[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009119059A1 - グラフェンの製造方法 - Google Patents

グラフェンの製造方法 Download PDF

Info

Publication number
WO2009119059A1
WO2009119059A1 PCT/JP2009/001266 JP2009001266W WO2009119059A1 WO 2009119059 A1 WO2009119059 A1 WO 2009119059A1 JP 2009001266 W JP2009001266 W JP 2009001266W WO 2009119059 A1 WO2009119059 A1 WO 2009119059A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
liquid
electrode
main body
gas
Prior art date
Application number
PCT/JP2009/001266
Other languages
English (en)
French (fr)
Inventor
堀勝
加納浩之
Original Assignee
Nuエコ・エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuエコ・エンジニアリング株式会社 filed Critical Nuエコ・エンジニアリング株式会社
Priority to JP2010505329A priority Critical patent/JP5463282B2/ja
Priority to US12/736,268 priority patent/US8349142B2/en
Publication of WO2009119059A1 publication Critical patent/WO2009119059A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to a method for obtaining graphene having a size of 1 to several hundred nm or an aggregate thereof or a dispersion solution thereof.
  • graphene includes what is called a graphene sheet, a graphene laminate, nanographene, or the like, and its size, whether it is a single body, an aggregate, or a laminate, No distinction is made as to whether it is granular or not.
  • a low-temperature plasma technique such as a high-temperature thermal process or arc discharge is used. That is, a high-temperature heating device, a vacuum exhaust device, and a vacuum chamber are necessary, and the manufacturing apparatus has been enlarged.
  • the invention according to claim 1 is a method for generating graphene from a liquid material containing at least an organic compound, wherein a pair of electrodes are arranged inside the liquid material and outside the liquid material so as to sandwich the gas-liquid interface. Then, an AC voltage is applied to the pair of electrodes, plasma is generated across the gas-liquid interface, and the organic compound is decomposed to obtain a graphene dispersion in which graphene is dispersed in a liquid material It is a manufacturing method of graphene.
  • the invention according to claim 2 is characterized in that the graphene powder is obtained by drying the liquid material obtained by the invention of claim 1.
  • the invention according to claim 3 is characterized in that the organic compound has an alcoholic hydroxyl group.
  • the invention according to claim 4 is characterized in that the organic compound is an alcohol, diol, or triol having 5 or less carbon atoms.
  • the invention according to claim 5 is characterized in that the organic compound is methanol, ethanol or 1- or 2-propanol.
  • the discharge surface of the electrode arranged inside the liquid material is located at a distance of 5 mm or less from the gas-liquid interface, and the discharge surface of the electrode arranged outside the liquid material is 20 mm from the gas-liquid interface. It is arranged at the following positions.
  • the ratio of the distance from the gas-liquid interface of the discharge surface of the electrode disposed inside the liquid material to the distance from the gas-liquid interface of the discharge surface of the electrode disposed outside the liquid material is 1: It is 2 to 1: 3.
  • the manufacturing method found by the present inventors is at room temperature and atmospheric pressure, and does not require a high-temperature heating device or a high-frequency power source.
  • a liquid organic compound or a liquid containing an organic compound is used as the carbon source, it is very easy to introduce the carbon source as compared with a plasma generator having a vacuum exhaust device.
  • the generated graphene can be dispersed in a liquid organic compound used as a raw material or a liquid containing the organic compound, a graphene dispersion can be obtained directly. If the liquid organic compound used as a raw material or the liquid containing the organic compound is composed of only a low boiling point compound, the graphene powder can be easily obtained by drying.
  • an alcoholic hydroxyl group is preferable because it decomposes and desorbs to easily generate a carbon double bond in the skeleton of the original molecule.
  • low boiling alcohols are preferred.
  • a mixed solution of a low-boiling alcohol and other organic solvent may be used.
  • Sectional drawing which shows the structure of the graphene manufacturing apparatus 100 which concerns on one specific Example of this invention.
  • the photograph figure in operation of the graphene manufacturing device 100 The Raman spectrum figure of the graphene powder obtained by the example.
  • FIG. 1 is a configuration diagram (cross-sectional view) showing a method for producing graphene according to a specific embodiment of the present invention.
  • the graphene production apparatus 100 includes a sealable container 10, an in-liquid electrode 20 immersed in a liquid material 60 made of ethanol contained in the container 10, and an external electrode 30 provided outside the liquid material 60. It is composed of
