[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009123172A1 - フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法 - Google Patents

フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法 Download PDF

Info

Publication number
WO2009123172A1
WO2009123172A1 PCT/JP2009/056611 JP2009056611W WO2009123172A1 WO 2009123172 A1 WO2009123172 A1 WO 2009123172A1 JP 2009056611 W JP2009056611 W JP 2009056611W WO 2009123172 A1 WO2009123172 A1 WO 2009123172A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
light shielding
layer
antireflection layer
light
Prior art date
Application number
PCT/JP2009/056611
Other languages
English (en)
French (fr)
Inventor
浩之 岩下
博明 宍戸
淳志 小湊
雅広 橋本
細谷 守男
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to US12/935,766 priority Critical patent/US8512916B2/en
Priority to JP2010505928A priority patent/JP5579056B6/ja
Priority to KR1020167011171A priority patent/KR101726553B1/ko
Priority to KR1020107024214A priority patent/KR101696487B1/ko
Publication of WO2009123172A1 publication Critical patent/WO2009123172A1/ja
Priority to US13/944,251 priority patent/US9075314B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/46Antireflective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating

Definitions

  • the present invention relates to a photomask blank, a photomask, and a method for manufacturing a photomask blank.
  • microfabrication is performed using photolithography technology using a photomask. Has been done.
  • a photomask blank in which a light shielding film generally made of a metal thin film such as a chromium film is formed on a light transmitting substrate such as quartz glass or aluminosilicate glass by sputtering or vacuum evaporation.
  • a photomask in which a film is formed in a predetermined pattern is used.
  • the photomask produced from this photomask blank is an exposure process in which a desired pattern exposure is performed on the resist film formed on the photomask blank, and a desired pattern exposure is performed on the resist film formed on the photomask blank.
  • a developing solution is supplied to dissolve a resist film portion soluble in the developing solution to form a resist pattern.
  • cerium ammonium nitrate and perchloric acid A portion of the light-shielding film on which the resist pattern is not formed is removed by etching such as wet etching using an etching solution made of a mixed aqueous solution or dry etching using chlorine gas, and a predetermined mask pattern is applied to the translucent substrate.
  • the etching process formed on top and the remaining resist pattern are removed. It is manufactured through a peeling step of removing.
  • the resist pattern formed on the light shielding film must remain with a sufficient film thickness, but when the resist film thickness is increased, a particularly fine pattern is formed.
  • the aspect ratio becomes large, causing problems such as pattern collapse. Therefore, in order to miniaturize the mask pattern formed on the photomask, it is necessary to thin the resist film formed on the photomask blank.
  • Patent Document 1 has a structure in which the thickness of the light shielding film is 100 nm or less and the film thickness of the chromium-based compound having a high etching rate occupies 70% or more.
  • Patent Document 1 discloses a photomask blank in which a translucent film, a CrON film, a Cr film, and a CrON film are laminated on a translucent substrate, and the film thickness of the CrON film occupies 70% or more. It is disclosed.
  • the CrON film only sets the optical density per unit film thickness at a wavelength of 450 nm, and is not optimized for exposure light below the ArF excimer laser light.
  • the miniaturized mask pattern itself shades the transfer image (shadowing).
  • the light shielding film is thick, the influence of the light amount reduction (contrast deterioration) due to shadowing is large.
  • the cross-sectional shape is likely to vary, and this causes a deterioration in CD (Critical Dimension) transfer accuracy together with shadowing.
  • a photomask blank capable of forming a fine mask pattern is desired. Further, there is a demand for a photomask blank that can form a thin resist film on the light-shielding film and consequently does not cause pattern collapse and has high transfer accuracy. Specifically, in order to prevent resist pattern collapse, a photomask having a resolution required for generations of hp 45 nm and hp 32 nm and later is obtained by reducing the resist film aspect ratio and reducing the resist pattern aspect ratio. It has been.
  • etching time (ET) of the light shielding film is determined by the etching rate (ER), the thickness (d) of the light shielding film, and the cross-sectional angle adjustment time (overetching time) (OET) of the light shielding film pattern.
  • CET CET + OET (1)
  • “CET” is a clear etching (just etching) time, and is a time for the etching of the monitor pattern (generally a large extraction pattern of several mm square) to reach a lower layer film such as a substrate or a phase shifter film. .
  • a photomask having a light-shielding film having a short etching time by increasing the etching rate (ER), reducing the thickness of the light-shielding film (d), shortening the overetching time (OET), and the like.
  • a blank is required.
  • etching rate In order to increase the etching rate (ER), it is usually necessary to reduce the metal content. However, if the metal content is kept low, the optical density per unit film thickness decreases, and as a result, the film thickness necessary for the light-shielding film to obtain a predetermined optical density increases. Therefore, a photomask blank having a light-shielding film having a high etching rate (ER) and a relatively thin film thickness and sufficient optical density is demanded.
  • ER etching rate
  • the angle of the cross-section of the light-shielding film after etching is formed perpendicular to the substrate regardless of the pattern density.
  • the resist when etching a lower Cr-based film (the main component of the contained metal is Cr) using a resist pattern as a mask, the resist is less resistant to etching containing O 2 , so that the resist film is greatly damaged. Etching is not possible with high accuracy. For this reason, a photomask blank having a Cr-based film with a short etching time that can be applied to a thin film resist is required.
  • the photomask blank according to [1] or [2], wherein the uppermost layer of the thin film has a chromium content of 50 atm% or less and a total content of nitrogen and oxygen of 40 atm% or more.
  • the thin film has a light-shielding film in which a back-surface antireflection layer, a light-shielding layer, and a surface antireflection layer are sequentially laminated from the side close to the translucent substrate,
  • the photomask blank according to any one of [1] to [3], wherein the surface antireflection layer is the uppermost layer of the thin film.
  • the back surface antireflection layer has an amorphous structure made of a material containing chromium and at least one of nitrogen, oxygen, and carbon.
  • the thin film has a light shielding film and an etching mask film, The photomask blank according to any one of [1] to [3], wherein the etching mask film is the uppermost layer of the thin film.
  • the thin film has a phase shifter film and a light shielding film,
  • the photomask blank according to any one of [1] to [8], wherein the phase shifter film is disposed between the translucent substrate and the light shielding film.
  • thin film means a film including a light shielding film, and optionally including an etching mask film, a phase shifter film, and the like.
  • the photomask blank of the present invention includes a photomask blank on which a resist film is formed and a photomask blank on which no resist film is formed. Therefore, the “thin film” in this specification does not include a resist film regardless of whether or not the resist film is formed on the photomask blank.
  • the photomask blank according to a preferred embodiment of the present invention is a light shielding film having a light shielding film (absorbing layer) having a high content of metal such as Cr in a light shielding film having a multi-layer structure (particularly three layers).
  • the clear etching time (CET) and the over etching time (OET) can be shortened.
  • a photomask blank according to a preferred embodiment of the present invention includes a high etching rate (ER) metal (for example, Cr) -containing film (antireflection layer) and a low etching rate (ER) metal-containing film (absorption layer).
  • ER etching rate
  • the film thickness of the high etching rate (ER) layer and the low etching rate (ER) layer is balanced to a predetermined balance, and the low etching rate (ER) layer is disposed at a predetermined position.
  • the over-etching time (OET) can be shortened.
  • the clear etching time (CET), the overetching time (OET), or both can be shortened, so that the resist formed on the light shielding film can be thinned.
  • the photomask blank according to a preferred embodiment of the present invention is less prone to problems such as pattern collapse, and a fine mask pattern can be formed.
  • the photomask blank according to a preferred embodiment of the present invention has a structure in which a plurality of layers having different metal contents are laminated with a predetermined film thickness, so that the etching rate (ER) as a whole of the light shielding film is high, And the photomask blank which has a light shielding film which has sufficient optical density with a predetermined film thickness can be provided.
  • FIG. 1 is a schematic diagram of a photomask blank manufactured in Example 1.
  • FIG. 6 is a schematic diagram of a photomask blank manufactured in Example 2.
  • the photomask blank of the first aspect of the present invention is A photomask blank used for producing a photomask to which ArF excimer laser light is applied, A thin film having a multilayer structure is formed on a light-transmitting substrate, The uppermost layer of the thin film is a photomask blank having an amorphous structure made of a material containing chromium and at least one of nitrogen, oxygen, and carbon.
  • the translucent substrate is not particularly limited as long as it is a translucent substrate.
  • a quartz glass substrate, an aluminosilicate glass substrate, a calcium fluoride substrate, a magnesium fluoride substrate, or the like can be used.
  • a quartz glass substrate is preferable because it has high flatness and smoothness, and when pattern transfer onto a semiconductor substrate using a photomask is performed, transfer pattern distortion hardly occurs and high-precision pattern transfer can be performed.
  • the thin film of the photomask blank according to the first aspect of the present invention includes a light shielding film, and optionally refers to a film including an etching mask film, a phase shifter film, and the like.
  • the thin film does not include a resist film regardless of whether or not the resist film is formed on the photomask blank. Therefore, the configuration of the thin film includes, for example, (1) a film made of a Cr-based light shielding film, (2) a film made of a phase shifter film and a Cr-based light shielding film, and (3) a light shielding film and a Cr-based etching mask film. (4) A film made of a phase shifter film, an etching stopper film, a light shielding film, and a Cr-based etching mask film.
  • the uppermost layer of the thin film has an amorphous structure made of a material containing chromium and at least one of nitrogen, oxygen, and carbon. Therefore, in the photomask blank in which the thin film is made of a Cr-based light shielding film, the uppermost layer of the light shielding film has an amorphous structure. In a photomask blank in which a thin film is a film in which a phase shifter film and a Cr-based light shielding film are provided in this order, the uppermost layer of the light shielding film has an amorphous structure.
  • the etching mask film that is the uppermost layer of the thin film has an amorphous structure.
  • the etching mask film that is the uppermost layer of the thin film has an amorphous structure.
  • the Cr-based light shielding film preferably has a laminated structure in which a back surface antireflection layer, a light shielding layer, and a surface antireflection layer are laminated in this order from the side close to the translucent substrate.
  • the light shielding film should just have at least 3 layers, a back surface antireflection layer, a light shielding layer, and a surface antireflection layer, and may also have one or more layers.
  • the back surface antireflection layer is a layer provided on the lower side of the light shielding layer (side closer to the translucent substrate) among the layers forming the light shielding film.
  • the back surface antireflection layer preferably controls the light shielding properties and etching characteristics of the light shielding film, and controls the adhesion with the antireflection function and the phase shifter film.
  • the back surface antireflection layer is such that the exposure light incident from the translucent substrate on the side opposite to the side on which the light shielding film is formed is reflected to the exposure light source side by the back surface antireflection layer and does not affect the transfer characteristics.
  • the light shielding layer is a layer provided between the back surface antireflection layer and the front surface antireflection layer among the layers forming the light shielding film.
  • the light shielding layer controls the light shielding properties and etching characteristics of the light shielding film. Moreover, it is preferable that it is a layer which has the highest light-shielding property in a multilayer film.
  • the surface antireflection layer is a layer provided on the upper side of the light shielding layer (the side far from the translucent substrate) among the layers forming the light shielding film.
  • the surface antireflection layer preferably controls the light shielding property and etching characteristics of the light shielding film, and controls chemical resistance against cleaning in a photomask blank or photomask.
  • the surface antireflection layer when used as a photomask, has the effect of preventing the reflected light from the transferred object such as a semiconductor substrate from returning to the transferred object and degrading the pattern accuracy.
  • the surface reflectance is 30% or less, preferably 25% or less, more preferably 20% or less, relative to the wavelength of ArF excimer laser light.
  • the front antireflection layer preferably has an amorphous structure made of a material containing chromium and at least one of nitrogen, oxygen and carbon, and the back antireflection layer also preferably has an amorphous structure.
  • the etching rate can be increased, and the etching time of the light shielding film can be shortened. That is, when the Cr-based light-shielding film is dry-etched using the resist pattern as a mask, the resist has low resistance to etching containing O 2 , so that the resist film becomes larger, but the surface antireflection layer of the light-shielding film and / or Alternatively, when the back surface antireflection layer has an amorphous structure, the etching time of the light shielding film can be shortened, so that the resist can be thinned.
  • the over-etching time can be shortened by shortening the etching time of the entire light-shielding film by making the light-shielding film a three-layer structure and making the front-surface antireflection layer and / or the back-surface antireflection layer an amorphous structure with a high etching rate. Can do. Furthermore, by making the front-surface antireflection layer and / or the back-surface antireflection layer have an amorphous structure, the film stress of the light shielding film can be reduced.
  • the front-surface antireflection layer and the back-surface antireflection layer are formed of a material mainly containing any one of CrOCN (chromium oxycarbonitride), CrOC (chromium oxycarbide), CrON (chromium oxynitride), and CrN (chromium nitride). It is preferable.
  • Cr-based material an oxidized material has a higher etching rate with respect to a chlorine-based gas.
  • the nitrided material also has a higher etching rate with respect to the chlorine-based gas.
  • the surface antireflection layer and the back surface antireflection layer are highly oxidized or highly nitrided so that the Cr content is 50 atm% or less, more preferably 40 atm% or less, and the total of N and O is 40 atm% or more, more preferably 50 atm% or more. It is preferable. If the Cr content exceeds 50 atm%, or the total content of N and O is less than 40 atm%, the etching time of the light shielding film may become long.
  • the front antireflection layer and the back antireflection layer are preferably CrOCN and CrOC. Further, from the viewpoint of formation of an amorphous structure and controllability of stress (a low stress film can be formed), CrOCN is preferable.
  • the main component of the front surface antireflection layer and the back surface antireflection layer is CrOCN or CrOC
  • a chromium target and a mixed gas containing CO 2 gas it is preferable to use a chromium target and a mixed gas containing CO 2 gas.
  • a gas having a small hysteresis such as a mixed gas containing CO 2 gas, N 2 gas and a rare gas, or a mixed gas containing CO 2 gas and a rare gas.
  • the front-surface antireflection layer and the back-surface antireflection layer have conditions near the start of transition from the metal mode to the reaction mode, or conditions close to the reaction mode. It is preferable to form a film.
  • the metal mode is a region where a high voltage (eg, 330 to 350 V) is maintained (region where Cr is ion-sputtered by Ar), the transition region is a region where the voltage suddenly drops, and the reaction mode is a region after the sudden drop of the suddenly dropped voltage ( This refers to the region where the suddenly dropped voltage of 290 to 310 V is maintained (the region where the gas is activated and exhibits reactivity).
  • a high voltage eg, 330 to 350 V
  • the transition region is a region where the voltage suddenly drops
  • the reaction mode is a region after the sudden drop of the suddenly dropped voltage ( This refers to the region where the suddenly dropped voltage of 290 to 310 V is maintained (the region where the gas is activated and exhibits reactivity).
  • the metal mode is a region of 0 to 30 sccm in FIG. 3 (1), a region of 0 to 25 sccm in FIG. 3 (2), and a region of 0 to 32 sccm in FIG. 3 (3).
  • the transition region is a region of 35 to 50 sccm in the increase mode in FIG. 3 (1), a region of 35 to 50 sccm in the increase mode in FIG. 3 (2), and a region of 43 to 50 sccm in the increase mode in FIG. .
  • the reaction region is a region of 50 to 35 sccm in the decrease mode in FIG. 3 (1), a region of 50 to 35 sccm in the decrease mode in FIG. 3 (2), and a region of 48 to 32 sccm in the decrease mode in FIG. .
  • a chromium film having a very low degree of oxidation and nitridation is formed in the metal mode.
  • a chromium film having a high degree of oxidation and nitridation is formed, and an intermediate mode between the metal mode and the reaction mode (a mode between the metal mode and the reaction mode). In the transition region), the condition is not stable and is not normally used.
  • FIGS. 3 (1) and 3 (2) when a gas system with small hysteresis is used (in FIG. 3 (1), “CO 2 gas + rare gas” is used, and FIG. 2) “CO 2 gas + N 2 gas + rare gas” is used, and chromium that has been oxidized and nitrided by DC sputtering is in a reaction mode (in FIG. 3A, a reduced mode region of 40-30 sccm, FIG.
  • a film In a reduced mode region of 35 to 25 sccm), a film can be stably formed with low defects, and the obtained oxidized and nitrided chromium has an amorphous structure and a film having a high etching rate can be produced.
  • FIG. 3 (1) and FIG. 3 (2) where the increase mode and the decrease mode in the vicinity of the flow rate of 35 sccm are slightly shifted (conditions), that is, the conditions for going from the metal mode to the reaction mode (from the metal mode to the reaction mode).
  • the film is formed near (immediately) when the transition to (1) begins, so that the oxidized and nitrided chromium film with a relatively high etching rate compared to other conditions can be stably reduced by DC sputtering. Can be manufactured with defects.
  • the gas pressure when the film is formed by the DC sputtering it is preferable to reduce the gas pressure when the film is formed by the DC sputtering to 0.2 Pa or less because an amorphous is easily formed.
  • heat treatment in order to prevent a change in flatness due to heat treatment before resist application, it is preferable to perform heat treatment at 150 to 300 ° C. in advance after forming the light shielding film.
  • the temperature is 200 ° C. or higher. When the temperature exceeds 300 ° C., the amorphous structure is lost and the film tends to be crystalline.
  • the flatness after the heat treatment is preferably 10 nm or less.
  • the flatness described in the present invention is a value representing the warpage (deformation amount) of the surface expressed by TIR (Total Indicated Reading).
  • TIR Total Indicated Reading
  • the measured value in an area of 142 ⁇ 142 mm at the center of the 6-inch substrate is defined as flatness.
  • the surface roughness Ra of the surface antireflection layer is 0.50 nm or less, the LER (Line Edge Roughness) of the light shielding film pattern can be reduced and the cross sectional shape of the light shielding film pattern can be improved. It is preferable because it is possible.
  • the surface roughness was measured using an atomic force microscope (AFM), and Ra (center line surface roughness) was obtained based on height data in a 10 nm square range.
  • the light shielding layer preferably has a slower etching rate than the surface antireflection layer. Therefore, the etching time of the whole light shielding film can be shortened by making the film thickness of the light shielding layer with a slow etching rate 30% or less of the whole film thickness. If the thickness of the light-shielding layer exceeds 30% of the total thickness of the light-shielding film, the thickness of the light-shielding film can be reduced. However, since the ratio of the back surface or front surface antireflection layer having a high etching rate is reduced, the etching time is reduced. It is not preferable because it cannot be shortened.
  • the thickness of the light shielding layer is set to 30% or less of the entire thickness of the light shielding film, the variation in the cross-sectional shape due to loading generated in the upper surface antireflection layer while the light shielding layer is etched is alleviated.
  • the thickness of the light shielding layer is 20% or less, more preferably 10% or less of the entire thickness of the light shielding film, because the etching time is further shortened and the cross-sectional shape is also improved.
  • the intermediate layer with a slow etching rate is thick, the bottom of the intermediate layer is large, and the etching area of the lower back surface antireflection layer becomes narrow due to the influence, and the total etching time becomes long, but the intermediate layer is thin. In this case, the bottom of the intermediate layer is small, and the progress of the etching of the lower layer is not hindered, which is preferable.
  • the thickness of the back surface antireflection layer is increased while the light shielding layer is reduced, the pattern cross section can be formed at an angle closer to the vertical.
  • the thickness of the light shielding layer is preferably 40% or less, more preferably 15% or less of the thickness of the back surface antireflection layer.
  • the resist film is also etched and consumed when the light shielding film is dry-etched using the resist film as a mask.
  • Other methods are as follows. For example, a photomask blank in which a MoSi light shielding film and a Cr etching mask film are provided in this order on a substrate is used. Then, by using a thin Cr-based etching mask film, the burden on the resist is reduced, and the reduction in resolution when the mask pattern is transferred to the Cr-based etching mask film is improved. With this configuration, the resist film can be thinned.
  • the pattern shape is significantly deteriorated, and the LER when the mask pattern is transferred to the etching mask film is deteriorated, so that the etching time of the etching mask film is shortened.
  • the inventor has found that there is a need.
  • the etching mask film has an amorphous structure made of a material containing chromium and at least one of nitrogen, oxygen, and carbon, the etching speed of the etching mask film can be increased, and the etching time of the etching mask film can be reduced. This is preferable because it can be shortened.
  • the preferable material, composition ratio, and film formation conditions of the etching mask film are the same as those of the front-surface antireflection layer or the back-surface antireflection layer in the Cr-based light shielding film.
  • the film stress can be reduced.
  • the flatness after the heat treatment is preferably 10 nm or less.
  • the surface roughness Ra of the etching mask film is 0.50 nm or less because the LER of the etching mask pattern can be reduced and the cross-sectional shape of the etching mask pattern can be improved.
  • the film structure of the etching mask film is often a single layer made of the above film material, but may be a multi-layer structure.
  • the multi-layer structure can be a multi-layer structure formed in stages with different compositions or a film structure in which the composition is continuously changed.
  • the light shielding film provided under the etching mask film is preferably a MoSi-based material.
  • the light-shielding film has a thickness of 60 nm or less, and a two-layer structure in which the light-shielding layer and the front-surface antireflection layer are formed in this order, or the back-surface antireflection layer, the light-shielding layer, and the front-surface antireflection layer in this order.
  • the formed three-layer structure is preferable.
  • the light shielding layer is preferably MoSi or MoSiN, and the antireflection layer is preferably MoSiON, MoSiN or MoSiO.
  • the Mo content of the light shielding layer is preferably 20 to 40 atm%, and the Mo content of the antireflection layer is 15 atm% or less, preferably 5 atm%.
  • the light shielding film may be made of a Ta-based material.
  • a halftone phase shift mask blank may be provided by providing a phase shifter film.
  • a phase shifter film, an etching stopper film, the light shielding film, and the etching mask film may be provided in this order on the light transmitting substrate.
  • the phase shifter film is preferably a MoSi-based film such as MoSiN or MoSiON
  • the etching stopper film is preferably a Cr-based film such as CrN or CrON.
  • the clear etching time is shortened, but the overetching time may be increased due to loading, so it is difficult to shorten the etching time in the two-layer structure, (2)
  • a three-layer structure of a back surface antireflection layer, a light shielding layer, and a surface antireflection layer is used, and a material having an etching rate faster than that of the light shielding layer is used for the lowermost back surface antireflection layer Is preferable
  • the thickness of the intermediate layer with a slow etching rate is adjusted to 30% or less of the total film thickness in order to shorten the over-etching time and further improve the cross-sectional shape of the light-shielding film pattern. That it is preferable to The invention of the photomask blank of the first aspect was completed.
  • the light shielding film has a laminated structure in which a back surface antireflection layer, a light shielding layer, and a surface antireflection layer are laminated in this order from the side close to the translucent substrate,
  • the total thickness of the light shielding film is 60 nm or less
  • the back surface antireflection layer is made of a film containing a metal and has a first etching rate
  • the surface antireflection layer is made of a film containing a metal, has a third etching rate
  • the light shielding layer is made of a film containing the same metal as the metal contained in the back surface antireflection layer or the front surface antireflection layer, and has a first etching rate and a second etching rate lower than the third etching rate
  • the thickness of the light shielding layer having a slow etching rate is 30% or less of the total film thickness, so that the etching time of the entire light shielding film can be shortened. If the thickness of the light-shielding layer exceeds 30% of the total thickness of the light-shielding film, the thickness of the light-shielding film can be reduced. However, since the ratio of the back surface or front surface antireflection layer having a high etching rate is reduced, the etching time is reduced. It is not preferable because it cannot be shortened.
  • the thickness of the light shielding layer is 30% or less of the entire thickness of the light shielding film, it occurred in the upper surface antireflection layer while the light shielding layer was etched. Variation in cross-sectional shape due to loading is reduced. Thereafter, the back surface antireflection layer is etched at a high speed, so that while the back surface antireflection layer is being etched, the portion of the surface antireflection layer or the like that is not intended to be etched is further etched, and the pattern cross section The shape can be good. Furthermore, the cross-sectional shape can be further improved by optimizing the position where the light shielding layer is introduced.
  • the etching time is further shortened and the cross-sectional shape is also improved. preferable.
  • the intermediate layer having a slow etching rate is thick, the bottom of the intermediate layer is large, and the etching area of the lower back surface antireflection layer becomes narrow due to the influence, and the total etching time becomes long.
  • the intermediate layer is thin, tailing in the intermediate layer is small, and the progress of the etching of the lower layer is not hindered.
  • the thickness of the light shielding layer is preferably 40% or less, more preferably 15% or less, of the thickness of the back surface antireflection layer.
  • the film thickness ratio between the light shielding layer and the surface antireflection layer exceeds 1.0 / 0.7, the surface antireflection layer may become too thin to have a desired antireflection function. Moreover, when the value of the film thickness ratio is less than 1.0 / 7.0, the overetching time may not be shortened. Therefore, in the photomask blank of the second aspect, the film thickness ratio between the light shielding layer and the surface antireflection layer is 1.0: 0.7 to 1.0: 7.0, more preferably 1.0: 2. It is preferably 0 to 1.0: 7.0. By having such a film thickness ratio, it is possible to suppress further etching of a portion that is not intended to be etched, so that the cross-sectional shape is improved and the pattern reproducibility can be improved.
  • the thickness of the light shielding layer is 0.5% or more, more preferably 3% or more of the entire thickness of the light shielding film.
  • the film with the light shielding film having a limit of a certain thickness (for example, 60 nm) or less in this laminated structure if the thickness of the light shielding layer is increased, the thickness of the back surface or the surface antireflection layer is decreased.
  • the optical properties such as the overall light shielding property and reflectivity cannot be ensured simply by making it thin.
  • a photomask blank used for producing a photomask to which the ArF excimer laser light according to the third aspect of the present invention is applied, A light-shielding film on a light-transmitting substrate;
  • the light shielding film has a laminated structure in which a back surface antireflection layer, a light shielding layer, and a surface antireflection layer are laminated in this order from the side close to the translucent substrate,
  • the total thickness of the light shielding film is 60 nm or less
  • the back surface antireflection layer is made of a film containing a metal and has a first etching rate
  • the surface antireflection layer is made of a film containing a metal, has a third etching rate
  • the light shielding layer is made of the same metal as the metal contained in the back surface antireflection layer or the front surface antireflection layer and a metal nitride film containing nitrogen, and the second etching rate is lower than the first etching rate and the
  • the photomask blank of the third aspect in which the light shielding layer is a metal nitride film has a tensile stress as compared with the case of a pure metal film. Can be relaxed and the film stress can be easily adjusted.
  • the photomask blank of the third aspect by using a metal nitride film having a slow etching rate as the light shielding layer, it is possible to reduce the thickness of the light shielding film while maintaining a high optical density. This makes it possible to easily design a light-shielding film having a desired optical characteristic with an overall film thickness of a certain thickness or less in a laminated structure, and to realize a thin resist film.
  • the second etching rate of the metal nitride film is slower than the etching rate of the back surface antireflection layer and the front surface antireflection layer, so that the etching in the vertical direction is changed. be able to.
  • the variation in the cross-sectional shape due to loading generated in the surface antireflection layer having a high etching rate is alleviated.
  • the back surface antireflection layer is etched at a high speed at the first etching rate. Therefore, there is a portion where etching is not intended in the surface antireflection layer or the like while the back surface antireflection layer is being etched. Etching is suppressed, and the cross-sectional shape of the pattern can be improved.
  • the light shielding film comprises a light shielding layer and at least one antireflection layer, and the optical density of the entire light shielding film is 1.8 to 3.1, The ratio of the optical density of the light shielding layer to the sum of the optical densities of all antireflection layers is 1: 5 to 1:19;
  • the light shielding layer is made of a film containing metal,
  • the antireflection layer is made of a film containing the same metal as the metal contained in the light shielding layer, N and O, and the total content of N and O is 40 to 65 atom%.
  • the ratio of the optical density of the light shielding layer to the sum of the optical densities of all the antireflection layers is set to 1: when the optical density of the entire light shielding film is in the range of 1.8 to 3.1. 5 to 1:19 are configured to bear most of the optical density of the entire light shielding film by the antireflection layer.
  • the optical density depends on the composition and the film thickness, the total content of N and O in the antireflection layer is 40 to 65 atom%.
  • the etching rate is faster. Thereby, since the ratio of the film thickness of the layer having a high etching rate is increased, the etching time can be shortened, and as a result, the resist film can be thinned.
  • the etching rate of the antireflection layer is reduced, whereas the value of the ratio is If it is less than 1/19, the film thickness of the antireflection layer becomes too thick.
  • the film thickness increases.
  • the etching rate is slow. Become.
  • optical density per unit film thickness satisfies the following relationship.
  • OD per unit film thickness (nm ⁇ 1 ) OD of film (layer) / film (layer) thickness
  • the optical density per unit film thickness of the antireflection layer is 0.04 nm ⁇ 1 or less, and the optical density per unit film thickness of the light shielding layer is 0.05 nm. It is preferably ⁇ 1 or more.
  • the light shielding film has a laminated structure in which a back surface antireflection layer, a light shielding layer, and a surface antireflection layer are laminated in this order from the side close to the translucent substrate,
  • the optical density of the back antireflection layer is 1.1 to 1.3,
  • the optical density of the light shielding layer is 0.1 to 0.3,
  • An embodiment in which the optical density of the surface antireflection layer is 0.4 to 0.6 is included.
  • a light-shielding film having a desired film thickness, etching rate and optical characteristics can be easily obtained by setting the optical density of each layer within these ranges.
  • the optical density of the back surface antireflection layer is less than 1.1
  • the optical density is insufficient. Therefore, it is necessary to increase the film thickness of each layer.
  • the etching rate becomes slow, and it is difficult to reduce the thickness of each film.
  • the optical density of the light shielding layer when the optical density of the light shielding layer is less than 0.1, the optical density of the entire light shielding film is insufficient, so that it is necessary to increase the film thickness of each layer. Since the reflection at the light shielding layer is reduced, the interference effect cannot be obtained sufficiently. As a result, the surface reflectance becomes high and a desired reflectance cannot be obtained. On the other hand, when the optical density of the light shielding layer exceeds 0.3, the etching time becomes long and it is difficult to make a resist thin film.
  • the optical density of the surface antireflection layer when the optical density of the surface antireflection layer is less than 0.4, the reflectance is too low and the overall film thickness is increased, and the optical density is set to 0.6. If it exceeds, the reflectivity becomes too high.
  • the light shielding film has a laminated structure in which a back surface antireflection layer, a light shielding layer, and a surface antireflection layer are laminated in this order from the side close to the translucent substrate,
  • the total content of N and O in the back antireflection layer is 40 to 55 atom%
  • the total content of N and O in the light shielding layer is 30 atom% or less
  • a mode in which the total content of N and O in the surface antireflection layer is 45 to 65 atom% is included.
  • a light-shielding film having a desired film thickness, etching rate, and optical characteristics can be easily obtained by setting the N and O contents in each layer within a predetermined range.
  • the etching rate is slow, and the total content of N and O exceeds 55 atom%.
  • the optical density becomes small (the film thickness becomes thick), and it becomes difficult to reduce the thickness of each film.
  • the etching rate becomes slow and it is difficult to reduce the thickness.
  • the etching rate is slow, and the total content of N and O is 65 atom%.
  • the optical density becomes small (the film thickness becomes thick), and it becomes difficult to reduce the film thickness.
  • the optical density per unit film thickness of the back antireflection layer is 0.03 to 0.04 nm ⁇ 1
  • the optical density per unit film thickness of the light shielding layer is 0. It is preferably from 05 to 0.06 nm ⁇ 1 .
  • the light shielding film has a laminated structure in which a back surface antireflection layer, a light shielding layer, and a surface antireflection layer are laminated in this order from the side close to the translucent substrate,
  • the back antireflection layer uses a Cr target and is a CrOCN film formed in a mixed gas atmosphere of 45 to 65 vol% inert gas, 30 to 50 vol% CO 2 gas, and 1 to 15 vol% N 2 gas.
  • the light shielding layer is made of a CrN film formed in a mixed gas atmosphere using a Cr target, an inert gas of 70 to 90 vol%, and an N 2 gas of 5 to 25 vol%
  • the surface antireflection layer is a CrOCN film formed in a mixed gas atmosphere using a Cr target, an inert gas of 40-60 vol%, a CO 2 gas of 25-45 vol%, and an N 2 gas of 5-20 vol%. It is characterized by comprising.
