[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009116634A1 - 微細構造体検査方法、微細構造体検査装置、および微細構造体検査プログラム - Google Patents

微細構造体検査方法、微細構造体検査装置、および微細構造体検査プログラム Download PDF

Info

Publication number
WO2009116634A1
WO2009116634A1 PCT/JP2009/055475 JP2009055475W WO2009116634A1 WO 2009116634 A1 WO2009116634 A1 WO 2009116634A1 JP 2009055475 W JP2009055475 W JP 2009055475W WO 2009116634 A1 WO2009116634 A1 WO 2009116634A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
sem
fine structure
white band
microstructure
Prior art date
Application number
PCT/JP2009/055475
Other languages
English (en)
French (fr)
Inventor
米倉 勲
秀充 波木井
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to KR1020107020751A priority Critical patent/KR101137045B1/ko
Priority to US12/736,157 priority patent/US8754935B2/en
Priority to JP2010503931A priority patent/JP5051295B2/ja
Priority to CN2009801092756A priority patent/CN101978241B/zh
Publication of WO2009116634A1 publication Critical patent/WO2009116634A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K7/00Gamma- or X-ray microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • H01J2237/221Image processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2611Stereoscopic measurements and/or imaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2809Scanning microscopes characterised by the imaging problems involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Definitions