  • the submerged electrode 20 includes a flat electrode body 20e for applying a voltage, a lead wire 20d for energizing the electrode body 20e, and a cylindrical covering portion 20c for covering the lead wire 20d from the periphery.
  • the liquid electrode 30 includes a linear electrode main body 30e for applying a voltage and a cylindrical covering portion 30c for covering the electrode main body 30e from the periphery.
  • the tip 30f of the electrode main body 30e is exposed from the covering portion 30c and is disposed to face the liquid surface 60a (gas-liquid interface) of the liquid material 60.
  • the graphene production apparatus 100 is provided with an argon inlet tube 40 and a discharge port 50.
  • the argon introduction tube 40 is provided so as to eject argon in the vicinity of the tip 30 f of the electrode main body 30 e where the external electrode 30 is exposed inside the container 10.
  • Ethanol is introduced into such a graphene production apparatus 100 so that the ethanol liquid surface 60a covers all of the electrode body 20e of the in-liquid electrode 20 and does not reach the tip 30f of the electrode body 30e of the external electrode 30.
  • the electrode body 20e is formed of, for example, iron, nickel, or cobalt.
  • the surface 20f (discharge surface) of the electrode main body 20e in the liquid and the electrode main body 30e outside the liquid are sandwiched across the liquid surface 60a (gas-liquid interface) of ethanol.
  • a 60 Hz AC voltage is applied between the tip 30f (discharge surface) and the pressure is increased.
  • gas-liquid plasma is generated between the surface 20f of the electrode body 20e and the tip 30f of the electrode body 30e outside the liquid, and graphene is generated due to decomposition of ethanol or the like. Disperse in ethanol.
  • FIG. 2 is a photograph showing a state in which the graphene production apparatus 100 of FIG. 1 is actually operated. What appears to be a round bubble near the ethanol liquid surface indicates a portion where gas-liquid plasma is generated. Further, ethanol gradually turned brown, indicating that the reaction product was dispersed in the liquid.
  • FIG. 3 is a Raman spectrum diagram of graphene obtained by the manufacturing method according to this example.
  • FIG. 3 shows the Raman spectrum of graphene obtained when ethanol is used as the carbon source and the Raman spectrum of graphene obtained when 2-propanol is used.
  • the D band and the G band were clearly confirmed, and it was confirmed to have a graphene structure.
  • the D band is derived from the conjugated ⁇ -electron system of graphene, and the G band is considered to be derived from other structural parts such as end portions. From the Raman spectrum, graphene has a small conjugated ⁇ -electron system, that is, It is suggested that the size of individual graphene is small.
  • FIG. 4 is a transmission electron micrograph of graphene powder when ethanol is used as the carbon source. It can be seen that the size of graphene is on the order of several tens of nanometers.
  • the organic compound contained in the liquid is preferably an alcoholic hydroxyl group.
  • graphene of the order of nm can be manufactured.
  • the discharge surface which is the surface 20f of the electrode body 20e of the submerged electrode 20, is provided at a position where the distance from the gas-liquid interface, which is the liquid surface 60a, is 5 mm or less, and the discharge surface of the tip 30f of the outer electrode 30 is.
  • the distance between the discharge surface, which is the surface 20f of the electrode body 20e of the submerged electrode 20, and the gas-liquid interface, which is the liquid surface 60a, and the discharge surface and the liquid surface 60a of the tip 30f of the external electrode 30 When the ratio to the distance between the gas-liquid interface is 1: 2 to 1: 3, effective discharge is realized between the surface 20f of the electrode body 20e and the tip 30f of the external electrode 30. Therefore, it is possible to efficiently produce graphene on the order of nm. That is, the distance between the discharge surface that is the surface 20f of the electrode body 20e of the submerged electrode 20 and the gas-liquid interface that is the liquid surface 60a is greater than the discharge surface and the liquid surface 60a of the tip 30f of the outer electrode 30. It is desirable that the distance is less than the distance between the gas-liquid interface.
  • the graphene dispersion obtained by the present invention can be used as a conductive paint and its raw material.
  • graphene powder can be easily obtained, it can be used as an electrode material by firing or the like.
  • SYMBOLS 100 Graphene manufacturing apparatus 10: Container 20: Electrode in liquid 20c: Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】簡易なグラフェン製造方法。 【解決手段】グラフェン製造装置100は、容器10に、液中電極20と液外電極30を取り付けたものであり、各々、被覆部20cと電極本体部20e、被覆部30cと電極本体部30eとからなる。アルゴン導入管40は容器10内部で電極本体部30e近傍にアルゴンを噴出させるように設けられいてる。エタノールを導入して、エタノールの液面が液中電極20の電極本体部20eを覆い、液外電極30の電極本体部30eに達しない様にする。電極本体部20eは例えば鉄、ニッケル、コバルトで形成する。こうして、アルゴン導入管40からアルゴンを導入しながら、エタノールの液面を挟んで液中の電極本体部20eと液外の電極本体部30eに、60Hz交流電圧を印加すると、気液プラズマが生じて、エタノールの分解等によりグラフェンが生成し、エタノール中に分散する。

