[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009124839A2 - Kaltgasspritzanlage - Google Patents

Kaltgasspritzanlage Download PDF

Info

Publication number
WO2009124839A2
WO2009124839A2 PCT/EP2009/053462 EP2009053462W WO2009124839A2 WO 2009124839 A2 WO2009124839 A2 WO 2009124839A2 EP 2009053462 W EP2009053462 W EP 2009053462W WO 2009124839 A2 WO2009124839 A2 WO 2009124839A2
Authority
WO
WIPO (PCT)
Prior art keywords
section
cold gas
stagnation chamber
gas spraying
laval nozzle
Prior art date
Application number
PCT/EP2009/053462
Other languages
English (en)
French (fr)
Other versions
WO2009124839A3 (de
Inventor
Oliver Stier
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CA2721114A priority Critical patent/CA2721114C/en
Priority to EP09729463A priority patent/EP2260119B1/de
Priority to CN200980112697.9A priority patent/CN101999011B/zh
Priority to US12/736,476 priority patent/US20110094439A1/en
Priority to DK09729463.1T priority patent/DK2260119T3/da
Publication of WO2009124839A2 publication Critical patent/WO2009124839A2/de
Publication of WO2009124839A3 publication Critical patent/WO2009124839A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • B05B7/1613Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed
    • B05B7/162Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed
    • B05B7/1626Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed at the moment of mixing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the invention relates to a cold gas spraying system having the features according to the preamble of claim 1.
  • Such a cold gas spraying system is sold, for example, by CGT CoId Gas Technology GmbH under the product name Kinetiks® 4000 CoId Spray System.
  • the previously known cold gas spraying system has a gas heater for heating a gas. Connected to the gas heating device is a stagnation chamber, which is connected on the output side to a charging nozzle.
  • Laval nozzles are known to have a converging section, a nozzle neck adjoining the converging section and a widening section adjoining the nozzle neck. On the output side, the Laval nozzle emits a gas stream with particles in it at supersonic speed.
  • Cold spray systems of the type described can be used, for example, to produce a coating on a surface with the accelerated particles.
  • the invention has for its object to provide a cold gas spraying system with which an even better layer quality when producing a coating can be achieved than before.
  • the thermal conductivity of an insulating material is usually given for a temperature range between 30 and 100 ° C., as shown in W / (K * m).
  • An essential advantage of the cold gas spraying systems according to the invention is the fact that higher flow velocities of the gas stream and thus higher particle speeds can be achieved with them than with previously known cold gas spraying systems. This is concretely attributable to the fact that, due to the thermal insulation provided according to the invention, at least one section located behind the gas heating device in the gas flow direction can achieve greater stagnation temperatures of the gas within the cold gas spraying system than previously. It has been recognized by the inventor that the achievable flow rates against atmospheric pressure, both those of the gas stream and those of the particles therein, depend primarily on the stagnation temperature of the gas and less on the stagnation pressure of the gas.
  • the invention begins by providing according to the invention to allow even higher stagnation temperatures than before; this is achieved by selectively thermally insulating or thermally protecting one or more sections located behind the gas heating device, in order to achieve even higher temperatures in these sections without damaging anima stricte of the cold gas spraying system.
  • the core of the invention is therefore to achieve higher stagnation temperatures by means of additional thermal insulation, in order thereby to achieve higher flow velocities of the particles and thus higher-quality coating qualities.
  • the insulating material is formed by one or more of the following materials or contains at least one of them: porcelains, steatites, cordierite ceramics, alumina, in particular zirconia-reinforced, aluminum silicate, aluminum titanate, zirconium oxide, in particular stabilized variants, oxides of magnesium, beryllium or Titanium, silicon nitride, porous silicon carbide, in particular nitride-bonded or recrystallized.
  • porcelains steatites, cordierite ceramics, alumina, in particular zirconia-reinforced, aluminum silicate, aluminum titanate, zirconium oxide, in particular stabilized variants, oxides of magnesium, beryllium or Titanium, silicon nitride, porous silicon carbide, in particular nitride-bonded or recrystallized.
