[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009113461A1 - Fin material, fin material for heat exchangers, and air conditioners - Google Patents

Fin material, fin material for heat exchangers, and air conditioners Download PDF

Info

Publication number
WO2009113461A1
WO2009113461A1 PCT/JP2009/054337 JP2009054337W WO2009113461A1 WO 2009113461 A1 WO2009113461 A1 WO 2009113461A1 JP 2009054337 W JP2009054337 W JP 2009054337W WO 2009113461 A1 WO2009113461 A1 WO 2009113461A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hydrophilic
fin material
hydrophilic polymer
mass
Prior art date
Application number
PCT/JP2009/054337
Other languages
French (fr)
Japanese (ja)
Inventor
義顕 近藤
裕一郎 村山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2009113461A1 publication Critical patent/WO2009113461A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic

Definitions

  • the present invention relates to a fin material, a heat exchanger fin material, and an air conditioner.
  • the condensed water generated at the time of cooling becomes water droplets and stays between the fins, so that a bridge of water is generated and the cooling capacity is lowered.
  • the adhering dust between the fins similarly reduces the cooling capacity.
  • Patent Document 1 discloses (A) a polymerizable vinyl group-containing aqueous silica dispersion obtained by reacting a water-dispersible silica with a polymerizable vinylsilane monomer containing a hydrolyzable alkoxysilane group, and polymerizable unsaturated monomers. (B) curing agent, (C) hydroxyl group-containing polyester resin, (D) pyrithione antibacterial / antifungal agent, (E) silicone emulsion, and (F) amine An aluminum heat exchanger fin formed by applying a hydrophilization treatment composition containing the composition to the surface is disclosed.
  • the surface of all or part of the metal surface coated with a hydrophilic substance has a fine concavo-convex structure, the concavo-convex structure has a height of 300 ⁇ m or less, and the concavo-convex structure 1 cm 2 in plan view.
  • a fin for a heat exchanger having a surface-treated metal having an actual surface area of 2 cm 2 or more and a contact area when a smooth rigid body is applied to the surface of the concavo-convex structure is 0.3 cm 2 or less per 1 cm 2 of the rigid surface It is disclosed.
  • Patent Document 3 mainly includes an alkali silicate (A), a low molecular organic compound (B) having a carbonyl group, an acrylamide copolymer or a salt thereof (C), and a silane coupling agent (S).
  • An aluminum heat exchanger in which a hydrophilic film as a component is provided on the surface of a fin is disclosed.
  • Patent Document 4 contains a polymeric antibacterial agent and fine particles, has an elution amount of 0.2 g / m 2 or less when immersed in water at 40 ° C. for 120 hours, and a water contact angle of 25 ° or less.
  • an antibacterial composition for laminating fins for heat exchangers which is a certain antibacterial composition and has a contact angle of water of 25 ° or less after being immersed in water at 40 ° C. for 120 hours.
  • a surface-treated aluminum obtained by laminating an intermediate layer containing a resin containing at least a silanol group and a water-soluble anticorrosive layer having a thickness in the range of 100 nm to 7000 nm and containing a water-soluble resin in this order.
  • a material is disclosed.
  • the conventional fin material does not have sufficient hydrophilicity, and the suppression of the cooling capability is insufficient.
  • the present invention solves the above-described conventional problems, has a hydrophilic film having sufficient hydrophilicity, excellent adhesion and water resistance, and a fin material excellent in rust prevention and workability. The purpose is to provide.
  • adhesion and hydrophilicity may be expressed by using silica particles or a crosslinking agent in the hydrophilic film, but sufficient water resistance, adhesion cannot be obtained, or cracking of the coating film during molding processing and There was a problem such as In order to solve this problem, the present invention improves the adhesion by applying an alumite layer and increases the hydrophilic polymer content in the hydrophilic composition to provide a flexible membrane design that does not break even during molding. That is, the above problems have been solved by the invention having the following configuration.
  • a hydrophilic polymer A fin material comprising 80% by mass or more in a solid content, wherein the hydrophilic polymer includes a structure represented by the following general formula (I) or (II).
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a hydrocarbon group
  • X represents a reactive group
  • A, L 1 , L 2 and L 3 each independently represents a single bond or a linking group
  • Y represents —NHCOR 7 , —CONH 2 , —CON (R 7 ) 2 , —COR 7 , —OM, —CO 2 M, —SO 3 M, —PO 3 M, —OPO 3 M, or —N (R 7 ) 3 Z 1 , wherein R 7 represents an alkyl group, an aryl group, or an aralkyl group, When present, each R 7 may be the same or different.
  • M represents a hydrogen atom, an alkali metal, an alkaline earth metal, or onium, and Z 1 represents a halogen ion.
  • M represents a hydrogen atom, an alkali metal, an alkaline earth metal, or onium, and Z 1 represents a halogen ion.
  • M represents a hydrogen atom, an alkali metal, an alkaline earth metal, or onium, and Z 1 represents a halogen ion.
  • M represents a hydrogen atom, an alkali metal, an alkaline earth metal, or onium
  • Z 1 represents a halogen ion.
  • the fin material of the present invention has high hydrophilicity, rust prevention, water resistance, and processability. For this reason, when the fin material is used for a heat exchanger of an air conditioner, it does not form a water bridge during cooling, and even if dust adheres to the fin, it is cleaned by washing the fin surface with condensed water. There is also an effect. Moreover, it is excellent also in the adhesiveness of a hydrophilic film. Furthermore, since it does not contain a chromate layer, it has little impact on the environment.
  • the fin material of the present invention is a fin material having an oxide film layer on an aluminum substrate, and having a hydrophilic film formed using a hydrophilic composition as an outermost layer on the oxide film layer,
  • the composition contains 80% by mass or more of a hydrophilic polymer in the solid content, and the hydrophilic polymer has a structure represented by the general formula (I) or (II).
  • the hydrophilic composition according to the present invention preferably contains 80 to 99% by mass of a hydrophilic polymer in the solid content.
  • the hydrophilic composition may contain both a hydrophilic polymer having a structure represented by the following general formula (I) and a hydrophilic polymer having a structure represented by the following general formula (II).
  • the hydrophilic composition has the hydrophilic polymer and is formed by hydrolysis and polycondensation of an alkoxide (also referred to as a metal alkoxide) of an element selected from Si, Ti, Zr, and Al.
  • an alkoxide also referred to as a metal alkoxide
  • a hydrophilic film having a crosslinked structure is formed.
  • the hydrophilic film having such a crosslinked structure may be formed using a hydrophilic polymer, a metal alkoxide compound, which will be described in detail later, and a catalyst as necessary. it can.
  • the above-described crosslinked structure formed by hydrolysis and condensation polymerization of metal alkoxide is also referred to as a sol-gel crosslinked structure as appropriate.
  • hydrophilic polymer used in the present invention has a structure represented by the following general formula (I) or (II).
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a hydrocarbon group
  • X represents a reactive group
  • A, L 1 , L 2 and L 3 each independently represents a single bond or a linking group
  • Y represents —NHCOR 7 , —CONH 2 , —CON (R 7 ) 2 , —COR 7 , —OM, —CO 2 M, —SO 3 M, —PO 3 M, —OPO 3 M, or —N (R 7 ) 3 Z 1 , wherein R 7 represents an alkyl group, an aryl group, or an aralkyl group, When present, each R 7 may be the same or different.
  • M represents a hydrogen atom, an alkali metal, an alkaline earth metal, or onium
  • Z 1 represents a halogen ion.
  • R 7 preferably represents an alkyl group having 1 to 18 carbon atoms, an aryl group, or an aralkyl group.
  • R 1 to R 7 , X, Y, A, L 1 to L 3 , M, and Z 1 may be the same as or different from each other.
  • the hydrophilic polymer used in the present invention has a reactive group and a hydrophilic group. There may be a case where the reactive group is present only at one end of the main chain, or a case where a plurality of reactive groups are present in the main chain.
  • the “reactive group” means a functional group capable of forming a chemical bond by reacting with a hydrolysis or polycondensate of a metal alkoxide. Moreover, reactive groups may form a chemical bond.
  • the hydrophilic polymer is preferably water-soluble, and preferably becomes water-insoluble by reacting with a hydrolysis or polycondensate of a metal alkoxide.
  • the chemical bond includes a covalent bond, an ionic bond, a coordination bond, and a hydrogen bond in the usual meaning.
  • the chemical bond is preferably a covalent bond.
  • the reactive group is generally the same as the reactive group contained in the crosslinking agent of the polymer, and is a compound that can form a crosslink by heat or light.
  • the crosslinking agent is described in “Crosslinking agent handbook” by Shinzo Yamashita, Tosuke Kaneko, published by Taiseisha (1981).
  • the reactive group is preferably a monovalent group derived from a carboxyl group (HOOC-), a salt thereof (MOOC-, M is a cation), a carboxylic anhydride group (for example, succinic anhydride, phthalic anhydride or maleic anhydride).
  • HOOC- carboxyl group
  • MOOC- a salt thereof
  • M is a cation
  • carboxylic anhydride group for example, succinic anhydride, phthalic anhydride or maleic anhydride.
  • an alkoxysilyl group is most preferable.
  • One end may have two or more reactive groups. Two or more reactive groups may be different from each other.
  • a linking group is interposed between the repeating unit of the hydrophilic polymer and the reactive group, or between the repeating unit of the hydrophilic polymer and the hydrophilic group.
  • the linking groups A and L 1 , L 2 , and L 3 each independently represent a single bond or a linking group.
  • an linking group represents an organic linking group, it preferably represents a divalent linking group composed of a nonmetallic atom, Consists of up to 60 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 0 to 100 hydrogen atoms, and 0 to 20 sulfur atoms Is preferred.
  • the linking group is more preferably —O—, —S—, —CO—, —NH—, —N ⁇ , an aliphatic group, an aromatic group, a heterocyclic group, and combinations thereof.
  • the linking group is more preferably —O—, —S—, —CO—, —NH—, or a combination containing —O—, —S—, —CO—, —NH—.
  • the hydrophilic polymer having a structure represented by the general formula (I) is a hydrophilic polymer having a reactive group at one end.
  • a chain transfer agent radical polymerization handbook (radical polymerization handbook (NTS, Mikiji Tsunoike, In the presence of Iniferter (described in Macromolecules 1986, 19, p287- (Otsu)
  • a hydrophilic monomer eg, potassium salt of acrylamide, acrylic acid, 3-sulfopropyl methacrylate
  • chain transfer agents examples include 3-mercaptopropionic acid, 2-aminoethanethiol hydrochloride, 3-mercaptopropanol, 2-hydroxyethyl disulfide, 3-mercaptopropyltrimethoxysilane.
  • a hydrophilic monomer eg, acrylamide
  • the mass average molecular weight of the hydrophilic polymer having the structure represented by the general formula (I) is preferably 1,000,000 or less, more preferably 1,000 to 1,000,000, and most preferably 2,000 to 50,000. A molecular weight of 1,000,000 or less is preferable because the viscosity of the coating solution does not increase too much. A molecular weight of 1000 or more is preferable because adhesion and hydrophilicity are sufficient.
  • R ⁇ 1 >, R ⁇ 2 > represents a hydrogen atom or a hydrocarbon group each independently.
  • the hydrocarbon group is preferably a hydrocarbon group having 1 to 8 carbon atoms, and examples thereof include an alkyl group having 1 to 8 carbon atoms and an aryl group, and a linear, branched or cyclic alkyl group is preferable.
  • R 1 and R 2 are preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoints of effects and availability.
  • hydrocarbon groups may further have a substituent.
  • the substituted alkyl group is composed of a bond between the substituent and the alkylene group, and a monovalent nonmetallic atomic group excluding hydrogen is used as the substituent.
  • Preferred examples include halogen atoms (—F, —Br, —Cl, —I), alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, N-alkylamino groups, N, N-dialkylamino groups, acyloxy groups, N-alkylcarbamoyloxy group, N-arylcarbamoyloxy group, acylamino group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, N-alkylcarbamoyl group, N, N-dialkyl Carbamoyl, N-arylcarbamoyl, N-alkyl-N-arylcarbamoyl, sulfo, sulfonate, sulfamoyl, N-alkylsulfamoyl, N, N-dialkylsulfamo
  • the alkylene group in the substituted alkyl group is preferably a divalent organic residue obtained by removing any one of the hydrogen atoms on the alkyl group having 1 to 20 carbon atoms.
  • Preferred examples include linear alkylene groups having 1 to 12 carbon atoms, branched alkylene groups having 3 to 12 carbon atoms, and cyclic alkylene groups having 5 to 10 carbon atoms, and more preferably 1 carbon atom.
  • substituted alkyl group obtained by combining the substituent and the alkylene group are chloromethyl group, bromomethyl group, 2-chloroethyl group, trifluoromethyl group, methoxymethyl group, methoxyethoxyethyl group, allyl group.
  • Chlorophenoxycarbonylmethyl group carbamoylmethyl group, N-methylcarbamoylethyl group, N, N-dipropylcarbamoylmethyl group, N- (methoxyphenyl) carbamoylethyl group, N-methyl-N- (sulfophenyl) carbamoyl Methyl group, sulfobutyl group, sulfonatobutyl group, sulfamoylbutyl group, N-ethylsulfamoylmethyl group, N, N-dipropylsulfamoylpropyl group, N-tolylsulfamoylpropyl group, N-methyl-N- (Phosphonophenyl) sulfamoyloctyl group, phosphonobutyl group, phosphonatohexyl group, diethylphosphonobutyl group, diphenylphosphonopropy
  • a and L 1 each represents a single bond or a linking group.
  • Examples of the linking group include those described above. More specific examples of the linking group include the following structures or those formed by combining them.
  • a and L 1 are more preferably —CH 2 CH 2 CH 2 S—, —CH 2 S—, —CONHC (CH 3 ) CH 2 —, —CONH—, —CO—, —CO 2 —, — CH 2 —, —CONH—CH 2 CH 2 CH 2 —. More preferred is —CH 2 CH 2 CH 2 S— or —CONH—CH 2 CH 2 CH 2 —.
  • Y as a hydrophilic group is —NHCOR 7 , —CONH 2 , —CON (R 7 ) 2 , —COR 7 , —OM, —CO 2 M, —SO 3 M, —PO 3 M, —OPO 3 M or —N (R 7 ) 3 Z 1 , wherein R 7 represents a linear, branched or cyclic alkyl group, aryl group or aralkyl group, and M represents a hydrogen atom, an alkali metal, an alkaline earth metal or Represents onium, and Z 1 represents a halogen ion.
  • R 7 when having a plurality of R 7 such as —CON (R 7 ) 2 , R 7 may be bonded to each other to form a ring, and the formed ring is an oxygen atom, sulfur atom, nitrogen It may be a heterocycle containing a heteroatom such as an atom.
  • R 7 may further have a substituent, and examples of the substituent that can be introduced here include those listed as the substituents that can be introduced when R 1 and R 2 are alkyl groups. Can do.
  • R 7 examples include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, isopropyl, isobutyl, s-butyl, t-butyl, Preferable examples include isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, and cyclopentyl group.
  • M examples include a hydrogen atom; an alkali metal such as lithium, sodium and potassium; an alkaline earth metal such as calcium and barium; or an onium such as ammonium, iodonium and sulfonium.
  • the Y, -NHCOCH 3, -CONH 2, -COOH, -SO 3 - NMe 4 +, and the like are preferable morpholyl group, -CONH 2 is more preferable.
  • the preferred total proportion of the structural units derived from the other monomers in the hydrophilic polymer is preferably 80% by mass or less, and more preferably 50% by mass or less.
  • hydrophilic polymers that can be suitably used in the present invention are shown below, but the present invention is not limited thereto.
  • * represents a bonding position to the polymer.
  • the hydrophilic polymer exemplified above includes, for example, a radical polymerizable monomer represented by the following general formula (i) and a silane coupling agent having chain transfer ability in the radical polymerization represented by the following general formula (ii) It can be synthesized by radical polymerization using Since the silane coupling agent (ii) has chain transfer ability, it is possible to synthesize a polymer in which a silane coupling group is introduced at the end of the polymer main chain in radical polymerization.
  • R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a hydrocarbon group, and specific examples and preferred ranges thereof are those represented by R 1 in the general formula (I).
  • R 2 . L 2 and L 3 each independently represents a single bond or a linking group, and specific examples and preferred ranges are the same as those for L 1 in the above general formula (I).
  • the definitions of Y and X are the same as those in formula (I), and specific examples and preferred ranges are also the same.
  • L 3 has a single bond or one or more structures selected from the group consisting of —CONH—, —NHCONH—, —OCONH—, —SO 2 NH—, and —SO 3 —. More preferably, it is a linking group.
  • Each compound for synthesizing the hydrophilic polymer having the structure represented by the general formula (II) is commercially available, and can be easily synthesized. Any conventionally known method can be used as the radical polymerization method for synthesizing the hydrophilic polymer having the structure represented by the general formula (II).
  • general radical polymerization methods include, for example, New Polymer Experiments 3 (1996, Kyoritsu Shuppan), Polymer Synthesis and Reaction 1 (Polymer Society of Japan, 1992, Kyoritsu Shuppan), New Experiment Chemistry Course 19 (1978, Maruzen), Polymer Chemistry (I) (Edited by Chemical Society of Japan, 1996, Maruzen), Synthetic Polymer Chemistry (Materials Engineering Course, 1995, Tokyo Denki University Press) These can be applied.
  • the mass average molecular weight of the hydrophilic polymer having a structure represented by the general formula (II) is preferably 1,000,000 or less, more preferably 1,000 to 1,000,000, and further preferably 20,000 to 100,000.
  • the molecular weight is 1,000,000 or less, there is a problem in handling properties such as the viscosity of the coating solution is lowered and a uniform film is easily formed without deteriorating the solubility in a solvent when preparing a coating solution for forming a hydrophilic film. Not preferred.
  • the above hydrophilic polymer has a hydrophilic group that expresses hydrophilicity represented by Y in the formula, and the higher the density of the hydrophilic group, the higher the surface hydrophilicity, which is preferable.
  • the hydrophilic group density can be expressed as the number of moles of hydrophilic groups per gram of hydrophilic polymer, preferably 1 to 30 meq / g, more preferably 2 to 20 meq / g, and most preferably 3 to 15 meq / g.
  • hydrophilic polymer having a structure represented by the general formula (II) is shown below together with its mass average molecular weight (MW), but the present invention is not limited thereto.
  • polymer of the specific example shown below means that it is a random copolymer in which each structural unit described is contained by the described molar ratio.
  • the hydrophilic polymer including the structure represented by the general formula (I) or (II) may be a copolymer with another monomer.
  • examples of other monomers used include acrylic esters, methacrylic esters, acrylamides, methacrylamides, vinyl esters, styrenes, acrylic acid, methacrylic acid, acrylonitrile, maleic anhydride, maleic imide, etc. These known monomers are also included.
  • various physical properties such as film forming property, film strength, hydrophilicity, hydrophobicity, solubility, reactivity, and stability can be improved.
  • acrylic esters include methyl acrylate, ethyl acrylate, (n- or i-) propyl acrylate, (n-, i-, sec- or t-) butyl acrylate, amyl acrylate, 2-ethylhexyl acrylate, Dodecyl acrylate, chloroethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypentyl acrylate, cyclohexyl acrylate, allyl acrylate, trimethylolpropane monoacrylate, pentaerythritol monoacrylate, benzyl acrylate, methoxybenzyl acrylate, chloro Benzyl acrylate, hydroxybenzyl acrylate, hydroxyphenethyl acrylate, dihydroxy Phenethyl acrylate, furfuryl acrylate, tetrahydrofurfuryl acrylate, phenyl
  • methacrylic acid esters include methyl methacrylate, ethyl methacrylate, (n- or i-) propyl methacrylate, (n-, i-, sec- or t-) butyl methacrylate, amyl methacrylate, 2-ethylhexyl methacrylate, Dodecyl methacrylate, chloroethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxypentyl methacrylate, cyclohexyl methacrylate, allyl methacrylate, trimethylolpropane monomethacrylate, pentaerythritol monomethacrylate, benzyl methacrylate, methoxybenzyl methacrylate, chloro Benzyl methacrylate, hydroxybenzyl methacrylate, hydroxy Phenethyl methacrylate, dihydroxyphenethyl methacrylate
  • acrylamides include acrylamide, N-methylacrylamide, N-ethylacrylamide, N-propylacrylamide, N-butylacrylamide, N-benzylacrylamide, N-hydroxyethylacrylamide, N-phenylacrylamide, and N-tolylacrylamide.
  • methacrylamides include methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N-propylmethacrylamide, N-butylmethacrylamide, N-benzylmethacrylamide, N-hydroxyethylmethacrylamide, N -Phenylmethacrylamide, N-tolylmethacrylamide, N- (hydroxyphenyl) methacrylamide, N- (sulfamoylphenyl) methacrylamide, N- (phenylsulfonyl) methacrylamide, N- (tolylsulfonyl) methacrylamide, N , N-dimethylmethacrylamide, N-methyl-N-phenylmethacrylamide, N-hydroxyethyl-N-methylmethacrylamide and the like.
  • vinyl esters include vinyl acetate, vinyl butyrate, vinyl benzoate and the like.
  • styrenes include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, propyl styrene, cyclohexyl styrene, chloromethyl styrene, trifluoromethyl styrene, ethoxymethyl styrene, acetoxymethyl styrene, methoxy styrene, dimethoxy styrene. Chlorostyrene, dichlorostyrene, bromostyrene, iodostyrene, fluorostyrene, carboxystyrene and the like.
  • the proportion of these other monomers used in the synthesis of the copolymer needs to be an amount sufficient to improve various physical properties, but the function as a hydrophilic film is sufficient, and the advantage of adding a hydrophilic polymer In order to obtain sufficient, it is preferable that the ratio is not too large. Accordingly, the preferred total proportion of other monomers in the hydrophilic polymer is preferably 50% by mass or less.
  • the copolymerization ratio can be measured with a nuclear magnetic resonance apparatus (NMR) or a calibration curve prepared with a standard substance and measured with an infrared spectrophotometer.