Description

グラフェンの製造方法
 本発明は、1乃至数百nmの大きさのグラフェン又はその集合体或いはそれらの分散溶液を得るための方法に関する。本明細書においては、「グラフェン」には、グラフェンシート、グラフェン積層体又はナノグラフェン等と称されるものを含むものとし、その大きさ、単体か集合体か積層されたものかどうか、或いは集合体の粒状物かどうか等は一切区別しないものとする。
 カーボンナノチューブを初めとして、大きな共役π電子系を有するカーボンナノ構造体の電気的性質が注目を集めている。特に微小サイズの素子や、逆に蓄電池等における高効率の電極材料としての開発が期待されている。特に燃料電池には、白金を担持可能な電極が求められており、微細粉を形成しやすい点からカーボンナノ構造体が有力視されている。
 グラフェンは、多層構造のグラファイトの1層を独立させたものとして認識されている。すなわちグラフェンは、極めて広い共役π電子系を有し、且つ他のカーボンナノ構造体と異なり一平面状の構造であるものが想定されていることから、大きな電気伝導度が期待され、理論計算も様々報告されている。
 カーボンナノウォールの製法については、プラズマを用いた下記特許文献1、2に開示の技術が知られている。しかし、液体物質からグラフェンを製造する方法については、知られていない。
先行技術文献
特願2005-097113 再表2005/021430
 グラフェン又はグラフェンのランダム集合体や微粉末の製造方法としては、高温の熱プロセス、アーク放電などの減圧プラズマ技術等が使用されている。すなわち、高温の加熱装置や真空排気装置及び真空室が必要であり、製造装置が大型化していた。
 本発明者らは極めて簡易な方法で、グラフェンを製造することが可能であることを見出し、本願発明を完成させた。
 請求項1に係る発明は、少なくとも有機化合物を含む液状物からグラフェンを生成する方法であって、一対の電極を、気液界面を挟むように、液状物の内部と液状物の外部とに配置し、一対の電極に交流電圧を印加し、気液界面を挟んでプラズマを発生させて、有機化合物を分解することにより、液状物中にグラフェンが分散したグラフェン分散液を得ることを特徴とするグラフェンの製造方法である。
 請求項2に係る発明は、請求項1の発明により得られた液状物を乾燥させることにより、グラフェン粉体を得ることを特徴とする。
 請求項3に係る発明は、有機化合物はアルコール性水酸基を有するものであることを特徴とする。
 請求項4に係る発明は、有機化合物は炭素数5以下の、アルコール、ジオール、又はトリオールであることを特徴とする。
 請求項5に係る発明は、有機化合物は、メタノール、エタノール又は1-若しくは2-プロパノールであることを特徴とする。
 請求項6に係る発明は、液状物内部に配置する電極の放電面は気液界面よりの距離が5mm以下の位置、液状物外部に配置する電極の放電面は気液界面よりの距離が20mm以下の位置に配置されることを特徴とする。
 請求項7に係る発明は、液状物内部に配置する電極の放電面の気液界面よりの距離と、液状物外部に配置する電極の放電面の気液界面よりの距離との比が1:2乃至1:3であることを特徴とする。
 本発明者らが見出した製造方法は、室温、大気圧下であり、高温の加熱装置や高周波電源を必要としない。また、炭素源として液体の有機化合物又は有機化合物を含む液状物を用いるので、真空排気装置を有するプラズマ発生装置と比較して、炭素源の導入も極めて容易である。更に、生成したグラフェンは、原料として用いた液体の有機化合物又は有機化合物を含む液状物に分散しうるので、グラフェン分散液を直接得ることができる。原料として用いた液体の有機化合物又は有機化合物を含む液状物が低沸点化合物のみからなるのであれば、乾燥して容易にグラフェン粉体を得ることができる。
 例えば、アルコール性水酸基は、分解脱離することにより、元の分子の骨格中に炭素の二重結合を容易に生成するので好ましい。特に低沸点アルコールが好ましい。低沸点アルコールとその他有機溶剤の混合液でも良い。
本発明の具体的な一実施例に係るグラフェン製造装置100の構成を示す断面図。 グラフェン製造装置100の稼働中の写真図。 実施例により得られたグラフェン粉体のラマンスペクトル図。 実施例により得られたグラフェン粉体の透過電子線顕微鏡写真図。
 以下に本発明の具体的な実施例を図面を用いて説明する。