  • the panel is formed by an insert which consists wholly or partly of the insulating material and is inserted in the thermally protected portion of the cold gas spraying system that it separates the inner wall of the portion of the gas stream ,
  • this can be exchanged particularly easily and thus advantageously.
  • the cladding may be formed by a coating of the insulating material applied to the inner wall of the section and separating the inner wall of the section from the gas flow.
  • the thermally protected portion lies in the converging section of the Laval nozzle to a thermal stress and deformation of this relevant for the beam formation and acceleration of the gas section to avoid.
  • At least part of the insert is formed by a cone-shaped, in particular frusto-conical, sleeve which is inserted into the converging section of the Laval nozzle.
  • a particularly simple replacement of the insert in the event of material wear is possible.
  • the thermally protected portion lies in the stagnation chamber.
  • the thermally protected portion extends from the stagnation chamber into the converging part of the Laval nozzle.
  • the thermal insulation is achieved by an insert which is formed by a sectionally cylindrical and partially cone-shaped, in particular frusto-conical, sleeve whose cylindrical portion is inserted in the stagnation chamber and its conical portion in the converging section of the Laval nozzle.
  • the thermally protected portion may extend into and / or through the nozzle throat.
  • the stagnation chamber can be opened and the insert and the stagnation chamber are designed such that the insert can be exchanged from the stagnation chamber.
  • FIG. 1 shows a first exemplary embodiment of a cold gas spraying installation in which the converging section of the Laval nozzle of the cold gas spraying installation is thermally protected
  • FIG. 2 shows a second exemplary embodiment of a cold gas spraying installation in which the stagnation chamber is thermally protected
  • FIG. 3 shows a third exemplary embodiment of a cold gas spraying installation in which a section of the stagnation chamber of the cold gas spraying installation and the adjoining convergent section of the Laval nozzle are thermally protected
  • FIG. 4 shows an exemplary embodiment of a cold gas spraying installation in which the thermally protected section extends from the stagnation chamber via the converging section of the Laval nozzle into the widening section of the Laval nozzle.
  • FIG. 1 shows a cold gas spraying system 10, which is equipped with a Laval nozzle 20.
  • the Laval nozzle 20 comprises a converging section 30 and a widening section 40.
  • the converging section 30 and the widening section 40 are through a nozzle throat 50, in which the cross-section of the Laval nozzle 20 is minimal, separated from each other.
  • a stagnation chamber 60 is connected at the converging section 30 of the Laval nozzle 20, a stagnation chamber 60 is connected.
  • the cross-sectional area A of the stagnation chamber 60 is much larger than the cross-sectional area A 'in the region of the nozzle throat 50, so that it is in the region of the nozzle throat 50 and in the adjoining, divisional section 40 results in a significant acceleration of passing through the Laval nozzle 20 gas flow P.
  • the relatively low gas flow velocity (0 "Mach number ⁇ 1) in the stagnation chamber 60 is designated by the reference symbol Vu and the high supersonic gas flow velocity (Mach number> 1) in the subsection 40 by the reference symbol Vo.
  • a particulate feed device 80 which feeds particles T into the gas G in the stagnation chamber 60.
  • the particles T are fed laterally from the edge in the stagnation chamber 60; however, this is only to be understood as an example: The particles T can be fed into the stagnation chamber 60 in the middle or at different spatial angles than shown in FIG.
  • a gas heater 90 is arranged, which heats the gas G before it enters the stagnation chamber 60 and the Laval nozzle 20.
  • the cold gas spraying system 10 can be operated as follows: With the particle feed device 80, the particles T are fed into the gas G located in the stagnation chamber 60. Due to the large cross-section A in the stagnation chamber 60, the gas flow velocity Vu of the gas flow P from the stagnation chamber 60 into the Laval nozzle 20 is still relatively small (0 "Mach number ⁇ 1). Only in the region of the nozzle throat 50 does the gas flow P accelerate considerably, resulting in a gas flow velocity Vo of the gas flow P in the expanding section 40 in the supersonic range (Mach number> 1).
  • the highest possible gas temperature is set in the stagnation chamber 60.
  • a thermal insulation material 100 or coated In order to avoid that in the converging section 30 of the Laval nozzle 20 overheating and concomitantly a deformation or destruction of the Laval nozzle 20 may occur, this is covered with a thermal insulation material 100 or coated.