  • the photomask blank of the fifth aspect is a photomask blank having a laminated structure having a film thickness of 60 nm or less and desired optical characteristics.
  • the photomask blank of the fifth aspect when the antireflection layer is formed, O 2 gas or NO gas can be used. However, if a film having a high degree of oxidation is to be formed, the plasma is stabilized. It is necessary to perform sputtering with a relatively high gas pressure. If it does so, the film
  • the inert gas for forming the back surface antireflection layer is composed of 10 to 30 vol% Ar gas and 20 to 40 vol% He gas.
  • the inert gas for forming the layer includes an embodiment composed of 10 to 30 vol% Ar gas and 20 to 40 vol% He gas.
  • the compressive stress of the obtained layer increases in the case of a Cr-based light shielding film, so that the film stress can be controlled, and the He gas Since this mainly acts only on the control of the film stress, it is preferable because the film stress design becomes easy.
  • the light shielding film has a laminated structure in which a back surface antireflection layer, a light shielding layer, and a surface antireflection layer are laminated in this order from the side close to the translucent substrate,
  • the back surface antireflection layer has a metal content of 25 to 50 atm%, a total content of N and O of 35 to 65 atm%, and an optical density of 1.1 to 1.3.
  • the light shielding layer contains metal and N, the metal content is 50 to 90 atm%, the film thickness is 2 to 6 nm, and the optical density is 0.1 to 0.3,
  • the surface antireflection layer is characterized in that the metal content is 25 to 50 atm%, the total content of N and O is 45 to 65 atm%, and the optical density is 0.4 to 0.6. To do.
  • the metal content is less than 25 atm% in the back surface antireflection layer or the total content of N and O exceeds 65 atm% in the light shielding layer.
  • the amount is less than 50 atm%, or the metal content is less than 25 atm% in the surface antireflection layer, or the total content of N and O exceeds 65 atm%, the entire light-shielding film is sufficient. An optical density may not be obtained.
  • the metal content exceeds 50 atm%, or the total content of N and O is less than 35 atm.
  • the metal content exceeds 90 atm%, or In the surface antireflection layer, when the metal content exceeds 50 atm% or the total content of N and O is less than 45 atm%, the etching time of the light shielding film may become long.
  • the surface reflectance is high when the metal content exceeds 50 atm% or the total content of N and O is less than 45 atm%. In other words, the surface reflectance of about 20% or less required for ArF excimer laser light may not be obtained. On the other hand, when the metal content is less than 25 atm% or the total content of N and O exceeds 65 atm% in the surface antireflection layer, the defect quality may deteriorate.
  • the content of N in the light shielding layer is 3 to 25 atm% because a relatively large optical density can be obtained at a constant film thickness.
  • the N content is preferably 3 to 25 atm%.
  • the optical density per unit film thickness is preferably 0.05 to 0.06 nm ⁇ 1 .
  • the back surface antireflection layer has a Cr content of 30 to 40 atm%, a total content of N and O of 40 to 55 atm%, and an optical density of 1.1 to 1.3
  • the light-shielding layer has a Cr content of 50 to 90 atm%, a N content of 3 to 25 atm%, and an optical density of 0.1 to 0.3.
  • the surface antireflection layer includes an embodiment in which the Cr content is 30 to 40 atm%, the total content of N and O is 50 to 60 atm%, and the optical density is 0.4 to 0.6. .
  • the Cr content in the back surface antireflection layer is less than 30 atm%, or the total content of N and O exceeds 55 atm%.
  • the Cr content is less than 30 atm%, or the total content of N and O is 60 atm% Exceeding this may result in insufficient optical density for the entire light shielding film.
  • the Cr content exceeds 40 atm%, or the total content of N and O is less than 40 atm%.
  • the Cr content exceeds 90 atm%, or ,
  • the total content of N is less than 3 atm%, or, in the surface antireflection layer, the content of Cr exceeds 40 atm%, or the total content of N and O is less than 50 atm%, In some cases, the etching time of the light shielding film becomes long.
  • the photomask blank of the sixth aspect includes an aspect in which the thickness of the light shielding film is 60 nm or less.
  • the thickness of the back surface antireflection layer is 23 to 33 nm
  • the thickness of the light shielding layer is 2 to 6 nm
  • the thickness of the front surface antireflection layer is 11 to 17 nm. Embodiments are included.
  • the thickness of the light shielding film is preferably 60 nm or less. Therefore, if the thickness of the light shielding layer constituting the light shielding film is increased, the total thickness of the back surface antireflection layer and the front surface antireflection layer tends to be reduced, while the thickness of the light shielding layer constituting the light shielding film is reduced. If the film thickness decreases, the total film thickness of the back surface antireflection layer and the front surface antireflection layer tends to increase. Also, the back antireflection layer and the front antireflection layer tend to have a low optical density per unit film thickness, although the etching rate is faster than the light shielding layer, based on the properties of the composition such as the metal content.
  • the back surface antireflection layer has a thickness exceeding 33 nm and the surface antireflection layer has a thickness exceeding 17 nm under the restriction that the thickness of the light shielding film is 60 nm or less.
  • the light shielding layer has a thickness of less than 2 nm, it may not be possible to obtain a sufficient optical density as the entire light shielding film.
  • the thickness of the light-shielding film is 60 nm or less, the thickness of the light-shielding layer exceeds 17 nm even if the back-surface antireflection layer has a thickness of less than 23 nm and the front-surface antireflection layer has a thickness of less than 11 nm. If this is the case, the etching time for the entire light-shielding film may become long.
  • the back antireflection layer has a first etching rate
  • the surface antireflective layer has a third etch rate
  • the light-shielding layer includes an aspect having a second etching rate that is lower than the first etching rate and the third etching rate.
  • the ratio between the third etching rate and the second etching rate is preferably 1.0: 1.1 to 1.0: 2.0.
  • the third etching rate is preferably 0.67 nm / sec or more, and the second etching rate is preferably 0.44 nm / sec or less.
  • the antireflection layer includes a back surface antireflection layer and a surface antireflection layer.
  • the back surface antireflection layer or the front surface antireflection layer has a Cr content of 50 atm% or less and includes at least one of O, C, and N
  • the light shielding layer has a Cr content of 50 atm. % Of the film is preferable. This is because by having such a configuration, it is possible to easily form a film having a relationship of second etching rate ⁇ first or third etching rate.
  • the light shielding layer is made of CrN, CrON, CrO, CrC, CrCO or CrOCN, more preferably CrN or CrON.
  • the back surface antireflection layer or the front surface antireflection layer is made of CrOCN
  • a mode in which a Cr—Cr bond component and a CrO x N y component are mixed is preferable.
  • the light shielding layer is made of CrN
  • a mode in which the Cr—Cr bond component is the main component and the CrO x N y component is small is preferable.
  • the carbon is mainly composed of chromium carbide (Cr—C), and other components C—C, C—O, and C—N are mixed.
  • the back-surface antireflection layer and the front-surface antireflection layer have the same composition and different composition ratio and film thickness.
  • the atmosphere gas for forming the back-surface antireflection layer and the front-surface antireflection phase can be made the same, so that the light-shielding film can be formed easily.
  • the thin film of the first aspect is a Cr-based light-shielding film
  • the photomask blanks of the second to sixth aspects the unit thickness of the light-shielding layer with respect to the ArF excimer laser light
  • the optical density is preferably 0.05 nm ⁇ 1 or more.
  • the first mode thin film is a Cr-based light-shielding film photomask blank, and the photomask blanks of the second to sixth modes are 200 nm thick on the light-shielding film.
  • a resist film having a thickness of 150 nm or less may be provided.
  • an etching mask film may be provided on the light shielding film.
  • dry etching is generally performed by using chlorine and oxygen as etching gases to sublimate in the form of chromyl chloride.
  • oxygen Resist is very weak against plasma. Therefore, by providing the etching mask film, the load on the resist film can be reduced, so that the resist film can be made thinner to 100 nm or less.
  • the etching mask film is provided with SiON, SiN, SiO 2 , MoSiON, MoSiN or the like having a high selectivity at a film thickness of 5 to 20 nm.
  • An organic film containing 20% or more of Si can be provided as an etching mask film by setting the film thickness to 20 to 40 nm.
  • the resist can be made thinner by providing an etching mask film on the light shielding film. .
  • the resist film thickness is 100 nm or less, the pattern shape is significantly deteriorated, and the LER when the mask pattern is transferred to the etching mask film is deteriorated. Therefore, the etching time of the etching mask film is shortened. The inventor has found that there is a need to do this. Since the light shielding film has a short etching time, the thickness of the etching mask film can be reduced and the etching time of the etching mask film can be shortened.
  • the photomask blank of the first embodiment the thin film of the Cr-based light shielding film, the photomask blank of the second to sixth embodiments
  • the surface antireflection layer or the back surface antireflection layer of the light shielding film has an amorphous structure
  • the surface roughness is small, the surface roughness of the upper etching mask film can be reduced, which is preferable.
  • the cross-sectional shape and LER when the etching mask film is etched are improved, the cross-sectional shape and LER of the light shielding film are deteriorated when the lower light shielding film is etched using the etching mask film pattern as a mask. Can be prevented.
  • photomask blank includes a binary mask blank and a halftone phase shift mask blank
  • photomask is a binary mask and a phase shift mask. It is a concept that includes
  • the halftone phase shift mask blank has a halftone phase shifter film between the translucent substrate and the light shielding film.
  • the transmittance of the phase shifter film is preferably 2 to 40%.
  • the halftone phase shift mask blank is preferably a photomask blank in which the total thickness of the light shielding film is 50 nm or less and the transmittance of the phase shifter film is 2 to 6%.
  • the transmittance of the phase shifter film is preferably 7 to 20%.
  • phase shifter film When providing the phase shifter film, a material made of MoSiN or MoSiON is preferable. By providing the light shielding film of this embodiment on the phase shifter film made of these materials, it is possible to improve the LER of the phase shifter film pattern as compared with the case of providing a conventional Cr-based light shielding film. It becomes.
  • the conventional Cr-based light shielding film has a porous columnar structure, and therefore, the LER of the Cr-based light shielding film pattern is increased. Therefore, the phase shifter film has an amorphous structure, but the phase shifter film has an amorphous structure.
  • the LER of the phase shifter film pattern was deteriorated by the LER of the Cr-based light shielding film.
  • the front-surface antireflection layer or the back-surface antireflection layer in the light-shielding film has an amorphous structure, it is possible to reduce the LER of the light-shielding film pattern when the light-shielding film is dry-etched. As a result, when the phase shifter film is dry-etched using the light shielding film pattern as a mask, the LER of the phase shifter film can be improved without deteriorating the LER of the phase shifter film pattern.
  • a resist is applied to a photomask blank on which a light shielding film is formed, and dried to obtain a resist film. It is necessary to select an appropriate resist depending on the drawing apparatus to be used.
  • a positive type or negative type resist having an aromatic skeleton in a polymer
  • the resist film thickness needs to be in a range where a good pattern shape can be obtained and can function as an etching mask. Especially when a fine pattern is to be formed as an ArF exposure mask, The thickness is preferably 200 nm or less, and more preferably 150 nm or less.
  • a two-layer resist method using a combination of a resist using a silicon resin and a lower layer film using an aromatic resin, or a surface imaging method using a combination of an aromatic chemically amplified resist and a silicon surface treatment agent was used. In some cases, the film thickness can be further reduced.
  • the coating conditions and the drying method a method suitable for each resist to be used is appropriately selected.
  • a resin layer may be formed on the surface of the photomask blank before applying the resist in order to reduce the occurrence of problems such as peeling of the fine resist pattern and falling down.
  • surface treatment for reducing the surface energy of the surface of the substrate (photomask blank) may be performed before applying the resist.
  • the surface treatment method include a method in which the surface is alkylsilylated with HMDS or other organosilicon surface treatment agents commonly used in semiconductor manufacturing processes.
  • drawing on a resist in a photomask blank on which a resist film is formed includes a method using EB irradiation and a method using light irradiation.
  • a method using EB irradiation In order to form a fine pattern by a method using EB irradiation. This is the preferred method.
  • drawing is usually performed with energy in the range of 3 to 40 ⁇ C / cm 2 , and after the drawing, heat treatment is performed, and then the resist film is developed to obtain a resist pattern.
  • Etching of the light shielding film or the light shielding film and other films is performed using the resist pattern obtained above as an etching mask. Etching can be performed using known chlorine-based or fluorine-based dry etching depending on the composition of the light-shielding film (surface layer, light-shielding layer, antireflection layer, etc.) and other films.
  • the resist After obtaining the light-shielding pattern by etching, the resist is peeled off with a predetermined stripping solution to obtain a photomask on which the light-shielding film pattern is formed.
  • the photomask of the present invention is used in an exposure method with a numerical aperture NA> 1 and a pattern transfer method for forming a fine pattern of DRAM half pitch (hp) 45 nm or more in a semiconductor design rule using an exposure light wavelength of 200 nm or less. It is particularly useful as a mask.
  • the photomask blank of the present invention is particularly effective when it is used for forming a resist pattern having a line width of less than 100 nm on the photomask blank.
  • An example of such a photomask blank is a mask having an OPC structure.
  • OPC mask since the width of the auxiliary pattern provided around the main pattern is the narrowest for the purpose of improving the resolution of the main pattern, it is particularly useful for pattern transfer using a photomask having these patterns. .
  • Example 1 (Production of photomask blank)
  • a halftone phase shift mask blank in which a phase shifter film 5 and a three-layer light shielding film were provided on a translucent substrate 10 was manufactured (see FIG. 1).
  • a translucent substrate 10 made of quartz glass having a size of 6 inches square and 0.25 inches in thickness it is composed of a single layer using Mo, Si and N as main components using a single wafer sputtering apparatus.
  • a halftone phase shifter film 5 for ArF excimer laser (wavelength 193 nm) was formed (film thickness 69 nm).
  • the sputtering (DC sputtering) conditions were as follows.
  • Sputtering gas Mixed gas atmosphere of Ar, N 2 and He (Ar: 9 sccm, N2: 81 sccm, He: 76 sccm) Gas pressure during discharge: 0.3 Pa Applied power: 2.8 kW
  • the transmittance of the obtained phase shifter film 5 was 5.5% and the phase shift amount was about 180 °.
  • a back surface antireflection layer 3 made of CrOCN was formed (film thickness: 30 nm) using the same sputtering apparatus as the apparatus for forming the phase shifter film 5.
  • the conditions for sputtering (DC sputtering) were as shown in Table 1.
  • a light-shielding layer 2 made of CrN was formed (film thickness: 4 nm) using the same sputtering apparatus as the apparatus for forming the back surface antireflection layer 3.
  • the conditions for sputtering (DC sputtering) were as shown in Table 1.
  • the surface antireflection layer 1 made of CrOCN was formed using a sputtering apparatus similar to the apparatus in which the light shielding layer 2 was formed (film thickness 14 nm).
  • the conditions for sputtering (DC sputtering) were as shown in Table 1.
  • the flow rate of the sputtering gas in Table 1 is as follows when converted to volume percentage.
  • a photomask blank was obtained in which the phase shifter film 5, the back surface antireflection layer 3, the light shielding layer 2, and the surface antireflection layer 1 were laminated in this order on a translucent substrate made of quartz glass.
  • the optical density (OD) of light having a wavelength of 193.4 nm in the light-shielding film composed of the back-surface antireflection layer 3, the light-shielding layer 2, and the front-surface antireflection layer 1 was 1.9.
  • the optical density in each layer was as shown in Table 1.
  • the composition and atomic number density of the front surface antireflection layer 1, the light shielding layer 2, and the back surface antireflection layer 3 of the obtained photomask blank were analyzed by RBS (Rutherford Backscattering Spectrometry).
  • RBS is a technique for analyzing the surface composition with respect to the surface density (atms / cm 2 ) in the depth direction. If the film thickness for each layer is known, the atomic number density (atms / cm 3 ) can be calculated from the following equation: Can be calculated.
  • Atomic number density surface density / film thickness
  • the atomic number density of the surface antireflection layer 1 was calculated by the above method.
  • the film composition of the surface antireflection layer 1 (film thickness: 14 nm) was 34 atom% for Cr, 11 atom% for C, 39 atom% for O, and 16 atom% for N.
  • the chromium ratio of the surface antireflection layer 1 was 0.3 for C / Cr, 1.2 for O / Cr, and 0.5 for N / Cr.
  • the atomic number density of the surface antireflection layer 1 was 10.5 ⁇ 10 22 atms / cm 3 .
  • the film composition of the light shielding layer 2 (film thickness 4 nm) was such that Cr was at least 64 atom% or more and N was at least 8 atom% or more.
  • the film composition of the back surface antireflection layer 3 was 36 atom% for Cr, 15 atom% for C, 39 atom% for O, and 9 atom% for N.
  • the chromium ratio of the back surface antireflection layer 3 was 0.4 for C / Cr, 1.1 for O / Cr, and 0.3 for N / Cr.
  • the surface antireflection layer 1 had an amorphous structure with a grain size of 1 to 2 nm.
  • the photomask blank obtained in this example was supplied with ozone water having a concentration of 50 ppm to the substrate surface while being swung by a swing arm at a flow rate of 1.4 L / min for 60 minutes.
  • the amount of change in optical density was measured to evaluate chemical resistance.
  • the film thickness of the light shielding film was not changed by the spraying of ozone water. Further, the surface reflectance changed by + 0.82% for light having a wavelength of 193 nm. The optical density of the light shielding film changed by -0.04.
  • the same amount of the layer as the surface antireflection layer 1 of this embodiment is directly formed on the glass substrate by sputtering, and the amount of change in reflectance by spraying ozone water with a concentration of 50 ppm on the surface antireflection layer 1 for 60 minutes is calculated. It was measured.
  • the reflection spectrum was measured before and after spraying with ozone water with a spectrophotometer (manufactured by Hitachi High-Technology: U-4100), and the amount of change was calculated.
  • the light shielding film composed of the back surface antireflection layer 3, the light shielding layer 2, and the front surface antireflection layer 1 was dry-etched to form a light shielding film pattern.
  • the etching rate of each layer was as shown in Table 1.
  • the clear etching time for the entire light-shielding film was 84.5 seconds, which was confirmed to be about 8% shorter than that of Comparative Example 1 described later.
  • phase shifter film was etched using the resist pattern and the light shielding film pattern as a mask to form a phase shifter film pattern.
  • the etching of the phase shifter film is affected by the cross-sectional shape of the light-shielding film pattern. However, since the cross-sectional shape of the light-shielding film pattern is good, the cross-sectional shape of the phase shifter film pattern is also good.
  • the remaining resist pattern is peeled off, a resist film is applied again, pattern exposure is performed to remove an unnecessary light shielding film pattern in the transfer region, and then the resist film is developed to form a resist pattern. did.
  • Example 2 In this example, a binary mask blank in which a light-shielding film composed of three layers was provided on a translucent substrate 10 was manufactured (see FIG. 2). That is, reactive sputtering was performed under the same conditions as in Example 1 except that the sputtering conditions were set as shown in Table 1.
  • the flow rate of the sputtering gas in Table 1 is as follows when converted to volume percentage.
  • a photomask blank as shown in FIG. 2 was obtained, in which the back surface antireflection layer 3, the light shielding layer 2, and the surface antireflection layer 1 were laminated in this order on the translucent substrate 10 made of quartz glass.
  • the optical density (OD) with respect to light with a wavelength of 193.4 nm in the light shielding film composed of the back surface antireflection layer 3, the light shielding layer 2, and the front surface antireflection layer 1 was 3.
  • the optical density in each layer was as shown in Table 1.
  • the film composition of the surface antireflection layer 1 (film thickness 14 nm) was 32 atom% for Cr, 16 atom% for C, 37 atom% for O, and 16 atom% for N.
  • the chromium ratio of the surface antireflection layer 1 was 0.5 for C / Cr, 1.2 for O / Cr, and 0.5 for N / Cr.
  • the atomic number density of the surface antireflection layer 1 was 11.0 ⁇ 10 22 atms / cm 3 .
  • the film composition of the light-shielding layer 2 (thickness 25 nm) was 87 atom% for Cr, 9 atom% for O, and 4 atom% for N.
  • the chromium ratio of the light shielding layer 2 was 0.1 for O / Cr and 0.05 for N / Cr.
  • the film composition of the back surface antireflection layer 3 (film thickness 25 nm) was 49 atom% for Cr, 11 atom% for C, 26 atom% for O, and 14 atom% for N.
  • the chromium ratio of the back surface antireflection layer 3 was 0.2 for C / Cr, 0.5 for O / Cr, and 0.3 for N / Cr.
  • the surface antireflection layer 1 had an amorphous structure with a grain size of 1 to 2 nm.
  • the photomask blank obtained in this example was supplied with ozone water having a concentration of 50 ppm to the substrate surface while being swung by a swing arm at a flow rate of 1.4 L / min for 60 minutes.
  • the amount of change in optical density was measured to evaluate chemical resistance.
  • the film thickness of the light shielding film was not changed by the spraying of ozone water.
  • the surface reflectance changed by ⁇ 0.02% for light having a wavelength of 193 nm.
  • the optical density of the light shielding film changed by -0.06.
  • the same layer as the surface antireflection layer 1 of this example was formed directly on the glass substrate by sputtering, and ozone water having a concentration of 50 ppm was applied to the surface antireflection layer 1 for 60 minutes by the same measurement method as in Example 1. The amount of change in reflectance due to spraying was measured.
  • a chemically amplified positive resist for electron beam drawing (exposure) (PRL009: manufactured by Fuji Film Electronics Materials Co., Ltd.) was applied by spin coating so as to have a film thickness of 200 nm.
  • a desired pattern was drawn on the formed resist film using an electron beam drawing apparatus, and then developed with a predetermined developer to form a resist pattern.
  • the light shielding film composed of the back surface antireflection layer 3, the light shielding layer 2, and the front surface antireflection layer 1 was dry-etched to form a light shielding film pattern.
  • the etching rate of each layer was as shown in Table 1. Further, when the light shielding film pattern was observed in the same manner as in Example 1, there was a slight taper, but the cross section angle of the light shielding film was formed perpendicular to the substrate and was good.
  • Example 3 In this example, a binary mask blank similar to that of Example 2 was manufactured except that the film forming conditions and film thickness of the light shielding layer 2 and the film thickness of the back surface antireflection layer were changed in Example 2. That is, reactive sputtering was performed under the same conditions as in Example 2 except that the sputtering conditions were set as shown in Table 1.
  • the flow rate of the sputtering gas in Table 1 is as follows when converted to volume percentage.
  • a photomask blank as shown in FIG. 2 was obtained, in which the back surface antireflection layer 3, the light shielding layer 2, and the surface antireflection layer 1 were laminated in this order on the translucent substrate 10 made of quartz glass.
  • the optical density (OD) with respect to the light of wavelength 193.4nm in the light shielding film which consists of the back surface antireflection layer 3, the light shielding layer 2, and the surface antireflection layer 1 was 3.1.
  • the optical density in each layer was as shown in Table 1.
  • the surface antireflection layer 1 had an amorphous structure with a grain size of 1 to 2 nm.
  • Example 2 the chemical resistance of the photomask blank was evaluated, and the amount of change in the film thickness, surface reflectance, and optical density of the light shielding film was measured.
  • the film thickness of the light shielding film was not changed by the spraying of ozone water.
  • the surface reflectance changed by ⁇ 0.02% for light having a wavelength of 193 nm.
  • the optical density of the light shielding film changed by -0.06.
  • the light shielding film of the present Example has high chemical resistance against ozone treatment.
  • Example 2 Thereafter, a photomask was obtained in the same manner as in Example 2.
  • the etching rate of each layer was as shown in Table 1. Further, when the light shielding film pattern was observed in the same manner as in Example 1, it was found that the angle of the cross section of the light shielding film was formed perpendicular to the substrate. Further, it was confirmed that even when the overetching time was shortened, a vertical cross-sectional shape was obtained, and the total etching time could be shortened by about 25% compared with Comparative Example 2.
  • the resolution was evaluated for the obtained photomask.
  • the resolution of the resist film was good, and the resolution of the light shielding film pattern was less than 70 nm (corresponding to DRAM hp45 nm).
  • Example 1 a halftone phase shift mask blank having a light shielding film composed of two layers was manufactured. Specifically, a light shielding layer was formed on the same phase shifter film as in Example 1 using an in-line type sputtering apparatus.
  • the conditions for sputtering were as follows.
  • a surface antireflection layer was formed on the light shielding layer.
  • the conditions for sputtering were as follows.
  • Sputter target Chrome (Cr)
  • Sputtering gas mixed gas of argon (Ar) and methane (CH 4 ) (CH4: 3.5% by volume), gas in which NO and He are mixed (Ar + CH 4 : 65 sccm, NO: 3 sccm, He: 40 sccm)
  • a photomask blank having a light shielding film thickness of 48 nm was obtained, in which a phase shifter film, a light shielding layer, and a surface antireflection layer were sequentially laminated on a light transmitting substrate made of quartz glass.
  • the optical density (OD) of light having a wavelength of 193.4 nm in the light shielding film comprising the light shielding layer and the surface antireflection layer was 1.9.
  • the composition of the obtained surface antireflection layer and the light shielding layer and the atom number density of the surface antireflection layer were analyzed by RBS.
  • the film composition of the surface antireflection layer (film thickness: 24 nm) was 34 atom% for Cr, 32 atom% for O, and 23 atom% for N.
  • the chromium ratio of the surface antireflection layer was 0.9 for O / Cr and 0.7 for N / Cr.
  • the atomic number density of the surface antireflection layer was 7.4 ⁇ 10 22 atms / cm 3 .
  • the film composition of the light shielding layer (film thickness: 24 nm) was 59 atom% for Cr and 39 atom% for N.
  • the chromium ratio of the light shielding layer was N / Cr 0.7. Since the in-line type sputtering apparatus was used, each of the light shielding layer and the surface antireflection layer was an inclined film whose composition was inclined in the film thickness direction. Therefore, the film composition is an average value.
  • the surface antireflection layer had a low density porous columnar structure.
  • Example 1 the chemical resistance of the photomask blank obtained in this comparative example was evaluated.
  • the film thickness of the light shielding film was reduced by 5.8 nm by the spraying of ozone water.
  • the surface reflectance changed by + 2.72% with light having a wavelength of 193 nm.
  • the optical density of the light shielding film changed by ⁇ 0.38.
  • the same layer as the surface antireflection layer of this comparative example was directly formed on the glass substrate by sputtering, and the amount of change in reflectance was measured by the same measurement method as in Example 1.
  • + 2.5% (19.8% ⁇ 22.3%) for light with a wavelength of 193 nm + 9.1% (16.4% ⁇ 25.5%) for light with 257 nm, and + 13.9% for 365 nm. (19.9% ⁇ 33.8%)
  • the light-shielding film of this comparative example has low chemical resistance with respect to the ozone treatment as compared with Examples 1 and 2.
  • Example 1 a chemically amplified positive resist for electron beam drawing (exposure) was applied to the obtained photomask blank so as to have a film thickness of 150 nm, and a photomask was formed in the same manner as in Example 1. Obtained. In the dry etching of the light shielding film, the etching rate was slower than that of Example 1. The clear etching time for the entire light shielding film was 92.0 sec. Further, when the light shielding film pattern was observed in the same manner as in Example 1, the angle of the cross section of the light shielding film was not formed perpendicular to the substrate. For this reason, the cross-sectional shape of the phase shifter film pattern was not good. The resolution was evaluated for the obtained photomask. The resolution of the resist film was poor, and the resolution of the light shielding film pattern was 80 nm or more due to poor etching.
  • a binary mask blank having a light shielding film composed of two layers was manufactured. Specifically, a light shielding layer was formed on a translucent substrate using an inline-type sputtering apparatus.
  • the conditions for sputtering were as follows.
  • a surface antireflection layer was formed on the light shielding layer.
  • the conditions for sputtering were as follows.
  • Sputter target Chrome (Cr)
  • Sputtering gas Argon (Ar) and methane (CH 4 ) mixed gas (CH4: 8% by volume), NO and He mixed gas (Ar + CH 4 : 105 sccm, NO: 3 sccm)
  • Applied power 1.1 kW
  • a photomask blank having a light-shielding film thickness of 73 nm was obtained, in which a light-shielding layer and a surface antireflection layer were sequentially laminated on a translucent substrate made of quartz glass.
  • the optical density (OD) with respect to the light of wavelength 193.4nm in the light shielding film which consists of a light shielding layer and a surface antireflection layer was 3.0.
  • the composition of the obtained surface antireflection layer and the light shielding layer and the atom number density of the surface antireflection layer were analyzed by RBS.
  • the film composition of the surface antireflection layer was 48 atom% for Cr and 50 atom% for O and N in total.
  • the film composition of the light shielding layer 2 was 60 atom% for Cr and 30 atom% for the total of O and N. Since the in-line type sputtering apparatus was used, each of the light shielding layer and the surface antireflection layer was an inclined film whose composition was inclined in the film thickness direction. Therefore, the film composition is an average value.
  • the surface antireflection layer had a low density porous columnar structure.
  • Example 1 the chemical resistance of the photomask blank obtained in this comparative example was evaluated.
  • the film thickness of the light shielding film of the photomask blank was reduced by 4.2 nm by the spraying of ozone water.
  • the surface reflectance was changed by + 5.30% with light having a wavelength of 193 nm.
  • the optical density of the light shielding film changed by ⁇ 2.60.
  • Example 2 a chemically amplified positive resist for electron beam drawing (exposure) was applied to the obtained photomask blank so as to have a film thickness of 200 nm, and a photomask was formed in the same manner as in Example 2. Obtained. In the dry etching of the light shielding film, the etching rate was slower than that of Example 2. Further, when the light shielding film pattern was observed in the same manner as in Example 1, the cross section angle of the light shielding film was not formed perpendicular to the substrate as compared with Example 2. The resolution was evaluated for the obtained photomask. The resolution of the resist film was poor, and the resolution of the light shielding film pattern was 80 nm or more due to poor etching.
  • the light-shielding film was changed from Cr-based to MoSi-based, and a binary mask blank in which a Cr-based etching mask film was provided on the light-shielding film was manufactured.
  • a MoSiON film (back surface antireflection layer), MoSi film (light shielding layer), and MoSiON film (front surface antireflection layer) were formed as a light shielding film, and a CrOCN film was formed as an etching mask film.
  • Mo molybdenum and silicon
  • the optical density (OD) of the light-shielding film was 3.0 at a wavelength of 193 nm of ArF excimer laser exposure light. Thereafter, an etching mask film made of CrOCN (Cr: 34 atm%, C: 11 atm%, O: 39 atm%, N: 16 atm%) was formed with a film thickness of 15 nm under the same conditions as those of the surface antireflection layer of Example 1. As described above, the photomask blank of this example was produced.
  • the etching mask film had an amorphous structure with a grain size of 1 to 2 nm.
  • a chemically amplified positive resist for electron beam drawing (exposure) PRL009: manufactured by Fuji Film Electronics Materials Co., Ltd.
  • PRL009 manufactured by Fuji Film Electronics Materials Co., Ltd.
  • the resist film was developed with a predetermined developer to form a resist pattern.
  • dry etching of the etching mask film was performed using the resist pattern as a mask.
  • the remaining resist pattern was peeled off with a chemical solution.
  • the light shielding film was dry-etched using a mixed gas of SF 6 and He to form a light shielding film pattern.
  • the etching mask film pattern was peeled off by dry etching with a mixed gas of Cl 2 and O 2 and subjected to predetermined cleaning to obtain a photomask.
  • the resist pattern was peeled and removed. This is because when the light shielding film pattern is formed on the light shielding film in the next process, the side wall height of the mask pattern ( This is because the smaller the side wall height of the etching mask film pattern), the higher the CD accuracy, the smaller the microloading, and the better the processing accuracy. If a photomask that does not require high processing accuracy is required, or if the etching mask film should also have a role of preventing reflection of exposure light, the resist pattern is removed after the shading film pattern is formed. You may make it do.
  • the resolution was evaluated for the obtained photomask.
  • the resolution of the resist film was good, the LER of the etching mask film was also good, and the resolution of the light shielding film pattern in the obtained photomask was less than 40 nm (corresponding to DRAM hp22 nm).
  • Example 5 In this example, regarding the light shielding film, the MoSiON film (back surface antireflection layer) was not formed, and the MoSi film (light shielding layer) and the MoSiON film (surface antireflection layer) in the light shielding film were formed under the following conditions.
  • the MoSi film (light-shielding layer) was changed to a MoSiN film (light-shielding layer), the film thickness and the Si content in the film were changed, and the film thickness of the MoSiON film (surface antireflection layer) was changed.
  • the same as in Example 4 except that the total film thickness of the light shielding film was changed.
  • the MoSiN film (light-shielding layer) in the light-shielding film a film made of molybdenum, silicon and nitrogen (Mo: 7.1 atm%, Si: 71.7 atm%, N: 18.2 atm%) was formed with a film thickness of 52 nm.
  • the MoSiON film (surface antireflection layer) in the light shielding film is a film made of molybdenum, silicon, oxygen, and nitrogen (Mo: 2.6 atm%, Si: 57.1 atm%, O: 15.9 atm%, N: 24). .1 atm%) with a film thickness of 8 nm.
  • the total thickness of the light shielding film was 60 nm.
  • the optical density (OD) of the light-shielding film was 3.0 at a wavelength of 193 nm of ArF excimer laser exposure light.
  • the etching mask film had an amorphous structure with a grain size of 1 to 2 nm.
  • a photomask was obtained in the same manner as in Example 4. The resolution was evaluated for the obtained photomask. The resolution of the resist film was good, the LER of the etching mask film was also good, and the resolution of the light shielding film pattern in the obtained photomask was less than 40 nm (corresponding to DRAM hp22 nm).
  • TEM transmission electron microscope
  • XRD X-ray diffractometer
  • Ra 0.70 nm.
  • a photomask was obtained in the same manner as in Example 4. The resolution was evaluated for the obtained photomask. The resolution of the resist film was poor, the LER of the etching mask film was large, and the resolution of the light shielding film pattern in the obtained photomask was 70 nm or more.
  • the photomask blank according to a preferred embodiment of the present invention can be used for high NA lithography since it can suppress shadowing, and can also be used for lithography of short wavelength exposure light. Therefore, a very fine mask pattern can be formed by using the photomask blank according to a preferred embodiment of the present invention.
  • the photomask blank according to a preferred embodiment of the present invention can be applied to, for example, photomask blanks of the hp45 nm and hp32 nm generations in ultra high NA-ArF lithography.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 ArFエキシマレーザ光が適用されるフォトマスクを作製するために用いられるフォトマスクブランクであって、  透光性基板上に、多層構造の薄膜を有し、  前記薄膜の最上層は、クロムと、窒素、酸素および炭素のうち少なくとも一つとを含む材料からなるアモルファス構造であるフォトマスクブランク。