 図1は本発明の具体的な一実施例に係るグラフェンの製造方法を示す構成図(断面図)である。グラフェン製造装置100は、密閉可能な容器10と、容器10に入れられたエタノールから成る液状物60中に浸漬された液中電極20と、液状物60の外に設けられた液外電極30とから構成されている。液中電極20は、電圧を印加するための平板状の電極本体部20eと、それに対して通電するためのリード線20dと、そのリード線20dを周囲から被覆する円筒状の被覆部20cとを有している。また、液外電極30は、電圧を印加するための線状の電極本体部30eと、それを周囲から被覆する円筒状の被覆部30cとを有している。電極本体部30eの先端30fは、被覆部30cから露出しており、液状物60の液面60a(気液界面)に対向して配置されている。またグラフェン製造装置100には、アルゴン導入管40と排出口50が設けられている。アルゴン導入管40は容器10の内部で液外電極30の露出した電極本体部30eの先端30fの近傍にアルゴンを噴出させるように設けられている。
 このようなグラフェン製造装置100にエタノールを導入して、エタノールの液面60aが液中電極20の電極本体部20eの全てを覆い、液外電極30の電極本体部30eの先端30fに達しない様にする。電極本体部20eは例えば鉄、ニッケル、コバルトで形成する。次に、アルゴン導入管40からアルゴンを導入しながら、エタノールの液面60a(気液界面)を挟んで液中の電極本体部20eの表面20f(放電面)と液外の電極本体部30eの先端30f(放電面)との間に、60Hz交流電圧を印加し、昇圧する。これにより、電極本体部20eの表面20fと液外の電極本体部30eの先端30fとの間に、気液プラズマが生じて、エタノールの分解等によりグラフェンが生成し、そのグラフェンは、液状物60であるエタノール中に分散する。
 図2は図1のグラフェン製造装置100を実際に稼働させた様子の写真図である。エタノール液面近傍に丸い気泡状に見えるものが、気液プラズマが生じた部分を示している。またエタノールが次第に褐色となり、液中に反応生成物が分散していることが示された。
 図1のグラフェン製造装置100を用いて製造したグラフェンを、炭素源であるエタノールを蒸発乾燥させて粉体として得て、そのラマンスペクトルを測定した。図3は本実施例に係る製造方法により得たグラフェンのラマンスペクトル図である。図3においては上述の炭素源としてエタノールを用いた場合に得られたグラフェンのラマンスペクトルと、2-プロパノールを用いた場合に得られたグラフェンのラマンスペクトルを示した。いずれも、DバンドとGバンドがはっきり確認され、グラフェン構造体を有することが確認された。尚、Dバンドはグラフェンの共役π電子系に由来し、Gバンドは端部等の他の構造部分に由来するものと考えられるので、ラマンスペクトルから、グラフェンが共役π電子系が小さいこと、すなわち個々のグラフェンの大きさが小さいことが示唆される。
 図4は、炭素源としてエタノールを用いた場合のグラフェン粉体の透過電子線顕微鏡写真である。グラフェンのサイズは数十nmのオーダーであることがわかる。
 上記の液状物に含まれる有機化合物はアルコール性水酸基を有するものであることが望ましい。この時に、nmオーダのグラフェンを製造することができる。また、有機化合物には炭素数5以下の、アルコール、ジオール、又はトリオールを用いることが望ましい。さらに、有機化合物は、メタノール、エタノール又は1-若しくは2-プロパノールを用いることが望ましい。これらを用いることにより、いずれも、nmオーダのグラフェンを効率良く製造することができる。
 さらに、液中電極20の電極本体部20eの表面20fである放電面は,液面60aである気液界面よりの距離が5mm以下の位置に設けられ、液外電極30の先端30fの放電面は、液面60aである気液界面よりの距離が20mm以下の位置に配置されることが望ましい。この関係にある時に、電極本体部20eの表面20fと液外電極30の先端30fとの間で、効果的な放電が実現され、nmオーダのグラフェンを、効率的に製造することができる。
 また、液中電極20の電極本体部20eの表面20fである放電面と液面60aである気液界面との間の距離と、液外電極30の先端30fの放電面と液面60aである気液界面との間の距離との比は、1:2乃至1:3の場合に、電極本体部20eの表面20fと液外電極30の先端30fとの間で、効果的な放電が実現され、nmオーダのグラフェンを、効率的に製造することができる。すなわち、液中電極20の電極本体部20eの表面20fである放電面と液面60aである気液界面との間の距離の方が、液外電極30の先端30fの放電面と液面60aである気液界面との間の距離よりも小さいことが望ましい。
 本発明により得られたグラフェン分散液は、導電性塗料及びその原料として用いることができる。その他、グラフェン粉体を容易に得ることができるので、焼成等により電極材料として用いることができる。
符号の説明
 100:グラフェン製造装置
 10:容器
 20:液中電極
 20c:被覆部
 20e:電極本体部
 30:液外電極
 30c:被覆部
 30e:電極本体部
 40:アルゴン導入管
 50:アルゴン排出口

