついで、この混合物を温度計および窒素ガス導入管を装着した容量1リットルの四つ口フラスコに移して、製造例2で調製したシリコーン樹脂粒子33.3重量部およびイオン交換水40重量部を添加し、50℃で30分間穏やかに撹拌した。 Subsequently, this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 33.3 parts by weight of the silicone resin particles prepared in Production Example 2 and 40 parts by weight of ion-exchanged water were added. And gently stirred at 50 ° C. for 30 minutes.
 その後、PVA5%水溶液40重量部を添加して、75℃で1時間反応させた後、90℃で1時間反応させて、複合樹脂粒子群の分散液(III-1)を得た。
 この複合樹脂粒子群の分散液(III-1)中に含有される複合樹脂粒子をSEMにより観察したところ、この複合樹脂粒子は、平均粒子径が4.13μmの真球状の単分散粒子であった。
Thereafter, 40 parts by weight of a PVA 5% aqueous solution was added and reacted at 75 ° C. for 1 hour, and then reacted at 90 ° C. for 1 hour to obtain a dispersion (III-1) of composite resin particle groups.
When the composite resin particles contained in the dispersion (III-1) of this composite resin particle group were observed by SEM, these composite resin particles were true spherical monodisperse particles having an average particle diameter of 4.13 μm. It was.
 <2段目の重合>
 さらに、同様の装置を用いて、メチルメタクリレート90重量部、エチレングリコールジメタクリレート5重量部、過酸化ベンゾイル1.0重量部、ドデシルベンゼンスルホン酸ナトリウム0.5重量部、亜硝酸ナトリウム0.1重量部およびイオン交換水200重量部を、ホモミキサーを用い10000rpmで3分間撹拌した。
<Second stage polymerization>
Furthermore, using the same apparatus, methyl methacrylate 90 parts by weight, ethylene glycol dimethacrylate 5 parts by weight, benzoyl peroxide 1.0 part by weight, sodium dodecylbenzenesulfonate 0.5 part by weight, sodium nitrite 0.1 part by weight And 200 parts by weight of ion-exchanged water were stirred at 10,000 rpm for 3 minutes using a homomixer.
 ついで、この混合物を、温度計と窒素ガス導入管を装着した容量1リットルの四つ口フラスコに移し、前記の複合樹脂粒子群の分散液(III-1)を19.2重量部添加し、75℃で1時間反応させ、続いて90℃で2時間反応させ、複合樹脂粒子群(III-2)の分散液を得た。 Subsequently, this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 19.2 parts by weight of the dispersion (III-1) of the composite resin particle group was added, The mixture was reacted at 75 ° C. for 1 hour and subsequently reacted at 90 ° C. for 2 hours to obtain a dispersion of composite resin particle group (III-2).
 こうして得られた水性分散液をブフナーロートで濾紙を用いて減圧濾過して樹脂粒子のケーキとし、得られたケーキを105℃に設定された熱風乾燥機を用いて乾燥させて複合樹脂粒子群(III-2)を得た。 The aqueous dispersion thus obtained was filtered under reduced pressure using a filter paper with a Buchner funnel to obtain a resin particle cake. The obtained cake was dried using a hot air dryer set at 105 ° C. to obtain a composite resin particle group ( III-2) was obtained.
 得られた複合樹脂粒子群(III-2)について、上記と同様の方法で複合樹脂粒子の平均粒子径(φcp)、複合樹脂粒子群を構成する複合樹脂粒子の中心とシリコーン樹脂芯材粒子の中心との距離(x)、比率(x/φcp)、変動率および真球度を測定し、その結果を表1に示す。 With respect to the obtained composite resin particle group (III-2), the average particle diameter (φcp) of the composite resin particles, the center of the composite resin particles constituting the composite resin particle group, and the silicone resin core material particles in the same manner as described above The distance (x) from the center, the ratio (x / φcp), the variation rate, and the sphericity were measured, and the results are shown in Table 1.
 また、得られた複合樹脂粒子群(III-2)のSEM写真を図14に示す。
 こうして得られた複合樹脂粒子群(III-2)を構成する複合樹脂粒子について、その複合樹脂粒子の芯材となっているシリコーン樹脂芯材粒子の断面が露出するように断面を切り出した。この断面図を図15に示す。図15に示すように、このシリコーン樹脂粒子の直径(Dsi)は、2.76μmであり、このシリコーン樹脂粒子の中心点(P)を通ってこの複合樹脂粒子の表面と接する点までが最も短い仮想直線(B)を描画し、この断面におけるシリコーン樹脂粒子の中心点(P)から、この仮想直線(B)が複合樹脂粒子の表面と接する点までの最も短い(Rmini)は、1.50μmであった。
An SEM photograph of the obtained composite resin particle group (III-2) is shown in FIG.
With respect to the composite resin particles constituting the composite resin particle group (III-2) thus obtained, the cross section was cut out so that the cross section of the silicone resin core material particles serving as the core material of the composite resin particles was exposed. This sectional view is shown in FIG. As shown in FIG. 15, the diameter (Dsi) of the silicone resin particles is 2.76 μm, and the shortest distance is from the center point (P) of the silicone resin particles to the point of contact with the surface of the composite resin particles. The virtual straight line (B) is drawn, and the shortest (R mini ) from the center point (P) of the silicone resin particle in this cross section to the point where the virtual straight line (B) contacts the surface of the composite resin particle is 1. It was 50 μm.
 また、シリコーン樹脂芯材粒子の断面の中心を通るとともに、該複合樹脂粒子の外周面との交点間の距離が最も長い仮想直線(A)を描画したところ、仮想直線(A)は仮想直線(B)と一致した。この仮想直線(B)において、この断面におけるシリコーン樹脂芯材粒子の中心点(P)から、この仮想直線(B)が複合樹脂粒子の表面と接する点までの最も長い距離(Rmax)は、7.24μmであった。 Further, when the virtual straight line (A) passing through the center of the cross section of the silicone resin core particle and having the longest distance between the intersection points with the outer peripheral surface of the composite resin particle is drawn, Consistent with B). In this virtual straight line (B), the longest distance (R max ) from the center point (P) of the silicone resin core particle in this cross section to the point where this virtual straight line (B) contacts the surface of the composite resin particle is: 7.24 μm.
 これらの値から、この複合樹脂粒子が次式(1)、(2)を満足するものである。 From these values, the composite resin particles satisfy the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 同様にしてこの複合樹脂粒子群(III-2)を構成する複合樹脂粒子について、断面を切り出して上記のようにしてシリコーン樹脂芯材粒子の位置を測定したところ、この複合樹脂粒子群(III-2)の少なくとも95個数%の粒子において、上記のシリコーン樹脂芯材粒子の偏在が認められた。 Similarly, the cross section of the composite resin particles constituting the composite resin particle group (III-2) was cut out and the position of the silicone resin core particles was measured as described above. The composite resin particle group (III- In at least 95% by number of the particles of 2), uneven distribution of the silicone resin core particles was observed.
 〔実施例4〕
 <1段目の重合>
 実施例1で使用した装置を用いて、メチルメタクリレート93.35重量部、エチレングリコールジメタクリレート0.0185重量部、過酸化ベンゾイル1.0重量部、ドデシルベンゼンスルホン酸ナトリウム0.5重量部、硝酸ナトリウム0.1重量部およびイオン交換水200重量部を、ホモミキサーを用い10000rpmで3分間撹拌した。
Example 4
<First stage polymerization>
Using the apparatus used in Example 1, 93.35 parts by weight of methyl methacrylate, 0.0185 parts by weight of ethylene glycol dimethacrylate, 1.0 part by weight of benzoyl peroxide, 0.5 parts by weight of sodium dodecylbenzenesulfonate, nitric acid 0.1 part by weight of sodium and 200 parts by weight of ion-exchanged water were stirred at 10,000 rpm for 3 minutes using a homomixer.
