WO2009122739A1 - センサ装置 - Google Patents
センサ装置 Download PDFInfo
- Publication number
- WO2009122739A1 WO2009122739A1 PCT/JP2009/001524 JP2009001524W WO2009122739A1 WO 2009122739 A1 WO2009122739 A1 WO 2009122739A1 JP 2009001524 W JP2009001524 W JP 2009001524W WO 2009122739 A1 WO2009122739 A1 WO 2009122739A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit unit
- signal
- unit
- failure
- output
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 194
- 238000003745 diagnosis Methods 0.000 claims abstract description 137
- 238000005259 measurement Methods 0.000 claims abstract description 10
- 230000002159 abnormal effect Effects 0.000 claims description 26
- 239000000284 extract Substances 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 17
- 230000001133 acceleration Effects 0.000 description 11
- 230000005856 abnormality Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P21/00—Testing or calibrating of apparatus or devices covered by the preceding groups
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/26—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5776—Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C25/00—Arrangements for preventing or correcting errors; Monitoring arrangements
Definitions
- the present invention relates to a sensor device used in automobiles and various electronic devices.
- FIG. 9 is a block diagram of an inertial sensor which is an example of a conventional sensor device.
- the sensor device includes drive circuit units 1A and 1B, a detection element 2, detection circuit units 3A and 3B, processing circuit units 4A and 4B, output circuit units 5A and 5B, and a failure diagnosis circuit 6.
- the drive circuit units 1A and 1B output drive signals.
- Drive signals from the drive circuit units 1A and 1B are input to the detection element 2.
- the sensing element 2 includes an angular velocity detector and an acceleration detector.
- the detection circuit units 3 ⁇ / b> A and 3 ⁇ / b> B take out a response signal from the detection element 2.
- the processing circuit units 4A and 4B extract a sense signal from the response signals from the detection circuit units 3A and 3B.
- the output circuit units 5A and 5B output the sense signals from the processing circuit units 4A and 4B.
- the failure diagnosis circuit 6 determines whether the failure diagnosis unit is normal or abnormal, and outputs a failure detection signal based on the result.
- at least one of the detection circuit units 3A and 3B, the processing circuit units 4A and 4B, and the output circuit units 5A and 5B is set as a fault diagnosis unit.
- Patent Document 1 is known.
- Such a conventional sensor device has a problem in improving its reliability. That is, in the above configuration, since the sense signal and the failure detection signal are not associated with each other in time, it cannot be instantaneously accurately determined whether the output sense signal is normal or failure. For this reason, there is a possibility that a control object such as an automobile controlled based on the output of the sensor device is controlled using a sense signal at the time of failure. JP-A-8-327363
- the present invention is a sensor device with improved reliability.
- the sensor device of the present invention includes a time point measurement unit that measures time point information and adds time point information to an output related to generation of a failure detection signal and an output related to generation of a sense signal output from the failure diagnosis unit.
- the failure detection signal and the sense signal can be associated with each other by time information.
- an output circuit unit that outputs the failure detection signal and the failure detection signal in association with the sense signal at the same time point by a time division method is provided.
- This configuration makes it possible to temporally associate the failure detection signal with the sense signal. Therefore, it is possible to accurately determine whether the output sense signal is a normal one or a fault one. As a result, the reliability of control based on the sense signal can be improved.
- FIG. 1 is a block diagram of a sensor device according to Embodiment 1 of the present invention.
- FIG. 2 is a diagram showing a response signal to which time point information is added in the sensor device shown in FIG.
- FIG. 3 is a diagram showing a failure detection signal to which time point information is added in the sensor device shown in FIG.
- FIG. 4 is a block diagram of another sensor device according to Embodiment 1 of the present invention.
- FIG. 5 is a block diagram of a sensor device according to Embodiment 2 of the present invention.
- FIG. 6 is a diagram showing a change in the output signal of the sensor device shown in FIG.
- FIG. 7 is a block diagram of another sensor device according to Embodiment 2 of the present invention.
- FIG. 8 is a diagram showing a change in the output signal of the sensor device shown in FIG.
- FIG. 9 is a block diagram of a conventional sensor device.
- FIG. 1 is a block diagram of a sensor device according to Embodiment 1 of the present invention.
- the sensor device in the present embodiment includes a first control circuit 50A, a second control circuit 50B, a detection element unit 12, a failure diagnosis circuit 16, and a time point measurement unit 17.
- the first control circuit 50A includes a first drive circuit unit (hereinafter referred to as drive circuit unit) 11A, a first detection circuit unit (hereinafter referred to as detection circuit unit) 13A, and a first processing circuit unit (hereinafter referred to as processing circuit unit) 14A. And a first output circuit unit (hereinafter referred to as output circuit unit) 15A.
- the second control circuit 50B includes a second drive circuit unit (hereinafter referred to as drive circuit unit) 11B, a second detection circuit unit (hereinafter referred to as detection circuit unit) 13B, and a second processing circuit unit (hereinafter referred to as processing circuit unit). 14B and a second output circuit section (hereinafter, output circuit section) 15B.
- drive circuit unit hereinafter referred to as drive circuit unit
- detection circuit unit hereinafter referred to as detection circuit unit
- processing circuit unit hereinafter referred to as processing circuit unit
- the drive circuit units 11A and 11B output drive signals.