Claims (7)

  1. 少なくとも有機化合物を含む液状物からグラフェンを生成する方法であって、
    一対の電極を、気液界面を挟むように、前記液状物の内部と前記液状物の外部とに配置し、
    前記一対の電極に交流電圧を印加し、気液界面を挟んでプラズマを発生させて、前記有機化合物を分解することにより、前記液状物中にグラフェンが分散したグラフェン分散液を得ることを特徴とするグラフェンの製造方法。
  2. 前記液状物を乾燥させることにより、グラフェン粉体を得ることを特徴とする請求項1に記載のグラフェンの製造方法。
  3. 前記有機化合物はアルコール性水酸基を有するものであることを特徴とする請求項1又は請求項2に記載のグラフェンの製造方法。
  4. 前記有機化合物は炭素数5以下の、アルコール、ジオール、又はトリオールであることを特徴とする請求項3に記載のグラフェンの製造方法。
  5. 前記有機化合物は、メタノール、エタノール又は1-若しくは2-プロパノールであることを特徴とする請求項4に記載のグラフェンの製造方法。
  6. 前記液状物内部に配置する電極の放電面は前記気液界面よりの距離が5mm以下の位置、前記液状物外部に配置する電極の放電面は前記気液界面よりの距離が20mm以下の位置に配置されることを特徴とする請求項1乃至請求項5のいずれか1項に記載のグラフェンの製造方法。
  7. 前記液状物内部に配置する電極の放電面の前記気液界面よりの距離と、前記液状物外部に配置する電極の放電面の前記気液界面よりの距離との比が1:2乃至1:3であることを特徴とする請求項1乃至請求項6のいずれか1項に記載のグラフェンの製造方法。
PCT/JP2009/001266 2008-03-26 2009-03-23 グラフェンの製造方法 WO2009119059A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010505329A JP5463282B2 (ja) 2008-03-26 2009-03-23 グラフェンの製造方法
US12/736,268 US8349142B2 (en) 2008-03-26 2009-03-23 Method for producing graphene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008080704 2008-03-26
JP2008-080704 2008-03-26

Publications (1)

Publication Number Publication Date
WO2009119059A1 true WO2009119059A1 (ja) 2009-10-01

Family

ID=41113270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001266 WO2009119059A1 (ja) 2008-03-26 2009-03-23 グラフェンの製造方法

Country Status (3)