 ついで、この混合物を温度計および窒素ガス導入管を装着した容量1リットルの四つ口フラスコに移して、製造例1で調製したシリコーン樹脂粒子6.65重量部およびイオン交換水40重量部を添加し、50℃で30分間穏やかに撹拌した。 Next, this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 6.65 parts by weight of the silicone resin particles prepared in Production Example 1 and 40 parts by weight of ion-exchanged water were added. And gently stirred at 50 ° C. for 30 minutes.
 その後、PVA5%水溶液40重量部を添加して、75℃で1時間反応させた後、90℃で1時間反応させて、複合樹脂粒子群の分散液(IV-1)を得た。
 この複合樹脂粒子群の分散液(IV-1)中に含有される複合樹脂粒子をSEMにより観察したところ、この複合樹脂粒子は、平均粒子径が6.67μmの真球状の単分散粒子であった。
Thereafter, 40 parts by weight of a PVA 5% aqueous solution was added, reacted at 75 ° C. for 1 hour, and then reacted at 90 ° C. for 1 hour to obtain a composite resin particle group dispersion (IV-1).
When the composite resin particles contained in the dispersion (IV-1) of this composite resin particle group were observed by SEM, these composite resin particles were true spherical monodisperse particles having an average particle diameter of 6.67 μm. It was.
 <2段目の重合>
 さらに、同様の装置を用いて、スチレン75重量部、ジビニルベンゼン(新日鐵化学(株)製、品番:DVB-960、以下同様)5重量部、過酸化ベンゾイル2.0重量部、ドデシルベンゼンスルホン酸ナトリウム0.5重量部、亜硝酸ナトリウム0.1重量部およびイオン交換水200重量部を、ホモミキサーを用い10000rpmで3分間撹拌した。
<Second stage polymerization>
Further, using the same apparatus, 75 parts by weight of styrene, 5 parts by weight of divinylbenzene (manufactured by Nippon Steel Chemical Co., Ltd., product number: DVB-960, the same shall apply hereinafter), 2.0 parts by weight of benzoyl peroxide, dodecylbenzene 0.5 part by weight of sodium sulfonate, 0.1 part by weight of sodium nitrite and 200 parts by weight of ion-exchanged water were stirred at 10,000 rpm for 3 minutes using a homomixer.
 ついで、この混合物を、温度計と窒素ガス導入管を装着した容量1リットルの四つ口フラスコに移し、前記の複合樹脂粒子群の分散液(IV-1)を76.2重量部添加し、75℃で3時間反応させ、続いて90℃で3時間反応させ、複合樹脂粒子群(IV-2)の分散液を得た。 Next, this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 76.2 parts by weight of the dispersion liquid (IV-1) of the composite resin particle group was added. The mixture was reacted at 75 ° C. for 3 hours, and subsequently reacted at 90 ° C. for 3 hours to obtain a dispersion of composite resin particle group (IV-2).
 こうして得られた水性分散液をブフナーロートで濾紙を用いて減圧濾過して樹脂粒子のケーキとし、得られたケーキを105℃に設定された熱風乾燥機を用いて乾燥させて複合樹脂粒子群(IV-2)を得た。 The aqueous dispersion thus obtained was filtered under reduced pressure using a filter paper with a Buchner funnel to obtain a resin particle cake. The obtained cake was dried using a hot air dryer set at 105 ° C. to obtain a composite resin particle group ( IV-2) was obtained.
 得られた複合樹脂粒子群(IV-2)について、上記と同様の方法で複合樹脂粒子の平均粒子径(φcp)、複合樹脂粒子群を構成する複合樹脂粒子の中心とシリコーン樹脂芯材粒子の中心との距離(x)、比率(x/φcp)、変動率および真球度を測定し、その結果を表1に示す。 With respect to the obtained composite resin particle group (IV-2), the average particle diameter (φcp) of the composite resin particles, the center of the composite resin particles constituting the composite resin particle group, and the silicone resin core particles in the same manner as described above The distance (x) from the center, the ratio (x / φcp), the variation rate, and the sphericity were measured, and the results are shown in Table 1.
 また、得られた複合樹脂粒子群(IV-2)のSEM写真を図16に示す。
 こうして得られた複合樹脂粒子群(IV-2)を構成する複合樹脂粒子について、その複合樹脂粒子の芯材となっているシリコーン樹脂芯材粒子の断面が露出するように断面を切り出した。この断面図を図17に示す。図17に示すように、このシリコーン樹脂粒子の直径(Dsi)は、2.25μmであり、このシリコーン樹脂粒子の中心点(P)を通ってこの複合樹脂粒子の表面と接する点までが最も短い仮想直線(B)を描画し、この断面におけるシリコーン樹脂粒子の中心点(P)から、この仮想直線(B)が複合樹脂粒子の表面と接する点までの最も短い(Rmini)は、1.51μmであった。
An SEM photograph of the obtained composite resin particle group (IV-2) is shown in FIG.
With respect to the composite resin particles constituting the composite resin particle group (IV-2) thus obtained, the cross section was cut out so that the cross section of the silicone resin core material particles serving as the core material of the composite resin particles was exposed. This sectional view is shown in FIG. As shown in FIG. 17, the diameter (Dsi) of the silicone resin particles is 2.25 μm, and the shortest distance is from the center point (P) of the silicone resin particles to the point of contact with the surface of the composite resin particles. The virtual straight line (B) is drawn, and the shortest (R mini ) from the center point (P) of the silicone resin particle in this cross section to the point where the virtual straight line (B) contacts the surface of the composite resin particle is 1. It was 51 μm.
 また、シリコーン樹脂芯材粒子の断面の中心を通るとともに、該複合樹脂粒子の外周面との交点間の距離が最も長い仮想直線(A)を描画し、この断面におけるシリコーン樹脂芯材粒子の中心点(P)から、この仮想直線(A)が複合樹脂粒子の表面と接する点までの最も長い距離(Rmax)は、9.81μmであった。 Further, an imaginary straight line (A) that passes through the center of the cross section of the silicone resin core particle and has the longest distance between the intersection points with the outer peripheral surface of the composite resin particle is drawn, and the center of the silicone resin core particle in this cross section is drawn The longest distance (R max ) from the point (P) to the point where the virtual straight line (A) is in contact with the surface of the composite resin particles was 9.81 μm.
 これらの値から、この複合樹脂粒子が次式(1)、(2)を満足するものである。 From these values, the composite resin particles satisfy the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 同様にしてこの複合樹脂粒子群(IV-2)を構成する複合樹脂粒子について、断面を切り出して上記のようにしてシリコーン樹脂芯材粒子の位置を測定したところ、この複合樹脂粒子群(IV-2)の少なくとも95個数%の粒子において、上記のシリコーン樹脂芯材粒子の偏在が認められた。 Similarly, the cross section of the composite resin particles constituting the composite resin particle group (IV-2) was cut out and the positions of the silicone resin core particles were measured as described above. The composite resin particle group (IV- In at least 95% by number of the particles of 2), uneven distribution of the silicone resin core particles was observed.
 〔実施例5〕
 <1段目の重合>
 実施例1で使用した装置を用いて、メチルメタクリレート66.7重量部、エチレングリコールジメタクリレート0.0078重量部、過酸化ベンゾイル1.0重量部、ドデシルベンゼンスルホン酸ナトリウム0.5重量部、硝酸ナトリウム0.1重量部およびイオン交換水200重量部を、ホモミキサーを用い10000rpmで3分間撹拌した。
Example 5
<First stage polymerization>
Using the apparatus used in Example 1, 66.7 parts by weight of methyl methacrylate, 0.0078 parts by weight of ethylene glycol dimethacrylate, 1.0 part by weight of benzoyl peroxide, 0.5 parts by weight of sodium dodecylbenzenesulfonate, nitric acid 0.1 part by weight of sodium and 200 parts by weight of ion-exchanged water were stirred at 10,000 rpm for 3 minutes using a homomixer.