- a drive signal from the drive circuit unit 11A is input to the angular velocity detection element 12A which is the first detection element of the detection element unit 12.
- a drive signal from the drive circuit unit 11B is input to the acceleration detection element 12B, which is the second detection element of the detection element unit 12.
- the detection circuit units 13A and 13B take out a response signal from the detection element unit 12.
- the processing circuit units 14A and 14B extract the first and second sense signals from the response signals from the detection circuit units 13A and 13B. Further, the first and second monitor signals may be taken out simultaneously.
- the output circuit units 15A and 15B output sense signals from the processing circuit units 14A and 14B.
- the failure diagnosis circuit 16 determines whether the failure diagnosis unit is normal or abnormal and outputs a failure detection signal based on the result.
- at least one of the detection circuit units 13A and 13B, the processing circuit units 14A and 14B, and the output circuit units 15A and 15B is set as a fault diagnosis unit.
- the drive circuit unit 11A can adjust the vibration amplitude of the first drive signal based on the first monitor signal from the processing circuit unit 14A.
- the drive circuit unit 11B can adjust the vibration amplitude of the second drive signal based on the second monitor signal from the processing circuit unit 14B.
- the time point measurement unit 17 measures time point information and adds the time point information to the output from the failure diagnosis unit, thereby associating the failure detection signal and the sense signal with the time point information.
- FIGS. 2 is a diagram showing a response signal to which time point information is added in the sensor device shown in FIG. 1, and
- FIG. 3 is a diagram showing a failure detection signal to which time point information is added.
- the time measurement unit 17 is electrically connected to the detection circuit units 13A and 13B. Thereby, the time measuring unit 17 transmits the measured time point information to the detection circuit units 13A and 13B. As shown in FIG. 2, when the response signals (r011 to r998) are output from the detection circuit units 13A and 13B, time point information (t01 to t99) is added. Then, response signals (r011 to r998) to which the time information (t01 to t99) is added are output as sense signals from the output circuit units 15A and 15B via the processing circuit units 14A and 14B. Also in this case, time point information (t01 to t99) is added to the sense signal.
- the failure diagnosis circuit 16 determines whether the detection circuit portions 13A and 13B, which are failure diagnosis portions, are normal or abnormal.
- the failure diagnosis circuit 16 outputs a failure detection signal based on the result.
- the detection circuit units 13A and 13B output information relating to failure detection to the failure diagnosis circuit 16, the same time point information (t01 to t99) as the response signals (r011 to r998) described above is added. Therefore, when the failure diagnosis circuit 16 generates and outputs a failure detection signal (f011 to f998) from information related to failure detection, as shown in FIG. 3, the time point information (t01) is added to the failure detection signal (f011 to f998). To t99) are added.
- the failure detection signals (f011 to f998) and the sense signals can be temporally associated with each other using the time point information (t01 to t99). That is, the time point measurement unit 17 adds time point information to the output related to the generation of the failure detection signal and the output related to the generation of the sense signal output from the failure diagnosis unit. Thereby, the failure detection signal and the sense signal are associated with each other by the time point information. Therefore, it is possible to accurately determine whether the output sense signal is a normal one or a fault one. As a result, it is possible to reduce the possibility that a controlled object such as an automobile controlled based on the output of the sensor device is controlled using the sense signal at the time of failure. Thus, reliability is improved.
- two angular velocity detecting elements 12A and acceleration detecting elements 12B are used as the detecting element unit 12.
- the description has been given using the configuration including the drive circuit units 11A and 11B, the detection circuit units 13A and 13B, and the processing circuit units 14A and 14B.
- one detection element may be provided, and as a circuit configuration corresponding to this, only one drive circuit unit, one detection circuit unit, and one processing circuit unit may be provided.
- the example in which the fault diagnosis unit is the detection circuit units 13A and 13B and the same part in each of the angular velocity detection system and the acceleration detection system is the fault diagnosis unit.
- the two fault diagnosis units are the same in each of the angular velocity detection system and the acceleration detection system so that the first fault diagnosis unit is the output circuit unit 15A and the second fault diagnosis unit is the processing circuit unit 14B. It does not matter if the configuration does not. In that case, the first time point information common to both the sense signal from the output circuit unit 15A and the information related to the failure detection output from the output circuit unit 15A to the failure diagnosis circuit 16 is set as the sense signal and It is necessary to add to the information regarding the failure detection.
- the second time point information common to both the sense signal from the processing circuit unit 14B and the information related to the failure detection output from the processing circuit unit 14B to the failure diagnosis circuit 16 is the information related to the sense signal and the failure detection. It is necessary to add to.
- the fault diagnosis circuit 16 may have a plurality of fault diagnosis units. Specifically, for example, the failure diagnosis circuit 16 is electrically connected to all of the detection circuit units 13A and 13B, the processing circuit units 14A and 14B, and the output circuit units 15A and 15B, and each failure detection signal is output. Is possible. With such a configuration, a failure that could not be detected by one failure diagnosis unit can be detected by performing failure diagnosis using a plurality of failure diagnosis units, and the accuracy of failure detection can be improved.
- the angular velocity detection element 12A, the acceleration detection element 12B, and the like have been described.
