WO2009121724A1 - Circuit roue libre commutable pour convertisseur matriciel - Google Patents
Circuit roue libre commutable pour convertisseur matriciel Download PDFInfo
- Publication number
- WO2009121724A1 WO2009121724A1 PCT/EP2009/053253 EP2009053253W WO2009121724A1 WO 2009121724 A1 WO2009121724 A1 WO 2009121724A1 EP 2009053253 W EP2009053253 W EP 2009053253W WO 2009121724 A1 WO2009121724 A1 WO 2009121724A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- input
- freewheeling circuit
- freewheeling
- voltage
- switches
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/275—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/297—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
Definitions
- the invention relates to a matrix converter for converting a single- or multi-phase input voltage of a feed network into a single- or multi-phase Ausga ⁇ gsschreib for a consumer and in particular a device for protecting a matrix converter from destruction as a result of overvoltages during commutation.
- Regulated three-phase current loads currently contain up to 80% of power electronics components in the form of converters.
- One possible type of converter is the matrix converter (see for example DE-A-199 58 041).
- the converter In the case of a three-phase current load, the converter has the task of converting the fixed or variable frequency, fixed-amplitude or variable-amplitude sinusoidal voltage into a voltage of variable frequency and variable amplitude.
- the change in the frequency and the amplitude is necessary in an example regulated three-phase drive to influence speed and torque can.
- the adjustment of the frequency and amplitude is carried out by controlling controllable electronic converter switches, which are in the rule to power electronic switches, as IGBT (Insulated Gate Bipolar Transistor), MOSFET or as RB-IGBT (Reverse Blocking Insulated Gate Bipolar Transistor ) are realized. With an electrical power of several kW, it is possible to switch from one switch to another in the ⁇ s range.
- This process is also referred to as commutation, which means passing the current from one switch to another without interrupting the current flow.
- commutation or commutation strategy also means that special switching sequences of the switch matrix carry out the transfer of the current as gently as possible for the semiconductor components.
- inverters There are different versions of inverters. Conventional converters have an intermediate circuit which serves to temporarily store electrical energy.
- matrix converter which have a programmable Schah termatrix, the switch connects one of the input terminals of the matrix converter with one of the output terminals of the matrix converter.
- the number of insanschiusse corresponds to the number of terminals of the input voltage, while the number of output terminals of the number of terminals corresponds to the output voltage.
- the switches of the switch matrix In order to be able to generate a desired voltage profile at the output of a matrix converter at a given voltage profile at the input of the matrix converter, the switches of the switch matrix must assume a multiplicity of different switching state configurations. The switches of the matrix are switched on and off according to a defined scheme, which requires a relatively complex control. In addition to generating a variable output voltage with variable frequency (and amplitude), this also implements non-destructive switching by means of commutation. Up to now, this has only been possible with matrix converters via intermediate steps, otherwise the components will be damaged and destroyed.
- a matrix converter with active protection against overvoltages is described in DE-B-100 14 665.
- this known matrix converter to combat the consequences of a brief voltage overshoot at the inputs and outputs of the matrix converter and the associated potential destruction of the power semiconductor components, these are interconnected with semiconductor diodes for protection against voltage increases, as shown in Fig. 4 of DE-B-100 665 is shown.
- the semiconductor diodes are zener diodes which operate with high zener voltage. The zener voltage is chosen below the maximum permissible reverse voltage of the IGBT. If the IGBT becomes blocked and its blocking voltage is greater than the Zener voltage, the Zener diode breaks through. The gate of the ⁇ GBT is charged and the transistor controls.
- WO-A-2006/064279 describes a two-stage converter with a matrix converter as input stage and an AC converter as output stage.
- the output side AC converter has a free-wheeling diode associated with it.
- the object of the invention is to provide a matrix converter with improved functionality, which has an improved and easier-to-implement protection against surges, safer commutation and increased reliability.