  • the thermal insulation material 100 has a thermal conductivity below 20W / Km.
  • the insulating material 100 can be formed, for example, by one or more of the following ceramic materials: porcelains, steatites, cordierite ceramics, aluminum oxide, in particular zirconium-reinforced, aluminum silicate, aluminum titanate, zirconium oxide, in particular stabilized variants, oxides of magnesium , Beryllium or titanium, silicon nitride, porous silicon carbide, in particular nitride bonded or recrystallized.
  • the covering is formed by a cone-shaped, in particular frusto-conical, insert 110 which consists wholly or partly of said thermal insulation material 100 and is inserted or inserted into the Laval nozzle 20. Through the insert 110, the gas flow P is separated from the inner wall 120 of the Laval nozzle 20, so that the inner wall 120 is thermally protected in the region of the insert 110.
  • the stagnation chamber 60 can be opened at its left or right side in FIG. 1 in order to be able to pull the insert 110 out of the Laval nozzle 20 in the event of wear and replace it.
  • FIG. 2 shows a second exemplary embodiment of a cold gas spraying system 10.
  • the stagnation chamber 60 is thermally protected.
  • the inner wall 130 of the stagnation chamber 60 is lined or coated with the thermal insulation material 100.
  • the cladding is formed by an insert 140, which consists of or comprises the thermal insulation material 100 and rests against the inner wall 130 from the inside.
  • the insert 140 may for example be formed at least in sections by a cylindrical insertion sleeve. In the case of wear, the insertion sleeve can preferably be replaced by the left or right side of the stagnation chamber 60 in FIG. 2.
  • FIG. 3 shows a further exemplary embodiment of a cold gas spray system 10.
  • the inner wall section 200 of the stagnation chamber 60 adjoining the Laval nozzle 20 and the inner wall section section 210 of the converging section 30 of the valving nozzle 20 is thermally protected.
  • the two inner wall sections 200 and 210 are lined with an insert 220 in the form of a sleeve or insertion sleeve, which has been inserted from the stagnation chamber 60 in this and in the Laval nozzle 20.
  • the insertion sleeve 220 is replaceable, so that it can be replaced in case of wear.
  • the insertion sleeve 220 is cylindrical in sections and sectionally conical, with the cylindrical section being inserted or inserted in the stagnation chamber 60 and the conical section in the converging section 40 of the Laval nozzle 20.
  • FIG. 4 shows an exemplary embodiment of a cold gas spray system 10 in which the stagnation chamber 60, the converging section 30 of the Laval nozzle 20, the nozzle neck 50 and a lower section 310 of the widening section 40 of the Laval nozzle 20 are thermally insulated.
  • the stagnation chamber 60, the converging section 30 of the Laval nozzle 20, the nozzle neck 50 and a lower section 310 of the widening section 40 of the Laval nozzle 20 are thermally insulated.
  • the stagnation chamber 60, the subsection 30, the nozzle throat 50, and the subsection 310 may also be made solid from a thermal insulation material having a conductivity below 20 W / Km.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Die Erfindung bezieht sich auf eine Kaltgasspritzanlage (10) mit einer Gasheizeinrichtung (90) und einer an die Gasheizeinrichtung (90) angeschlossenen Stagnationskammer (60). An die Stagnationskammer ist eine Lavaldüse (20) angeschlossen, die ausgangsseitig einen Gasstrom mit darin befindlichen Partikeln (T) mit Überschallgeschwindigkeit abgibt. Kaltgasspritzanlagen dieser Art können beispielsweise dazu verwendet werden, um mit den beschleunigten Partikeln eine Beschichtung auf einer Oberfläche zu erzeugen. Um eine noch bessere Schichtqualität beim Herstellen einer Beschichtung zu erreichen, ist erfindungsgemäß vorgesehen, dass zumindest ein - in Gasströmungsrichtung gesehen - hinter der Gasheizeinrichtung befindlicher Abschnitt der Kaltgasspritzanlage thermisch geschützt ist, indem er innenwandseitig mit einem keramischen Isolationsmaterial, das eine thermische Leitfähigkeit unter 20 W/Km aufweist, verkleidet ist oder aus einem solchen besteht. Die Verkleidung kann beispielsweise durch einen auswechselbaren Einsatz (110, 140) gebildet sein, der die Innenwand des Abschnitts von dem Gasstrom trennt. Ein solcher Einsatz kann beispielsweise eine abschnittsweise zylindrische und abschnittsweise konusförmige, insbesondere kegelstumpfförmige, Hülse aufweisen, deren zylindrischer Abschnitt in der Stagnationskammer und deren konusf örmiger Abschnitt in dem zusammenlaufenden Teilabschnitt der Lavaldüse eingelegt ist.