Description

フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
 本発明は、フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法に関する。
 一般に、LSI等の高密度半導体集積回路、CCD(電荷結合素子)やLCD(液晶表示素子)用のカラーフィルター、磁気ヘッド等の製造工程では、フォトマスクを使ったフォトリソグラフィー技術を用いて微細加工が行われている。
 この微細加工には、石英ガラス、アルミノシリケートガラス等の透光性基板の上に、一般的にはクロム膜等の金属薄膜からなる遮光膜をスパッタまたは真空蒸着等で形成したフォトマスクブランクの遮光膜を所定のパターンに形成したフォトマスクが用いられている。
 このフォトマスクブランクより作製されたフォトマスクは、フォトマスクブランク上に形成されたレジスト膜に対し、所望のパターン露光を施す露光工程、フォトマスクブランク上に形成されたレジスト膜に対し所望のパターン露光を施した後に現像液を供給して、現像液に可溶なレジスト膜の部位を溶解し、レジストパターンを形成する現像工程、得られたレジストパターンをマスクとして、硝酸セリウムアンモニウムと過塩素酸の混合水溶液からなるエッチング液を用いたウェットエッチング、塩素ガスを用いたドライエッチング等のエッチングによって、レジストパターンの形成されていない遮光膜が露出した部位を除去し、所定のマスクパターンを透光性基板上に形成するエッチング工程、および、残存したレジストパターンを剥離除去する剥離除去工程を経て製造される。
 遮光膜をエッチング工程においてパターニングする間、その遮光膜上に形成されているレジストパターンは十分な膜厚で残っていなければならないが、レジスト膜厚を厚くすると、特に微細なパターンを形成する場合、アスペクト比が大きくなり、パターン倒れなどの問題が生じる。そこで、フォトマスクに形成されるマスクパターンを微細化するためには、フォトマスクブランクに形成されたレジスト膜を薄膜化する必要がある。
 この点について、日本国特許公開公報2007-33470号(特許文献1)には、遮光膜の膜厚を100nm以下とし、高いエッチング速度を有するクロム系化合物の膜厚が70%以上を占める構成とすることで、エッチング時間を短縮し、レジストの薄膜化を実現するフォトマスクブランクが開示されている。具体的には、特許文献1には、透光性基板上に、半透明膜、CrON膜、Cr膜およびCrON膜が積層され、上記CrON膜の膜厚が70%以上を占めるフォトマスクブランクが開示されている。
 しかしながら、上記CrON膜は波長450nmでの単位膜厚当りの光学濃度を設定しているに過ぎず、ArFエキシマレーザ光以下の露光光について最適化されていない。特に超高NAリソグラフィでは、フォトマスクへの光入射角度が浅くなるため、微細化されたマスクパターン自身が転写像に陰をつくる(シャドウイング)問題が発生する。遮光膜が厚い場合、シャドウイングによる光量低下(コントラスト悪化)の影響が大きい。また断面形状もバラツキ易く、シャドウイングと合わせてCD(Critical Dimension)転写精度を悪化する要因となる。
特許公開公報2007-33470号
 上記状況の下、微細なマスクパターンが形成できるフォトマスクブランクが求められている。また、遮光膜上に形成されるレジスト膜を薄く形成でき、結果的にパターン倒れが生じにくく転写精度の良いフォトマスクブランクが求められている。具体的には、レジストパターン倒れを防止するために、レジスト膜が薄膜化されレジストパターンのアスペクト比が低減されることによって、hp45nm、hp32nm以降の世代に求められる解像性を有するフォトマスクが求められている。
 フォトマスクブランクにおいてレジスト膜を薄膜化するためには、遮光膜のエッチング時間(ET)を短くする、すなわち遮光膜の構成を変更する必要がある。
 エッチング時間(ET)は、エッチング速度(ER)、遮光膜の膜厚(d)および遮光膜パターンの断面角度調整時間(オーバーエッチング時間)(OET)によって決定される。これらの関係は以下のとおりである。
 ET=d/ER+OET
   =CET+OET・・・(1)
 式(1)中、「CET」は、クリアエッチング(ジャストエッチング)時間であり、モニターパターン(一般に数mm角の大きな抜きパターン)のエッチングが基板または位相シフター膜等の下層膜に達する時間である。
 したがって、エッチング速度(ER)の高速化、遮光膜膜厚(d)の薄膜化、オーバーエッチング時間(OET)の短縮化等を図ることによって、エッチング時間(ET)の短い遮光膜を有するフォトマスクブランクが求められている。
 オーバーエッチング時間(OET)を短縮するためには、ローディングによる断面形状バラツキを低減する必要があるが、エッチング速度(ER)が速すぎるとオーバーエッチング中にUnder-cutが発生し、他方、エッチング速度(ER)が遅すぎるとエッチング時間(ET)長くなってしまう。そこで、縦方向のエッチング速度(各層のエッチング速度)が制御され、結果的に、オーバーエッチング時間(OET)を短縮できる、フォトマスクブランクが求められている。
 エッチング速度(ER)の高速化するためには、通常、金属の含有率を低くする必要がある。しかしながら、金属の含有率を低く抑えると、単位膜厚当たりの光学濃度が低下してしまい、結果的に、遮光膜が所定の光学濃度を得るために必要な膜厚が大きくなってしまう。そこで、エッチング速度(ER)は高速であり、かつ、比較的薄い膜厚で充分な光学濃度を有する遮光膜を有するフォトマスクブランクが求められている。
 また、たとえば意図していないエッチング(たとえばUnder-cut)等を防止することによって、エッチングした後の遮光膜の断面の角度がパターン密度によらず基板に対して垂直に形成され、さらには、エッチングした後の遮光膜の断面が滑らかな形状に形成されるフォトマスクブランクが求められている。
 特に、レジストパターンをマスクにして下層のCr系(含有金属の主成分がCr)の膜をエッチングする場合には、レジストはOを含むエッチングに対して耐性が低いため、レジスト膜べりが大きく、精度よくエッチングができない。このため、薄膜レジストに対応できるエッチング時間の短いCr系膜を有するフォトマスクブランクが要求される。
[1] ArFエキシマレーザ光が適用されるフォトマスクを作製するために用いられるフォトマスクブランクであって、
 透光性基板上に、多層構造の薄膜を有し、
 前記薄膜の最上層は、クロムと、窒素、酸素および炭素のうち少なくとも一つとを含む材料からなるアモルファス構造であるフォトマスクブランク。
[2] 前記薄膜の最上層の表面粗さは、Raにおいて0.50nm以下である、[1]に記載のフォトマスクブランク。
[3] 前記薄膜の最上層は、クロムの含有量が50atm%以下、窒素と酸素の含有量の合計が40atm%以上である、[1]または[2]に記載のフォトマスクブランク。
[4] 前記薄膜は、前記透光性基板に近い側から裏面反射防止層、遮光層および表面反射防止層が順に積層された遮光膜を有し、
 表面反射防止層が前記薄膜の最上層である、[1]ないし[3]のいずれかに記載のフォトマスクブランク。
[5] 前記裏面反射防止層が、クロムと、窒素、酸素および炭素のうち少なくとも一つとを含む材料からなるアモルファス構造である、[4]に記載のフォトマスクブランク。
[6] 前記遮光膜における遮光層の膜厚は、遮光膜全体の膜厚の30%以下である、[4]または[5]に記載のフォトマスクブランク。
[7] 前記遮光膜における遮光層の膜厚は、裏面反射防止層の膜厚の40%以下である、[4]ないし[6]のいずれかに記載のフォトマスクブランク。
[8] 前記薄膜は、遮光膜とエッチングマスク膜とを有し、
 エッチングマスク膜が前記薄膜の最上層である、[1]ないし[3] のいずれかに記載のフォトマスクブランク。
[9] 前記薄膜は、位相シフター膜と遮光膜とを有し、
 位相シフター膜が透光性基板と遮光膜との間に配置されている、[1]ないし[8]のいずれかに記載のフォトマスクブランク。
[10] [1]ないし[9]のいずれかに記載のフォトマスクブランクを用いて作製されるフォトマスク。
 本明細書において、「薄膜」は遮光膜を含み、任意にエッチングマスク膜、位相シフター膜等を含む膜を意味する。
 また、本発明のフォトマスクブランクには、レジスト膜が形成されたフォトマスクブランクもレジスト膜が形成されていないフォトマスクブランクも含まれる。したがって、本明細書の「薄膜」は、フォトマスクブランクにレジスト膜が形成されているか否かに拘わらず、レジスト膜を含むものではない。
 本発明の好ましい態様に係るフォトマスクブランクの遮光膜の薄膜化が可能であり、それによってクリアエッチング時間(CET)が短縮されると共に、オーバーエッチング時間(OET)も短縮される。特に、本発明の好ましい態様に係るフォトマスクブランクは、複数層(特に3層)構造の遮光膜において、Cr等の金属の含有率の高い遮光層(吸収層)を設けることによって遮光膜の薄膜化が可能となり、クリアエッチング時間(CET)とオーバーエッチング時間(OET)を短縮できる。
 また、本発明の好ましい態様に係るフォトマスクブランクは、高いエッチング速度(ER)の金属(たとえばCr)含有膜(反射防止層)と低いエッチング速度(ER)の金属含有膜(吸収層)とを組み合わせること、さらには、高いエッチング速度(ER)の層と低いエッチング速度(ER)の層との膜厚を所定のバランスにすると共に、低いエッチング速度(ER)の層を所定位置に配置することによって、オーバーエッチング時間(OET)を短縮できる。
 本発明の好ましい態様に係るフォトマスクブランクは、クリアエッチング時間(CET)、オーバーエッチング時間(OET)または両者を短縮できることによって、遮光膜上に形成されるレジストを薄くすることができる。これによって、本発明の好ましい態様に係るフォトマスクブランクは、パターン倒れ等の問題が生じにくくなり、微細なマスクパターンが形成できる。
 また、本発明の好ましい態様に係るフォトマスクブランクは、金属含有量の異なる複数の層を所定の膜厚で積層する構造を有することによって、遮光膜全体としてエッチング速度(ER)は高速であり、かつ、所定の膜厚で充分な光学濃度を有する遮光膜を有するフォトマスクブランクを提供できる。
実施例1で製造したフォトマスクブランクの模式図である。 実施例2で製造したフォトマスクブランクの模式図である。 DCスパッタにおいて、プラズマが形成された状態における電圧とガス流量との関係を示すグラフである。
符号の説明
1 表面反射防止層
2 遮光層
3 裏面反射防止層
5 位相シフター膜
10 透光性基板
1 第1の態様  
 本発明の第1の態様のフォトマスクブランクは、
 ArFエキシマレーザ光が適用されるフォトマスクを作製するために用いられるフォトマスクブランクであって、
 透光性基板上に、多層構造の薄膜を有し、
 前記薄膜の最上層は、クロムと、窒素、酸素および炭素のうち少なくとも一つとを含む材料からなるアモルファス構造であるフォトマスクブランクである。
1.1 透光性基板
 透光性基板は透光性を有する基板であれば特に限定されないが、石英ガラス基板、アルミノシリケートガラス基板、フッ化カルシウム基板、フッ化マグネシウム基板等を用いることができる。これらの中でも、石英ガラス基板は平坦度および平滑度が高く、フォトマスクを使用して半導体基板上へのパターン転写を行う場合、転写パターンの歪みが生じにくく高精度のパターン転写が行えるため好ましい。
1.2 薄膜
 本発明の第1の態様のフォトマスクブランクの薄膜は遮光膜を含み、任意にエッチングマスク膜、位相シフター膜等を含む膜を意味する。当該薄膜は、フォトマスクブランクにレジスト膜が形成されているか否かに拘わらず、レジスト膜を含むものではない。
 したがって、薄膜の構成としては、たとえば、(1)Cr系遮光膜からなる膜、(2) 位相シフター膜とCr系遮光膜とからなる膜、(3)遮光膜とCr系エッチングマスク膜とからなる膜、 (4) 位相シフター膜とエッチングストッパー膜と遮光膜とCr系エッチングマスク膜とからなる膜が挙げられる。
 本発明の第1の態様のフォトマスクブランクにおいて、薄膜の最上層は、クロムと、窒素、酸素および炭素のうち少なくとも一つとを含む材料からなるアモルファス構造である。
 したがって、薄膜がCr系遮光膜からなるフォトマスクブランクでは、遮光膜の最上層がアモルファス構造である。
 薄膜が位相シフター膜とCr系遮光膜とがこの順に設けられた膜からなるフォトマスクブランクでは、遮光膜の最上層がアモルファス構造である。
 薄膜が遮光膜とCr系エッチングマスク膜とがこの順に設けられた膜からなるフォトマスクブランクでは、薄膜の最上層であるエッチングマスク膜がアモルファス構造である。
 薄膜が位相シフター膜とエッチングストッパー膜と遮光膜とCr系エッチングマスク膜とがこの順に設けられた膜からなるフォトマスクブランクでは、薄膜の最上層であるエッチングマスク膜がアモルファス構造である。
1.2.1 Cr系遮光膜
 本発明の第1の態様のフォトマスクブランクの薄膜がCr系遮光膜を含む場合について説明する。
 上記Cr系遮光膜は、透光性基板に近い側から裏面反射防止層、遮光層および表面反射防止層が順に積層された積層構造を有することが好ましい。遮光膜は、裏面反射防止層、遮光層および表面反射防止層という少なくとも3層を有すればよく、さらに1層以上の層を有してもよい。
 裏面反射防止層は、遮光膜を形成する層の中で、遮光層の下側(透光性基板に近い側)に設けられる層である。裏面反射防止層は、遮光膜の遮光性およびエッチング特性を制御する他、反射防止機能や位相シフター膜等との密着性を制御する構成とすること好ましい。裏面反射防止層は、遮光膜が形成された側とは反対側の透光性基板から入射される露光光が、裏面反射防止層により露光光源側に反射して転写特性に影響のない程度に裏面反射率を抑える程度であればよく、ArFエキシマレーザ光の波長に対して40%以下、好ましくは30%以下、さらに好ましくは20%以下が望ましい。
 遮光層は、遮光膜を形成する層の中で、裏面反射防止層と表面反射防止層との間に設けられる層である。遮光層は、遮光膜の遮光性およびエッチング特性を制御する。また、多層膜中で最も高い遮光性を有する層であることが好ましい。
 表面反射防止層は、遮光膜を形成する層の中で、遮光層の上側(透光性基板に遠い側)に設けられる層である。表面反射防止層は、遮光膜の遮光性およびエッチング特性を制御する他、フォトマスクブランクやフォトマスクにおける洗浄に対する耐薬性を制御する構成とすることが好ましい。また、表面反射防止層は、フォトマスクとして用いた場合に、半導体基板等の被転写物からの反射光が再び被転写物に戻ってパターン精度を悪化させることを防止する効果を奏するものであり、表面反射率は、ArFエキシマレーザ光の波長に対して30%以下、好ましくは25%以下、さらに好ましくは20%以下が望ましい。
 表面反射防止層は、クロムと、窒素、酸素および炭素のうち少なくとも一つとを含む材料からなるアモルファス構造を有することが好ましく、さらに裏面反射防止層もアモルファス構造を有することが好ましい。
 アモルファスは反応面積が大きいため、エッチング速度を速くすることができるので、前記遮光膜のエッチング時間を短縮することが可能となる。
 すなわち、レジストパターンをマスクにしてCr系遮光膜をドライエッチングすると、レジストはOを含むエッチングに対して耐性が低いため、レジスト膜べりが大きくなるが、前記遮光膜の表面反射防止層および/または裏面反射防止層をアモルファス構造とすることによって、遮光膜のエッチング時間を短縮することができるので、レジストを薄膜化することが可能となる。
 また、遮光膜を3層構造として、表面反射防止層および/または裏面反射防止層をエッチング速度の速いアモルファス構造とすることによって、オーバーエッチング時間を短くでき、遮光膜全体のエッチング時間を短縮することができる。
 さらに、表面反射防止層および/または裏面反射防止層をアモルファス構造とすることによって、遮光膜の膜応力を小さくすることが可能となる。
 表面反射防止層および裏面反射防止層は、CrOCN(酸化炭化窒化クロム)、CrOC(酸化炭化クロム)、CrON(酸化窒化クロム)、CrN(窒化クロム)のいずれかを主成分とする材料で形成されていることが好ましい。
 このようなCr系材料は、酸化した材料ほど塩素系ガスに対するエッチング速度が速くなる。また、酸化した材料ほどではないが、窒化した材料も塩素系ガスに対するエッチング速度が速くなる。
 そこで、表面反射防止層および裏面反射防止層のCr含有比率を50atm%以下、より好ましくは40atm%以下、NとOの合計が40atm%以上、より好ましくは50atm%以上と高酸化または高窒化させることが好ましい。Crの含有量が50atm%を越える、もしくはNとOの含有量の合計が40atm%未満であると、遮光膜のエッチング時間が長くなってしまう場合がある。
 なお、膜の欠陥品質に優れる観点から、表面反射防止層および裏面反射防止層は、CrOCN、CrOCが好ましい。また、アモルファス構造の形成、応力の制御性(低応力膜を形成可能)の観点からは、CrOCNが好ましい。
 表面反射防止層および裏面反射防止層の主成分が、CrOCNまたはCrOCの場合、クロムターゲットを用い、COガスを含む混合ガスを用いることが好ましい。具体的には、COガス、Nガスおよび希ガスを含む混合気体、または、COガスおよび希ガスを含む混合気体のような、ヒステリシスの小さいガスを用いることが好ましい。
 また、DCスパッタにおいて安定的にエッチング速度の速い膜を製造可能とするため、表面反射防止層および裏面反射防止層はメタルモードから反応モードへの移行が始まる付近の条件、または反応モード寄りの条件で成膜されることが好ましい。
 詳しくは、図3に示すように、DCスパッタにおいて、プラズマが形成された状態において、縦軸の電圧[V](成膜レートに対応する)と、横軸に示す各ガスの流量との関係を調べる。
 横軸に示す各ガスの流量を0から50sccmまで増加させた場合(行きの経路)と、50から0sccmまで減少させた場合(帰りの経路)とは、一致せず、いわゆるヒステリシスを示す。
 メタルモードは高電圧(例えば330~350V)を維持している領域(ArでCrがイオンスパッタされる領域)、遷移領域は電圧が急降下する領域、反応モードは急降下した電圧の急降下後の領域(急降下した電圧290~310Vを維持している領域)(ガスが活性化し反応性を示す領域)をそれぞれ指す。
 メタルモードは、図3(1)における0~30sccmの領域、図3(2)における0~25sccmの領域、図3(3)における0~32sccmの領域である。
 遷移領域は、図3(1)における増加モードで35~50sccmの領域、図3(2)における増加モードで35~50sccmの領域、図3(3)における増加モードで43~50sccmの領域である。
 反応領域は、図3(1)における減少モードで50~35sccmの領域、図3(2)における減少モードで50~35sccmの領域、図3(3)における減少モードで48~32sccmの領域である。
 メタルモードでは非常に酸化度、窒化度が低いクロムが成膜され、反応モードでは酸化、窒化度の高いクロムが成膜され、メタルモードと反応モードの中間のモード(メタルモードと反応モードとの遷移領域)では条件が安定しないので通常使用されない。
 クロムを酸化、窒化させるガス系は種々あるが、図3(3)に示すように、ヒステリシスが大きいガス系(NOガス+希ガス)を用いた場合、DCスパッタで酸化、窒化されたクロムを反応モードで安定して低欠陥で成膜するのは難しいから好ましくない。Oガス+希ガスを用いた場合もヒステリシスが大きくなるため好ましくない。
 これに対し、図3(1)や図3(2)に示すように、ヒステリシスが小さいガス系を用いた場合(図3(1)では「COガス+希ガス」を用い、図3(2)では「COガス+Nガス+希ガス」を用いる)、DCスパッタで酸化、窒化されたクロムを反応モード(図3(1)では40~30sccmの減少モードの領域、図3(2)では35~25sccmの減少モードの領域)で安定して低欠陥で成膜することができ、しかも得られた酸化、窒化されたクロムはアモルファス構造でエッチング速度の速い膜を製造できる。特に、図3(1)や図3(2)における流量35sccm付近の増加モードと減少モードが若干ずれた箇所(条件)、すなわちメタルモードから反応モードに行きかけるあたりの条件(メタルモードから反応モードへの移行が始まる付近(間際)の条件)で成膜を行うことで、他の条件に比べ相対的にエッチング速度の速い酸化、窒化されたアモルファス構造のクロム膜をDCスパッタで安定して低欠陥で製造できる。
 ここで、上記DCスパッタで成膜を行うときのガス圧を0.2Pa以下と低くすると、アモルファスを形成しやすいため好ましい。
 また、レジスト塗布前の加熱処理による平坦度変化を防止するため、遮光膜を成膜後、予め150~300℃で加熱処理を施すことが好ましい。また、多種存在するレジスト材料に対応するには、200℃以上であることが望ましい。300℃を超えるとアモルファス構造でなくなり、結晶質になりやすい。
 Cr系遮光膜の場合には、加熱処理後の平坦度は10nm以下であることが好ましい。
 本発明に記載する平坦度とはTIR(Total Indicated Reading)で表される表面の反り(変形量)を表す値である。なお、本発明においては6インチ基板の中心における142×142mmのエリア内の測定値をもって平坦度とする。
 また、表面反射防止層の表面粗さRaが0.50nm以下であると、遮光膜パターンのLER(Line Edge Roughness)を小さくすることができると共に、遮光膜パターンの断面形状も良好にすることができるので好ましい。
 なお、本明細書において、表面粗さは、原子間力顕微鏡(AFM)を用いて測定し、10nm角範囲の高さデータをもとに、Ra(中心線表面粗さ)を求めた。
 遮光層は表面反射防止層に比べてエッチング速度が遅いほうが好ましい。したがって、エッチング速度の遅い遮光層の膜厚が全体膜厚の30%以下にすることによって、遮光膜全体のエッチング時間を短縮することができる。遮光層の膜厚が遮光膜全体の膜厚の30%を超えると、遮光膜の膜厚は薄膜化できるが、エッチング速度の速い裏面または表面反射防止層の割合が少なくなるため、エッチング時間を短縮できず好ましくない。
 また、遮光層の膜厚が遮光膜全体の膜厚の30%以下とすることによって、遮光層がエッチングされている間に上層の表面反射防止層で発生したローディングによる断面形状のバラツキが緩和される。その後、第1のエッチング速度で裏面反射防止層を高速にエッチングするので、裏面反射防止層をエッチングしている間に表面反射防止層等におけるエッチングが意図されていない部分がさらにエッチングされるのを抑制し、パターンの断面形状を良好とすることができる。さらに、遮光層の導入位置の最適化を図ることにより、断面形状をさらに良好にすることが可能となる。
 さらに、遮光層の膜厚を遮光膜全体の膜厚の20%以下、さらには10%以下とすると、さらにエッチング時間が短縮し、断面形状もより良好になるため好ましい。エッチング速度の遅い中間層が厚い場合には中間層での裾引きが大きく、その影響により下層の裏面反射防止層のエッチング面積も狭くなり、トータルエッチング時間が長くなってしまうが、中間層が薄い場合には中間層での裾引きが小さく、下層のエッチングの進行が妨げられず好ましい。
 また、遮光層を薄くする一方で、裏面反射防止層の膜厚を厚くすると、パターン断面の角度をより垂直に近い角度で形成することが可能となる。言い換えれば、遮光膜中において、エッチング速度の遅い遮光層の位置を制御することによって、断面形状が良好になり、パターンの再現性を良好にすることができる。
 そこで、遮光層の膜厚は、裏面反射防止層の膜厚の40%以下が好ましく、15%以下がさらに好ましい。
1.2.2 Cr系エッチングマスク膜
 本発明の第1の態様のフォトマスクブランクの薄膜がCr系エッチングマスク膜を含む場合について説明する。
 上述の遮光膜をCr系とした場合、レジスト膜をマスクとして遮光膜のドライエッチングを行う際に、レジスト膜もエッチングされて消費されるが、この対策として上述のとおり遮光膜を改善する方法の他に、次の方法がある。
 例えば、基板上に、MoSi系遮光膜とCr系エッチングマスク膜とをこの順に設けたフォトマスクブランクを用いる。そして、膜厚の薄いCr系エッチングマスク膜を用いることによって、レジストへの負担が軽減され、Cr系エッチングマスク膜にマスクパターンを転写したときの解像性の低下は改善される。この構成によって、レジスト膜を薄膜化することが可能となる。
 しかしながら、レジスト膜厚を100nm以下にしようとすると、パターン形状の悪化が顕著であり、エッチングマスク膜にマスクパターンを転写したときのLERが悪化してしまうため、エッチングマスク膜のエッチング時間を短縮する必要があることを本発明者は見出した。
