WO2009119059A1 - グラフェンの製造方法 - Google Patents
グラフェンの製造方法 Download PDFInfo
- Publication number
- WO2009119059A1 WO2009119059A1 PCT/JP2009/001266 JP2009001266W WO2009119059A1 WO 2009119059 A1 WO2009119059 A1 WO 2009119059A1 JP 2009001266 W JP2009001266 W JP 2009001266W WO 2009119059 A1 WO2009119059 A1 WO 2009119059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphene
- liquid
- electrode
- main body
- gas
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Definitions
- the present invention relates to a method for obtaining graphene having a size of 1 to several hundred nm or an aggregate thereof or a dispersion solution thereof.
- graphene includes what is called a graphene sheet, a graphene laminate, nanographene, or the like, and its size, whether it is a single body, an aggregate, or a laminate, No distinction is made as to whether it is granular or not.
- a low-temperature plasma technique such as a high-temperature thermal process or arc discharge is used. That is, a high-temperature heating device, a vacuum exhaust device, and a vacuum chamber are necessary, and the manufacturing apparatus has been enlarged.
- the invention according to claim 1 is a method for generating graphene from a liquid material containing at least an organic compound, wherein a pair of electrodes are arranged inside the liquid material and outside the liquid material so as to sandwich the gas-liquid interface. Then, an AC voltage is applied to the pair of electrodes, plasma is generated across the gas-liquid interface, and the organic compound is decomposed to obtain a graphene dispersion in which graphene is dispersed in a liquid material It is a manufacturing method of graphene.
- the invention according to claim 2 is characterized in that the graphene powder is obtained by drying the liquid material obtained by the invention of claim 1.
- the invention according to claim 3 is characterized in that the organic compound has an alcoholic hydroxyl group.
- the invention according to claim 4 is characterized in that the organic compound is an alcohol, diol, or triol having 5 or less carbon atoms.
- the invention according to claim 5 is characterized in that the organic compound is methanol, ethanol or 1- or 2-propanol.
- the discharge surface of the electrode arranged inside the liquid material is located at a distance of 5 mm or less from the gas-liquid interface, and the discharge surface of the electrode arranged outside the liquid material is 20 mm from the gas-liquid interface. It is arranged at the following positions.
- the ratio of the distance from the gas-liquid interface of the discharge surface of the electrode disposed inside the liquid material to the distance from the gas-liquid interface of the discharge surface of the electrode disposed outside the liquid material is 1: It is 2 to 1: 3.
- the manufacturing method found by the present inventors is at room temperature and atmospheric pressure, and does not require a high-temperature heating device or a high-frequency power source.
- a liquid organic compound or a liquid containing an organic compound is used as the carbon source, it is very easy to introduce the carbon source as compared with a plasma generator having a vacuum exhaust device.
- the generated graphene can be dispersed in a liquid organic compound used as a raw material or a liquid containing the organic compound, a graphene dispersion can be obtained directly. If the liquid organic compound used as a raw material or the liquid containing the organic compound is composed of only a low boiling point compound, the graphene powder can be easily obtained by drying.
- an alcoholic hydroxyl group is preferable because it decomposes and desorbs to easily generate a carbon double bond in the skeleton of the original molecule.
- low boiling alcohols are preferred.
- a mixed solution of a low-boiling alcohol and other organic solvent may be used.
- Sectional drawing which shows the structure of the graphene manufacturing apparatus 100 which concerns on one specific Example of this invention.
- the photograph figure in operation of the graphene manufacturing device 100 The Raman spectrum figure of the graphene powder obtained by the example.
- FIG. 1 is a configuration diagram (cross-sectional view) showing a method for producing graphene according to a specific embodiment of the present invention.