- other various sensor devices such as a pressure sensor and a temperature sensor can be implemented.
- the output circuit unit 15A outputs a failure detection signal indicating that the failure diagnosis unit is abnormal
- the output circuit unit 15B does not output. That is, when receiving a sense signal having time information at the same time as the time information included in the failure detection signal, the output circuit units 15A and 15B prohibit the output circuit units 15A and 15B from outputting the sense signal. .
- a control unit (not shown) may be provided to prohibit the output circuit units 15A and 15B from outputting the sense signal.
- the output circuit units 15A and 15B themselves or the above-described control unit may cause the output circuit units 15A and 15B to output signals having a level that cannot be detected on the control target side such as an automobile.
- the output circuit units 15A and 15B need not substantially output a sense signal, and the method is not limited.
- This control eliminates the need to determine whether or not the sense signal associated therewith can be used based on the failure detection signal from the sensor device on the control target side such as an automobile. That is, it is possible to prevent the controlled object from being controlled using the sense signal associated with the failure detection signal.
- the fault diagnosis circuit 16 is electrically connected, or an output circuit unit control circuit (not shown) is provided in the fault diagnosis circuit 16 or in the output circuit units 15A and 15B. Then, the output circuit unit control circuit determines whether or not the failure diagnosis circuit 16 has output a failure detection signal indicating an abnormality of the failure diagnosis unit. When the output circuit unit control circuit determines the output of the failure detection signal, the output circuit unit control circuit does not cause the output circuit units 15A and 15B to output the sense signal having the same time point information as the time point information included in the failure detection signal. . In this way, it is possible to prevent a sense signal having time information at the same time as the failure detection signal from being output.
- FIG. 4 is a block diagram of another sensor device according to the present embodiment.
- the output circuit unit 18 that outputs the first and second sense signals from the processing circuit units 14A and 14B and the failure detection signal from the failure diagnosis circuit 16 is shared.
- the output circuit unit 18 digitally outputs the sense signal and the failure detection signal in a time division manner. With such a configuration, the number of terminals 30 can be reduced, and the sensor device can be downsized.
- the output circuit unit 18 connects the first and second sense signals and the failure detection signal associated with each other based on the time point information in a time division manner and outputs the result. Therefore, it is desirable on the control target side because the process of connecting the sense signal associated with the time point information and the failure detection signal can be omitted.
- the failure diagnosis circuit 16 when the failure diagnosis circuit 16 outputs a failure detection signal indicating that the failure diagnosis unit is abnormal, a sense signal having time information at the same time as the time information included in the failure detection signal. Is preferably not output by the output circuit unit 18.
- This control eliminates the need to determine whether or not the sense signal associated therewith can be used based on the failure detection signal from the sensor device on the control target side. That is, it is possible to prevent the controlled object from being controlled using the sense signal associated with the failure detection signal.
- the fault diagnosis circuit 16 is electrically connected, or an output circuit unit control circuit (not shown) is provided in the fault diagnosis circuit 16 or the output circuit unit 18. Then, the output circuit unit control circuit determines whether or not the failure diagnosis circuit 16 has output a failure detection signal indicating an abnormality of the failure diagnosis unit. When the output circuit unit control circuit determines the output of the failure detection signal, the output circuit unit control circuit does not cause the output circuit unit 18 to output the sense signal having the time information at the same time as the time information included in the failure detection signal. In this way, it is possible to prevent a sense signal having time information at the same time as the failure detection signal from being output.
- the fault diagnosis unit may use one part of each of the angular velocity detection system and the acceleration detection system as the fault diagnosis unit. Moreover, it is good also as a structure which has a some failure diagnosis part. With a configuration having multiple fault diagnosis units, faults that could not be detected by one fault diagnosis unit can be detected by fault diagnosis using multiple fault diagnosis units, improving the accuracy of fault detection Can be made.
- the fault diagnosis unit since it is necessary to add time point information, the fault diagnosis unit needs to be a digital circuit. Therefore, the drive circuit units 11A and 11B are not included in the fault diagnosis unit.
- the failure diagnosis circuit 16 is located before the output circuit unit 18, so that if the output circuit unit 18 is out of order, is the output of the sense signal in an abnormal state being an abnormal state, It cannot be distinguished whether it is normal. Therefore, in the configuration of FIG. 4, the output circuit unit 18 is not included in the fault diagnosis unit.
- FIG. 5 is a block diagram of a sensor device according to Embodiment 2 of the present invention.
- the sensor device in this embodiment is different from the configuration shown in FIG. 4 in that it has a first control circuit 51A and a second control circuit 51B in place of the first control circuit 50A and the second control circuit 50B, and a time point measurement unit. 17 is missing. Further, an output circuit unit 19 is provided instead of the output circuit unit 18. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
- the first control circuit 51A includes a first drive circuit unit (hereinafter referred to as drive circuit unit) 11A, a first detection circuit unit (hereinafter referred to as detection circuit unit) 113A, and a first processing circuit unit (hereinafter referred to as processing circuit unit) 114A.
- the second control circuit 51B includes a second drive circuit unit (hereinafter referred to as drive circuit unit) 11B, a second detection circuit unit (hereinafter referred to as detection circuit unit) 113B, and a second processing circuit unit (hereinafter referred to as processing circuit unit) 114B.