 エッチングマスク膜として、クロムと、窒素、酸素および炭素のうち少なくとも一つとを含む材料からなるアモルファス構造を有することにより、エッチングマスク膜のエッチング速度を速くすることができ、エッチングマスク膜のエッチング時間を短縮することが可能となるので好ましい。
 エッチングマスク膜の好ましい材料、組成比および成膜条件は、上述のCr系遮光膜における表面反射防止層または裏面反射防止層と同様である。
 また、エッチングマスク膜をアモルファス構造とすることによって、膜応力を小さくすることが可能となる。
 また、レジスト塗布前の加熱処理による平坦度変化を防止するため、エッチングマスク膜を成膜後、上述のCr系遮光膜と同様の条件で加熱処理を施すことが好ましい。エッチングマスク膜の場合にも、加熱処理後の平坦度は10nm以下であることが好ましい。
 また、エッチングマスク膜の表面粗さRaが0.50nm以下であると、エッチングマスクパターンのLERを小さくすることができると共に、エッチングマスクパターンの断面形状も良好にすることができるので好ましい。
 エッチングマスク膜の膜構造としては、上記膜材料からなる単層とすることが多いが、複数層構造とすることもできる。また、複数層構造では、異なる組成で段階的に形成した複数層構造や、連続的に組成が変化した膜構造とすることができる。
 エッチングマスク膜がCr系の材料の場合、エッチングマスク膜の下に設けられる遮光膜は、MoSi系材料であることが好ましい。具体的には、遮光膜は、膜厚が60nm以下であり、遮光層および表面反射防止層がこの順に形成された2層構造、または裏面反射防止層、遮光層および表面反射防止層がこの順に形成された3層構造とすると好ましい。遮光層は、MoSiまたはMoSiNが好ましく、反射防止層は、MoSiON、MoSiNまたはMoSiOが好ましい。また、これらに炭素や水素が含まれていてもよい。遮光層のMo含有量は20~40atm%が好ましく、反射防止層のMo含有量は、15atm%以下、好ましくは5atm%である。
 また、遮光膜は、Ta系の材料でもよい。
 さらに、位相シフター膜を設けることによって、ハーフトーン型位相シフトマスクブランクとしてもよい。この場合には、透光性基板上に、位相シフター膜、エッチングストッパー膜、上記遮光膜および上記エッチングマスク膜をこの順に設ければよい。位相シフター膜は、MoSiNまたはMoSiONなどのMoSi系膜が好ましく、エッチングストッパー膜は、CrN、CrONなどのCr系膜が好ましい。
2 第2の態様
 本発明者の発明者は、透光性基板上に形成された遮光膜の加工を行う際に、
(1)遮光層および表面反射防止層の2層構造では、下層の遮光層をエッチング速度が遅い材料で形成するとオーバーエッチング時間が長く必要になり、トータルエッチング時間が長くなってしまう一方、下層をエッチング速度が速い材料で形成するとクリアエッチング時間は短縮されるがローディングによってオーバーエッチング時間が長くなってしまう場合があるため、2層構造ではエッチング時間を短縮することが困難であること、
(2)オーバーエッチング時間を短くするために、裏面反射防止層、遮光層および表面反射防止層の3層構造とし、最下層の裏面反射防止層に遮光層よりもエッチング速度の速い材料を用いることが好ましいこと、
(3)3層構造とした場合、オーバーエッチング時間を短縮し、さらに遮光膜パターンの断面形状を良好にするために、エッチング速度の遅い中間層の膜厚を全体膜厚の30%以下に調整することが好ましいこと、
を見出し、第1の態様のフォトマスクブランクの発明を完成した。
 本発明の第2の態様のArFエキシマレーザ光が適用されるフォトマスクを作製するために用いられるフォトマスクブランクは、
 透光性基板上に遮光膜を有し、
 前記遮光膜は、透光性基板に近い側から裏面反射防止層、遮光層および表面反射防止層が順に積層された積層構造を有し、
 遮光膜全体の膜厚が60nm以下であり、
 裏面反射防止層は、金属を含有する膜からなり、第1のエッチング速度を有し、
 表面反射防止層は、金属を含有する膜からなり、第3のエッチング速度を有し、
 遮光層は、裏面反射防止層または表面反射防止層に含まれる金属と同じ金属を含有する膜からなり、第1のエッチング速度および第3のエッチング速度よりも遅い第2のエッチング速度を有し、
 遮光層の膜厚は、遮光膜全体の膜厚の30%以下であることを特徴とするフォトマスクブランクである。
 第2の態様のフォトマスクブランクでは、エッチング速度の遅い遮光層の膜厚が全体膜厚の30%以下であるから、遮光膜全体のエッチング時間を短縮することができる。遮光層の膜厚が遮光膜全体の膜厚の30%を超えると、遮光膜の膜厚は薄膜化できるが、エッチング速度の速い裏面または表面反射防止層の割合が少なくなるため、エッチング時間を短縮できず好ましくない。
 また、第2の態様のフォトマスクブランクでは、遮光層の膜厚が遮光膜全体の膜厚の30%以下であるから、遮光層がエッチングされている間に上層の表面反射防止層で発生したローディングによる断面形状のバラツキが緩和される。その後、裏面反射防止層を高速にエッチングするので、裏面反射防止層をエッチングしている間に表面反射防止層等におけるエッチングが意図されていない部分がさらにエッチングされるのを抑制し、パターンの断面形状を良好とすることができる。さらに、遮光層の導入位置の最適化を図ることにより、断面形状をさらに良好にすることが可能となる。
 第2の態様のフォトマスクブランクにおいて、遮光層の膜厚を遮光膜全体の膜厚の20%以下、さらには10%以下とすると、さらにエッチング時間が短縮し、断面形状もより良好になるため好ましい。エッチング速度の遅い中間層が厚い場合には中間層での裾引きが大きく、その影響により下層の裏面反射防止層のエッチング面積も狭くなり、トータルエッチング時間が長くなってしまうが、第2の態様のフォトマスクブランクにおいては、中間層が薄い場合には中間層での裾引きが小さく、下層のエッチングの進行が妨げられず好ましい。
 また、遮光層を薄くする一方で、下層の裏面反射防止層の膜厚を厚くすると、パターン断面の角度をより垂直に近い角度で形成することが可能となる。言い換えれば、遮光膜中において、エッチング速度の遅い遮光層の位置を制御することによって、断面形状が良好になり、パターンの再現性を良好にすることができる。
 そこで、第2の態様のフォトマスクブランクでは、遮光層の膜厚は、裏面反射防止層の膜厚の40%以下が好ましく、15%以下がさらに好ましい。
 遮光層と表面反射防止層の膜厚比の値が1.0/0.7を越える場合、表面反射防止層が薄くなりすぎて、所望の反射防止機能を有することができなくなる場合があり、また、膜厚比の値が1.0/7.0未満の場合、オーバーエッチング時間の短縮ができなくなる場合がある。
 そこで、第2の態様のフォトマスクブランクでは、遮光層と表面反射防止層の膜厚比は、1.0:0.7~1.0:7.0、より好ましくは1.0:2.0~1.0:7.0であることが好ましい。このような膜厚比を有することによって、エッチングが意図されていない部分がさらにエッチングされるのを抑制できるため断面形状が良好になり、パターンの再現性を良好にすることができる。
 第2の態様のフォトマスクブランクでは、遮光層の膜厚は、前記遮光膜全体の膜厚の0.5%以上、より好ましくは3%以上である。これによって、微細パターンと比較的大きなパターンとではエッチング速度に差が生じるため(マイクロローディング)、遮光層が薄すぎるとマイクロローディングによるCDリニアリティが悪化するが、それを防止することができる。
3 第3の態様
 遮光膜を構成する金属を含有する層に酸素を含有させるとエッチング速度が上昇するが、単位膜厚当りの光学濃度が小さくなるため、遮光層の膜厚が厚くなってしまう。また、縦方向にエッチング速度差の無い単一速度の膜はローディングによる断面形状バラツキが発生しやすい。
 また、ArFエキシマレーザ光で露光されるフォトマスクの場合、半導体基板等の被転写物からの反射光が再び被転写物に戻ってパターン精度を悪化させるのを防止するために、裏面反射防止層および表面反射防止層を有する構成が好ましい。しかし、この積層構造で遮光膜が一定膜厚(たとえば60nm)以下の制限があるなかで膜設計を行う場合、遮光層の膜厚が厚くなると、裏面または表面反射防止層の膜厚を薄くしなければならないが、単に薄くしただけでは全体の遮光性や反射率等の光学特性が確保されなくなる。
 そこで、本発明の第3の態様のArFエキシマレーザ光が適用されるフォトマスクを作製するために用いられるフォトマスクブランクは、
 透光性基板上に遮光膜を有し、
 前記遮光膜は、透光性基板に近い側から裏面反射防止層、遮光層および表面反射防止層が順に積層された積層構造を有し、
 遮光膜全体の膜厚が60nm以下であり、
 裏面反射防止層は、金属を含有する膜からなり、第1のエッチング速度を有し、
 表面反射防止層は、金属を含有する膜からなり、第3のエッチング速度を有し、
 遮光層は、裏面反射防止層または表面反射防止層に含まれる金属と同じ金属および窒素を含有する金属窒化膜からなり、第1のエッチング速度および第3のエッチング速度よりも遅い第2のエッチング速度を有することを特徴とする。
 金属は窒化されることにより、結晶構造の変化または膜密度の低下が生じるため、遮光層が金属窒化膜の第3の態様のフォトマスクブランクは、純金属膜の場合と比較して、引っ張り応力が緩和でき、膜応力の調整が容易になりやすい。
 第3の態様のフォトマスクブランクでは、遮光層をエッチング速度の遅い金属窒化膜とすることによって、光学濃度を高く維持しながら遮光膜の薄膜化が可能となる。これにより、積層構造で全体膜厚が一定膜厚以下の所望の光学特性を有する遮光膜を容易に設計することが可能となり、レジスト膜の薄膜化が実現できる。
 また、第3の態様のフォトマスクブランクによれば、金属窒化膜の第2のエッチング速度は、裏面反射防止層、表面反射防止層のエッチング速度に比べ遅いため、縦方向のエッチングに変化を与えることができる。すなわち、エッチング速度の遅い金属窒化膜がエッチングされている間に、エッチング速度の速い表面反射防止層で発生したローディングによる断面形状のバラツキが緩和される。遮光層のエッチング終了後、第1のエッチング速度で裏面反射防止層を高速にエッチングするので、裏面反射防止層をエッチングしている間に表面反射防止層等においてエッチングが意図されていない部分がさらにエッチングされるのを抑制し、パターンの断面形状を良好とすることができる。
4 第4の態様
(1) 本発明の第4の態様のArFエキシマレーザ光が適用されるフォトマスクを作製するために用いられるフォトマスクブランクは、
 透光性基板上に遮光膜を有し、
 遮光膜は、遮光層と少なくとも一層の反射防止層とを備え、遮光膜全体の光学濃度が1.8~3.1であり、
 遮光層の光学濃度と全ての反射防止層の光学濃度の総和との比が1:5~1:19であり、
 遮光層は、金属を含有する膜からなり、
 反射防止層は、遮光層に含まれる金属と同じ金属、NおよびOを含有する膜からなり、NとOの含有量の合計が40~65atom%であることを特徴とする。
 第4の態様のフォトマスクブランクは、遮光膜全体の光学濃度が1.8~3.1の範囲において、遮光層の光学濃度と全ての反射防止層の光学濃度の総和との比を1:5~1:19として、反射防止層によって遮光膜全体の光学濃度の大部分を担う構成としている。光学濃度は、組成および膜厚に依存しているが、反射防止層のNとOの含有量の合計を40~65atom%としているので、所望の光学濃度を得るためには膜厚は比較的厚くなるが、エッチング速度は速い。これにより、エッチング速度の速い層の膜厚の割合が大きくなるので、エッチング時間の短縮が可能となり、結果的にレジスト膜の薄膜化が可能となる。
 第4の態様のフォトマスクブランクにおいて、前記遮光層の光学濃度に対する反射防止層の光学濃度の比の値が1/5を越えると反射防止層のエッチング速度が遅くなる一方、上記比の値が1/19未満では反射防止層の膜厚が厚くなり過ぎる。また、 第4の態様のフォトマスクブランクにおいて、反射防止層のN含有量とO含有量との合計が65atom%を超えると膜厚が厚くなる一方、上記合計が40atom%未満ではエッチング速度が遅くなる。
 なお、本明細書において、光学濃度(OD)は、下記の関係を満たす。
 OD(遮光膜全体)=OD(表面反射防止層)+OD(遮光層)+OD(反射防止層)
 また、本明細書において、「単位膜厚当りの光学濃度」は、下記の関係を満たす。
 単位膜厚当りのOD(nm-1)=膜(層)のOD/膜(層)厚
(2) 第4の態様のフォトマスクブランクにおいて、反射防止層の単位膜厚当りの光学濃度は、0.04nm-1以下であり、遮光層の単位膜厚当りの光学濃度は、0.05nm-1以上あることが好ましい。
 前記遮光膜は、透光性基板に近い側から裏面反射防止層、遮光層および表面反射防止層が順に積層された積層構造を有し、
 裏面反射防止層の光学濃度が1.1~1.3であり、
 遮光層の光学濃度が0.1~0.3であり、
 表面反射防止層の光学濃度が0.4~0.6である態様が含まれる。
 当該態様のフォトマスクブランクは、各層の光学濃度をこれらの範囲内にすることにより、所望の膜厚、エッチング速度および光学特性を有する遮光膜を容易に得ることができる。
 第4の態様のフォトマスクブランクにおいて、裏面反射防止層の光学濃度が1.1未満の場合には光学濃度が不足するため、各層何れかの膜厚を厚くする必要が生じる一方、該光学濃度が1.3を超える場合にはエッチング速度が遅くなるため、各々薄膜化が困難となる。
 また、第4の態様のフォトマスクブランクにおいて、遮光層の光学濃度が0.1未満の場合には遮光膜全体の光学濃度が不足するため、各層何れかの膜厚を厚くする必要が生じると共に、遮光層での反射が低下するため十分に干渉効果が得られなくなる。その結果、表面反射率が高くなり所望の反射率が得られない。また、遮光層の該光学濃度が0.3を超える場合にはエッチング時間が長くなり、レジスト薄膜化が困難となる。
 さらに、第4の態様のフォトマスクブランクにおいて、表面反射防止層の光学濃度が0.4未満の場合には反射率が低くなりすぎると共に全体膜厚が厚くなり、該光学濃度が0.6を超える場合には反射率が高くなり過ぎる。
(3) 第4の態様のフォトマスクブランクにおいて、遮光膜は、透光性基板に近い側から裏面反射防止層、遮光層および表面反射防止層が順に積層された積層構造を有し、
 裏面反射防止層の、NとOの含有量の合計が40~55atom%であり、
 遮光層のNとOの含有量の合計が30atom%以下であり、
 表面反射防止層のNとOの含有量の合計が45~65atom%である態様が含まれる。
 当該態様のフォトマスクブランクは、各層のNとOの含有量を所定の範囲内にすることにより、所望の膜厚、エッチング速度および光学特性を有する遮光膜を容易に得ることができる。
 第4の態様のフォトマスクブランクにおいて、裏面反射防止層のNとOの含有量の合計が40atom%未満の場合にはエッチング速度が遅くなり、NとOの含有量の合計が55atom%を超える場合には光学濃度が小さくなり(膜厚が厚くなり)、各々薄膜化が困難となる。
 また、第4の態様のフォトマスクブランクにおいて、遮光層のNとOの含有量の合計が30atom%を超える場合にはエッチング速度が遅くなり、薄膜化が困難となる。
 さらに、第4の態様のフォトマスクブランクにおいて、表面反射防止層のNとOの含有量の合計が45atom%未満の場合にはエッチング速度が遅くなり、NとOの含有量の合計が65atom%を超える場合には光学濃度が小さくなり(膜厚が厚くなり)、各々薄膜化が困難となる。
 第4の態様のフォトマスクブランクにおいて、裏面反射防止層の単位膜厚当りの光学濃度は、0.03~0.04nm-1であり、遮光層の単位膜厚当りの光学濃度は、0.05~0.06nm-1であることが好ましい。
5 第5の態様
 本発明の第5の態様のArFエキシマレーザ光が適用されるフォトマスクを作製するために用いられるフォトマスクブランクは、
 透光性基板上に遮光膜を有し、
 前記遮光膜は、透光性基板に近い側から裏面反射防止層、遮光層および表面反射防止層が順に積層された積層構造を有し、
 裏面反射防止層は、Crのターゲットを用い、不活性ガスが45~65vol%、CO2ガスが30~50vol%、N2ガスが1~15vol%である混合ガス雰囲気中で形成されたCrOCN膜からなり、
 遮光層は、Crのターゲットを用い、不活性ガスが70~90vol%、N2ガスが5~25vol%である混合ガス雰囲気中で形成されたCrN膜からなり、
 表面反射防止層は、Crのターゲットを用い、不活性ガスが40~60vol%、CO2ガスが25~45vol%、N2ガスが5~20vol%である混合ガス雰囲気中で形成されたCrOCN膜からなることを特徴とする。
 第5の態様のフォトマスクブランクは、膜厚が60nm以下で所望の光学特性を有する積層構造のフォトマスクブランクである。
 また、第5の態様のフォトマスクブランクにおいて、反射防止層を形成する場合、O2ガスやNOガスを用いることができるが、酸化度の高い膜を形成しようとすると、プラズマを安定化させるため比較的ガス圧の高い状態でスパッタする必要がある。そうすると得られる膜がもろくなり、チャンバー内に付着した膜が剥がれて成膜中の基板に付着するため、欠陥品質が悪化しやすい。
 これに対して、CO2ガスを用いた場合には、比較的ガス圧の低い状態で酸化度の制御が可能であり、膜質がもろくならない程度のガス流量下で成膜することができる。
 そこで、欠陥品質を良好にするという点から、第5の態様のフォトマスクブランクは、遮光膜を構成する相を形成するために用いる雰囲気ガスとしてCO2ガスを用いることが好ましい。
(2) 第5の態様のフォトマスクブランクにおいて、裏面反射防止層を形成するための不活性ガスは、10~30vol%のArガスと、20~40vol%のHeガスとからなり、表面反射防止層を形成するための不活性ガスは、10~30vol%のArガスと、20~40vol%のHeガスとからなる態様が含まれる。
 当該態様のフォトマスクブランクによれば、雰囲気ガスにHeガスを入れると、Cr系遮光膜の場合には得られる層の圧縮応力が増すので、膜応力を制御することができ、また、Heガスは、主に膜応力の制御にのみ作用するため、膜応力設計が容易になるので好ましい。
6 第6の態様
(1) 本発明の第6の態様のArFエキシマレーザ光が適用されるフォトマスクを作製するために用いられるフォトマスクブランクは、
 透光性基板上に遮光膜を有し、
 前記遮光膜は、透光性基板に近い側から裏面反射防止層、遮光層および表面反射防止層が順に積層された積層構造を有し、
 裏面反射防止層は、金属の含有量が25~50atm%、NとOの含有量の合計が35~65atm%であり、および、光学濃度が1.1~1.3であり、
 遮光層は、金属とNを含み、金属の含有量が50~90atm%、膜厚が2~6nm、および、光学濃度が0.1~0.3であり、
 表面反射防止層は、金属の含有量が25~50atm%、NとOの含有量の合計が45~65atm%であり、および、光学濃度が0.4~0.6であることを特徴とする。
 第6の態様のフォトマスクブランクでは、裏面反射防止層において、金属の含有量が25atm%未満である、もしくは、NとOの含有量の合計が65atm%を越える、遮光層において、金属の含有量が50atm%未満である、または、表面反射防止層において、金属の含有量が25atm%未満である、もしくは、NとOの含有量の合計が65atm%を越えると、遮光膜全体として充分な光学濃度を得ることができない場合がある。他方、裏面反射防止層において、金属の含有量が50atm%を越える、もしくは、NとOの含有量の合計が35atm未満である、遮光層において、金属の含有量が90atm%を越える、または、表面反射防止層において、金属の含有量が50atm%を越える、もしくは、NとOの含有量の合計が45atm%未満であると、遮光膜のエッチング時間が長くなってしまう場合がある。
 また、第6の態様のフォトマスクブランクの表面反射防止層において、金属の含有量が50atm%を超える、もしくは、NとOの含有量の合計が45atm%未満であると、表面反射率が高くなりすぎてしまい、ArFエキシマレーザ光に対して要求される20%以下程度の表面反射率が得られなくなってしまうことがある。一方、表面反射防止層において、金属の含有量が25atm%未満である、もしくは、NとOの含有量の合計が65atm%を越えると、欠陥品質が悪化する場合がある。
 また、第6の態様のフォトマスクブランクにおいて、遮光層のNの含有量が3~25atm%であると、一定の膜厚において比較的大きな光学濃度が得られるので好ましい。
 第6の態様のフォトマスクブランクの遮光層において、Nの含有量が3~25atm%であることが好ましい。さらに、フォトマスクブランクの遮光層において、単位膜厚当たりの光学濃度が0.05~0.06nm-1であることが好ましい。
(2) 第6の態様のフォトマスクブランクにおいて、裏面反射防止層は、Crの含有量が30~40atm%、NとOの含有量の合計が40~55atm%であり、かつ、光学濃度が1.1~1.3であり、
 遮光層は、Crの含有量が50~90atm%、Nの含有量が3~25atm%含み、かつ、光学濃度が0.1~0.3であり、
 表面反射防止層は、Crの含有量が30~40atm%、NとOの含有量の合計が50~60atm%であり、かつ、光学濃度が0.4~0.6である態様が含まれる。
 当該態様のフォトマスクブランクでは、裏面反射防止層において、Crの含有量が30atm%未満である、もしくは、NとOの含有量の合計が55atm%を越える、遮光層において、Crの含有量が50atm%未満である、もしくは、Nの含有量が25atm%を越える、または、表面反射防止層において、Crの含有量が30atm%未満である、もしくは、NとOの含有量の合計が60atm%を越えると、遮光膜全体として充分な光学濃度を得ることができない場合がある。他方、裏面反射防止層において、Crの含有量が40atm%を越える、もしくは、NとOの含有量の合計が40atm%未満である、遮光層において、Crの含有量が90atm%を越える、もしくは、Nの含有量の合計が3atm%未満である、または、表面反射防止層において、Crの含有量が40atm%を越える、もしくは、NとOの含有量の合計が50atm%未満であると、遮光膜のエッチング時間が長くなってしまう場合がある。
(3) 第6の態様のフォトマスクブランクにおいて、遮光膜の膜厚が60nm以下である態様が含まれる。
(4) また、第6の態様のフォトマスクブランクにおいて、裏面反射防止層の厚さが23~33nm、遮光層の厚さが2~6nmおよび表面反射防止層の厚さが11~17nmである態様が含まれる。
 当該態様のフォトマスクブランクでは遮光膜の膜厚が60nm以下であることが好ましい。したがって、遮光膜を構成する遮光層の膜厚が大きくなれば、裏面反射防止層と表面反射防止層の合計の膜厚は小さくなる傾向がある一方で、他方、遮光膜を構成する遮光層の膜厚が小さくなれば、裏面反射防止層と表面反射防止層の合計の膜厚は大きくなる傾向がある。また、裏面反射防止層と表面反射防止層は、金属含有量等の組成の性質に基づき、遮光層に比べて、エッチング速度は速いが単位膜厚当たりの光学濃度が小さい傾向がある。
 したがって、第6の態様のフォトマスクブランクにおいて、遮光膜の膜厚が60nm以下という制限下で、裏面反射防止層が33nmを越える厚さ、かつ、表面反射防止層が17nmを越える厚さであっても、遮光層が2nm未満の厚さであると、遮光膜全体として充分な光学濃度を得ることができない場合がある。他方、遮光膜の膜厚が60nm以下という制限下で、裏面反射防止層が23nm未満の厚さ、かつ、表面反射防止層が11nm未満の厚さであっても、遮光層が17nmを越える厚さであると、遮光膜全体のエッチング時間が長くなってしまう場合がある。
(5) 第6の態様のフォトマスクブランクにおいて、
 裏面反射防止層は、第1のエッチング速度を有し、
 表面反射防止層は、第3のエッチング速度を有し、
 遮光層は、第1のエッチング速度および第3のエッチング速度よりも遅い第2のエッチング速度を有する態様が含まれる。
7 第1~第6の態様のフォトマスクブランクにおける好ましい態様
7.1 エッチング速度
 第1の態様の薄膜がCr系遮光膜のフォトマスクブランク、第2~第6の態様のフォトマスクブランクにおいて、「第2のエッチング速度<第1のエッチング速度≦第3のエッチング速度」の関係であると、パターンの断面の角度が垂直に近づくため好ましい。また、第1のエッチング速度<第3のエッチング速度とすれば、さらにパターンの断面の角度が垂直に近づくため好ましい。
 また、第3のエッチング速度と第2のエッチング速度との比は、1.0:1.1~1.0:2.0が好ましい。第2のエッチング速度が第1のエッチング速度の2.0倍を超える場合には、反射防止層と遮光層の断面に段差が生じる一方、1.1倍未満の場合には全体のエッチング時間の短縮ができなくなる。また、前記第3のエッチング速度は0.67nm/sec以上であり、前記第2のエッチング速度は0.44nm/sec以下であることが好ましい。