  • the present invention relates to a fine structure inspection apparatus, a fine structure inspection program, and a fine structure inspection method, and in particular, a fine structure inspection apparatus, a fine structure inspection program for inspecting a sidewall angle of a fine structure pattern, And a microstructure inspection method.
  • This application is filed on March 19, 2008, Japanese Patent Application No. 2008-073112 filed in Japan, March 19, 2008, Japanese Patent Application No. 2008-071315 filed in Japan, September 18, 2008. No. 2008-239205 filed in Japan, and Japanese Patent Application No. 2009-005495 filed in Japan on January 14, 2009, the priority is claimed, and the contents thereof are incorporated herein.
  • EUV photomasks that are expected as next-generation masks are reflective masks that are different from conventional transmissive photomasks, and therefore, the side edges of pattern edges are required to be as vertical as possible. There is a need to measure the angle.
  • CD-SEM length measuring SEM
  • an electron beam irradiated from an electron gun is converged by a condenser lens, hits a measurement target pattern through an aperture.
  • the secondary electrons emitted at this time are captured by a detector and converted into an electrical signal to obtain a two-dimensional image. Based on the information of the two-dimensional image, the dimension of the pattern to be measured can be measured with high accuracy.
  • the actual sample itself can be measured nondestructively.
  • the throughput is very slow.
  • the needle is worn little by little according to the number of measurements, and the measured value becomes inaccurate. Therefore, there is a problem that it is not suitable for measuring the sidewall angle of many patterns.
  • the side wall angle of the measurement target pattern is a reverse taper, it is difficult to trace the AFM needle along the slope of the reverse taper, so it is difficult to measure the side wall angle.
  • an aspect of the present invention is made to solve the above-described problem, and a fine structure inspection apparatus, a fine structure inspection program, and a fine structure inspection program that can suitably measure the sidewall angle of the fine structure.
  • One object is to provide a fine structure inspection method.
  • One embodiment of the present invention provides the following method: a microstructure inspection method for inspecting a sidewall angle of a sample microstructure pattern, wherein the SEM of the sample microstructure pattern is subjected to a plurality of SEM conditions. Imaging a photograph; measuring a white band width of an edge portion of the sample microstructure pattern in the SEM photograph; and based on a change amount of the white band width accompanying a change between the plurality of SEM conditions, Calculating a side wall angle of the sample microstructure pattern.
  • the fine structure inspection method may be performed as follows: The plurality of SEM conditions have different electron beam current values.
  • the fine structure inspection method described above may be performed as follows: the plurality of SEM conditions have amplification values of different photomultiplier tubes.
  • the fine structure inspection method described above may be performed as follows: SEM photographs of a plurality of standard fine structure patterns having known side wall angles are taken, thereby obtaining a unit frequency per side wall angle. The method further includes a step of calculating a reference change amount that is a change amount of the white band width.
  • the fine structure inspection method described above may be performed as follows: a step of calculating a reference change amount that is a change amount of a white band width per unit wall angle using a SEM simulator. In addition.
  • the fine structure inspection method may be performed as follows: When the amount of change in the white bandwidth of the sample fine structure pattern is smaller than a predetermined value, the electron beam and the sample are A step of relatively tilting and repeating the imaging of the SEM photograph; and a step of correcting the calculated side wall angle of the sample fine structure pattern corresponding to the tilted angle.
  • the fine structure inspection method may be performed as follows: the step of calculating the reference change amount: a standard fine structure pattern A having a known sidewall angle under two types of SEM conditions A white band width of an edge portion in the SEM photograph of the standard fine structure pattern A is measured, and a difference ⁇ W A of the white band width of the standard fine structure pattern A between the two types of SEM conditions is measured.
  • the fine structure inspection method may be performed as follows: a step of calculating a side wall angle of the sample fine structure pattern: an unknown side wall angle is calculated under the two types of SEM conditions. An SEM photograph of the sample microstructure pattern is taken, the white band width of the edge part in the SEM photograph of the sample microstructure pattern is measured, and the difference ⁇ W of the white band width between the two types of SEM conditions is calculated.
  • the side wall angle of the fine structure pattern is calculated from the following formula using the reference change amount, the side wall angle of the pattern B, the ⁇ W B , and the ⁇ W.
  • the side wall angle of the fine structure pattern pattern B Side wall angle + ( ⁇ W B ⁇ W) / reference change amount;
  • the fine structure inspection method may be performed as follows: in the step of taking an SEM photograph of the fine structure pattern, measurement over a predetermined width along the longitudinal direction of the white band. An area is defined, and the distribution of the white bandwidth in the measurement area is measured.
  • One embodiment of the present invention provides the following configuration: a microstructure inspection apparatus that inspects a sidewall angle of a microstructure pattern; a sample holding mechanism that fixes a sample including a measurement target pattern; A CD-SEM mechanism that captures an SEM photograph of the measurement target pattern under a plurality of SEM conditions; an image processing mechanism that acquires a white band width of an edge portion of the measurement target pattern from the SEM photograph; and the measurement target pattern Calculating a side wall angle of the measurement target pattern using a change amount of the white band width accompanying a change between the plurality of SEM conditions.
  • a fine structure inspection apparatus characterized by that.
  • the fine structure inspection apparatus may be configured as follows: the plurality of SEM conditions have different electron beam current values.
  • the fine structure inspection apparatus may be configured as follows: the plurality of SEM conditions have amplification values of different photomultiplier tubes.
  • the fine structure inspection apparatus described above may be configured as follows: the sample holding mechanism can change a relative angle at which an electron beam is incident on a measurement target pattern when an SEM photograph is taken. Hold the sample.
  • the fine structure inspection apparatus described above may be configured as follows: the calculation mechanism may change a white bandwidth with a change between the plurality of SEM conditions per side wall angle of unit frequency.
  • a SEM simulator for calculating a reference change amount that is a quantity is further provided.
  • One embodiment of the present invention provides the following program: a fine structure inspection program for inspecting a sidewall angle of a fine structure pattern, wherein: the fine structure pattern captured under a plurality of SEM conditions A routine for obtaining an SEM photograph; a routine for measuring a white band width of an edge portion of the fine structure pattern in the SEM photograph; and a change amount of the white band width accompanying a change between the plurality of SEM conditions, And a routine for calculating a side wall angle of the fine structure pattern.
  • the microstructure inspection apparatus and method according to one aspect of the present invention are characterized in that SEM photographs under a plurality of SEM conditions are taken, and the sidewall angle of the microstructure pattern is calculated from the white band width of the SEM photograph.
  • SEM photographs under a plurality of SEM conditions are taken, and the sidewall angle of the microstructure pattern is calculated from the white band width of the SEM photograph.
  • the present inventors have found that the sidewall angle of the fine structure pattern has a correlation with the current value of the electron beam at the time of SEM photography and the white band width of the SEM photograph. From this, the side wall angle of the fine structure pattern can be calculated by obtaining the current value of the electron beam at the time of SEM photography and the white band width value of the SEM photograph.
  • the present inventors have found that the sidewall angle of the fine structure pattern is correlated with the amplification value of the photomultiplier tube in the secondary electron detector during SEM photography and the white band width of the SEM photograph. I found out. From this, the sidewall angle of the fine structure pattern can be calculated by acquiring the amplification value at the time of SEM photography and the white band width value of the SEM photograph.
  • FIG. 1 is a flowchart for calculating a reference change amount of a white band width according to the first embodiment.
  • FIG. 2 is a flowchart for measuring the side wall angle of the measurement target pattern.
  • FIG. 3 is a measurement result of an SEM image and a white bandwidth showing Example 1.
  • FIG. 4 is a graph showing the relationship between the variation amount of the white band width and the side wall angle.
  • FIG. 5 is a flowchart showing a procedure for calculating the distribution of the sidewall angle of the measurement target pattern according to the second embodiment.
  • FIG. 6A is a diagram showing an SEM image showing a normal straight line pattern of Example 2 and a distribution of sidewall angles.
  • FIG. 6A is a diagram showing an SEM image showing a normal straight line pattern of Example 2 and a distribution of sidewall angles.
  • FIG. 6B is a diagram illustrating an SEM image showing a pattern with a large roughness in Example 2 and a distribution of sidewall angles.
  • FIG. 7 is a SEM image showing an example of the fine structure inspection method according to the third embodiment, and the measurement result of the white bandwidth of the SEM image.
  • FIG. 8 is a graph showing the relationship between the variation amount of the white band width and the side wall angle in the above embodiment.
  • FIG. 9 is a graph showing the relationship between the amount of fluctuation of the white band width and the side wall angle when the amplification value of the photomultiplier tube is changed with different change widths.
  • FIG. 10 is a schematic configuration diagram of a microstructure inspection apparatus according to an embodiment of the present invention.
  • Measure the edge of the measurement pattern under SEM condition 2 Measure measurement band width S13 Measure measurement pattern white band width change S14 Compare ⁇ W with reference change amount S15 Tilt stage or electron beam at a certain angle S16 Reference change Calculate the side wall angle of the measurement pattern from the amount S17... Calculate the side wall angle after correcting the tilt.
  • S115 Set the number N of measurement points
  • S116 Set the measurement area width
  • S117 Repeat the following from measurement points 1 to N
  • S118 Measure the white band width of the edge under SEM condition 1
  • the fine structure inspection apparatus and method according to the first embodiment of the present invention is based on the current value of the electron beam at the time of SEM photography and the white band width of the SEM photograph. Calculate the side wall angle.
  • a fine structure pattern is observed with a CD-SEM, a large amount of secondary electrons are emitted from the edge portion of the fine structure pattern, so that the edge portion appears bright. In the present specification, this brightly visible edge portion is called a white band.
  • the side wall angle can be estimated to some extent from the thickness of the pattern and the white band width.
  • the white band width does not change when the side wall angle becomes steep to some extent.
  • the current value of the electron beam of the CD-SEM is changed, the amount of secondary electrons emitted from the edge portion of the pattern increases in proportion to the current value.
  • Our investigation results show that the width of the white band changes according to the current value of the electron beam depending on the side wall angle of the pattern edge.
  • the present invention utilizes this phenomenon.
  • the signal intensity of the white band may be used for the analysis. For this reason, the fine structure inspection apparatus and method of the present invention can suitably inspect the side wall angle even when the side wall angle of the pattern to be measured is near 90 °.
  • the present inventors have found that the sidewall angle of the fine structure pattern has a correlation between the current value of the electron beam at the time of SEM photography and the white band width of the SEM photograph. From this, the side wall angle of the fine structure pattern can be calculated by obtaining the current value of the electron beam at the time of SEM photography and the white band width value of the SEM photograph. In this method, the side wall angle of the fine structure pattern is calculated from the result of SEM photography. Therefore, the measurement target pattern can be inspected nondestructively. Further, since the side wall angle is calculated using image processing of the SEM photograph, multipoint measurement of the side wall angle of the measurement target pattern is easy. Therefore, inspection can be performed with improved throughput as compared with AFM.
  • the microstructure inspection apparatus of the present invention has the configuration shown in FIG.
  • the sample holding mechanism fixes the sample having the measurement target pattern.
  • the sample holding mechanism has a shape / function that can be suitably suitably fixed according to the shape / use of the structure on which the measurement target pattern is formed.
  • the sample holding mechanism holds the sample so that the electron beam at the time of imaging the SEM photograph is incident at an arbitrary angle relative to the measurement target pattern.
  • the electron beam corresponds to the side wall of the measurement target pattern even when the side wall angle of the measurement target pattern is inversely tapered.
  • the SEM photograph which has a white band can be acquired.
  • a mechanism that holds the electron beam and the measurement target pattern so as to have a relatively arbitrary angle is sufficient.
  • tilting may be performed by using either a stage on which a sample is fixed or an electron beam. Thereby, even if it is a case where the side wall angle of a measurement object pattern is a reverse taper, this invention microstructure inspection apparatus can measure a side wall angle suitably.
  • the CD-SEM mechanism takes an SEM photograph of the measurement target pattern.
  • an electron beam irradiated from an electron gun is converged by a condenser lens, hits a measurement target pattern through an aperture.
  • the secondary electrons emitted at this time are captured by the detector and converted into an electrical signal, and a two-dimensional image (SEM photograph) is acquired.
  • the image processing mechanism acquires the white band width of the edge portion of the measurement target pattern from the SEM photograph taken by the CD-SEM mechanism.
  • the white band width detection method may be appropriately performed using a known image processing technique. For example, since the white band appears brighter than the surroundings, the white band may be detected and measured from the contrast of the SEM photograph.
  • the calculation mechanism calculates the side wall angle of the measurement target pattern from the current value of the electron beam at the time of SEM photography and the white band width.
  • the present inventors have found that the sidewall angle of the fine structure pattern has a correlation with the current value of the electron beam at the time of SEM photography and the white band width of the SEM photograph. From this, the sidewall angle of the fine structure pattern can be calculated by acquiring the current value of the electron beam at the time of SEM photography and the white band width value of the SEM photograph.
  • the calculation mechanism is preferably a calculation mechanism having a function of calculating a reference change amount, which is a change amount of the white band width associated with a change in the current value of the electron beam per unit angle, by the SEM simulator.
  • the SEM simulator is an SEM of a pattern by calculating the behavior of secondary electrons emitted when the pattern is irradiated with an electron beam emitted from an electron gun of a CD-SEM by the Monte Carlo method or the like. This software predicts the luminance distribution of images and secondary electrons. In the simulation, naturally, the conditions of the electron beam (acceleration voltage, current value, etc.) can be arbitrarily changed.