- the detection circuit unit 113A takes out the first response signal from the angular velocity detection element 12A.
- the detection circuit unit 113B takes out the second response signal from the acceleration detection element 12B.
- the first response signal from the detection circuit unit 113A is input to the processing circuit unit 114A.
- the processing circuit unit 114A extracts the first sense signal from the first response signal. At the same time, the first monitor signal may be taken out.
- the second response signal from the detection circuit unit 113B is input to the processing circuit unit 114B.
- the processing circuit unit 114B extracts the second sense signal from the second response signal. At the same time, the second monitor signal may be taken out.
- the drive circuit unit 11A can adjust the vibration amplitude of the first drive signal based on the first monitor signal from the processing circuit unit 114A.
- the drive circuit unit 11B can adjust the vibration amplitude of the second drive signal based on the second monitor signal from the processing circuit unit 114B.
- the fault diagnosis circuit 16 is electrically connected to at least one of the drive circuit unit 11A, the detection circuit unit 113A, and the processing circuit unit 114A.
- the failure diagnosis circuit 16 is also electrically connected to at least one of the drive circuit unit 11B, the detection circuit unit 113B, and the processing circuit unit 114B. That is, at least one of the drive circuit unit 11A, the detection circuit unit 113A, and the processing circuit unit 114A is a first fault diagnosis unit.
- At least one of the drive circuit unit 11B, the detection circuit unit 113B, and the processing circuit unit 114B is a second fault diagnosis unit.
- the output circuit unit 19 digitally outputs the failure detection signal from the failure diagnosis circuit 16 and the first and second sense signals from the processing circuit units 114A and 114B in a time division manner.
- FIG. 6 is a diagram showing a state of digital output from the output circuit unit 19.
- the first and second sense signals output from the processing circuit units 114A and 114B change with time.
- the failure detection signal output from the failure diagnosis circuit 16 also changes with time.
- the output circuit unit 19 detects the information of the first and second sense signals at each timing and the failure detection signal corresponding to them. And digitally output in time division.
- the output circuit unit 19 digitally outputs the failure detection signal and the first and second sense signals at the same time as the failure detection signal in a time division manner. This makes it possible to determine whether the first and second sense signals are normal results or abnormal results.
- the determination based on the failure detection signal is “normal” at time t s1 , but “abnormal” at time t s2 .
- Outputs by the first and second sense signals associated with the failure detection signal information determined to be abnormal are treated as “results upon abnormality”. Therefore, for example, if the sensor device shown in the present embodiment is used for controlling an automobile, the determination that the first and second sense signals at time t s2 determined as “result of abnormality” are not used for the control is performed. This is performed by a control unit (not shown) of the automobile. By this determination, it is possible to suppress the occurrence of malfunction of the vehicle itself due to the control of the vehicle based on the first and second sense signals at time ts2 .
- the sensor device can be reduced in size.
- a single detection element may be provided, and as the corresponding circuit configuration, only one drive circuit unit, one detection circuit unit, and one processing circuit unit may be provided.
- the output circuit unit 19 digitally outputs the failure detection signal from the failure diagnosis circuit 16 and the sense signal from the processing circuit unit 114A at the same time as the failure detection signal in a time division manner. This makes it possible to determine whether the sense signal is a normal result or an abnormal result.
- the failure diagnosis circuit 16 may be composed of a plurality of failure diagnosis circuits.
- Each of the plurality of failure diagnosis circuits may be electrically connected to at least one of the drive circuit units 11A and 11B, the detection circuit units 113A and 113B, and the processing circuit units 114A and 114B.
- the output circuit unit digitally outputs the plurality of failure detection signals from the plurality of failure diagnosis circuits and the sense signals from the processing circuit units 114A and 114B in a time division manner.
- FIG. 7 is a block diagram of another sensor device according to Embodiment 2 of the present invention.
- a first failure diagnosis circuit 16A and a second failure diagnosis circuit 16B are provided instead of the failure diagnosis circuit 16. They are electrically connected to the output circuit unit 20.
- the failure diagnosis circuit 16A is electrically connected to the detection circuit portions 113A and 113B, and the failure diagnosis circuit 16B is electrically connected to the drive circuit portions 11A and 11B.
- the output signal from the output circuit unit 20 is as shown in FIG. That is, the first and second sense signals output from the processing circuit units 114A and 114B change with time. Similarly, the first failure detection signal output from the failure diagnosis circuit 16A electrically connected to the detection circuit units 113A and 113B also changes with time. The second failure detection signal output from the failure diagnosis circuit 16B electrically connected to the drive circuit units 11A and 11B also changes with time. The first and second sense signals and the first and second failure detection signals are input to the output circuit unit 20. The output circuit unit 20 digitally outputs the information of the first and second sense signals and the information of the first and second failure detection signals corresponding to the information at each timing in a time division manner.
- the determination based on the failure detection signal is “normal” at time t s1 , but the first failure detection signal is normal but the second failure detection signal is abnormal at time t s2. Yes. Therefore, it is judged as “abnormal” as a whole, and the outputs of the first and second sense signals associated with the second failure detection signal information judged as abnormal are “results at the time of abnormality”. Be treated.