  • NMR nuclear magnetic resonance apparatus
  • the above hydrophilic polymer forms a crosslinked film in a state of being mixed with a hydrolyzed polycondensate of metal alkoxide.
  • the hydrophilic polymer which is an organic component, is involved in the film strength and film flexibility.
  • the hydrophilic polymer has a viscosity of 0.1 to 100 mPa ⁇ s (5% aqueous solution, measured at 25 ° C.), preferably When the thickness is in the range of 0.5 to 70 mPa ⁇ s, more preferably 1 to 50 mPa ⁇ s, good film properties are provided.
  • hydrophilic polymer containing the structure represented by the general formula (I) and the hydrophilic polymer containing the structure represented by the general formula (II) may be used in combination.
  • the solid content concentration of the hydrophilic composition is preferably 0.1 to 50% by mass, more preferably 0.5 to 20% by mass. If it is 50 mass%, since the stability of a liquid does not fall, it is preferable. If it is 0.1 mass% or more, the various performances of the coating film can be sufficiently exhibited.
  • the hydrophilic composition according to the present invention may contain an alkoxide (also referred to as a metal alkoxide) of an element selected from Si, Ti, Zr, and Al.
  • the metal alkoxide used in the present invention is a hydrolyzable polymerizable compound having a functional group capable of being hydrolyzed and polycondensed in its structure and serving as a crosslinking agent, and the metal alkoxides are polycondensed with each other.
  • a strong cross-linked film having a cross-linked structure is formed and further chemically bonded to the hydrophilic polymer.
  • the metal alkoxide can be represented by the following general formula (3) or the following general formula (4), in which R 8 represents a hydrogen atom, an alkyl group or an aryl group, R 9 represents an alkyl group or an aryl group, Z represents Si, Ti or Zr, and m represents an integer of 0-2.
  • the number of carbon atoms when R 8 and R 9 represent an alkyl group is preferably 1 to 4.
  • the alkyl group or aryl group may have a substituent, and examples of the substituent that can be introduced include a halogen atom, an amino group, and a mercapto group.
  • This compound is a low molecular compound and preferably has a molecular weight of 2000 or less.
  • hydrolyzable compounds represented by the general formula (3) and the general formula (4) are given below, but the present invention is not limited to these.
  • Z is Si
  • those containing silicon in the hydrolyzable compound include, for example, trimethoxysilane, tetramethoxysilane, tetraethoxycin, tetrapropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, ⁇ - Examples thereof include chloropropyl triethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, and the like.
  • trimethoxysilane particularly preferred are trimethoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane and the like.
  • Z is Ti, i.e., including titanium, for example, trimethoxy titanate, tetramethoxy titanate, triethoxy titanate, tetraethoxy titanate, tetrapropoxy titanate, chlorotrimethoxy titanate, chlorotriethoxy titanate, ethyl
  • Zr that is, the one containing zirconium can include, for example, zirconates corresponding to the compounds exemplified as those containing titanium.
  • the central metal is Al
  • examples of the hydrolyzable compound containing aluminum include, for example, trimethoxy aluminate, triethoxy aluminate, tripropoxy aluminate, triisopropoxy aluminate and the like.
  • metal alkoxides Si alkoxides are preferable from the viewpoint of reactivity and availability, and specifically, compounds used for silane coupling agents can be suitably used. It is preferable that 20 mass% or less of metal alkoxide is contained in solid content in a hydrophilic composition.
  • the hydrophilic composition according to the present invention may contain a catalyst.
  • a metal complex catalyst is preferable as the catalyst.
  • the metal complex catalyst that can be used in the formation of the hydrophilic film of the present invention promotes hydrolysis and polycondensation of a metal alkoxide compound selected from Si, Ti, Zr, and Al, and causes a bond with a hydrophilic polymer. it can.
  • Particularly preferred metal complex catalysts include metal elements selected from Groups 2A, 3B, 4A and 5A of the periodic table and ⁇ -diketones, ketoesters, hydroxycarboxylic acids or esters thereof, amino alcohols, and enolic active hydrogen compounds.
  • 2A group elements such as Mg, Ca, Sr and Ba
  • 3B group elements such as Al and Ga
  • 4A group elements such as Ti and Zr
  • 5A group elements such as Nb and Ta are preferable.
  • Forms complexes with excellent catalytic effects Of these, complexes obtained from Zr, Al and Ti are excellent and preferred.
  • the oxo- or hydroxy-oxygen-containing compound constituting the ligand of the metal complex is a ⁇ -diketone such as acetylacetone (2,4-pentanedione) or 2,4-heptanedione, methyl acetoacetate, acetoacetic acid Ketoesters such as ethyl and butyl acetoacetate, hydroxycarboxylic acids and esters thereof such as lactic acid, methyl lactate, salicylic acid, ethyl salicylate, phenyl salicylate, malic acid, tartaric acid, methyl tartrate, 4-hydroxy-4-methyl-2-pentanone , 4-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-pentanone, ketoalcohols such as 4-hydroxy-2-heptanone, monoethanolamine, N, N-dimethylethanolamine, N-methyl- Monoethanolamine, diethanolamine Aminoalcohols such as ethanol and triethanolamine,
  • a preferred ligand is acetylacetone or an acetylacetone derivative.
  • the acetylacetone derivative refers to a compound having a substituent on the methyl group, methylene group or carbonyl carbon of acetylacetone.
  • Substituents for substitution on the methyl group of acetylacetone are all straight-chain or branched alkyl groups having 1 to 3 carbon atoms, acyl groups, hydroxyalkyl groups, carboxyalkyl groups, alkoxy groups, alkoxyalkyl groups, and acetylacetone
  • the substituents that substitute for the methylene group are carboxyl groups, both straight-chain or branched carboxyalkyl groups and hydroxyalkyl groups having 1 to 3 carbon atoms, and the substituents that substitute for the carbonyl carbon of acetylacetone are carbon atoms.
  • acetylacetone derivatives include ethylcarbonylacetone, n-propylcarbonylacetone, i-propylcarbonylacetone, diacetylacetone, 1-acetyl-1-propionyl-acetylacetone, hydroxyethylcarbonylacetone, hydroxypropylcarbonylacetone, acetoacetate Acetopropionic acid, diacetacetic acid, 3,3-diacetpropionic acid, 4,4-diacetbutyric acid, carboxyethylcarbonylacetone, carboxypropylcarbonylacetone, diacetone alcohol. Of these, acetylacetone and diacetylacetone are particularly preferred.
  • the complex of the above acetylacetone derivative and the above metal element is a mononuclear complex in which 1 to 4 molecules of the acetylacetone derivative are coordinated per metal element, and the coordinateable bond of the acetylacetone derivative is the coordinateable bond of the metal element.
  • ligands commonly used for ordinary complexes such as water molecules, halogen ions, nitro groups, and ammonio groups may coordinate.
  • Examples of preferred metal complexes include tris (acetylacetonato) aluminum complex, di (acetylacetonato) aluminum / aco complex, mono (acetylacetonato) aluminum / chloro complex, di (diacetylacetonato) aluminum complex, ethylacetate Acetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), cyclic aluminum oxide isopropylate, tris (acetylacetonato) barium complex, di (acetylacetonato) titanium complex, tris (acetylacetonato) titanium complex, di-i -Propoxy bis (acetylacetonato) titanium complex salt, zirconium tris (ethyl acetoacetate), zirconium tris (benzoic acid) complex salt, etc.
  • ethyl acetoacetate aluminum diisopropylate aluminum tris (ethyl acetoacetate), di ( Acetylacetonato) titanium complex and zirconium tris (ethylacetoacetate) are preferred.
  • the type of the counter salt is arbitrary as long as it is a water-soluble salt that maintains the neutrality of the charge as the complex compound, such as nitrate, Salt forms such as halogenates, sulfates, phosphates, etc., that ensure stoichiometric neutrality are used.
  • nitrate nitrate
  • Salt forms such as halogenates, sulfates, phosphates, etc., that ensure stoichiometric neutrality are used.
  • the metal complex in the coating solution, has a coordinated structure and is stable, and in the dehydration condensation reaction that starts in the heat drying process after coating, it is considered that crosslinking is promoted by a mechanism similar to an acid catalyst.
  • the use of this metal complex has led to the improvement in coating solution aging stability and film surface quality, and high hydrophilicity and high water resistance.
  • a catalyst that promotes hydrolysis and polycondensation of a metal alkoxide compound selected from Si, Ti, Zr, and Al and can cause a bond with a hydrophilic polymer is used in combination. May be.
  • a catalyst include hydrogen halides such as hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, hydrogen sulfide, perchloric acid, hydrogen peroxide, carbonic acid, carboxylic acids such as formic acid and acetic acid, and the structural formula represented by RCOOH.
  • the above metal complex catalyst can be easily obtained as a commercial product, and can also be obtained by a known synthesis method, for example, reaction of each metal chloride with an alcohol.
  • the catalyst is contained in the hydrophilic composition in a solid content, preferably 10% by mass or less, more preferably 5% by mass or less.
  • an antibacterial agent can be contained in the hydrophilic composition in order to impart antibacterial properties, antifungal properties, and algal resistance.
  • a hydrophilic and water-soluble antibacterial agent By including a hydrophilic and water-soluble antibacterial agent, a surface hydrophilic member having excellent antibacterial, antifungal and antialgal properties can be obtained without impairing the surface hydrophilicity.
  • the antibacterial agent it is preferable to add a compound that does not lower the hydrophilicity of the hydrophilic member, and examples of such an antibacterial agent include inorganic antibacterial agents and water-soluble organic antibacterial agents.
  • antibacterial agent those exhibiting a bactericidal effect against fungi existing around us, such as bacteria represented by Staphylococcus aureus and Escherichia coli, fungi such as fungi and yeast, and the like are used.
  • organic antibacterial agents include phenol ether derivatives, imidazole derivatives, sulfone derivatives, N-haloalkylthio compounds, anilide derivatives, pyrrole derivatives, quaternary ammonium salts, pyridines, triazines, benzoisothiazolines, and isothiazolines. It is done.
  • organic antibacterial agents can be appropriately selected and used in consideration of hydrophilicity, water resistance, sublimation property, safety and the like.
  • organic antibacterial agents 2-bromo-2-nitro-1,3-propanediol, TBZ, BCM, OBPA, and ZPT are preferable from the viewpoint of hydrophilicity, antibacterial effect, and cost.
  • inorganic antibacterial agents include mercury, silver, copper, zinc, iron, lead, and bismuth in descending order of bactericidal action.
  • supported metals and metal ions such as silver, copper, zinc, nickel, on the silicate type
  • Natural antibacterial agents include chitosan, a basic polysaccharide obtained by hydrolyzing chitin contained in crabs and shrimp shells.
  • Nikko's “trade name Holon Killer Bees Sera” made of aminometal in which a metal is compounded on both sides of an amino acid is preferable. These are not transpirationable, easily interact with the polymer and crosslinker component of the hydrophilic film, can be stably dispersed in a molecule or solid, the antibacterial agent is easily exposed effectively on the hydrophilic film surface, and Even if it is splashed with water, it does not elute, and the effect can be maintained for a long time without affecting the human body.
  • silver-based inorganic antibacterial agents and water-soluble organic antibacterial agents are most preferable because of their great antibacterial effects.
  • silver zeolite with silver supported on zeolite, which is a silicate carrier, antibacterial agent with silver supported on silica gel, 2-bromo-2-nitro-1,3-propanediol, TPN, TBZ, BCM, OBPA ZPT is preferred.
  • Particularly preferred commercially available silver zeolite antibacterial agents include “Zeomic” by Shinagawa Fuel, “Sylwell” by Fuji Silysia Chemical, and “Bactenone” by JEOL.
  • “NOVALON” manufactured by Toa Gosei, in which silver is supported on an inorganic ion exchanger ceramic, “ATOMY BALL” manufactured by Catalytic Chemical Industry, and “Suneyeback P” (San-ai Oil), a triazine antibacterial agent are also preferable.
  • the content of the antibacterial agent is generally 0.001 to 10% by mass with respect to the solid content, preferably 0.005 to 5% by mass, more preferably 0.01 to 3% by mass, and 02 to 1.5% by mass is particularly preferred, and 0.05 to 1% by mass is most preferred. If the content is 0.001% by mass or more, an effective antibacterial effect can be obtained. Further, if the content is 10% by mass or less, the hydrophilicity is not lowered, the aging is not deteriorated, and the antifouling property and the antifogging property are not adversely affected.
  • the hydrophilic film may contain inorganic fine particles in order to improve hydrophilicity, prevent cracking of the film, and improve film strength.
  • inorganic fine particles for example, silica, alumina, magnesium oxide, titanium oxide, magnesium carbonate, calcium alginate, or a mixture thereof is preferably exemplified.
  • the inorganic fine particles preferably have an average particle size of 5 nm to 10 ⁇ m, more preferably 0.5 to 3 ⁇ m. Within the above range, it is possible to form a hydrophilic member that is stably dispersed in the hydrophilic film, sufficiently retains the film strength of the hydrophilic film, and has high water resistance and excellent hydrophilicity.
  • a colloidal silica dispersion is particularly preferable and can be easily obtained as a commercial product.
  • the content of the inorganic fine particles is preferably 20% by mass or less, and more preferably 10% by mass or less, based on the total solid content of the hydrophilic film.
  • surfactant In the present invention, it is preferable to use a surfactant in order to improve the surface state of the hydrophilic composition.
  • the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and fluorosurfactants.
  • the nonionic surfactant used in the present invention is not particularly limited, and conventionally known nonionic surfactants can be used.
  • nonionic surfactants can be used.
  • polyoxyethylene alkyl ethers polyoxyethylene alkyl phenyl ethers, polyoxyethylene polystyryl phenyl ethers, polyoxyethylene polyoxypropylene alkyl ethers, glycerin fatty acid partial esters, sorbitan fatty acid partial esters, pentaerythritol Fatty acid partial esters, propylene glycol mono fatty acid esters, sucrose fatty acid partial esters, polyoxyethylene sorbitan fatty acid partial esters, polyoxyethylene sorbitol fatty acid partial esters, polyethylene glycol fatty acid esters, polyglycerin fatty acid partial esters, Polyoxyethylenated castor oil, polyoxyethylene glycerin fatty acid partial esters, fatty acid diethanolamides, N N- bis-2-hydroxyalky
  • the anionic surfactant used in the present invention is not particularly limited, and conventionally known anionic surfactants can be used.
  • anionic surfactants can be used.
  • the cationic surfactant used in the present invention is not particularly limited, and conventionally known cationic surfactants can be used. Examples thereof include alkylamine salts, quaternary ammonium salts, polyoxyethylene alkylamine salts, and polyethylene polyamine derivatives.
  • the amphoteric surfactant used in the present invention is not particularly limited, and conventionally known amphoteric surfactants can be used. Examples thereof include carboxybetaines, aminocarboxylic acids, sulfobetaines, aminosulfuric acid esters, and imidazolines.
  • those having “polyoxyethylene” can be read as “polyoxyalkylene” such as polyoxymethylene, polyoxypropylene, polyoxybutylene, etc. These surfactants can also be used.
  • More preferable surfactants include fluorine-based surfactants containing a perfluoroalkyl group in the molecule.
  • fluorosurfactants include anionic types such as perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and perfluoroalkyl phosphates; amphoteric types such as perfluoroalkyl betaines; Cation type such as trimethylammonium salt; perfluoroalkylamine oxide, perfluoroalkylethylene oxide adduct, oligomer containing perfluoroalkyl group and hydrophilic group, oligomer containing perfluoroalkyl group and lipophilic group, perfluoroalkyl Nonionic types such as an oligomer containing a group, a hydrophilic group and a lipophilic group, and a urethane containing a perfluoroalkyl group and a lipophilic group.
  • fluorine-based surfact
  • the surfactant is preferably used in the hydrophilic composition in the range of 0.001 to 10% by mass, more preferably 0.01 to 5% by mass with respect to the nonvolatile component. Moreover, surfactant can be used individually or in combination of 2 or more types.
  • UV absorber From the viewpoint of improving the weather resistance and durability of the hydrophilic composition, an ultraviolet absorber can be used. Examples of the ultraviolet absorber are described in JP-A Nos. 58-185677, 61-190537, JP-A-2-782, JP-A-5-197075, JP-A-9-34057, and the like. Bezotriazole compounds, benzophenone compounds described in JP-A-46-2784, JP-A-5-194443, US Pat. No.
  • JP-B-48-30492 JP-A-56-21141 Cinnamic acid compounds described in JP-A-10-88106, JP-A-4-298503, 8-53427, 8-239368, 10-182621, Special Tables
  • the addition amount is appropriately selected according to the purpose, but generally it is preferably 0.5 to 15% by mass in terms of solid content.
  • An antioxidant can be added to improve the stability of the hydrophilic composition.
  • examples of the antioxidant include European Published Patent No. 223739, No. 309401, No. 309402, No. 310551, No. 310552, No. 4594416, German Published Patent No. 3435443.
  • the addition amount is appropriately selected according to the purpose, but is preferably 0.1 to 8% by mass in terms of solid content.
  • solvent It is also effective to appropriately add an organic solvent to the coating solution in order to ensure the formation of a uniform coating film on the substrate during the formation of the hydrophilic film.
  • organic solvent examples include ketone solvents such as acetone, methyl ethyl ketone, and diethyl ketone, alcohol solvents such as methanol, ethanol, 2-propanol, 1-propanol, 1-butanol, and tert-butanol, and chlorine such as chloroform and methylene chloride.
  • Solvents aromatic solvents such as benzene and toluene, ester solvents such as ethyl acetate, butyl acetate and isopropyl acetate, ether solvents such as diethyl ether, tetrahydrofuran and dioxane, glycols such as ethylene glycol monomethyl ether and ethylene glycol dimethyl ether And ether solvents.
  • aromatic solvents such as benzene and toluene
  • ester solvents such as ethyl acetate, butyl acetate and isopropyl acetate
  • ether solvents such as diethyl ether, tetrahydrofuran and dioxane
  • glycols such as ethylene glycol monomethyl ether and ethylene glycol dimethyl ether And ether solvents.
  • the amount is preferably 0 to 50% by mass, more preferably based on the entire coating solution at the time of forming the hydrophilic film. It is in the
  • Polymer compound In order to adjust the film physical properties of the hydrophilic film, various polymer compounds can be added to the hydrophilic composition as long as the hydrophilicity is not inhibited.
  • High molecular compounds include acrylic polymer, polyvinyl alcohol resin, polyvinyl butyral resin, polyurethane resin, polyamide resin, polyester resin, epoxy resin, phenol resin, polycarbonate resin, polyvinyl formal resin, shellac, vinyl resin, acrylic resin. Rubber resins, waxes and other natural resins can be used. Two or more of these may be used in combination. Of these, vinyl copolymer obtained by copolymerization of acrylic monomers is preferred. Furthermore, a copolymer containing a carboxyl group-containing monomer, a methacrylic acid alkyl ester, or an acrylic acid alkyl ester as a structural unit is also preferably used.
  • leveling additives for example, leveling additives, matting agents, waxes for adjusting film physical properties, tackifiers to the extent that hydrophilicity is not impaired in order to improve adhesion to the substrate, etc.
  • tackifier specifically, a high molecular weight adhesive polymer (for example, (meth) acrylic acid and an alkyl group having 1 to 20 carbon atoms) described in JP-A-2001-49200, 5-6p.
  • Preparation of the hydrophilic composition can be carried out by dissolving the hydrophilic polymer, and if necessary, a metal alkoxide and a catalyst in a solvent such as ethanol and stirring.
  • the reaction temperature is from room temperature to 80 ° C.
  • the reaction time that is, the time during which stirring is continued is preferably in the range of 1 to 72 hours.
  • a composite sol solution can be obtained.
  • the solvent used in preparing the hydrophilic composition is not particularly limited as long as it can uniformly dissolve and disperse these, but for example, an aqueous solvent such as methanol, ethanol, water or the like is preferable.
  • the preparation of the organic-inorganic composite sol liquid (hydrophilic composition) for forming a hydrophilic film from the hydrophilic composition of the present invention utilizes the sol-gel method.
  • sol-gel method Sakuo Sakuo “Science of Sol-Gel Method”, Agne Jofusha Co., Ltd. (published) (1988), Satoshi Hirashima “Functional Thin Film Formation Technology by the Latest Sol-Gel Method” General Technology Center (Published) (1992) and the like, and the methods described therein can be applied to the preparation of the hydrophilic composition in the present invention.
  • the thickness of the hydrophilic film is preferably 0.05 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 3.0 ⁇ m.
  • the film thickness is 0.05 ⁇ m or more, a sufficient hydrophilic effect can be obtained. Further, when the thickness is 10 ⁇ m or less, defects such as film cracking do not occur.
  • the hydrophilic film can be obtained by applying a hydrophilic composition onto the oxide film layer of the aluminum base, heating and drying to form a surface hydrophilic film.
  • the heating temperature and heating time for forming the hydrophilic film are not particularly limited as long as the solvent in the sol solution is removed and a strong film can be formed, but the heating temperature is 150 from the viewpoint of production suitability and the like.
  • the heating time is preferably within 1 hour.
  • the fin material of the present invention can be prepared by a known coating method, and is not particularly limited. For example, a spray coating method, a dip coating method, a flow coating method, a spin coating method, a roll coating method, a film applicator method, Methods such as screen printing, bar coater, brush coating, and sponge coating can be applied.
  • the drying temperature of the hydrophilic composition is preferably 10 ° C to 200 ° C, more preferably 50 ° C to 180 ° C. When the drying temperature is low, sufficient crosslinking reaction does not proceed and the coating strength is low. If the temperature is high, the coating film tends to crack, and the antifogging property is partially insufficient.
  • the drying time is preferably 1 minute to 200 minutes. More preferably, it is 5 minutes to 90 minutes. If the drying time is short, the coating strength may decrease due to insufficient drying. If the drying time is excessively longer than necessary, cracks may occur.