  • the material of the fine structure pattern can be arbitrarily set, and the three-dimensional shape of the pattern can be arbitrarily designed.
  • the white band width can be measured from the image and luminance distribution obtained by the SEM simulator.
  • the fine structure inspection program and method of the present invention will be specifically described.
  • the fine structure inspection program and method of the present invention are such that “the sidewall angle of the fine structure pattern has a correlation between the current value of the electron beam at the time of SEM photography and the white band width of the SEM photograph”. Is used.
  • the contents of the present application are not limited to the following embodiments.
  • ⁇ Step of calculating the reference change amount First, a microstructure pattern with a known sidewall angle is measured. Then, a reference change amount, which is a change amount of the white band width per unit angle, is calculated from the change amount of the white band width accompanying the change of the current value of the electron beam and the known side wall angle.
  • the reference change amount is determined by a plurality of sidewall angles. It may be determined by measuring a known fine structure pattern and performing statistical processing. Specifically, a fine structure pattern with a known sidewall angle is prepared, the current value of the electron beam when the fine structure pattern is photographed with a CD-SEM is changed, and the white band at the edge portion of the fine structure pattern in the SEM photograph The width may be measured and calculated from the amount of change in the white band width accompanying the change in the current value of the electron beam and the known side wall angle.
  • the reference change amount may be calculated using an SEM simulator.
  • the SEM simulator is an SEM of a pattern by calculating the behavior of secondary electrons emitted when the pattern is irradiated with an electron beam emitted from an electron gun of a CD-SEM by the Monte Carlo method or the like. This software predicts the luminance distribution of images and secondary electrons.
  • the conditions of the electron beam acceleration voltage, current value, etc.
  • the material of the pattern can be arbitrarily set, and the three-dimensional shape of the pattern can be arbitrarily designed. For this reason, the white band width can be measured from the image and luminance distribution obtained by the SEM simulator.
  • pattern A and pattern B two patterns having different side wall angles made of the same material (resist, chrome, etc.) as the material of the sample whose side wall angle is to be measured are created (hereinafter referred to as pattern A and pattern B, respectively).
  • the side wall angles of the patterns A and B are measured in advance using a cross-section SEM, AFM (atomic force microscope), or the like. Note that it is desirable that the side wall angle values of the patterns A and B are as far apart as possible. For example, it is preferable that one pattern is almost vertical and the other pattern has a taper shape of about 70 °.
  • SEM condition 1 and SEM condition 2 two types of conditions in which the electron beam current value is changed are set as measurement conditions in the CD-SEM
  • FIG. 1 is a flowchart showing a procedure for calculating a reference change amount of the white band width per side wall angle of 1 °.
  • the dimension of the reference change amount in this example is [length / angle].
  • the CD-SEM mechanism is moved to pattern A (S1), and the white band width of the edge is measured under SEM condition 1 (S2).
  • S3 the white band width of the edge is measured under SEM condition 2 (S3).
  • a white band width change amount ⁇ WA is calculated from the results of S2 and S3 (S4).
  • the CD-SEM mechanism is moved to pattern B (S5), and the white band width of the edge is measured under SEM condition 1 (S6).
  • the white band width of the edge is measured under SEM condition 2 (S7).
  • the sample production for calculating the reference change amount and the white bandwidth measurement under the SEM condition 1 and the SEM condition 2 may all be performed by calculation on a computer.
  • ⁇ Step of acquiring change amount> a measurement target pattern with an unknown side wall angle is prepared, and the current value of the electron beam when the fine structure pattern is imaged with the CD-SEM is changed (SEM condition 1, SEM condition 2), and the fine structure in the SEM photograph is obtained.
  • SEM condition 1 SEM condition 2
  • SEM condition 2 SEM condition 2
  • the white band width at the edge portion of the pattern is measured, and the change amount of the white band width accompanying the change in the current value of the electron beam is acquired.
  • Step of calculating side wall angle of measurement target pattern is calculated from the change amount of the white band width and the reference change amount associated with the change in the electron beam current value in the measurement target pattern whose side wall angle is unknown.
  • the calculation of the side wall angle of the measurement target pattern may be performed according to the reference change amount calculation method.
  • the side wall angle of the measurement target pattern can be measured using the CD-SEM.
  • FIG. 2 is a flowchart showing a procedure for measuring the side wall angle of the measurement target pattern (corresponding to the case where the side wall angle of the measurement target pattern is a reverse taper).
  • the CD-SEM mechanism is moved to a measurement pattern whose side wall angle is unknown (S10), and the white band width of the edge is measured under SEM condition 1 (S11).
  • S11 the white band width of the edge is measured under SEM condition 2 (S12).
  • a white band width change amount ⁇ W is calculated from the results of S11 and S12 (S13).
  • this ⁇ W is compared with the reference change amount (S14). If ⁇ W is smaller than the reference change amount, it seems that the side wall of the measurement pattern has an inversely tapered shape.
  • the stage or beam is tilted by a certain angle (S15), and the process returns to S11.
  • ⁇ W is equal to or larger than the reference change amount in S14
  • the side wall angle of the measurement pattern is determined from the reference change amount, the side wall angle of the pattern A (or pattern B), and the white band width change amount.
  • an angle for correcting the tilt is calculated (S17).
  • An expression for calculating the sidewall angle of an arbitrary pattern is shown below.
  • the correction amount corresponding to the tilted angle is 0 °.
  • S15 and the tilt mechanism may be omitted.
  • Side wall angle of measurement target pattern tilted angle + side wall angle of pattern A + ( ⁇ W A ⁇ W) / reference change amount ⁇ W A : change amount of white band width of pattern A
  • ⁇ W change of white band width of measurement target pattern amount
  • the CD-SEM mechanism is moved to pattern A, and an image is acquired under SEM condition 1. And the white band width was measured. The white band width was 19.9 nm. Next, in the same pattern A, an image is acquired under SEM condition 2. And the white band width was measured. The white band width was 21.0 nm. Therefore, the amount of change due to the SEM condition of the white band width is 1.1 nm.
  • the CD-SEM mechanism was moved to pattern B, an image was acquired under SEM condition 1, and the white band width was measured. As a result, it was 25.7 nm. Next, in the same pattern, when an image was acquired under SEM condition 2 and the white band width was measured, it was 29.7 nm. Therefore, the amount of change due to the SEM condition of the white band width is 4.0 nm.
  • FIG. 4 is a graph showing the relationship between the amount of change in the white band and the side wall angle.
  • FIG. 4 shows the results of measuring a total of seven patterns including the patterns A and B using the above measurement method.
  • FIG. 4 is a graph in which the side wall angle of each pattern measured in advance by AFM and the amount of change in white band are plotted. Based on this plot, a first-order linear approximation was obtained for the correlation between the sidewall angle and the amount of change in the white band. As a result, the square value of the correlation coefficient R was 0.94, and a high correlation was recognized.
  • Side wall angle of pattern to be measured Side wall angle of pattern B + ( ⁇ W B - ⁇ W) / reference change amount ⁇ W B : change amount of white band width of pattern B ⁇ W: change amount of white band width of measurement target pattern
  • the side wall angle of this pattern was measured using AFM, it was 85 °, which almost coincided with the measurement result of the method of the present invention.
  • the sidewall angle of the measurement target pattern is calculated from the change amount of the white bandwidth and the reference change amount according to the change in the current value of the electron beam in the measurement target pattern whose sidewall angle is unknown.
  • a measurement point is set on the white band, a measurement distance width that is a distance from the measurement point is set, and a white band within the measurement distance width is set as a measurement region.
  • the side wall angle varies depending on the part.
  • the side wall angle can be calculated for each measurement area determined for each measurement point. For this reason, even if the side wall angle varies depending on the part of the measurement target pattern, the side wall angle is calculated for each measurement point, so that a distribution of fluctuations in the side wall angle can be obtained.
  • the measurement area can be set to an arbitrary part of the measurement target pattern.
  • FIG. 3 is a flowchart showing a procedure for calculating the distribution of the sidewall angle of the measurement target pattern.
  • the number N of points for measuring the side wall angle is set (S115).
  • the width of the measurement area at each measurement point is set (S116).
  • the width of the measurement region is set so as not to overlap the measurement region at the adjacent measurement points.
  • S118 After measuring the white band width of the edge under SEM condition 1 (S118), the white band width of the edge is measured under SEM condition 2 (S119), and the change amount ⁇ W of the white band width is calculated (S120).
  • the side wall angle of the measurement region is calculated from the reference change amount (S121). After the measurement of all measurement points is completed (S122), the distribution of sidewall angles is calculated from these data (S123).
  • FIG. 6A and 6B show the distribution of the sidewall angle of the pattern.
  • a normal linear pattern is shown in FIG. 6A
  • a pattern with a large roughness is shown in FIG. 6B.
  • 6A and 6B in the case of a linear pattern, the side wall angle is stable at 86 ° to 90 °, and in the case of a pattern having a large roughness, the side wall angle varies from 45 ° to 85 ° depending on the location. I understand that. Therefore, by setting the measurement points, it was possible to obtain a distribution of fluctuations in the sidewall angle.
  • the SEM collects secondary electrons emitted from the sample with a detector, converts them into optical signals with a scintillator, and converts the optical signals into electrical signals using a photomultiplier tube to form an image. ing.
  • the amplification value is a parameter of the photomultiplier tube and affects the contrast of the SEM photograph image.
  • the side wall angle can be estimated to some extent from the thickness of the pattern and the white band width. However, it has been found that the white band width does not change when the side wall angle becomes steep to some extent.
  • the amplification value of the CD-SEM is changed, the signal that is converted into an electrical signal increases in proportion to the amplification value, so that it is considered that the brighter region of the pattern edge portion becomes larger. This is because the distribution of secondary electrons emitted from the object is affected by a very small step near the surface of the fine structure.
  • the fine structure inspection method of the present invention can suitably inspect a steep angle in the vicinity of 90 ° where the side wall angle of the measurement target pattern is 70 ° or more, more specifically 80 ° or more.
  • the side wall angle is determined. Can be inspected.
  • the amplification value of the photomultiplier tube is changed with different widths between the SEM conditions, the amount of fluctuation of the white band width associated therewith will be different.
  • FIG. 10 illustrates this phenomenon. In the four-line experiment shown in FIG. 10, the amount of variation in white band width was measured between two SEM conditions. In the experiment of the first system, the fluctuation of the amplification value of the photomultiplier tube under the two SEM conditions was set to 42-40 (C42-40).
  • the change widths of the photomultiplier tube amplification values in the experiments of the first to fourth systems are 2, 6, 10, and 14, respectively.
  • the variation amount of the white band width was measured using a plurality of types of patterns.
  • the present inventors have found that the side wall angle of the fine structure pattern has a correlation between the amplification value at the time of SEM photography and the white band width of the SEM photograph. From this, the sidewall angle of the fine structure pattern can be calculated by obtaining the amplification value at the time of SEM photography and the white band width value of the SEM photograph. At this time, since the side wall angle of the fine structure pattern is calculated from SEM photography, the pattern to be measured can be inspected nondestructively. In addition, since the side wall angle is calculated using image processing of the SEM photograph, multipoint measurement of the side wall angle of the measurement target pattern is easy, and inspection can be performed with improved throughput as compared with the AFM.
  • the fine structure inspection method of the present embodiment is performed in the same process as the fine structure inspection method according to the first embodiment except that the SEM condition 1 and the SEM condition 2 are different.
  • the fine structure inspection method of the present embodiment uses that “the side wall angle of the fine structure pattern has a correlation with the amplification value at the time of SEM photography and the white band width of the SEM photograph”. Therefore, the inspection method is not limited to the above embodiment.
  • a plurality of SEM photographs were taken by changing the photomultiplier tube. However, a plurality of SEM photographs may be taken by changing other measurement parameters other than the amplification value. If the change in the measured white band width can be observed as a result of the change in the measurement parameter, this correlated change can be used for calculating the side wall angle.
  • the image was acquired on SEM condition 1, and the white band width was measured, it was 18.1 nm.
  • the amount of change due to the SEM condition of the white band width is 0.6 nm.
  • the image was acquired on SEM condition 1, and the white band width was measured, it was 25.7 nm.
  • the amount of change due to the SEM condition of the white band width is 3.2 nm.
  • FIG. 8 is a graph showing the relationship between the change amount of the white band and the side wall angle.
  • the reference change per side wall angle is 1 °.
  • the amount was 0.29 [nm / angle].
  • Side wall angle of measurement target pattern side wall angle of pattern B + ( ⁇ WB ⁇ W) / reference change amount ⁇ WB: change amount of white band width of pattern B ⁇ W: change amount of white band width of measurement target pattern
  • the side wall angle of this pattern was measured using AFM, it was 81.2 °, which almost coincided with the measurement result by the method of this embodiment.
  • a computer program for realizing the function of the fine structure inspection may be created. Such a program may be recorded on a computer-readable recording medium.
  • a fine structure inspection function may be executed by executing the above-described program in a computer system.
  • the computer system includes an operation system and hardware necessary for execution.
  • the recording medium includes a magnetic disk, a hard disk, a magneto-optical disk, a CD-ROM, and the like.
  • the microstructure inspection apparatus and method according to one aspect of the present invention are characterized in that SEM photographs under a plurality of SEM conditions are taken, and the sidewall angle of the microstructure pattern is calculated from the white band width of the SEM photograph. To do.
  • the side wall angle of the edge portion of the pattern can be measured systematically and non-destructively with high throughput.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 サンプル微細構造パターンの側壁角度を検査する微細構造体検査方法であって:複数のSEM条件の下で前記サンプル微細構造パターンのSEM写真を撮像する工程と;前記SEM写真における前記サンプル微細構造パターンのエッジ部位のホワイトバンド幅を測定する工程と;前記複数のSEM条件間の変化に伴う前記ホワイトバンド幅の変化量に基づいて、前記サンプル微細構造パターンの側壁角度を算出する工程と;を備えることを特徴とする微細構造体検査方法。