- the determination that the first and second sense signals at time t s2 determined as “result of abnormality” are not used for the control is performed. This is performed by a control unit (not shown) of the automobile. By this determination, it is possible to suppress the occurrence of malfunction of the vehicle itself due to the control of the vehicle based on the first and second sense signals at time ts2 .
- the sensor device can be reduced in size.
- the number of output terminals 30 does not increase in proportion to the number of failure diagnosis circuits.
- the sensor device can be reduced in size.
- the use of a plurality of failure diagnosis circuits 16A and 16B increases the number of failure diagnosis units and further improves the reliability.
- a plurality of fault diagnosis circuits may be provided for a configuration in which only one drive circuit unit, one detection circuit unit, and one processing circuit unit are provided as a circuit configuration corresponding to one detection element.
- the second control circuit 51B and the acceleration detection element 12B may be eliminated, and the failure diagnosis circuit 16A may be connected to the detection circuit unit 113A and the failure diagnosis circuit 16B may be connected to the drive circuit unit 11A.
- the detection circuit unit 113A is a first fault diagnosis unit
- the drive circuit unit 11A is a second fault diagnosis unit.
- Failure diagnosis circuit 16A determines whether detection circuit unit 113A is normal or abnormal, and outputs a first failure detection signal based on the determination result.
- the failure diagnosis circuit 16B determines whether the drive circuit unit 11A is normal or abnormal, and outputs a second failure detection signal based on the determination result.
- the output circuit unit 20 digitally converts the first failure detection signal from the failure diagnosis circuit 16A, the second failure detection signal from the failure diagnosis circuit 16B, and the first sense signal from the processing circuit unit 114A in a time division manner. Output. In this way, the reliability of failure diagnosis is further improved by providing failure diagnosis circuits corresponding respectively to two or more of the circuit units constituting the first control circuit 51A.
- the sense signal may not be a digital signal.
- the fault diagnosis unit may be the drive circuit units 11A and 11B in addition to the detection circuit units 113A and 113B and the processing circuit units 114A and 114B. These circuit units may be analog circuits.
- the output circuit unit 19 (20) that outputs a signal to the outside in a time division manner may be a digital circuit.
- the sensor device of the present invention has an effect that the reliability can be improved, and is useful in various electronic devices such as a digital camera and a car navigation system and an automobile.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Gyroscopes (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
11B 第2駆動回路部(駆動回路部)
12 検知素子部
12A 角速度検知素子(第1検知素子)
12B 加速度検知素子(第2検知素子)
13A,113A 第1検出回路部(検出回路部)
13B,113B 第2検出回路部(検出回路部)
14A,114A 第1処理回路部(処理回路部)
14B,114B 第2処理回路部(処理回路部)
15A 第1出力回路部(出力回路部)
15B 第2出力回路部(出力回路部)
16 故障診断回路
16A 第1故障診断回路(故障診断回路)
16B 第2故障診断回路(故障診断回路)
17 時点測定部
18,19,20 出力回路部
30 端子
50A,51A 第1制御回路
50B,51B 第2制御回路
図1は本発明の実施の形態1におけるセンサ装置のブロック図である。本実施の形態におけるセンサ装置は、第1制御回路50Aと、第2制御回路50Bと、検知素子部12と、故障診断回路16と、時点測定部17とを有する。第1制御回路50Aは第1駆動回路部(以下、駆動回路部)11Aと、第1検出回路部(以下、検出回路部)13Aと、第1処理回路部(以下、処理回路部)14Aと、第1出力回路部(以下、出力回路部)15Aとを含む。同様に第2制御回路50Bは第2駆動回路部(以下、駆動回路部)11Bと、第2検出回路部(以下、検出回路部)13Bと、第2処理回路部(以下、処理回路部)14Bと、第2出力回路部(以下、出力回路部)15Bとを含む。