  • the Tg of the hydrophilic film is preferably 40 ° C. to 150 ° C. for the purpose of providing heat resistance due to heat generated in the heat exchanger.
  • the elastic modulus of the hydrophilic film is preferably 1 GPa to 7 GPa.
  • the fin material of this invention provides an oxide film layer on an aluminum base material.
  • the oxide film layer increases the water resistance and adhesion of the hydrophilic film.
  • the oxide film layer is preferably an alumite layer.
  • an intermediate layer is often provided to provide adhesion between the surface of the aluminum substrate (to suppress surface oxidation) and the layer provided on the substrate (representative).
  • the chromate layer is characterized in that, in the present invention, an oxide film layer is provided on the surface of the aluminum base material to exhibit rust prevention and adhesion.
  • the oxide film layer can be formed by a general method such as a sulfuric acid method or an oxalic acid method described in “Aluminum Surface Treatment and Practice (Test and Research Center for Light Metal Products Association, Fourth Edition 2007)”. .
  • the sulfuric acid method is preferred from the viewpoint of hydrophilicity and economy.
  • the preferred thickness of the oxide film layer is 0.03 to 3 ⁇ m, more preferably 0.1 to 1 ⁇ m. If it is too thick, a crack will be generated by punching, and if it is too thin, rust prevention will be insufficient.
  • an intermediate layer may be provided between the oxide film layer and the hydrophilic film.
  • the material for the intermediate layer include a composition composed of a silane coupling agent, tetramethoxysilane, monoalkyltrimethoxysilane, and the like.
  • the main purpose of the hydrophilic treatment of aluminum fins in an air conditioner is to suppress the formation of bridges between the fins due to condensed water during cooling operation.
  • water resistance that maintains hydrophilicity even when exposed to water for a long time is important.
  • the adhesion between the fin and the hydrophilic film is important for the development of water resistance.
  • the adhesion is achieved by the reactive group of the alumite layer and the hydrophilic polymer.
  • the contact angle of water droplets on the surface of the hydrophilic film after being exposed to flowing water of 3 L / hour (for example, 20 ° C.) for 240 hours is preferably 15 ° or less.
  • the fin material of the present invention since it has a siloxane crosslinked structure, such high water resistance can be obtained. Therefore, it can be said that the fin material of the present invention has sufficient hydrophilicity and the effect can be maintained for a sufficiently long time.
  • the contact angle can be measured by measuring the contact angle of distilled water with Kyowa Interface Science DROP MASTER 500.
  • the fin material of the present invention is preferably used as a fin material for a heat exchanger.
  • the air conditioner of this invention has this fin material for heat exchangers.
  • the aluminum substrate examples include an aluminum plate, such as a pure aluminum plate, an alloy plate containing aluminum as a main component and containing a trace amount of different elements, and a material in which a plastic is laminated on a thin film of aluminum or an aluminum alloy.
  • Examples of foreign elements contained in the aluminum alloy include silicon, iron, manganese, copper, magnesium, chromium, zinc, bismuth, nickel, and titanium. The content of foreign elements in the alloy is preferably 10% by mass or less.
  • a pure aluminum plate is preferable, but completely pure aluminum is difficult to manufacture in terms of refining technology, and therefore may contain a slightly different element.
  • the composition of the aluminum plate is not specified, and a publicly known material can be used as appropriate.
  • the thickness of the substrate is not particularly limited and can be appropriately adjusted in various applications. However, it is preferably 0.05 to 0.6 mm, more preferably 0.08 to 0.2 mm.
  • a degreasing treatment with a surfactant, an organic solvent, an alkaline aqueous solution or the like for removing rolling oil on the surface is performed as desired.
  • the processing method of an aluminum base material can be performed by a well-known method.
  • the substrate having the surface treatment as described above and having an anodized film may be used as it is.
  • the micropore enlargement treatment or sealing treatment of the anodized film and surface hydrophilization treatment immersed in an aqueous solution containing a hydrophilic compound described in Japanese Patent No. 253181 and Japanese Patent Application Laid-Open No. 2001-322365 are appropriately selected. It can be carried out.
  • the enlargement process and the sealing process are not limited to those described above, and any conventionally known method can be performed.
  • the sealing treatment in addition to the vapor sealing, a single treatment with fluorinated zirconic acid, a treatment with sodium fluoride, or a vapor sealing with addition of lithium chloride is possible.
  • the sealing treatment used in the present invention is not particularly limited, and a conventionally known method can be used. Among them, sealing treatment with an aqueous solution containing an inorganic fluorine compound, sealing treatment with water vapor, and sealing with hot water are particularly preferable. Hole treatment is preferred. Each will be described below.
  • a metal fluoride is preferably exemplified.
  • sodium fluorinated zirconate, sodium fluorinated titanate, fluorinated zirconic acid, and fluorinated titanic acid are preferable.
  • the concentration of the inorganic fluorine compound in the aqueous solution is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, from the viewpoint of sufficiently sealing the micropores of the anodized film. Further, in terms of stain resistance, it is preferably 1% by mass or less, and more preferably 0.5% by mass or less.
  • the aqueous solution containing an inorganic fluorine compound further contains a phosphate compound.
  • Suitable examples of the phosphate compound include phosphates of metals such as alkali metals and alkaline earth metals. Specifically, for example, zinc phosphate, aluminum phosphate, ammonium phosphate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, monoammonium phosphate, monopotassium phosphate, monosodium phosphate, dihydrogen phosphate Potassium, dipotassium hydrogen phosphate, calcium phosphate, sodium ammonium hydrogen phosphate, magnesium hydrogen phosphate, magnesium phosphate, ferrous phosphate, ferric phosphate, sodium dihydrogen phosphate, sodium phosphate, hydrogen phosphate Disodium, lead phosphate, diammonium phosphate, calcium dihydrogen phosphate, lithium phosphate, phosphotungstic acid, ammonium phosphotungstate, sodium phosphotungstate, ammonium phosphate
  • sodium dihydrogen phosphate, disodium hydrogen phosphate, potassium dihydrogen phosphate, and dipotassium hydrogen phosphate are preferable.
  • the combination of the inorganic fluorine compound and the phosphate compound is not particularly limited, but the aqueous solution contains at least sodium zirconate fluoride as the inorganic fluorine compound and contains at least sodium dihydrogen phosphate as the phosphate compound. Is preferred.
  • the concentration of the phosphate compound in the aqueous solution is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, from the viewpoint of improving stain resistance, In this respect, it is preferably 20% by mass or less, and more preferably 5% by mass or less.
  • the ratio of each compound in the aqueous solution is not particularly limited, but the mass ratio of the inorganic fluorine compound and the phosphate compound is preferably 1/200 to 10/1, and preferably 1/30 to 2/1. Is more preferable.
  • the temperature of the aqueous solution is preferably 20 ° C. or higher, more preferably 40 ° C. or higher, preferably 100 ° C. or lower, more preferably 80 ° C. or lower.
  • the aqueous solution preferably has a pH of 1 or more, more preferably has a pH of 2 or more, preferably has a pH of 11 or less, and more preferably has a pH of 5 or less.
  • a method for sealing with an aqueous solution containing an inorganic fluorine compound is not particularly limited, and examples thereof include an immersion method and a spray method. These may be used alone or in combination, or may be used in combination of two or more. Of these, the dipping method is preferred.
  • the treatment time is preferably 1 second or longer, more preferably 3 seconds or longer, more preferably 100 seconds or shorter, and 20 seconds or shorter. More preferred.
  • sealing treatment with water vapor examples include a method in which pressurized or normal-pressure water vapor is brought into contact with the anodized film continuously or discontinuously.
  • the temperature of the water vapor is preferably 80 ° C. or higher, more preferably 95 ° C. or higher, and preferably 105 ° C. or lower.
  • the pressure of water vapor is preferably in the range (1.00 ⁇ 10 5 to 1.043 ⁇ 10 5 Pa) from (atmospheric pressure ⁇ 50 mmAq) to (atmospheric pressure + 300 mmAq).
  • the time for which the water vapor is contacted is preferably 1 second or longer, more preferably 3 seconds or longer, 100 seconds or shorter, more preferably 20 seconds or shorter.
  • sealing treatment with water vapor examples include a method in which an aluminum base material on which an anodized film is formed is immersed in hot water.
  • the hot water may contain an inorganic salt (for example, phosphate) or an organic salt.
  • the temperature of the hot water is preferably 80 ° C. or higher, more preferably 95 ° C. or higher, and preferably 100 ° C. or lower.
  • the time of immersion in hot water is preferably 1 second or longer, more preferably 3 seconds or longer, 100 seconds or shorter, more preferably 20 seconds or shorter.
  • ⁇ Hydrophilic treatment> The hydrophilization treatment is described in US Pat. Nos. 2,714,066, 3,181,461, 3,280,734, and 3,902,734. There are such alkali metal silicate methods. In this method, the support is immersed in an aqueous solution such as sodium silicate or electrolytically treated. In addition, the treatment with potassium fluoride zirconate described in JP-B 36-22063, U.S. Pat. Nos. 3,276,868, 4,153,461 and 4,689, And a method of treating with polyvinylphosphonic acid as described in each specification of No.272.
  • the surface shape of the aluminum substrate is not particularly limited, but it is usually preferable that the center line average roughness is 0.10 to 1.2 ⁇ m. If it is this range, the favorable adhesiveness of the aluminum base material and the layer on it and the favorable stain
  • the fin material of the present invention is a fin material comprising an aluminum fin main body and a hydrophilic film provided on at least a part of the surface of the fin main body, the hydrophilic film forming the hydrophilic film according to the present invention.
  • the composition for use is coated.
  • Aluminum fin material (aluminum fin body itself) used in heat exchangers such as indoor air conditioners and automobile air conditioners causes water droplets to form as water droplets and stay between the fins. Ability is reduced.
  • the adhering dust between the fins similarly reduces the cooling capacity.
  • the fin material of the present invention can provide a fin material excellent in hydrophilicity, antifouling property, and sustainability thereof.
  • the fin material according to the present invention preferably has a water contact angle of 40 ° or less after 5 cycles of 1 hour aeration, 30 minute water washing, and 30 minute drying for palmitic acid.
  • Examples of the aluminum used for the fin body of the fin material include those having a degreased surface and, if necessary, a chemically treated aluminum plate. It is preferable that the surface of the fin body made of aluminum is subjected to a chemical conversion treatment in terms of adhesion of the hydrophilic treatment film, corrosion resistance, and the like.
  • Examples of the chemical conversion treatment include chromate treatment, and typical examples thereof include alkali salt-chromate method (BV method, MBV method, EW method, Al And a treatment method such as a chromic acid method, a chromate method, and a chromic phosphate method, and an anhydrous washing coating type treatment with a composition mainly composed of chromium chromate.
  • pure aluminum plate such as 1100, 1050, 1200, 1N30, Al—Cu based alloy plate such as 2017, 2014, 3003, Any of Al-Mn alloy plates such as 3004, Al-Mg alloy plates such as 5052 and 5083, and Al-Mg-Si alloy plates such as 6061 may be used. Any of the coils may be used.
  • the fin material which concerns on this invention for a heat exchanger. Since the heat exchanger using the fin material according to the present invention has excellent hydrophilicity, antifouling properties and durability thereof, it is possible to prevent water droplets and dust from adhering between the fins. it can.
  • the heat exchanger include heat exchangers used for indoor coolers, air conditioners, oil coolers for construction machines, automobile radiators, capacitors, and the like.
  • the fin material according to the present invention has excellent hydrophilicity, antifouling property, and sustainability thereof, it is possible to provide an air conditioner in which problems such as a decrease in cooling capacity as described above are improved.
  • the air conditioner any of room air conditioner, packaged air conditioner, car air conditioner, etc. may be used.
  • publicly known techniques for example, JP 2002-106882 A, JP 2002-156135 A, etc.
  • JP 2002-106882 A, JP 2002-156135 A, etc. can be used for the heat exchanger and the air conditioner of the present invention, and are not particularly limited.
  • Example 1 ⁇ Aluminum material degreasing treatment> An aluminum plate (A1050, thickness 0.1 mm) was immersed in an alkaline cleaning liquid (Yokohama Yushi, semi-clean A 5% aqueous solution) for 5 minutes, washed with water and dried.
  • ⁇ Hydrophilic composition > 98g of the following sol-gel solution
  • a hydrophilic composition was applied on the oxide film layer or aluminum plate with a # 3 bar and dried at 150 ° C. for 30 minutes to form a hydrophilic film. The thickness of the obtained hydrophilic film was 0.4 ⁇ m.
  • ⁇ Contact angle> The water droplet contact angle of distilled water on the surface of the hydrophilic film was measured with DROP MASTER 500 manufactured by Kyowa Interface Science. ⁇ 5 ° or less ⁇ 15 ° or less ⁇ 16-39 ° ⁇ 40 ° or more
  • Table 2 shows the results of the above various evaluations.
  • Compound A has a weight average molecular weight of 1,000, Compound B has a mass average molecular weight of 7,000, Compound C has a weight average molecular weight of 1,000,000, Compound D has a weight average molecular weight of 1,000, Compound E has a weight average molecular weight of 30,000, Compound F has a mass average molecular weight of 1,000,000, Compound G has a weight average molecular weight of 10,000, Compound H has a weight average molecular weight of 5,000.
  • n represents the number of repetitions, and the numerical value given to the repeating unit is the composition ratio.
  • the mass average molecular weight was determined by GPC (polyethylene oxide standard). Tetramethoxysilane, acetylacetone, and tetraethoxytitanium were manufactured by Tokyo Chemical Industry Co., Ltd., and Compound G and Compound H were manufactured by Wako Pure Chemical Industries, Ltd.
  • the fin material of the present invention has high hydrophilicity, rust resistance, water resistance, and processability, it can be used in various applications such as for air conditioner heat exchangers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

A fin material which comprises an aluminum substrate, an oxide film formed on the substrate, and an outermost hydrophilic membrane formed on the oxide film by using a hydrophilic composition, characterized in that the hydrophilic composition contains a hydrophilic polymer in an amount of 80mass% or above of the solid matter and the hydrophilic polymer has a specific structure bearing both a hydrophilic group and a reactive group.

Description

フィン材、熱交換器用フィン材、エアコンFin material, heat exchanger fin material, air conditioner
 本発明は、フィン材、熱交換器用フィン材、及びエアコンに関する。 The present invention relates to a fin material, a heat exchanger fin material, and an air conditioner.
 エアコン等に用いられる熱交換器は、冷房時に発生する凝集水が水滴となりフィン間にとどまることで水のブリッジが発生し、冷房能力が低下する。またフィン間に埃などが付着することでも、同様に冷房能力が低下する。
 これらの課題を解決するため、熱交換器のフィン材表面を親水性組成物で処理することが知られている。
In a heat exchanger used for an air conditioner or the like, the condensed water generated at the time of cooling becomes water droplets and stays between the fins, so that a bridge of water is generated and the cooling capacity is lowered. In addition, the adhering dust between the fins similarly reduces the cooling capacity.
In order to solve these problems, it is known to treat the fin material surface of the heat exchanger with a hydrophilic composition.
 例えば特許文献1には、(A)水分散性シリカに加水分解性アルコキシシラン基を含有する重合性ビニルシランモノマーを反応させてなる重合性ビニル基含有水性シリカ分散体に、重合性不飽和モノマー類を反応させた有機-無機複合体反応物、(B)硬化剤、(C)水酸基含有ポリエステル樹脂、(D)ピリチオン系防菌・防カビ剤、(E)シリコーン系エマルション、及び(F)アミンを含有する親水化処理組成物を、表面に塗布してなるアルミニウム製熱交換器フィンが開示されている。
 特許文献2には、金属表面の全部又は一部を親水性物質でコーティングした表面が微細な凹凸構造を有し、該凹凸構造の高さが300μm以下であり、平面視で該凹凸構造1cmあたりの実表面積が2cm以上であり、かつ該凹凸構造表面に平滑な剛体をあてたときの接触面積が剛体表面1cmあたり0.3cm以下である表面処理金属を有する熱交換器用フィンが開示されている。
 特許文献3には、アルカリケイ酸塩(A)と、カルボニル基を有する低分子有機化合物(B)と、アクリルアミド共重合体またはその塩(C)と、シランカップリング剤(S)とを主成分としてなる親水膜をフィンの表面に設けたアルミニウム製熱交換器が開示されている。
 特許文献4には、高分子系抗菌剤と微粒子を含有し、40℃の水に120時間浸漬した時の溶出量が0.2g/m以下であり、水の接触角が25゜以下である抗菌性組成物で、かつ40℃の水に120時間浸漬した後の水の接触角が25゜以下であることを特徴とする熱交換器用フィン積層用抗菌性組成物が開示されている。
 特許文献5には、アルミニウムからなる金属基材上に、空孔率が5%以下であって厚みが30nmないし300nmの範囲である陽極酸化皮膜からなる下地層と、厚みが10nmないし5000nmの範囲であって少なくともシラノール基を含む樹脂が含有されてなる中間層と、厚みが100nmないし7000nmの範囲であって水溶性樹脂が含有されてなる水溶性防食層とをこの順で積層した表面処理アルミニウム材が開示されている。
For example, Patent Document 1 discloses (A) a polymerizable vinyl group-containing aqueous silica dispersion obtained by reacting a water-dispersible silica with a polymerizable vinylsilane monomer containing a hydrolyzable alkoxysilane group, and polymerizable unsaturated monomers. (B) curing agent, (C) hydroxyl group-containing polyester resin, (D) pyrithione antibacterial / antifungal agent, (E) silicone emulsion, and (F) amine An aluminum heat exchanger fin formed by applying a hydrophilization treatment composition containing the composition to the surface is disclosed.
In Patent Document 2, the surface of all or part of the metal surface coated with a hydrophilic substance has a fine concavo-convex structure, the concavo-convex structure has a height of 300 μm or less, and the concavo-convex structure 1 cm 2 in plan view. A fin for a heat exchanger having a surface-treated metal having an actual surface area of 2 cm 2 or more and a contact area when a smooth rigid body is applied to the surface of the concavo-convex structure is 0.3 cm 2 or less per 1 cm 2 of the rigid surface It is disclosed.
Patent Document 3 mainly includes an alkali silicate (A), a low molecular organic compound (B) having a carbonyl group, an acrylamide copolymer or a salt thereof (C), and a silane coupling agent (S). An aluminum heat exchanger in which a hydrophilic film as a component is provided on the surface of a fin is disclosed.
Patent Document 4 contains a polymeric antibacterial agent and fine particles, has an elution amount of 0.2 g / m 2 or less when immersed in water at 40 ° C. for 120 hours, and a water contact angle of 25 ° or less. There is disclosed an antibacterial composition for laminating fins for heat exchangers, which is a certain antibacterial composition and has a contact angle of water of 25 ° or less after being immersed in water at 40 ° C. for 120 hours.
In Patent Document 5, a base layer made of an anodized film having a porosity of 5% or less and a thickness in the range of 30 nm to 300 nm and a thickness in the range of 10 nm to 5000 nm on a metal substrate made of aluminum. And a surface-treated aluminum obtained by laminating an intermediate layer containing a resin containing at least a silanol group and a water-soluble anticorrosive layer having a thickness in the range of 100 nm to 7000 nm and containing a water-soluble resin in this order. A material is disclosed.
特開平7-268009号公報JP-A-7-268209 特開平10-26491号公報JP-A-10-26491 特開平6-93209号公報JP-A-6-93209 特開2000-191419号公報JP 2000-191419 A 特開2006-28535号公報JP 2006-28535 A
 しかしながら、上記従来のフィン材は、十分な親水性を有しておらず、冷房能力低下の抑制が不十分であった。また、耐水性においても不十分な面もあった。また、防錆性及び密着性向上を目的にクロメート層を有しているものもあり、環境に及ぼす悪影響が懸念される。
 本発明は、上記のような従来の課題を解決し、十分な親水性を有し、密着性、耐水性に優れる親水膜を有するとともに、防錆性、加工成型適性にも優れたフィン材を提供することを目的とする。
However, the conventional fin material does not have sufficient hydrophilicity, and the suppression of the cooling capability is insufficient. In addition, there was an insufficient aspect in terms of water resistance. In addition, some have a chromate layer for the purpose of improving rust prevention and adhesion, and there are concerns about adverse effects on the environment.
The present invention solves the above-described conventional problems, has a hydrophilic film having sufficient hydrophilicity, excellent adhesion and water resistance, and a fin material excellent in rust prevention and workability. The purpose is to provide.
 従来は親水膜にシリカ粒子や架橋剤を用いることで密着性及び親水性を発現する場合があったが十分な耐水性、密着性が得られない、または成型加工時の塗膜の割れや及びが発生する等の問題があった。この課題を解決するために、本発明はアルマイト層付与により密着性を向上させ、親水性組成物中の親水性ポリマー含量を上げて成型時でも割れない柔軟な膜設計とした。
 すなわち上記課題は下記構成の発明により解決された。
Conventionally, adhesion and hydrophilicity may be expressed by using silica particles or a crosslinking agent in the hydrophilic film, but sufficient water resistance, adhesion cannot be obtained, or cracking of the coating film during molding processing and There was a problem such as In order to solve this problem, the present invention improves the adhesion by applying an alumite layer and increases the hydrophilic polymer content in the hydrophilic composition to provide a flexible membrane design that does not break even during molding.
That is, the above problems have been solved by the invention having the following configuration.