Description

微細構造体検査方法、微細構造体検査装置、および微細構造体検査プログラム
 本発明は、微細構造体検査装置、微細構造体検査プログラム、および微細構造体検査方法に関するものであり、特に、微細構造パターンの側壁角度を検査する微細構造体検査装置、微細構造体検査プログラム、および微細構造体検査方法に関する。
 本願は、2008年3月19日に、日本に出願された特願2008-071312号,2008年3月19日に、日本に出願された特願2008-071315号,2008年9月18日に、日本に出願された特願2008-239205号、2009年1月14日に、日本に出願された特願2009-005495号に基づき優先権を主張し、その内容をここに援用する。
 近年、様々な形状の微細構造体が、広範に用いられている。例えば、半導体デバイス、光学素子、配線回路、記録デバイス(ハードディスクやDVDなど)、医療検査用チップ(DNA分析用途など)、ディスプレイパネル、マイクロ流路、マイクロリアクタ、MEMSデバイス、インプリントモールド、フォトマスクなどが挙げられる。
 このような微細構造体では、パターンの二次元的な線幅や形状だけでなく、エッジ部分の側壁角度も重要視されてきている。
 例えば、次世代のマスクとして期待されているEUVフォトマスクは、従来の透過型のフォトマスクとは異なる反射型のマスクであるため、パターンエッジの側壁をなるべく垂直に近くすることが求められており、その角度を測定することが求められている。
 従来、このような微細構造体の側壁角度を測定する方法として、サンプルを断裁し断面を走査電子顕微鏡(SEM)などで観察して評価することが提案されている。
 また、このような微細構造体の側壁角度を測定する方法として、原子間力顕微鏡(AFM)を用いてカンチレバーの針の形状や、測定方法を工夫することで側壁角度を計測することが提案されている(例えば、特許文献1参照)。
 一方、パターンの二次元的な線幅や形状を確認する方法として、測長SEM(CD-SEM)を利用することが知られている。CD-SEMでは電子銃から照射された電子ビームが、コンデンサレンズによって収束され、アパーチャーを通って、測定対象パターン上に当たる。この際に放出される二次電子をディテクターで捉えることで電気信号に変換し、二次元画像が取得される。この二次元画像の情報を元に測定対象パターンの寸法などを高精度に測定できる。
 SEMは、電子線を絞って電子ビームとして対象に照射し、対象物から放出される二次電子、反射電子、透過電子、X線、カソードルミネッセンス(蛍光)、内部起電力等を検出する事で対象を観察する。このとき、対象物である試料から発せられるこれらの信号は検出器で検出され、信号を増幅したり変調したりしてSEM写真として表示される。
特開平10-170530号公報
 近年、微細構造体の側壁角度を測定する装置及び方法が求められている。
 しかしながら、従来のサンプルを断裁して断面SEMなどで観察する方法は、破壊検査である。このため当然ながらそのサンプルは製品として使用することができなくなってしまう。また、側壁角度の評価実験用の別サンプルを用意する方法があるが、この場合には実サンプルと評価用サンプルが全く同じものであるという保証ができないという問題がある。
 また、AFMにおいては、実サンプルそのものを非破壊で測定することが可能である。しかし、物理的に針をスキャンさせながら測定するため、スループットが非常に遅いという課題がある。また、測定回数に応じて針が少しずつ磨耗してしまい測定値が不正確になってしまう。従って、多くのパターンの側壁角度を測定したい場合には不適であるという問題がある。
 また、測定対象パターンの側壁角度が逆テーパーである場合、AFMの針を逆テーパーの傾斜に沿ってなぞることが困難であるため、側壁角度を測定することが困難である。
 そこで、本発明の一態様は、上述の問題を解決するためになされたものであり、好適に微細構造体の側壁角度を測定することの出来る微細構造体検査装置、微細構造体検査プログラム、及び微細構造体検査方法を提供することを一つの目的とする。
(1) 本発明の一態様は、以下の方法を提供する:サンプル微細構造パターンの側壁角度を検査する微細構造体検査方法であって:複数のSEM条件の下で前記サンプル微細構造パターンのSEM写真を撮像する工程と;前記SEM写真における前記サンプル微細構造パターンのエッジ部位のホワイトバンド幅を測定する工程と;前記複数のSEM条件間の変化に伴う前記ホワイトバンド幅の変化量に基づいて、前記サンプル微細構造パターンの側壁角度を算出する工程と;を備える、ことを特徴とする微細構造体検査方法。
(2) 上記の微細構造体検査方法は、以下のように行ってもよい:前記複数のSEM条件は、互いに異なる電子ビームの電流値を持つ。
(3) 上記の微細構造体検査方法は、以下のように行ってもよい:前記複数のSEM条件は、互いに異なる光電子増倍管の増幅値を持つ。
(4) 上記の微細構造体検査方法は、以下のように行ってもよい:既知の側壁角度を持つ複数の標準微細構造パターンのSEM写真を撮像し、これによって、単位度数の側壁角度あたりのホワイトバンド幅の変化量である基準変化量を算出する工程を更に備える。
(5) 上記の微細構造体検査方法は、以下のように行ってもよい:SEMシミュレータを用いて、単位度数の側壁角度あたりのホワイトバンド幅の変化量である基準変化量を算出する工程を更に備える。
(6) 上記の微細構造体検査方法は、以下のように行ってもよい:前記サンプル微細構造パターンの前記ホワイトバンド幅の変化量が、所定の値よりも小さい場合、電子ビームと試料とを相対的にチルトさせ、SEM写真の撮像を繰り返す工程と;算出された前記サンプル微細構造パターンの前記側壁角度に対して、チルトさせた角度分に相当する補正を行う工程と;を更に備える。
(7) 上記の微細構造体検査方法は、以下のように行ってもよい:前記基準変化量を算出する工程は:2種類のSEM条件の下で既知の側壁角度を持つ標準微細構造パターンAのSEM写真を撮像し、前記標準微細構造パターンAのSEM写真におけるエッジ部位のホワイトバンド幅を測定し、前記2種類のSEM条件の間の前記標準微細構造パターンAのホワイトバンド幅の差ΔWを算出し;前記2種類のSEM条件の下で、微細構造パターンAとは異なる既知の側壁角度を持つ標準微細構造パターンBのSEM写真を撮像し、前記標準微細構造パターンBのSEM写真におけるエッジ部位のホワイトバンド幅を測定し、前記2種類のSEM条件の間の標準微細構造パターンBの前記ホワイトバンド幅の差ΔWを算出し;前記基準変化量を、以下の式から算出する、基準変化量 = |ΔW-ΔW|/|微細構造パターンAの側壁角度-微細構造パターンBの側壁角度|。
(8) 上記の微細構造体検査方法は、以下のように行ってもよい:前記サンプル微細構造パターンの側壁角度を算出する工程は:前記2種類のSEM条件の下で、未知の側壁角度を持つ前記サンプル微細構造パターンのSEM写真を撮像し、前記サンプル微細構造パターンのSEM写真におけるエッジ部位のホワイトバンド幅を測定し、前記2種類のSEM条件の間の前記ホワイトバンド幅の差ΔWを算出し;前記基準変化量、前記パターンBの側壁角度、前記ΔW、及び前記ΔWを用いて、前記微細構造パターンの側壁角度を、以下の式から算出する、微細構造パターンの側壁角度 = パターンBの側壁角度+(ΔW-ΔW)/ 基準変化量;。
(9) 上記の微細構造体検査方法は、以下のように行ってもよい:前記微細構造パターンのSEM写真を撮像する工程において、前記ホワイトバンドの長手方向に沿って、所定の幅に渡る測定領域を定め、測定領域内のホワイトバンド幅の分布を測定する。
(10) 本発明の一態様は、以下の構成を提供する:微細構造パターンの側壁角度を検査する微細構造体検査装置であって:測定対象パターンを備えた試料を固定する試料保持機構と;複数のSEM条件の下で前記測定対象パターンのSEM写真を撮像するCD-SEM機構と;前記SEM写真から前記測定対象パターンのエッジ部位のホワイトバンド幅を取得する画像処理機構と;前記測定対象パターンの前記側壁角度を算出する計算機構と;を備え、前記計算機構は、前記複数のSEM条件間の変化に伴う前記ホワイトバンド幅の変化量を用いて、前記測定対象パターンの側壁角度を算出する、ことを特徴とする微細構造体検査装置。
(11) 上記の微細構造体検査装置は、以下のように構成されてもよい:前記複数のSEM条件は、互いに異なる電子ビームの電流値を持つ。
(12) 上記の微細構造体検査装置は、以下のように構成されてもよい:前記複数のSEM条件は、互いに異なる光電子増倍管の増幅値を持つ。
(13) 上記の微細構造体検査装置は、以下のように構成されてもよい:前記試料保持機構は、SEM写真撮像時の電子ビームが測定対象パターンに対して入射する相対的角度を変化可能に試料を保持する。
(14) 上記の微細構造体検査装置は、以下のように構成されてもよい:前記計算機構は、単位度数の側壁角度あたりの、前記複数のSEM条件間の変化に伴うホワイトバンド幅の変化量である基準変化量を算出するSEMシミュレータを更に備える。
(15) 本発明の一態様は、以下のプログラムを提供する:微細構造パターンの側壁角度を検査する微細構造体検査プログラムであって:複数のSEM条件の下で撮像された前記微細構造パターンのSEM写真を取得するルーチンと;前記SEM写真における前記微細構造パターンのエッジ部位のホワイトバンド幅を測定するルーチンと;前記複数のSEM条件間の変化に伴う前記ホワイトバンド幅の変化量を用いて、前記微細構造パターンの側壁角度を算出するルーチンと;を備えることを特徴とするプログラム。
 本発明の一態様に係る微細構造体検査装置、及び方法は、複数のSEM条件におけるSEM写真を撮影し、このSEM写真のホワイトバンド幅から、微細構造パターンの側壁角度を算出することを特徴とする。
 本発明者らは鋭意検討の結果、微細構造パターンの側壁角度は、SEM写真撮影時の電子ビームの電流値と、SEM写真のホワイトバンド幅とに相関があることを見出した。このことから、SEM写真撮影時の電子ビームの電流値と、SEM写真のホワイトバンド幅の値とを取得することにより、微細構造パターンの側壁角度を算出することが出来る。
 また、本発明者らは鋭意検討の結果、微細構造パターンの側壁角度は、SEM写真撮影時の二次電子検出器における光電子増倍管の増幅値と、SEM写真のホワイトバンド幅とに相関があることを見出した。このことから、SEM写真撮影時の前記増幅値と、SEM写真のホワイトバンド幅の値とを取得することにより、微細構造パターンの側壁角度を算出することが出来る。
図1は、第1の実施形態に係る、ホワイトバンド幅の基準変化量を算出するフロー図である。 図2は、測定対象パターンの側壁角度を測定するフロー図である。 図3は、実施例1を示すSEM画像とホワイトバンド幅の測定結果である。 図4は、ホワイトバンド幅の変動量と側壁角度の関係を示すグラフである。 図5は、第2の実施形態に係る、測定対象パターンの側壁角度の分布を算出する手順を示したフロー図である。 図6Aは、実施例2の通常の直線パターンを示すSEM画像と、側壁角度の分布とを示す図である。 図6Bは、実施例2のラフネスが大きいパターンを示すSEM画像と、側壁角度の分布とを示す図である。 図7は、第3の実施形態に係る、微細構造体検査方法の実施例を示すSEM画像と該SEM画像のホワイトバンド幅の測定結果である。 図8は、上記実施例におけるホワイトバンド幅の変動量と側壁角度の関係を示すグラフである。 図9は、光電子増倍管の増幅値を異なる変化幅で変化させたときの、ホワイトバンド幅の変動量と、側壁角度との関係を示すグラフである。 図10は、本発明の実施例に係る微細構造体検査装置の概略構成図である。
符号の説明
S1・・・パターンAに移動する
S2・・・SEM条件1でパターンAのエッジのホワイトバンド幅を測定
S3・・・SEM条件2でパターンAのエッジのホワイトバンド幅を測定
S4・・・パターンAのホワイトバンド幅の変化量を測定
S5・・・パターンBに移動する
S6・・・SEM条件1でパターンBのエッジのホワイトバンド幅を測定
S7・・・SEM条件2でパターンBのエッジのホワイトバンド幅を測定
S8・・・パターンBのホワイトバンド幅の変化量を測定
S9・・・パターンA,Bの側壁角度差とホワイトバンド幅変化量の差から基準変化量を測定
S10・・・測定パターンに移動する
S11・・・SEM条件1で測定パターンのエッジのホワイトバンド幅を測定
S12・・・SEM条件2で測定パターンのエッジのホワイトバンド幅を測定
S13・・・測定パターンのホワイトバンド幅の変化量を測定
S14・・・ΔWと基準変化量との比較
S15・・・ステージ又は電子ビームを一定角度チルトさせる
S16・・・基準変化量から測定パターンの側壁角度を算出
S17・・・チルト分を補正した側壁角度を算出
S115・・・測定ポイント数Nを設定
S116・・・測定領域幅を設定
S117・・・測定ポイント1~Nまで以下を繰返す
S118・・・SEM条件1でエッジのホワイトバンド幅を測定
S119・・・SEM条件2でエッジのホワイトバンド幅を設定
S120・・・ホワイトバンド幅の変化量ΔWを算出
S121・・・基準変化量から測定領域の側壁角度を算出
S122・・・全測定ポイントの測定が終了
S123・・・側壁角度の分布を算出
(第1の実施形態)
 以下に説明するように、本発明の第1の実施形態に係る微細構造体検査装置及び方法は、SEM写真撮影時の電子ビームの電流値と、SEM写真のホワイトバンド幅から、微細構造パターンの側壁角度を算出する。
 一般的に、CD-SEMで微細構造体パターンを観察すると、微細構造体パターンのエッジ部分から二次電子が多く放出されるため、エッジ部分が明るく見える。本願明細書では、この明るく見えるエッジ部分をホワイトバンドと呼称する。
 パターンのエッジ部分のホワイトバンドの幅は、パターンエッジのテーパー傾きが緩やかになるほど太くなるため、パターンの厚さとホワイトバンド幅から側壁角度をある程度、推定することが可能である。しかしながら、側壁角度がある程度急峻になるとホワイトバンド幅が変わらなくなってしまうことが分かっている。
 一方、CD-SEMの電子ビームの電流値を変更すると、電流値に比例してパターンのエッジ部分から放出される二次電子の量が増加すると考えられる。我々の調査結果により、パターンエッジの側壁角度によって、電子ビームの電流値に応じてホワイトバンドの幅が変化することが分かっている。本発明はこの現象を利用する。なお、ホワイトバンド幅に加えて、ホワイトバンドの信号強度を解析に用いてもよい。
 このため、本発明の微細構造体検査装置及び方法は、測定対象パターンの側壁角度が90°近傍であっても、好適に側壁角度を検査することが出来る。
 本発明者らは鋭意検討の結果、微細構造パターンの側壁角度は、SEM写真撮影時の電子ビームの電流値と、SEM写真のホワイトバンド幅とに、相関があることを見出した。このことから、SEM写真撮影時の電子ビームの電流値と、SEM写真のホワイトバンド幅の値とを取得することにより、微細構造パターンの側壁角度を算出することが出来る。
 この方法では、SEM写真の撮影結果から微細構造パターンの側壁角度を算出する。従って、測定対象パターンを非破壊で検査することが出来る。
 また、SEM写真の画像処理を用いて側壁角度を算出することから、測定対象パターンの側壁角度の多点測定が容易である。従って、AFMと比してスループットを向上して検査することが出来る。
 以下、具体的に、本発明の微細構造体検査装置について説明を行う。
 本発明の微細構造体検査装置は、一例として、図10に示す構成を持つ。
<試料保持機構>
 試料保持機構は、測定対象パターンを備えた試料を固定する。試料保持機構は、測定対象パターンが形成された構造体の形状/用途に応じて、適宜好適に固定できる形状/機能を備えている。
 また、試料保持機構は、SEM写真撮像時の電子ビームが測定対象パターンに対し相対的に任意の角度を持って入射するように試料を保持することが好ましい。
 電子ビームと測定対象パターンとが相対的に任意の角度を持つように保持することにより、測定対象パターンの側壁角度が逆テーパーである場合であっても、電子ビームを測定対象パターンの側壁に対応する位置に照射することが出来、ホワイトバンドを有するSEM写真を取得することが出来る。このとき、電子ビームと測定対象パターンとが相対的に任意の角度を持つように保持する機構であれば十分である。実際の装置において傾斜(チルト)を行うのは、試料を固定したステージ、電子ビームのいずれであってもよい。
 これにより、測定対象パターンの側壁角度が逆テーパーである場合であっても本発明微細構造体検査装置は好適に側壁角度を測定することが出来る。
<CD-SEM機構>
 CD-SEM機構は、測定対象パターンのSEM写真を撮像する。
 CD-SEMでは電子銃から照射された電子ビームが、コンデンサレンズによって収束され、アパーチャーを通って、測定対象パターン上に当たる。この際に放出される二次電子がディテクターで捉えられることで電気信号に変換され、二次元画像(SEM写真)が取得される。
<画像処理機構>
 画像処理機構は、CD-SEM機構にて撮像したSEM写真から測定対象パターンのエッジ部位のホワイトバンド幅を取得する。
 ホワイトバンド幅の検出方法は、適宜公知の画像処理技術を用いて行って良い。例えば、ホワイトバンドは周囲よりも明るく見えることから、SEM写真のコントラストから、ホワイトバンドを検出し、測定してもよい。
<計算機構>
 計算機構は、SEM写真撮影時の電子ビームの電流値と、前記ホワイトバンド幅から、測定対象パターンの側壁角度を算出する。
 本発明者らは鋭意検討の結果、微細構造パターンの側壁角度は、SEM写真撮影時の電子ビームの電流値と、SEM写真のホワイトバンド幅と、に相関があることを見出した。このことから、SEM写真撮影時の電子ビームの電流値と、SEM写真のホワイトバンド幅の値を取得することにより、微細構造パターンの側壁角度を算出することが出来る。
 また、計算機構は、単位角度あたりの電子ビームの電流値の変化に伴うホワイトバンド幅の変化量である基準変化量をSEMシミュレータにより算出する機能を備える計算機構であることが好ましい。
 ここで、SEMシミュレータとは、CD-SEMの電子銃から放出された電子ビームがパターンに照射された際に放出される二次電子の挙動を、モンテカルロ法などで計算することにより、パターンのSEM画像や二次電子の輝度分布を予測するソフトウェアである。
 シミュレーションでは、当然ながら電子ビームの条件(加速電圧、電流値など)を任意に変更できる。また、微細構造パターンの材料を任意に設定することができると伴に、パターンの三次元形状も任意に設計することが可能である。このため、SEMシミュレータで得られた画像や輝度分布から、ホワイトバンド幅を測定することが出来る。
 これにより、「微細構造パターンの側壁角度と、SEM写真撮影時の電子ビームの電流値と、SEM写真のホワイトバンド幅と、の間の相関」を好適に把握することが出来る。
 以下、具体的に、本発明の微細構造体検査プログラム及び方法について説明を行う。
 なお、本発明の微細構造体検査プログラム及び方法は、「微細構造パターンの側壁角度が、SEM写真撮影時の電子ビームの電流値と、SEM写真のホワイトバンド幅と、に相関があること」、を利用する。本願の内容は下記実施の形態に限定されるものではない。
<基準変化量を算出するステップ>
 まず、側壁角度が既知の微細構造パターンを測定する。そして、電子ビームの電流値の変化に伴うホワイトバンド幅の変化量と既知の側壁角度から単位角度あたりのホワイトバンド幅の変化量である基準変化量を算出する。
 基準変化量は、「微細構造パターンの側壁角度と、SEM写真撮影時の電子ビームの電流値と、SEM写真のホワイトバンド幅と、の間の相関」を把握するために、複数の側壁角度が既知の微細構造パターンを測定し、統計学的処理を行って決定すればよい。
 具体的には、側壁角度が既知の微細構造パターンを用意し、微細構造パターンをCD-SEMで撮影する際の電子ビームの電流値を変更し、SEM写真における微細構造パターンのエッジ部位のホワイトバンド幅を測定し、電子ビームの電流値の変化に伴うホワイトバンド幅の変化量と既知の側壁角度から算出して良い。
 また、基準変化量はSEMシミュレータを用いて算出しても良い。ここで、SEMシミュレータとは、CD-SEMの電子銃から放出された電子ビームがパターンに照射された際に放出される二次電子の挙動を、モンテカルロ法などで計算することにより、パターンのSEM画像や二次電子の輝度分布を予測するソフトウェアである。
 シミュレーションでは、当然ながら電子ビームの条件(加速電圧、電流値など)を任意に変更できる。また、パターンの材料を任意に設定することができると伴に、パターンの三次元形状も任意に設計することが可能である。このため、SEMシミュレータで得られた画像や輝度分布から、ホワイトバンド幅を測定することが出来る。
 以下、一例として、側壁角度が異なるサンプルを2つ用意し、電子ビームの電流値を変えた条件を2種類設定した場合の基準変化量の算出を説明する。
 まず、側壁角度の測定対象サンプルの材料と同じ材料(レジスト、クロムなど)で側壁角度が異なるパターンを2つ作成する(以下、それぞれ、パターンA、パターンBとする)。パターンA、パターンBの側壁角度は断面SEMやAFM(原子間力顕微鏡)などを利用して予め測定する。なお、パターンA、パターンBの側壁角度の値はなるべく離れている方が望ましい。例えば一方のパターンはほぼ垂直に近く、もう一方のパターンは70°程度のテーパー形状になっているのが良い。
 次に、CD-SEMでの測定条件として、電子ビームの電流値を変えた条件を2種類設定する(以下、SEM条件1、SEM条件2とする)。
 図1は、側壁角度1°あたりのホワイトバンド幅の基準変化量を算出する手順を示すフロー図である。なお、本例における基準変化量の次元は[長さ/角度]である。
 まず、CD-SEM機構をパターンAに移動(S1)してSEM条件1でエッジのホワイトバンド幅を測定(S2)する。次に、SEM条件2でエッジのホワイトバンド幅を測定(S3)する。S2とS3の結果からホワイトバンド幅の変化量ΔWを算出(S4)する。
 次に、CD-SEM機構をパターンBに移動(S5)してSEM条件1でエッジのホワイトバンド幅を測定(S6)する。次に、SEM条件2でエッジのホワイトバンド幅を測定(S7)する。S6とS7の結果からホワイトバンド幅の変化量ΔWを算出(S8)する。
 最後にパターンA,Bの側壁角度差とΔW-ΔWから下記式を用いて基準変化量を算出(S9)する。
 |ΔW-ΔW|/|微細構造パターンAの側壁角度-微細構造パターンBの側壁角度| = 基準変化量
 なお、SEMシミュレータを利用する場合には、基準変化量を算出するためのサンプル製作及びSEM条件1、SEM条件2でのホワイトバンド幅の測定を全てコンピューター上の計算によって行っても良い。
<変化量を取得するステップ>
 次に、側壁角度が未知の測定対象パターンを用意し、微細構造パターンをCD-SEMで撮影する際の電子ビームの電流値を変更し(SEM条件1、SEM条件2)、SEM写真における微細構造パターンのエッジ部位のホワイトバンド幅を測定し、電子ビームの電流値の変化に伴うホワイトバンド幅の変化量を取得する。
<測定対象パターンの側壁角度を算出するステップ>
 次に、側壁角度が未知の測定対象パターンにおける、電子ビームの電流値の変化に伴うホワイトバンド幅の変化量と基準変化量とから測定対象パターンの側壁角度を算出する。
 測定対象パターンの側壁角度の算出は、基準変化量の算出方法に応じて行えば良い。
 以上の方法により、CD-SEMを利用して測定対象パターンの側壁角度を測定することが可能となる。
 以下、一例として、側壁角度が異なるサンプルを2つ用意し、電子ビームの電流値を変えた条件を2種類設定した場合の測定対象パターンの側壁角度の算出を説明する。なお、以下に示す例では、測定対象パターンの側壁角度が逆テーパーである場合にも対応する。
 図2は、測定対象パターンの側壁角度を測定する(測定対象パターンの側壁角度が逆テーパーである場合にも対応する)手順を示したフロー図である。
 まず、CD-SEM機構を側壁角度が未知の測定パターンに移動(S10)してSEM条件1でエッジのホワイトバンド幅を測定(S11)する。次に、SEM条件2でエッジのホワイトバンド幅を測定(S12)する。そして、S11とS12の結果からホワイトバンド幅の変化量ΔWを算出(S13)する。次に、このΔWを基準変化量と比較(S14)する。もし、ΔWが基準変化量より小さい場合は、測定パターンの側壁が逆テーパー形状になっていると思われる。この場合は、ステージ又はビームを一定角度チルトさせ(S15)、S11に戻る。もし、S14でΔWが基準変化量と等しいかより大きくなった場合には、基準変化量、パターンA(またはパターンB)の側壁角度、及びホワイトバンド幅の変化量から、測定パターンの側壁角度を算出(S16)する。最後に、ステージ又はビームをチルトさせた場合には、チルト分を補正した角度を算出(S17)する。任意のパターンの側壁角度を算出する式を下記に示す。なお、チルトを行わなかった場合、チルトした角度分の補正量は0°である。
 なお、逆テーパー形状を含むパターンを取り扱わない場合には、S15やチルト機構を省略してもよい。
 測定対象パターンの側壁角度 = チルトした角度+パターンAの側壁角度+  (ΔW-ΔW)/基準変化量
       ΔW:パターンAのホワイトバンド幅の変化量
       ΔW :測定対象パターンのホワイトバンド幅の変化量
<実施例1>
 以下、本発明の微細構造体検査装置の使用について具体的な実施例を示す。
<基準変動量の算出>
 側壁角度1°あたりの基準変動量を算出するために、フォトマスク上のSpaceパターンを2つ用意した。それぞれのパターンの側壁角度はすでにAFMで測定されており、パターンAの左エッジが87°、パターンBの左エッジが78°であった。
 CD-SEMの測定条件は次のように設定した。
  SEM条件1:ビーム電流5pA
  SEM条件2:ビーム電流10pA
 まず、CD-SEM機構をパターンAに移動し、SEM条件1にて画像を取得する。そして、ホワイトバンド幅を測定した。ホワイトバンド幅は、19.9nmであった。
 次に、同じパターンAにおいて、SEM条件2にて画像を取得する。そして、ホワイトバンド幅を測定した。ホワイトバンド幅は、21.0nmであった。
 よって、ホワイトバンド幅のSEM条件による変化量は1.1nmである。
 次にCD-SEM機構をパターンBに移動し、SEM条件1にて画像を取得しホワイトバンド幅を測定したところ、25.7nmであった。
 次に、同じパターンにおいて、SEM条件2にて画像を取得しホワイトバンド幅を測定したところ、29.7nmであった。
 よって、ホワイトバンド幅のSEM条件による変化量は4.0nmである。
 パターンA、パターンBの各SEM条件でのパターン画像を図3に示す。
 また、ホワイトバンドの変化量と側壁角度の関係のグラフを図4に示す。
 上記パターンA,Bを含む、合計7つのパターンを、上記の測定方法を用いて測定した結果を、図4に示す。図4は、AFMによって予め測定した各パターンの側壁角度と、ホワイトバンドの変化量とをプロットしたグラフである。このプロットに基づき、側壁角度と、ホワイトバンドの変化量との相関について、一次の線形近似を求めた。この結果、相関係数Rの二乗値は0.94となり、高い相関関係が認められた。
 パターンA、Bの側壁角度差(87°-78°=9°)とホワイトバンド幅の変化量の差(4.0-1.1=2.9nm)から、側壁角度1°あたりの基準変化量を0.32[nm/角度]とした。
<測定対象パターンの側壁角度の算出>
 次に、CD-SEM機構を、実際の測定対象である、側壁角度が未知のパターンに移動し、SEM条件1及びSEM条件2で画像を取得しホワイトバンド幅を測定した。その結果、SEM条件1では19.7nm、SEM条件2では21.5nmとなり、変化量は1.8nmであった。
 次に、下記式から側壁角度を算出した。
測定対象パターンの側壁角度 = パターンBの側壁角度+(ΔW-ΔW)/基準変化量
       ΔW:パターンBのホワイトバンド幅の変化量
       ΔW :測定対象パターンのホワイトバンド幅の変化量
 よって、測定対象パターンの側壁角度は、78°+(4.0 - 1.8)/0.32 = 84.9°となった。
 なお、AFMを使ってこのパターンの側壁角度を測定したところ85°となっており、本発明手法による測定結果とほぼ一致した。
<測定対象パターンの側壁角度の算出(側壁角度が逆テーパーの場合)>
 次に、CD-SEM機構を側壁角度が未知のパターンに移動し、SEM条件1及び2で画像を取得しホワイトバンド幅を測定した。その結果、SEM条件1では19.2nm、SEM条件2では19.3nmであった。ホワイトバンド幅の変化量は0.1nmしかなく、基準変化量(0.32nm)より小さいことが判明した。従って、この側壁は逆テーパーであると思われる。
 そこで、パターンが載っているステージを5°だけチルトさせた。もう一度、各SEM条件でホワイトバンド幅を測定したところ、SEM条件1では19.4nm、SEM条件2では20.3nmであった。今回の変化量は0.9nmで基準変化量より大きい。
 次に、下記式から側壁角度を算出した。
測定対象パターンの側壁角度 = チルトした角度分+パターンBの側壁角度+(ΔWB-ΔW)/基準変化量
       ΔWB:パターンBのホワイトバンド幅の変化量
       ΔW :測定対象パターンのホワイトバンド幅の変化量
よって、測定対象パターンの側壁角度は、5°+78°+(4.0 - 0.9)/0.32 = 92.7°となった。
 以上より、側壁角度が90°を越える逆テーパー形状であっても、側壁角度を求めることが出来た。
(第2の実施形態)
 以下、本発明の測定方法の第2の実施形態を説明する。第1の実施形態と共通の部材、工程については説明を省略し、それらの差異について詳細に説明する。
 本実施形態に係る微細構造体検査方法は、側壁角度が未知の測定対象パターンにおける電子ビームの電流値の変化に伴うホワイトバンド幅の変化量と基準変化量から測定対象パターンの側壁角度を算出するステップにあたり、ホワイトバンド上に測定ポイントを設定し、前記測定ポイントからの距離である測定距離幅を設定し、前記測定距離幅内のホワイトバンドを測定領域とする。
 測定対象パターンのエッジラフネスが大きい場合、側壁角度は部位によって変動していると想定される。
 ホワイトバンド上に測定ポイントを設定し、測定領域を測定ポイントからの距離である測定距離幅内に区切ることにより、測定ポイントごとに定められた測定領域毎に側壁角度を算出することが出来る。このため、側壁角度が測定対象パターンの部位によって変動していても、測定ポイント毎に側壁角度を算出することから、側壁角度の変動の分布を得ることが出来る。
 また、このとき、測定ポイントの数、および測定領域幅を制御することにより、測定領域を測定対象パターンの任意の部位に設定することが出来る。
 以下、一例として、側壁角度が異なるサンプルを2つ用意し、電子ビームの電流値を変えた条件を2種類設定した場合の測定対象パターンの側壁角度の算出にあたり、測定ポイントを設定し測定対象パターンの側壁角度の分布を得る実施の形態について説明する。
 図3は、測定対象パターンの側壁角度の分布を算出する手順を示したフロー図である。
 エッジラフネスが大きいパターンの側壁角度を評価する場合、まず最初に側壁角度を測定するポイント数Nを設定(S115)する。次に、各測定ポイントにおける測定領域の幅を設定(S116)する。このとき測定領域の幅は、両隣の測定ポイントにおける測定領域と重ならないようにする。全ての測定ポイントについて、以下を実施する。SEM条件1でエッジのホワイトバンド幅を測定(S118)した後、SEM条件2でエッジのホワイトバンド幅を測定(S119)し、ホワイトバンド幅の変化量ΔWを算出(S120)する。基準変化量から測定領域の側壁角度を算出(S121)する。全測定ポイントの測定が終了(S122)後、それらのデータから側壁角度の分布を算出(S123)する。
<実施例2>
<側壁角度分布の算出>
 測定ポイントを設定し測定対象パターンの側壁角度の分布を得た。
 側壁角度の測定ポイント数は片側のエッジに対して5箇所とした。また、各測定ポイントにおける測定領域幅を50ピクセルとした。実施例1と同様に、SEM条件1及びSEM条件2において各測定領域のエッジのホワイトバンド幅を測定し、ホワイトバンド幅の変化量=ΔWを算出した。基準変化量から各測定ポイントでの側壁角度を算出し、角度の分布を評価した。
 上述した測定を、通常の直線パターンと、ラフネスが大きいパターンと、に対し行った。
 図6A,Bにパターンの側壁角度の分布を示す。通常の直線パターンを図6A、ラフネスが大きいパターンを図6Bに示す。
 図6A,Bより、直線パターンの場合は、側壁角度が86°~90°で安定していること、および、ラフネスが大きいパターンの場合は場所によって側壁角度が45°~85°まで変化していることが分かる。
 よって、測定ポイントを設定することにより、側壁角度の変動の分布を得ることが出来た。
(第3の実施形態)
 以下、本発明の測定方法の第3の実施形態を説明する。
 上記第1,2の実施形態では、SEM条件1及びSEM条件2の2種類のSEM条件を設定した。これら2種類のSEM条件の間の相違点は、電子ビームの電流値である。そして、この2種類の条件下でのホワイトバンド幅の変化量を測定し、この結果を元に側壁角度を算出した。
 一方、第3の実施形態では、SEM条件1及びSEM条件2の間で、電子ビームの電流値を同一とし、これに替わって、二次電子検出器における光電子増倍管の増幅値を相違させる。このような2つ(またはそれ以上)のSEM条件で、それぞれホワイトバンド幅の変化量を測定し、その結果を元に側壁角度を算出する。
 次に二次電子検出器における光電子増倍管の増幅値について具体的に説明する。SEMは試料から放出された二次電子を検出器で捕集し、シンチレータで光信号に変換し、その光信号を光電子増倍管を用いて電気信号に変換・増幅することで像を形成している。増幅値とは、光電子増倍管のパラメータであり、SEM写真画像のコントラストに影響を与える。
 一般的に、CD-SEMで微細構造体パターンを観察すると、微細構造体パターンのエッジ部分から二次電子が多く放出されるため、エッジ部分が明るく見える。本願明細書では、この明るく見えるエッジ部分をホワイトバンドと呼称する。
 パターンのエッジ部分のホワイトバンドの幅は、パターンエッジのテーパー傾きが緩やかになるほど太くなるため、パターンの厚さとホワイトバンド幅から側壁角度をある程度、推定することが可能である。しかしながら、側壁角度がある程度急峻になるとホワイトバンド幅が変わらなくなってしまうことが分かっている。
 一方、CD-SEMの前記増幅値を変更すると、増幅値に比例して電気信号に変換される信号が増加するので、パターンエッジ部分の明るく見える領域がより大きくなると考えられる。これは、対象物から放出される二次電子の分布は微細構造体の表面近傍の極微少な段差が影響しており、光電子増倍管の増幅値を変更することによりSEM写真における二次電子に対する感度が変更され、SEM写真のコントラストの濃淡が異なることから、ホワイトバンドの幅が変化したものと考えられる。
 我々の調査結果により、パターンエッジの側壁角度によって、増幅値に応じてホワイトバンドの幅が変化することが分かっている。本実施形態はこの現象を利用する。
 このため、本発明の微細構造体検査方法は、測定対象パターンの側壁角度が70°以上、より具体的には80°以上の90°近傍の急峻な角度を、好適に検査することが出来る。
 上記の通り、二次電子検出器における光電子増倍管の増幅値を変動させた2つ(またはそれ以上の)SEM条件の間で、ホワイトバンド幅の変動量を測定することで、側壁角度を検査することができる。このとき、SEM条件間で、光電子増倍管の増幅値を異なる幅で変化させると、これに伴うホワイトバンド幅の変動量は、異なった結果になる。図10はこの現象を示す。
 図10に示す4系統の実験では、それぞれ2点のSEM条件の間でホワイトバンド幅の変動量を測定した。第1系統の実験では、2点のSEM条件の光電子増倍管の増幅値変動を42-40とした(C42-40)。同様に、第2~4系統の実験では、増幅値変動をそれぞれ46-40(C46-40),50-40(C50-40),54-40(C54-40)とした。従って、第1~4系統の実験での光電子増倍管増幅値の変化幅は、それぞれ、2,6,10,14となる。この条件で、複数種類のパターンを用いて、ホワイトバンド幅の変動量測定を行った。この結果、第1,第2系統の実験では、側壁角度が約75°~88°のパターンを検査しても、ホワイトバンド幅に顕著な変動が見られなかった。これに対して、第3系統の実験では、有意なホワイトバンド幅の変動が観察された。また、第4系統の実験では、さらに、顕著なホワイトバンド幅の変動が観察された。従って、光電子増倍管の増幅値を変動させて検査を行うことが望ましい。
 本発明者らは鋭意検討の結果、微細構造パターンの側壁角度は、SEM写真撮影時の前記増幅値と、SEM写真のホワイトバンド幅とに、相関があることを見出した。このことから、SEM写真撮影時の増幅値と、SEM写真のホワイトバンド幅の値を取得することにより、微細構造パターンの側壁角度を算出することが出来る。
 このとき、SEM写真の撮影から微細構造パターンの側壁角度を算出することから、測定対象パターンを非破壊で検査することが出来る。
 また、SEM写真の画像処理を用いて側壁角度を算出することから、測定対象パターンの側壁角度の多点測定が容易であり、AFMと比してスループットを向上して検査することが出来る。
 本実施形態の微細構造体検査方法は、SEM条件1及びSEM条件2が異なる以外は、上記第1の実施形態に係る微細構造体検査方法と同様の工程で行われる。
 なお、本実施形態の微細構造体検査方法は、「微細構造パターンの側壁角度は、SEM写真撮影時の増幅値と、SEM写真のホワイトバンド幅と、相関があること」、を利用する。従って、その検査方法は上記の実施の形態に限定されるものではない。
 上記の本実施形態では、光電子増倍管を変化させて、複数のSEM写真撮影を行った。しかし、増幅値以外の別の測定パラメータを変化させて複数のSEM写真撮影を行ってもよい。測定パラメータの変化に応じて、その結果計測されたホワイトバンドの幅の変化が観察できれば、この相関した変化を側壁角度の算出に利用できる。
<実施例3>
 以下、本実施形態の側壁角度測定方法について具体的な実施例を示す。
〈基準変動量の算出〉
 側壁角度1°あたりの基準変動量を算出するために、フォトマスク上のSpaceパターンを2つ用意した。それぞれのパターンの側壁角度はすでにAFMで測定されており、パターンAの左エッジが87°、パターンBの左エッジが78°であった。
 CD-SEMの測定条件は、2条件設定し、それぞれSEM条件1、SEM条件2とした。増幅値はSEM条件1に比して、SEM条件2の方が大きい値とした。
 なお、本実施例ではSEM装置(ヴィステックセミコンダクタシステムズ社製、商品番号:LWM9000SEM)を用いた。また、SEM条件1における光電子増倍管の増幅値の設定は上記装置において40であり、SEM条件2における光電子増倍管の増幅値の設定は60とした。
 まず、パターンAに移動し、SEM条件1にて画像を取得しホワイトバンド幅を測定したところ、18.1nmであった。
 次に、同じパターンAにおいて、SEM条件2にて画像を取得しホワイトバンド幅を測定したところ、18.7nmであった。
 よって、ホワイトバンド幅のSEM条件による変化量は0.6nmである。
 次にパターンBに移動し、SEM条件1にて画像を取得しホワイトバンド幅を測定したところ、25.7nmであった。
 次に、同じパターンにおいて、SEM条件2にて画像を取得しホワイトバンド幅を測定したところ、28.9nmであった。
 よって、ホワイトバンド幅のSEM条件による変化量は3.2nmである。
 パターンA、パターンBの各SEM条件でのパターン画像を図7に示す。
また、ホワイトバンドの変化量と側壁角度の関係のグラフを図8に示す。
 パターンA、Bの側壁角度差(87°-78°=9°)とホワイトバンド幅の変化量の差(3.2-0.6=2.6nm)から、側壁角度1°あたりの基準変化量を0.29[nm/角度]とした。
〈測定対象パターンの側壁角度の算出〉
 次に、実際の測定対象である、側壁角度が未知のパターンに移動し、SEM条件1及びSEM条件2で画像を取得し、ホワイトバンド幅を測定した。その結果、SEM条件1では20.6nm、SEM条件2では22.9nmとなり、変化量は2.3nmであった。
 次に、下記式から側壁角度を算出した。
 測定対象パターンの側壁角度=パターンBの側壁角度+(△WB-△W)/基準変化量
 △WB:パターンBのホワイトバンド幅の変化量
 △W:測定対象パターンのホワイトバンド幅の変化量
 よって、測定対象パターンの側壁角度は、78°+(3.2-2.3)/0.29=81.1°となった。
 なお、AFMを使ってこのパターンの側壁角度を測定したところ81.2°となっており、本実施形態の手法による測定結果とほぼ一致した。
 なお、本発明の各実施形態に係る微細構造体検査の機能を実現するためのコンピュータープログラムを作成してもよい。このようなプログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。上記プログラムをコンピュータシステムで実行することにより、微細構造体検査の機能を実行してもよい。
 なお、上記コンピュータシステムは、オペレーションシステムや、実行に必要なハードウェアを含む。また、上記記録媒体は、磁気ディスク、ハードディスク、光磁気ディスク、CD-ROM等を含む。
 本発明の一態様に係る微細構造体検査装置、及び方法は、複数のSEM条件におけるSEM写真を撮影し、このSEM写真のホワイトバンド幅から、微細構造パターンの側壁角度を算出することを特徴とする。これによって、様々な形状の微細構造体において、パターンのエッジ部分の側壁角度を、制度よく、非破壊的に、高いスループットで測定できる。