図5は本発明の実施の形態2におけるセンサ装置のブロック図である。本実施の形態におけるセンサ装置が図4に示す構成と異なる点は、第1制御回路50A、第2制御回路50Bに代わって第1制御回路51A、第2制御回路51Bを有し、時点測定部17がないことである。また出力回路部18に代わって出力回路部19を有する。それ以外の構成は実施の形態1と同様であるので説明を省略する。
Claims (8)
- 駆動信号を出力する駆動回路部と、
前記駆動回路部からの前記駆動信号が入力される検知素子と、
前記検知素子から応答信号を取り出す検出回路部と、
前記検出回路部からの前記応答信号からセンス信号を取り出す処理回路部と、
前記処理回路部からの前記センス信号を出力する出力回路部と、
前記検出回路部、前記処理回路部、前記出力回路部の内少なくともいずれか1つを被故障診断部とし、前記被故障診断部に電気的に接続され、前記被故障診断部が正常か異常かを判断し、判断結果に基づいた故障検知信号を出力する故障診断回路と、
時点情報を測定し、前記被故障診断部から出力される前記故障検知信号の生成に関する出力及び前記センス信号の生成に関する出力に前記時点情報を付加することで前記故障検知信号と前記センス信号とを前記時点情報により対応付ける時点測定部と、を備えた、
センサ装置。 - 前記出力回路部が、前記故障診断回路から前記被故障診断部が異常である旨の故障検知信号を受信した場合、前記出力回路部は前記故障検知信号が有する時点情報と同一時点の時点情報を有するセンス信号を前記出力回路部が出力しない、
請求項1記載のセンサ装置。 - 駆動信号を出力する駆動回路部と、
前記駆動回路部からの前記駆動信号が入力される検知素子と、
前記検知素子から応答信号を取り出す検出回路部と、
前記検出回路部からの前記応答信号からセンス信号を取り出す処理回路部と、
前記検出回路部、前記処理回路部の内少なくともいずれか1つを被故障診断部とし、前記被故障診断部に電気的に接続され、前記被故障診断部が正常か異常かを判断し、判定結果に基づいた故障検知信号を出力する故障診断回路と、
前記処理回路部からの前記センス信号と前記故障診断回路からの前記故障検知信号とを時分割方式により出力する出力回路部と、
時点情報を測定し、前記被故障診断部から出力される前記故障検知信号の生成に関する出力及び前記センス信号の生成に関する出力に前記時点情報を付加することで前記故障検知信号と前記センス信号とを前記時点情報により対応付ける時点測定部と、を備えた、
センサ装置。 - 前記出力回路部が、前記故障診断回路から前記被故障診断部が異常である旨の故障検知信号を受信した場合、前記出力回路部は前記故障検知信号が有する時点情報と同一時点の時点情報を有するセンス信号を前記出力回路部が出力しない、
請求項3記載のセンサ装置。 - 第1駆動信号を出力する第1駆動回路部と、
前記駆動回路部からの前記第1駆動信号が入力される第1検知素子と、
前記第1検知素子から応答信号を取り出す第1検出回路部と、
前記検出回路部からの前記応答信号から第1センス信号を取り出す第1処理回路部と、
前記第1駆動回路部、前記第1検出回路部、及び前記第1処理回路部の内少なくともいずれか1つを第1被故障診断部とし、前記第1被故障診断部に電気的に接続され、前記第1被故障診断部が正常か異常かを判断し、判定結果に基づいた第1故障検知信号を出力する第1故障診断回路と、
前記第1センス信号が正常時の結果であるのか異常時の結果であるのかを判断することができるように、前記第1故障診断回路からの前記第1故障検知信号と、前記第1故障検知信号と同一時点の前記第1処理回路部からの前記第1センス信号とを時分割方式にてデジタル出力する出力回路部と、を備えた、
センサ装置。 - 前記第1駆動回路部、前記第1検出回路部、及び前記第1処理回路部の内少なくともいずれか1つを第2被故障診断部とし、前記第2被故障診断部に電気的に接続され、前記第2被故障診断部が正常か異常かを判断し、判定結果に基づいた第2故障検知信号を出力する第2故障診断回路をさらに備え、
前記出力回路部は、前記第1故障診断回路からの前記第1故障検知信号と、前記第2故障診断回路からの前記第2故障検知信号と、前記第1処理回路部からの前記第1センス信号とを時分割方式にてデジタル出力する、
請求項5記載のセンサ装置。 - 第2駆動信号を出力する第2駆動回路部と、
前記第2駆動回路部からの前記第2駆動信号が入力される第2検知素子と、
前記第2検知素子から第2の応答信号を取り出す第2検出回路部と、
前記第2検出回路部からの前記第2の応答信号が入力されるとともに、前記第2の応答信号から第2のセンス信号を取り出す第2の処理回路部と、
前記第2駆動回路部、前記第2検出回路部、及び前記第2処理回路部の内少なくともいずれか1つを第2被故障診断部とし、前記第2被故障診断部に電気的に接続され、前記第2被故障診断部が正常か異常かを判断し、判定結果に基づいた第2故障検知信号を出力する第2故障診断回路と、をさらに備え、
前記出力回路部は、前記第1故障診断回路からの前記第1故障検知信号と、前記第2故障診断回路からの前記第2故障検知信号と、前記第1、第2の処理回路部からの前記第1、第2のセンス信号とを時分割方式にてデジタル出力する、
請求項5記載のセンサ装置。 - 第1駆動信号を出力する第1駆動回路部と、
前記駆動回路部からの前記第1駆動信号が入力される第1検知素子と、
前記第1検知素子から応答信号を取り出す第1検出回路部と、
前記検出回路部からの前記応答信号から第1センス信号を取り出す第1処理回路部と、
第2駆動信号を出力する第2駆動回路部と、
前記第2駆動回路部からの前記第2駆動信号が入力される第2検知素子と、
前記第2検知素子から第2の応答信号を取り出す第2検出回路部と、
前記第2検出回路部からの前記第2の応答信号が入力されるとともに、前記第2の応答信号から第2のセンス信号を取り出す第2の処理回路部と、
前記第1駆動回路部、前記第1検出回路部、及び前記第1処理回路部の内少なくともいずれか1つを第1被故障診断部とし、前記第2駆動回路部、前記第2検出回路部、及び前記第2処理回路部の内少なくともいずれか1つを第2被故障診断部とし、前記第1、第2被故障診断部に電気的に接続されるとともに、前記第1被故障診断部と前記第2被故障診断部の両方が正常か、前記第1被故障診断部と前記第2被故障診断部の少なくともいずれか一方が異常かを判断し、判定結果に基づいた故障検知信号を出力する故障診断回路と、
前記第1、第2のセンス信号が、正常時の結果であるのか異常時の結果であるのかを判断することができるように、前記故障診断回路からの前記故障検知信号と、前記故障検知信号と同一時点の前記第1、第2の処理回路部からの前記第1、第2のセンス信号とを時分割方式にてデジタル出力する出力回路部と、を備えた、
センサ装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0911551A GB2461974B (en) | 2008-04-04 | 2009-04-01 | Sensor device |
EP09700066.5A EP2284489B1 (en) | 2008-04-04 | 2009-04-01 | Sensor device |
CN2009800000850A CN101680761B (zh) | 2008-04-04 | 2009-04-01 | 传感器装置 |
US12/486,227 US7730782B2 (en) | 2008-04-04 | 2009-06-17 | Sensor device |
US12/615,848 US7775109B2 (en) | 2008-04-04 | 2009-11-10 | Sensor device |