 ついで、この混合物を温度計および窒素ガス導入管を装着した容量1リットルの四つ口フラスコに移して、製造例1で調製したシリコーン樹脂粒子33.3重量部およびイオン交換水40重量部を添加し、50℃で30分間穏やかに撹拌した。 Next, this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 33.3 parts by weight of the silicone resin particles prepared in Production Example 1 and 40 parts by weight of ion-exchanged water were added. And gently stirred at 50 ° C. for 30 minutes.
 その後、PVA5%水溶液40重量部を添加して、75℃で1時間反応させた後、90℃で1時間反応させて、複合樹脂粒子群の分散液(V-1)を得た。
 この複合樹脂粒子群の分散液(V-1)中に含有される複合樹脂粒子をSEMにより観察したところ、この複合樹脂粒子は、平均粒子径が3.89μmの真球状の単分散粒子であった。
Thereafter, 40 parts by weight of a PVA 5% aqueous solution was added, reacted at 75 ° C. for 1 hour, and then reacted at 90 ° C. for 1 hour to obtain a dispersion (V-1) of composite resin particle groups.
When the composite resin particles contained in the dispersion (V-1) of this composite resin particle group were observed by SEM, these composite resin particles were true spherical monodisperse particles having an average particle diameter of 3.89 μm. It was.
 <2段目の重合>
 さらに、同様の装置を用いて、スチレン70重量部、ジビニルベンゼン10重量部、過酸化ベンゾイル2.0重量部、ドデシルベンゼンスルホン酸ナトリウム0.5重量部、亜硝酸ナトリウム0.1重量部およびイオン交換水200重量部を、ホモミキサーを用い10000rpmで3分間撹拌した。
<Second stage polymerization>
Further, using the same apparatus, 70 parts by weight of styrene, 10 parts by weight of divinylbenzene, 2.0 parts by weight of benzoyl peroxide, 0.5 parts by weight of sodium dodecylbenzenesulfonate, 0.1 part by weight of sodium nitrite and ions 200 parts by weight of exchange water was stirred for 3 minutes at 10,000 rpm using a homomixer.
 ついで、この混合物を、温度計と窒素ガス導入管を装着した容量1リットルの四つ口フラスコに移し、前記の複合樹脂粒子群の分散液(V-1)を76.2重量部添加し、75℃で3時間反応させ、続いて90℃で3時間反応させ、複合樹脂粒子群(V-2)の分散液を得た。 Next, this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 76.2 parts by weight of the dispersion liquid (V-1) of the composite resin particle group was added. The mixture was reacted at 75 ° C. for 3 hours, and subsequently reacted at 90 ° C. for 3 hours to obtain a dispersion of composite resin particle group (V-2).
 こうして得られた水性分散液をブフナーロートで濾紙を用いて減圧濾過して樹脂粒子のケーキとし、得られたケーキを105℃に設定された熱風乾燥機を用いて乾燥させて複合樹脂粒子群(V-2)を得た。 The aqueous dispersion thus obtained was filtered under reduced pressure using a filter paper with a Buchner funnel to obtain a resin particle cake. The obtained cake was dried using a hot air dryer set at 105 ° C. to obtain a composite resin particle group ( V-2) was obtained.
 得られた複合樹脂粒子群(V-2)について、上記と同様の方法で複合樹脂粒子の平均粒子径(φcp)、複合樹脂粒子群を構成する複合樹脂粒子の中心とシリコーン樹脂芯材粒子の中心との距離(x)、比率(x/φcp)、変動率および真球度を測定し、その結果を表1に示す。 With respect to the obtained composite resin particle group (V-2), the average particle diameter (φcp) of the composite resin particles, the center of the composite resin particles constituting the composite resin particle group, and the silicone resin core particles in the same manner as described above The distance (x) from the center, the ratio (x / φcp), the variation rate, and the sphericity were measured, and the results are shown in Table 1.
 また、得られた複合樹脂粒子群(V-2)のSEM写真を図18に示す。
 こうして得られた複合樹脂粒子群(V-2)を構成する複合樹脂粒子について、その複合樹脂粒子の芯材となっているシリコーン樹脂芯材粒子の断面が露出するように断面を切り出した。この断面図を図19に示す。図19に示すように、このシリコーン樹脂粒子の直径(Dsi)は、2.45μmであり、このシリコーン樹脂粒子の中心点(P)を通ってこの複合樹脂粒子の表面と接する点までが最も短い仮想直線(B)を描画し、この断面におけるシリコーン樹脂粒子の中心点(P)から、この仮想直線(B)が複合樹脂粒子の表面と接する点までの最も短い(Rmini)は、1.23μmであった。
An SEM photograph of the obtained composite resin particle group (V-2) is shown in FIG.
With respect to the composite resin particles constituting the composite resin particle group (V-2) thus obtained, the cross section was cut out so that the cross section of the silicone resin core material particles serving as the core material of the composite resin particles was exposed. This sectional view is shown in FIG. As shown in FIG. 19, the diameter (Dsi) of the silicone resin particles is 2.45 μm, and the shortest is the point through the center point (P) of the silicone resin particles to the surface of the composite resin particles. The virtual straight line (B) is drawn, and the shortest (R mini ) from the center point (P) of the silicone resin particle in this cross section to the point where the virtual straight line (B) contacts the surface of the composite resin particle is 1. It was 23 μm.
 また、シリコーン樹脂芯材粒子の断面の中心を通るとともに、該複合樹脂粒子の外周面との交点間の距離が最も長い仮想直線(A)を描画し、この断面におけるシリコーン樹脂芯材粒子の中心点(P)から、この仮想直線(A)が複合樹脂粒子の表面と接する点までの最も長い距離(Rmax)は、3.92μmであった。 Further, an imaginary straight line (A) that passes through the center of the cross section of the silicone resin core particle and has the longest distance between the intersection points with the outer peripheral surface of the composite resin particle is drawn, and the center of the silicone resin core particle in this cross section is drawn The longest distance (R max ) from the point (P) to the point where the virtual straight line (A) is in contact with the surface of the composite resin particle was 3.92 μm.
 これらの値から、この複合樹脂粒子が次式(1)、(2)を満足するものである。 From these values, the composite resin particles satisfy the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 同様にしてこの複合樹脂粒子群(V-2)を構成する複合樹脂粒子について、断面を切り出して上記のようにしてシリコーン樹脂芯材粒子の位置を測定したところ、この複合樹脂粒子群(V-2)の少なくとも95個数%の粒子において、上記のシリコーン樹脂芯材粒子の偏在が認められた。 Similarly, the cross section of the composite resin particles constituting the composite resin particle group (V-2) was cut out and the positions of the silicone resin core particles were measured as described above. As a result, this composite resin particle group (V- In at least 95% by number of the particles of 2), uneven distribution of the silicone resin core particles was observed.
 〔実施例6〕
 <1段目の重合>
 実施例1で使用した装置を用いて、メチルメタクリレート93.3重量部、エチレングリコールジメタクリレート0.02重量部、過酸化ベンゾイル1.0重量部、ドデシルベンゼンスルホン酸ナトリウム0.5重量部、硝酸ナトリウム0.1重量部およびイオン交換水200重量部を、ホモミキサーを用い10000rpmで3分間撹拌した。
Example 6
<First stage polymerization>
Using the apparatus used in Example 1, 93.3 parts by weight of methyl methacrylate, 0.02 part by weight of ethylene glycol dimethacrylate, 1.0 part by weight of benzoyl peroxide, 0.5 part by weight of sodium dodecylbenzenesulfonate, nitric acid 0.1 parts by weight of sodium and 200 parts by weight of ion-exchanged water were stirred at 10,000 rpm for 3 minutes using a homomixer.
 次いで、この混合物を温度計および窒素ガス導入管を装着した容量1リットルの四つ口フラスコに移して、製造例1で調製したシリコーン樹脂粒子6.7重量部およびイオン交換水40重量部を添加し、50℃で30分間穏やかに撹拌した。 Next, this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 6.7 parts by weight of the silicone resin particles prepared in Production Example 1 and 40 parts by weight of ion-exchanged water were added. And gently stirred at 50 ° C. for 30 minutes.
 その後、PVA5%水溶液40重量部を添加して、75℃で1時間反応させた後、90℃で1時間反応させて、複合樹脂粒子群の分散液(VI-1)を得た。