7.2 遮光膜の組成
 第1の態様の薄膜がCr系遮光膜のフォトマスクブランク、第2~第6の態様のフォトマスクブランクにおいて、反射防止層が裏面反射防止層と表面反射防止層を含む場合、裏面反射防止層または表面反射防止層は、Crの含有量が50atm%以下であり、少なくともO、C、Nの何れかを含む層であり、遮光層は、Crの含有量が50atm%以上の膜であることが好ましい。このような構成を有することによって、第2のエッチング速度<第1または第3のエッチング速度の関係を有する膜を容易に形成することができるからである。
 遮光層は、CrN、CrON、CrO、CrC、CrCOまたはCrOCNからなり、CrNまたはCrONがより好ましい。
 裏面反射防止層または表面反射防止層がCrOCNからなる場合、Cr-Cr結合成分とCrO成分とが混在する態様が好ましい。また、遮光層がCrNからなる場合、Cr-Cr結合成分が主体であり、CrO成分はわずかである態様が好ましい。CrO成分を多くすることにより、エッチング速度を速くすることが可能となる。
 また、炭素はクロム炭化物(Cr-C)が主体であり、その他の成分C-C、C-O、C-Nが混在した状態であることが好ましい。
 また、裏面反射防止層と表面反射防止層とは、互いに組成が同一であり、組成比と膜厚が互いに異なることが好ましい。このような構成を有することによって、裏面反射防止層と表面反射防止相を形成する際の雰囲気ガスを同じとすることができるので、遮光膜の成膜工程が容易になるからである。このとき、表面反射防止層は欠陥品質が良好となるように酸化度を調整し、裏面反射防止層は光学濃度を高くしつつ反射率を下げるように調整することが容易である。
7.3 遮光膜の光学濃度
 第1の態様の薄膜がCr系遮光膜のフォトマスクブランク、第2~第6の態様のフォトマスクブランクにおいて、ArFエキシマレーザ光に対する遮光層の単位膜厚当たりの光学濃度が0.05nm-1以上であることが好ましい。
7.4 レジスト膜・Cr系以外のエッチングマスク膜
 第1の態様の薄膜がCr系遮光膜のフォトマスクブランク、第2~第6の態様のフォトマスクブランクにおいて、遮光膜上に膜厚が200nm以下、より好ましくは150nm以下のレジスト膜を設けてもよい。
 また、第1の態様の薄膜がCr系遮光膜のフォトマスクブランク、第2~第6の態様のフォトマスクブランクにおいて、遮光膜上にエッチングマスク膜を設けてもよい。遮光膜がCrを含む場合、ドライエッチング加工は、エッチングガスに塩素および酸素を用いることによって、塩化クロミルの形で昇華させるのが一般的であるが、レジストの主成分は炭素であるから、酸素プラズマに対してレジストは非常に弱い。したがって、エッチングマスク膜を設けることにより、レジスト膜に対する負荷を低減することができるので、レジスト膜を100nm以下とより薄膜化することが可能となる。遮光膜がCrを主成分とする場合には、エッチングマスク膜は選択比が高いSiON、SiN、SiO2、MoSiON、MoSiNなどを5~20nmの膜厚で設けることが好ましい。また、Siを20%以上含有する有機膜でも膜厚を20~40nmとすることによって、エッチングマスク膜として設けることができる。
 第1の態様の薄膜がCr系遮光膜のフォトマスクブランク、第2~第6の態様のフォトマスクブランクにおいて、遮光膜上にエッチングマスク膜を設けることによって、よりレジストの薄膜化が可能となる。具体的には、レジスト膜厚を100nm以下とすると、パターン形状の悪化が顕著であり、エッチングマスク膜にマスクパターンを転写したときのLERが悪化してしまうため、エッチングマスク膜のエッチング時間を短縮する必要があることを本発明者は見出した。上記遮光膜は、エッチング時間が短いため、エッチングマスク膜の膜厚を薄くすることができ、エッチングマスク膜のエッチング時間を短縮することができる。
 また、第1の態様の薄膜がCr系遮光膜のフォトマスクブランク、第2~第6の態様のフォトマスクブランクにおいて、遮光膜における表面反射防止層または裏面反射防止層がアモルファス構造を有すると、その表面粗さが小さいため、上層のエッチングマスク膜の表面粗さを小さくすることができるので好ましい。その結果、エッチングマスク膜をエッチングしたときの断面形状およびLERが良好となるため、エッチングマスク膜パターンをマスクに下層の遮光膜をエッチングしたときに、遮光膜の断面形状およびLERが悪化するのを防止することができる。
7.5 本発明のフォトマスクブランク等について
 本明細書において、「フォトマスクブランク」は、バイナリーマスクブランクおよびハーフトーン型位相シフトマスクブランクを含み、また、「フォトマスク」はバイナリーマスクおよび位相シフトマスクを含む概念である。
 ハーフトーン型位相シフトマスクブランクは、透光性基板と遮光膜との間にハーフトーン型位相シフター膜を有する。
 ハーフトーン型位相シフトマスクブランクは、位相シフター膜の透過率は、2~40%であることが好ましい。
 また、ハーフトーン型位相シフトマスクブランクでは、遮光膜全体の膜厚が50nm以下であり、位相シフター膜の透過率は、2~6%であるフォトマスクブランクが好ましい。他方、転写されるパターンの解像性を高めるためには、位相シフター膜の透過率が7~20%であると好ましい。
 位相シフター膜を設ける場合、MoSiNまたはMoSiONからなる材料が好ましい。これらの材料からなる位相シフター膜上に、本実施の形態の遮光膜を設けることによって、従来のCr系遮光膜を設ける場合と比較して、位相シフター膜パターンのLERを良好にすることが可能となる。
 具体的には、従来のCr系遮光膜はポーラス状柱状構造であり、このためCr系遮光膜パターンのLERが大きくなってしまうので、位相シフター膜がアモルファス構造であるにもかかわらず、位相シフター膜をドライエッチングしたときにCr系遮光膜のLERによって、位相シフター膜パターンのLERが悪化していた。しかしながら、本発明の好ましい態様では、遮光膜における表面反射防止層または裏面反射防止層はアモルファス構造であるため、遮光膜をドライエッチングしたときの遮光膜パターンのLERを小さくすることが可能となる。その結果、遮光膜パターンをマスクに位相シフター膜をドライエッチングしたときに、位相シフター膜パターンのLERを悪化させることなく、位相シフター膜のLERを良好にすることができる。
8 フォトマスクおよびその製造方法
 本発明のフォトマスクブランクから得られるフォトマスクとその製造方法について説明する。
 まず、遮光膜が形成されたフォトマスクブランクにレジストを塗布し、乾燥してレジスト膜を得る。レジストは、使用する描画装置に応じて適切なものを選択する必要があるが、通常使用されるEB描画用としては、芳香族骨格をポリマー中に有するポジ型またはネガ型のレジスト、また、本発明が特に有効に用いられる微細パターン用のフォトマスク製造用としては、化学増幅型レジストを用いることが好ましい。
  レジスト膜厚は良好なパターン形状が得られる範囲で、かつエッチングマスクとしての機能を果たし得る範囲である必要があるが、特にArF露光用マスクとして微細なパターンを形成しようとした場合には、膜厚は200nm以下であることが好ましく、更に150nm以下であることが好ましい。なお、シリコン系樹脂を使用したレジストと芳香族系樹脂を使用した下層膜の組み合わせによる2層レジスト法や、芳香族系化学増幅型レジストとシリコン系表面処理剤を組み合わせた表面イメージング法を利用した場合には、更に膜厚を減じることも可能である。塗布条件、乾燥方法については使用するそれぞれのレジストに適する方法を適宜選定する。
 なお、微細なレジストパターンの剥がれや、倒れという問題の発生を低減するために、レジストを塗布する前にフォトマスクブランクの表面上に、樹脂層を形成してもよい。また、樹脂層の形成に替えて、レジストを塗布する前に基板(フォトマスクブランク)表面の表面エネルギーを下げるための表面処理を行ってもよい。表面処理の方法としては、たとえば、半導体製造工程で常用されるHMDSやその他の有機珪素系表面処理剤で表面をアルキルシリル化する方法が挙げられる。
 次に、レジスト膜が形成されたフォトマスクブランクにおけるレジストへの描画は、EB照射による方法や、光照射による方法があるが、一般的にはEB照射による方法が微細パターンを形成するためには好ましい方法である。化学増幅型レジストを使用した場合には、通常3~40μC/cmの範囲のエネルギーにより描画を行い、描画後、加熱処理を行い、その後にレジスト膜を現像処理してレジストパターンを得る。
 上記で得たレジストパターンをエッチングマスクとして遮光膜または遮光膜と他の膜(位相シフター膜等)のエッチング加工を行う。エッチング加工は遮光膜(表面層、遮光層、反射防止層等)や他の膜の組成によって公知の塩素系やフッ素系のドライエッチングを用いることができる。
 エッチングにより遮光パターンを得た後、レジストを所定の剥離液で剥離すると、遮光膜パターンが形成されたフォトマスクが得られる。
9 パターン転写 
 本発明のフォトマスクは、開口数がNA>1の露光方法および200nm以下の露光光波長を利用して半導体デザインルールにおけるDRAMハーフピッチ(hp)45nm以降の微細パターンの形成するパターン転写方法において使用されるマスクとして特に有用である。
 本発明のフォトマスクブランクは、フォトマスクブランク上に100nm未満の線幅のレジストパターンを形成するために用いられるものである場合に特に有効である。このようなフォトマスクブランクとしては、OPC構造を有するマスクが挙げられる。このOPCマスクでは、本パターンの解像性を向上させる目的で本パターンの周囲に設けられる補助パターンの幅が最も狭いため、これらのパターンを有するフォトマスクを用いたパターン転写に、特に有用である。
 以下、実施例を用いて、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
 [実施例1]
(フォトマスクブランクの作製)
 本実施例では、透光性基板10上に位相シフター膜5と3つの層からなる遮光膜とが設けられたハーフトーン型位相シフトマスクブランクを製造した(図1参照)。
 まず、サイズ6インチ角、厚さ0.25インチの石英ガラスからなる透光性基板10上に、枚葉式スパッタ装置を用い、Mo、SiおよびNを主たる構成要素とする単層で構成されたArFエキシマレーザー(波長193nm)用ハーフトーン型位相シフター膜5を形成した(膜厚69nm)。
 表1にも示すように、スパッタリング(DCスパッタリング)の条件は以下のとおりであった。
 スパッタターゲット:MoとSiとの混合ターゲット(Mo:Si=8:92mol%)
 スパッタガス:ArとNとHeとの混合ガス雰囲気(Ar:9sccm、N2:81sccm、He:76sccm)
 放電中のガス圧:0.3Pa
 印加電力:2.8kW
 ArFエキシマレーザー(波長193nm)において、得られた位相シフター膜5の透過率はそれぞれ5.5%、位相シフト量が約180°であった。
 次に、位相シフター膜5を形成した装置と同様のスパッタ装置を用い、CrOCNからなる裏面反射防止層3を形成した(膜厚30nm)。スパッタリング(DCスパッタリング)の条件は表1に示すとおりであった。
 その後、裏面反射防止層3を形成した装置と同様のスパッタ装置を用い、CrNからなる遮光層2を形成した(膜厚4nm)。スパッタリング(DCスパッタリング)の条件は表1に示すとおりであった。
 さらに、遮光層2を形成した装置と同様のスパッタ装置を用い、CrOCNからなる表面反射防止層1を形成した(膜厚14nm)。スパッタリング(DCスパッタリング)の条件は表1に示すとおりであった。
 なお、表1におけるスパッタガスの流量は、体積百分率に換算すると、以下のとおりになる。
 表面反射防止層1:Ar=21.0vol%、CO=36.8vol%、N=10.5vol%、He=31.6vol%
 遮光層2:Ar=83.3vol%、N=16.7vol%
 裏面反射防止層3:Ar=22.0vol%、CO=38.9vol%、N=5.6vol%、He=33.3vol%
 このようにして、石英ガラスからなる透光性基板上に位相シフター膜5、裏面反射防止層3、遮光層2、表面反射防止層1が順に積層されたフォトマスクブランクが得られた。裏面反射防止層3、遮光層2および表面反射防止層1からなる遮光膜における波長193.4nmの光に対する光学濃度(OD)は1.9であった。また、各層における光学濃度は表1に示すとおりであった。
 また、得られたフォトマスクブランクの表面反射防止層1と遮光層2と裏面反射防止層3の組成と原子数密度をRBS(Rutherford Backscattering Spectrometry)により分析した。RBSは、面密度(atms/cm)に対する表面組成を深さ方向に分析する手法であり、層毎の膜厚が既知であれば、原子数密度(atms/cm)を以下の式から算出することができる。
      原子数密度=面密度/膜厚
上記手法により、表面反射防止層1の原子数密度を算出した。
 その結果、表面反射防止層1(膜厚14nm)の膜組成は、Crが34atom%、Cが11atom%、Oが39atom%およびNが16atom%であった。また、表面反射防止層1のクロム比は、C/Crが0.3、O/Crが1.2、N/Crが0.5であった。さらに、表面反射防止層1の原子数密度は、10.5×1022atms/cmであった。
 遮光層2(膜厚4nm)の膜組成は、Crが少なくとも64atom%以上、Nが少なくとも8atom%以上であった。
 また、裏面反射防止層3(膜厚30nm)の膜組成は、Crが36atom%、Cが15atom%、Oが39atom%およびNが9atom%であった。また、裏面反射防止層3のクロム比は、C/Crが0.4、O/Crが1.1、N/Crが0.3であった。
 また、得られたフォトマスクブランクの断面をTEM(透過型電子顕微鏡)およびX線回折装置(XRD)で観察したところ、表面反射防止層1はグレインサイズが1~2nmのアモルファス構造であった。原子間力顕微鏡(AFM)を用いて表面粗さを測定したところ、Ra=0.45nmであった。
 本実施例で得られたフォトマスクブランクに濃度50ppmのオゾン水を流量1.4L/分で60分間スイングアームにて揺動させながら基板表面に供給し、遮光膜の膜厚、表面反射率および光学濃度の変化量を各々測定して耐薬性の評価を行った。
 その結果、遮光膜の膜厚はオゾン水の噴霧によって変化しなかった。また、表面反射率は、波長193nmの光では+0.82%変化した。遮光膜の光学濃度は、-0.04変化した。
 また、本実施例の表面反射防止層1と全く同じ層を、スパッタリングによってガラス基板に直接形成し、表面反射防止層1に濃度50ppmのオゾン水を60分間噴霧することによる反射率の変化量を測定した。なお、本実施例における測定では、分光光度計(日立ハイテクノロジー製:U-4100)にてオゾン水噴霧前後にて反射スペクトルを測定し、その変化量を計算した。
 その結果、波長193nmの光では+0.7%、257nmの光では+1.5%、365nmでは+2.0%、488nmでは+1.2%変化した。本明細書中、「+」は反射率の増加、「-」は反射率の減少を表す。
 このように、本実施例の遮光膜は、オゾン処理に対して高い耐薬性を有していることが確認された。
(フォトマスクの作製)
 得られたフォトマスクブランク上に、電子線描画(露光)用化学増幅型ポジレジスト(PRL009:富士フィルムエレクトロニクスマテリアルズ社製)をスピンコート法により膜厚が150nmとなるように塗布した。形成されたレジスト膜に対し、電子線描画装置を用いて所望のパターン描画を行った後、所定の現像液で現像してレジストパターンを形成した。
 次に、上記レジストパターンに沿って、裏面反射防止層3、遮光層2および表面反射防止層1からなる遮光膜のドライエッチングを行って、遮光膜パターンを形成した。ドライエッチングガスとしてはClとO(Cl:O=4:1)との混合ガスを用いた。
 上記遮光膜のドライエッチングにおいて、各層のエッチング速度は表1のとおりであった。遮光膜全体のクリアエッチング時間は84.5secであり、後述の比較例1と比べて8%程度の短縮が確認された。また、SEM(Scanning Electron Microscopy)を用いて遮光膜パターンを断面観察したところ、遮光膜の断面の角度が基板に対して垂直に形成され良好であった。さらに、オーバーエッチング時間を短くしても垂直な断面形状が得られ、トータルエッチング時間は比較例1と比べて20%程度短縮可能であることが確認された。
 次に、上記レジストパターンおよび遮光膜パターンをマスクに、位相シフター膜のエッチングを行って、位相シフター膜パターンを形成した。この位相シフター膜のエッチングにおいては、上記遮光膜パターンの断面形状が影響するが、遮光膜パターンの断面形状が良好であるために、位相シフター膜パターンの断面形状も良好となった。
 その後、残存するレジストパターンを剥離して、再度レジスト膜を塗布し、転写領域内の不要な遮光膜パターンを除去するためのパターン露光を行った後、該レジスト膜を現像してレジストパターンを形成した。次いで、ウェットエッチングを行って、不要な遮光膜パターンを除去し、残存するレジストパターンを剥離して、フォトマスクを得た。
 得られたフォトマスクに対して、解像性評価を行った。レジスト膜の解像性は良好であり、遮光膜パターンの解像性は60nm(DRAM hp32nmに相当)未満であった。
 [実施例2]
 本実施例では、透光性基板10上に3つの層からなる遮光膜が設けられたバイナリーマスクブランクを製造した(図2参照)。
 すなわち、スパッタリングの条件を表1に示すとおりに設定した以外は実施例1と同じ条件で反応性スパッタリングを行った。
 なお、表1におけるスパッタガスの流量は、体積百分率に換算すると、以下のとおりになる。
 表面反射防止層1:Ar=21.0vol%、CO=36.8vol%、N=10.5vol%、He=31.6vol%
 遮光層2:Ar=30.8vol%、NO=23.1vol%、He=46.2vol%
 裏面反射防止層3:Ar=23.5vol%、CO=29.4vol%、N=11.8vol%、He=35.3vol%
 このようにして、図2に示すような、石英ガラスからなる透光性基板10上に裏面反射防止層3、遮光層2、表面反射防止層1が順に積層されたフォトマスクブランクが得られた。なお、裏面反射防止層3、遮光層2および表面反射防止層1からなる遮光膜における波長193.4nmの光に対する光学濃度(OD)は3であった。また、各層における光学濃度は表1に示すとおりであった。
 次に、実施例1と同様に、得られた表面反射防止層1、遮光層2および裏面反射防止層3の組成と表面反射防止層1の原子数密度をRBSにより分析した。
 その結果、表面反射防止層1(膜厚14nm)の膜組成は、Crが32atom%、Cが16atom%、Oが37atom%およびNが16atom%であった。また、表面反射防止層1のクロム比は、C/Crが0.5、O/Crが1.2、N/Crが0.5であった。さらに、表面反射防止層1の原子数密度は、11.0×1022atms/cmであった。
 遮光層2(膜厚25nm)の膜組成は、Crが87atom%、Oが9atom%およびNが4atom%であった。また、遮光層2のクロム比は、O/Crが0.1、N/Crが0.05であった。
 また、裏面反射防止層3(膜厚25nm)の膜組成は、Crが49atom%、Cが11atom%、Oが26atom%およびNが14atom%であった。また、裏面反射防止層3のクロム比は、C/Crが0.2、O/Crが0.5、N/Crが0.3であった。
 また、得られたフォトマスクブランクの断面をTEM(透過型電子顕微鏡)およびX線回折装置(XRD)で観察したところ、表面反射防止層1はグレインサイズが1~2nmのアモルファス構造であった。原子間力顕微鏡(AFM)を用いて表面粗さを測定したところ、Ra=0.28nmであった。
 本実施例で得られたフォトマスクブランクに濃度50ppmのオゾン水を流量1.4L/分で60分間スイングアームにて揺動させながら基板表面に供給し、遮光膜の膜厚、表面反射率および光学濃度の変化量を各々測定して耐薬性の評価を行った。
 その結果、遮光膜の膜厚はオゾン水の噴霧によって変化しなかった。また、表面反射率は、波長193nmの光では-0.02%変化した。遮光膜の光学濃度は、-0.06変化した。
 また、本実施例の表面反射防止層1と全く同じ層を、スパッタリングによってガラス基板に直接形成し、実施例1と同様の測定方法で、表面反射防止層1に濃度50ppmのオゾン水を60分間噴霧することによる反射率の変化量を測定した。
 その結果、波長193nmの光では+0.5%、257nmの光では+2.1%、365nmでは+5.3%、488nmでは+4.6%変化した。
 このように、本実施例の遮光膜は、オゾン処理に対して高い耐薬性を有していることが確認された。
 得られたフォトマスクブランク上に、電子線描画(露光)用化学増幅型ポジレジスト(PRL009:富士フィルムエレクトロニクスマテリアルズ社製)をスピンコート法により膜厚が200nmとなるように塗布した。形成されたレジスト膜に対し、電子線描画装置を用いて所望のパターン描画を行った後、所定の現像液で現像してレジストパターンを形成した。
 次に、上記レジストパターンに沿って、裏面反射防止層3、遮光層2および表面反射防止層1からなる遮光膜のドライエッチングを行って、遮光膜パターンを形成した。ドライエッチングガスとしてはClとO(Cl:O=4:1)との混合ガスを用いた。その後、残存するレジストパターンを剥離して、フォトマスクを得た。
 上記遮光膜のドライエッチングにおいて、各層のエッチング速度は表1のとおりであった。また、実施例1と同様に遮光膜パターンを観察したところ、ややテーパーがあるが、遮光膜の断面の角度が基板に対して垂直に形成され良好であった。さらに、オーバーエッチング時間を短くしても垂直な断面形状が得られ、トータルエッチング時間を比較例2と比べて25%程度短縮可能であることが確認された。
 得られたフォトマスクに対して、解像性評価を行った。レジスト膜の解像性は良好であり、遮光膜パターンの解像性は70nm(DRAM hp45nmに相当)未満であった。
 [実施例3]
 本実施例では、実施例2において、遮光層2の成膜条件および膜厚、裏面反射防止層の膜厚を変更する以外は、実施例2と同様のバイナリーマスクブランクを製造した。
 すなわち、スパッタリングの条件を表1に示すとおりに設定した以外は実施例2と同じ条件で反応性スパッタリングを行った。
 なお、表1におけるスパッタガスの流量は、体積百分率に換算すると、以下のとおりになる。
 表面反射防止層1:Ar=21.0vol%、CO=36.8vol%、N=10.5vol%、He=31.6vol%
 遮光層2:Ar=27.2vol%、NO=18.2vol%、He=54.5vol%
 裏面反射防止層3:Ar=23.5vol%、CO=29.4vol%、N=11.8vol%、He=35.3vol%
 このようにして、図2に示すような、石英ガラスからなる透光性基板10上に裏面反射防止層3、遮光層2、表面反射防止層1が順に積層されたフォトマスクブランクが得られた。なお、裏面反射防止層3、遮光層2および表面反射防止層1からなる遮光膜における波長193.4nmの光に対する光学濃度(OD)は3.1であった。また、各層における光学濃度は表1に示すとおりであった。
 また、得られたフォトマスクブランクの断面をTEM(透過型電子顕微鏡)およびX線回折装置(XRD)で観察したところ、表面反射防止層1はグレインサイズが1~2nmのアモルファス構造であった。原子間力顕微鏡(AFM)を用いて表面粗さを測定したところ、Ra=0.28nmであった。
 また、実施例2と同様に、フォトマスクブランクの耐薬性の評価を行い、遮光膜の膜厚、表面反射率および光学濃度の変化量を各々測定した。
 その結果、遮光膜の膜厚はオゾン水の噴霧によって変化しなかった。また、表面反射率は、波長193nmの光では-0.02%変化した。遮光膜の光学濃度は、-0.06変化した。
 このように、本実施例の遮光膜は、オゾン処理に対して高い耐薬性を有していることが確認された。
 その後、実施例2と同様にして、フォトマスクを得た。
 上記遮光膜のドライエッチングにおいて、各層のエッチング速度は表1のとおりであった。また、実施例1と同様に遮光膜パターンを観察したところ、遮光膜の断面の角度が基板に対して垂直に形成され良好であった。さらに、オーバーエッチング時間を短くしても垂直な断面形状が得られ、トータルエッチング時間を比較例2と比べて25%程度短縮可能であることが確認された。
 得られたフォトマスクに対して、解像性評価を行った。レジスト膜の解像性は良好であり、遮光膜パターンの解像性は70nm(DRAM hp45nmに相当)未満であった。
Figure JPOXMLDOC01-appb-T000001
 