- the invention proposes a matrix converter for converting a single- or multi-phase input voltage of a supply network with a variable or fixed frequency and a variabien or fixed amplitude into a single- or multi-phase output voltage with variable frequency and / or amplitude for a consumer
- the matrix converter is provided with at least two input terminals, at least two output terminals, a plurality of controllable electronic converter switches respectively disposed between the input terminals and the output terminals, a controllable freewheeling circuit disposed between the input terminals and the output terminals and per input terminal a first and a second controllable, electronic freewheeling circuit switch and per output terminal has a first and a second freewheeling diode, wherein the first freewheeling circuit breaker between a common e rsten node and the respective input terminals and the second Freewheel circuit switch between a common second node and the respective countriessanschi Republic Republic are arranged and wherein the first freewheeling diodes between the first node and the respective output
- a switchable multiphase freewheeling circuit is connected, so to speak, parallel to the switch matrix between the input connections and the output connections of the matrix converter.
- This freewheeling circuit has, per input connection, a first and a second controllable, electronic freewheeling circuit switch (for example, IGBT) and, per output connection, a first and a second freewheeling diode.
- the first free circulation switches are arranged between a common first node and the respective input terminals, while the second free circulation switches are also arranged between a common second node and the respective input terminals.
- first free-wheeling diodes between the first node and the respective output terminals and the second freewheeling diodes arranged between the second node and the respective output terminals which are seen in the reverse direction, viewed from the load from the supply network in the forward direction.
- the first and second controllable freewheeling circuit resonators are controlled via a free-running circuit drive unit.
- the freewheeling circuit controls this freewheeling circuit drive unit, the freewheeling circuit switch in dependence on the size of the input voltages of the individual phases such that only those of the first and second circuit breaker are turned on, on the one hand to the input terminal with the largest positive and the largest negative input voltage and on the other hand connected to a lying on the basis of the signs of the largest positive and the largest negative input voltages in the reverse direction of the first and second freewheeling diode circuits.
- the invention proposes a freewheeling circuit for a matrix converter, wherein the freewheeling circuit has a special feature insofar as the matrix converter is a direct converter which operates with one or more constantly oscillating phases of the input voltage.
- the inventively provided Freiiaufnik is maraitbar, the
- the freewheeling circuit has a number of first and second freewheeling circuit breakers equal to the number of terminals of the input voltage.
- the number of first and second free-wheeling diodes is equal to the number of terminals of the output voltage.
- the freewheeling circuit switch currently connected to the input terminals remain switched on as long as the Difference of the amounts of the voltage applied to the respective input terminals voltages is smaller than a predetermined threshold, and that only when the amounts of the largest positive input voltage and the largest negative input voltage is greater than or equal to the threshold, the previously turned on first and second freewheeling circuit switch off and those of the other first and second freewheeling circuit switches are turned on, on the one hand with the largest positive and the largest negative voltage leading datesan- and the other hand, due to the Vorzeic hens these voltages are connected in the reverse direction lying first and second free-wheeling diodes,
- FIG. 1 is a block diagram of the functional components of a matrix converter according to a Ausbowungsbeispie! the invention with switchable
- a free-running circuit wherein the matrix converter converts a three-phase input voltage having a variable or fixed frequency and a variable or fixed amplitude into a three-phase output voltage having a different frequency and / or amplitude
- FIG. 2 is an illustration of the circuit construction of the freewheeling circuit, the matrix converter having a specific switch position configuration, FIG. Fig ⁇ . 3 to 10 different switch pitch configurations and fault situations in which the freewheeling circuit each provides a freewheel parallel to the matrix inverter topology for the currents present in the Abschaitaugenbiick to overvoltage at the switches of
- FIG. 11 shows the switch configuration of a matrix converter with inventive schaitbarem freewheeling circuit for a single-phase input voltage and a three-phase output voltage
- the matrix converter 10 is designed in this embodiment as a converter for converting a three-phase input voltage Ll, L2, L3 into a three-phase output voltage U, V, W with a changed frequency and amplitude.
- the matrix converter 10 comprises a switch matrix 12 with nine controllable bidirectional electronic switches S1 to S9 in this exemplary embodiment, which are each connected between different ones of the three input terminals 14, 16, 18 and different ones of the three output terminals 20, 22, 24.
- the three-phase mains voltage N is connected in this exemplary embodiment, while with the output terminals 20 to 24, a three-phase machine M is connected.
- the electronic switches S 1 to S 9 of the switch matrix are usually driven by a converter drive unit 26.