Description

Beschreibung
KaltgasSpritzanlage
Die Erfindung bezieht sich auf eine Kaltgasspritzanlage mit den Merkmalen gemäß dem Oberbegriff des Anspruchs 1.
Eine derartige Kaltgasspritzanlage wird beispielsweise von der Firma CGT CoId Gas Technology GmbH unter dem Produktnamen Kinetiks® 4000 CoId Spray System vertrieben. Die vorbekannte Kaltgasspritzanlage weist eine Gasheizeinrichtung zum Erhitzen eines Gases auf. An die Gasheizeinrichtung ist eine Stagnationskammer angeschlossen, die ausgangsseitig mit einer La- valdüse verbunden ist. Lavaldüsen weisen bekanntermaßen einen zusammenlaufenden Teilabschnitt, einen sich an den zusammenlaufenden Teilabschnitt anschließenden Düsenhals sowie einen sich an den Düsenhals anschließenden aufweitenden Teilabschnitt auf. Die Lavaldüse gibt ausgangsseitig einen Gasstrom mit darin befindlichen Partikeln in Überschallgeschwindigkeit ab. Kaltgasspritzanlagen der beschriebenen Art können beispielsweise dazu verwendet werden, um mit den beschleunigten Partikeln eine Beschichtung auf einer Oberfläche zu erzeugen.
Der Erfindung liegt die Aufgabe zugrunde, eine Kaltgasspritzanlage anzugeben, mit der sich eine noch bessere Schichtqualität beim Herstellen einer Beschichtung als bisher erreichen lässt .
Diese Aufgabe wird erfindungsgemäß durch eine Kaltgasspritzanlage mit den Merkmalen gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen der erfindungsgemäßen Kaltgasspritzanlage sind in Unteransprüchen angegeben. Danach ist erfindungsgemäß vorgesehen, dass zumindest ein - in Gasströmungsrichtung gesehen - hinter der Gasheizeinrichtung befindlicher Abschnitt der Kaltgasspritzanlage thermisch geschützt ist, in dem er innenwandseitig mit einem kerami- sehen Isolationsmaterial, das eine thermische Leitfähigkeit (Wärmeleitfähigkeit) unter 20 Watt pro Kelvin und Meter (20 W/Km) aufweist, verkleidet ist oder aus einem solchen Material besteht.
Die thermische Leitfähigkeit eines Isolationsmaterials wird üblicherweise für einen Temperaturbereich zwischen 30 und 1000C angegeben, und zwar, wie aufgeführt, in W/ (K*m) .
Ein wesentlicher Vorteil der erfindungsgemäßen Kaltgasspritz- anläge ist darin zu sehen, dass sich mit dieser höhere Strömungsgeschwindigkeiten des Gasstromes und damit höhere Partikelgeschwindigkeiten erreichen lassen als bei vorbekannten Kaltgasspritzanlagen. Dies ist konkret darauf zurückzuführen, dass sich aufgrund der erfindungsgemäß vorgesehenen thermi- sehen Isolation zumindest eines in Gasströmungsrichtung gesehen hinter der Gasheizeinrichtung befindlichen Abschnitts größere Stagnationstemperaturen des Gases innerhalb der Kaltgasspritzanlage erreichen lassen als bisher. Erfinderseitig wurde erkannt, dass die erreichbaren Strömungsgeschwindigkei- ten gegen Atmosphärendruck, und zwar sowohl die des Gasstromes als auch die der darin befindlichen Partikel, vorrangig von der Stagnationstemperatur des Gases und weniger von dem Stagnationsdruck des Gases abhängen. An dieser Stelle setzt die Erfindung an, indem erfindungsgemäß vorgesehen wird, noch höhere Stagnationstemperaturen als bisher zu ermöglichen; dies wird erreicht, indem ein oder mehrere hinter der Gasheizeinrichtung befindliche Abschnitte gezielt thermisch isoliert bzw. thermisch geschützt werden, um in diesen Abschnitten noch höhere Temperaturen ohne eine Beschädigung von AnIa- genteilen der Kaltgasspritzanlage zu ermöglichen. Mit anderen Worten besteht der Kern der Erfindung also darin, durch eine zusätzliche thermische Isolation höhere Stagnationstemperaturen zu erzielen, um dadurch höhere Strömungsgeschwindigkeiten der Partikel und damit wiederum höherwertige Beschichtungs- qualitäten zu erreichen.
Vorzugsweise ist das Isolationsmaterial durch eines oder mehrere der folgenden Materialien gebildet oder enthält eines oder mehrere dieser zumindest auch: Porzellane, Steatite, Cordieritkeramiken, Aluminiumoxid, insbesondere Zirkonia- verstärktes, Aluminiumsilikat, Aluminiumtitanat, Zirkoniumoxid, insbesondere stabilisierte Varianten, Oxide von Magnesium, Beryllium oder Titan, Siliziumnitrid, poröses Silizium- karbid, insbesondere nitridgebundenes oder rekristallisiertes .
Gemäß einer bevorzugten Ausgestaltung der Erfindung ist vorgesehen, dass die Verkleidung durch einen Einsatz gebildet ist, der ganz oder zum Teil aus dem Isolationsmaterial besteht und derart in dem thermisch zu schützenden Abschnitt der Kaltgasspritzanlage eingelegt ist, dass er die Innenwand des Abschnitts von dem Gasstrom trennt. Bei dieser Ausgestaltung wird erreicht, dass im Falle eines Verschleißes des thermischen Isolationsmaterials dieses besonders einfach und damit vorteilhaft ausgetauscht werden kann.