 この複合樹脂粒子群の分散液(VI-1)中に含有される複合樹脂粒子をSEMにより観察したところ、この複合樹脂粒子は、平均粒子径が6.50μmの真球状の単分散粒子であった。
Thereafter, 40 parts by weight of a PVA 5% aqueous solution was added, reacted at 75 ° C. for 1 hour, and then reacted at 90 ° C. for 1 hour to obtain a composite resin particle group dispersion (VI-1).
When the composite resin particles contained in the dispersion liquid (VI-1) of this composite resin particle group were observed by SEM, the composite resin particles were true spherical monodisperse particles having an average particle diameter of 6.50 μm. It was.
 <2段目の重合>
 さらに、同様の装置を用いて、スチレン85重量部、ジビニルベンゼン5重量部、過酸化ベンゾイル2.0重量部、ドデシルベンゼンスルホン酸ナトリウム0.5重量部、亜硝酸ナトリウム0.1重量部およびイオン交換水200重量部を、ホモミキサーを用い10000rpmで3分間撹拌した。
<Second stage polymerization>
Further, using the same apparatus, 85 parts by weight of styrene, 5 parts by weight of divinylbenzene, 2.0 parts by weight of benzoyl peroxide, 0.5 parts by weight of sodium dodecylbenzenesulfonate, 0.1 part by weight of sodium nitrite and ions 200 parts by weight of exchange water was stirred for 3 minutes at 10,000 rpm using a homomixer.
 ついで、この混合物を、温度計と窒素ガス導入管を装着した容量1リットルの四つ口フラスコに移し、前記の複合樹脂粒子群の分散液(VI-1)を37.7重量部添加し、75℃で3時間反応させ、続いて90℃で3時間反応させ、複合樹脂粒子群(VI-2)の分散液を得た。 Subsequently, this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas introduction tube, and 37.7 parts by weight of the dispersion liquid (VI-1) of the composite resin particle group was added. The mixture was reacted at 75 ° C. for 3 hours and then reacted at 90 ° C. for 3 hours to obtain a dispersion of composite resin particle group (VI-2).
 こうして得られた水性分散液をブフナーロートで濾紙を用いて減圧濾過して樹脂粒子のケーキとし、得られたケーキを105℃に設定された熱風乾燥機を用いて乾燥させて複合樹脂粒子群(VI-2)を得た。 The aqueous dispersion thus obtained was filtered under reduced pressure using a filter paper with a Buchner funnel to obtain a resin particle cake. The obtained cake was dried using a hot air dryer set at 105 ° C. to obtain a composite resin particle group ( VI-2) was obtained.
 得られた複合樹脂粒子群(VI-2)について、上記と同様の方法で複合樹脂粒子の平均粒子径(φcp)、複合樹脂粒子群を構成する複合樹脂粒子の中心とシリコーン樹脂芯材粒子の中心との距離(x)、比率(x/φcp)、変動率および真球度を測定し、その結果を表1に示す。 With respect to the obtained composite resin particle group (VI-2), the average particle diameter (φcp) of the composite resin particles, the center of the composite resin particles constituting the composite resin particle group, and the silicone resin core material particles in the same manner as described above The distance (x) from the center, the ratio (x / φcp), the variation rate, and the sphericity were measured, and the results are shown in Table 1.
 また、得られた複合樹脂粒子群(VI-2)のSEM写真を図20に示す。
 こうして得られた複合樹脂粒子群(VI-2)を構成する複合樹脂粒子について、その複合樹脂粒子の芯材となっているシリコーン樹脂芯材粒子の断面が露出するように断面を切り出した。この断面図を図21に示す。
An SEM photograph of the obtained composite resin particle group (VI-2) is shown in FIG.
With respect to the composite resin particles constituting the composite resin particle group (VI-2) thus obtained, the cross section was cut out so that the cross section of the silicone resin core material particles serving as the core material of the composite resin particles was exposed. This sectional view is shown in FIG.
 図21に示すように、このシリコーン樹脂粒子の直径(Dsi)は、2.50μmであり、このシリコーン樹脂粒子の中心点(P)を通ってこの複合樹脂粒子の表面と接する点までが最も短い仮想直線(B)を描画し、この断面におけるシリコーン樹脂粒子の中心点(P)から、この仮想直線(B)が複合樹脂粒子の表面と接する点までの最も短い(Rmini)は、2.69μmであった。 As shown in FIG. 21, the diameter (Dsi) of the silicone resin particles is 2.50 μm, and the shortest distance is from the center point (P) of the silicone resin particles to the point of contact with the surface of the composite resin particles. A virtual straight line (B) is drawn, and the shortest (R mini ) from the center point (P) of the silicone resin particle in this cross section to the point where the virtual straight line (B) contacts the surface of the composite resin particle is 2. It was 69 μm.
 また、シリコーン樹脂芯材粒子の断面の中心を通るとともに、該複合樹脂粒子の外周面との交点間の距離が最も長い仮想直線(A)を描画し、この断面におけるシリコーン樹脂芯材粒子の中心点(P)から、この仮想直線(A)が複合樹脂粒子の表面と接する点までの最も長い距離(Rmax)は、9.04μmであった。 Further, an imaginary straight line (A) that passes through the center of the cross section of the silicone resin core particle and has the longest distance between the intersection points with the outer peripheral surface of the composite resin particle is drawn, and the center of the silicone resin core particle in this cross section is drawn The longest distance (R max ) from the point (P) to the point where the virtual straight line (A) is in contact with the surface of the composite resin particle was 9.04 μm.
 これらの値から、この複合樹脂粒子が次式(1)、(2)を満足するものである。 From these values, the composite resin particles satisfy the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 同様にしてこの複合樹脂粒子群(IV-2)を構成する複合樹脂粒子について、断面を切り出して上記のようにしてシリコーン樹脂芯材粒子の位置を測定したところ、この複合樹脂粒子群(IV-2)の少なくとも95個数%の粒子において、上記のシリコーン樹脂芯材粒子の偏在が認められた。 Similarly, the cross section of the composite resin particles constituting the composite resin particle group (IV-2) was cut out and the positions of the silicone resin core particles were measured as described above. The composite resin particle group (IV- In at least 95% by number of the particles of 2), uneven distribution of the silicone resin core particles was observed.
 ここで得られた粒子群の反射強度の変化率を図24に示す。
 〔実施例7〕
 <1段目の重合>
 実施例1で使用した装置を用いて、メチルメタクリレート66.7重量部、エチレングリコールジメタクリレート0.013重量部、過酸化ベンゾイル1.0重量部、ドデシルベンゼンスルホン酸ナトリウム0.05重量部、硝酸ナトリウム0.01重量部およびイオン交換水200重量部を、ホモミキサーを用い10000rpm3分間攪拌した。
The change rate of the reflection intensity of the particle group obtained here is shown in FIG.
Example 7
<First stage polymerization>
Using the apparatus used in Example 1, 66.7 parts by weight of methyl methacrylate, 0.013 parts by weight of ethylene glycol dimethacrylate, 1.0 part by weight of benzoyl peroxide, 0.05 part by weight of sodium dodecylbenzenesulfonate, nitric acid 0.01 parts by weight of sodium and 200 parts by weight of ion-exchanged water were stirred at 10,000 rpm for 3 minutes using a homomixer.
 ついで、この混合物を温度計および窒素ガス導入管を装着した容量1リットルの四つ口フラスコに移して、製造例1で調製したシリコーン樹脂粒子33.6重量部およびイオン交換水40重量部を添加し、50℃で30分間穏やかに攪拌した。 Next, this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 33.6 parts by weight of the silicone resin particles prepared in Production Example 1 and 40 parts by weight of ion-exchanged water were added. And gently stirred at 50 ° C. for 30 minutes.
 その後、PVA5%水溶液40重量部を添加して、75℃で1時間反応させた後、90℃で1時間反応させて、複合樹脂粒子群の分散液(VII-1)を得た。
 この複合樹脂粒子群の分散液(VII-1)中に含有される複合樹脂粒子をSEMにより観察したところ、この複合樹脂粒子は、平均粒子径が4.63μmの真球状の単分散粒子であった。