Country Link
US (1) US8349142B2 (ja)
JP (1) JP5463282B2 (ja)
WO (1) WO2009119059A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032258A (ja) * 2011-06-30 2013-02-14 Ulvac Japan Ltd グラフェンの製造方法
JP2013516037A (ja) * 2009-12-24 2013-05-09 ナノテク インスツルメンツ インク 電気化学セル電極用導電性グラフェンポリマーバインダー
JP2014040352A (ja) * 2012-08-23 2014-03-06 Chube Univ グラフェンの製造方法
JP2014152095A (ja) * 2013-02-13 2014-08-25 Nagoya Univ グラフェンの製造方法
CN104328451A (zh) * 2014-10-14 2015-02-04 上海应用技术学院 一种碳材料的制备方法
JP2015227253A (ja) * 2014-05-30 2015-12-17 国立大学法人 熊本大学 グラフェン分散液及びグラフェンの製造方法
JP2016531064A (ja) * 2013-06-19 2016-10-06 オブスチェストヴォ エス オグラニチェンノイ オトヴェットステヴェンノスチュ“プラズマ−エスケー” ナノスケールカーボンのコロイド溶液を製造する方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527950A (ja) 2011-09-09 2014-10-23 ボード オブ トラスティーズ オブノーザン イリノイ ユニバーシティー 結晶性グラフェンおよび結晶性グラフェンの製造方法
CN104136368B (zh) * 2012-02-24 2017-02-22 加州理工学院 用于石墨烯形成的方法和系统
US9059466B2 (en) 2012-03-22 2015-06-16 Chun-Chieh Chang Direct synthesis of lithium ion battery electrode materials using graphene treated raw materials as the reactant
US9090476B2 (en) 2012-03-22 2015-07-28 Chun-Chieh Chang Direct deposition of graphene on substrate material
KR101556360B1 (ko) 2012-08-16 2015-09-30 삼성전자주식회사 그래핀 물성 복귀 방법 및 장치
CN103008684A (zh) * 2013-01-21 2013-04-03 北京大学 大气压冷等离子体方式制备金属纳米颗粒的方法
WO2019131667A1 (ja) * 2017-12-25 2019-07-04 国立大学法人名古屋大学 カーボンナノシートとその製造方法
FR3108112B1 (fr) * 2020-03-12 2023-09-15 Univ De Lorraine Procédé d'exfoliation et/ou de fonctionnalisation d'objets lamellaires et dispositif associé.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005503989A (ja) * 2001-10-01 2005-02-10 ロゼッター、ホールディングス、リミテッド 短尺ナノチューブ
WO2005033007A1 (ja) * 2003-09-30 2005-04-14 Techno Network Shikoku Co., Ltd. カーボンナノチューブの製法方法および製造装置
JP2005108600A (ja) * 2003-09-30 2005-04-21 Techno Network Shikoku Co Ltd 液中プラズマ発生装置および液中プラズマ発生方法
JP2005230753A (ja) * 2004-02-23 2005-09-02 Techno Network Shikoku Co Ltd 液中プラズマ反応装置、液中プラズマによる反応方法および結晶合成方法
JP2005314162A (ja) * 2004-04-28 2005-11-10 National Institute For Materials Science 導電性可変三層カーボンナノチューブ及び三層カーボンナノチューブの合成方法並びに導電性可変三層カーボンナノチューブの合成方法
JP2006273707A (ja) * 2005-03-01 2006-10-12 Tohoku Univ ナノカーボン材料の生成方法、生成装置、及びナノカーボン材料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2744408A (en) * 1950-10-25 1956-05-08 Du Pont Apparatus for continuously determining mass per unit length
US20070184190A1 (en) 2003-08-27 2007-08-09 Mineo Hiramatsu Method for producing carbon nanowalls, carbon nanowall, and apparatus for producing carbon nanowalls
JP2005097113A (ja) 2004-11-26 2005-04-14 Mineo Hiramatsu カーボンナノウォールの製造方法と製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005503989A (ja) * 2001-10-01 2005-02-10 ロゼッター、ホールディングス、リミテッド 短尺ナノチューブ
WO2005033007A1 (ja) * 2003-09-30 2005-04-14 Techno Network Shikoku Co., Ltd. カーボンナノチューブの製法方法および製造装置
JP2005108600A (ja) * 2003-09-30 2005-04-21 Techno Network Shikoku Co Ltd 液中プラズマ発生装置および液中プラズマ発生方法
JP2005230753A (ja) * 2004-02-23 2005-09-02 Techno Network Shikoku Co Ltd 液中プラズマ反応装置、液中プラズマによる反応方法および結晶合成方法
JP2005314162A (ja) * 2004-04-28 2005-11-10 National Institute For Materials Science 導電性可変三層カーボンナノチューブ及び三層カーボンナノチューブの合成方法並びに導電性可変三層カーボンナノチューブの合成方法
JP2006273707A (ja) * 2005-03-01 2006-10-12 Tohoku Univ ナノカーボン材料の生成方法、生成装置、及びナノカーボン材料