- a switchable freewheeling circuit symbolized in FIG. 1 by the block 28 is connected, the circuitry of which as shown in FIG. 2 is realized.
- the switchable freewheeling circuit 28 has three "Q"
- first electronic freewheel circuit Tl to T3 and three second freewheel circuit T4 to T6 Each of the first and each of the second freewheeling circuit switches is connected to one of the input terminals 14 to 18 in each case. Furthermore, the first freewheel circuit switches Tl to T3 are connected to one another with a common first node 30 and the second freewheel circuit switches T4 to T6 are connected to one another with a common second node 32.
- first free diodes Dl to D3 and second free-wheeling diodes D4 to D6 are connected, wherein the first free-wheeling diodes Dl to D3 and the second diodes D4 to D6 each seen from the feed network in the reverse direction of the consumer are switched in the forward direction.
- the first and second switches T 1 to T 3 or T 4 to T 6 are expediently power semiconductor semiconductor switches, such as, for example, IGBTs.
- the switches Sl to S9 of the Schaitermatrix 12 are realized as a high-power semiconductor switch, as is customary in converters.
- the control of the first and second freewheeling circuit Tl to T3 and T4 to T6 by a freewheeling circuit driving unit 34 which controls the freewheeling circuit switches in response to the voltage waveforms of the phases of the input voltage.
- the control is carried out as a function of the size of the input voltages of the individual phases such that only those of the first freewheeling circuit Tl to T3 and those of the second freewheel circuit T4 to T6 are turned on, on the one hand to the input terminal with the largest positive and the largest negative Input voltage are connected and on the other hand with a due to the signs of the largest positive and the largest negative input voltages in the reverse direction lying first or second free-wheeling diodes Dl to D3 or
- the current taken over can be dissipated or continued via path D6, T6 and S3 or via path D6, T6, supply network and S4.
- the risk of destruction by overvoltage of the inverter switch S7 is eliminated during shutdown.
- the current present after the switch-off process can be taken over the path D3, T1 and S4 or via the path D3, T1, supply network and S3 (see FIG. 5). Again, the threat of destruction of the inverter switch S7 is eliminated during the shutdown.
- phase L1 leads to the most positive potential compared to the other two phases and the phase L3 leads to the most negative potential compared to the other two phases, while the potential of phase 2 lies between these two potentials. It becomes critical when the voltage curves of the phases cross with the most positive potential (or, the most negative potential) and the mean potential. For a certain period of time before and after a crossing point of the voltage curves, it may not be possible to say with certainty which phase still leads to the greatest positive or greatest negative potential. Therefore, the intersections of the phases must be considered separately.
- phase L 1 leading the largest positive potential crosses with the phase L 2 up to that point, so that after crossing the two voltage waveforms the phase L 2 leads the largest positive potential and the phase L 1 leads a middle one Potential lies between the largest positive potential and the largest negative potential.
- the phase L3 continuously leads the negative potential, in the crossing region of the two phases Ll and L2, this may lead to the following situation: If the switchable freewheeling circuit 28 is switched so that Ll is assumed to be the most positive potential, this can lead to it in that when the crossover area L2 becomes more positive than L1, a short circuit of the input voltage arises. This situation can arise if both phases L1 and L2 are required for a switching action of the control strategy of the matrix converter 10.
- Fig. 10 a switching state configuration of the switch matrix 12 is shown, which leads to a short circuit when, as assumed, L2 im
- Crossing area is more positive than L1
- L1 For a FaI! of the above-described type, there is the possibility, starting from a certain (small) difference between Ll and L2 in the crossing region for the freewheeling circuit 28 to use only those switching states of the first and the second Freilaufkreässchaiter that a short circuit of the input terminals 14 and 16 of the Exclude phases Ll and L2-
- an L3 switch-on should take place after a Ll or L2 switch-off, as this is not critical.
- FIGS. 11 and 12 show two matrix converters with a freewheeling circuit according to the invention, each having a different number of input and output voltage connections.
- the proposed solution of the switchable freewheeling circuit 28 according to the invention eliminates the basic problem of the matrix converter, namely that the matrix converter itself can only be protected against destruction by the voltages generated during the switching-off process by complex commutation strategies.