 
 [比較例1]
 本比較例では、2つの層からなる遮光膜を有するハーフトーン型位相シフトマスクブランクを製造した。
 具体的には、インライン型スパッタ装置を用い、実施例1と同様の位相シフター膜上に、遮光層を形成した。スパッタリング(DCスパッタリング)の条件は以下のとおりであった。
 スパッタターゲット:Cr
 スパッタガス:ArとN2とHeとの混合ガス雰囲気(Ar:30sccm、N2:30sccm、He:40sccm)
 放電中のガス圧:0.2Pa
 印加電力:0.8kW
 その後、遮光層の上に表面反射防止層を形成した。スパッタリング(DCスパッタリング)の条件は以下のとおりであった。
 スパッタターゲット:クロム(Cr)
 スパッタガス:アルゴン(Ar)とメタン(CH4)との混合ガス(CH4:3.5体積%)、NOおよびHeが混合されたガス(Ar+CH4:65sccm、NO:3sccm、He:40sccm)
 放電中のガス圧:0.3Pa
 印加電力:0.3kW
 このようにして、石英ガラスからなる透光性基板上に、位相シフター膜、遮光層および表面反射防止層が順に積層された遮光膜厚48nmのフォトマスクブランクが得られた。なお、遮光層および表面反射防止層からなる遮光膜における波長193.4nmの光に対する光学濃度(O.D.)は1.9であった。
 次に、実施例1と同様に、得られた表面反射防止層および遮光層の組成と、表面反射防止層の原子数密度をRBSにより分析した。
 その結果、表面反射防止層(膜厚24nm)の膜組成は、Crが34atom%、Оが32atom%およびNが23atom%であった。また、表面反射防止層のクロム比は、О/Crが0.9およびN/Crが0.7であった。さらに、表面反射防止層の原子数密度は、7.4×1022atms/cm3であった。
 遮光層(膜厚24nm)の膜組成は、Crが59atom%およびNが39atom%であった。また、遮光層のクロム比は、N/Crが0.7であった。
 なお、インライン型スパッタ装置を用いたため、遮光層および表面反射防止層は各々膜厚方向に組成が傾斜した傾斜膜であった。したがって、上記膜組成は平均値である。
 また、得られたフォトマスクブランクの断面をTEM(透過型電子顕微鏡)およびX線回折装置(XRD)で観察したところ、表面反射防止層は密度の低いポーラス状柱状構造であった。原子間力顕微鏡(AFM)を用いて表面粗さを測定したところ、Ra=0.70nmであった。
  さらに、実施例1と同様に、本比較例で得られたフォトマスクブランクの耐薬性の評価を行った。
  その結果、遮光膜の膜厚はオゾン水の噴霧によって、膜厚が5.8nm減少した。また、表面反射率は、波長193nmの光では+2.72%変化した。遮光膜の光学濃度は、-0.38変化した。
  また、本比較例の表面反射防止層と全く同じ層を、スパッタリングによってガラス基板に直接形成し、実施例1と同様の測定方法で、反射率の変化量を測定した。
 その結果、波長193nmの光では+2.5%(19.8%→22.3%)、257nmの光では+9.1%(16.4%→25.5%)、365nmでは+13.9%(19.9%→33.8%)、488nmでは+11.0%(29.9%→40.9%)変化した。
 これにより、実施例1と2に比べて、本比較例の遮光膜は、オゾン処理に対して耐薬性が低いことが確認された。
 実施例1と同様に、得られたフォトマスクブランク上に、電子線描画(露光)用化学増幅型ポジレジストを膜厚が150nmとなるように塗布し、実施例1と同様にしてフォトマスクを得た。
 上記遮光膜のドライエッチングにおいて、エッチング速度は実施例1よりも遅かった。遮光膜全体のクリアエッチング時間は92.0secであった。また、実施例1と同様に遮光膜パターンを観察したところ、遮光膜の断面の角度が基板に対して垂直に形成されなかった。このため、位相シフター膜パターンの断面形状も良好ではなかった。
 得られたフォトマスクに対して、解像性評価を行った。レジスト膜の解像性は悪く、エッチング不良により、遮光膜パターンの解像性は80nm以上であった。
 [比較例2]
 本比較例では、遮光膜を2つの層からなる遮光膜を有するバイナリーマスクブランクを製造した。
 具体的には、インライン型スパッタ装置を用い、透光性基板上に、遮光層を形成した。スパッタリング(DCスパッタリング)の条件は以下のとおりであった。
 スパッタターゲット:Cr
 スパッタガス:ArとN2とHeとの混合ガス雰囲気(Ar:72sccm、N2:28sccm)
 放電中のガス圧:0.3Pa
 印加電力:0.6kW
 その後、遮光層の上に表面反射防止層を形成した。スパッタリング(DCスパッタリング)の条件は以下のとおりであった。
 スパッタターゲット:クロム(Cr)
 スパッタガス:アルゴン(Ar)とメタン(CH4)との混合ガス(CH4:8体積%)、NOおよびHeが混合されたガス(Ar+CH4:105sccm、NO:3sccm)
 放電中のガス圧:0.3Pa
 印加電力:1.1kW
 このようにして、石英ガラスからなる透光性基板上に遮光層および表面反射防止層が順に積層された遮光膜厚73nmのフォトマスクブランクが得られた。なお、遮光層および表面反射防止層からなる遮光膜における波長193.4nmの光に対する光学濃度(O.D.)は3.0であった。
 次に、実施例1と同様に、得られた表面反射防止層および遮光層の組成と、表面反射防止層の原子数密度をRBSにより分析した。
 その結果、表面反射防止層の膜組成は、Crが48atom%、ОおよびNの合計が50atom%であった。遮光層2の膜組成は、Crが60atom%、ОおよびNの合計が30atom%であった。なお、インライン型スパッタ装置を用いたため、遮光層および表面反射防止層は各々膜厚方向に組成が傾斜した傾斜膜であった。したがって、上記膜組成は平均値である。
 また、得られたフォトマスクブランクの断面をTEM(透過型電子顕微鏡)およびX線回折装置(XRD)で観察したところ、表面反射防止層は密度の低いポーラス状柱状構造であった。原子間力顕微鏡(AFM)を用いて表面粗さを測定したところ、Ra=0.60nmであった。
 さらに、実施例1と同様に、本比較例で得られたフォトマスクブランクの耐薬性の評価を行った。
 その結果、当該フォトマスクブランクの遮光膜の膜厚はオゾン水の噴霧によって、膜厚が4.2nm減少した。また、表面反射率は、波長193nmの光では+5.30%変化した。遮光膜の光学濃度は、-2.60変化した。
 実施例2と同様に、得られたフォトマスクブランク上に、電子線描画(露光)用化学増幅型ポジレジストを膜厚が200nmとなるように塗布し、実施例2と同様にしてフォトマスクを得た。
 上記遮光膜のドライエッチングにおいて、エッチング速度は実施例2よりも遅かった。また、実施例1と同様に遮光膜パターンを観察したところ、実施例2に比べて、遮光膜の断面の角度が基板に対して垂直に形成されなかった。
 得られたフォトマスクに対して、解像性評価を行った。レジスト膜の解像性は悪く、エッチング不良により、遮光膜パターンの解像性は80nm以上であった。
 [実施例4]
 本実施例では、遮光膜をCr系からMoSi系に変え、該遮光膜上にCr系エッチングマスク膜が設けられたバイナリーマスクブランクを製造した。遮光膜として、MoSiON膜(裏面反射防止層)、MoSi膜(遮光層)、MoSiON膜(表面反射防止層)を、エッチングマスク膜としてCrOCN膜を、それぞれ形成した。
   具体的には、MoとSiとの混合ターゲット(Mo:Si=21mol%:79mol%)を用いArとOとNとHeとの混合ガス雰囲気(ガス流量比  Ar:O:N:He=5:4:49:42)で、ガス圧0.2Pa、DC電源の電力を3.0kWとして、モリブデン、シリコン、酸素、窒素からなる膜(Mo:13.0atm%、Si:36.3atm%、O:3.1atm%、N:47.7atm%)を7nmの膜厚で形成し、MoSiON膜(裏面反射防止層)を形成した。
  次いで、Mo:Si=21mol%:79mol%のターゲットを用い、Arをスパッタリングガス圧0.1Pa、DC電源の電力を2.0kWで、モリブデンおよびシリコンからなる膜(Mo:21.0atm%、Si:79.0atm%)を30nmの膜厚で形成し、MoSi膜(遮光層)を形成した。
 次いで、Mo:Si=4mol%:96mol%のターゲットを用い、ArとOとNとHe(ガス流量比  Ar:O:N:He=6:5:11:16)で、ガス圧0.1Pa、DC電源の電力を3.0kWで、モリブデン、シリコン、酸素、窒素からなる膜(Mo:2.6atm%、Si:57.1atm%、O:15.9atm%、N:24.1atm%)を15nmの膜厚で形成し、MoSiON膜(表面反射防止層)を形成した。
 遮光膜の合計膜厚は52nmとした。遮光膜の光学濃度(OD)はArFエキシマレーザ露光光の波長193nmにおいて3.0であった。
 その後、実施例1の表面反射防止層と同じ条件で、CrOCN(Cr:34atm%、C:11atm%、O:39atm%、N:16atm%)からなるエッチングマスク膜を膜厚15nmで形成した。
 以上のようにして、本実施例のフォトマスクブランクを作製した。
 得られたフォトマスクブランクの断面をTEM(透過型電子顕微鏡)およびX線回折装置(XRD)で観察したところ、エッチングマスク膜はグレインサイズが1~2nmのアモルファス構造であった。原子間力顕微鏡(AFM)を用いて表面粗さを測定したところ、Ra=0.45nmであった。
 フォトマスクブランクのエッチングマスク膜の上に、電子線描画(露光)用化学増幅型ポジレジスト(PRL009:富士フィルムエレクトロニクスマテリアルズ社製)をスピンコート法により膜厚が100nmとなるように塗布した。
  次に、レジスト膜に対し、電子線描画装置を用いて所望のパターンの描画を行った後、所定の現像液で現像してレジストパターンを形成した。次に、レジストパターンをマスクとして、エッチングマスク膜のドライエッチングを行った。ドライエッチングガスとして、ClとOの混合ガス(Cl:O=4:1)を用いた。
 次いで、残留したレジストパターンを薬液により剥離除去した。
 次いで、エッチングマスク膜パターンをマスクにして、遮光膜を、SFとHeの混合ガスを用い、ドライエッチングを行い、遮光膜パターンを形成した。
 次いで、エッチングマスク膜パターンを、ClとOの混合ガスでドライエッチングによって剥離し、所定の洗浄を施してフォトマスクを得た。
 このフォトマスクの作製例では、エッチングマスク膜パターンを形成後、レジストパターンを剥離除去したが、これは、その次のプロセスで遮光膜に遮光膜パターンを形成する際、マスクパターンの側壁高さ(=エッチングマスク膜パターンの側壁高さ)が低い方が、CD精度をより高く、マイクロローディングをより小さくすることができ、より加工精度に優れるためである。なお、そこまでの加工精度が要求されないフォトマスクを作製する場合やエッチングマスク膜にも露光光に対する反射防止の役割を持たせたい場合においては、レジストパターンを遮光膜パターンが形成された後に剥離除去するようにしてもよい。
 得られたフォトマスクに対して、解像性評価を行った。レジスト膜の解像性は良好であり、また、エッチングマスク膜のLERも良好であり、得られたフォトマスクにおける遮光膜パターンの解像性は40nm(DRAM hp22nmに相当)未満であった。
 [実施例5]
 本実施例は、遮光膜に関し、MoSiON膜(裏面反射防止層)を形成しなかったこと、遮光膜におけるMoSi膜(遮光層)及びMoSiON膜(表面反射防止層)に関し、下記条件で成膜を行い、MoSi膜(遮光層)をMoSiN膜(遮光層)に変え、その膜厚及び膜中のSi含有率を変化させたこと、MoSiON膜(表面反射防止層)の膜厚を変化させたこと、遮光膜の合計膜厚を変化させたこと、を除き、実施例4と同様である。
 遮光膜におけるMoSiN膜(遮光層)は、モリブデン、シリコンおよび窒素からなる膜(Mo:7.1atm%、Si:71.7atm%、N:18.2atm%)を52nmの膜厚で形成した。また、遮光膜におけるMoSiON膜(表面反射防止層)は、モリブデン、シリコン、酸素、窒素からなる膜(Mo:2.6atm%、Si:57.1atm%、O:15.9atm%、N:24.1atm%)を8nmの膜厚で形成した。
 遮光膜の合計膜厚は60nmとした。遮光膜の光学濃度(OD)はArFエキシマレーザ露光光の波長193nmにおいて3.0であった。
 その後、クロムターゲットを使用し、ArとNOをスパッタリングガス圧0.2Pa(ガス流量比  Ar:NO:He=18:80:32)とし、DC電源の電力を1.8kWとして、CrON膜(膜中のCr含有率:35原子%)からなるエッチングマスク膜を15nmで形成した。
 以上のようにして、本実施例のバイナリーマスクブランクを作製した。
 得られたフォトマスクブランクの断面をTEM(透過型電子顕微鏡)およびX線回折装置(XRD)で観察したところ、エッチングマスク膜はグレインサイズが1~2nmのアモルファス構造であった。原子間力顕微鏡(AFM)を用いて表面粗さを測定したところ、Ra=0.48nmであった。
 実施例4と同様にして、フォトマスクを得た。得られたフォトマスクに対して、解像性評価を行った。レジスト膜の解像性は良好であり、また、エッチングマスク膜のLERも良好であり、得られたフォトマスクにおける遮光膜パターンの解像性は40nm(DRAM hp22nmに相当)未満であった。
 [比較例3]
 本比較例は、エッチングマスク膜をCrNに変えたことを除き、実施例5と同様である。すなわち、クロムターゲットを使用し、ArとNをスパッタリングガス圧0.2Pa(ガス流量比  Ar:N:He=18:18:32)とし、DC電源の電力を1.8kWで、CrN膜(膜中のCr含有率:90原子%)からなるエッチングマスク膜を15nmで形成した。
 また、得られたフォトマスクブランクの断面をTEM(透過型電子顕微鏡)およびX線回折装置(XRD)で観察したところ、表面反射防止層は密度の低いポーラス状柱状構造であった。原子間力顕微鏡(AFM)を用いて表面粗さを測定したところ、Ra=0.70nmであった。
 実施例4と同様にして、フォトマスクを得た。得られたフォトマスクに対して、解像性評価を行った。レジスト膜の解像性は悪く、また、エッチングマスク膜のLERも大きく、得られたフォトマスクにおける遮光膜パターンの解像性は70nm以上であった。
 本発明の好ましい態様に係るフォトマスクブランクは、シャドウイングを抑制することができるから高NAリソグラフィに用いることができ、短波長の露光光のリソグラフィに用いることもできる。したがって、本発明の好ましい態様に係るフォトマスクブランクを用いることによって、極めて微細なマスクパターンが形成できる。
 また、本発明の好ましい態様に係るフォトマスクブランクは、たとえば、超高NA-ArFリソグラフィにてhp45nm、hp32nm世代以降のフォトマスクブランクに適用できる。

Claims (10)

  1.  ArFエキシマレーザ光が適用されるフォトマスクを作製するために用いられるフォトマスクブランクであって、
     透光性基板上に、多層構造の薄膜を有し、
     前記薄膜の最上層は、クロムと、窒素、酸素および炭素のうち少なくとも一つとを含む材料からなるアモルファス構造であるフォトマスクブランク。
  2.  前記薄膜の最上層の表面粗さは、Raにおいて0.50nm以下である、請求項1に記載のフォトマスクブランク。
  3.  前記薄膜の最上層は、クロムの含有量が50atm%以下、窒素と酸素の含有量の合計が40atm%以上である、請求項1または2に記載のフォトマスクブランク。
  4.  前記薄膜は、前記透光性基板に近い側から裏面反射防止層、遮光層および表面反射防止層が順に積層された遮光膜を有し、
     表面反射防止層が前記薄膜の最上層である、請求項1ないし3のいずれかに記載のフォトマスクブランク。
  5.  前記裏面反射防止層が、クロムと、窒素、酸素および炭素のうち少なくとも一つとを含む材料からなるアモルファス構造である、請求項4に記載のフォトマスクブランク。
  6.  前記遮光膜における遮光層の膜厚は、遮光膜全体の膜厚の30%以下である、請求項4または5に記載のフォトマスクブランク。
  7.  前記遮光膜における遮光層の膜厚は、裏面反射防止層の膜厚の40%以下である、請求項4ないし6のいずれかに記載のフォトマスクブランク。
  8.  前記薄膜は、遮光膜とエッチングマスク膜とを有し、
     エッチングマスク膜が前記薄膜の最上層である、請求項1ないし3のいずれかに記載のフォトマスクブランク。
  9.  前記薄膜は、位相シフター膜と遮光膜とを有し、
     位相シフター膜が透光性基板と遮光膜との間に配置されている、請求項1ないし8のいずれかに記載のフォトマスクブランク。
  10.  請求項1ないし9のいずれかに記載のフォトマスクブランクを用いて作製されるフォトマスク。
PCT/JP2009/056611 2008-03-31 2009-03-31 フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法 WO2009123172A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/935,766 US8512916B2 (en) 2008-03-31 2009-03-31 Photomask blank, photomask, and method for manufacturing photomask blank
JP2010505928A JP5579056B6 (ja) 2008-03-31 2009-03-31 フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
KR1020167011171A KR101726553B1 (ko) 2008-03-31 2009-03-31 포토마스크 블랭크, 포토마스크 및 포토마스크 블랭크의 제조 방법
KR1020107024214A KR101696487B1 (ko) 2008-03-31 2009-03-31 포토마스크 블랭크, 포토마스크 및 포토마스크 블랭크의 제조 방법
US13/944,251 US9075314B2 (en) 2008-03-31 2013-07-17 Photomask blank, photomask, and method for manufacturing photomask blank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4119308P 2008-03-31 2008-03-31
US61/041,193 2008-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/935,766 A-371-Of-International US8512916B2 (en) 2008-03-31 2009-03-31 Photomask blank, photomask, and method for manufacturing photomask blank
US13/944,251 Division US9075314B2 (en) 2008-03-31 2013-07-17 Photomask blank, photomask, and method for manufacturing photomask blank