Thereafter, 40 parts by weight of a PVA 5% aqueous solution was added, reacted at 75 ° C. for 1 hour, and then reacted at 90 ° C. for 1 hour to obtain a composite resin particle group dispersion (VII-1).
When the composite resin particles contained in the dispersion liquid (VII-1) of this composite resin particle group were observed by SEM, these composite resin particles were true spherical monodisperse particles having an average particle diameter of 4.63 μm. It was.
 <2段目の重合>
 さらに、同様の装置を用いて、スチレン75重量部、ジビニルベンゼン5重量部、過酸化ベンゾイル2.0重量部、ドデシルベンゼンスルホン酸ナトリウム0.5重量部、亜硝酸ナトリウム0.1重量部およびイオン交換水200重量部を、ホモミキサーを用い10000rpm3分間撹拌した。
<Second stage polymerization>
Further, using the same apparatus, 75 parts by weight of styrene, 5 parts by weight of divinylbenzene, 2.0 parts by weight of benzoyl peroxide, 0.5 parts by weight of sodium dodecylbenzenesulfonate, 0.1 part by weight of sodium nitrite and ions 200 parts by weight of the exchange water was stirred at 10,000 rpm for 3 minutes using a homomixer.
 ついで、この混合物を、温度計と窒素ガス導入管を装着した容量1リットルの四つ口フラスコに移し、前記の複合樹脂粒子群の分散液(V-1)を76.9重量部添加し、75℃で3時間反応させ、続いて90℃で3時間反応させ、複合樹脂粒子群(V-2)の分散液を得た。 Next, this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas introduction tube, and 76.9 parts by weight of the dispersion (V-1) of the composite resin particle group was added. The mixture was reacted at 75 ° C. for 3 hours, and subsequently reacted at 90 ° C. for 3 hours to obtain a dispersion of composite resin particle group (V-2).
 こうして得られた水性分散液をブフナーロートで濾紙を用いて減圧濾過して樹脂粒子のケーキとし、得られたケーキを105℃に設定された熱風乾燥機を用いて乾燥させて複合樹脂粒子群(V-2)を得た。 The aqueous dispersion thus obtained was filtered under reduced pressure using a filter paper with a Buchner funnel to obtain a resin particle cake. The obtained cake was dried using a hot air dryer set at 105 ° C. to obtain a composite resin particle group ( V-2) was obtained.
 得られた複合樹脂粒子群(V-2)について、上記と同様の方法で複合樹脂粒子の平均粒子径(φcp)、複合樹脂粒子群を構成する複合樹脂粒子の中心とシリコーン樹脂芯材粒子の中心との距離(x)、比率(x/φcp)、変動率および真球度を測定し、その結果を表1に示す。 With respect to the obtained composite resin particle group (V-2), the average particle diameter (φcp) of the composite resin particles, the center of the composite resin particles constituting the composite resin particle group, and the silicone resin core particles in the same manner as described above The distance (x) from the center, the ratio (x / φcp), the variation rate, and the sphericity were measured, and the results are shown in Table 1.
 また、得られた複合樹脂粒子群(V-2)のSEM写真を図22に示す。
 こうして得られた複合樹脂粒子群(V-2)を構成する複合樹脂粒子について、その複合樹脂粒子の芯材となっているシリコーン樹脂芯材粒子の断面が露出するように断面を切り出した。この断面図を図23に示す。図23に示すように、このシリコーン樹脂粒子の直径(Dsi)は、2.63μmであり、このシリコーン樹脂粒子の中心点(P)を通ってこの複合樹脂粒子の表面と接する点までが最も短い仮想直線(B)を描画し、この断面におけるシリコーン樹脂粒子の中心点(P)から、この仮想直線(B)が複合樹脂粒子の表面と接する点までの最も短い(Rmini)は、1.38μmであった。
An SEM photograph of the obtained composite resin particle group (V-2) is shown in FIG.
With respect to the composite resin particles constituting the composite resin particle group (V-2) thus obtained, the cross section was cut out so that the cross section of the silicone resin core material particles serving as the core material of the composite resin particles was exposed. This sectional view is shown in FIG. As shown in FIG. 23, the diameter (Dsi) of the silicone resin particles is 2.63 μm, and the shortest is the point through the center point (P) of the silicone resin particles to the surface of the composite resin particles. The virtual straight line (B) is drawn, and the shortest (R mini ) from the center point (P) of the silicone resin particle in this cross section to the point where the virtual straight line (B) contacts the surface of the composite resin particle is 1. It was 38 μm.
 また、シリコーン樹脂芯材粒子の断面の中心を通るとともに、該複合樹脂粒子の外周面との交点間の距離が最も長い仮想直線(A)を描画し、この断面におけるシリコーン樹脂芯材粒子の中心点(P)から、この仮想直線(A)が複合樹脂粒子の表面と接する点までの最も長い距離(Rmax)は、4.06μmであった。 Further, an imaginary straight line (A) that passes through the center of the cross section of the silicone resin core particle and has the longest distance between the intersection points with the outer peripheral surface of the composite resin particle is drawn, and the center of the silicone resin core particle in this cross section is drawn The longest distance (R max ) from the point (P) to the point where the virtual straight line (A) is in contact with the surface of the composite resin particles was 4.06 μm.
 これらの値から、この複合樹脂粒子が次式(1)、(2)を満足するものである。 From these values, the composite resin particles satisfy the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 同様にしてこの複合樹脂粒子群(V-2)を構成する複合樹脂粒子について、断面を切り出して上記のようにしてシリコーン樹脂芯材粒子の位置を測定したところ、この複合樹脂粒子群(V-2)の少なくとも95個数%の粒子において、上記のシリコーン樹脂芯材粒子の偏在が認められた。 Similarly, the cross section of the composite resin particles constituting the composite resin particle group (V-2) was cut out and the positions of the silicone resin core particles were measured as described above. As a result, the composite resin particle group (V- In at least 95% by number of the particles of 2), uneven distribution of the silicone resin core particles was observed.
 真球度の測定方法
 真球度は、以下の方法によって求めた。
 複合樹脂粒子群を電子顕微鏡を用いて撮影を行い、得られた画像を画像解析用ソフトウェアを用いて(三谷商事(株)、WinROOF)、円形度を測定する。約50個の測定値を平均し、これを真球度とする。なお、円形度は下記の式で計算される。
円形度=4π×面積/(周囲長×周囲長)
〔実施例8〕
 MMA40重量部、EGDMA10重量部、過酸化ベンゾイル1重量部、ラウリル硫酸ナトリウム0.3重量部、イオン交換水300重量部、亜硝酸ナトリウム0.1重量部を、ホモミキサーを用いて10000回転で3分間攪拌した。
Method for measuring sphericity The sphericity was determined by the following method.
The composite resin particle group is photographed using an electron microscope, and the obtained image is measured for circularity using image analysis software (Mitani Corporation, WinROOF). About 50 measurement values are averaged, and this is defined as sphericity. The circularity is calculated by the following formula.
Circularity = 4π × area / (perimeter length × perimeter length)
Example 8
40 parts by weight of MMA, 10 parts by weight of EGDMA, 1 part by weight of benzoyl peroxide, 0.3 part by weight of sodium lauryl sulfate, 300 parts by weight of ion-exchanged water, and 0.1 part by weight of sodium nitrite are mixed at 10000 rpm with a homomixer. Stir for minutes.
 次いで、この混合物を温度計と窒素ガス導入管を装着した容量1リットルの四つ口フラスコに移し、製造例3で調製したポリオルガノシロキサン粒子50重量部を添加し、40℃で30分間攪拌した。 Next, this mixture was transferred to a 1-liter four-necked flask equipped with a thermometer and a nitrogen gas inlet tube, and 50 parts by weight of the polyorganosiloxane particles prepared in Production Example 3 were added, followed by stirring at 40 ° C. for 30 minutes. .