- the possible uses of the matrix converter according to the invention are seen in particular: in drives in which the speed and torque of the machine should be variable in the recovery of energy, for example when braking (car, train, elevator, ...) - in the air, Space and submarine navigation, because no special cooling of the inverter is necessary no heavyweight, large resistance is needed, and no heavy, large capacitor is required, in regenerative power plants for adaptation to the public grid for voltage adjustment for frequency generation or stabilization and maintenance, in the low-cost range, since subsequentlyiich an industrially manufactured matrix converter should be far cheaper than a comparable available today DC link converter topology ,
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Ac-Ac Conversion (AREA)
Abstract
Le convertisseur matriciel, permettant de convertir une tension d'entrée monophasée ou polyphasée ayant une fréquence variable ou fixe et une amplitude variable ou fixe en une tension de sortie monophasée ou polyphasée ayant une fréquence et/ou une amplitude variable, est équipé d'au moins deux raccordements d'entrée, d'au moins deux raccordements de sortie, d'une pluralité de circuits convertisseurs électroniques pouvant être commandés qui sont disposés respectivement entre les raccordements d'entrée et les raccordements de sortie, d'un circuit roue libre pouvant être commandé qui est disposé entre les raccordements d'entrée et les raccordements de sortie et qui comporte, par raccordement d'entrée, des premiers et deuxièmes commutateurs de circuit roue libre électroniques pouvant être commandés et, par raccordement de sortie, des premières et deuxièmes diodes de roue libre. Les premiers commutateurs de circuit roue libre sont disposés entre un premier noed commun et les raccordements d'entrée respectifs, tandis que les deuxièmes commutateurs de circuit roue libre sont disposés entre un deuxième noed commun et les raccordements de sortie respectifs. Les premières diodes de roue libre sont disposées entre le premier noed et les raccordements de sortie respectifs, tandis que les deuxièmes diodes de roue libre sont disposées entre le deuxième noed et les raccordements de sortie respectifs, et elles sont montées respectivement dans la direction de blocage, vues depuis le réseau d'alimentation, et dans la direction de passage, vues du consommateur. Le convertisseur matriciel est équipé en outre d'une unité de commande de convertisseur permettant de commander les circuits convertisseurs de sorte que la tension de sortie polyphasée puisse être générée avec la fréquence et/ou l'amplitude souhaitée au niveau des raccordements de sortie, et d'une unité de commande de circuit roue libre permettant de commander les commutateurs de circuit roue libre. L'unité de commande de circuit roue libre commande les commutateurs de circuit roue libre en fonction de la grandeur des tensions d'entrée des différentes phases de manière telle que ne soient activés à chaque fois que les premiers et deuxièmes commutateurs de circuit roue libre qui sont reliés d'un côté avec le raccordement d'entrée ayant la tension d'entrée positive la plus grande et la tension d'entrée négative la plus grande négative et, d'un autre côté, avec une première et une deuxième diode de roue libre étant dans la direction de blocage en raison du signe des tensions d'entrée positive et négative les plus grandes.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008016840.8 | 2008-04-01 | ||
DE200810016840 DE102008016840A1 (de) | 2008-04-01 | 2008-04-01 | Schaltbarer Freilaufkreis für Matrixumrichter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009121724A1 true WO2009121724A1 (fr) | 2009-10-08 |
Family
ID=40792646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/053253 WO2009121724A1 (fr) | 2008-04-01 | 2009-03-19 | Circuit roue libre commutable pour convertisseur matriciel |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102008016840A1 (fr) |
WO (1) | WO2009121724A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009007522B4 (de) * | 2009-02-05 | 2011-09-01 | Siemens Aktiengesellschaft | Steuerschaltung für einen Drehstromasynchronmotor |