1. アルミニウム基材上に酸化被膜層を有し、該酸化被膜層上に最表層として親水性組成物を用いて形成した親水膜を有するフィン材であって、該親水性組成物は親水性ポリマーを固形分中に80質量%以上含み、該親水性ポリマーは、下記一般式(I)または(II)で表される構造を含むことを特徴とするフィン材。 1. A fin material having an oxide film layer on an aluminum substrate and having a hydrophilic film formed on the oxide film layer by using a hydrophilic composition as an outermost layer, the hydrophilic composition comprising a hydrophilic polymer A fin material comprising 80% by mass or more in a solid content, wherein the hydrophilic polymer includes a structure represented by the following general formula (I) or (II).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
{一般式(I)および(II)中、R1、R2、R3、R4、R5およびR6はそれぞれ独立に水素原子又は炭化水素基を表し、Xは反応性基を表し、A、L、LおよびLは、それぞれ独立に単結合または連結基を示し、Yは-NHCOR、-CONH2、-CON(R2、-COR、-OM、-CO2M、-SO3M、-POM、-OPOM、又は-N(Rを表し、ここで、Rはアルキル基、アリール基、又はアラルキル基を表し、複数存在する場合、各Rは同一でも異なっていてもよい。Mは水素原子、アルカリ金属、アルカリ土類金属又はオニウムを表し、Zはハロゲンイオンを表す。}
2. 前記親水性ポリマーが、前記一般式(I)で表される構造を含むことを特徴とする上記1に記載のフィン材。
3. 前記親水性ポリマーが、前記一般式(II)で表される構造を含むことを特徴とする上記1に記載のフィン材。
4. 前記親水性組成物が、親水性ポリマーを固形分中に80~99質量%含むことを特徴とする上記1~3のいずれかに記載のフィン材。
5. 前記一般式(I)で表される構造を含む親水性ポリマーの質量平均分子量が2000~50000であることを特徴とする上記1~4のいずれかに記載のフィン材。
6. 前記一般式(II)で表される構造を含む親水性ポリマーの質量平均分子量が20000~100000であることを特徴とする上記1~5のいずれかに記載のフィン材。
7. 3L/時間の流水に240時間曝露した後の、前記親水膜の表面における水滴の接触角が15°以下であることを特徴とする上記1~6のいずれかに記載のフィン材。
8. 上記1~7のいずれかに記載のフィン材であることを特徴とする熱交換器用フィン材。
9. 上記8に記載の熱交換器用フィン材を備えたエアコン。
{In General Formulas (I) and (II), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a hydrocarbon group, X represents a reactive group, A, L 1 , L 2 and L 3 each independently represents a single bond or a linking group, and Y represents —NHCOR 7 , —CONH 2 , —CON (R 7 ) 2 , —COR 7 , —OM, —CO 2 M, —SO 3 M, —PO 3 M, —OPO 3 M, or —N (R 7 ) 3 Z 1 , wherein R 7 represents an alkyl group, an aryl group, or an aralkyl group, When present, each R 7 may be the same or different. M represents a hydrogen atom, an alkali metal, an alkaline earth metal, or onium, and Z 1 represents a halogen ion. }
2. 2. The fin material according to 1 above, wherein the hydrophilic polymer includes a structure represented by the general formula (I).
3. 2. The fin material according to 1 above, wherein the hydrophilic polymer includes a structure represented by the general formula (II).
4). 4. The fin material as described in any one of 1 to 3 above, wherein the hydrophilic composition contains a hydrophilic polymer in a solid content of 80 to 99% by mass.
5). 5. The fin material as described in any one of 1 to 4 above, wherein the hydrophilic polymer containing the structure represented by the general formula (I) has a mass average molecular weight of 2,000 to 50,000.
6). 6. The fin material as described in any one of 1 to 5 above, wherein the hydrophilic polymer containing the structure represented by the general formula (II) has a mass average molecular weight of 20,000 to 100,000.
7). 7. The fin material as described in any one of 1 to 6 above, wherein the contact angle of water droplets on the surface of the hydrophilic film after exposure to flowing water of 3 L / hour for 240 hours is 15 ° or less.
8). 8. A fin material for heat exchangers according to any one of 1 to 7 above.
9. An air conditioner comprising the heat exchanger fin material as described in 8 above.
 本発明のフィン材は、高い親水性、防錆性、耐水性、および加工成型適性を有する。このため、フィン材をエアコンの熱交換器用として用いた場合、冷房時の水のブリッジを形成することがないほか、埃などがフィンに付着しても凝集水によりフィン表面を洗い流すことでクリーニングする効果もある。また親水膜の密着性にも優れる。さらにクロメート層を含まないため、環境に与える影響も少ない。 The fin material of the present invention has high hydrophilicity, rust prevention, water resistance, and processability. For this reason, when the fin material is used for a heat exchanger of an air conditioner, it does not form a water bridge during cooling, and even if dust adheres to the fin, it is cleaned by washing the fin surface with condensed water. There is also an effect. Moreover, it is excellent also in the adhesiveness of a hydrophilic film. Furthermore, since it does not contain a chromate layer, it has little impact on the environment.
 以下に、本発明についてさらに詳細に説明する。
 本発明のフィン材は、アルミニウム基材上に酸化被膜層を有し、該酸化被膜層上に最表層として親水性組成物を用いて形成した親水膜を有するフィン材であって、該親水性組成物は親水性ポリマーを固形分中に80質量%以上含み、該親水性ポリマーは、前記一般式(I)または(II)で表される構造を有する。
 本発明にかかる親水性組成物は親水性ポリマーを固形分中に、好ましくは80~99質量%含む。また該親水性組成物は、下記一般式(I)で表される構造を有する親水性ポリマーと下記一般式(II)で表される構造を有する親水性ポリマーとを両方含有してもよい。
 好ましくは、親水性組成物は、前記親水性ポリマーを有し、且つ、Si、Ti、Zr、Alから選択される元素のアルコキシド(金属アルコキシドともいう)を加水分解、重縮合して形成された架橋構造を有する親水膜を形成させるものであるが、このような架橋構造を有する親水膜は、後に詳述する親水性ポリマーと金属アルコキシド化合物と、必要に応じて触媒を用いて形成することができる。
Hereinafter, the present invention will be described in more detail.
The fin material of the present invention is a fin material having an oxide film layer on an aluminum substrate, and having a hydrophilic film formed using a hydrophilic composition as an outermost layer on the oxide film layer, The composition contains 80% by mass or more of a hydrophilic polymer in the solid content, and the hydrophilic polymer has a structure represented by the general formula (I) or (II).
The hydrophilic composition according to the present invention preferably contains 80 to 99% by mass of a hydrophilic polymer in the solid content. The hydrophilic composition may contain both a hydrophilic polymer having a structure represented by the following general formula (I) and a hydrophilic polymer having a structure represented by the following general formula (II).
Preferably, the hydrophilic composition has the hydrophilic polymer and is formed by hydrolysis and polycondensation of an alkoxide (also referred to as a metal alkoxide) of an element selected from Si, Ti, Zr, and Al. A hydrophilic film having a crosslinked structure is formed. The hydrophilic film having such a crosslinked structure may be formed using a hydrophilic polymer, a metal alkoxide compound, which will be described in detail later, and a catalyst as necessary. it can.
 前記したような金属アルコキシドの加水分解、縮重合により形成された架橋構造を、本発明では以下、適宜、ゾルゲル架橋構造とも称する。 In the present invention, the above-described crosslinked structure formed by hydrolysis and condensation polymerization of metal alkoxide is also referred to as a sol-gel crosslinked structure as appropriate.
〔親水性ポリマー〕
 本発明で使用される親水性ポリマーは、下記一般式(I)または(II)で表される構造を有する。
[Hydrophilic polymer]
The hydrophilic polymer used in the present invention has a structure represented by the following general formula (I) or (II).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
{一般式(I)および(II)中、R1、R2、R3、R4、R5およびR6はそれぞれ独立に水素原子又は炭化水素基を表し、Xは反応性基を表し、A、L、LおよびLは、それぞれ独立に単結合または連結基を示し、Yは-NHCOR、-CONH2、-CON(R2、-COR、-OM、-CO2M、-SO3M、-POM、-OPOM、又は-N(Rを表し、ここで、Rはアルキル基、アリール基、又はアラルキル基を表し、複数存在する場合、各Rは同一でも異なっていてもよい。Mは水素原子、アルカリ金属、アルカリ土類金属又はオニウムを表し、Zはハロゲンイオンを表す。} {In General Formulas (I) and (II), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a hydrocarbon group, X represents a reactive group, A, L 1 , L 2 and L 3 each independently represents a single bond or a linking group, and Y represents —NHCOR 7 , —CONH 2 , —CON (R 7 ) 2 , —COR 7 , —OM, —CO 2 M, —SO 3 M, —PO 3 M, —OPO 3 M, or —N (R 7 ) 3 Z 1 , wherein R 7 represents an alkyl group, an aryl group, or an aralkyl group, When present, each R 7 may be the same or different. M represents a hydrogen atom, an alkali metal, an alkaline earth metal, or onium, and Z 1 represents a halogen ion. }
 Rは好ましくは炭素数1~18のアルキル基、アリール基、又はアラルキル基を表す。
 R~R、X、Y、A、L~L、M、Zは複数存在する場合は互いに同一でも異なっていてもよい。
R 7 preferably represents an alkyl group having 1 to 18 carbon atoms, an aryl group, or an aralkyl group.
When a plurality of R 1 to R 7 , X, Y, A, L 1 to L 3 , M, and Z 1 are present, they may be the same as or different from each other.
 本発明で用いられる親水性ポリマーは、反応性基と親水性基を有する。反応性基は、主鎖の一つの末端のみに有する場合や、主鎖に複数個有する場合などがある。
 「反応性基」は、金属アルコキシドの加水分解、重縮合物に反応して化学結合を形成できる官能基を意味する。また、反応性基同士が化学結合を形成してもよい。親水性ポリマーは、水溶性であることが好ましく、金属アルコキシドの加水分解、重縮合物と反応することにより水不溶性になることが好ましい。
 化学結合は、通常の意味と同様に、共有結合、イオン結合、配位結合、水素結合を含む。化学結合は、共有結合であることが好ましい。
 反応性基は、一般には、ポリマーの架橋剤に含まれる反応性基と同様であり、熱または光により架橋を形成できる化合物である。架橋剤について、「架橋剤ハンドブック」山下晋三、金子東助著、大成社刊(1981)に記載がある。
The hydrophilic polymer used in the present invention has a reactive group and a hydrophilic group. There may be a case where the reactive group is present only at one end of the main chain, or a case where a plurality of reactive groups are present in the main chain.
The “reactive group” means a functional group capable of forming a chemical bond by reacting with a hydrolysis or polycondensate of a metal alkoxide. Moreover, reactive groups may form a chemical bond. The hydrophilic polymer is preferably water-soluble, and preferably becomes water-insoluble by reacting with a hydrolysis or polycondensate of a metal alkoxide.
The chemical bond includes a covalent bond, an ionic bond, a coordination bond, and a hydrogen bond in the usual meaning. The chemical bond is preferably a covalent bond.
The reactive group is generally the same as the reactive group contained in the crosslinking agent of the polymer, and is a compound that can form a crosslink by heat or light. The crosslinking agent is described in “Crosslinking agent handbook” by Shinzo Yamashita, Tosuke Kaneko, published by Taiseisha (1981).
 反応性基は、好ましくは、カルボキシル基(HOOC-)、その塩(MOOC-、Mはカチオン)、無水カルボン酸基(例えば、無水コハク酸、無水フタル酸または無水マレイン酸から誘導される一価の基)、アミノ基(H2N-)、ヒドロキシル基(HO-)、エポキシ基(例、グリシジル基)、メチロール基(HO-CH2-)、メルカプト基(HS-)、イソシアナート基(OCN-)、ブロックイソシアナート基、アルコキシシリル基、アルコキシチタネート基、アルコキシアルミネート基、アルコキシジルコネート基、エチレン性不飽和二重結合を含む基、エステル結合を含む基、テトラゾール基である。反応性基としては、アルコキシシリル基が最も好ましい。片末端には、2以上の反応性基を有していてもよい。2以上の反応性基は、互いに異なっていてもよい。 The reactive group is preferably a monovalent group derived from a carboxyl group (HOOC-), a salt thereof (MOOC-, M is a cation), a carboxylic anhydride group (for example, succinic anhydride, phthalic anhydride or maleic anhydride). Group), amino group (H 2 N—), hydroxyl group (HO—), epoxy group (eg, glycidyl group), methylol group (HO—CH 2 —), mercapto group (HS—), isocyanate group ( OCN-), a block isocyanate group, an alkoxysilyl group, an alkoxytitanate group, an alkoxyaluminate group, an alkoxyzirconate group, a group containing an ethylenically unsaturated double bond, a group containing an ester bond, and a tetrazole group. As the reactive group, an alkoxysilyl group is most preferable. One end may have two or more reactive groups. Two or more reactive groups may be different from each other.
 親水性ポリマーの繰り返し単位と反応性基との間や、親水性ポリマーの繰り返し単位と親水性基との間に連結基が介在していることが好ましい。連結基AおよびL1、L2,L3は、それぞれ独立に単結合または連結基を表し、有機連結基を表す場合、好ましくは非金属原子からなる2価の連結基を示し、0個から60個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、0個から100個までの水素原子、及び0個から20個までの硫黄原子から成り立つものが好ましい。より好ましくは、-O-、-S-、-CO-、-NH-、-N<、脂肪族基、芳香族基、複素環基、およびそれらの組合せから選ばれることが好ましい。連結基は、-O-、-S-、-CO-、-NH-、あるいは、-O-、-S-、-CO-、-NH-を含む組合せであることがより好ましい。 It is preferable that a linking group is interposed between the repeating unit of the hydrophilic polymer and the reactive group, or between the repeating unit of the hydrophilic polymer and the hydrophilic group. The linking groups A and L 1 , L 2 , and L 3 each independently represent a single bond or a linking group. When an linking group represents an organic linking group, it preferably represents a divalent linking group composed of a nonmetallic atom, Consists of up to 60 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 0 to 100 hydrogen atoms, and 0 to 20 sulfur atoms Is preferred. More preferably, it is selected from —O—, —S—, —CO—, —NH—, —N <, an aliphatic group, an aromatic group, a heterocyclic group, and combinations thereof. The linking group is more preferably —O—, —S—, —CO—, —NH—, or a combination containing —O—, —S—, —CO—, —NH—.
(一般式(I)で表される構造を有する親水性ポリマー)
 一般式(I)で表される構造を有する親水性ポリマーは、片末端に反応性基を有する親水性ポリマーであり、例えば、連鎖移動剤(ラジカル重合ハンドブック(エヌ・ティー・エス、蒲池幹治、遠藤剛)に記載)やIniferter (Macromolecules 1986,19,p287-(Otsu)に記載)の存在下に、親水性モノマー(例、アクリルアミド、アクリル酸、メタクリル酸3-スルホプロピルのカリウム塩)をラジカル重合させることにより合成できる。連鎖移動剤の例は、3-メルカプトプロピオン酸、2-アミノエタンチオール塩酸塩、3-メルカプトプロパノール、2-ヒドロキシエチルジスルフィド、3-メルカプトプロピルトリメトキシシランを含む。また、連鎖移動剤を使用せず、反応性基(例、カルボキシル)を有するラジカル重合開始剤を用いて、親水性モノマー(例、アクリルアミド)をラジカル重合させてもよい。
 一般式(I)で表される構造を有する親水性ポリマーの質量平均分子量は、100万以下が好ましく、1000乃至100万がさらに好ましく、2000乃至5万が最も好ましい。分子量が100万以下であれば塗布液粘度が上がりすぎず好ましい。分子量が1000以上であれば密着性や親水性等が充分であり、好ましい。
(Hydrophilic polymer having a structure represented by the general formula (I))
The hydrophilic polymer having a structure represented by the general formula (I) is a hydrophilic polymer having a reactive group at one end. For example, a chain transfer agent (radical polymerization handbook (NTS, Mikiji Tsunoike, In the presence of Iniferter (described in Macromolecules 1986, 19, p287- (Otsu)), a hydrophilic monomer (eg, potassium salt of acrylamide, acrylic acid, 3-sulfopropyl methacrylate) is used as a radical. It can be synthesized by polymerization. Examples of chain transfer agents include 3-mercaptopropionic acid, 2-aminoethanethiol hydrochloride, 3-mercaptopropanol, 2-hydroxyethyl disulfide, 3-mercaptopropyltrimethoxysilane. Alternatively, a hydrophilic monomer (eg, acrylamide) may be radically polymerized using a radical polymerization initiator having a reactive group (eg, carboxyl) without using a chain transfer agent.
The mass average molecular weight of the hydrophilic polymer having the structure represented by the general formula (I) is preferably 1,000,000 or less, more preferably 1,000 to 1,000,000, and most preferably 2,000 to 50,000. A molecular weight of 1,000,000 or less is preferable because the viscosity of the coating solution does not increase too much. A molecular weight of 1000 or more is preferable because adhesion and hydrophilicity are sufficient.
 上記一般式(I)において、R1、R2はそれぞれ独立に、水素原子又は炭化水素基を表す。炭化水素基としては、炭素数1~8の炭化水素基であることが好ましく、炭素数1~8のアルキル基、アリール基などが挙げられ、直鎖、分岐又は環状のアルキル基が好ましい。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-エチルヘキシル基、2-メチルヘキシル基、シクロペンチル基等が挙げられる。R1、R2は、効果及び入手容易性の観点から、好ましくは水素原子、メチル基又はエチル基である。 In the said general formula (I), R < 1 >, R < 2 > represents a hydrogen atom or a hydrocarbon group each independently. The hydrocarbon group is preferably a hydrocarbon group having 1 to 8 carbon atoms, and examples thereof include an alkyl group having 1 to 8 carbon atoms and an aryl group, and a linear, branched or cyclic alkyl group is preferable. Specifically, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, isopropyl group, isobutyl group, s-butyl group, t-butyl group, isopentyl group, neopentyl group 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, cyclopentyl group and the like. R 1 and R 2 are preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoints of effects and availability.
 これらの炭化水素基は更に置換基を有していてもよい。アルキル基が置換基を有するとき、置換アルキル基は置換基とアルキレン基との結合により構成され、ここで、置換基としては、水素を除く一価の非金属原子団が用いられる。好ましい例としては、ハロゲン原子(-F、-Br、-Cl、-I)、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、N-アルキルアミノ基、N,N-ジアルキルアミノ基、アシルオキシ基、N-アルキルカルバモイルオキシ基、N-アリールカバモイルオキシ基、アシルアミノ基、ホルミル基、アシル基、カルボキシル基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N-アルキルカルバモイル基、N,N-ジアルキルカルバモイル基、N-アリールカルバモイル基、N-アルキル-N-アリールカルバモイル基、スルホ基、スルホナト基、スルファモイル基、N-アルキルスルファモイル基、N,N-ジアルキルスルファモイル基、N-アリールスルファモイル基、N-アルキル-N-アリールスルファモイル基、ホスフォノ基、ホスフォナト基、ジアルキルホスフォノ基、ジアリールホスフォノ基、モノアルキルホスフォノ基、アルキルホスフォナト基、モノアリールホスフォノ基、アリールホスフォナト基、ホスフォノオキシ基、ホスフォナトオキシ基、アリール基、アルケニル基が挙げられる。 These hydrocarbon groups may further have a substituent. When the alkyl group has a substituent, the substituted alkyl group is composed of a bond between the substituent and the alkylene group, and a monovalent nonmetallic atomic group excluding hydrogen is used as the substituent. Preferred examples include halogen atoms (—F, —Br, —Cl, —I), alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, N-alkylamino groups, N, N-dialkylamino groups, acyloxy groups, N-alkylcarbamoyloxy group, N-arylcarbamoyloxy group, acylamino group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, N-alkylcarbamoyl group, N, N-dialkyl Carbamoyl, N-arylcarbamoyl, N-alkyl-N-arylcarbamoyl, sulfo, sulfonate, sulfamoyl, N-alkylsulfamoyl, N, N-dialkylsulfamoyl, N-arylsulfo Famoyl group, N-alkyl-N- Lillesulfamoyl group, phosphono group, phosphonate group, dialkyl phosphono group, diaryl phosphono group, monoalkyl phosphono group, alkyl phosphonate group, monoaryl phosphono group, aryl phosphonate group, phosphonooxy group, phosphonate An oxy group, an aryl group, and an alkenyl group are mentioned.
 一方、置換アルキル基におけるアルキレン基としては好ましくは炭素数1から20までのアルキル基上の水素原子のいずれか1つを除し、2価の有機残基としたものを挙げることができ、より好ましくは炭素原子数1から12までの直鎖状、炭素原子数3から12までの分岐状ならびに炭素原子数5から10までの環状のアルキレン基を挙げることができ、さらに好ましくは炭素原子数1から8までの直鎖状、炭素原子数3から8までの分岐状ならびに炭素原子数5から8までの環状のアルキレン基を挙げることができる。該置換基とアルキレン基を組み合わせる事により得られる置換アルキル基の、好ましい具体例としては、クロロメチル基、ブロモメチル基、2-クロロエチル基、トリフルオロメチル基、メトキシメチル基、メトキシエトキシエチル基、アリルオキシメチル基、フェノキシメチル基、メチルチオメチルと、トリルチオメチル基、エチルアミノエチル基、ジエチルアミノプロピル基、モルホリノプロピル基、アセチルオキシメチル基、ベンゾイルオキシメチル基、N-シクロヘキシルカルバモイルオキシエチル基、N-フェニルカルバモイルオキシエチルル基、アセチルアミノエチル基、N-メチルベンゾイルアミノプロピル基、2-オキシエチル基、2-オキシプロピル基、カルボキシプロピル基、メトキシカルボニルエチル基、アリルオキシカルボニルブチル基、 On the other hand, the alkylene group in the substituted alkyl group is preferably a divalent organic residue obtained by removing any one of the hydrogen atoms on the alkyl group having 1 to 20 carbon atoms. Preferred examples include linear alkylene groups having 1 to 12 carbon atoms, branched alkylene groups having 3 to 12 carbon atoms, and cyclic alkylene groups having 5 to 10 carbon atoms, and more preferably 1 carbon atom. And a linear alkylene group having 3 to 8 carbon atoms, a branched chain having 3 to 8 carbon atoms, and a cyclic alkylene group having 5 to 8 carbon atoms. Preferable specific examples of the substituted alkyl group obtained by combining the substituent and the alkylene group are chloromethyl group, bromomethyl group, 2-chloroethyl group, trifluoromethyl group, methoxymethyl group, methoxyethoxyethyl group, allyl group. Oxymethyl, phenoxymethyl, methylthiomethyl, tolylthiomethyl, ethylaminoethyl, diethylaminopropyl, morpholinopropyl, acetyloxymethyl, benzoyloxymethyl, N-cyclohexylcarbamoyloxyethyl, N- Phenylcarbamoyloxyethyl group, acetylaminoethyl group, N-methylbenzoylaminopropyl group, 2-oxyethyl group, 2-oxypropyl group, carboxypropyl group, methoxycarbonylethyl group, allyloxy Carbonyl butyl group,
クロロフェノキシカルボニルメチル基、カルバモイルメチル基、N-メチルカルバモイルエチル基、N,N-ジプロピルカルバモイルメチル基、N-(メトキシフェニル)カルバモイルエチル基、N-メチル-N-(スルホフェニル)カルアバモイルメチル基、スルホブチル基、スルホナトブチル基、スルファモイルブチル基、N-エチルスルファモイルメチル基、N,N-ジプロピルスルファモイルプロピル基、N-トリルスルファモイルプロピル基、N-メチル-N-(ホスフォノフェニル)スルファモイルオクチル基、ホスフォノブチル基、ホスフォナトヘキシル基、ジエチルホスフォノブチル基、ジフェニルホスフォノプロピル基、メチルホスフォノブチル基、メチルホスフォナトブチル基、トリルホスフォノへキシル基、トリルホスフォナトヘキシル基、ホスフォノオキシプロピル基、ホスフォナトオキシブチル基、ベンジル基、フェネチル基、α-メチルベンジル基、1-メチル-1-フェニルエチル基、p-メチルベンジル基、シンナミル基、アリル基、1-プロペニルメチル基、2-ブテニル基、2-メチルアリル基、2-メチルプロペニルメチル基、2-プロピニル基、2-ブチニル基、3-ブチニル基等を挙げることができる。 Chlorophenoxycarbonylmethyl group, carbamoylmethyl group, N-methylcarbamoylethyl group, N, N-dipropylcarbamoylmethyl group, N- (methoxyphenyl) carbamoylethyl group, N-methyl-N- (sulfophenyl) carbamoyl Methyl group, sulfobutyl group, sulfonatobutyl group, sulfamoylbutyl group, N-ethylsulfamoylmethyl group, N, N-dipropylsulfamoylpropyl group, N-tolylsulfamoylpropyl group, N-methyl-N- (Phosphonophenyl) sulfamoyloctyl group, phosphonobutyl group, phosphonatohexyl group, diethylphosphonobutyl group, diphenylphosphonopropyl group, methylphosphonobutyl group, methylphosphonatobutyl group, tolylphosphonohexyl group, Torilho Phonatohexyl group, phosphonooxypropyl group, phosphonatoxybutyl group, benzyl group, phenethyl group, α-methylbenzyl group, 1-methyl-1-phenylethyl group, p-methylbenzyl group, cinnamyl group, allyl group 1-propenylmethyl group, 2-butenyl group, 2-methylallyl group, 2-methylpropenylmethyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group and the like.
 AおよびLは単結合又は連結基を表す。連結基としては前述のものが挙げられる。より具体的な連結基としては下記の構造またはこれらが組合わされて構成されるものを挙げることができる。 A and L 1 each represents a single bond or a linking group. Examples of the linking group include those described above. More specific examples of the linking group include the following structures or those formed by combining them.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 AおよびL1は、より好ましくは、―CHCHCHS-、―CHS-、―CONHC(CH)CH-、-CONH-、-CO-、-CO-、-CH-、-CONH―CHCHCH-である。さらに好ましくは、―CHCHCHS-または-CONH―CHCHCH-である。 A and L 1 are more preferably —CH 2 CH 2 CH 2 S—, —CH 2 S—, —CONHC (CH 3 ) CH 2 —, —CONH—, —CO—, —CO 2 —, — CH 2 —, —CONH—CH 2 CH 2 CH 2 —. More preferred is —CH 2 CH 2 CH 2 S— or —CONH—CH 2 CH 2 CH 2 —.
 親水性基としてのYは-NHCOR7、-CONH2、-CON(R72、-COR7、-OM、-CO2M、-SO3M、-PO3M、-OPO3M又は-N(R731を表し、ここで、R7は、直鎖、分岐又は環状のアルキル基、アリール基、アラルキル基を表し、Mは水素原子、アルカリ金属、アルカリ土類金属又はオニウムを表し、Z1はハロゲンイオンを表す。また、-CON(R72のように複数のR7を有する場合、R7同士が結合して環を形成していてもよく、また、形成された環は酸素原子、硫黄原子、窒素原子などのヘテロ原子を含むヘテロ環であってもよい。R7はさらに置換基を有していてもよく、ここで導入可能な置換基としては、前記R1、R2がアルキル基の場合に導入可能な置換基として挙げたものを同様に挙げることができる。 Y as a hydrophilic group is —NHCOR 7 , —CONH 2 , —CON (R 7 ) 2 , —COR 7 , —OM, —CO 2 M, —SO 3 M, —PO 3 M, —OPO 3 M or —N (R 7 ) 3 Z 1 , wherein R 7 represents a linear, branched or cyclic alkyl group, aryl group or aralkyl group, and M represents a hydrogen atom, an alkali metal, an alkaline earth metal or Represents onium, and Z 1 represents a halogen ion. In addition, when having a plurality of R 7 such as —CON (R 7 ) 2 , R 7 may be bonded to each other to form a ring, and the formed ring is an oxygen atom, sulfur atom, nitrogen It may be a heterocycle containing a heteroatom such as an atom. R 7 may further have a substituent, and examples of the substituent that can be introduced here include those listed as the substituents that can be introduced when R 1 and R 2 are alkyl groups. Can do.
 R7としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-エチルヘキシル基、2-メチルヘキシル基、シクロペンチル基等が好適に挙げられる。また、Mとしては、水素原子;リチウム、ナトリウム、カリウム等のアルカリ金属;カルシウム、バリウム等のアルカリ土類金属、又は、アンモニウム、ヨードニウム、スルホニウムなどのオニウムが挙げられる。Yとしては、-NHCOCH3、-CONH2、-COOH、-SO3 -NMe4 +、モルホリル基等が好ましく、-CONH2がより好ましい。 Specific examples of R 7 include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, isopropyl, isobutyl, s-butyl, t-butyl, Preferable examples include isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, and cyclopentyl group. Examples of M include a hydrogen atom; an alkali metal such as lithium, sodium and potassium; an alkaline earth metal such as calcium and barium; or an onium such as ammonium, iodonium and sulfonium. The Y, -NHCOCH 3, -CONH 2, -COOH, -SO 3 - NMe 4 +, and the like are preferable morpholyl group, -CONH 2 is more preferable.
 親水性ポリマー中の前記他のモノマー由来の構造単位の好ましい総割合は80質量%以下であることが好ましく、さらに好ましくは50質量%以下である。 The preferred total proportion of the structural units derived from the other monomers in the hydrophilic polymer is preferably 80% by mass or less, and more preferably 50% by mass or less.
 本発明に好適に用いることができる親水性ポリマーの具体例を以下に示すが、本発明はこれらに限定されるものではない。具体例中、*はポリマーへの結合位置を表す。 Specific examples of hydrophilic polymers that can be suitably used in the present invention are shown below, but the present invention is not limited thereto. In specific examples, * represents a bonding position to the polymer.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記に例示した親水性ポリマーは、例えば、下記一般式(i)で表されるラジカル重合可能なモノマーと、下記一般式(ii)で表されるラジカル重合において連鎖移動能を有するシランカップリング剤を用いてラジカル重合することにより合成することができる。シランカップリング剤(ii)が連鎖移動能を有するため、ラジカル重合においてポリマー主鎖末端にシランカップリング基が導入されたポリマーを合成することができる。 The hydrophilic polymer exemplified above includes, for example, a radical polymerizable monomer represented by the following general formula (i) and a silane coupling agent having chain transfer ability in the radical polymerization represented by the following general formula (ii) It can be synthesized by radical polymerization using Since the silane coupling agent (ii) has chain transfer ability, it is possible to synthesize a polymer in which a silane coupling group is introduced at the end of the polymer main chain in radical polymerization.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記式(i)及び(ii)において、A、R1~R2、L1、Yは、上記一般式(I)におけるものと同義である。これらの化合物は、市販されており、また容易に合成することもできる。 In the above formulas (i) and (ii), A, R 1 to R 2 , L 1 and Y have the same meanings as in the above general formula (I). These compounds are commercially available and can also be easily synthesized.
(一般式(II)で表される構造を有する親水性ポリマー)
 前記一般式(II)において、R3、R4、R5およびR6は、それぞれ独立に水素原子または炭化水素基を表し、具体的な例および好ましい範囲は上記一般式(I)のR1、R2と同様である。L2、L3は、それぞれ独立に単結合または連結基を表し、具体的な例および好ましい範囲は上記一般式(I)のL1と同様である。YおよびXの定義は一般式(I)中のものと同じであり、具体的な例および好ましい範囲も同様である。
(Hydrophilic polymer having a structure represented by the general formula (II))
In the general formula (II), R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a hydrocarbon group, and specific examples and preferred ranges thereof are those represented by R 1 in the general formula (I). , R 2 . L 2 and L 3 each independently represents a single bond or a linking group, and specific examples and preferred ranges are the same as those for L 1 in the above general formula (I). The definitions of Y and X are the same as those in formula (I), and specific examples and preferred ranges are also the same.
 一般式(II)において、L3が単結合、または、-CONH-、-NHCONH-、-OCONH-、-SONH-および-SO-からなる群より選択される構造を1つ以上有する連結基であることがより好ましい。 In the general formula (II), L 3 has a single bond or one or more structures selected from the group consisting of —CONH—, —NHCONH—, —OCONH—, —SO 2 NH—, and —SO 3 —. More preferably, it is a linking group.
 一般式(II)で表される構造を有する親水性ポリマーを合成するための各化合物は市販されており、また容易に合成することもできる。
 一般式(II)で表される構造を有する親水性ポリマーを合成するためのラジカル重合法としては、従来公知の方法の何れをも使用することができる。
 具体的には、一般的なラジカル重合法は、例えば、新高分子実験学3(1996年、共立出版)、高分子の合成と反応1(高分子学会編、1992年、共立出版)、新実験化学講座19(1978年、丸善)、高分子化学(I)(日本化学会編、1996年、丸善)、高分子合成化学(物質工学講座、1995年、東京電気大学出版局) 等に記載されており、これらを適用することができる。
Each compound for synthesizing the hydrophilic polymer having the structure represented by the general formula (II) is commercially available, and can be easily synthesized.
Any conventionally known method can be used as the radical polymerization method for synthesizing the hydrophilic polymer having the structure represented by the general formula (II).
Specifically, general radical polymerization methods include, for example, New Polymer Experiments 3 (1996, Kyoritsu Shuppan), Polymer Synthesis and Reaction 1 (Polymer Society of Japan, 1992, Kyoritsu Shuppan), New Experiment Chemistry Course 19 (1978, Maruzen), Polymer Chemistry (I) (Edited by Chemical Society of Japan, 1996, Maruzen), Synthetic Polymer Chemistry (Materials Engineering Course, 1995, Tokyo Denki University Press) These can be applied.
 一般式(II)で表される構造を含む親水性ポリマーの質量平均分子量は、100万以下が好ましく、1000~100万がより好ましく、2万~10万がさらに好ましい。分子量が100万以下であれば親水膜形成用塗布液を調製する際に溶媒への溶解性が悪化することなく、塗布液粘度が低くなり、均一な被膜を形成し易いなどハンドリング性に問題がなく、好ましい。 The mass average molecular weight of the hydrophilic polymer having a structure represented by the general formula (II) is preferably 1,000,000 or less, more preferably 1,000 to 1,000,000, and further preferably 20,000 to 100,000. When the molecular weight is 1,000,000 or less, there is a problem in handling properties such as the viscosity of the coating solution is lowered and a uniform film is easily formed without deteriorating the solubility in a solvent when preparing a coating solution for forming a hydrophilic film. Not preferred.
 上記、親水性ポリマーは、式中Yで表される親水性を発現する親水性基を有しており、この親水性基の密度が高いほど表面親水性が高くなり好ましい。親水性基密度は、親水性ポリマー1g当たりの親水性基モル数で表すことができ、1~30meq/gが好まく、2~20meq/gがより好ましく、3~15meq/gが最も好ましい。 The above hydrophilic polymer has a hydrophilic group that expresses hydrophilicity represented by Y in the formula, and the higher the density of the hydrophilic group, the higher the surface hydrophilicity, which is preferable. The hydrophilic group density can be expressed as the number of moles of hydrophilic groups per gram of hydrophilic polymer, preferably 1 to 30 meq / g, more preferably 2 to 20 meq / g, and most preferably 3 to 15 meq / g.
 一般式(II)で表される構造を含む親水性ポリマーにおける各構造単位の共重合比率は、Yを含有する構造単位のモル比(m2)とXを含有する構造単位のモル比(n2)が、m2/n2=30/70~99/1の範囲が好ましく、m2/n2=40/60~98/2がより好ましく、m2/n2=50/50~97/3が最も好ましい。m2/n2が30/70以上であれば親水性が不足することなく、一方、m2/n2が99/1以下であれば、反応性基量が十分量となり、十分な硬化が得られ、膜強度も十分なものとなる。 The copolymerization ratio of each structural unit in the hydrophilic polymer containing the structure represented by the general formula (II) is the molar ratio (m 2 ) of the structural unit containing Y and the molar ratio of the structural unit containing X (n 2), m 2 / n 2 = 30/70 preferably in the range of ~ 99/1, more preferably m 2 / n 2 = 40/ 60 ~ 98/2, m 2 / n 2 = 50/50 ~ 97 / 3 is most preferred. If m 2 / n 2 is 30/70 or more, the hydrophilicity is not insufficient. On the other hand, if m 2 / n 2 is 99/1 or less, the reactive group amount is sufficient and sufficient curing is achieved. As a result, the film strength is sufficient.
 以下に、一般式(II)で表される構造を有する親水性ポリマーをその質量平均分子量(M.W.)とともに以下に示すが、本発明はこれらに限定されるものではない。なお、以下に示す具体例のポリマーは、記載される各構造単位が記載のモル比で含まれるランダム共重合体であることを意味する。 Hereinafter, the hydrophilic polymer having a structure represented by the general formula (II) is shown below together with its mass average molecular weight (MW), but the present invention is not limited thereto. In addition, the polymer of the specific example shown below means that it is a random copolymer in which each structural unit described is contained by the described molar ratio.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 また、前記一般式(I)又は(II)で表される構造を含む親水性ポリマーは、他のモノマーとの共重合体であってもよい。用いられる他のモノマーとしては、例えば、アクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、メタクリルアミド類、ビニルエステル類、スチレン類、アクリル酸、メタクリル酸、アクリロニトリル、無水マレイン酸、マレイン酸イミド等の公知のモノマーも挙げられる。このようなモノマー類を共重合させることで、製膜性、膜強度、親水性、疎水性、溶解性、反応性、安定性等の諸物性を改善することができる。 Further, the hydrophilic polymer including the structure represented by the general formula (I) or (II) may be a copolymer with another monomer. Examples of other monomers used include acrylic esters, methacrylic esters, acrylamides, methacrylamides, vinyl esters, styrenes, acrylic acid, methacrylic acid, acrylonitrile, maleic anhydride, maleic imide, etc. These known monomers are also included. By copolymerizing such monomers, various physical properties such as film forming property, film strength, hydrophilicity, hydrophobicity, solubility, reactivity, and stability can be improved.
 アクリル酸エステル類の具体例としては、メチルアクリレート、エチルアクリレート、(n-またはi-)プロピルアクリレート、(n-、i-、sec-またはt-)ブチルアクリレート、アミルアクリレート、2-エチルヘキシルアクリレート、ドデシルアクリレート、クロロエチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシペンチルアクリレート、シクロヘキシルアクリレート、アリルアクリレート、トリメチロールプロパンモノアクリレート、ペンタエリスリトールモノアクリレート、ベンジルアクリレート、メトキシベンジルアクリレート、クロロベンジルアクリレート、ヒドロキシベンジルアクリレート、ヒドロキシフェネチルアクリレート、ジヒドロキシフェネチルアクリレート、フルフリルアクリレート、テトラヒドロフルフリルアクリレート、フェニルアクリレート、ヒドロキシフェニルアクリレート、クロロフェニルアクリレート、スルファモイルフェニルアクリレート、2-(ヒドロキシフェニルカルボニルオキシ)エチルアクリレート等が挙げられる。 Specific examples of acrylic esters include methyl acrylate, ethyl acrylate, (n- or i-) propyl acrylate, (n-, i-, sec- or t-) butyl acrylate, amyl acrylate, 2-ethylhexyl acrylate, Dodecyl acrylate, chloroethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypentyl acrylate, cyclohexyl acrylate, allyl acrylate, trimethylolpropane monoacrylate, pentaerythritol monoacrylate, benzyl acrylate, methoxybenzyl acrylate, chloro Benzyl acrylate, hydroxybenzyl acrylate, hydroxyphenethyl acrylate, dihydroxy Phenethyl acrylate, furfuryl acrylate, tetrahydrofurfuryl acrylate, phenyl acrylate, hydroxyphenyl acrylate, chlorophenyl acrylate, sulfamoylphenyl acrylate, 2- (hydroxyphenyl carbonyloxy) ethyl acrylate.
 メタクリル酸エステル類の具体例としては、メチルメタクリレート、エチルメタクリレート、(n-またはi-)プロピルメタクリレート、(n-、i-、sec-またはt-)ブチルメタクリレート、アミルメタクリレート、2-エチルヘキシルメタクリレート、ドデシルメタクリレート、クロロエチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシペンチルメタクリレート、シクロヘキシルメタクリレート、アリルメタクリレート、トリメチロールプロパンモノメタクリレート、ペンタエリスリトールモノメタクリレート、ベンジルメタクリレート、メトキシベンジルメタクリレート、クロロベンジルメタクリレート、ヒドロキシベンジルメタクリレート、ヒドロキシフェネチルメタクリレート、ジヒドロキシフェネチルメタクリレート、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、フェニルメタクリレート、ヒドロキシフェニルメタクリレート、クロロフェニルメタクリレート、スルファモイルフェニルメタクリレート、2-(ヒドロキシフェニルカルボニルオキシ)エチルメタクリレート等が挙げられる。 Specific examples of methacrylic acid esters include methyl methacrylate, ethyl methacrylate, (n- or i-) propyl methacrylate, (n-, i-, sec- or t-) butyl methacrylate, amyl methacrylate, 2-ethylhexyl methacrylate, Dodecyl methacrylate, chloroethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxypentyl methacrylate, cyclohexyl methacrylate, allyl methacrylate, trimethylolpropane monomethacrylate, pentaerythritol monomethacrylate, benzyl methacrylate, methoxybenzyl methacrylate, chloro Benzyl methacrylate, hydroxybenzyl methacrylate, hydroxy Phenethyl methacrylate, dihydroxyphenethyl methacrylate, furfuryl methacrylate, tetrahydrofurfuryl methacrylate, phenyl methacrylate, hydroxyphenyl methacrylate, chlorophenyl methacrylate, sulfamoylphenyl methacrylate, 2- (hydroxyphenyl carbonyloxy) ethyl methacrylate.
 アクリルアミド類の具体例としては、アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N-プロピルアクリルアミド、N-ブチルアクリルアミド、N-ベンジルアクリルアミド、N-ヒドロキシエチルアクリルアミド、N-フェニルアクリルアミド、N-トリルアクリルアミド、N-(ヒドロキシフェニル)アクリルアミド、N-(スルファモイルフェニル)アクリルアミド、N-(フェニルスルホニル)アクリルアミド、N-(トリルスルホニル)アクリルアミド、N,N-ジメチルアクリルアミド、N-メチル-N-フェニルアクリルアミド、N-ヒドロキシエチル-N-メチルアクリルアミド等が挙げられる。 Specific examples of acrylamides include acrylamide, N-methylacrylamide, N-ethylacrylamide, N-propylacrylamide, N-butylacrylamide, N-benzylacrylamide, N-hydroxyethylacrylamide, N-phenylacrylamide, and N-tolylacrylamide. N- (hydroxyphenyl) acrylamide, N- (sulfamoylphenyl) acrylamide, N- (phenylsulfonyl) acrylamide, N- (tolylsulfonyl) acrylamide, N, N-dimethylacrylamide, N-methyl-N-phenylacrylamide N-hydroxyethyl-N-methylacrylamide and the like.
 メタクリルアミド類の具体例としては、メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、N-プロピルメタクリルアミド、N-ブチルメタクリルアミド、N-ベンジルメタクリルアミド、N-ヒドロキシエチルメタクリルアミド、N-フェニルメタクリルアミド、N-トリルメタクリルアミド、N-(ヒドロキシフェニル)メタクリルアミド、N-(スルファモイルフェニル)メタクリルアミド、N-(フェニルスルホニル)メタクリルアミド、N-(トリルスルホニル)メタクリルアミド、N,N-ジメチルメタクリルアミド、N-メチル-N-フェニルメタクリルアミド、N-ヒドロキシエチル-N-メチルメタクリルアミド等が挙げられる。 Specific examples of methacrylamides include methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N-propylmethacrylamide, N-butylmethacrylamide, N-benzylmethacrylamide, N-hydroxyethylmethacrylamide, N -Phenylmethacrylamide, N-tolylmethacrylamide, N- (hydroxyphenyl) methacrylamide, N- (sulfamoylphenyl) methacrylamide, N- (phenylsulfonyl) methacrylamide, N- (tolylsulfonyl) methacrylamide, N , N-dimethylmethacrylamide, N-methyl-N-phenylmethacrylamide, N-hydroxyethyl-N-methylmethacrylamide and the like.
 ビニルエステル類の具体例としては、ビニルアセテート、ビニルブチレート、ビニルベンゾエート等が挙げられる。
 スチレン類の具体例としては、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、プロピルスチレン、シクロヘキシルスチレン、クロロメチルスチレン、トリフルオロメチルスチレン、エトキシメチルスチレン、アセトキシメチルスチレン、メトキシスチレン、ジメトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、ヨードスチレン、フルオロスチレン、カルボキシスチレン等が挙げられる。
Specific examples of vinyl esters include vinyl acetate, vinyl butyrate, vinyl benzoate and the like.
Specific examples of styrenes include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, propyl styrene, cyclohexyl styrene, chloromethyl styrene, trifluoromethyl styrene, ethoxymethyl styrene, acetoxymethyl styrene, methoxy styrene, dimethoxy styrene. Chlorostyrene, dichlorostyrene, bromostyrene, iodostyrene, fluorostyrene, carboxystyrene and the like.
 共重合体の合成に使用されるこれらの他のモノマーの割合は、諸物性の改良に十分な量である必要があるが、親水膜としての機能が十分であり、親水性ポリマーを添加する利点を十分得るために、割合は大きすぎないほうが好ましい。従って、親水性ポリマー中の他のモノマーの好ましい総割合は50質量%以下であることが好ましい。 The proportion of these other monomers used in the synthesis of the copolymer needs to be an amount sufficient to improve various physical properties, but the function as a hydrophilic film is sufficient, and the advantage of adding a hydrophilic polymer In order to obtain sufficient, it is preferable that the ratio is not too large. Accordingly, the preferred total proportion of other monomers in the hydrophilic polymer is preferably 50% by mass or less.
 親水性ポリマーにおいて、共重合比の測定は、核磁気共鳴装置(NMR)や、標準物質で検量線を作成し、赤外分光光度計により測定することができる。 In the hydrophilic polymer, the copolymerization ratio can be measured with a nuclear magnetic resonance apparatus (NMR) or a calibration curve prepared with a standard substance and measured with an infrared spectrophotometer.
 上記、親水性ポリマーは、金属アルコキシドの加水分解、重縮合物と混合した状態で架橋皮膜を形成する。有機成分である親水性ポリマーは、皮膜強度や皮膜柔軟性に対して関与しており、特に、親水性ポリマーの粘度が0.1~100mPa・s(5%水溶液、25℃測定)、好ましくは0.5~70mPa・s、さらに好ましくは1~50mPa・sの範囲にあると、良好な膜物性を与える。 The above hydrophilic polymer forms a crosslinked film in a state of being mixed with a hydrolyzed polycondensate of metal alkoxide. The hydrophilic polymer, which is an organic component, is involved in the film strength and film flexibility. In particular, the hydrophilic polymer has a viscosity of 0.1 to 100 mPa · s (5% aqueous solution, measured at 25 ° C.), preferably When the thickness is in the range of 0.5 to 70 mPa · s, more preferably 1 to 50 mPa · s, good film properties are provided.
 前記一般式(I)で表される構造を含む親水性ポリマーと前記一般式(II)で表される構造を含む親水性ポリマーとを併用してもよい。併用する場合の質量比は、{一般式(I)で表される構造を含む親水性ポリマー/一般式(II)で表される構造を含む親水性ポリマー}=(50/50)~(5/95)が好ましく、より好ましくは(50/50)~(20/80)である。 The hydrophilic polymer containing the structure represented by the general formula (I) and the hydrophilic polymer containing the structure represented by the general formula (II) may be used in combination. The mass ratio when used in combination is {hydrophilic polymer containing structure represented by general formula (I) / hydrophilic polymer containing structure represented by general formula (II)} = (50/50) to (5 / 95) is preferable, and (50/50) to (20/80) are more preferable.
 親水性組成物の固形分濃度は、0.1~50質量%であることが好ましく、更に好ましくは0.5~20質量%である。50質量%であれば液の安定性が下がらないため好ましい。0.1質量%以上であれば塗膜の各種性能を充分に発揮することができる。 The solid content concentration of the hydrophilic composition is preferably 0.1 to 50% by mass, more preferably 0.5 to 20% by mass. If it is 50 mass%, since the stability of a liquid does not fall, it is preferable. If it is 0.1 mass% or more, the various performances of the coating film can be sufficiently exhibited.
〔Si、Ti、Zr、Alから選択される金属アルコキシド化合物〕
 本発明にかかる親水性組成物はSi、Ti、Zr、Alから選択される元素のアルコキシド(金属アルコキシドともいう)を含有してもよい。
 本発明で用いられる金属アルコキシドは、その構造中に加水分解して重縮合可能な官能基を有し、架橋剤としての機能を果たす加水分解重合性化合物であり、金属アルコキシド同士が重縮合することにより架橋構造を有する強固な架橋皮膜を形成し、さらに、前記親水性ポリマーとも化学結合する。金属アルコキシドは下記一般式(3)または下記一般式(4)で表すことができ、式中、Rは水素原子、アルキル基又はアリール基を表し、Rはアルキル基又はアリール基を表し、ZはSi、Ti又はZrを表し、mは0~2の整数を表す。R及びRがアルキル基を表す場合の炭素数は好ましくは1から4である。アルキル基又はアリール基は置換基を有していてもよく、導入可能な置換基としては、ハロゲン原子、アミノ基、メルカプト基などが挙げられる。なお、この化合物は低分子化合物であり、分子量2000以下であることが好ましい。
[Metal alkoxide compound selected from Si, Ti, Zr, and Al]
The hydrophilic composition according to the present invention may contain an alkoxide (also referred to as a metal alkoxide) of an element selected from Si, Ti, Zr, and Al.
The metal alkoxide used in the present invention is a hydrolyzable polymerizable compound having a functional group capable of being hydrolyzed and polycondensed in its structure and serving as a crosslinking agent, and the metal alkoxides are polycondensed with each other. Thus, a strong cross-linked film having a cross-linked structure is formed and further chemically bonded to the hydrophilic polymer. The metal alkoxide can be represented by the following general formula (3) or the following general formula (4), in which R 8 represents a hydrogen atom, an alkyl group or an aryl group, R 9 represents an alkyl group or an aryl group, Z represents Si, Ti or Zr, and m represents an integer of 0-2. The number of carbon atoms when R 8 and R 9 represent an alkyl group is preferably 1 to 4. The alkyl group or aryl group may have a substituent, and examples of the substituent that can be introduced include a halogen atom, an amino group, and a mercapto group. This compound is a low molecular compound and preferably has a molecular weight of 2000 or less.
 (R-Z-(OR4-m        (3)
  Al-(OR             (4)
(R 8 ) m -Z- (OR 9 ) 4-m (3)
Al- (OR 9 ) 3 (4)
 以下に、一般式(3)および一般式(4)で表される加水分解性化合物の具体例を挙げるが、本発明はこれに限定されるものではない。
 ZがSiの場合、即ち、加水分解性化合物中にケイ素を含むものとしては、例えば、トリメトキシシラン、テトラメトキシシラン、テトラエトキシシン、テトラプロポキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、γ-クロロプリピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、等を挙げることができる。これらのうち特に好ましいものとしては、トリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、等を挙げることができる。
Specific examples of the hydrolyzable compounds represented by the general formula (3) and the general formula (4) are given below, but the present invention is not limited to these.
When Z is Si, that is, those containing silicon in the hydrolyzable compound include, for example, trimethoxysilane, tetramethoxysilane, tetraethoxycin, tetrapropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, γ- Examples thereof include chloropropyl triethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, and the like. Among these, particularly preferred are trimethoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane and the like.
 ZがTiである場合、即ち、チタンを含むものとしては、例えば、トリメトキシチタネート、テトラメトキシチタネート、トリエトキシチタネート、テトラエトキシチタネート、テトラプロポキシタネート、クロロトリメトキシチタネート、クロロトリエトキシチタネート、エチルトリメトキシチタネート、メチルトリエトキシチタネート、エチルトリエトキシチタネート、ジエチルジエトキシチタネート、フェニルトリメトキシチタネート、フェニルトリエトキシチタネート等を挙げることができる。ZがZrである場合、即ち、ジルコニウムを含むものとしては、例えば、前記チタンを含むものとして例示した化合物に対応するジルコネートを挙げることができる。
 また、中心金属がAlである場合、即ち、加水分解性化合物中にアルミニウムを含むものとしては、例えば、トリメトキシアルミネート、トリエトキシアルミネート、トリプロポキシアルミネート、トリイソプロポキシアルミネート等を挙げることができる。
 金属アルコキシドのなかでも、反応性、入手の容易性からSiのアルコキシドが好ましく、具体的には、シランカップリング剤に用いる化合物を好適に使用することができる。
 金属アルコキシドは、親水性組成物中、固形分中に20質量%以下含有されることが好ましい。
When Z is Ti, i.e., including titanium, for example, trimethoxy titanate, tetramethoxy titanate, triethoxy titanate, tetraethoxy titanate, tetrapropoxy titanate, chlorotrimethoxy titanate, chlorotriethoxy titanate, ethyl Examples include trimethoxy titanate, methyl triethoxy titanate, ethyl triethoxy titanate, diethyl diethoxy titanate, phenyl trimethoxy titanate, and phenyl triethoxy titanate. When Z is Zr, that is, the one containing zirconium can include, for example, zirconates corresponding to the compounds exemplified as those containing titanium.
In the case where the central metal is Al, that is, examples of the hydrolyzable compound containing aluminum include, for example, trimethoxy aluminate, triethoxy aluminate, tripropoxy aluminate, triisopropoxy aluminate and the like. be able to.
Among metal alkoxides, Si alkoxides are preferable from the viewpoint of reactivity and availability, and specifically, compounds used for silane coupling agents can be suitably used.
It is preferable that 20 mass% or less of metal alkoxide is contained in solid content in a hydrophilic composition.
〔触媒〕
 本発明にかかる親水性組成物は触媒を含有してもよい。触媒としては金属錯体触媒が好ましい。
 本発明の親水膜の形成において使用できる金属錯体触媒は、Si、Ti、Zr、Alから選択される金属アルコキシド化合物の加水分解、重縮合を促進し、親水性ポリマーとの結合を生起することができる。特に好ましい金属錯体触媒としては、周期律表の2A,3B,4A及び5A族から選ばれる金属元素とβ-ジケトン、ケトエステル、ヒドロキシカルボン酸又はそのエステル、アミノアルコール、エノール性活性水素化合物の中から選ばれるオキソ又はヒドロキシ酸素含有化合物から構成される金属錯体である。
 構成金属元素の中では、Mg,Ca,Sr,Baなどの2A族元素、Al,Gaなどの3B族元素,Ti,Zrなどの4A族元素及びNb及びTaなどの5A族元素が好ましく、それぞれ触媒効果の優れた錯体を形成する。その中でもZr、Al及びTiから得られる錯体が優れており、好ましい。
〔catalyst〕
The hydrophilic composition according to the present invention may contain a catalyst. A metal complex catalyst is preferable as the catalyst.
The metal complex catalyst that can be used in the formation of the hydrophilic film of the present invention promotes hydrolysis and polycondensation of a metal alkoxide compound selected from Si, Ti, Zr, and Al, and causes a bond with a hydrophilic polymer. it can. Particularly preferred metal complex catalysts include metal elements selected from Groups 2A, 3B, 4A and 5A of the periodic table and β-diketones, ketoesters, hydroxycarboxylic acids or esters thereof, amino alcohols, and enolic active hydrogen compounds. It is a metal complex composed of a selected oxo or hydroxy oxygen-containing compound.
Among the constituent metal elements, 2A group elements such as Mg, Ca, Sr and Ba, 3B group elements such as Al and Ga, 4A group elements such as Ti and Zr, and 5A group elements such as Nb and Ta are preferable. Forms complexes with excellent catalytic effects. Of these, complexes obtained from Zr, Al and Ti are excellent and preferred.
 上記金属錯体の配位子を構成するオキソ又はヒドロキシ酸素含有化合物は、本発明においては、アセチルアセトン(2,4-ペンタンジオン)、2,4-ヘプタンジオンなどのβジケトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸ブチルなどのケトエステル類、乳酸、乳酸メチル、サリチル酸、サリチル酸エチル、サリチル酸フェニル、リンゴ酸,酒石酸、酒石酸メチルなどのヒドロキシカルボン酸及びそのエステル、4-ヒドロキシ-4-メチル-2-ペンタノン、4-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、4-ヒドロキシ-2-ヘプタノンなどのケトアルコール類、モノエタノールアミン、N,N-ジメチルエタノールアミン、N-メチル-モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミノアルコール類、メチロールメラミン、メチロール尿素、メチロールアクリルアミド、マロン酸ジエチルエステルなどのエノール性活性化合物、アセチルアセトン(2,4-ペンタンジオン)のメチル基、メチレン基またはカルボニル炭素に置換基を有する化合物が挙げられる。 In the present invention, the oxo- or hydroxy-oxygen-containing compound constituting the ligand of the metal complex is a β-diketone such as acetylacetone (2,4-pentanedione) or 2,4-heptanedione, methyl acetoacetate, acetoacetic acid Ketoesters such as ethyl and butyl acetoacetate, hydroxycarboxylic acids and esters thereof such as lactic acid, methyl lactate, salicylic acid, ethyl salicylate, phenyl salicylate, malic acid, tartaric acid, methyl tartrate, 4-hydroxy-4-methyl-2-pentanone , 4-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-pentanone, ketoalcohols such as 4-hydroxy-2-heptanone, monoethanolamine, N, N-dimethylethanolamine, N-methyl- Monoethanolamine, diethanolamine Aminoalcohols such as ethanol and triethanolamine, enol active compounds such as methylolmelamine, methylolurea, methylolacrylamide, malonic acid diethyl ester, methyl group, methylene group or carbonyl carbon of acetylacetone (2,4-pentanedione) The compound which has a substituent is mentioned.
 好ましい配位子はアセチルアセトンまたはアセチルアセトン誘導体であり、アセチルアセトン誘導体は、本発明においては、アセチルアセトンのメチル基、メチレン基またはカルボニル炭素に置換基を有する化合物を指す。アセチルアセトンのメチル基に置換する置換基としては、いずれも炭素数が1~3の直鎖又は分岐のアルキル基、アシル基、ヒドロキシアルキル基、カルボキシアルキル基、アルコキシ基、アルコキシアルキル基であり、アセチルアセトンのメチレン基に置換する置換基としてはカルボキシル基、いずれも炭素数が1~3の直鎖又は分岐のカルボキシアルキル基及びヒドロキシアルキル基であり、アセチルアセトンのカルボニル炭素に置換する置換基としては炭素数が1~3のアルキル基であってこの場合はカルボニル酸素には水素原子が付加して水酸基となる。 A preferred ligand is acetylacetone or an acetylacetone derivative. In the present invention, the acetylacetone derivative refers to a compound having a substituent on the methyl group, methylene group or carbonyl carbon of acetylacetone. Substituents for substitution on the methyl group of acetylacetone are all straight-chain or branched alkyl groups having 1 to 3 carbon atoms, acyl groups, hydroxyalkyl groups, carboxyalkyl groups, alkoxy groups, alkoxyalkyl groups, and acetylacetone The substituents that substitute for the methylene group are carboxyl groups, both straight-chain or branched carboxyalkyl groups and hydroxyalkyl groups having 1 to 3 carbon atoms, and the substituents that substitute for the carbonyl carbon of acetylacetone are carbon atoms. Is an alkyl group of 1 to 3, in which case a hydrogen atom is added to the carbonyl oxygen to form a hydroxyl group.
 好ましいアセチルアセトン誘導体の具体例としては、エチルカルボニルアセトン、n-プロピルカルボニルアセトン、i-プロピルカルボニルアセトン、ジアセチルアセトン、1―アセチル-1-プロピオニル-アセチルアセトン、ヒドロキシエチルカルボニルアセトン、ヒドロキシプロピルカルボニルアセトン、アセト酢酸、アセトプロピオン酸、ジアセト酢酸、3,3-ジアセトプロピオン酸、4,4-ジアセト酪酸、カルボキシエチルカルボニルアセトン、カルボキシプロピルカルボニルアセトン、ジアセトンアルコールが挙げられる。
 中でも、アセチルアセトン及びジアセチルアセトンがとくに好ましい。上記のアセチルアセトン誘導体と上記金属元素の錯体は、金属元素1個当たりにアセチルアセトン誘導体が1~4分子配位する単核錯体であり、金属元素の配位可能の手がアセチルアセトン誘導体の配位可能結合手の数の総和よりも多い場合には、水分子、ハロゲンイオン、ニトロ基、アンモニオ基など通常の錯体に汎用される配位子が配位してもよい。
Specific examples of preferred acetylacetone derivatives include ethylcarbonylacetone, n-propylcarbonylacetone, i-propylcarbonylacetone, diacetylacetone, 1-acetyl-1-propionyl-acetylacetone, hydroxyethylcarbonylacetone, hydroxypropylcarbonylacetone, acetoacetate Acetopropionic acid, diacetacetic acid, 3,3-diacetpropionic acid, 4,4-diacetbutyric acid, carboxyethylcarbonylacetone, carboxypropylcarbonylacetone, diacetone alcohol.
Of these, acetylacetone and diacetylacetone are particularly preferred. The complex of the above acetylacetone derivative and the above metal element is a mononuclear complex in which 1 to 4 molecules of the acetylacetone derivative are coordinated per metal element, and the coordinateable bond of the acetylacetone derivative is the coordinateable bond of the metal element. When the number of hands is larger than the total number of hands, ligands commonly used for ordinary complexes such as water molecules, halogen ions, nitro groups, and ammonio groups may coordinate.
 好ましい金属錯体の例としては、トリス(アセチルアセトナト)アルミニウム錯塩、ジ(アセチルアセトナト)アルミニウム・アコ錯塩、モノ(アセチルアセトナト)アルミニウム・クロロ錯塩、ジ(ジアセチルアセトナト)アルミニウム錯塩、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、環状アルミニウムオキサイドイソプロピレート、トリス(アセチルアセトナト)バリウム錯塩、ジ(アセチルアセトナト)チタニウム錯塩、トリス(アセチルアセトナト)チタニウム錯塩、ジ-i-プロポキシ・ビス(アセチルアセトナト)チタニウム錯塩、ジルコニウムトリス(エチルアセトアセテート)、ジルコニウムトリス(安息香酸)錯塩、等が挙げられる。これらは水系塗布液での安定性及び、加熱乾燥時のゾルゲル反応でのゲル化促進効果に優れているが、中でも、特にエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、ジ(アセチルアセトナト)チタニウム錯塩、ジルコニウムトリス(エチルアセトアセテート)が好ましい。 Examples of preferred metal complexes include tris (acetylacetonato) aluminum complex, di (acetylacetonato) aluminum / aco complex, mono (acetylacetonato) aluminum / chloro complex, di (diacetylacetonato) aluminum complex, ethylacetate Acetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), cyclic aluminum oxide isopropylate, tris (acetylacetonato) barium complex, di (acetylacetonato) titanium complex, tris (acetylacetonato) titanium complex, di-i -Propoxy bis (acetylacetonato) titanium complex salt, zirconium tris (ethyl acetoacetate), zirconium tris (benzoic acid) complex salt, etc. These are excellent in stability in aqueous coating solutions and in gelation promotion effect in sol-gel reaction during heat drying, and among them, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), di ( Acetylacetonato) titanium complex and zirconium tris (ethylacetoacetate) are preferred.
 上記した金属錯体の対塩の記載を本明細書においては省略しているが、対塩の種類は、錯体化合物としての電荷の中性を保つ水溶性塩である限り任意であり、例えば硝酸塩、ハロゲン酸塩、硫酸塩、燐酸塩などの化学量論的中性が確保される塩の形が用いられる。金属錯体のシリカゾルゲル反応での挙動については、J.Sol-Gel.Sci.and Tec.16.209(1999)に詳細な記載がある。反応メカニズムとしては以下のスキームを推定している。すなわち、塗布液中では、金属錯体は、配位構造を取って安定であり、塗布後の加熱乾燥過程に始まる脱水縮合反応では、酸触媒に似た機構で架橋を促進させるものと考えられる。いずれにしても、この金属錯体を用いたことにより塗布液経時安定性及び皮膜面質の改善と、高親水性、高耐水性の、いずれも満足させるに至った。 Although the description of the counter salt of the metal complex described above is omitted in this specification, the type of the counter salt is arbitrary as long as it is a water-soluble salt that maintains the neutrality of the charge as the complex compound, such as nitrate, Salt forms such as halogenates, sulfates, phosphates, etc., that ensure stoichiometric neutrality are used. For the behavior of the metal complex in the silica sol-gel reaction, see J.A. Sol-Gel. Sci. and Tec. There is a detailed description in 16.209 (1999). The following scheme is estimated as the reaction mechanism. That is, in the coating solution, the metal complex has a coordinated structure and is stable, and in the dehydration condensation reaction that starts in the heat drying process after coating, it is considered that crosslinking is promoted by a mechanism similar to an acid catalyst. In any case, the use of this metal complex has led to the improvement in coating solution aging stability and film surface quality, and high hydrophilicity and high water resistance.
 また、上記の金属錯体触媒の他に、Si、Ti、Zr、Alから選択される金属アルコキシド化合物の加水分解、重縮合を促進し、親水性ポリマーとの結合を生起することができるものを併用してもよい。このような触媒としては、塩酸などのハロゲン化水素、硝酸、硫酸、亜硫酸、硫化水素、過塩素酸、過酸化水素、炭酸、蟻酸や酢酸などのカルボン酸、そのRCOOHで表される構造式のRを他元素または置換基によって置換した置換カルボン酸、ベンゼンスルホン酸などのスルホン酸などの酸性を示す化合物、あるいは、アンモニア水などのアンモニア性塩基、エチルアミンやアニリンなどのアミン類などの塩基性化合物が挙げられる。
 上記の金属錯体触媒は、市販品として容易に入手でき、また公知の合成方法、例えば各金属塩化物とアルコールとの反応によっても得られる。
 触媒は、親水性組成物中に固形分中に、好ましくは10質量%以下、より好ましくは5質量%以下含有される。
In addition to the above-mentioned metal complex catalyst, a catalyst that promotes hydrolysis and polycondensation of a metal alkoxide compound selected from Si, Ti, Zr, and Al and can cause a bond with a hydrophilic polymer is used in combination. May be. Examples of such a catalyst include hydrogen halides such as hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, hydrogen sulfide, perchloric acid, hydrogen peroxide, carbonic acid, carboxylic acids such as formic acid and acetic acid, and the structural formula represented by RCOOH. Compounds having an acidity such as substituted carboxylic acids in which R is substituted with other elements or substituents, sulfonic acids such as benzenesulfonic acid, etc., or basic compounds such as ammoniacal bases such as aqueous ammonia and amines such as ethylamine and aniline Is mentioned.
The above metal complex catalyst can be easily obtained as a commercial product, and can also be obtained by a known synthesis method, for example, reaction of each metal chloride with an alcohol.
The catalyst is contained in the hydrophilic composition in a solid content, preferably 10% by mass or less, more preferably 5% by mass or less.
〔抗菌剤〕
 本発明では、抗菌性、防カビ性、防藻性を付与するために、親水性組成物に抗菌剤を含有させることができる。親水膜の形成において、親水性、水溶性抗菌剤を含有させることが好ましい。親水性、水溶性抗菌剤を含有させることにより、表面親水性を損なうことなく抗菌性、防カビ性、防藻性に優れた表面親水性部材が得られる。
 抗菌剤としては、親水性部材の親水性を低下させない化合物を添加することが好ましく、そのような抗菌剤としては、無機系抗菌剤または、水溶性の有機系抗菌剤が挙げられる。抗菌剤としては、黄色ブドウ球菌や大腸菌に代表される細菌類や、かび,酵母などの真菌類など、身の回りに存在する菌類に対して殺菌効果を発揮するものが用いられる。
[Antimicrobial agent]
In the present invention, an antibacterial agent can be contained in the hydrophilic composition in order to impart antibacterial properties, antifungal properties, and algal resistance. In forming the hydrophilic film, it is preferable to contain a hydrophilic and water-soluble antibacterial agent. By including a hydrophilic and water-soluble antibacterial agent, a surface hydrophilic member having excellent antibacterial, antifungal and antialgal properties can be obtained without impairing the surface hydrophilicity.
As the antibacterial agent, it is preferable to add a compound that does not lower the hydrophilicity of the hydrophilic member, and examples of such an antibacterial agent include inorganic antibacterial agents and water-soluble organic antibacterial agents. As the antibacterial agent, those exhibiting a bactericidal effect against fungi existing around us, such as bacteria represented by Staphylococcus aureus and Escherichia coli, fungi such as fungi and yeast, and the like are used.
 有機系の抗菌剤としては、フェノールエーテル誘導体,イミダゾール誘導体,スルホン誘導体,N・ハロアルキルチオ化合物,アニリド誘導体,ピロール誘導体,第4アンモニウム塩、ピリジン系、トリアジン系、ベンゾイソチアゾリン系、イソチアゾリン系などが挙げられる。
 例えば1,2-ベンズイソチアゾリン-3-オン、N-フルオルジクロロメチルチオ-フタルイミド、2,3,5,6-テトラクロロイソフタロニトリル、N-トリクロロメチルチオ-4-シクロヘキセン-1,2-ジカルボキシイミド、8-キノリン酸銅、ビス(トリブチル錫)オキシド、2-(4-チアゾリル)ベンズイミダゾール〈以後、TBZと表示〉、2-ベンズイミダゾールカルバミン酸メチル〈以後、BCMと表示〉、10,10'-オキシビスフェノキシアルシン〈以後、OBPAと表示〉、2,3,5,6-テトラクロロ-4-(メチルスルフォン)ピリジン、ビス(2-ピリジルチオ-1-オキシド)亜鉛〈以後、ZPTと表示〉、N,N-ジメチル-N'-(フルオロジクロロメチルチオ)-N’-フェニルスルファミド〈ジクロルフルアニド〉、ポリ-(ヘキサメチレンビグアニド)ハイドロクロライド、ジチオ-2-2'-ビス(ベンズメチルアミド)、2-メチル-4,5-トリメチレン-4-イソチアゾリン-3-オン、2-ブロモ-2-ニトロ-1,3-プロパンジオール、ヘキサヒドロ-1,3-トリス-(2-ヒドロキシエチル)-S-トリアジン、p-クロロ-m-キシレノール、1,2-ベンズイソチアゾリン-3-オン等が挙げられるが、これらに制限されるものではない。
 これら有機系の抗菌剤は、親水性、耐水性、昇華性、安全性等を考慮し、適宜選択して使用することができる。有機系抗菌剤中では、親水性、抗菌効果、コストの点から2-ブロモ-2-ニトロ-1,3-プロパンジオール、TBZ、BCM、OBPA、ZPTが好ましい。
Examples of organic antibacterial agents include phenol ether derivatives, imidazole derivatives, sulfone derivatives, N-haloalkylthio compounds, anilide derivatives, pyrrole derivatives, quaternary ammonium salts, pyridines, triazines, benzoisothiazolines, and isothiazolines. It is done.
For example, 1,2-benzisothiazolin-3-one, N-fluorodichloromethylthio-phthalimide, 2,3,5,6-tetrachloroisophthalonitrile, N-trichloromethylthio-4-cyclohexene-1,2-dicarboxy Imido, copper 8-quinolinate, bis (tributyltin) oxide, 2- (4-thiazolyl) benzimidazole (hereinafter referred to as TBZ), methyl 2-benzimidazole carbamate (hereinafter referred to as BCM), 10,10 '-Oxybisphenoxyarsine (hereinafter referred to as OBPA) 2,3,5,6-tetrachloro-4- (methylsulfone) pyridine, bis (2-pyridylthio-1-oxide) zinc (hereinafter referred to as ZPT) >, N, N-dimethyl-N ′-(fluorodichloromethylthio) -N′-phenylsulfamide <dichloro Luanide>, poly- (hexamethylene biguanide) hydrochloride, dithio-2-2'-bis (benzmethylamide), 2-methyl-4,5-trimethylene-4-isothiazolin-3-one, 2-bromo-2 -Nitro-1,3-propanediol, hexahydro-1,3-tris- (2-hydroxyethyl) -S-triazine, p-chloro-m-xylenol, 1,2-benzisothiazolin-3-one, etc. However, it is not limited to these.
These organic antibacterial agents can be appropriately selected and used in consideration of hydrophilicity, water resistance, sublimation property, safety and the like. Among organic antibacterial agents, 2-bromo-2-nitro-1,3-propanediol, TBZ, BCM, OBPA, and ZPT are preferable from the viewpoint of hydrophilicity, antibacterial effect, and cost.
 無機系の抗菌剤としては、殺菌作用の高い順に、水銀,銀,銅,亜鉛,鉄,鉛,ビスマスなどが挙げられる。例えば、銀、銅、亜鉛、ニッケル等の金属や金属イオンをケイ酸塩系担体、リン酸塩系担体、酸化物、ガラスやチタン酸カリウム、アミノ酸等に担持させたものが挙げられる。たとえばゼオライト系抗菌剤、ケイ酸カルシウム系抗菌剤、リン酸ジルコニウム系抗菌剤、リン酸カルシウム抗菌剤、酸化亜鉛系抗菌剤、溶解性ガラス系抗菌剤、シリカゲル系抗菌剤、活性炭系抗菌剤、酸化チタン系抗菌剤、チタニア系抗菌剤、有機金属系抗菌剤、イオン交換体セラミックス系抗菌剤、層状リン酸塩-四級アンモニウム塩系抗菌剤、抗菌ステンレス等が挙げられるが、これらに制限されるものではない。 Examples of inorganic antibacterial agents include mercury, silver, copper, zinc, iron, lead, and bismuth in descending order of bactericidal action. For example, the thing which carry | supported metals and metal ions, such as silver, copper, zinc, nickel, on the silicate type | system | group support | carrier, phosphate type | system | group support, an oxide, glass, potassium titanate, an amino acid, etc. is mentioned. For example, zeolite antibacterial, calcium silicate antibacterial, zirconium phosphate antibacterial, calcium phosphate antibacterial, zinc oxide antibacterial, soluble glass antibacterial, silica gel antibacterial, activated carbon antibacterial, titanium oxide Antibacterial agent, titania antibacterial agent, organometallic antibacterial agent, ion exchanger ceramic antibacterial agent, layered phosphate-quaternary ammonium salt antibacterial agent, antibacterial stainless steel, etc. Absent.
 天然系抗菌剤としては、カニやエビの甲殻等に含まれるキチンを加水分解して得られる塩基性多糖類のキトサンがある。
 本発明には、アミノ酸の両側に金属を複合させたアミノメタルから成る日鉱の「商品名ホロンキラービースセラ」が好ましい。
 これらは蒸散性ではなく、また、親水膜のポリマーや架橋剤成分と相互作用しやすく、安定に分子分散あるいは固体分散可能であり、親水膜表面に抗菌剤が効果的に露出しやすく、かつ、水がかかっても溶出することなく、効果を長期間持続させることができ、人体に影響を及ぼすこともない。また、親水膜や塗布液に対して安定に分散することができ、親水膜や塗布液の劣化もおこらない。
 上記抗菌剤の中では、抗菌効果が大きいことから、銀系無機抗菌剤と水溶性有機抗菌剤が最も好ましい。特にケイ酸塩系担体であるゼオライトに銀を担持させた銀ゼオライトやシリカゲルに銀を担持させた抗菌剤や2-ブロモ-2-ニトロ-1,3-プロパンジオール、TPN、TBZ、BCM、OBPA、ZPTが好ましい。特に好ましい市販の銀ゼオライト系抗菌剤としては、品川燃料の「ゼオミック」や富士シリシア化学の「シルウェル」や日本電子材料の「バクテノン」等がある。その他、銀を無機イオン交換体セラミックスに担持させた東亜合成の「ノバロン」や触媒化成工業の「アトミーボール」やトリアジン系抗菌剤の「サンアイバックP」(三愛石油)も好ましい。
Natural antibacterial agents include chitosan, a basic polysaccharide obtained by hydrolyzing chitin contained in crabs and shrimp shells.
In the present invention, Nikko's “trade name Holon Killer Bees Sera” made of aminometal in which a metal is compounded on both sides of an amino acid is preferable.
These are not transpirationable, easily interact with the polymer and crosslinker component of the hydrophilic film, can be stably dispersed in a molecule or solid, the antibacterial agent is easily exposed effectively on the hydrophilic film surface, and Even if it is splashed with water, it does not elute, and the effect can be maintained for a long time without affecting the human body. Moreover, it can disperse | distribute stably with respect to a hydrophilic film | membrane or a coating liquid, and deterioration of a hydrophilic film | membrane or a coating liquid does not occur.
Among the antibacterial agents, silver-based inorganic antibacterial agents and water-soluble organic antibacterial agents are most preferable because of their great antibacterial effects. In particular, silver zeolite with silver supported on zeolite, which is a silicate carrier, antibacterial agent with silver supported on silica gel, 2-bromo-2-nitro-1,3-propanediol, TPN, TBZ, BCM, OBPA ZPT is preferred. Particularly preferred commercially available silver zeolite antibacterial agents include “Zeomic” by Shinagawa Fuel, “Sylwell” by Fuji Silysia Chemical, and “Bactenone” by JEOL. In addition, “NOVALON” manufactured by Toa Gosei, in which silver is supported on an inorganic ion exchanger ceramic, “ATOMY BALL” manufactured by Catalytic Chemical Industry, and “Suneyeback P” (San-ai Oil), a triazine antibacterial agent, are also preferable.
 抗菌剤の含有量は、一般的には固形分に対して0.001~10質量%であるが、0.005~5質量%が好ましく、0.01~3質量%がより好ましく、0.02~1.5質量%が特に好ましく、0.05~1質量%が最も好ましい。含有量が0.001質量%以上であれば効果的な抗菌効果を得ることができる。また、含有量が10質量%以下であれば親水性も低下せず、かつ経時性も悪化せず、防汚性、防曇性に悪影響を及ぼさない。 The content of the antibacterial agent is generally 0.001 to 10% by mass with respect to the solid content, preferably 0.005 to 5% by mass, more preferably 0.01 to 3% by mass, and 02 to 1.5% by mass is particularly preferred, and 0.05 to 1% by mass is most preferred. If the content is 0.001% by mass or more, an effective antibacterial effect can be obtained. Further, if the content is 10% by mass or less, the hydrophilicity is not lowered, the aging is not deteriorated, and the antifouling property and the antifogging property are not adversely affected.
〔無機微粒子〕
 親水膜は、親水性の向上や、皮膜のひび割れ防止、膜強度向上のために、無機微粒子を含有してもよい。無機微粒子としては、例えば、シリカ、アルミナ、酸化マグネシウム、酸化チタン、炭酸マグネシウム、アルギン酸カルシウムまたはこれらの混合物が好適に挙げられる。
 無機微粒子は、平均粒径が5nm~10μmであるのが好ましく、0.5~3μmであるのがより好ましい。上記範囲内であると、親水膜中に安定に分散して、親水膜の膜強度を十分に保持し、耐水性の高い親水性に優れる親水性部材を形成することができる。
 上述したような無機微粒子の中で、特にコロイダルシリカ分散物が好ましく、市販品として容易に入手することができる。
 無機微粒子の含有量は、親水膜の全固形分に対して、20質量%以下であるのが好ましく、10質量%以下であるのがより好ましい。
[Inorganic fine particles]
The hydrophilic film may contain inorganic fine particles in order to improve hydrophilicity, prevent cracking of the film, and improve film strength. As the inorganic fine particles, for example, silica, alumina, magnesium oxide, titanium oxide, magnesium carbonate, calcium alginate, or a mixture thereof is preferably exemplified.
The inorganic fine particles preferably have an average particle size of 5 nm to 10 μm, more preferably 0.5 to 3 μm. Within the above range, it is possible to form a hydrophilic member that is stably dispersed in the hydrophilic film, sufficiently retains the film strength of the hydrophilic film, and has high water resistance and excellent hydrophilicity.
Among the inorganic fine particles as described above, a colloidal silica dispersion is particularly preferable and can be easily obtained as a commercial product.
The content of the inorganic fine particles is preferably 20% by mass or less, and more preferably 10% by mass or less, based on the total solid content of the hydrophilic film.
〔その他の成分〕
 以下に、必要に応じて本発明の親水膜を形成するための塗布液に用いることのできる種々の添加剤について述べる。
(界面活性剤)
 本発明においては、親水性組成物の被膜面状を向上させるために界面活性剤を用いるのが好ましい。界面活性剤としては、ノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、フッ素系界面活性剤等が挙げられる。
[Other ingredients]
Hereinafter, various additives that can be used in the coating solution for forming the hydrophilic film of the present invention as necessary are described.
(Surfactant)
In the present invention, it is preferable to use a surfactant in order to improve the surface state of the hydrophilic composition. Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and fluorosurfactants.
 本発明に用いられるノニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンポリスチリルフェニルエーテル類、ポリオキシエチレンポリオキシプロピレンアルキルエーテル類、グリセリン脂肪酸部分エステル類、ソルビタン脂肪酸部分エステル類、ペンタエリスリトール脂肪酸部分エステル類、プロピレングリコールモノ脂肪酸エステル類、ショ糖脂肪酸部分エステル類、ポリオキシエチレンソルビタン脂肪酸部分エステル類、ポリオキシエチレンソルビトール脂肪酸部分エステル類、ポリエチレングリコール脂肪酸エステル類、ポリグリセリン脂肪酸部分エステル類、ポリオキシエチレン化ひまし油類、ポリオキシエチレングリセリン脂肪酸部分エステル類、脂肪酸ジエタノールアミド類、N,N-ビス-2-ヒドロキシアルキルアミン類、ポリオキシエチレンアルキルアミン、トリエタノールアミン脂肪酸エステル、トリアルキルアミンオキシド、ポリエチレングリコール、ポリエチレングリコールとポリプロピレングリコールの共重合体が挙げられる。 The nonionic surfactant used in the present invention is not particularly limited, and conventionally known nonionic surfactants can be used. For example, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene polystyryl phenyl ethers, polyoxyethylene polyoxypropylene alkyl ethers, glycerin fatty acid partial esters, sorbitan fatty acid partial esters, pentaerythritol Fatty acid partial esters, propylene glycol mono fatty acid esters, sucrose fatty acid partial esters, polyoxyethylene sorbitan fatty acid partial esters, polyoxyethylene sorbitol fatty acid partial esters, polyethylene glycol fatty acid esters, polyglycerin fatty acid partial esters, Polyoxyethylenated castor oil, polyoxyethylene glycerin fatty acid partial esters, fatty acid diethanolamides, N N- bis-2-hydroxyalkylamines, polyoxyethylene alkylamines, triethanolamine fatty acid ester, trialkylamine oxide, polyethylene glycol, copolymers of polyethylene glycol and polypropylene glycol.
 本発明に用いられるアニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、脂肪酸塩類、アビエチン酸塩類、ヒドロキシアルカンスルホン酸塩類、アルカンスルホン酸塩類、ジアルキルスルホ琥珀酸エステル塩類、直鎖アルキルベンゼンスルホン酸塩類、分岐鎖アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸塩類、アルキルフェノキシポリオキシエチレンプロピルスルホン酸塩類、ポリオキシエチレンアルキルスルホフェニルエーテル塩類、N-メチル-N-オレイルタウリンナトリウム塩、N-アルキルスルホコハク酸モノアミド二ナトリウム塩、石油スルホン酸塩類、硫酸化牛脂油、脂肪酸アルキルエステルの硫酸エステル塩類、アルキル硫酸エステル塩類、ポリオキシエチレンアルキルエーテル硫酸エステル塩類、脂肪酸モノグリセリド硫酸エステル塩類、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩類、ポリオキシエチレンスチリルフェニルエーテル硫酸エステル塩類、アルキルリン酸エステル塩類、ポリオキシエチレンアルキルエーテルリン酸エステル塩類、ポリオキシエチレンアルキルフェニルエーテルリン酸エステル塩類、スチレン/無水マレイン酸共重合物の部分けん化物類、オレフィン/無水マレイン酸共重合物の部分けん化物類、ナフタレンスルホン酸塩ホルマリン縮合物類が挙げられる。 The anionic surfactant used in the present invention is not particularly limited, and conventionally known anionic surfactants can be used. For example, fatty acid salts, abietic acid salts, hydroxyalkane sulfonates, alkane sulfonates, dialkyl sulfosuccinate esters, linear alkyl benzene sulfonates, branched alkyl benzene sulfonates, alkyl naphthalene sulfonates, alkyl phenoxy poly Oxyethylenepropyl sulfonates, polyoxyethylene alkylsulfophenyl ether salts, N-methyl-N-oleyl taurine sodium salt, N-alkylsulfosuccinic acid monoamide disodium salt, petroleum sulfonates, sulfated beef oil, fatty acid alkyl esters Sulfates, alkyl sulfates, polyoxyethylene alkyl ether sulfates, fatty acid monoglyceride sulfates, polyoxyethylene alcohol Ruphenyl ether sulfates, polyoxyethylene styryl phenyl ether sulfates, alkyl phosphates, polyoxyethylene alkyl ether phosphates, polyoxyethylene alkyl phenyl ether phosphates, styrene / maleic anhydride Examples thereof include partial saponification products of polymers, partial saponification products of olefin / maleic anhydride copolymers, and naphthalene sulfonate formalin condensates.
 本発明に用いられるカチオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、アルキルアミン塩類、第四級アンモニウム塩類、ポリオキシエチレンアルキルアミン塩類、ポリエチレンポリアミン誘導体が挙げられる。
 本発明に用いられる両性界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、カルボキシベタイン類、アミノカルボン酸類、スルホベタイン類、アミノ硫酸エステル類、イミタゾリン類が挙げられる。
 なお、上記界面活性剤の中で、「ポリオキシエチレン」とあるものは、ポリオキシメチレン、ポリオキシプロピレン、ポリオキシブチレン等の「ポリオキシアルキレン」に読み替えることもでき、本発明においては、それらの界面活性剤も用いることができる。
The cationic surfactant used in the present invention is not particularly limited, and conventionally known cationic surfactants can be used. Examples thereof include alkylamine salts, quaternary ammonium salts, polyoxyethylene alkylamine salts, and polyethylene polyamine derivatives.
The amphoteric surfactant used in the present invention is not particularly limited, and conventionally known amphoteric surfactants can be used. Examples thereof include carboxybetaines, aminocarboxylic acids, sulfobetaines, aminosulfuric acid esters, and imidazolines.
Among the above surfactants, those having “polyoxyethylene” can be read as “polyoxyalkylene” such as polyoxymethylene, polyoxypropylene, polyoxybutylene, etc. These surfactants can also be used.
 更に好ましい界面活性剤としては、分子内にパーフルオロアルキル基を含有するフッ素系界面活性剤が挙げられる。このようなフッ素系界面活性剤としては、例えば、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルスルホン酸塩、パーフルオロアルキルリン酸エステル等のアニオン型;パーフルオロアルキルベタイン等の両性型;パーフルオロアルキルトリメチルアンモニウム塩等のカチオン型;パーフルオロアルキルアミンオキサイド、パーフルオロアルキルエチレンオキシド付加物、パーフルオロアルキル基及び親水性基を含有するオリゴマー、パーフルオロアルキル基及び親油性基を含有するオリゴマー、パーフルオロアルキル基、親水性基及び親油性基を含有するオリゴマー、パーフルオロアルキル基及び親油性基を含有するウレタン等のノニオン型が挙げられる。また、特開昭62-170950号、同62-226143号及び同60-168144号の各公報に記載されているフッ素系界面活性剤も好適に挙げられる。 More preferable surfactants include fluorine-based surfactants containing a perfluoroalkyl group in the molecule. Examples of such fluorosurfactants include anionic types such as perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and perfluoroalkyl phosphates; amphoteric types such as perfluoroalkyl betaines; Cation type such as trimethylammonium salt; perfluoroalkylamine oxide, perfluoroalkylethylene oxide adduct, oligomer containing perfluoroalkyl group and hydrophilic group, oligomer containing perfluoroalkyl group and lipophilic group, perfluoroalkyl Nonionic types such as an oligomer containing a group, a hydrophilic group and a lipophilic group, and a urethane containing a perfluoroalkyl group and a lipophilic group. In addition, fluorine-based surfactants described in JP-A Nos. 62-170950, 62-226143, and 60-168144 are also preferred.