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516037A (ja) * 2009-12-24 2013-05-09 ナノテク インスツルメンツ インク 電気化学セル電極用導電性グラフェンポリマーバインダー
JP2013032258A (ja) * 2011-06-30 2013-02-14 Ulvac Japan Ltd グラフェンの製造方法
JP2014040352A (ja) * 2012-08-23 2014-03-06 Chube Univ グラフェンの製造方法
JP2014152095A (ja) * 2013-02-13 2014-08-25 Nagoya Univ グラフェンの製造方法
JP2016531064A (ja) * 2013-06-19 2016-10-06 オブスチェストヴォ エス オグラニチェンノイ オトヴェットステヴェンノスチュ“プラズマ−エスケー” ナノスケールカーボンのコロイド溶液を製造する方法
JP2015227253A (ja) * 2014-05-30 2015-12-17 国立大学法人 熊本大学 グラフェン分散液及びグラフェンの製造方法
CN104328451A (zh) * 2014-10-14 2015-02-04 上海应用技术学院 一种碳材料的制备方法

Also Published As

Publication number Publication date
JP5463282B2 (ja) 2014-04-09
JPWO2009119059A1 (ja) 2011-07-21
US20110114499A1 (en) 2011-05-19
US8349142B2 (en) 2013-01-08

Similar Documents

Publication Publication Date Title
JP5463282B2 (ja) グラフェンの製造方法
Seo et al. Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high‐performance supercapacitor electrodes
Wang et al. Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications
Rabchinskii et al. Nanoscale perforation of graphene oxide during photoreduction process in the argon atmosphere
Hong et al. Plasma catalytic synthesis of ammonia using functionalized-carbon coatings in an atmospheric-pressure non-equilibrium discharge
Wu et al. Powder, paper and foam of few‐layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite
Kundu et al. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study
Lee et al. Plasma-assisted reduction of graphene oxide at low temperature and atmospheric pressure for flexible conductor applications
Lv et al. Open‐ended, N‐doped carbon nanotube–graphene hybrid nanostructures as high‐performance catalyst support
Peng et al. Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes
Melero et al. Scalable graphene production from ethanol decomposition by microwave argon plasma torch
Shanmugam et al. Generation of hydrophilic, bamboo-shaped multiwalled carbon nanotubes by solid-state pyrolysis and its electrochemical studies
Pumera Materials electrochemists’ never-ending quest for efficient electrocatalysts: the devil is in the impurities
Wang et al. A co-pyrolysis route to synthesize nitrogen doped multiwall carbon nanotubes for oxygen reduction reaction
Dey et al. Engineering work function of graphene oxide from p to n type using a low power atmospheric pressure plasma jet
Li et al. Enhanced electrochemical performance of reduced graphene oxides by H2/Ar plasma treatment
Obradović et al. A comparative study of the electrochemical properties of carbon nanotubes and carbon black
Seo et al. Sustainable process for all-carbon electrodes: Horticultural doping of natural-resource-derived nano-carbons for high-performance supercapacitors
Choi et al. Controlling size, amount, and crystalline structure of nanoparticles deposited on graphenes for highly efficient energy conversion and storage
Roh et al. Carbon lattice structures in nitrogen-doped reduced graphene oxide: implications for carbon-based electrical conductivity
Redkin et al. Simple technique of multiwalled carbon nanotubes growth on aluminum foil for supercapacitors
Huang et al. Insight into the real efficacy of graphene for enhancing photocatalytic efficiency: a case study on CVD graphene-TiO2 composites
Chun et al. Potassium doping in the double-walled carbon nanotubes at room temperature
Szroeder et al. The role of band structure in electron transfer kinetics in low‐dimensional carbon
Gu et al. Tuning oxidation level, electrical conductance and band gap structure on graphene sheets by a cyclic atomic layer reduction technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724866

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505329

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12736268

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09724866

Country of ref document: EP

Kind code of ref document: A1