Publications (1)

Publication Number Publication Date
WO2009123172A1 true WO2009123172A1 (ja) 2009-10-08

Family

ID=41135543

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/056611 WO2009123172A1 (ja) 2008-03-31 2009-03-31 フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
PCT/JP2009/056608 WO2009123170A1 (ja) 2008-03-31 2009-03-31 フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056608 WO2009123170A1 (ja) 2008-03-31 2009-03-31 フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法

Country Status (5)

Country Link
US (3) US8512916B2 (ja)
JP (2) JP5562834B2 (ja)
KR (3) KR101696487B1 (ja)
TW (3) TWI457696B (ja)
WO (2) WO2009123172A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038445A1 (ja) * 2008-09-30 2010-04-08 Hoya株式会社 フォトマスクブランク、フォトマスク及びその製造方法、並びに半導体デバイスの製造方法
JP2014137388A (ja) * 2013-01-15 2014-07-28 Hoya Corp マスクブランク、位相シフトマスクおよびこれらの製造方法
WO2015045801A1 (ja) * 2013-09-24 2015-04-02 Hoya株式会社 マスクブランク、転写用マスクおよび転写用マスクの製造方法
JP2016020950A (ja) * 2014-07-14 2016-02-04 Hoya株式会社 マスクブランクの製造方法、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP2017015939A (ja) * 2015-07-01 2017-01-19 信越化学工業株式会社 無機材料膜、フォトマスクブランク、およびフォトマスクの製造方法
JP2017058633A (ja) * 2015-09-18 2017-03-23 Hoya株式会社 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP2017120437A (ja) * 2012-03-30 2017-07-06 Hoya株式会社 多層反射膜付き基板の製造方法、反射型マスクブランクの製造方法、反射型マスクの製造方法、透過型マスクブランクの製造方法、透過型マスクの製造方法及び半導体装置の製造方法
JP2017223972A (ja) * 2017-07-31 2017-12-21 信越化学工業株式会社 フォトマスクブランク
JP2018101155A (ja) * 2018-03-14 2018-06-28 信越化学工業株式会社 フォトマスクブランクの製造方法
TWI631417B (zh) * 2010-12-24 2018-08-01 日商Hoya股份有限公司 Photomask substrate and transfer mask
KR20190008110A (ko) * 2017-07-14 2019-01-23 호야 가부시키가이샤 포토마스크 블랭크 및 그 제조 방법, 포토마스크의 제조 방법, 그리고 표시 장치의 제조 방법
JP2019020712A (ja) * 2017-07-14 2019-02-07 Hoya株式会社 フォトマスクブランクおよびその製造方法、フォトマスクの製造方法、並びに表示装置の製造方法
JP2020140106A (ja) * 2019-02-28 2020-09-03 Hoya株式会社 フォトマスクブランク、フォトマスクブランクの製造方法、フォトマスクの製造方法及び表示装置の製造方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562835B2 (ja) * 2008-03-31 2014-07-30 Hoya株式会社 フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
JP5906143B2 (ja) * 2012-06-27 2016-04-20 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法
US9612521B2 (en) * 2013-03-12 2017-04-04 Applied Materials, Inc. Amorphous layer extreme ultraviolet lithography blank, and manufacturing and lithography systems therefor
US20140272684A1 (en) 2013-03-12 2014-09-18 Applied Materials, Inc. Extreme ultraviolet lithography mask blank manufacturing system and method of operation therefor
US9354508B2 (en) 2013-03-12 2016-05-31 Applied Materials, Inc. Planarized extreme ultraviolet lithography blank, and manufacturing and lithography systems therefor
US9632411B2 (en) 2013-03-14 2017-04-25 Applied Materials, Inc. Vapor deposition deposited photoresist, and manufacturing and lithography systems therefor
JP5970021B2 (ja) * 2013-08-20 2016-08-17 Hoya株式会社 フォトマスクの製造方法、描画装置、フォトマスクの検査方法、フォトマスクの検査装置、及び表示装置の製造方法
KR102522452B1 (ko) 2015-03-19 2023-04-18 호야 가부시키가이샤 마스크 블랭크, 전사용 마스크, 전사용 마스크의 제조방법 및 반도체 디바이스의 제조방법
JP6301383B2 (ja) * 2015-03-27 2018-03-28 Hoya株式会社 フォトマスクブランク及びこれを用いたフォトマスクの製造方法、並びに表示装置の製造方法
JP6451561B2 (ja) * 2015-09-03 2019-01-16 信越化学工業株式会社 フォトマスクブランク
US9837246B1 (en) * 2016-07-22 2017-12-05 Fei Company Reinforced sample for transmission electron microscope
CN114609856A (zh) * 2016-08-26 2022-06-10 Hoya株式会社 掩模坯料、转印用掩模及半导体器件的制造方法
TW201823855A (zh) * 2016-09-21 2018-07-01 日商Hoya股份有限公司 光罩之製造方法、光罩、及顯示裝置之製造方法
KR102365595B1 (ko) * 2017-02-27 2022-02-23 호야 가부시키가이샤 마스크 블랭크, 반사형 마스크의 제조 방법, 및 반도체 디바이스의 제조 방법
KR102631490B1 (ko) * 2017-09-07 2024-01-30 가부시키가이샤 니콘 포토마스크 블랭크, 포토마스크, 노광 방법, 및 디바이스의 제조 방법
JP6819546B2 (ja) * 2017-11-13 2021-01-27 信越化学工業株式会社 フォトマスクブランク、及びフォトマスクの製造方法
KR20190001650U (ko) 2017-12-21 2019-07-01 주식회사 헤세드코리아 방충망을 갖춘 모자
TWI835695B (zh) * 2018-11-30 2024-03-11 日商Hoya股份有限公司 光罩基底、光罩之製造方法及顯示裝置之製造方法
JP7356857B2 (ja) * 2019-09-30 2023-10-05 アルバック成膜株式会社 マスクブランクス及びフォトマスク
JP7154626B2 (ja) * 2019-11-26 2022-10-18 Hoya株式会社 マスクブランク、転写用マスク、及び半導体デバイスの製造方法
JP6987912B2 (ja) * 2020-03-16 2022-01-05 アルバック成膜株式会社 マスクブランクス、位相シフトマスク、製造方法
KR102464780B1 (ko) * 2020-09-02 2022-11-09 주식회사 에스앤에스텍 도전막을 구비하는 블랭크마스크 및 이를 이용하여 제작된 포토마스크
KR102402742B1 (ko) * 2021-04-30 2022-05-26 에스케이씨솔믹스 주식회사 포토마스크 블랭크 및 이를 이용한 포토마스크
KR102377406B1 (ko) 2021-05-21 2022-03-21 에스케이씨솔믹스 주식회사 블랭크 마스크 및 이를 이용한 포토마스크
KR102475672B1 (ko) * 2021-11-03 2022-12-07 에스케이씨솔믹스 주식회사 블랭크 마스크 및 이를 이용한 포토마스크
KR102535171B1 (ko) * 2021-11-04 2023-05-26 에스케이엔펄스 주식회사 블랭크 마스크 및 이를 이용한 포토마스크
KR102554083B1 (ko) 2022-06-23 2023-07-10 에스케이엔펄스 주식회사 블랭크 마스크 및 이를 이용한 포토마스크

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08286359A (ja) * 1995-04-18 1996-11-01 Toppan Printing Co Ltd フォトマスクブランクおよびフォトマスク
JPH11237726A (ja) * 1997-12-19 1999-08-31 Hoya Corp 位相シフトマスク及び位相シフトマスクブランク
JP2004318184A (ja) * 2000-09-12 2004-11-11 Hoya Corp 位相シフトマスクブランク、位相シフトマスク
JP2007033470A (ja) * 2005-07-21 2007-02-08 Shin Etsu Chem Co Ltd フォトマスクブランクおよびフォトマスクならびにこれらの製造方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119353A (ja) * 1982-12-27 1984-07-10 Hoya Corp フオトマスクブランク
JPS60182439A (ja) * 1984-02-29 1985-09-18 Konishiroku Photo Ind Co Ltd クロムマスク素材
JPS644941A (en) 1987-06-26 1989-01-10 Fujitsu Ltd Production of magneto-optical disk
JP2638942B2 (ja) 1988-07-01 1997-08-06 旭硝子株式会社 薄膜能動素子の製造方法及び液晶素子
JP3041802B2 (ja) 1990-04-27 2000-05-15 ホーヤ株式会社 フォトマスクブランク及びフォトマスク
US6017658A (en) * 1992-05-13 2000-01-25 The United States Of America As Represented By The Secretary Of The Navy Lithographic mask and method for fabrication thereof
JP2867964B2 (ja) * 1996-06-27 1999-03-10 日本電気株式会社 レジスト膜パターンの形成方法
JPH10213893A (ja) * 1997-01-30 1998-08-11 Toshiba Corp 露光用マスク及びその製造方法
JPH11271958A (ja) 1998-02-06 1999-10-08 Internatl Business Mach Corp <Ibm> 高解像フォトマスクおよびその製造方法
JPH11327121A (ja) * 1998-05-20 1999-11-26 Toppan Printing Co Ltd ハーフトーン型位相シフトマスクの製造方法およびハーフトーン型位相シフトマスクのブランク
KR100424853B1 (ko) * 1998-07-31 2004-03-27 호야 가부시키가이샤 포토마스크 블랭크, 포토마스크, 이들의 제조방법 및미세패턴의 형성방법
JP2001305713A (ja) * 2000-04-25 2001-11-02 Shin Etsu Chem Co Ltd フォトマスク用ブランクス及びフォトマスク
JP3608654B2 (ja) 2000-09-12 2005-01-12 Hoya株式会社 位相シフトマスクブランク、位相シフトマスク
JP2002244274A (ja) * 2001-02-13 2002-08-30 Shin Etsu Chem Co Ltd フォトマスクブランク、フォトマスク及びこれらの製造方法
JP2003195483A (ja) * 2001-12-28 2003-07-09 Hoya Corp フォトマスクブランク、フォトマスク、及びそれらの製造方法
JP3956103B2 (ja) 2002-02-26 2007-08-08 信越化学工業株式会社 フォトマスクブランク、フォトマスク及びフォトマスクブランクの評価方法
JP2005092241A (ja) * 2002-03-01 2005-04-07 Hoya Corp ハーフトーン型位相シフトマスクブランクの製造方法
JP2004053663A (ja) * 2002-07-16 2004-02-19 Shin Etsu Chem Co Ltd フォトマスクブランク、フォトマスク及びフォトマスクブランクの選定方法
JP3956116B2 (ja) * 2002-07-16 2007-08-08 信越化学工業株式会社 フォトマスクブランクの選定方法
KR101049624B1 (ko) * 2003-02-03 2011-07-15 호야 가부시키가이샤 포토마스크 블랭크, 포토마스크 및 포토마스크를 이용한 패턴 전사 방법
TWI259329B (en) * 2003-04-09 2006-08-01 Hoya Corp Method of manufacturing a photomask, and photomask blank
JP4443873B2 (ja) * 2003-08-15 2010-03-31 Hoya株式会社 位相シフトマスクの製造方法
JP4444693B2 (ja) 2004-02-27 2010-03-31 キヤノン株式会社 光学波長板の製造方法
JP4335729B2 (ja) 2004-03-31 2009-09-30 信越化学工業株式会社 フォトマスクブランク及びフォトマスクブランクの反射率調整方法
JP4650608B2 (ja) 2004-05-18 2011-03-16 信越化学工業株式会社 フォトマスクブランク及びフォトマスクの製造方法
JP2006048033A (ja) * 2004-07-09 2006-02-16 Hoya Corp フォトマスクブランク及びフォトマスクの製造方法、並びに半導体装置の製造方法
JP4407815B2 (ja) 2004-09-10 2010-02-03 信越化学工業株式会社 フォトマスクブランク及びフォトマスク
JP4413828B2 (ja) * 2004-10-22 2010-02-10 信越化学工業株式会社 フォトマスクブランクおよびフォトマスクならびにこれらの製造方法
JP4979941B2 (ja) 2005-03-30 2012-07-18 Hoya株式会社 マスクブランクス用ガラス基板の製造方法、マスクブランクスの製造方法
DE602006021102D1 (de) * 2005-07-21 2011-05-19 Shinetsu Chemical Co Photomaskenrohling, Photomaske und deren Herstellungsverfahren
JP2007114451A (ja) * 2005-10-20 2007-05-10 Hoya Corp マスクブランクス、および転写マスクの製造方法
US7632609B2 (en) * 2005-10-24 2009-12-15 Shin-Etsu Chemical Co., Ltd. Fabrication method of photomask-blank
KR101319659B1 (ko) 2005-12-26 2013-10-17 호야 가부시키가이샤 포토마스크 블랭크 및 포토마스크의 제조 방법과 반도체장치의 제조 방법
JP4764214B2 (ja) 2006-03-10 2011-08-31 凸版印刷株式会社 ハーフトーン型位相シフトマスク及びその製造方法
KR101294271B1 (ko) * 2006-08-30 2013-08-08 주식회사 에스앤에스텍 대면적 투과 제어 블랭크 마스크 및 이를 이용한 대면적 투과 제어 포토마스크의 제조방법
WO2008139904A1 (ja) 2007-04-27 2008-11-20 Hoya Corporation フォトマスクブランク及びフォトマスク
TWI542945B (zh) * 2008-03-31 2016-07-21 Hoya股份有限公司 空白光罩及其製造方法
JP5530075B2 (ja) * 2008-03-31 2014-06-25 Hoya株式会社 フォトマスクブランク、フォトマスク及びこれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08286359A (ja) * 1995-04-18 1996-11-01 Toppan Printing Co Ltd フォトマスクブランクおよびフォトマスク
JPH11237726A (ja) * 1997-12-19 1999-08-31 Hoya Corp 位相シフトマスク及び位相シフトマスクブランク
JP2004318184A (ja) * 2000-09-12 2004-11-11 Hoya Corp 位相シフトマスクブランク、位相シフトマスク
JP2007033470A (ja) * 2005-07-21 2007-02-08 Shin Etsu Chem Co Ltd フォトマスクブランクおよびフォトマスクならびにこれらの製造方法

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038445A1 (ja) * 2008-09-30 2010-04-08 Hoya株式会社 フォトマスクブランク、フォトマスク及びその製造方法、並びに半導体デバイスの製造方法
WO2010038444A1 (ja) * 2008-09-30 2010-04-08 Hoya株式会社 フォトマスクブランク、フォトマスク及びその製造方法
JPWO2010038444A1 (ja) * 2008-09-30 2012-03-01 Hoya株式会社 フォトマスクブランク、フォトマスク及びその製造方法
JPWO2010038445A1 (ja) * 2008-09-30 2012-03-01 Hoya株式会社 フォトマスクブランク、フォトマスク及びその製造方法、並びに半導体デバイスの製造方法
JP5558359B2 (ja) * 2008-09-30 2014-07-23 Hoya株式会社 フォトマスクブランク、フォトマスク及びその製造方法、並びに半導体デバイスの製造方法
JP5554239B2 (ja) * 2008-09-30 2014-07-23 Hoya株式会社 フォトマスクブランク、フォトマスク及びその製造方法
JP2014197215A (ja) * 2008-09-30 2014-10-16 Hoya株式会社 フォトマスクブランク、フォトマスク及びその製造方法、並びに半導体デバイスの製造方法
US8940462B2 (en) 2008-09-30 2015-01-27 Hoya Corporation Photomask blank, photomask, method of manufacturing the same, and method of manufacturing a semiconductor device
TWI631417B (zh) * 2010-12-24 2018-08-01 日商Hoya股份有限公司 Photomask substrate and transfer mask
US10620527B2 (en) 2012-03-30 2020-04-14 Hoya Corporation Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and semiconductor device fabrication method
JP2017120437A (ja) * 2012-03-30 2017-07-06 Hoya株式会社 多層反射膜付き基板の製造方法、反射型マスクブランクの製造方法、反射型マスクの製造方法、透過型マスクブランクの製造方法、透過型マスクの製造方法及び半導体装置の製造方法
US10429728B2 (en) 2012-03-30 2019-10-01 Hoya Corporation Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and semiconductor device fabrication method
US9897909B2 (en) 2012-03-30 2018-02-20 Hoya Corporation Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and semiconductor device fabrication method
JP2014137388A (ja) * 2013-01-15 2014-07-28 Hoya Corp マスクブランク、位相シフトマスクおよびこれらの製造方法
US10527931B2 (en) 2013-09-24 2020-01-07 Hoya Corporation Mask blank, transfer mask, method for manufacturing transfer mask, and method for manufacturing semiconductor device
JP5837257B2 (ja) * 2013-09-24 2015-12-24 Hoya株式会社 マスクブランク、転写用マスクおよび転写用マスクの製造方法
JPWO2015045801A1 (ja) * 2013-09-24 2017-03-09 Hoya株式会社 マスクブランク、転写用マスクおよび転写用マスクの製造方法
JP2017033016A (ja) * 2013-09-24 2017-02-09 Hoya株式会社 マスクブランク、転写用マスクの製造方法および半導体デバイスの製造方法
US10101650B2 (en) 2013-09-24 2018-10-16 Hoya Corporation Mask blank, transfer mask, method for manufacturing transfer mask, and method for manufacturing semiconductor device
WO2015045801A1 (ja) * 2013-09-24 2015-04-02 Hoya株式会社 マスクブランク、転写用マスクおよび転写用マスクの製造方法
JP2016020950A (ja) * 2014-07-14 2016-02-04 Hoya株式会社 マスクブランクの製造方法、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP2017015939A (ja) * 2015-07-01 2017-01-19 信越化学工業株式会社 無機材料膜、フォトマスクブランク、およびフォトマスクの製造方法
US11119399B2 (en) 2015-09-18 2021-09-14 Hoya Corporation Mask blank, phase shift mask and method for manufacturing semiconductor device
KR20180054682A (ko) * 2015-09-18 2018-05-24 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크 및 반도체 디바이스의 제조 방법
TWI732783B (zh) * 2015-09-18 2021-07-11 日商Hoya股份有限公司 光罩基底、相移光罩及半導體裝置之製造方法
JP2017058633A (ja) * 2015-09-18 2017-03-23 Hoya株式会社 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
KR102678202B1 (ko) * 2015-09-18 2024-06-26 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크 및 반도체 디바이스의 제조 방법
WO2017047490A1 (ja) * 2015-09-18 2017-03-23 Hoya株式会社 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP2019020712A (ja) * 2017-07-14 2019-02-07 Hoya株式会社 フォトマスクブランクおよびその製造方法、フォトマスクの製造方法、並びに表示装置の製造方法
JP2020064304A (ja) * 2017-07-14 2020-04-23 Hoya株式会社 フォトマスクブランクおよびその製造方法、フォトマスクの製造方法、並びに表示装置の製造方法
KR20190008110A (ko) * 2017-07-14 2019-01-23 호야 가부시키가이샤 포토마스크 블랭크 및 그 제조 방법, 포토마스크의 제조 방법, 그리고 표시 장치의 제조 방법
KR102277835B1 (ko) 2017-07-14 2021-07-15 호야 가부시키가이샤 포토마스크 블랭크 및 그 제조 방법, 포토마스크의 제조 방법, 그리고 표시 장치의 제조 방법
KR20210092706A (ko) * 2017-07-14 2021-07-26 호야 가부시키가이샤 포토마스크 블랭크 및 그 제조 방법, 포토마스크의 제조 방법, 그리고 표시 장치의 제조 방법
KR102365488B1 (ko) 2017-07-14 2022-02-18 호야 가부시키가이샤 포토마스크 블랭크 및 그 제조 방법, 포토마스크의 제조 방법, 그리고 표시 장치의 제조 방법
JP2017223972A (ja) * 2017-07-31 2017-12-21 信越化学工業株式会社 フォトマスクブランク
JP2018101155A (ja) * 2018-03-14 2018-06-28 信越化学工業株式会社 フォトマスクブランクの製造方法
JP2020140106A (ja) * 2019-02-28 2020-09-03 Hoya株式会社 フォトマスクブランク、フォトマスクブランクの製造方法、フォトマスクの製造方法及び表示装置の製造方法
JP7130577B2 (ja) 2019-02-28 2022-09-05 Hoya株式会社 フォトマスクブランク、フォトマスクブランクの製造方法、フォトマスクの製造方法及び表示装置の製造方法

Also Published As

Publication number Publication date
WO2009123170A1 (ja) 2009-10-08
TWI497190B (zh) 2015-08-21
TWI457696B (zh) 2014-10-21
KR20110002053A (ko) 2011-01-06
TW201541185A (zh) 2015-11-01
JP6082421B2 (ja) 2017-02-15
JPWO2009123172A1 (ja) 2011-07-28
KR101696487B1 (ko) 2017-01-13
JP5738931B2 (ja) 2015-06-24
TW201001060A (en) 2010-01-01
KR20160054612A (ko) 2016-05-16
JP2015156037A (ja) 2015-08-27
JP5562834B2 (ja) 2014-07-30
US8304147B2 (en) 2012-11-06
TWI572972B (zh) 2017-03-01
US20140057199A1 (en) 2014-02-27
KR101726553B1 (ko) 2017-04-12
US20110305978A1 (en) 2011-12-15
JP5579056B2 (ja) 2014-08-27
KR101584383B1 (ko) 2016-01-11
JP2013231998A (ja) 2013-11-14
KR20100134074A (ko) 2010-12-22
US8512916B2 (en) 2013-08-20
JPWO2009123170A1 (ja) 2011-07-28
US9075314B2 (en) 2015-07-07
TW200949431A (en) 2009-12-01
US20110104592A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
JP6082421B2 (ja) フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
JP5175932B2 (ja) 位相シフトマスクブランクおよび位相シフトマスク
JP5562835B2 (ja) フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
JP4933754B2 (ja) フォトマスクブランクおよびフォトマスクならびにこれらの製造方法
US9005851B2 (en) Phase shift mask blank and phase shift mask
JP5738931B6 (ja) フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
JP5579056B6 (ja) フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505928

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107024214

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12935766

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09726819

Country of ref document: EP

Kind code of ref document: A1