- the graphene production apparatus 100 includes a sealable container 10, an in-liquid electrode 20 immersed in a liquid material 60 made of ethanol contained in the container 10, and an external electrode 30 provided outside the liquid material 60. It is composed of
- the submerged electrode 20 includes a flat electrode body 20e for applying a voltage, a lead wire 20d for energizing the electrode body 20e, and a cylindrical covering portion 20c for covering the lead wire 20d from the periphery.
- the liquid electrode 30 includes a linear electrode main body 30e for applying a voltage and a cylindrical covering portion 30c for covering the electrode main body 30e from the periphery.
- the tip 30f of the electrode main body 30e is exposed from the covering portion 30c and is disposed to face the liquid surface 60a (gas-liquid interface) of the liquid material 60.
- the graphene production apparatus 100 is provided with an argon inlet tube 40 and a discharge port 50.
- the argon introduction tube 40 is provided so as to eject argon in the vicinity of the tip 30 f of the electrode main body 30 e where the external electrode 30 is exposed inside the container 10.
- Ethanol is introduced into such a graphene production apparatus 100 so that the ethanol liquid surface 60a covers all of the electrode body 20e of the in-liquid electrode 20 and does not reach the tip 30f of the electrode body 30e of the external electrode 30.
- the electrode body 20e is formed of, for example, iron, nickel, or cobalt.
- the surface 20f (discharge surface) of the electrode main body 20e in the liquid and the electrode main body 30e outside the liquid are sandwiched across the liquid surface 60a (gas-liquid interface) of ethanol.
- a 60 Hz AC voltage is applied between the tip 30f (discharge surface) and the pressure is increased.
- gas-liquid plasma is generated between the surface 20f of the electrode body 20e and the tip 30f of the electrode body 30e outside the liquid, and graphene is generated due to decomposition of ethanol or the like. Disperse in ethanol.
- FIG. 2 is a photograph showing a state in which the graphene production apparatus 100 of FIG. 1 is actually operated. What appears to be a round bubble near the ethanol liquid surface indicates a portion where gas-liquid plasma is generated. Further, ethanol gradually turned brown, indicating that the reaction product was dispersed in the liquid.
- FIG. 3 is a Raman spectrum diagram of graphene obtained by the manufacturing method according to this example.
- FIG. 3 shows the Raman spectrum of graphene obtained when ethanol is used as the carbon source and the Raman spectrum of graphene obtained when 2-propanol is used.
- the D band and the G band were clearly confirmed, and it was confirmed to have a graphene structure.
- the D band is derived from the conjugated ⁇ -electron system of graphene, and the G band is considered to be derived from other structural parts such as end portions. From the Raman spectrum, graphene has a small conjugated ⁇ -electron system, that is, It is suggested that the size of individual graphene is small.
- FIG. 4 is a transmission electron micrograph of graphene powder when ethanol is used as the carbon source. It can be seen that the size of graphene is on the order of several tens of nanometers.
- the organic compound contained in the liquid is preferably an alcoholic hydroxyl group.
- graphene of the order of nm can be manufactured.
- the discharge surface which is the surface 20f of the electrode body 20e of the submerged electrode 20, is provided at a position where the distance from the gas-liquid interface, which is the liquid surface 60a, is 5 mm or less, and the discharge surface of the tip 30f of the outer electrode 30 is.
- the distance between the discharge surface, which is the surface 20f of the electrode body 20e of the submerged electrode 20, and the gas-liquid interface, which is the liquid surface 60a, and the discharge surface and the liquid surface 60a of the tip 30f of the external electrode 30 When the ratio to the distance between the gas-liquid interface is 1: 2 to 1: 3, effective discharge is realized between the surface 20f of the electrode body 20e and the tip 30f of the external electrode 30. Therefore, it is possible to efficiently produce graphene on the order of nm. That is, the distance between the discharge surface that is the surface 20f of the electrode body 20e of the submerged electrode 20 and the gas-liquid interface that is the liquid surface 60a is greater than the discharge surface and the liquid surface 60a of the tip 30f of the outer electrode 30. It is desirable that the distance is less than the distance between the gas-liquid interface.
- the graphene dispersion obtained by the present invention can be used as a conductive paint and its raw material.
- graphene powder can be easily obtained, it can be used as an electrode material by firing or the like.
- SYMBOLS 100 Graphene manufacturing apparatus 10: Container 20: Electrode in liquid 20c: Coating
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
グラフェンは、多層構造のグラファイトの1層を独立させたものとして認識されている。すなわちグラフェンは、極めて広い共役π電子系を有し、且つ他のカーボンナノ構造体と異なり一平面状の構造であるものが想定されていることから、大きな電気伝導度が期待され、理論計算も様々報告されている。
カーボンナノウォールの製法については、プラズマを用いた下記特許文献1、2に開示の技術が知られている。しかし、液体物質からグラフェンを製造する方法については、知られていない。
請求項2に係る発明は、請求項1の発明により得られた液状物を乾燥させることにより、グラフェン粉体を得ることを特徴とする。
請求項4に係る発明は、有機化合物は炭素数5以下の、アルコール、ジオール、又はトリオールであることを特徴とする。
請求項5に係る発明は、有機化合物は、メタノール、エタノール又は1-若しくは2-プロパノールであることを特徴とする。
請求項6に係る発明は、液状物内部に配置する電極の放電面は気液界面よりの距離が5mm以下の位置、液状物外部に配置する電極の放電面は気液界面よりの距離が20mm以下の位置に配置されることを特徴とする。
請求項7に係る発明は、液状物内部に配置する電極の放電面の気液界面よりの距離と、液状物外部に配置する電極の放電面の気液界面よりの距離との比が1:2乃至1:3であることを特徴とする。
例えば、アルコール性水酸基は、分解脱離することにより、元の分子の骨格中に炭素の二重結合を容易に生成するので好ましい。特に低沸点アルコールが好ましい。低沸点アルコールとその他有機溶剤の混合液でも良い。
このようなグラフェン製造装置100にエタノールを導入して、エタノールの液面60aが液中電極20の電極本体部20eの全てを覆い、液外電極30の電極本体部30eの先端30fに達しない様にする。電極本体部20eは例えば鉄、ニッケル、コバルトで形成する。次に、アルゴン導入管40からアルゴンを導入しながら、エタノールの液面60a(気液界面)を挟んで液中の電極本体部20eの表面20f(放電面)と液外の電極本体部30eの先端30f(放電面)との間に、60Hz交流電圧を印加し、昇圧する。これにより、電極本体部20eの表面20fと液外の電極本体部30eの先端30fとの間に、気液プラズマが生じて、エタノールの分解等によりグラフェンが生成し、そのグラフェンは、液状物60であるエタノール中に分散する。
さらに、液中電極20の電極本体部20eの表面20fである放電面は,液面60aである気液界面よりの距離が5mm以下の位置に設けられ、液外電極30の先端30fの放電面は、液面60aである気液界面よりの距離が20mm以下の位置に配置されることが望ましい。この関係にある時に、電極本体部20eの表面20fと液外電極30の先端30fとの間で、効果的な放電が実現され、nmオーダのグラフェンを、効率的に製造することができる。
10:容器
20:液中電極
20c:被覆部
20e:電極本体部
30:液外電極
30c:被覆部
30e:電極本体部
40:アルゴン導入管
50:アルゴン排出口
Claims (7)
- 少なくとも有機化合物を含む液状物からグラフェンを生成する方法であって、
一対の電極を、気液界面を挟むように、前記液状物の内部と前記液状物の外部とに配置し、
前記一対の電極に交流電圧を印加し、気液界面を挟んでプラズマを発生させて、前記有機化合物を分解することにより、前記液状物中にグラフェンが分散したグラフェン分散液を得ることを特徴とするグラフェンの製造方法。 - 前記液状物を乾燥させることにより、グラフェン粉体を得ることを特徴とする請求項1に記載のグラフェンの製造方法。
- 前記有機化合物はアルコール性水酸基を有するものであることを特徴とする請求項1又は請求項2に記載のグラフェンの製造方法。
- 前記有機化合物は炭素数5以下の、アルコール、ジオール、又はトリオールであることを特徴とする請求項3に記載のグラフェンの製造方法。
- 前記有機化合物は、メタノール、エタノール又は1-若しくは2-プロパノールであることを特徴とする請求項4に記載のグラフェンの製造方法。
- 前記液状物内部に配置する電極の放電面は前記気液界面よりの距離が5mm以下の位置、前記液状物外部に配置する電極の放電面は前記気液界面よりの距離が20mm以下の位置に配置されることを特徴とする請求項1乃至請求項5のいずれか1項に記載のグラフェンの製造方法。
- 前記液状物内部に配置する電極の放電面の前記気液界面よりの距離と、前記液状物外部に配置する電極の放電面の前記気液界面よりの距離との比が1:2乃至1:3であることを特徴とする請求項1乃至請求項6のいずれか1項に記載のグラフェンの製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010505329A JP5463282B2 (ja) | 2008-03-26 | 2009-03-23 | グラフェンの製造方法 |
US12/736,268 US8349142B2 (en) | 2008-03-26 | 2009-03-23 | Method for producing graphene |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008080704 | 2008-03-26 | ||
JP2008-080704 | 2008-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009119059A1 true WO2009119059A1 (ja) | 2009-10-01 |
Family
ID=41113270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/001266 WO2009119059A1 (ja) | 2008-03-26 | 2009-03-23 | グラフェンの製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8349142B2 (ja) |
JP (1) | JP5463282B2 (ja) |
WO (1) | WO2009119059A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013032258A (ja) * | 2011-06-30 | 2013-02-14 | Ulvac Japan Ltd | グラフェンの製造方法 |
JP2013516037A (ja) * | 2009-12-24 | 2013-05-09 | ナノテク インスツルメンツ インク | 電気化学セル電極用導電性グラフェンポリマーバインダー |
JP2014040352A (ja) * | 2012-08-23 | 2014-03-06 | Chube Univ | グラフェンの製造方法 |
JP2014152095A (ja) * | 2013-02-13 | 2014-08-25 | Nagoya Univ | グラフェンの製造方法 |
CN104328451A (zh) * | 2014-10-14 | 2015-02-04 | 上海应用技术学院 | 一种碳材料的制备方法 |
JP2015227253A (ja) * | 2014-05-30 | 2015-12-17 | 国立大学法人 熊本大学 | グラフェン分散液及びグラフェンの製造方法 |
JP2016531064A (ja) * | 2013-06-19 | 2016-10-06 | オブスチェストヴォ エス オグラニチェンノイ オトヴェットステヴェンノスチュ“プラズマ−エスケー” | ナノスケールカーボンのコロイド溶液を製造する方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014527950A (ja) | 2011-09-09 | 2014-10-23 | ボード オブ トラスティーズ オブノーザン イリノイ ユニバーシティー | 結晶性グラフェンおよび結晶性グラフェンの製造方法 |
CN104136368B (zh) * | 2012-02-24 | 2017-02-22 | 加州理工学院 | 用于石墨烯形成的方法和系统 |
US9059466B2 (en) | 2012-03-22 | 2015-06-16 | Chun-Chieh Chang | Direct synthesis of lithium ion battery electrode materials using graphene treated raw materials as the reactant |
US9090476B2 (en) | 2012-03-22 | 2015-07-28 | Chun-Chieh Chang | Direct deposition of graphene on substrate material |
KR101556360B1 (ko) | 2012-08-16 | 2015-09-30 | 삼성전자주식회사 | 그래핀 물성 복귀 방법 및 장치 |
CN103008684A (zh) * | 2013-01-21 | 2013-04-03 | 北京大学 | 大气压冷等离子体方式制备金属纳米颗粒的方法 |
WO2019131667A1 (ja) * | 2017-12-25 | 2019-07-04 | 国立大学法人名古屋大学 | カーボンナノシートとその製造方法 |
FR3108112B1 (fr) * | 2020-03-12 | 2023-09-15 | Univ De Lorraine | Procédé d'exfoliation et/ou de fonctionnalisation d'objets lamellaires et dispositif associé. |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005503989A (ja) * | 2001-10-01 | 2005-02-10 | ロゼッター、ホールディングス、リミテッド | 短尺ナノチューブ |
WO2005033007A1 (ja) * | 2003-09-30 | 2005-04-14 | Techno Network Shikoku Co., Ltd. | カーボンナノチューブの製法方法および製造装置 |
JP2005108600A (ja) * | 2003-09-30 | 2005-04-21 | Techno Network Shikoku Co Ltd | 液中プラズマ発生装置および液中プラズマ発生方法 |
JP2005230753A (ja) * | 2004-02-23 | 2005-09-02 | Techno Network Shikoku Co Ltd | 液中プラズマ反応装置、液中プラズマによる反応方法および結晶合成方法 |
JP2005314162A (ja) * | 2004-04-28 | 2005-11-10 | National Institute For Materials Science | 導電性可変三層カーボンナノチューブ及び三層カーボンナノチューブの合成方法並びに導電性可変三層カーボンナノチューブの合成方法 |
JP2006273707A (ja) * | 2005-03-01 | 2006-10-12 | Tohoku Univ | ナノカーボン材料の生成方法、生成装置、及びナノカーボン材料 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2744408A (en) * | 1950-10-25 | 1956-05-08 | Du Pont | Apparatus for continuously determining mass per unit length |
US20070184190A1 (en) | 2003-08-27 | 2007-08-09 | Mineo Hiramatsu | Method for producing carbon nanowalls, carbon nanowall, and apparatus for producing carbon nanowalls |
JP2005097113A (ja) | 2004-11-26 | 2005-04-14 | Mineo Hiramatsu | カーボンナノウォールの製造方法と製造装置 |
-
2009
- 2009-03-23 US US12/736,268 patent/US8349142B2/en active Active
- 2009-03-23 WO PCT/JP2009/001266 patent/WO2009119059A1/ja active Application Filing
- 2009-03-23 JP JP2010505329A patent/JP5463282B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005503989A (ja) * | 2001-10-01 | 2005-02-10 | ロゼッター、ホールディングス、リミテッド | 短尺ナノチューブ |
WO2005033007A1 (ja) * | 2003-09-30 | 2005-04-14 | Techno Network Shikoku Co., Ltd. | カーボンナノチューブの製法方法および製造装置 |
JP2005108600A (ja) * | 2003-09-30 | 2005-04-21 | Techno Network Shikoku Co Ltd | 液中プラズマ発生装置および液中プラズマ発生方法 |
JP2005230753A (ja) * | 2004-02-23 | 2005-09-02 | Techno Network Shikoku Co Ltd | 液中プラズマ反応装置、液中プラズマによる反応方法および結晶合成方法 |
JP2005314162A (ja) * | 2004-04-28 | 2005-11-10 | National Institute For Materials Science | 導電性可変三層カーボンナノチューブ及び三層カーボンナノチューブの合成方法並びに導電性可変三層カーボンナノチューブの合成方法 |
JP2006273707A (ja) * | 2005-03-01 | 2006-10-12 | Tohoku Univ | ナノカーボン材料の生成方法、生成装置、及びナノカーボン材料 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013516037A (ja) * | 2009-12-24 | 2013-05-09 | ナノテク インスツルメンツ インク | 電気化学セル電極用導電性グラフェンポリマーバインダー |
JP2013032258A (ja) * | 2011-06-30 | 2013-02-14 | Ulvac Japan Ltd | グラフェンの製造方法 |
JP2014040352A (ja) * | 2012-08-23 | 2014-03-06 | Chube Univ | グラフェンの製造方法 |
JP2014152095A (ja) * | 2013-02-13 | 2014-08-25 | Nagoya Univ | グラフェンの製造方法 |
JP2016531064A (ja) * | 2013-06-19 | 2016-10-06 | オブスチェストヴォ エス オグラニチェンノイ オトヴェットステヴェンノスチュ“プラズマ−エスケー” | ナノスケールカーボンのコロイド溶液を製造する方法 |
JP2015227253A (ja) * | 2014-05-30 | 2015-12-17 | 国立大学法人 熊本大学 | グラフェン分散液及びグラフェンの製造方法 |
CN104328451A (zh) * | 2014-10-14 | 2015-02-04 | 上海应用技术学院 | 一种碳材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5463282B2 (ja) | 2014-04-09 |
JPWO2009119059A1 (ja) | 2011-07-21 |
US20110114499A1 (en) | 2011-05-19 |
US8349142B2 (en) | 2013-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5463282B2 (ja) | グラフェンの製造方法 | |
Seo et al. | Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high‐performance supercapacitor electrodes | |
Wang et al. | Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications | |
Rabchinskii et al. | Nanoscale perforation of graphene oxide during photoreduction process in the argon atmosphere | |
Hong et al. | Plasma catalytic synthesis of ammonia using functionalized-carbon coatings in an atmospheric-pressure non-equilibrium discharge | |
Wu et al. | Powder, paper and foam of few‐layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite | |
Kundu et al. | Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study | |
Lee et al. | Plasma-assisted reduction of graphene oxide at low temperature and atmospheric pressure for flexible conductor applications | |
Lv et al. | Open‐ended, N‐doped carbon nanotube–graphene hybrid nanostructures as high‐performance catalyst support | |
Peng et al. | Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes | |
Melero et al. | Scalable graphene production from ethanol decomposition by microwave argon plasma torch | |
Shanmugam et al. | Generation of hydrophilic, bamboo-shaped multiwalled carbon nanotubes by solid-state pyrolysis and its electrochemical studies | |
Pumera | Materials electrochemists’ never-ending quest for efficient electrocatalysts: the devil is in the impurities | |
Wang et al. | A co-pyrolysis route to synthesize nitrogen doped multiwall carbon nanotubes for oxygen reduction reaction | |
Dey et al. | Engineering work function of graphene oxide from p to n type using a low power atmospheric pressure plasma jet | |
Li et al. | Enhanced electrochemical performance of reduced graphene oxides by H2/Ar plasma treatment | |
Obradović et al. | A comparative study of the electrochemical properties of carbon nanotubes and carbon black | |
Seo et al. | Sustainable process for all-carbon electrodes: Horticultural doping of natural-resource-derived nano-carbons for high-performance supercapacitors | |
Choi et al. | Controlling size, amount, and crystalline structure of nanoparticles deposited on graphenes for highly efficient energy conversion and storage | |
Roh et al. | Carbon lattice structures in nitrogen-doped reduced graphene oxide: implications for carbon-based electrical conductivity | |
Redkin et al. | Simple technique of multiwalled carbon nanotubes growth on aluminum foil for supercapacitors | |
Huang et al. | Insight into the real efficacy of graphene for enhancing photocatalytic efficiency: a case study on CVD graphene-TiO2 composites | |
Chun et al. | Potassium doping in the double-walled carbon nanotubes at room temperature | |
Szroeder et al. | The role of band structure in electron transfer kinetics in low‐dimensional carbon | |
Gu et al. | Tuning oxidation level, electrical conductance and band gap structure on graphene sheets by a cyclic atomic layer reduction technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09724866 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010505329 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12736268 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09724866 Country of ref document: EP Kind code of ref document: A1 |