Alternativ kann die Verkleidung durch eine Beschichtung aus dem Isolationsmaterial gebildet sein, die auf der Innenwand des Abschnitts aufgebracht ist und die Innenwand des Abschnitts von dem Gasstrom trennt.
Besonders bevorzugt liegt der thermisch geschützte Abschnitt in dem zusammenlaufenden Teilabschnitt der Lavaldüse, um eine thermische Belastung und Verformung dieses für die Strahlbildung und Beschleunigung des Gases relevanten Teilabschnitts zu vermeiden.
Vorzugsweise ist zumindest ein Teil des Einsatzes durch eine konusförmige, insbesondere kegelstumpfförmige, Hülse gebildet, die in den zusammenlaufenden Teilabschnitt der Lavaldüse eingelegt ist. Bei einer solchen Ausgestaltung ist ein besonders einfacher Austausch des Einsatzes im Falle eines Materi- alverschleißes möglich.
Alternativ kann vorgesehen sein, dass der thermisch geschützte Abschnitt in der Stagnationskammer liegt.
Vorzugsweise erstreckt sich der thermisch geschützte Abschnitt von der Stagnationskammer aus in den zusammenlaufenden Teil der Lavaldüse. Beispielsweise wird die thermische Isolation durch einen Einsatz erreicht, der durch eine abschnittsweise zylindrische und abschnittsweise konusförmige, insbesondere kegelstumpfförmige, Hülse gebildet ist, deren zylindrischer Abschnitt in der Stagnationskammer und deren konusförmiger Abschnitt in den zusammenlaufenden Teilabschnitt der Lavaldüse eingelegt ist. Auch kann sich der thermisch geschützte Abschnitt bis in den Düsenhals hinein und/oder durch diesen hindurch erstrecken.
Im Hinblick auf eine kostengünstige Wartung der Kaltgasspritzanlage wird es als vorteilhaft angesehen, wenn die Stagnationskammer geöffnet werden kann und der Einsatz und die Stagnationskammer derart ausgestaltet sind, dass der Einsatz von der Stagnationskammer aus ausgetauscht werden kann.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert; dabei zeigen beispielhaft Figur 1 ein erstes Ausführungsbeispiel für eine Kaltgasspritzanlage, bei der der zusammenlaufende Teilabschnitt der Lavaldüse der Kaltgasspritzanlage thermisch geschützt ist,
Figur 2 ein zweites Ausführungsbeispiel für eine Kaltgasspritzanlage, bei der die Stagnationskammer thermisch geschützt ist,
Figur 3 ein drittes Ausführungsbeispiel für eine Kaltgasspritzanlage, bei der ein Abschnitt der Stagnationskammer der Kaltgasspritzanlage sowie der daran angrenzende zusammenlaufende Teilabschnitt der Lavaldüse thermisch geschützt ist, und
Figur 4 ein Ausführungsbeispiel für eine Kaltgasspritzanlage, bei der sich der thermisch geschützte Abschnitt von der Stagnationskammer über den zusammenlaufenden Teilabschnitt der Lavaldüse bis in den sich aufweitenden Teilabschnitt der Lavaldüse erstreckt.
In den Figuren werden der Übersicht halber für identische oder vergleichbare Komponenten stets dieselben Bezugszeichen verwendet .
In der Figur 1 erkennt man eine Kaltgasspritzanlage 10, die mit einer Lavaldüse 20 ausgestattet ist. Die Lavaldüse 20 um- fasst einen zusammenlaufenden Teilabschnitt 30 und einen sich aufweitenden Teilabschnitt 40. Der zusammenlaufende Teilabschnitt 30 und der sich aufweitende Teilabschnitt 40 sind durch einen Düsenhals 50, bei dem der Querschnitt der Laval- düse 20 minimal ist, voneinander getrennt.
An den zusammenlaufenden Teilabschnitt 30 der Lavaldüse 20 ist eine Stagnationskammer 60 angeschlossen. Wie sich in der Figur 1 erkennen lässt, ist die Querschnittsfläche A der Stagnationskammer 60 sehr viel größer als die Querschnittsfläche A' im Bereich des Düsenhalses 50, so dass es im Bereich des Düsenhalses 50 sowie in dem sich daran anschließen- den, sich aufweitenden Teilabschnitt 40 zu einer signifikanten Beschleunigung eines durch die Lavaldüse 20 hindurchtretenden Gasstromes P kommt. Die relativ geringe Gasstromgeschwindigkeit (0 « Machzahl << 1) in der Stagnationskammer 60 ist mit dem Bezugszeichen Vu und die hohe Überschall- Gasstromgeschwindigkeit (Machzahl > 1) im Teilabschnitt 40 mit dem Bezugszeichen Vo gekennzeichnet.
In die Stagnationskammer 60 hinein erstreckt sich eine Parti- keleinspeisungseinrichtung 80, die Partikel T in das in der Stagnationskammer 60 befindliche Gas G einspeist. Bei dem
Ausführungsbeispiel gemäß der Figur 1 werden die Partikel T seitlich vom Rand in die Stagnationskammer 60 eingespeist; dies ist jedoch nur beispielhaft zu verstehen: Die Partikel T können mittig oder unter anderen räumlichen Winkeln als in der Figur 1 dargestellt in die Stagnationskammer 60 eingespeist werden.
In Gasströmungsrichtung gesehen vor der Stagnationskammer 60 ist eine Gasheizeinrichtung 90 angeordnet, die das Gas G auf- wärmt, bevor es in die Stagnationskammer 60 und in die Lavaldüse 20 gelangt.