 その後、ポリビニルアルコール2重量部を加えて69℃で1時間30分反応させ、続いて90℃で1時間反応させた。
 得られた水性分散液をブフターロートで濾紙を用いて減圧濾過してコアシェル粒子のケーキを得た。
Thereafter, 2 parts by weight of polyvinyl alcohol was added and reacted at 69 ° C. for 1 hour and 30 minutes, followed by reaction at 90 ° C. for 1 hour.
The obtained aqueous dispersion was filtered under reduced pressure using a filter paper with a butter funnel to obtain a cake of core-shell particles.
 得られたケーキを105℃に設定された熱風乾燥機を用いて乾燥させてコアシェル粒子を得た。得られた複合粒子について、シリコーン樹脂粒子の中心点Pを通ってこの複合粒子の表面と接する点までがもっとも短い仮想直線Bが複合粒子と接する点までの最も短い距離(Rmini)は1.25μmであり、またシリコーン芯材粒子の外面との交点間の距離が最も長い仮想直線Aを描画し、この断面におけるシリコーン樹脂芯材粒子の中心点(P)から、この仮想直線(A)が複合樹脂粒子の表面で接する点までの最も長い距離(Rmax)は2.68μmであった。 The obtained cake was dried using a hot air dryer set at 105 ° C. to obtain core-shell particles. With respect to the obtained composite particles, the shortest distance (R mini ) from the point of contact with the composite particle through the center point P of the silicone resin particle to the point of contact with the composite particle is 1. An imaginary straight line A having the longest distance between the intersections with the outer surface of the silicone core particle is drawn, and the imaginary straight line (A) is drawn from the center point (P) of the silicone resin core particle in this cross section. The longest distance (R max ) to the contact point on the surface of the composite resin particle was 2.68 μm.
 得られた複合粒子群の特性を表1に示す。
 この実施例8で使用したシリコーン樹脂芯材粒子のSEM写真を、図26に、複合樹脂粒子群のSEM粒子群を図27に、図28に実施例8で得られた粒子群の反射光の変化率を示す。
〔比較例1~比較例3〕
 比較例として、市販のシリコーン粒子(比較例1、モメンディブ・パフォーマンス・マテリアルズ・ジャパン社製、商品名:トスパール145A,平均粒子径(φsi)4.5μm)、架橋ポリメチルメタクリレート粒子(比較例2、綜研化学(株)製、商品名:MX-500、平均粒子径5.0μm)、スチレン系粒子(比較例3、綜研化学(株)製、商品名:SX-500H、平均粒子径5.0μm)を用意して、これらの粒子の反射強度の変化率を表1に示す。
Table 1 shows the characteristics of the obtained composite particle group.
The SEM photograph of the silicone resin core particles used in Example 8 is shown in FIG. 26, the SEM particle group of the composite resin particle group is shown in FIG. 27, and the reflected light of the particle group obtained in Example 8 is shown in FIG. Indicates the rate of change.
[Comparative Examples 1 to 3]
As comparative examples, commercially available silicone particles (Comparative Example 1, manufactured by Momentive Performance Materials Japan, trade name: Tospearl 145A, average particle size (φsi) 4.5 μm), crosslinked polymethyl methacrylate particles (Comparative Example 2) , Manufactured by Soken Chemical Co., Ltd., trade name: MX-500, average particle diameter 5.0 μm), styrene particles (Comparative Example 3, manufactured by Soken Chemical Co., Ltd., trade name: SX-500H, average particle diameter 5. Table 1 shows the rate of change in the reflection intensity of these particles.
 比較例3により得られた粒子群の反射強度の変化率を図25に示す。
 〔比較例4〕
 比較例1の粒子6.7重量部、比較例2の粒子13.3重量部、比較例3の粒子80重量部の比率で混合して混合粒子を調整し、この混合粒子の反射強度の変化率を表1に示す。
The change rate of the reflection intensity of the particle group obtained in Comparative Example 3 is shown in FIG.
[Comparative Example 4]
The mixed particles were adjusted by mixing at a ratio of 6.7 parts by weight of the particles of Comparative Example 1, 13.3 parts by weight of the particles of Comparative Example 2, and 80 parts by weight of the particles of Comparative Example 3, and the change in reflection intensity of the mixed particles The rates are shown in Table 1.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 本発明の複合樹脂粒子群は、芯材粒子がシリコーン樹脂粒子からなり、しかも本発明の複合樹脂粒子を構成する複合樹脂粒子においては、芯材粒子であるシリコーン樹脂粒子が、複合樹脂粒子の中心から偏在して存在する。すなわち、樹脂芯材粒子を用いてシード重合しているにも拘わらず、シード粒子であるシリコーン樹脂芯材粒子の中心点と、シード重合の結果得られた複合樹脂粒子の中心点とが一致せず、シリコーン樹脂芯材粒子が複合樹脂粒子の中でいずれかの方向に偏って存在して複合樹脂粒子が、全体の半分以上、好ましくは大多数を占める。 In the composite resin particles of the present invention, the core material particles are composed of silicone resin particles, and in the composite resin particles constituting the composite resin particles of the present invention, the silicone resin particles as the core material particles are the center of the composite resin particles. It is ubiquitously present. That is, despite the seed polymerization using resin core particles, the center point of the silicone resin core particles, which are seed particles, matches the center point of the composite resin particles obtained as a result of seed polymerization. First, the silicone resin core particles are present in a biased direction in any direction in the composite resin particles, and the composite resin particles occupy more than half, preferably the majority.
 このようにシリコーン樹脂芯材粒子が偏在している個々の複合樹脂粒子について光の反射方向をみると、統一的な反射方向は示さないが、これらの複合樹脂粒子を多数含有する本発明の複合樹脂粒子群について、光の反射方向をみると、反射光が協調し合って非常に均一性の高い反射光を得ることができる。 Thus, when the reflection direction of light is seen for each composite resin particle in which the silicone resin core particles are unevenly distributed, the unified reflection direction is not shown, but the composite of the present invention containing a large number of these composite resin particles. Regarding the resin particle group, when the reflection direction of the light is viewed, the reflected light cooperates to obtain reflected light with very high uniformity.
 従来から使用されている異なる反射特性を有する複数の粒子を混合した場合、それぞれの粒子の反射特性が顕在化して、それぞれの粒子が有していない反射特性が低下するためにこのような反射光の均一性は発現しないが、本発明の複合樹脂粒子群では、反射光が弱め合うことがなく、全波長にわたって均一な反射光が得られる。 When a plurality of particles having different reflection characteristics that have been used in the past are mixed, the reflection characteristics of each particle become obvious, and the reflection characteristics that each particle does not have deteriorated. However, in the composite resin particle group of the present invention, the reflected light does not weaken and uniform reflected light can be obtained over all wavelengths.
10・・・複合樹脂粒子
20・・・アクリル系樹脂層
30・・・シリコーン樹脂芯材粒子
Dsi・・・シリコーン樹脂粒子の直径
Rmini・・・シリコーン樹脂粒子の中心から複合樹脂粒子の外殻までの最短長さ
Rmax・・・シリコーン樹脂粒子の中心から複合樹脂粒子の外殻までの最長長さ
DESCRIPTION OF SYMBOLS 10 ... Composite resin particle 20 ... Acrylic resin layer 30 ... Silicone resin core particle
D si・ ・ ・ Diameter of silicone resin particles
R mini・ ・ ・ Minimum length from the center of the silicone resin particle to the outer shell of the composite resin particle
R max : Maximum length from the center of the silicone resin particle to the outer shell of the composite resin particle