US12/834,419 US8322214B2 (en) | 2008-04-04 | 2010-07-12 | Sensor device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008097919A JP4311496B1 (ja) | 2008-04-04 | 2008-04-04 | 慣性センサ |
JP2008-097919 | 2008-04-04 | ||
JP2008-267024 | 2008-10-16 | ||
JP2008267024A JP4289439B1 (ja) | 2008-10-16 | 2008-10-16 | センサ装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/486,227 Continuation US7730782B2 (en) | 2008-04-04 | 2009-06-17 | Sensor device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009122739A1 true WO2009122739A1 (ja) | 2009-10-08 |
Family
ID=41135139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/001524 WO2009122739A1 (ja) | 2008-04-04 | 2009-04-01 | センサ装置 |
Country Status (5)
Country | Link |
---|---|
EP (2) | EP2634532A1 (ja) |
KR (1) | KR100972078B1 (ja) |
CN (1) | CN101680761B (ja) |
GB (2) | GB2463191B (ja) |
WO (1) | WO2009122739A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010145273A (ja) | 2008-12-19 | 2010-07-01 | Panasonic Corp | センサ装置 |
CN104279063A (zh) * | 2013-07-08 | 2015-01-14 | 博世(中国)投资有限公司 | 控制发动机运行的方法和发动机控制系统 |
US20190257655A1 (en) * | 2016-03-24 | 2019-08-22 | Panasonic Intellectual Property Management Co., Ltd. | Composite sensor |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0698382A (ja) * | 1992-02-19 | 1994-04-08 | Namco Controls Corp | センサ接続装置 |
JPH08327363A (ja) * | 1995-05-30 | 1996-12-13 | Matsushita Electric Ind Co Ltd | 角速度センサ |
JPH0944798A (ja) * | 1995-07-28 | 1997-02-14 | Mori Denki Kk | 駐車場在車管理装置 |
JP2002174521A (ja) * | 2000-09-15 | 2002-06-21 | Bei Technologies Inc | 内蔵テスト手段を備えた慣性速度センサー及び方法 |
JP2004023279A (ja) * | 2002-06-13 | 2004-01-22 | Renesas Technology Corp | 半導体装置、携帯端末システムおよびセンサモジュール |
JP2005331332A (ja) * | 2004-05-19 | 2005-12-02 | Denso Corp | センサ装置 |
JP2007285747A (ja) * | 2006-04-13 | 2007-11-01 | Matsushita Electric Ind Co Ltd | 角速度センサ |
WO2007129494A1 (ja) * | 2006-04-26 | 2007-11-15 | Murata Manufacturing Co., Ltd. | 角速度センサインタフェース回路および角速度検出装置 |
JP2008002890A (ja) * | 2006-06-21 | 2008-01-10 | Yokogawa Electric Corp | 計測装置管理システム |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57159302A (en) * | 1981-03-26 | 1982-10-01 | Toshiba Corp | Car controller |
JPH085654A (ja) * | 1994-06-23 | 1996-01-12 | Murata Mfg Co Ltd | 加速度センサ |
US5586130A (en) * | 1994-10-03 | 1996-12-17 | Qualcomm Incorporated | Method and apparatus for detecting fault conditions in a vehicle data recording device to detect tampering or unauthorized access |
CN1160574C (zh) * | 1995-05-30 | 2004-08-04 | 松下电器产业株式会社 | 角速度传感器 |
JP3447860B2 (ja) * | 1995-09-18 | 2003-09-16 | 株式会社ミクニ | 故障判定機能を有する磁気式位置センサ |
JP4019504B2 (ja) * | 1998-06-15 | 2007-12-12 | 松下電器産業株式会社 | 角速度センサ |
US6422088B1 (en) * | 1999-09-24 | 2002-07-23 | Denso Corporation | Sensor failure or abnormality detecting system incorporated in a physical or dynamic quantity detecting apparatus |
JP4633234B2 (ja) * | 2000-07-04 | 2011-02-16 | 本田技研工業株式会社 | センサ機能の故障診断方法 |
EP1455182B1 (en) * | 2001-11-20 | 2015-08-26 | ARKRAY, Inc. | Fail judging method and analyzer |
DE10235163A1 (de) * | 2002-08-01 | 2004-02-19 | Robert Bosch Gmbh | Verfahren zur Überwachung wenigstens eines Sensors |
DE10238529A1 (de) * | 2002-08-22 | 2004-03-04 | Robert Bosch Gmbh | Steuergerät |
JP3937334B2 (ja) * | 2003-03-27 | 2007-06-27 | 株式会社デンソー | 振動型角速度センサの異常検出装置、異常検出方法、異常検出用プログラム並びに車両制御システム |
JP4599848B2 (ja) * | 2004-02-18 | 2010-12-15 | パナソニック株式会社 | 角速度センサ |
JP2005283481A (ja) * | 2004-03-30 | 2005-10-13 | Denso Corp | センサシステム |
US7237169B2 (en) * | 2004-07-26 | 2007-06-26 | Bei Technologies, Inc. | Cross-monitoring sensor system and method |