Claims (15)

  1.  サンプル微細構造パターンの側壁角度を検査する微細構造体検査方法であって:
     複数のSEM条件の下で前記サンプル微細構造パターンのSEM写真を撮像する工程と;
     前記SEM写真における前記サンプル微細構造パターンのエッジ部位のホワイトバンド幅を測定する工程と;
     前記複数のSEM条件間の変化に伴う前記ホワイトバンド幅の変化量に基づいて、前記サンプル微細構造パターンの側壁角度を算出する工程と;
     を備えることを特徴とする微細構造体検査方法。
  2.  請求項1に記載の微細構造体検査方法であって、前記複数のSEM条件は、互いに異なる電子ビームの電流値を持つ、
     ことを特徴とする微細構造体検査方法。
  3.  請求項1に記載の微細構造体検査方法であって、前記複数のSEM条件は、互いに異なる光電子増倍管の増幅値を持つ、
     ことを特徴とする微細構造体検査方法。
  4.  請求項1に記載の微細構造体検査方法であって、
     既知の側壁角度を持つ複数の標準微細構造パターンのSEM写真を撮像し、これによって、単位度数の側壁角度あたりのホワイトバンド幅の変化量である基準変化量を算出する工程を更に備える、
     ことを特徴とする微細構造体検査方法。
  5.  請求項1に記載の微細構造体検査方法であって、
     SEMシミュレータを用いて、単位度数の側壁角度あたりのホワイトバンド幅の変化量である基準変化量を算出する工程を更に備える、
     ことを特徴とする微細構造体検査方法。
  6.  請求項1に記載の微細構造体検査方法であって、
     前記サンプル微細構造パターンの前記ホワイトバンド幅の変化量が、所定の値よりも小さい場合、電子ビームと試料とを相対的にチルトさせ、SEM写真の撮像を繰り返す工程と;
     算出された前記サンプル微細構造パターンの前記側壁角度に対して、チルトさせた角度分に相当する補正を行う工程と;
     を更に備える、ことを特徴とする微細構造体検査方法。
  7.  請求項4に記載の微細構造体検査方法であって、
     前記基準変化量を算出する工程は:
     2種類のSEM条件の下で、既知の側壁角度を持つ標準微細構造パターンAのSEM写真を撮像し、前記標準微細構造パターンAのSEM写真におけるエッジ部位のホワイトバンド幅を測定し、前記2種類のSEM条件の間の前記標準微細構造パターンAのホワイトバンド幅の差ΔWを算出し;
     前記2種類のSEM条件の下で、微細構造パターンAとは異なる既知の側壁角度を持つ標準微細構造パターンBのSEM写真を撮像し、前記標準微細構造パターンBのSEM写真におけるエッジ部位のホワイトバンド幅を測定し、前記2種類のSEM条件の間の標準微細構造パターンBの前記ホワイトバンド幅の差ΔWを算出し;
     前記基準変化量を、以下の式から算出する、
     基準変化量 = |ΔW-ΔW|/|微細構造パターンAの側壁角度-微細構造パターンBの側壁角度|;
     ことを特徴とする微細構造体検査方法。
  8.  請求項7に記載の微細構造体検査方法であって、
     前記サンプル微細構造パターンの側壁角度を算出する工程は:
     前記2種類のSEM条件の下で、未知の側壁角度を持つ前記サンプル微細構造パターンのSEM写真を撮像し、前記サンプル微細構造パターンのSEM写真におけるエッジ部位のホワイトバンド幅を測定し、前記2種類のSEM条件の間の前記ホワイトバンド幅の差ΔWを算出し;
     前記基準変化量、前記パターンBの側壁角度、前記ΔW、及び前記ΔWを用いて、前記微細構造パターンの側壁角度を、以下の式から算出する、
     微細構造パターンの側壁角度 = パターンBの側壁角度+(ΔW-ΔW)/ 基準変化量;
     ことを特徴とする微細構造体検査方法。
  9.  請求項1に記載の微細構造体検査方法であって、
     前記微細構造パターンのSEM写真を撮像する工程において、
     前記ホワイトバンドの長手方向に沿って、所定の幅に渡る測定領域を定め、測定領域内のホワイトバンド幅の分布を測定する、
     ことを特徴とする微細構造体検査方法。
  10.  微細構造パターンの側壁角度を検査する微細構造体検査装置であって:
     測定対象パターンを備えた試料を固定する試料保持機構と;
     複数のSEM条件の下で前記測定対象パターンのSEM写真を撮像するCD-SEM機構と;
     前記SEM写真から前記測定対象パターンのエッジ部位のホワイトバンド幅を取得する画像処理機構と;
     前記測定対象パターンの前記側壁角度を算出する計算機構と;
     を備え、
     前記計算機構は、前記複数のSEM条件間の変化に伴う前記ホワイトバンド幅の変化量を用いて、前記測定対象パターンの側壁角度を算出する、
     ことを特徴とする微細構造体検査装置。
  11.  請求項10に記載の微細構造体検査装置であって、前記複数のSEM条件は、互いに異なる電子ビームの電流値を持つ、
     ことを特徴とする微細構造体検査装置。
  12.  請求項10に記載の微細構造体検査装置であって、前記複数のSEM条件は、互いに異なる光電子増倍管の増幅値を持つ、
     ことを特徴とする微細構造体検査装置。
  13.  請求項10に記載の微細構造体検査装置であって、
    前記試料保持機構は、SEM写真撮像時の電子ビームが測定対象パターンに対して入射する相対的角度を変化可能に試料を保持することを特徴とする微細構造体検査装置。
  14.  請求項10に記載の微細構造体検査装置であって、
     前記計算機構は、単位度数の側壁角度あたりの、前記複数のSEM条件間の変化に伴うホワイトバンド幅の変化量である基準変化量を算出するSEMシミュレータを更に備えることを特徴とする微細構造体検査装置。
  15.  微細構造パターンの側壁角度を検査する微細構造体検査プログラムであって:
     複数のSEM条件の下で撮像された前記微細構造パターンのSEM写真を取得するルーチンと;
     前記SEM写真における前記微細構造パターンのエッジ部位のホワイトバンド幅を測定するルーチンと;
     前記複数のSEM条件間の変化に伴う前記ホワイトバンド幅の変化量を用いて、前記微細構造パターンの側壁角度を算出するルーチンと;
     を備えることを特徴とするプログラム。
PCT/JP2009/055475 2008-03-19 2009-03-19 微細構造体検査方法、微細構造体検査装置、および微細構造体検査プログラム WO2009116634A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020107020751A KR101137045B1 (ko) 2008-03-19 2009-03-19 미세 구조체 검사 방법, 미세 구조체 검사 장치, 및 미세 구조체 검사 프로그램 기록 매체
US12/736,157 US8754935B2 (en) 2008-03-19 2009-03-19 Microstructure inspection method, microstructure inspection apparatus, and microstructure inspection program
JP2010503931A JP5051295B2 (ja) 2008-03-19 2009-03-19 微細構造体検査方法、微細構造体検査装置、および微細構造体検査プログラム
CN2009801092756A CN101978241B (zh) 2008-03-19 2009-03-19 微细结构体检查方法、微细结构体检查装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008-071315 2008-03-19
JP2008-071312 2008-03-19
JP2008071315 2008-03-19
JP2008071312 2008-03-19
JP2008239205 2008-09-18
JP2008-239205 2008-09-18
JP2009005495 2009-01-14
JP2009-005495 2009-01-14