Claims (11)

  1.  平均粒子径が0.01~50μmの範囲内にあるシリコーン樹脂芯材粒子の存在下に、アクリル系モノマーおよび/またはスチレン系モノマーを含むモノマー成分を重合させて得られる、シリコーン樹脂芯材粒子が包摂されている中実粒子からなる複合樹脂粒子群であって、
     該複合樹脂粒子群を構成する複合樹脂粒子中に包摂されるシリコーン樹脂芯材粒子の略中心が露出するように切断された該複合樹脂粒子の断面において、
     該シリコーン樹脂芯材粒子の断面の中心を通るとともに、該複合樹脂粒子の外周面との交点間の距離が最も長い仮想直線(A)、および、該シリコーン樹脂芯材粒子の断面の中心を通るとともに、該複合樹脂粒子の外周面との交点間の距離が最も短い仮想直線(B)を想定したときに、
     上記シリコーン樹脂芯材粒子の中心点(P)が、該シリコーン樹脂芯材粒子の中心点(P)から上記仮想直線(A)または(B)が複合樹脂粒子の表面と接する点までのうちの最も短い距離(Rmini)、および、該シリコーン樹脂芯材粒子の中心点(P)から上記仮想直線(A)または(B)が複合樹脂粒子の表面と接する点までのうち最も長い距離(Rmax)に対して、次式(1)および式(2)で示す関係を有する位置にある複合樹脂粒子を50個数%以上含有することを特徴とする複合樹脂粒子群;
    Figure JPOXMLDOC01-appb-M000001
    (ただし、上記式(1)および(2)において、Dsiは、その断面におけるシリコーン樹脂芯材粒子の直径を表す。)。
    Silicone resin core particles obtained by polymerizing a monomer component containing an acrylic monomer and / or a styrene monomer in the presence of silicone resin core particles having an average particle diameter in the range of 0.01 to 50 μm A composite resin particle group consisting of solid particles that are included,
    In the cross section of the composite resin particle cut so as to expose the substantially center of the silicone resin core material particle included in the composite resin particle constituting the composite resin particle group,
    It passes through the center of the cross section of the silicone resin core material particle, passes through the virtual straight line (A) having the longest distance between the intersections with the outer peripheral surface of the composite resin particle, and the center of the cross section of the silicone resin core material particle. And when assuming the virtual straight line (B) where the distance between the intersections with the outer peripheral surface of the composite resin particle is the shortest,
    The center point (P) of the silicone resin core particle is from the center point (P) of the silicone resin core particle to the point where the virtual straight line (A) or (B) is in contact with the surface of the composite resin particle. The shortest distance (R mini ) and the longest distance (R) from the center point (P) of the silicone resin core particle to the point where the virtual line (A) or (B) contacts the surface of the composite resin particle a composite resin particle group comprising 50% by number or more of composite resin particles in a position having a relationship represented by the following formulas (1) and (2) with respect to max ):
    Figure JPOXMLDOC01-appb-M000001
    (However, in the above formulas (1) and (2), Dsi represents the diameter of the silicone resin core particles in the cross section).
  2.  上記式(1)および式(2)が、次式(1-1)および式(2-1)で表わされることを特徴とする請求項第1項記載の複合樹脂粒子群;
    Figure JPOXMLDOC01-appb-M000002
    (ただし、上記式(1-1)、(2-2)において、Dsiは、その断面におけるシリコーン樹脂芯材粒子の直径を表す。)。
    The composite resin particle group according to claim 1, wherein the formulas (1) and (2) are represented by the following formulas (1-1) and (2-1):
    Figure JPOXMLDOC01-appb-M000002
    (However, in the above formulas (1-1) and (2-2), Dsi represents the diameter of the silicone resin core particles in the cross section).
  3.  上記複合樹脂粒子群を構成する複合樹脂粒子の平均粒子径(φcp)が、0.02~100μmの範囲内にあり、シリコーン樹脂芯材粒子の平均粒子径(φsi)が、0.01~50μmの範囲内にあり、複合樹脂粒子の中心点Qと、シリコーン樹脂芯材粒子の中心点Pとの平均距離xが0.005~50μmの範囲内にあることを特徴とする請求項第1項記載の複合樹脂粒子群。 The average particle diameter (φcp) of the composite resin particles constituting the composite resin particle group is in the range of 0.02 to 100 μm, and the average particle diameter (φsi) of the silicone resin core particles is 0.01 to 50 μm. The average distance x between the center point Q of the composite resin particle and the center point P of the silicone resin core particle is in the range of 0.005 to 50 μm. The composite resin particle group described.
  4.  上記複合樹脂粒子群を構成する複合樹脂粒子の中心点Qと、シリコーン樹脂芯材粒子の中心点Pとの平均距離xと、該複合樹脂粒子の平均粒子径(φcp)との比(x/φcp)が、0.01~0.5の範囲内にあることを特徴とする請求項第1項記載の複合樹脂粒子群。 The ratio (x /) of the average distance x between the center point Q of the composite resin particles constituting the composite resin particle group and the center point P of the silicone resin core particles and the average particle diameter (φcp) of the composite resin particles The composite resin particle group according to claim 1, wherein φcp) is in the range of 0.01 to 0.5.
  5.  シリコーン樹脂芯材粒子にチタン・ジルコニウムのアルコキシドが配合されていることを特徴とする請求項第1項または第2項記載の複合樹脂粒子群。 3. The composite resin particle group according to claim 1 or 2, wherein the silicone resin core particles are mixed with an alkoxide of titanium / zirconium.
  6.  上記複合樹脂粒子群が、0.1~0.95の範囲内にある真球度を有する上記複合樹脂粒子を50個数%以上の量で含有していることを特徴とする請求項第1項記載の複合樹脂粒子群。 The composite resin particle group contains the composite resin particles having a sphericity in a range of 0.1 to 0.95 in an amount of 50% by number or more. The composite resin particle group described.
  7.  上記複合樹脂粒子の中心点(Q)から、外側方向に、放射状に仮想される仮想直線(C)の上に該シリコーン樹脂芯材の中心点(P)が存在するとともに、仮想直線(C)の該複合樹脂粒子の中心点(Q)を起点(0%)とし複合樹脂粒子の外周面との交点までの長さを100%としたときに、該シリコーン樹脂芯剤粒子の中心点(P)が仮想直線(C)の0%を超え99%以下の範囲内にある複合樹脂粒子が、該複合樹脂粒子群中に90個数%以上の量で含有されていることを特徴とする請求項第1項記載の複合樹脂粒子群。 From the center point (Q) of the composite resin particle, the center point (P) of the silicone resin core material exists on the virtual straight line (C) radially radiated in the outward direction, and the virtual straight line (C) When the center point (Q) of the composite resin particle is the origin (0%) and the length to the intersection with the outer peripheral surface of the composite resin particle is 100%, the center point (P ) Is within the range of more than 0% and 99% or less of the imaginary straight line (C), the composite resin particle group contains 90% by number or more of the composite resin particles. The composite resin particle group according to Item 1.
  8.  上記複合樹脂粒子群を形成する複合樹脂粒子の表面にシリコーン樹脂芯材粒子の10~80体積%が露出している複合樹脂粒子を含むことを特徴とする請求項第1項記載の複合樹脂粒子群。 2. The composite resin particle according to claim 1, comprising composite resin particles in which 10 to 80% by volume of the silicone resin core particles are exposed on the surface of the composite resin particles forming the composite resin particle group. group.
  9.  上記複合樹脂粒子群0.1gを、幅30mm、長さ50mm、厚さ3mmのウレタン製シートに均一に塗布して、変角光度計を用いて、入射角-45°、試行回数n=100の条件で測定した反射強度の変動率(受光角0°での反射率/受光角-35°での反射率の平均値)が0.80~1.00の範囲内にあることを特徴とする請求項第1項記載の複合樹脂粒子群。 0.1 g of the composite resin particle group is uniformly applied to a urethane sheet having a width of 30 mm, a length of 50 mm, and a thickness of 3 mm, and using a goniophotometer, the incident angle is −45 °, the number of trials is n = 100. The variation rate of the reflection intensity measured under the above conditions (reflectance at a light receiving angle of 0 ° / average value of reflectance at a light receiving angle of −35 °) is in the range of 0.80 to 1.00. The composite resin particle group according to claim 1.
  10.  上記請求項第1項乃至第9項のいずれかの項記載の複合樹脂粒子群を含有してなることを特徴とする化粧料。 A cosmetic comprising the composite resin particle group according to any one of claims 1 to 9.
  11.  上記請求項第1項乃至第9項のいずれかの項記載の複合樹脂粒子群を含有してなることを特徴とする光拡散シート。 A light diffusing sheet comprising the composite resin particle group according to any one of claims 1 to 9.
PCT/JP2009/057491 2008-04-14 2009-04-14 Composite resin particles and use of the same WO2009128441A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010508213A JP5706687B2 (en) 2008-04-14 2009-04-14 Composite resin particles and their uses
KR1020107022645A KR101204963B1 (en) 2008-04-14 2009-04-14 Composite resin particles and use of the same
CN2009801136487A CN102007154B (en) 2008-04-14 2009-04-14 Composite resin particles and use of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-104754 2008-04-14
JP2008104754 2008-04-14

Publications (1)

Publication Number Publication Date
WO2009128441A1 true WO2009128441A1 (en) 2009-10-22

Family

ID=41199131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057491 WO2009128441A1 (en) 2008-04-14 2009-04-14 Composite resin particles and use of the same

Country Status (4)

Country Link
JP (1) JP5706687B2 (en)
KR (1) KR101204963B1 (en)
CN (1) CN102007154B (en)
WO (1) WO2009128441A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081123A (en) * 2009-10-06 2011-04-21 Nippon Shokubai Co Ltd Core-shell type particle, light diffusing agent and light diffusing medium
JP2012211222A (en) * 2011-03-30 2012-11-01 Aica Kogyo Co Ltd Composite fine particle
JP2012220714A (en) * 2011-04-08 2012-11-12 Canon Inc Refractive index distribution structure and manufacturing method thereof, and image display device including refractive index distribution structure
JP2015110738A (en) * 2013-11-01 2015-06-18 日信化学工業株式会社 Silicone-based copolymer resin powder, method for producing the same, and cosmetic
US9527969B2 (en) 2011-06-30 2016-12-27 Sekisui Plastics Co., Ltd. Non-spherical resin particles, manufacturing method thereof, and use thereof
US9725561B2 (en) 2014-06-20 2017-08-08 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core and silsesquioxane polymer outer layer and methods
JP2017197684A (en) * 2016-04-28 2017-11-02 株式会社日本触媒 Crosslinked acrylic organic fine particle
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups
US9957358B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
US10066123B2 (en) 2013-12-09 2018-09-04 3M Innovative Properties Company Curable silsesquioxane polymers, compositions, articles, and methods
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030752B (en) * 2011-09-29 2016-02-03 比亚迪股份有限公司 Polymer microballoon and its preparation method and application and composition and light diffusing sheet or optical diffusion film and light fixture and backlight module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003517A (en) * 2000-04-17 2002-01-09 Sekisui Plastics Co Ltd Spherical resin particle, manufacturing method thereof and external preparation
JP2003277417A (en) * 2002-03-22 2003-10-02 Gantsu Kasei Kk Nonspherical bulk polymer fine particle and method for producing the same
JP2005220314A (en) * 2004-02-09 2005-08-18 Sekisui Plastics Co Ltd Production method for composite particle, composite particle and cosmetic containing the same
JP2007091854A (en) * 2005-09-28 2007-04-12 Sekisui Plastics Co Ltd Silica-compounded polymer particle and method for producing the same
JP2007297562A (en) * 2006-05-08 2007-11-15 Kaneka Corp Light-diffusible resin composition and light diffusion plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300179C (en) * 2003-12-23 2007-02-14 中国科学院理化技术研究所 Method for preparing monodisperse core/shell composite particle emulsion by using polystyrene coated nano silicon dioxide microspheres
CN100381484C (en) * 2005-03-04 2008-04-16 华东理工大学 Process for preparing core-shell type polysiloxane composite particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003517A (en) * 2000-04-17 2002-01-09 Sekisui Plastics Co Ltd Spherical resin particle, manufacturing method thereof and external preparation
JP2003277417A (en) * 2002-03-22 2003-10-02 Gantsu Kasei Kk Nonspherical bulk polymer fine particle and method for producing the same
JP2005220314A (en) * 2004-02-09 2005-08-18 Sekisui Plastics Co Ltd Production method for composite particle, composite particle and cosmetic containing the same
JP2007091854A (en) * 2005-09-28 2007-04-12 Sekisui Plastics Co Ltd Silica-compounded polymer particle and method for producing the same
JP2007297562A (en) * 2006-05-08 2007-11-15 Kaneka Corp Light-diffusible resin composition and light diffusion plate

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081123A (en) * 2009-10-06 2011-04-21 Nippon Shokubai Co Ltd Core-shell type particle, light diffusing agent and light diffusing medium
JP2012211222A (en) * 2011-03-30 2012-11-01 Aica Kogyo Co Ltd Composite fine particle
JP2012220714A (en) * 2011-04-08 2012-11-12 Canon Inc Refractive index distribution structure and manufacturing method thereof, and image display device including refractive index distribution structure
US9562993B2 (en) 2011-04-08 2017-02-07 Canon Kabushiki Kaisha Refractive index distribution structure and manufacturing method of the same, and image display apparatus having the refractive index distribution structure
US9527969B2 (en) 2011-06-30 2016-12-27 Sekisui Plastics Co., Ltd. Non-spherical resin particles, manufacturing method thereof, and use thereof
US9980885B2 (en) 2013-11-01 2018-05-29 Nissin Chemical Industry Co. Ltd. Silicone-based copolymer resin powder, making method, and cosmetics
JP2015110738A (en) * 2013-11-01 2015-06-18 日信化学工業株式会社 Silicone-based copolymer resin powder, method for producing the same, and cosmetic
US10066123B2 (en) 2013-12-09 2018-09-04 3M Innovative Properties Company Curable silsesquioxane polymers, compositions, articles, and methods
US9725561B2 (en) 2014-06-20 2017-08-08 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core and silsesquioxane polymer outer layer and methods
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US9957358B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups
JP2017197684A (en) * 2016-04-28 2017-11-02 株式会社日本触媒 Crosslinked acrylic organic fine particle

Also Published As

Publication number Publication date
KR20100134021A (en) 2010-12-22
JP5706687B2 (en) 2015-04-22
JPWO2009128441A1 (en) 2011-08-04
CN102007154B (en) 2012-11-28
KR101204963B1 (en) 2012-11-26
CN102007154A (en) 2011-04-06

Similar Documents

Publication Publication Date Title
JP5706687B2 (en) Composite resin particles and their uses
CN101687964B (en) Microstructured optical films
JP5089552B2 (en) Light diffuser
JP2009120726A (en) Transparent adhesive for refractive index regulating optical member, transparent adhesive layer for optics, manufacturing method of transparent adhesive for refractive index regulating optical member and manufacturing method of transparent adhesive layer for optics
US9244193B2 (en) Microstructured optical films comprising fluorene-containing monomer
JP5419625B2 (en) Core-shell particle, light diffusing agent, and light diffusing medium
JP5000613B2 (en) Organic particle-containing composition
JPH11508622A (en) Light diffusing adhesive
KR100668921B1 (en) Polymer particle coated with silica, method for producing the same and use of the same
JP2009157234A (en) Anti-glare and antireflection film and liquid crystal display having the same
JP3478973B2 (en) Light diffusion sheet
JP5860689B2 (en) Organic particles for light diffusion media
JP4866074B2 (en) Anti-reflection coating agent and anti-reflection film
JP2004043557A (en) Resin particle and its production method
JP5522957B2 (en) Polymer particle aggregate, method for producing the same, light diffusing agent, and light diffusing resin composition
TWI529203B (en) Polysiloxane core-shell microspheres and preparation method thereof
JP4283026B2 (en) Optical resin additive, process for producing the same, and optical resin composition
JP5281781B2 (en) Monodispersed polymer particles, method for producing the same, light diffusible molded article, and light diffusible coating
JPWO2010092890A1 (en) Coated particles and method for producing the same
JP2018024786A (en) Organic fine particle
JPH09194828A (en) Antifogging agent composition
JP2006312746A (en) Application of silica composite resin particle
JP2006232877A (en) Light-diffusing agent and light-diffusing resin composition using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113648.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733484

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508213

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107022645

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09733484

Country of ref document: EP

Kind code of ref document: A1