CN113934978B (zh) * | 2021-10-14 | 2024-07-19 | 杭州电力设备制造有限公司 | 一种配电变压器中性点过电压估算方法、系统及装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001076050A1 (fr) * | 2000-03-31 | 2001-10-11 | Siemens Aktiengesellschaft | Procede de commande de trajectoires de roue libre dans un convertisseur matriciel |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19958041A1 (de) | 1999-12-03 | 2001-06-28 | Siemens Ag | Verfahren zur Steuerung bidirektionaler Schalter in Matrixumrichtern |
DE10005449B4 (de) * | 2000-02-08 | 2008-06-12 | Siemens Ag | Überspannungsschutzvorrichtung für einen Matrixumrichter |
DE10014665B4 (de) | 2000-03-24 | 2005-09-22 | Siemens Ag | Verfahren zum Schutz eines Matrixumrichters vor Überspannungen und eine aktive Überspannungsvorrichtung |
GB2421365B (en) * | 2004-12-16 | 2007-12-27 | Alstom | Matrix converters |
-
2008
- 2008-04-01 DE DE200810016840 patent/DE102008016840A1/de not_active Withdrawn
-
2009
- 2009-03-19 WO PCT/EP2009/053253 patent/WO2009121724A1/fr active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001076050A1 (fr) * | 2000-03-31 | 2001-10-11 | Siemens Aktiengesellschaft | Procede de commande de trajectoires de roue libre dans un convertisseur matriciel |
Non-Patent Citations (1)
Title |
---|
LEE EMPRINGHAM ET AL: "Matrix Converter Protection for More Electric Aircraft Applications", IEEE INDUSTRIAL ELECTRONICS, IECON 2006 - 32ND ANNUAL CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 1 November 2006 (2006-11-01), pages 2564 - 2568, XP031077465, ISBN: 978-1-4244-0135-2 * |
Also Published As
Publication number | Publication date |
---|---|
DE102008016840A1 (de) | 2009-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3280052B1 (fr) | Procede et dispositif de commande d'un circuit semi-conducteur de puissance commande par tension | |
EP2678931B1 (fr) | Convertisseur modulaire à étapes multiples, ayant des commutateurs semi-conducteurs de puissance conducteurs en sens inverse | |
EP2537239B1 (fr) | Onduleur à découpage à 3 étages avec réseau de délestage | |
EP3255773B1 (fr) | Sous-module double à faible perte pour un convertisseur multipoints modulaire et convertisseur multipoints modulaire équipé de celui-ci | |
EP3211784B1 (fr) | Sous-module double pour un convertisseur de fréquence multipoints modulaire et convertisseur de fréquence multipoints modulaire en étant dote | |
EP3206286A1 (fr) | Commande de grille operée avec surtension pour conduire et commuter des courants de choc dans des commutateurs igbt | |
WO2010023127A2 (fr) | Convertisseur à résistances de freinage réparties | |
WO2010025758A1 (fr) | Dispositif présentant un convertisseur de fréquence | |
EP2596980A2 (fr) | Convertisseur de courant à plusieurs points avec hacheur de freinage | |
WO2013060354A1 (fr) | Convertisseur pour le transport de courant continu à haute tension | |
EP2533294B1 (fr) | Module solaire et son procédé de fonctionnement | |
EP3694105A1 (fr) | Dispositif de commutation destiné à séparer un chemin de courant | |
EP3251194B1 (fr) | Ensemble d'accumulation d'énergie | |
EP0751612A2 (fr) | Convertisseur de puissance | |
DE102011087153A1 (de) | Mehrpunkt-Stromrichter mit Bremschopper | |
WO2009121724A1 (fr) | Circuit roue libre commutable pour convertisseur matriciel | |
EP3652849B1 (fr) | Couplage de circuit intermédiaire dans des groupes d'entraînement | |
DE3915510C2 (fr) | ||
DE102015105889A1 (de) | Schaltmodul und Umrichter mit wenigstens einem Schaltmodul | |
DE102013109714A1 (de) | Verfahren zum Betreiben einer elektrischen Schaltung sowie elektrische Schaltung | |
DE19648948C1 (de) | Wechselrichter mit Bremssteller | |
EP2608384A1 (fr) | Convertisseur de puissance modulaire avec détection des erreurs | |
EP1553686B1 (fr) | Alimentation de courant continu à haute tension et méthode d'opération de telle alimentation de courant continu à haute tension | |
EP2928055B1 (fr) | Convertisseur de courant modulaire et procédé de production d'une tension de sortie sinusoïdale à harmoniques réduites | |
WO2024041786A1 (fr) | Actionneur de frein modulaire à conception hybride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09726523 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09726523 Country of ref document: EP Kind code of ref document: A1 |