Die Kaltgasspritzanlage 10 gemäß der Figur 1 lässt sich wie folgt betreiben: Mit der Partikeleinspeisungseinrichtung 80 werden die Partikel T in das in der Stagnationskammer 60 befindliche Gas G eingespeist. Aufgrund des großen Querschnitts A in der Stag- nationskammer 60 ist die Gasstromgeschwindigkeit Vu des Gasstromes P von der Stagnationskammer 60 in die Lavaldüse 20 noch relativ klein (0 « Machzahl << 1) . Erst im Bereich des Düsenhalses 50 kommt es zu einer erheblichen Beschleunigung des Gasstromes P, wodurch sich im aufweitenden Teilabschnitt 40 eine Gasstromgeschwindigkeit Vo des Gasstromes P im Überschallbereich (Machzahl > 1) ergibt.
Um eine möglichst große Strömungsgeschwindigkeit des Gasstromes P im Teilabschnitt 40 zu erreichen, wird in der Stagnati- onskammer 60 eine möglichst hohe Gastemperatur eingestellt. Um dabei zu vermeiden, dass in dem zusammenlaufenden Teilabschnitt 30 der Lavaldüse 20 eine Überhitzung und damit einhergehend eine Deformation oder Zerstörung der Lavaldüse 20 auftreten kann, ist diese mit einem thermischen Isolationsma- terial 100 verkleidet oder beschichtet. Das thermische Isolationsmaterial 100 weist eine thermische Leitfähigkeit unter 20W/Km auf.
Das Isolationsmaterial 100 kann beispielsweise durch eines oder mehrere der folgenden Keramik-Materialien gebildet sein oder diese zumindest auch enthalten: Porzellane, Steatite, Cordieritkeramiken, Aluminiumoxid, insbesondere Zirkonia- verstärktes, Aluminiumsilikat, Aluminiumtitanat, Zirkoniumoxid, insbesondere stabilisierte Varianten, Oxide von Magne- sium, Beryllium oder Titan, Siliziumnitrid, poröses Siliziumkarbid, insbesondere nitridgebundenes oder rekristallisiertes . Beispielsweise ist in dem zusammenlaufenden Teilabschnitt 30 der Lavaldüse 20 die Verkleidung durch einen konusförmigen, insbesondere kegelstumpfförmigen, Einsatz 110 gebildet, der ganz oder zum Teil aus dem genannten thermischen Isolations- material 100 besteht und in die Lavaldüse 20 eingelegt bzw. eingeschoben ist. Durch den Einsatz 110 wird der Gasstrom P von der Innenwand 120 der Lavaldüse 20 getrennt, so dass die Innenwand 120 im Bereich des Einsatzes 110 thermisch geschützt wird.
Vorzugsweise kann die Stagnationskammer 60 an ihrer in der Figur 1 linken oder rechten Seite geöffnet werden, um den Einsatz 110 im Falle eines Verschleißes aus der Lavaldüse 20 herausziehen und austauschen zu können.
In der Figur 2 ist ein zweites Ausführungsbeispiel für eine Kaltgasspritzanlage 10 gezeigt. Im Unterschied zu dem ersten Ausführungsbeispiel gemäß Figur 1 ist die Stagnationskammer 60 thermisch geschützt. So erkennt man in der Figur 2, dass die Innenwand 130 der Stagnationskammer 60 mit dem thermischen Isolationsmaterial 100 verkleidet oder beschichtet ist. Beispielsweise wird die Verkleidung durch einen Einsatz 140 gebildet, der aus dem thermischen Isolationsmaterial 100 besteht oder dieses aufweist und von innen an der Innenwand 130 anliegt. Der Einsatz 140 kann beispielsweise zumindest abschnittsweise durch eine zylindrische Einschubhülse gebildet sein. Vorzugsweise kann die Einschubhülse im Falle eines Verschleißes von der in der Figur 2 linken oder rechten Seite der Stagnationskammer 60 aus ausgetauscht werden.
In der Figur 3 ist ein weiteres Ausführungsbeispiel für eine Kaltgasspritzanlage 10 gezeigt. Bei diesem Ausführungsbeispiel sind der an die Lavaldüse 20 angrenzende Innenwandabschnitt 200 der Stagnationskammer 60 sowie der Innenwandab- schnitt 210 des zusammenlaufenden Teilabschnitts 30 der La- valdüse 20 thermisch geschützt. Beispielsweise sind die beiden Innenwandabschnitte 200 und 210 mit einem Einsatz 220 in Form einer Hülse oder Einschubhülse verkleidet, die von der Stagnationskammer 60 aus in diese sowie in die Lavaldüse 20 eingesetzt worden ist. Vorzugsweise ist die Einschubhülse 220 auswechselbar, so dass sie im Falle eines Verschleißes ausgewechselt werden kann. Wie sich in der Figur 3 erkennen lässt, ist die Einschubhülse 220 abschnittsweise zylindrisch und ab- schnittsweise konusförmig, wobei der zylindrische Abschnitt in der Stagnationskammer 60 und der konusförmige Abschnitt in dem zusammenlaufenden Teilabschnitt 40 der Lavaldüse 20 eingelegt bzw. eingeschoben ist.
In der Figur 4 ist ein Ausführungsbeispiel für eine Kaltgasspritzanlage 10 gezeigt, bei der die Stagnationskammer 60, der zusammenlaufende Teilabschnitt 30 der Lavaldüse 20, der Düsenhals 50 sowie ein Unterabschnitt 310 des sich aufweitenden Teilabschnitts 40 der Lavaldüse 20 thermisch isoliert sind. Beispielsweise ist auf die genannten Abschnitte eine
Beschichtung aus einem thermischen Isolationsmaterial aufgebracht, das eine thermische Leitfähigkeit unter 20 W/Km aufweist. Alternativ können die Stagnationskammer 60, der Teilabschnitt 30, der Düsenhals 50 und der Unterabschnitt 310 auch massiv aus einem thermischen Isolationsmaterial bestehen, das eine Leitfähigkeit unter 20 W/Km aufweist.