Publications (1)

Publication Number Publication Date
WO2009116634A1 true WO2009116634A1 (ja) 2009-09-24

Family

ID=41091032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055475 WO2009116634A1 (ja) 2008-03-19 2009-03-19 微細構造体検査方法、微細構造体検査装置、および微細構造体検査プログラム

Country Status (5)

Country Link
US (1) US8754935B2 (ja)
JP (1) JP5051295B2 (ja)
KR (1) KR101137045B1 (ja)
CN (1) CN101978241B (ja)
WO (1) WO2009116634A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087075A (ja) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd マスク検査方法
JP2011186044A (ja) * 2010-03-05 2011-09-22 Toppan Printing Co Ltd 微細パターン測定方法及び微細パターン測定装置
JP2012068138A (ja) * 2010-09-24 2012-04-05 Toppan Printing Co Ltd パターン画像測定方法及びパターン画像測定装置
CN103065992A (zh) * 2012-12-14 2013-04-24 上海集成电路研发中心有限公司 半导体表面结构侧壁表征方法
JP2013217765A (ja) * 2012-04-09 2013-10-24 Advantest Corp パターン測定方法及びパターン測定装置
JP7565887B2 (ja) 2021-07-29 2024-10-11 株式会社日立ハイテク 荷電粒子線装置の撮像画像に係る条件決定方法、装置およびプログラム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5813413B2 (ja) * 2011-08-22 2015-11-17 株式会社日立ハイテクノロジーズ シュリンク前形状推定方法およびcd−sem装置
EP2590204A1 (en) * 2011-11-04 2013-05-08 FEI Company Charged-particle microscopy
TWI494537B (zh) * 2013-01-23 2015-08-01 Hitachi High Tech Corp A pattern measuring method, a device condition setting method of a charged particle beam device, and a charged particle beam device
JP5978162B2 (ja) * 2013-03-29 2016-08-24 株式会社日立ハイテクノロジーズ 欠陥検査方法および欠陥検査装置
US9711327B2 (en) * 2015-07-16 2017-07-18 Applied Materials Israel, Ltd. Method and system for optimizing configurable parameters of inspection tools

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146558A (ja) * 1998-11-04 2000-05-26 Schlumberger Technol Inc 走査型電子顕微鏡での表面勾配の測定によるサンプル形状決定
US6472662B1 (en) * 2000-08-30 2002-10-29 International Business Machines Corporation Automated method for determining several critical dimension properties from scanning electron microscope by using several tilted beam or sample scans
JP2003302214A (ja) * 2002-04-10 2003-10-24 Hitachi High-Technologies Corp パターン計測方法及びパターン計測装置、並びにパターン工程制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291504A (ja) * 1988-09-28 1990-03-30 Ricoh Co Ltd 微細パターンの断面プロファイルの検査方法
JPH10170530A (ja) 1996-12-12 1998-06-26 Olympus Optical Co Ltd Afmカンチレバー及びその製造方法
US7241993B2 (en) * 2000-06-27 2007-07-10 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US6522775B2 (en) * 2001-03-28 2003-02-18 Alan C. Nelson Apparatus and method for imaging small objects in a flow stream using optical tomography
JP4220335B2 (ja) 2003-08-29 2009-02-04 株式会社日立ハイテクノロジーズ 立体形状測定装置
WO2005008768A2 (en) * 2003-07-11 2005-01-27 Applied Materials Israel, Ltd. A system and method for determining a cross sectional feature of a structural element using a reference structural element
JP4272121B2 (ja) * 2004-06-23 2009-06-03 株式会社日立ハイテクノロジーズ Semによる立体形状計測方法およびその装置
JP4695857B2 (ja) * 2004-08-25 2011-06-08 株式会社日立ハイテクノロジーズ 半導体検査方法および半導体検査装置
JP2007218711A (ja) * 2006-02-16 2007-08-30 Hitachi High-Technologies Corp 電子顕微鏡装置を用いた計測対象パターンの計測方法
EP2062171A4 (en) 2006-09-14 2010-10-06 Veveo Inc METHOD AND SYSTEMS FOR THE DYNAMIC REORGANIZATION OF SEARCH RESULTS IN HIERARCHICALLY ORGANIZED CLAUSE CLUSTERS
CN101003356B (zh) * 2007-01-12 2011-01-05 哈尔滨工业大学 基于原子力显微镜恒高模式的纳米微小结构加工方法
JP4586051B2 (ja) * 2007-08-03 2010-11-24 株式会社日立ハイテクノロジーズ 走査型電子顕微鏡
JP5109907B2 (ja) * 2008-09-30 2012-12-26 凸版印刷株式会社 マスク検査方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146558A (ja) * 1998-11-04 2000-05-26 Schlumberger Technol Inc 走査型電子顕微鏡での表面勾配の測定によるサンプル形状決定
US6472662B1 (en) * 2000-08-30 2002-10-29 International Business Machines Corporation Automated method for determining several critical dimension properties from scanning electron microscope by using several tilted beam or sample scans
JP2003302214A (ja) * 2002-04-10 2003-10-24 Hitachi High-Technologies Corp パターン計測方法及びパターン計測装置、並びにパターン工程制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087075A (ja) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd マスク検査方法
JP2011186044A (ja) * 2010-03-05 2011-09-22 Toppan Printing Co Ltd 微細パターン測定方法及び微細パターン測定装置
JP2012068138A (ja) * 2010-09-24 2012-04-05 Toppan Printing Co Ltd パターン画像測定方法及びパターン画像測定装置
JP2013217765A (ja) * 2012-04-09 2013-10-24 Advantest Corp パターン測定方法及びパターン測定装置
CN103065992A (zh) * 2012-12-14 2013-04-24 上海集成电路研发中心有限公司 半导体表面结构侧壁表征方法
JP7565887B2 (ja) 2021-07-29 2024-10-11 株式会社日立ハイテク 荷電粒子線装置の撮像画像に係る条件決定方法、装置およびプログラム

Also Published As

Publication number Publication date
JPWO2009116634A1 (ja) 2011-07-21
JP5051295B2 (ja) 2012-10-17
US8754935B2 (en) 2014-06-17
KR101137045B1 (ko) 2012-04-19
CN101978241B (zh) 2013-05-29
CN101978241A (zh) 2011-02-16
KR20100126398A (ko) 2010-12-01
US20110001816A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5051295B2 (ja) 微細構造体検査方法、微細構造体検査装置、および微細構造体検査プログラム
JP3959355B2 (ja) 微細パターンの3次元形状測定方法
US8671366B2 (en) Estimating shape based on comparison between actual waveform and library in lithography process
WO2010029700A1 (ja) 荷電粒子線装置
JP5530959B2 (ja) パターン高さ測定装置及びパターン高さ測定方法
US8214166B2 (en) Method and its system for calibrating measured data between different measuring tools
JP6088337B2 (ja) パターン検査方法及びパターン検査装置
JP2008232818A (ja) レジストパターン測定方法及びレジストパターン測定装置
JP5533045B2 (ja) 微細パターン測定方法及び微細パターン測定装置
WO2018061135A1 (ja) パターン計測装置、及びコンピュータープログラム
US8121390B2 (en) Pattern inspection method, pattern inspection apparatus and semiconductor device manufacturing method
US20140312225A1 (en) Defect inspection apparatus and defect inspection method
JP5642108B2 (ja) パターン測定方法及びパターン測定装置
JP5109907B2 (ja) マスク検査方法
JP2012173028A (ja) パターン形状計測方法及びその装置
JP2010232434A (ja) 段差測定方法、段差測定装置及び走査型電子顕微鏡装置
JP2004077423A (ja) 試料像測長方法及び試料像測長装置
Vladár et al. Limits of Resolutions in the Scanning Electron Microscope
JP5402458B2 (ja) 微細パターン測定方法及び微細パターン測定装置
JP2006093455A (ja) パターン描画装置とパターン検査装置及びパターン描画システム
JP2006349351A (ja) 3次元微細形状測定方法
JP5389840B2 (ja) パターン形状評価方法及びパターン形状評価装置
JP2007212473A (ja) パターン計測方法及びパターン計測装置、並びにパターン工程制御方法
JP2012169291A (ja) 荷電粒子ビームのビーム強度分布測定方法及び荷電粒子ビーム装置
JP2009258103A (ja) レーザ回折干渉像による細管内面形状の評価方法及び該方法を用いた評価システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109275.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09722689

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010503931

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107020751

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12736157

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09722689

Country of ref document: EP

Kind code of ref document: A1