JP4056532B2 (ja) | 2005-03-31 | 2008-03-05 | 日本航空電子工業株式会社 | 故障診断機能付きmemsデバイス |
RU2008140739A (ru) * | 2006-03-15 | 2010-04-20 | Квэлкомм Инкорпорейтед (US) | Система определения ориентации на основе датчиков |
JP2007285745A (ja) * | 2006-04-13 | 2007-11-01 | Matsushita Electric Ind Co Ltd | 角速度センサ |
DE102006032727A1 (de) * | 2006-07-14 | 2008-01-31 | Lucas Automotive Gmbh | Verfahren und Vorrichtung zur Plausibilitätskontrolle von Messwerten im Kraftfahrzeugumfeld |
-
2009
- 2009-04-01 CN CN2009800000850A patent/CN101680761B/zh not_active Expired - Fee Related
- 2009-04-01 EP EP13169766.6A patent/EP2634532A1/en not_active Withdrawn
- 2009-04-01 GB GB0921880A patent/GB2463191B/en not_active Expired - Fee Related
- 2009-04-01 GB GB0911551A patent/GB2461974B/en not_active Expired - Fee Related
- 2009-04-01 WO PCT/JP2009/001524 patent/WO2009122739A1/ja active Application Filing
- 2009-04-01 EP EP09700066.5A patent/EP2284489B1/en not_active Not-in-force
- 2009-04-01 KR KR1020107000226A patent/KR100972078B1/ko not_active IP Right Cessation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0698382A (ja) * | 1992-02-19 | 1994-04-08 | Namco Controls Corp | センサ接続装置 |
JPH08327363A (ja) * | 1995-05-30 | 1996-12-13 | Matsushita Electric Ind Co Ltd | 角速度センサ |
JPH0944798A (ja) * | 1995-07-28 | 1997-02-14 | Mori Denki Kk | 駐車場在車管理装置 |
JP2002174521A (ja) * | 2000-09-15 | 2002-06-21 | Bei Technologies Inc | 内蔵テスト手段を備えた慣性速度センサー及び方法 |
JP2004023279A (ja) * | 2002-06-13 | 2004-01-22 | Renesas Technology Corp | 半導体装置、携帯端末システムおよびセンサモジュール |
JP2005331332A (ja) * | 2004-05-19 | 2005-12-02 | Denso Corp | センサ装置 |
JP2007285747A (ja) * | 2006-04-13 | 2007-11-01 | Matsushita Electric Ind Co Ltd | 角速度センサ |
WO2007129494A1 (ja) * | 2006-04-26 | 2007-11-15 | Murata Manufacturing Co., Ltd. | 角速度センサインタフェース回路および角速度検出装置 |
JP2008002890A (ja) * | 2006-06-21 | 2008-01-10 | Yokogawa Electric Corp | 計測装置管理システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2284489A4 * |
Also Published As
Publication number | Publication date |
---|---|
GB2461974A9 (en) | 2010-02-17 |
GB0911551D0 (en) | 2009-08-12 |
KR100972078B1 (ko) | 2010-07-22 |
GB2461974A (en) | 2010-01-27 |
GB2463191A (en) | 2010-03-10 |
EP2284489A4 (en) | 2013-02-13 |
GB0921880D0 (en) | 2010-01-27 |
GB2463191B (en) | 2010-10-20 |
EP2284489B1 (en) | 2014-05-07 |
CN101680761B (zh) | 2011-10-12 |
GB2461974B (en) | 2010-06-16 |
CN101680761A (zh) | 2010-03-24 |
KR20100018045A (ko) | 2010-02-16 |
EP2284489A1 (en) | 2011-02-16 |
EP2634532A1 (en) | 2013-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4386143B1 (ja) | センサ装置 | |
US7775109B2 (en) | Sensor device | |
KR101095743B1 (ko) | 센서 장치 | |
KR100972077B1 (ko) | 센서 장치 | |
JP2010145273A (ja) | センサ装置 | |
JP4311496B1 (ja) | 慣性センサ | |
WO2009122739A1 (ja) | センサ装置 | |
JP2010145274A (ja) | 慣性センサ | |
US8131508B2 (en) | Sensor apparatus | |
JP4358301B1 (ja) | センサ装置 | |
JP4289439B1 (ja) | センサ装置 | |
US8322214B2 (en) | Sensor device | |
KR100950387B1 (ko) | 센서 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980000085.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009700066 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 0911551 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20090401 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097014347 Country of ref document: KR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09700066 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020107000226 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |