[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009116360A1 - インバータの駆動装置 - Google Patents

インバータの駆動装置 Download PDF

Info

Publication number
WO2009116360A1
WO2009116360A1 PCT/JP2009/053226 JP2009053226W WO2009116360A1 WO 2009116360 A1 WO2009116360 A1 WO 2009116360A1 JP 2009053226 W JP2009053226 W JP 2009053226W WO 2009116360 A1 WO2009116360 A1 WO 2009116360A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
gate voltage
gate
igbt
inverter
Prior art date
Application number
PCT/JP2009/053226
Other languages
English (en)
French (fr)
Inventor
直義 高松
敏 広瀬
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN2009801097270A priority Critical patent/CN101978587B/zh
Priority to EP09723238.3A priority patent/EP2256917B1/en
Priority to US12/921,956 priority patent/US8477518B2/en
Publication of WO2009116360A1 publication Critical patent/WO2009116360A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/168Modifications for eliminating interference voltages or currents in composite switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0029Circuits or arrangements for limiting the slope of switching signals, e.g. slew rate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • H03K17/163Soft switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • H03K17/166Soft switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0036Means reducing energy consumption

Definitions

  • the present invention relates to an inverter drive device, and more particularly to suppression of surge voltage and reduction of steady loss (ON loss).
  • the inverter normally converts a DC power into an AC power by switching a power transistor such as an IGBT (Insulated Gate Bipolar Transistor) or the like with a three-arm bridge connection and performing gate control of these power transistors.
  • a power transistor such as an IGBT (Insulated Gate Bipolar Transistor) or the like with a three-arm bridge connection and performing gate control of these power transistors.
  • Patent Document 1 discloses a predetermined voltage value in which the temperature including the surge voltage applied to the IGBT is lower than the allowable withstand voltage of the IGBT, using the output command current, the battery voltage, and the IGBT temperature as parameters. A configuration for controlling the resistance value of the gate resistance is disclosed.
  • Patent Document 2 discloses that the gate voltage is adjusted in accordance with the IGBT temperature and DC side voltage information. Specifically, the temperature of the cooling water of the element is low and there is a thermal margin. It is disclosed that the gate voltage is set low to reduce noise, and when the inverter DC side voltage is high, the gate voltage is increased to reduce switching loss.
  • FIG. 14 shows the configuration of the prior art. It is a block diagram of the inverter apparatus for motor drive.
  • the DC voltage of the battery 1 is converted into a variable voltage / variable frequency three-phase AC voltage by the inverter device 2 and supplied to the AC motor 3.
  • the inverter device 2 includes an inverter main circuit 21, a voltage smoothing capacitor 22, and an inverter control device 23.
  • the inverter main circuit 21 is configured by connecting IGBTs 211 in a three-phase bridge, and each IGBT 211 includes an anti-parallel diode 212. Is provided.
  • the inverter control device 23 has a gate drive circuit 231 that applies a gate voltage to the IGBT 211 and drives them on and off.
  • a gate power supply circuit 232 capable of adjusting the voltage is provided, and the output voltage is controlled by the gate power supply voltage control circuit 233.
  • a voltage command is given from the voltage command device 234 to the gate power supply voltage control circuit 233.
  • the voltage command device 234 acquires the output of the voltage detector 235 that detects the DC voltage of the inverter main circuit 21 and the temperature detector 238 that detects the temperature of the IGBT 211 or the cooling water that cools these IGBTs, and determines the voltage command. .
  • the voltage detector 235 detects the voltage between the DC side terminals P and N of the inverter main circuit 21, that is, the voltage of the voltage smoothing capacitor 22, and when this DC voltage is high, the switching loss also increases. To reduce. Further, when the output of the temperature detector 238 for detecting the temperature of the IGBT 211 or the cooling water is low and there is a margin in the thermal loss of the IGBT 211, the gate voltage is increased to reduce the switching noise of the element.
  • Patent Document 3 discloses that the temperature of the power semiconductor switching element is detected, and the temperature dependence of the element loss is reduced by varying the gate voltage or the gate resistance based on the detected value. Specifically, it is disclosed that the gate voltage is increased or the gate resistance is decreased when the element temperature is high. JP 2001-169407 A JP 2007-89325 A JP 2007-259576 A
  • An object of the present invention is to provide an inverter drive device that can achieve both suppression of surge voltage and reduction of steady loss.
  • the present invention is an inverter driving device having a semiconductor switching element, comprising: arithmetic means for calculating a surge voltage based on at least the temperature, current, and DC side voltage of the semiconductor switching element; and a gate of the semiconductor switching element.
  • Gate voltage application means for applying a gate voltage characterized by comprising gate voltage application means for increasing / decreasing the gate voltage based on the calculated surge voltage and device breakdown voltage of the semiconductor switching element.
  • the gate voltage applying means controls the gate voltage to be higher than a predetermined reference value when the surge voltage is smaller than the element withstand voltage and the difference exceeds a predetermined threshold voltage,
  • the gate voltage may be used as the reference value when the difference is equal to or less than a predetermined threshold value.
  • the gate voltage applying means may set the gate voltage lower than the reference value when a current flowing through the switching element is equal to or lower than a predetermined threshold current.
  • the gate voltage applying means may lower the gate voltage below the reference value or further than the gate voltage after the increase / decrease control when the temperature of the switching element is equal to or lower than a predetermined threshold temperature. It may be set low.
  • accelerator opening detection unit 10 accelerator opening detection unit, 12 DC voltage detection unit, 14 IGBT temperature detection unit, 16 command current value output unit, 18 IGBT gate switching unit, 20 gate voltage calculation unit, 22 gate voltage control unit, 24 rotation position sensor.
  • FIG. 1 shows a configuration of an inverter control circuit in the present embodiment.
  • the inverter control circuit includes various sensors, a gate voltage calculation unit 20 that calculates a gate voltage based on data from the various sensors, and a gate voltage control unit 22 that controls the gate voltage of the IGBT of the inverter based on a command from the gate voltage calculation unit 20.
  • a gate voltage calculation unit 20 that calculates a gate voltage based on data from the various sensors
  • a gate voltage control unit 22 that controls the gate voltage of the IGBT of the inverter based on a command from the gate voltage calculation unit 20.
  • the accelerator opening detection unit 10 detects the accelerator opening by the driver's operation and supplies it to the command current value output unit 16.
  • the DC voltage detection unit 12 detects the DC voltage of the inverter and supplies it to the gate voltage calculation unit 20.
  • the IGBT temperature detection unit 14 detects the temperature of the IGBT or the temperature of the cooling water of the IGBT and supplies it to the gate voltage calculation unit 20.
  • the command current value output unit 16 sets a command current value based on the accelerator opening data detected by the accelerator opening detector 10 and supplies the command current value to the gate voltage calculator 20 and the IGBT gate switching unit 18.
  • the IGBT gate switching unit 18 outputs a gate switching command to each IGBT block constituting the inverter, and controls on / off of the IGBT in each IGBT block.
  • the IGBT block is configured by connecting IGBTs in a three-phase bridge as in the conventional inverter main circuit 21 shown in FIG. 14, and each IGBT 211 includes an anti-parallel diode 212.
  • the driving current of the U phase, V phase, and W phase is supplied to the motor M from each IGBT block.
  • the motor M is a so-called motor generator that also functions as a generator, but is simply referred to as a motor M in this embodiment.
  • the motor M is provided with a rotational position sensor 24 that detects a rotational position, and supplies a position detection signal to the IGBT gate switching unit 18.
  • the IGBT gate switching unit 18 controls on / off of each IGBT based on the command current value and the rotational position.
  • the gate voltage calculation unit 20 includes DC voltage data from the DC voltage detection unit 12, temperature data from the IGBT temperature detection unit 14, command current value from the command current value output unit 16, and gate switching from the IGBT gate switching unit 18. Based on the command, the gate voltage is calculated and the gate voltage command value is supplied to the gate voltage control unit 22. Specifically, the gate voltage calculation unit 20 calculates the surge voltage of the IGBT based on the DC voltage data, the temperature data, and the command current value, compares the surge voltage with the element breakdown voltage of the IGBT, and according to the comparison result. To calculate the gate voltage. As the gate voltage, three stages of a normal voltage, a voltage higher than normal, and a voltage lower than normal are prepared, and the gate voltage is calculated by selecting one of these. The normal voltage can be rephrased as a reference voltage. The normal voltage as the reference voltage is set to 15 V, for example.
  • the gate voltage control unit 22 adjusts the gate voltage to any one of the three levels according to the gate voltage command value from the gate voltage calculation unit 20 and supplies it to the gate of each IGBT in the IGBT block.
  • FIG. 2 shows a circuit configuration of the gate voltage control unit 22 in FIG.
  • the gate voltage control unit 22 uses an insulated power supply provided for each of the upper and lower arms of the U, V, and W phases as a power supply voltage.
  • the voltage conversion circuit 22b converts the voltage from the insulated power supply 22a provided for each upper and lower arm of each phase based on the gate voltage command value from the gate voltage calculation unit 20 and supplies the converted voltage to the IGBT drive circuit 22c.
  • the IGBT drive circuit 22c has a rectifier circuit, a capacitor, and a switching element, and is connected to the gate of each IGBT.
  • the rectifier circuit supplies the gate voltage after voltage conversion to the switching element, and applies the gate voltage to the gate of the IGBT by the switching element that is turned on / off according to the gate switching command from the IGBT gate switching unit 18.
  • FIG. 3 shows a processing flowchart of the present embodiment.
  • the command current value output unit 16 determines a command current value corresponding to the accelerator opening (S101). Further, the DC voltage of the inverter, that is, the battery voltage and the IGBT temperature are detected by the detection units 12 and 14, respectively (S102). Then, the surge voltage of the IGBT is calculated based on the IGBT temperature, the battery voltage, and the command current value (S103).
  • the relationship between IGBT temperature, battery voltage, command current value and surge voltage is measured in advance at a plurality of measurement points, a map is created and stored in a memory, and this map is used to refer to the current It is calculated by reading the surge voltage corresponding to the IGBT temperature, battery voltage, and command current value. If it is not on the map, it is calculated by interpolation using neighboring points.
  • the gate voltage is calculated based on the surge voltage (S104). Specifically, the device breakdown voltage of the IGBT and the surge voltage are compared in magnitude, and the gate voltage is calculated according to whether the surge voltage has a margin. Generally, when the gate voltage of the inverter is increased, the surge voltage increases. When the surge voltage exceeds the device breakdown voltage of the IGBT, breakdown occurs. Therefore, the gate resistance and the gate voltage are set so that the surge voltage is lower than the device breakdown voltage. Thus, the gate voltage set so as to be equal to or lower than the element breakdown voltage is a normal value (reference value).
  • the steady loss is suppressed by determining the condition where the surge voltage is lower than the element breakdown voltage and increasing the gate voltage when it is determined that the surge voltage has a sufficient margin.
  • the element withstand voltage is Vth and the normal value (reference value) set to be equal to or less than the element withstand voltage is Vg0
  • Vg0 is increased to Vg1 when the surge voltage has a sufficient margin (Vg0 ⁇ Vg1 ⁇ Vth).
  • FIG. 4 and 5 show the current dependence of the surge voltage at turn-on (FIG. 4) and turn-off (FIG. 5). In both figures, the case where the gate voltage is 15V is compared with the case where the gate voltage is 18V.
  • the surge voltage decreases as the current increases, and the surge voltage increases as the gate voltage increases.
  • the condition that the surge voltage ⁇ the element withstand voltage is in the range A. In this range, there is no problem because the surge voltage has a margin even if the gate voltage is increased from 15 V to 18 V.
  • Whether or not the surge voltage has a margin can be determined by, for example, calculating the difference between the element breakdown voltage and the surge voltage and determining whether or not the difference value is equal to or greater than a predetermined threshold value. If (element breakdown voltage-surge voltage)> threshold, the surge voltage has a margin, and the gate voltage is increased. If (element breakdown voltage-surge voltage) ⁇ threshold, the surge voltage has no margin (usually ( The gate voltage of the reference value is maintained as it is.
  • the surge voltage is calculated and compared with the element breakdown voltage to determine whether or not the surge voltage has a margin.
  • the gate voltage is set to the normal value ( The steady loss can be reduced by setting it higher than the reference value.
  • the gate voltage is switched to a higher value than usual when there is a surplus in the surge voltage, but the voltage value higher than the normal value (reference value) is not only a fixed value, but also the element withstand voltage and surge voltage. It may be a variable value that gradually changes according to the difference value. That is, the gate voltage is set higher as the surge voltage has a margin.
  • FIG. 6 shows an example of the upper and lower arms of each phase constituting the inverter and the current flow.
  • a current flows through the IGBT 1 of the upper arm, but no current flows through the IGBT 2 of the lower arm.
  • the drive circuit 22c of the IGBT 2 in which no current flows is doing useless work.
  • the loss in the IGBT drive circuit 22c is reduced by setting the gate voltage of the IGBT drive circuit 22c driving the IGBT element through which no current flows.
  • FIG. 7 shows a configuration of the IGBT drive circuit 22c in the present embodiment.
  • the difference from the IGBT drive circuit 22c shown in FIG. 2 is that it further includes a voltage conversion circuit 22d in addition to the voltage conversion circuit 22b.
  • the voltage conversion circuit 22d controls the gate voltage according to the gate voltage command value from the gate voltage calculation unit 20. Specifically, the gate voltage is switched in two stages: a normal voltage and a voltage lower than normal.
  • the voltage conversion circuits 22b and 22d are provided in FIG. 7, the voltage change circuit 22b is not necessary if only the loss in the IGBT drive circuit 22c is reduced.
  • FIG. 8 shows a processing flowchart of the present embodiment.
  • the gate voltage calculation unit 20 compares the load current (referred to as the current supplied to the motor M, the direction flowing into the motor M being positive) with a set value (for example, 0 A) (S201). When the value exceeds the set value, the gate drive voltage of the upper arm IGBT is set to a normal value, and the gate drive voltage of the lower arm IGBT is set to a voltage lower than normal (S202). Therefore, in the example of FIG. 6, the gate voltage of the IGBT 1 through which the current flows is set to a normal value, and the gate voltage of the IGBT 2 through which no current flows is set to a value lower than the normal value.
  • the gate drive voltage of the IGBT of the upper arm is set to a voltage lower than normal, and the gate drive voltage of the IGBT of the lower arm is set to a normal value (S203). Therefore, in the example of FIG. 6, the gate voltage of the IGBT 3 in which no current flows is set to a value lower than normal, and the gate voltage of the IGBT 4 in which current flows is set to a normal value.
  • the gate voltage is controlled using the load current supplied to the motor M.
  • it can be controlled using the upper arm element current or the lower arm element current as shown in FIG.
  • the current flowing through the IGBT of the upper arm is defined as the upper arm element current
  • the current flowing through the IGBT of the lower arm is defined as the lower arm element current
  • the direction of the arrow in the figure is defined as positive.
  • FIG. 10 shows a processing flowchart in the case of control using the upper arm element current.
  • the upper arm device current is compared with a set value (for example, 0A) (S301). If the set value exceeds the set value, the IGBT gate voltage of the upper arm is set to the normal value (S302). The gate voltage of the IGBT of the arm is set low (S303). Therefore, in the example of FIG. 6, the gate voltage of the IGBT 1 through which the current flows is set to a normal value, and the gate voltage of the IGBT 2 through which no current flows is set to a value lower than the normal value.
  • a set value for example, 0A
  • FIG. 11 shows a processing flowchart in the case of control using the lower arm element current.
  • the lower arm element current is compared with a set value (for example, 0 A) (S401). If the set value exceeds the set value, the gate voltage of the lower arm IGBT is set to the normal value (S402), and the set value is not exceeded.
  • the gate voltage of the IGBT of the arm is set low (S403). Therefore, in the example of FIG. 6, the gate voltage of the IGBT 3 in which no current flows is set to a value lower than normal, and the gate voltage of the IGBT 4 in which current flows is set to a normal value.
  • the loss of the drive circuit 22c can be reduced by setting the gate voltage of the IGBT in which no current flows to a low value.
  • the gate voltage when the surge voltage has a margin, the gate voltage can be set higher than usual to reduce the steady loss, and when the IGBT temperature or the cooling water temperature is low, the element breakdown voltage is reduced. Accordingly, the gate is also set low, but the state where the gate voltage is relatively high is maintained in order to reduce the steady loss, and as a result, the state where the device breakdown voltage is low is maintained for a long time.
  • the gate voltage is set to a lower value to intentionally increase the steady loss, thereby raising the temperature of the IGBT in a short time.
  • FIG. 12 shows a processing flowchart of the present embodiment.
  • the gate voltage calculator 20 compares the IGBT element temperature or the coolant temperature detected by the IGBT temperature detector 14 with a predetermined threshold temperature (S501). When the element temperature or the cooling water temperature is lower than the threshold temperature, the gate voltage is set low and the temperature is raised (S502). This gate voltage is a value lower than the gate voltage set in S104 of FIG. On the other hand, when the element temperature or the cooling water temperature is equal to or higher than the threshold temperature, the normal gate voltage is set (S503). This gate voltage is the gate voltage set in S104 of FIG.
  • FIG. 13 shows a process flowchart in which the processes of the first to third embodiments are combined.
  • the gate voltage calculation unit 20 determines whether the IGBT temperature or the cooling water temperature is lower than a predetermined threshold temperature (S601). If the IGBT temperature or the cooling water temperature is lower than the threshold temperature, the gate voltage is set lower than the normal value, and the temperature is raised by heat generated by steady loss (S602).
  • the IGBT temperature or the cooling water temperature is equal to or higher than the threshold temperature, it is next determined whether or not the load current exceeds a threshold value (for example, 0 A) (S603). If the load current does not exceed the threshold value, the gate voltage of the IGBT in which no current flows is set low in order to reduce the loss of the drive circuit 22c (S604).
  • the gate voltage of the IGBT through which the current flows is set according to the processing of the first embodiment. That is, the surge voltage is calculated (predicted), and it is determined whether or not the difference between the element withstand voltage and the surge voltage exceeds a predetermined threshold (S605).
  • the gate voltage When the difference between the element breakdown voltage and the surge voltage exceeds the threshold value, that is, when the surge voltage has a margin, the gate voltage is set higher than the normal value (S606). If the difference between the element withstand voltage and the surge voltage is equal to or less than the threshold value, that is, if the surge voltage has no margin, the gate voltage is set to a normal value (S607).
  • the switching loss and the steady loss can be reduced, and at a low temperature, the steady loss can be intentionally increased to quickly raise the temperature. Efficient driving is possible, and as a result, fuel efficiency can be improved when mounted on a hybrid vehicle or the like.
  • the gate voltage is lowered based on the IGBT temperature or the cooling water temperature. Instead, it is determined whether or not the surge voltage has a margin. It may be determined whether to increase the gate voltage based on this, and if there is no margin, it may be further determined whether to lower the gate voltage based on the IGBT temperature or the cooling water temperature.
  • the gate voltage is set higher than the normal value Vg0 to Vg1, and then set to Vg2 lower than Vg1 when the IGBT temperature or the cooling water temperature is low. Further, the gate voltage is set to the normal value Vg0 on the assumption that the surge voltage has no margin, and then set to Vg3 lower than Vg0 when the IGBT temperature or the cooling water temperature is low.
  • the first gate voltage is set based on whether or not there is a surplus in the surge voltage, and then the first gate voltage is adjusted to the second gate voltage based on the magnitude of the load current, and further the IGBT temperature or cooling water temperature.
  • the second gate voltage may be adjusted based on the third gate voltage.
  • the first gate voltage is first set to the normal value Vg0 when the surge voltage has no margin, and then the first gate voltage Vg0 is adjusted to set Vg4 lower than Vg0 when the load current is small. For example, when the IGBT temperature or the cooling water temperature is low, Vg5 higher than the second gate voltage Vg4 is set as the third gate voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

 半導体スイッチング素子を有するインバータの駆動装置。ゲート電圧算出部(20)は、インバータの各IGBTの温度、電流、直流側電圧に基づいてサージ電圧を算出し、素子耐圧と比較する。ゲート電圧算出部(20)は、素子耐圧とサージ電圧との差分が所定のしきい電圧を超えており、サージ電圧に余裕があると判定した場合、ゲート電圧制御部(22)に対して通常値(基準値)よりも高いゲート電圧を指令する。ゲート電圧制御部22は、基準値よりも高いゲート電圧指令に基づいて各IGBTのゲートをスイッチング制御することで、IGBTの定常損失を低減する。

Description

インバータの駆動装置
 本発明はインバータの駆動装置に関し、特にサージ電圧の抑制と定常損失(オン損失)の低減に関する。
 ハイブリッド車両や電気自動車等の電動車両のモータは、インバータにより生成された交流電力により駆動される。インバータは、通常、IGBT(Insulated Gate Bipolar Transistor)等のパワートランジスタを3アームのブリッジ接続とし、これらのパワートランジスタをゲート制御してスイッチングを行うことで直流電力を交流電力に変換する。
 特許文献1には、IGBTの温度を検出し、出力指令電流、バッテリの電圧、及びIGBTの温度をパラメータとして、IGBTに印加されるサージ電圧を含めた電圧がIGBTの許容耐圧を下回る所定電圧値となるようにゲート抵抗の抵抗値を制御する構成が開示されている。
 また、特許文献2には、IGBTの温度、直流側電圧情報に応じてゲート電圧を調整することが開示されており、具体的には素子の冷却水の温度が低く熱的に余裕がある場合にゲート電圧を低く設定してノイズを低減し、インバータの直流側電圧が高い場合にはゲート電圧を高くしてスイッチング損失を低減することが開示されている。
 図14に、従来技術の構成を示す。モータ駆動用インバータ装置の構成図である。バッテリ1の直流電圧を、インバータ装置2により可変電圧・可変周波数の3相交流電圧に変換し、交流モータ3に供給する。インバータ装置2は、インバータ主回路21と、電圧平滑用キャパシタ22、インバータ制御装置23を有し、インバータ主回路21は、IGBT211を3相ブリッジ結線して構成され、各IGBT211は、逆並列ダイオード212を備える。インバータ制御装置23は、IGBT211にゲート電圧を与え、これらをオンオフ駆動するゲート駆動回路231を有する。また、ゲート駆動回路231の出力電圧を調整するために、電圧調整可能なゲート電源回路232を設け、その出力電圧はゲート電源電圧制御回路233により制御される。ゲート電源電圧制御回路233に電圧指令装置234から電圧指令が与えられる。電圧指令装置234は、インバータ主回路21の直流電圧を検出する電圧検出器235及びIGBT211またはこれらIGBTを冷却する冷却水の温度を検出する温度検出器238の出力を取得し、電圧指令を決定する。インバータ主回路21の直流側端子P,N間すなわち電圧平滑用キャパシタ22の電圧を電圧検出器235で検出し、この直流電圧が高い場合にスイッチング損失も大きくなるのでゲート電圧を高くして損失を低減する。また、IGBT211または冷却水の温度を検出する温度検出器238の出力が低く、IGBT211の熱的損失に余裕がある場合にはゲート電圧を高くして素子のスイッチングノイズを低減する。
 また、特許文献3には、パワー半導体スイッチング素子の温度を検出し、検出値に基づいてゲート電圧あるいはゲート抵抗を可変させることで素子の損失の温度依存性を低減させることが開示されており、具体的には素子温度が高い場合にゲート電圧を上昇させ、あるいはゲート抵抗を小さくすることが開示されている。
特開2001-169407号公報 特開2007-89325号公報 特開2007-259576号公報
 しかしながら、上記従来技術はいずれも、IGBTのサージ電圧あるいは定常損失(オン損失)のいずれかを低減させるものにとどまっており、サージ電圧及び定常損失(オン損失)の両方を低減させるに至っていない。特に、車載用インバータでは、その効率が燃費に直結することとなるため、スイッチング時のみならず定常時の損失低減が極めて重要となる。
 本発明の目的は、サージ電圧の抑制と定常損失の低減をともに達成することができるインバータの駆動装置を提供することにある。
 本発明は、半導体スイッチング素子を有するインバータの駆動装置であって、前記半導体スイッチング素子の少なくとも温度、電流、直流側電圧とに基づいてサージ電圧を算出する演算手段と、前記半導体スイッチング素子のゲートにゲート電圧を印加するゲート電圧印加手段であって、算出された前記サージ電圧と前記半導体スイッチング素子の素子耐圧とに基づいて前記ゲート電圧を増減制御するゲート電圧印加手段とを有することを特徴とする。
 本発明において、前記ゲート電圧印加手段は、前記サージ電圧が前記素子耐圧より小さく、かつ、その差分が所定のしきい電圧を超える場合に前記ゲート電圧を所定の基準値よりも高く制御し、その差分が所定のしきい値以下である場合に前記ゲート電圧を前記基準値としてもよい。
 また、本発明において、前記ゲート電圧印加手段は、前記スイッチング素子に流れる電流が所定のしきい電流以下である場合に前記ゲート電圧を前記基準値よりも低く設定してもよい。
 また、本発明において、前記ゲート電圧印加手段は、前記スイッチング素子の温度が所定のしきい温度以下である場合に前記ゲート電圧を前記基準値よりも低くあるいは前記増減制御後のゲート電圧よりもさらに低く設定してもよい。
 本発明によれば、サージ電圧の抑制と定常損失の低減をともに達成することができる。
実施形態の構成図である。 図1のゲート電圧制御部の構成図である。 実施形態の処理フローチャートである。 ターンオン時のゲート電圧とサージ電圧との関係を示すグラフ図である。 ターンオフ時のゲート電圧とサージ電圧との関係を示すグラフ図である。 インバータの電流の流れを示す説明図である。 ゲート電圧制御部の他の構成図である。 他の実施形態の処理フローチャートである。 素子電流の定義を示す説明図である。 他の実施形態の処理フローチャートである。 他の実施形態の処理フローチャートである。 他の実施形態の処理フローチャートである。 他の実施形態の処理フローチャートである。 従来装置の構成図である。
符号の説明
 10 アクセル開度検出部、12 直流電圧検出部、14 IGBT温度検出部、16 指令電流値出力部、18 IGBTゲートスイッチング部、20 ゲート電圧算出部、22 ゲート電圧制御部、24 回転位置センサ。
 以下、図面に基づき本発明の実施形態について説明する。
 <第1実施形態>
 図1に、本実施形態におけるインバータ制御回路の構成を示す。インバータ制御回路は、各種センサ、各種センサからのデータに基づきゲート電圧を算出するゲート電圧算出部20、ゲート電圧算出部20からの指令に基づきインバータのIGBTのゲート電圧を制御するゲート電圧制御部22を有する。
 アクセル開度検出部10は、ドライバの操作によるアクセルの開度を検出して指令電流値出力部16に供給する。
 直流電圧検出部12は、インバータの直流電圧を検出してゲート電圧算出部20に供給する。
 IGBT温度検出部14は、IGBTの温度あるいはIGBTの冷却水の温度を検出してゲート電圧算出部20に供給する。
 指令電流値出力部16は、アクセル開度検出部10で検出されたアクセル開度データに基づいて指令電流値を設定してゲート電圧算出部20及びIGBTゲートスイッチング部18に供給する。
 IGBTゲートスイッチング部18は、インバータを構成する各IGBTブロックにゲートスイッチング指令を出力し、各IGBTブロック内のIGBTのオン/オフを制御する。IGBTブロックは、図14に示す従来のインバータ主回路21と同様にIGBTを3相ブリッジ結線して構成され、各IGBT211は、逆並列ダイオード212を備える。
 各IGBTブロックからはU相、V相、W相の駆動電流がモータMに供給される。なお、モータMはジェネレータとしても機能するいわゆるモータジェネレータであるが、本実施形態では単にモータMと称する。モータMには回転位置を検出する回転位置センサ24が設けられ、位置検出信号をIGBTゲートスイッチング部18に供給する。IGBTゲートスイッチング部18は、指令電流値及び回転位置に基づいて各IGBTのオン/オフを制御する。
 ゲート電圧算出部20は、直流電圧検出部12からの直流電圧データ、IGBT温度検出部14からの温度データ、指令電流値出力部16からの指令電流値、及びIGBTゲートスイッチング部18からのゲートスイッチング指令に基づき、ゲート電圧を算出してゲート電圧指令値をゲート電圧制御部22に供給する。具体的には、ゲート電圧算出部20は、直流電圧データ、温度データ、指令電流値に基づいてIGBTのサージ電圧を算出し、このサージ電圧とIGBTの素子耐圧とを比較し、比較結果に応じてゲート電圧を算出する。ゲート電圧は、通常電圧、通常よりも高い電圧、通常よりも低い電圧の3段階を用意し、これらのいずれかを選択することでゲート電圧を算出する。通常電圧は、基準電圧と言い換えることもできる。基準電圧としての通常電圧は、例えば15Vに設定する。
 ゲート電圧制御部22は、ゲート電圧算出部20からのゲート電圧指令値に応じてゲート電圧を3段階のいずれかに調整してIGBTブロック内の各IGBTのゲートに供給する。
 図2に、図1におけるゲート電圧制御部22の回路構成を示す。ゲート電圧制御部22は、U、V、W各相の上下アーム毎に設けられる絶縁電源を電源電圧として用いる。
 電圧変換回路22bは、各相の上下アーム毎に設けられる絶縁電源22aからの電圧をゲート電圧算出部20からのゲート電圧指令値に基づき変換してIGBT駆動回路22cに供給する。
 IGBT駆動回路22cは、整流回路、キャパシタ及びスイッチング素子を有し、各IGBTのゲートに接続される。整流回路は、電圧変換されたゲート電圧をスイッチング素子に供給し、IGBTゲートスイッチング部18からのゲートスイッチング指令に応じてオン/オフするスイッチング素子によりIGBTのゲートに印加する。
 図3に、本実施形態の処理フローチャートを示す。まず、指令電流値出力部16でアクセル開度に応じた指令電流値を決定する(S101)。また、インバータの直流電圧、つまりバッテリ電圧とIGBT温度をそれぞれ検出部12、14で検出する(S102)。そして、IGBT温度、バッテリ電圧、指令電流値に基づいてIGBTのサージ電圧を算出する(S103)。具体的には、予めIGBT温度、バッテリ電圧、指令電流値とサージ電圧との関係を複数の計測点において実測してマップを作成してメモリに格納しておき、このマップを参照することで現在のIGBT温度、バッテリ電圧、指令電流値に対応するサージ電圧を読み出すことで算出する。マップ上にない場合は近傍点を用いた補間処理により算出する。
 サージ電圧を算出(予測)した後、このサージ電圧に基づいてゲート電圧を算出する(S104)。具体的には、IGBTの素子耐圧とサージ電圧とを大小比較し、サージ電圧に余裕があるか否かに応じてゲート電圧を算出する。一般的に、インバータはゲート電圧を高くするとサージ電圧が増大する。サージ電圧がIGBTの素子耐圧を超えると破壊に至るので、サージ電圧が素子耐圧以下になるようにゲート抵抗やゲート電圧が設定される。このように、素子耐圧以下となるように設定されるゲート電圧が通常値(基準値)である。
 但し、ゲート抵抗を大きくする、あるいはゲート電圧を低くすると、サージ電圧を抑制することが可能であるものの、同時に定常損失が増大してしまう問題がある。そこで、本実施形態では、素子耐圧に比べてサージ電圧が低い条件を判定し、サージ電圧に十分余裕があると判定される場合のゲート電圧を高くすることで、定常損失を抑制する。もちろん、素子耐圧以下の範囲で高くすることは言うまでもない。素子耐圧をVth、素子耐圧以下となるように設定された通常値(基準値)をVg0とすると、サージ電圧に十分余裕がある場合にVg0をVg1まで高くする(Vg0<Vg1≦Vth)。ゲート電圧を高くすることで、インバータのスイッチング損失低減と定常損失低減のいずれも達成することができ、特に、抵抗を単に切り替える構成では得られない定常損失低減効果を得ることができる。
 図4及び図5に、ターンオン時(図4)及びターンオフ時(図5)のサージ電圧の電流依存性を示す。両図において、ゲート電圧が15Vの場合と18Vの場合を比較して示す。
 ターンオン時に着目すると、電流が大きいほどサージ電圧は低く、ゲート電圧が高いほどサージ電圧は増大する。素子耐圧が950Vの場合、サージ電圧≦素子耐圧となる条件は範囲Aであり、この範囲においてはゲート電圧を15Vから18Vに増大してもサージ電圧に余裕があるため問題ない。図5についても同様である。サージ電圧に余裕があるか否かは、例えば素子耐圧とサージ電圧との差分を演算し、差分値が所定のしきい値以上であるか否かで判定できる。(素子耐圧-サージ電圧)>しきい値であればサージ電圧に余裕があるとしてゲート電圧を高くし、(素子耐圧-サージ電圧)≦しきい値であればサージ電圧に余裕がないとして通常(基準値)のゲート電圧をそのまま維持する。
 再び図3に戻り、以上のようにゲート電圧を算出した後にゲート電圧を切替え(S105)、指令電流値に応じてIGBTをスイッチング制御する(S106)。
 このように、本実施形態では、サージ電圧を算出し、素子耐圧と大小比較することでサージ電圧に余裕があるか否かを判定し、サージ電圧に余裕がある場合にゲート電圧を通常値(基準値)よりも高くすることで定常損失を低減できる。本実施形態では、サージ電圧に余裕がある場合にゲート電圧を通常よりも高い値に切り替えているが、通常値(基準値)よりも高い電圧値は固定値の他、素子耐圧とサージ電圧との差分値に応じて漸次変化する可変値であってもよい。すなわち、サージ電圧に余裕があるほどゲート電圧を高く設定する。
<第2実施形態>
 通常、インバータを構成する各相の上下アームのIGBTの電流は、片側にしか流れない。図6に、インバータを構成する各相の上下アームと電流の流れの一例を示す。図において、上側のアームのIGBT1には電流が流れるが、下側のアームのIGBT2には電流が流れない。このため、電流が流れていないIGBT2の駆動回路22cは無駄な仕事をしていることになる。IGBT3の駆動回路22cについても同様である。
 そこで、本実施形態では、電流が流れていないIGBT素子を駆動しているIGBT駆動回路22cのゲート電圧を低く設定することで、IGBT駆動回路22cにおける損失を低減する。
 図7に、本実施形態におけるIGBT駆動回路22cの構成を示す。図2に示すIGBT駆動回路22cと異なるのは、電圧変換回路22bに加え、さらに電圧変換回路22dを有する点である。電圧変換回路22dは、ゲート電圧算出部20からのゲート電圧指令値に応じてゲート電圧を制御する。具体的には、ゲート電圧を通常電圧と通常よりも低い電圧の2段階で切り替える。なお、図7では電圧変換回路22b、22dを有しているが、IGBT駆動回路22cにおける損失のみを低減するのであれば電圧変化回路22bは不要である。
 図8に、本実施形態の処理フローチャートを示す。ゲート電圧算出部20は、負荷電流(モータMに供給される電流をいい、モータMに流入する方向を正とする)を設定値(例えば0A)と大小比較する(S201)。そして、設定値を超える場合には、上アームのIGBTのゲート駆動電圧を通常値に設定するとともに、下アームのIGBTのゲート駆動電圧を通常よりも低い電圧に設定する(S202)。したがって、図6の例では、電流の流れるIGBT1のゲート電圧は通常値に設定されるとともに電流の流れないIGBT2のゲート電圧は通常よりも低い値に設定される。一方、設定値を超えない場合には、上アームのIGBTのゲート駆動電圧を通常よりも低い電圧に設定するとともに、下アームのIGBTのゲート駆動電圧を通常値に設定する(S203)。したがって、図6の例では、電流の流れないIGBT3のゲート電圧は通常よりも低い値に設定されるとともに電流の流れるIGBT4のゲート電圧は通常値に設定される。
 なお、上記の例ではモータMに供給される負荷電流を用いてゲート電圧を制御したが、図9に示すように上アーム素子電流あるいは下アーム素子電流を用いて制御することもできる。図9において、上アームのIGBTを流れる電流を上アーム素子電流、下アームのIGBTを流れる電流を下アーム素子電流とし、図中矢印の向きを正と定義する。
 図10に、上アーム素子電流を用いて制御する場合の処理フローチャートを示す。上アーム素子電流を設定値(例えば0A)と大小比較し(S301)、設定値を超える場合に上アームのIGBTのゲート電圧を通常値に設定し(S302)、設定値を超えない場合に下アームのIGBTのゲート電圧を低く設定する(S303)。したがって、図6の例では、電流の流れるIGBT1のゲート電圧は通常値に設定されるとともに電流の流れないIGBT2のゲート電圧は通常よりも低い値に設定される。
 図11に、下アーム素子電流を用いて制御する場合の処理フローチャートを示す。下アーム素子電流を設定値(例えば0A)と大小比較し(S401)、設定値を超える場合に下アームのIGBTのゲート電圧を通常値に設定し(S402)、設定値を超えない場合に上アームのIGBTのゲート電圧を低く設定する(S403)。したがって、図6の例では、電流の流れないIGBT3のゲート電圧は通常よりも低い値に設定されるとともに電流の流れるIGBT4のゲート電圧は通常値に設定される。
 このように、電流の流れていないIGBTのゲート電圧を低く設定することで、駆動回路22cの損失を低減することができる。
<第3実施形態>
 第1実施形態では、サージ電圧に余裕がある場合にはゲート電圧を通常よりも高く設定して定常損失を低減でき、IGBT温度あるいは冷却水の温度が低い場合には素子耐圧が低下してこれに応じてゲートも低く設定されるが、定常損失の低減のために相対的にゲート電圧が高い状態が維持され、素子耐圧が低い状態が結果として長時間維持されてしまう。
 そこで、本実施形態では、IGBT温度あるいは冷却水温度が低い場合には、ゲート電圧をより低い値に設定して定常損失を意図的に増大させ、これによりIGBTを短時間に昇温させる。
 図12に、本実施形態の処理フローチャートを示す。ゲート電圧算出部20は、IGBT温度検出部14で検出したIGBTの素子温度あるいは冷却水温度を所定のしきい温度と大小比較する(S501)。そして、素子温度あるいは冷却水温度がしきい温度より低い場合にはゲート電圧を低く設定して昇温する(S502)。このゲート電圧は、図3のS104で設定されるゲート電圧よりも低い値である。一方、素子温度あるいは冷却水温度がしきい温度以上である場合には、通常のゲート電圧に設定する(S503)。このゲート電圧は、図3のS104で設定されるゲート電圧である。
<第4実施形態>
 図13に、第1~第3実施形態の処理を組み合わせた処理フローチャートを示す。ゲート電圧算出部20は、IGBT温度あるいは冷却水温度が所定のしきい温度より低いか否かを判定する(S601)。そして、IGBT温度あるいは冷却水温度がしきい温度よりも低い場合には、ゲート電圧を通常値よりも低く設定して定常損失により生じる熱で昇温する(S602)。
 一方、IGBT温度あるいは冷却水温度がしきい温度以上である場合には、次に、負荷電流がしきい値(例えば0A)を超えているか否かを判定する(S603)。そして、負荷電流がしきい値を超えていない場合には、駆動回路22cの損失を低減すべく電流が流れていないIGBTのゲート電圧を低く設定する(S604)。負荷電流がしきい値を超えている場合には、電流が流れているIGBTのゲート電圧を第1実施形態の処理に応じて設定する。すなわち、サージ電圧を算出(予測)し、素子耐圧とサージ電圧との差分が所定のしきい値を超えるか否かを判定する(S605)。素子耐圧とサージ電圧との差分がしきい値を超える、つまりサージ電圧に余裕がある場合には通常値よりもゲート電圧を高く設定する(S606)。また、素子耐圧とサージ電圧との差分がしきい値以下である、つまりサージ電圧に余裕がない場合にはゲート電圧を通常値に設定する(S607)。
 本実施形態によれば、ゲート電圧をきめ細かく制御することで、スイッチング損失及び定常損失を低減できるとともに、低温時には意図的に定常損失を増大させて迅速に昇温することが可能であり、インバータの効率的な駆動が可能となり、ひいてはハイブリッド車両等に搭載した場合に燃費を向上させることができる。
 以上、本発明の実施形態について説明したが、本発明はこれらの実施形態に限定されるものではなく、種々の変更が可能である。
 例えば、図13の処理フローチャートでは、まずIGBT温度あるいは冷却水温度に基づいてゲート電圧を低下させるか否かを判定しているが、これに変えて、まずサージ電圧に余裕があるか否かに基づいてゲート電圧を高くするか否かを判定し、余裕がない場合にさらにIGBT温度あるいは冷却水温度に基づいてゲート電圧を低下させるか否かを判定してもよい。
 また、まずサージ電圧に余裕があるか否かに基づいてゲート電圧を高くするか否かを判定し、余裕がある場合あるいは余裕がない場合のいずれにおいても次にIGBT温度あるいは冷却水温度に基づいてゲート電圧を低下させるか否かを判定してもよい。この場合、サージ電圧に余裕があるとしてゲート電圧を通常値Vg0よりも高く設定してVg1とし、次にIGBT温度あるいは冷却水温度が低い場合にVg1よりも低いVg2に設定する。また、サージ電圧に余裕がないとしてゲート電圧を通常値Vg0に設定し、次にIGBT温度あるいは冷却水温度が低い場合にVg0よりも低いVg3に設定する。
 また、最初にサージ電圧に余裕があるか否かにより第1ゲート電圧を設定し、次に負荷電流の大小により第1ゲート電圧を調整して第2ゲート電圧とし、さらにIGBT温度あるいは冷却水温度に基づいて第2ゲート電圧を調整して第3ゲート電圧としてもよい。具体的には、最初にサージ電圧に余裕がない場合に通常値Vg0として第1ゲート電圧を設定し、次に負荷電流が小さい場合に第1ゲート電圧Vg0を調整してVg0より低いVg4を第2ゲート電圧とし、さらにIGBT温度あるいは冷却水温度が低い場合に第2ゲート電圧Vg4より高いVg5を第3ゲート電圧とする等である。

Claims (6)

  1.  半導体スイッチング素子を有するインバータを駆動する駆動装置であって、
     前記半導体スイッチング素子の少なくとも温度、電流、直流側電圧とに基づいてサージ電圧を算出する演算手段と、
     前記半導体スイッチング素子のゲートにゲート電圧を印加するゲート電圧印加手段であって、算出された前記サージ電圧と前記半導体スイッチング素子の素子耐圧との比較結果に基づいて前記ゲート電圧を増減制御するゲート電圧印加手段と、
     を有することを特徴とするインバータの駆動装置。
  2.  請求項1記載の装置において、
     前記ゲート電圧印加手段は、前記サージ電圧が前記素子耐圧より小さく、かつ、その差分が所定のしきい電圧を超える場合に前記ゲート電圧を所定の基準値よりも高く制御し、前記サージ電圧が前記素子耐圧より小さく、かつ、その差分が所定のしきい値以下である場合に前記ゲート電圧を前記基準値とすることを特徴とするインバータの駆動装置。
  3.  請求項1記載の装置において、
     前記ゲート電圧印加手段は、前記スイッチング素子に流れる電流が所定のしきい電流以下である場合に前記ゲート電圧を前記基準値よりも低く設定することを特徴とするインバータの駆動装置。
  4.  請求項1記載の装置において、
     前記ゲート電圧印加手段は、前記スイッチング素子の温度が所定のしきい温度以下である場合に前記ゲート電圧を前記基準値よりも低くあるいは前記増減制御後のゲート電圧よりもさらに低く設定することを特徴とするインバータの駆動装置。
  5.  請求項1記載の装置において、
     前記ゲート電圧印加手段は、
     前記半導体スイッチング素子毎に設けられた絶縁電源と、
     前記絶縁電源からの電圧を前記サージ電圧と前記半導体スイッチング素子の素子耐圧とに基づいて増減する電圧変換手段と、
     前記電圧変換手段と前記半導体スイッチング素子との間に設けられ、前記電圧変換手段から出力された電圧を所定のスイッチング指令に応じて開閉することで前記半導体スイッチング素子の前記ゲートに印加するスイッチ手段と、
     を有することを特徴とするインバータの駆動装置。
  6.  半導体スイッチング素子を有するインバータを駆動する駆動装置であって、
     前記半導体スイッチング素子の予測されるサージ電圧と素子耐圧に基づいて、前記半導体スイッチング素子のゲート電圧を可変制御する制御手段
     を有することを特徴とするインバータの駆動装置。
PCT/JP2009/053226 2008-03-18 2009-02-23 インバータの駆動装置 WO2009116360A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801097270A CN101978587B (zh) 2008-03-18 2009-02-23 逆变器的驱动装置
EP09723238.3A EP2256917B1 (en) 2008-03-18 2009-02-23 Device for driving an inverter
US12/921,956 US8477518B2 (en) 2008-03-18 2009-02-23 Device for driving inverter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008070056A JP4333802B1 (ja) 2008-03-18 2008-03-18 インバータの駆動装置
JP2008-070056 2008-03-18

Publications (1)

Publication Number Publication Date
WO2009116360A1 true WO2009116360A1 (ja) 2009-09-24

Family

ID=41090768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053226 WO2009116360A1 (ja) 2008-03-18 2009-02-23 インバータの駆動装置

Country Status (6)

Country Link
US (1) US8477518B2 (ja)
EP (1) EP2256917B1 (ja)
JP (1) JP4333802B1 (ja)
KR (1) KR101213585B1 (ja)
CN (1) CN101978587B (ja)
WO (1) WO2009116360A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077462A (ja) * 2009-10-02 2011-04-14 Hitachi Ltd 半導体駆動回路、及びそれを用いた半導体装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5454305B2 (ja) * 2010-03-31 2014-03-26 株式会社デンソー 電力変換システムの放電制御装置
JP2011253434A (ja) * 2010-06-03 2011-12-15 Hitachi Ltd ゲート駆動回路の設計支援装置および設計支援方法
JP5633442B2 (ja) * 2011-03-18 2014-12-03 三菱電機株式会社 インバータ制御装置及び冷凍空調装置
FR2997246B1 (fr) * 2012-10-23 2016-01-22 Valeo Sys Controle Moteur Sas Circuit d'alimentation configure pour fournir deux tensions de sortie
US9172365B2 (en) 2013-08-31 2015-10-27 Freescale Semiconductor, Inc. Method and circuit for controlling turnoff of a semiconductor switching element
US9853559B2 (en) 2014-03-27 2017-12-26 Daikin Industries, Ltd. Power conversion device with reduced current deviation
DE102016206818A1 (de) * 2016-04-21 2017-10-26 Baumüller Nürnberg GmbH Schaltungsanordnung und Verfahren zur Erzeugung eines Steuersignals für einen Halbleiterschalter
US10148206B2 (en) 2016-06-27 2018-12-04 General Electric Company Controlling operation of a power converter based on grid conditions
DE102016217494A1 (de) 2016-09-14 2018-03-15 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Stromrichters sowie danach arbeitender Stromrichter
CN106527531B (zh) * 2016-12-30 2019-01-22 西门子(上海)电气传动设备有限公司 并联igbt温度控制装置和方法
JP6924277B2 (ja) * 2017-12-22 2021-08-25 新電元工業株式会社 パワーモジュール
CN108075622B (zh) * 2017-12-26 2020-05-15 北京金风科创风电设备有限公司 功率变换器的门极驱动控制方法、装置、控制器及变流器
JP2020061903A (ja) 2018-10-12 2020-04-16 株式会社デンソー ゲート駆動装置
JP7196614B2 (ja) * 2019-01-10 2022-12-27 株式会社デンソー ゲート駆動装置
JP7251335B2 (ja) * 2019-06-10 2023-04-04 富士電機株式会社 ゲート駆動装置、スイッチング装置、および、ゲート駆動方法
TWI787725B (zh) * 2020-02-13 2022-12-21 台達電子工業股份有限公司 逆變器系統
DE102022210647A1 (de) 2022-10-10 2024-04-11 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Betrieb eines Leistungshalbleiterelements
CN117074940B (zh) * 2023-08-22 2024-08-27 湖南铁道职业技术学院 一种轨道交通电机测试系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169407A (ja) 1999-12-07 2001-06-22 Honda Motor Co Ltd 電気自動車の制御装置
JP2004312817A (ja) * 2003-04-03 2004-11-04 Mitsubishi Electric Corp 電力変換装置およびその電力変換装置を備える電力変換システム装置
JP2007089325A (ja) 2005-09-22 2007-04-05 Hitachi Ltd 電圧駆動型半導体スイッチング素子の駆動方法及び装置
JP2007259576A (ja) 2006-03-23 2007-10-04 Hitachi Ltd スイッチング素子の駆動回路
JP2009027881A (ja) * 2007-07-23 2009-02-05 Toyota Motor Corp 半導体スイッチング素子の駆動制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900008276B1 (ko) * 1985-02-08 1990-11-10 가부시끼가이샤 도시바 2단계차단동작을이용한절연게이트바이폴라트랜지스터용보호회로
JP3421507B2 (ja) * 1996-07-05 2003-06-30 三菱電機株式会社 半導体素子の駆動回路
JP3132648B2 (ja) * 1996-09-20 2001-02-05 富士電機株式会社 電力変換器におけるゲート駆動回路
JPH10225130A (ja) * 1997-02-12 1998-08-21 Toshiba Eng Co Ltd 電圧型インバータ装置
JP3773664B2 (ja) * 1998-09-11 2006-05-10 三菱電機株式会社 駆動制御装置、モジュール、および、複合モジュール
JP3598933B2 (ja) 2000-02-28 2004-12-08 株式会社日立製作所 電力変換装置
JP2004096830A (ja) 2002-08-29 2004-03-25 Fuji Electric Holdings Co Ltd 電圧駆動型半導体素子の駆動方法
JP4323266B2 (ja) * 2003-09-09 2009-09-02 三菱電機株式会社 半導体駆動回路
JP4364651B2 (ja) * 2004-01-07 2009-11-18 三菱電機株式会社 昇圧装置及びモータ制御装置
JP4742828B2 (ja) * 2005-11-18 2011-08-10 日産自動車株式会社 電圧駆動型スイッチング回路
JP4343897B2 (ja) * 2005-12-12 2009-10-14 三菱電機株式会社 電力変換装置
JP2007288999A (ja) * 2007-08-08 2007-11-01 Mitsubishi Electric Corp 電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169407A (ja) 1999-12-07 2001-06-22 Honda Motor Co Ltd 電気自動車の制御装置
JP2004312817A (ja) * 2003-04-03 2004-11-04 Mitsubishi Electric Corp 電力変換装置およびその電力変換装置を備える電力変換システム装置
JP2007089325A (ja) 2005-09-22 2007-04-05 Hitachi Ltd 電圧駆動型半導体スイッチング素子の駆動方法及び装置
JP2007259576A (ja) 2006-03-23 2007-10-04 Hitachi Ltd スイッチング素子の駆動回路
JP2009027881A (ja) * 2007-07-23 2009-02-05 Toyota Motor Corp 半導体スイッチング素子の駆動制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2256917A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077462A (ja) * 2009-10-02 2011-04-14 Hitachi Ltd 半導体駆動回路、及びそれを用いた半導体装置

Also Published As

Publication number Publication date
KR101213585B1 (ko) 2012-12-18
EP2256917B1 (en) 2020-04-01
JP4333802B1 (ja) 2009-09-16
CN101978587A (zh) 2011-02-16
EP2256917A4 (en) 2017-09-27
US20110007536A1 (en) 2011-01-13
EP2256917A1 (en) 2010-12-01
KR20100121701A (ko) 2010-11-18
CN101978587B (zh) 2013-06-05
JP2009225631A (ja) 2009-10-01
US8477518B2 (en) 2013-07-02

Similar Documents

Publication Publication Date Title
JP4333802B1 (ja) インバータの駆動装置
US10608576B2 (en) Motor control apparatus
US7859207B2 (en) Method and apparatus for controlling electric motor
KR101093472B1 (ko) 전기 모터를 제어하기 위한 장치
US8624538B2 (en) Motor driving apparatus having function of dynamically switching converter operation mode of AC/DC converter
JP6443253B2 (ja) 電力変換器制御装置
US20160315570A1 (en) Motor drive device
JP4842603B2 (ja) インバータ装置およびインバータ制御装置
US10727776B2 (en) Motor control device
US20190199268A1 (en) Motor control device
JP6824342B1 (ja) 電力変換装置の制御装置
JP2009296846A (ja) 車両用インバータ装置
US11711014B2 (en) Electric-power conversion apparatus
CN117156793A (zh) 功率转换装置
JP7283402B2 (ja) モータ制御装置
JP2007124007A (ja) 電力変換器及び電圧制御方法
JP2019146374A (ja) 電力変換装置
JP6969480B2 (ja) 電力変換装置
JP7313416B2 (ja) 電力変換装置
US12143099B2 (en) Switching element driving method and switching element driving device
JP7159811B2 (ja) コンバータ
US20230327658A1 (en) Switching element driving method and switching element driving device
KR20220159546A (ko) 클러치 제어 시스템의 과전류 보호 장치 및 방법
JP2012044866A (ja) 電源装置及び電源供給方法、並びにモータ駆動システム
JP2014131366A (ja) インバータの暖機制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109727.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723238

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12921956

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009723238

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107022845

Country of ref document: KR

Kind code of ref document: A