Claims

Patentansprüche
1. Kaltgasspritzanlage (10) mit einer Gasheizeinrichtung (90), - einer an die Gasheizeinrichtung (90) mittelbar oder unmittelbar angeschlossenen Stagnationskammer (60) und einer Lavaldüse (20), die eingangsseitig an die Stagnationskammer (60) angeschlossen ist und ausgangsseitig einen Gasstrom (P) mit darin befindlichen Partikeln (T) mit Überschallgeschwindigkeit abgibt, d a d u r c h g e k e n n z e i c h n e t, d a s s zumindest ein - in Gasströmungsrichtung gesehen - hinter der Gasheizeinrichtung (90) befindlicher Abschnitt der Kaltgasspritzanlage thermisch geschützt ist, - indem er innenwandseitig mit einem keramischen Isolationsmaterial, das eine thermische Leitfähigkeit unter 20 W/Km aufweist, verkleidet ist oder aus einem solchen besteht.
2. Kaltgasspritzanlage nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, d a s s das Isolationsmaterial durch eines oder mehrere der folgenden Materialien gebildet ist oder eines oder mehrere dieser zumindest auch enthält: Porzellane; Steatite; Cordieritkerami- ken; Aluminiumoxid, insbesondere Zirkonia-verstärktes; Alumi- niumsilikat ; Aluminiumtitanat ; Zirkoniumoxid, insbesondere stabilisierte Varianten; Oxide von Magnesium, Beryllium oder Titan; Siliziumnitrid; poröses Siliziumkarbid, insbesondere nitridgebundenes oder rekristallisiertes.
3. Kaltgasspritzanlage nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s die Verkleidung durch einen Einsatz (110, 140) gebildet ist, der ganz oder zum Teil aus dem Isolationsmaterial besteht und derart in den thermisch geschützten Abschnitt der Kaltgasspritzanlage eingelegt ist, dass er die Innenwand des Abschnitts von dem Gasstrom trennt.
4. Kaltgasspritzanlage nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s die Verkleidung durch eine Beschichtung aus dem Isolationsmaterial gebildet ist, die auf der Innenwand des Abschnitts aufgebracht ist und die Innenwand des Abschnitts von dem Gasstrom trennt.
5. Kaltgasspritzanlage nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s der thermisch geschützte Abschnitt in dem zusammenlaufenden Teilabschnitt der Lavaldüse liegt.
6. Kaltgasspritzanlage nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, d a s s zumindest ein Teil des Einsatzes durch eine konusförmige, insbesondere kegelstumpfförmige, Hülse gebildet ist, die in den zusammenlaufenden Teilabschnitt der Lavaldüse eingelegt ist .
7. Kaltgasspritzanlage nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s der thermisch geschützte Abschnitt in der Stagnationskammer liegt.
8. Kaltgasspritzanlage nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t, d a s s sich der thermisch geschützte Abschnitt von der Stagnationskammer aus in den zusammenlaufenden Teil der Lavaldüse erstreckt .
9. Kaltgasspritzanlage nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, d a s s der Einsatz eine abschnittsweise zylindrische und abschnittsweise konusförmige, insbesondere kegelstumpfförmige, Hülse aufweist, deren zylindrischer Abschnitt in der Stagnations- kammer und deren konusförmiger Abschnitt in den zusammenlaufenden Teilabschnitt der Lavaldüse eingelegt ist.
10. Kaltgasspritzanlage nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s dass sich der thermisch geschützte Abschnitt bis in den Düsenhals hinein und/oder durch diesen hindurch erstreckt.
11. Kaltgasspritzanlage nach einem der voranstehenden Ansprü- che, d a d u r c h g e k e n n z e i c h n e t, d a s s die Stagnationskammer (60) geöffnet werden kann und der Einsatz und die Stagnationskammer derart ausgestaltet sind, dass der Einsatz von der Stagnationskammer aus aus- getauscht werden kann.
PCT/EP2009/053462 2008-04-11 2009-03-24 Kaltgasspritzanlage WO2009124839A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2721114A CA2721114C (en) 2008-04-11 2009-03-24 Cold gas spraying system
EP09729463A EP2260119B1 (de) 2008-04-11 2009-03-24 Kaltgasspritzanlage
CN200980112697.9A CN101999011B (zh) 2008-04-11 2009-03-24 低温气体喷射器
US12/736,476 US20110094439A1 (en) 2008-04-11 2009-03-24 Cold gas spraying system
DK09729463.1T DK2260119T3 (da) 2008-04-11 2009-03-24 Koldgassprøjteanlæg

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008019682.7 2008-04-11
DE102008019682A DE102008019682A1 (de) 2008-04-11 2008-04-11 Kaltgasspritzanlage

Publications (2)

Publication Number Publication Date
WO2009124839A2 true WO2009124839A2 (de) 2009-10-15
WO2009124839A3 WO2009124839A3 (de) 2010-02-18

Family

ID=40765713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/053462 WO2009124839A2 (de) 2008-04-11 2009-03-24 Kaltgasspritzanlage

Country Status (7)

Country Link
US (1) US20110094439A1 (de)
EP (1) EP2260119B1 (de)
CN (1) CN101999011B (de)
CA (1) CA2721114C (de)
DE (1) DE102008019682A1 (de)
DK (1) DK2260119T3 (de)
WO (1) WO2009124839A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9335296B2 (en) 2012-10-10 2016-05-10 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
EP2992123B1 (de) * 2013-05-03 2018-10-10 United Technologies Corporation Kaltgasspritzsystem mit gasheizer und verfahren zur verwendung desselben
WO2015047995A1 (en) * 2013-09-25 2015-04-02 United Technologies Corporation Simplified cold spray nozzle and gun
JP6716204B2 (ja) * 2015-06-24 2020-07-01 日本発條株式会社 成膜方法及び成膜装置
WO2020179100A1 (ja) * 2019-03-01 2020-09-10 株式会社カワタ 粉体のコーティング装置およびコーティング方法、粉体分散装置ならびに粉体分散方法
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
CA3151605C (en) 2019-09-19 2023-04-11 Westinghouse Electric Company Llc Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062685A1 (en) * 2000-02-24 2001-08-30 C-Max Technology, Inc. Ceramics and process for producing
DE10207519A1 (de) * 2002-02-22 2003-09-11 Linde Ag Vorrichtung zum Kaltgasspritzen
EP1629899A1 (de) * 2004-08-23 2006-03-01 Delphi Technologies, Inc. Auswechselbarer Düseneinsatz für eine kinetische Sprühdüse
US20060108601A1 (en) * 2004-11-25 2006-05-25 Fuji Electric Holdings Co., Ltd. Insulating substrate and semiconductor device
EP1775026A1 (de) * 2005-10-04 2007-04-18 Delphi Technologies, Inc. Verbesserter nicht klumpender Pulverinjektor für ein Düsensystem zum kinetischen Sprühen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1162934A (zh) * 1994-09-19 1997-10-22 Ast控股有限公司 把电磁能和可加热混合物耦合起来的喷嘴
US7163603B2 (en) * 2002-06-24 2007-01-16 Tokyo Electron Limited Plasma source assembly and method of manufacture
DE102006014124A1 (de) * 2006-03-24 2007-09-27 Linde Ag Kaltgasspritzpistole

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062685A1 (en) * 2000-02-24 2001-08-30 C-Max Technology, Inc. Ceramics and process for producing
DE10207519A1 (de) * 2002-02-22 2003-09-11 Linde Ag Vorrichtung zum Kaltgasspritzen
EP1629899A1 (de) * 2004-08-23 2006-03-01 Delphi Technologies, Inc. Auswechselbarer Düseneinsatz für eine kinetische Sprühdüse
US20060108601A1 (en) * 2004-11-25 2006-05-25 Fuji Electric Holdings Co., Ltd. Insulating substrate and semiconductor device
EP1775026A1 (de) * 2005-10-04 2007-04-18 Delphi Technologies, Inc. Verbesserter nicht klumpender Pulverinjektor für ein Düsensystem zum kinetischen Sprühen

Also Published As

Publication number Publication date
US20110094439A1 (en) 2011-04-28
CA2721114C (en) 2017-04-25
DK2260119T3 (da) 2012-11-26
CA2721114A1 (en) 2009-10-15
DE102008019682A1 (de) 2009-10-15
WO2009124839A3 (de) 2010-02-18
CN101999011A (zh) 2011-03-30
EP2260119A2 (de) 2010-12-15
CN101999011B (zh) 2013-08-21
EP2260119B1 (de) 2012-08-15

Similar Documents

Publication Publication Date Title
EP1999297B1 (de) Kaltgasspritzpistole
EP2260119B1 (de) Kaltgasspritzanlage
EP1390152B1 (de) Verfahren und vorrichtung zum kaltgasspritzen
DE69718514T2 (de) Vorrichtung zum gasdynamischen beschichten
EP2108051B1 (de) Verfahren und vorrichtung zum kaltgasspritzen von partikeln unterschiedlicher festigkeit und/oder duktilität
EP3102335B1 (de) Kühlvorrichtung für eine spritzdüse bzw. spritzdüsenanordnung mit einer kühlvorrichtung für das thermische spritzen
EP2558217B1 (de) Aussen mischende mehrstoffdüse
EP2347180A1 (de) Zweistoffdüse, bündeldüse und verfahren zum zerstäuben von fluiden
EP1022078B1 (de) Verfahren und Vorrichtung zur Herstellung von Metallpulver durch Gasverdüsung
DE10319481A1 (de) Lavaldüse für das thermische Spritzen und das kinetische Spritzen
EP2555858A1 (de) Sprühsystem und verfahren zum einsprühen eines sekundären fluids in ein primäres fluid
EP1971444A1 (de) Zweistoffdüse
WO2003015929A1 (de) Dralldruck-düse
WO2011057612A1 (de) Verfahren und vorrichtung zur bauteilbeschichtung
EP2872258B1 (de) Kaltgasspritzpistole mit pulverinjektor
DE102007034549A1 (de) Energiespardüse mit Druckluftunterstützung
DE19752245A1 (de) Zweistoffdüse und Niederdruck-Zerstäubungsvorrichtung mit mehreren benachbarten Zweistoffdüsen
DE102006022282A1 (de) Kaltgasspritzpistole
DE102014003877A1 (de) Verfahren und Vorrichtung zur on-line-Reinigung von Zweistoffdüsen
DE10207519A1 (de) Vorrichtung zum Kaltgasspritzen
EP1506816A1 (de) Lavaldüse für thermisches oder kinetisches Spritzen
DE102005038453B4 (de) Verfahren und Vorrichtung zum thermischen Spritzen von Suspensionen
DE102010001454A1 (de) Vorrichtung zum Erzeugen eines Gespinsts und deren Verwendung
DE10119288B4 (de) Verfahren und Einrichtung zur gasdynamischen Beschichtung von Oberflächen mittels Schalldüsen
DE10207525A1 (de) Verfahren und Vorrichtung zum Kaltgasspritzen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112697.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729463

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009729463

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2721114

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12736476

Country of ref document: US