 界面活性剤は、親水性組成物中に、不揮発性成分に対して、好ましくは0.001~10質量%、更に好ましくは0.01~5質量%の範囲で使用される。また、界面活性剤は、単独で又は2種以上を組み合わせて用いることができる。 The surfactant is preferably used in the hydrophilic composition in the range of 0.001 to 10% by mass, more preferably 0.01 to 5% by mass with respect to the nonvolatile component. Moreover, surfactant can be used individually or in combination of 2 or more types.
 好ましい界面活性剤の具体例を以下に示すが、本発明はこれらに限定されない。 Specific examples of preferable surfactants are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(紫外線吸収剤)
 親水性組成物の耐候性向上、耐久性向上の観点から、紫外線吸収剤を用いることができる。
 紫外線吸収剤としては、例えば、特開昭58-185677号公報、同61-190537号公報、特開平2-782号公報、同5-197075号公報、同9-34057号公報等に記載されたベゾトリアゾール系化合物、特開昭46-2784号公報、特開平5-194483号公報、米国特許第3214463号等に記載されたベンゾフェノン系化合物、特公昭48-30492号公報、同56-21141号公報、特開平10-88106号公報等に記載された桂皮酸系化合物、特開平4-298503号公報、同8-53427号公報、同8-239368号公報、同10-182621号公報、特表平8-501291号公報等に記載されたトリアジン系化合物、リサーチディスクロージャーNo.24239号に記載された化合物やスチルベン系、ベンズオキサゾール系化合物に代表される紫外線を吸収して蛍光を発する化合物、いわゆる蛍光増白剤、などが挙げられる。
 添加量は目的に応じて適宜選択されるが、一般的には、固形分換算で0.5~15質量%であることが好ましい。
(UV absorber)
From the viewpoint of improving the weather resistance and durability of the hydrophilic composition, an ultraviolet absorber can be used.
Examples of the ultraviolet absorber are described in JP-A Nos. 58-185677, 61-190537, JP-A-2-782, JP-A-5-197075, JP-A-9-34057, and the like. Bezotriazole compounds, benzophenone compounds described in JP-A-46-2784, JP-A-5-194443, US Pat. No. 3,214,463, etc., JP-B-48-30492, JP-A-56-21141 Cinnamic acid compounds described in JP-A-10-88106, JP-A-4-298503, 8-53427, 8-239368, 10-182621, Special Tables The triazine compounds described in JP-A-8-501291 and the like, Research Disclosure No. Examples thereof include compounds described in No. 24239, compounds that emit ultraviolet light by absorbing ultraviolet rays typified by stilbene and benzoxazole compounds, so-called fluorescent brighteners, and the like.
The addition amount is appropriately selected according to the purpose, but generally it is preferably 0.5 to 15% by mass in terms of solid content.
(酸化防止剤)
 親水性組成物の安定性向上のため、酸化防止剤を添加することができる。酸化防止剤としては、ヨーロッパ公開特許、同第223739号公報、同309401号公報、同第309402号公報、同第310551号公報、同第310552号公報、同第459416号公報、ドイツ公開特許第3435443号公報、特開昭54-262047号公報、同63-113536号公報、同63-163351号公報、特開平2-262654号公報、特開平2-71262号公報、特開平3-121449号公報、特開平5-61166号公報、特開平5-119449号公報、米国特許第4814262号明細書、米国特許第4980275号明細書等に記載のものを挙げることができる。
 添加量は目的に応じて適宜選択されるが、固形分換算で0.1~8質量%であることが好ましい。
(Antioxidant)
An antioxidant can be added to improve the stability of the hydrophilic composition. Examples of the antioxidant include European Published Patent No. 223739, No. 309401, No. 309402, No. 310551, No. 310552, No. 4594416, German Published Patent No. 3435443. JP-A Nos. 54-262447, 63-113536, 63-163351, JP-A-2-262654, JP-A-2-71262, JP-A-3-121449, Examples thereof include those described in JP-A-5-61166, JP-A-5-119449, US Pat. No. 4,814,262, US Pat. No. 4,980,275, and the like.
The addition amount is appropriately selected according to the purpose, but is preferably 0.1 to 8% by mass in terms of solid content.
(溶剤)
 親水膜形成時に、基板に対する均一な塗膜の形成性を確保するために、塗布液に適度に有機溶剤を添加することも有効である。
 溶剤としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン等のケトン系溶剤、メタノール、エタノール、2-プロパノール、1-プロパノール、1-ブタノール、tert-ブタノール等のアルコール系溶剤、クロロホルム、塩化メチレン等の塩素系溶剤、ベンゼン、トルエン等の芳香族系溶剤、酢酸エチル、酢酸ブチル、酢酸イソプロピルなどのエステル系溶剤、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶剤、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル等のグリコールエーテル系溶剤、などが挙げられる。
 この場合、OC(揮発性有機溶剤)の関連から問題が起こらない範囲での添加が有効であり、その量は親水膜形成時の塗布液全体に対し0~50質量%が好ましく、より好ましくは0~30質量%の範囲である。
(solvent)
It is also effective to appropriately add an organic solvent to the coating solution in order to ensure the formation of a uniform coating film on the substrate during the formation of the hydrophilic film.
Examples of the solvent include ketone solvents such as acetone, methyl ethyl ketone, and diethyl ketone, alcohol solvents such as methanol, ethanol, 2-propanol, 1-propanol, 1-butanol, and tert-butanol, and chlorine such as chloroform and methylene chloride. Solvents, aromatic solvents such as benzene and toluene, ester solvents such as ethyl acetate, butyl acetate and isopropyl acetate, ether solvents such as diethyl ether, tetrahydrofuran and dioxane, glycols such as ethylene glycol monomethyl ether and ethylene glycol dimethyl ether And ether solvents.
In this case, it is effective to add in a range that does not cause a problem due to the relationship of OC (volatile organic solvent), and the amount is preferably 0 to 50% by mass, more preferably based on the entire coating solution at the time of forming the hydrophilic film. It is in the range of 0 to 30% by mass.
(高分子化合物)
 親水性組成物には、親水膜の膜物性を調整するため、親水性を阻害しない範囲で各種高分子化合物を添加することができる。高分子化合物としては、アクリル系重合体、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリビニルホルマール樹脂、シェラック、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、ワックス類、その他の天然樹脂等が使用できる。また、これらは2種以上併用してもかまわない。これらのうち、アクリル系のモノマーの共重合によって得られるビニル系共重合が好ましい。更に、カルボキシル基含有モノマー、メタクリル酸アルキルエステル、又はアクリル酸アルキルエステルを構造単位として含む共重合体も好ましく用いられる。
(Polymer compound)
In order to adjust the film physical properties of the hydrophilic film, various polymer compounds can be added to the hydrophilic composition as long as the hydrophilicity is not inhibited. High molecular compounds include acrylic polymer, polyvinyl alcohol resin, polyvinyl butyral resin, polyurethane resin, polyamide resin, polyester resin, epoxy resin, phenol resin, polycarbonate resin, polyvinyl formal resin, shellac, vinyl resin, acrylic resin. Rubber resins, waxes and other natural resins can be used. Two or more of these may be used in combination. Of these, vinyl copolymer obtained by copolymerization of acrylic monomers is preferred. Furthermore, a copolymer containing a carboxyl group-containing monomer, a methacrylic acid alkyl ester, or an acrylic acid alkyl ester as a structural unit is also preferably used.
 この他にも、必要に応じて、例えば、レベリング添加剤、マット剤、膜物性を調整するためのワックス類、基板への密着性を改善するために、親水性を阻害しない範囲でタッキファイヤーなどを含有させることができる。
 タッキファイヤーとしては、具体的には、特開2001-49200号公報の5~6pに記載されている高分子量の粘着性ポリマー(例えば、(メタ)アクリル酸と炭素数1~20のアルキル基を有するアルコールとのエステル、(メタ)アクリル酸と炭素数3~14の脂環族アルコールとのエステル、(メタ)アクリル酸と炭素数6~14の芳香族アルコールとのエステルからなる共重合物)や、重合性不飽和結合を有する低分子量粘着付与性樹脂などである。
In addition to this, as necessary, for example, leveling additives, matting agents, waxes for adjusting film physical properties, tackifiers to the extent that hydrophilicity is not impaired in order to improve adhesion to the substrate, etc. Can be contained.
As the tackifier, specifically, a high molecular weight adhesive polymer (for example, (meth) acrylic acid and an alkyl group having 1 to 20 carbon atoms) described in JP-A-2001-49200, 5-6p. An ester of an alcohol having a copolymer, an ester of (meth) acrylic acid and an alicyclic alcohol having 3 to 14 carbon atoms, a copolymer comprising an ester of (meth) acrylic acid and an aromatic alcohol having 6 to 14 carbon atoms) And a low molecular weight tackifying resin having a polymerizable unsaturated bond.
 親水性組成物の調製は、親水性ポリマー、および必要に応じて金属アルコキシド、触媒をエタノールなどの溶媒に溶解後、攪拌することで実施できる。反応温度は室温~80℃であり、反応時間、即ち攪拌を継続する時間は1~72時間の範囲であることが好ましく、この攪拌により両成分の加水分解・重縮合を進行させて、有機無機複合体ゾル液を得ることができる。 Preparation of the hydrophilic composition can be carried out by dissolving the hydrophilic polymer, and if necessary, a metal alkoxide and a catalyst in a solvent such as ethanol and stirring. The reaction temperature is from room temperature to 80 ° C., and the reaction time, that is, the time during which stirring is continued is preferably in the range of 1 to 72 hours. A composite sol solution can be obtained.
 前記親水性組成物を調製する際に用いる溶媒としては、これらを均一に、溶解、分散し得るものであれば特に制限はないが、例えば、メタノール、エタノール、水等の水系溶媒が好ましい。 The solvent used in preparing the hydrophilic composition is not particularly limited as long as it can uniformly dissolve and disperse these, but for example, an aqueous solvent such as methanol, ethanol, water or the like is preferable.
 以上述べたように、本発明の親水性組成物により親水膜を形成するための有機無機複合体ゾル液(親水性組成物)の調製は、ゾルゲル法を利用している。ゾルゲル法については、作花済夫「ゾル-ゲル法の科学」(株)アグネ承風社(刊)(1988年)、平島硯「最新ゾル-ゲル法による機能性薄膜作成技術」総合技術センター(刊)(1992年)等の成書等に詳細に記述され、それらに記載の方法を本発明において親水性組成物の調製に適用することができる。 As described above, the preparation of the organic-inorganic composite sol liquid (hydrophilic composition) for forming a hydrophilic film from the hydrophilic composition of the present invention utilizes the sol-gel method. Regarding the sol-gel method, Sakuo Sakuo “Science of Sol-Gel Method”, Agne Jofusha Co., Ltd. (published) (1988), Satoshi Hirashima “Functional Thin Film Formation Technology by the Latest Sol-Gel Method” General Technology Center (Published) (1992) and the like, and the methods described therein can be applied to the preparation of the hydrophilic composition in the present invention.
 本発明のフィン材において、親水膜の厚さは、0.05μm~10μmが好ましく、0.1μm~3.0μmがさらに好ましい。膜厚が0.05μm以上であることにより、十分な親水性の効果を得ることができる。また、10μm以下であることにより、膜の割れ等の欠陥が生じることがない。 In the fin material of the present invention, the thickness of the hydrophilic film is preferably 0.05 μm to 10 μm, more preferably 0.1 μm to 3.0 μm. When the film thickness is 0.05 μm or more, a sufficient hydrophilic effect can be obtained. Further, when the thickness is 10 μm or less, defects such as film cracking do not occur.
 親水膜は、親水性組成物を、アルミニウム基材の酸化被膜層上に塗布し、加熱、乾燥して表面親水膜を形成することで得ることができる。親水膜形成のための加熱温度と加熱時間は、ゾル液中の溶媒が除去され、強固な被膜が形成できる温度と時間であれば特に制限はないが、製造適性などの点から加熱温度は150℃以下であることが好ましく、加熱時間は1時間以内が好ましい。
 本発明のフィン材は、公知の塗布方法で作成することが可能であり、特に限定がなく、例えばスプレーコーティング法、ディップコーティング法、フローコーティング法、スピンコーティング法、ロールコーティング法、フィルムアプリケーター法、スクリーン印刷法、バーコーター法、刷毛塗り、スポンジ塗り等の方法が適用できる。
The hydrophilic film can be obtained by applying a hydrophilic composition onto the oxide film layer of the aluminum base, heating and drying to form a surface hydrophilic film. The heating temperature and heating time for forming the hydrophilic film are not particularly limited as long as the solvent in the sol solution is removed and a strong film can be formed, but the heating temperature is 150 from the viewpoint of production suitability and the like. The heating time is preferably within 1 hour.
The fin material of the present invention can be prepared by a known coating method, and is not particularly limited. For example, a spray coating method, a dip coating method, a flow coating method, a spin coating method, a roll coating method, a film applicator method, Methods such as screen printing, bar coater, brush coating, and sponge coating can be applied.
 親水性組成物の乾燥温度は10℃~200℃が好ましく、50℃~180℃がさらに好ましい。乾燥温度が低いと十分な架橋反応が進まず塗膜強度が低い。温度が高いと塗膜のひび割れを生じやすく部分的に防曇性が不十分になる。乾燥時間は1分~200分が好ましい。更に好ましくは5分~90分間である。乾燥時間が短いと乾燥不十分により塗膜強度が低下することがある。必要以上に乾燥時間を長くしすぎるとひび割れが生じたりする。 The drying temperature of the hydrophilic composition is preferably 10 ° C to 200 ° C, more preferably 50 ° C to 180 ° C. When the drying temperature is low, sufficient crosslinking reaction does not proceed and the coating strength is low. If the temperature is high, the coating film tends to crack, and the antifogging property is partially insufficient. The drying time is preferably 1 minute to 200 minutes. More preferably, it is 5 minutes to 90 minutes. If the drying time is short, the coating strength may decrease due to insufficient drying. If the drying time is excessively longer than necessary, cracks may occur.
 また、親水膜のTgは、熱交換機内の発熱による耐熱性を持たせるという理由から、40℃~150℃が好ましい。また、親水膜の弾性率は、1GPa~7GPaが好ましい。 Also, the Tg of the hydrophilic film is preferably 40 ° C. to 150 ° C. for the purpose of providing heat resistance due to heat generated in the heat exchanger. The elastic modulus of the hydrophilic film is preferably 1 GPa to 7 GPa.
 また、本発明のフィン材は、アルミニウム基材上に酸化被膜層を設ける。酸化被膜層によって親水膜の耐水性および密着性が高まる。酸化被膜層は好ましくはアルマイト層である。
 従来の技術では、アルミニウム基材表面の防錆性(表面の酸化を抑制するため)と該基材上に設けられた層との密着性をもたせるために中間層を付与する場合が多い(代表例はクロメート層)が、本発明ではアルミニウム基材表面にあえて酸化被膜層を設けることで、防錆性と密着性を発現させるという特徴を有する。
 酸化被膜層は、「アルミニウム表面処理と実務(中間法人軽金属製品協会試験研究センター、第四版 2007年)」に記載された硫酸法、シュウ酸法などの一般的な方法によって形成することができる。親水性と経済性の観点から硫酸法が好ましい。酸化被膜層の好ましい厚みは0.03~3μm、更に好ましくは0.1~1μmである。厚過ぎると打抜きでクラックが生じ、薄すぎると防錆性が不足する。
Moreover, the fin material of this invention provides an oxide film layer on an aluminum base material. The oxide film layer increases the water resistance and adhesion of the hydrophilic film. The oxide film layer is preferably an alumite layer.
In conventional techniques, an intermediate layer is often provided to provide adhesion between the surface of the aluminum substrate (to suppress surface oxidation) and the layer provided on the substrate (representative). In the present invention, the chromate layer) is characterized in that, in the present invention, an oxide film layer is provided on the surface of the aluminum base material to exhibit rust prevention and adhesion.
The oxide film layer can be formed by a general method such as a sulfuric acid method or an oxalic acid method described in “Aluminum Surface Treatment and Practice (Test and Research Center for Light Metal Products Association, Fourth Edition 2007)”. . The sulfuric acid method is preferred from the viewpoint of hydrophilicity and economy. The preferred thickness of the oxide film layer is 0.03 to 3 μm, more preferably 0.1 to 1 μm. If it is too thick, a crack will be generated by punching, and if it is too thin, rust prevention will be insufficient.
 また本発明のフィン材は、酸化被膜層と親水膜との間に中間層を設けても良い。中間層の素材としては、例えば、シランカップリング剤やテトラメトキシシラン、モノアルキルトリメトキシシラン等よりなる組成物が挙げられる。 In the fin material of the present invention, an intermediate layer may be provided between the oxide film layer and the hydrophilic film. Examples of the material for the intermediate layer include a composition composed of a silane coupling agent, tetramethoxysilane, monoalkyltrimethoxysilane, and the like.
 エアコンのアルミフィンの親水化処理は冷房運転時に結露水によるフィン間のブリッジ形成を抑制することを主目的とする。この評価には長時間水に曝露されても親水性が維持される耐水性が重要である。耐水性発現にはフィンと親水膜の密着性が重要であり、本発明ではアルマイト層と親水性ポリマーの反応性基によって密着性を達成している。
 本発明において、親水膜は、3L/時間の流水(例えば20℃)に240時間曝露した後の表面の水滴の接触角が好ましくは15°以下である。本発明では、シロキサン架橋構造を有しているため、このような高い耐水性を得られる。したがって、本発明のフィン材は、十分な親水性を有し、その効果も十分長く持続可能であるといえる。該接触角は協和界面科学DROP MASTER 500にて蒸留水の接触角を測定することにより測定できる。
 本発明のフィン材は熱交換器用フィン材として用いられることが好ましい。また本発明のエアコンは該熱交換器用フィン材を有する。
The main purpose of the hydrophilic treatment of aluminum fins in an air conditioner is to suppress the formation of bridges between the fins due to condensed water during cooling operation. For this evaluation, water resistance that maintains hydrophilicity even when exposed to water for a long time is important. The adhesion between the fin and the hydrophilic film is important for the development of water resistance. In the present invention, the adhesion is achieved by the reactive group of the alumite layer and the hydrophilic polymer.
In the present invention, the contact angle of water droplets on the surface of the hydrophilic film after being exposed to flowing water of 3 L / hour (for example, 20 ° C.) for 240 hours is preferably 15 ° or less. In this invention, since it has a siloxane crosslinked structure, such high water resistance can be obtained. Therefore, it can be said that the fin material of the present invention has sufficient hydrophilicity and the effect can be maintained for a sufficiently long time. The contact angle can be measured by measuring the contact angle of distilled water with Kyowa Interface Science DROP MASTER 500.
The fin material of the present invention is preferably used as a fin material for a heat exchanger. Moreover, the air conditioner of this invention has this fin material for heat exchangers.
 アルミニウム基材としてはアルミニウム板が挙げられ、純アルミニウム板、アルミニウムを主成分とし、微量の異元素を含む合金板、アルミニウムもしくはアルミニウム合金の薄膜にプラスチックがラミネートされているものなどがある。アルミニウム合金に含まれる異元素には、ケイ素、鉄、マンガン、銅、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタン等がある。合金中の異元素の含有量は10質量%以下であるのが好ましい。本発明においては、純アルミニウム板が好ましいが、完全に純粋なアルミニウムは精錬技術上製造が困難であるので、わずかに異元素を含有するものでもよい。アルミニウム板は、その組成が特定されるものではなく、公知公用の素材のものを適宜利用することができる。 Examples of the aluminum substrate include an aluminum plate, such as a pure aluminum plate, an alloy plate containing aluminum as a main component and containing a trace amount of different elements, and a material in which a plastic is laminated on a thin film of aluminum or an aluminum alloy. Examples of foreign elements contained in the aluminum alloy include silicon, iron, manganese, copper, magnesium, chromium, zinc, bismuth, nickel, and titanium. The content of foreign elements in the alloy is preferably 10% by mass or less. In the present invention, a pure aluminum plate is preferable, but completely pure aluminum is difficult to manufacture in terms of refining technology, and therefore may contain a slightly different element. The composition of the aluminum plate is not specified, and a publicly known material can be used as appropriate.
 基材の厚さは特に制限はなく、様々な用途において適宜調整することができるが、0.05~0.6mmであるのが好ましく、0.08~0.2mmであるのがより好ましい。 The thickness of the substrate is not particularly limited and can be appropriately adjusted in various applications. However, it is preferably 0.05 to 0.6 mm, more preferably 0.08 to 0.2 mm.
 アルミニウム基材を使用するに先立ち、粗面化処理、陽極酸化処理等の表面処理を施すのが好ましい。表面処理により、基材の親水性の向上、および基材上の層と基材との密着性の確保が容易になる。アルミニウム基材を粗面化処理するに先立ち、所望により、表面の圧延油を除去するための界面活性剤、有機溶剤、アルカリ性水溶液等による脱脂処理が行われる。アルミニウム基材の処理方法は公知の方法で行うことができる。 Prior to using the aluminum substrate, it is preferable to perform surface treatment such as roughening treatment or anodizing treatment. By the surface treatment, it becomes easy to improve the hydrophilicity of the substrate and to secure the adhesion between the layer on the substrate and the substrate. Prior to roughening the aluminum substrate, a degreasing treatment with a surfactant, an organic solvent, an alkaline aqueous solution or the like for removing rolling oil on the surface is performed as desired. The processing method of an aluminum base material can be performed by a well-known method.
 本発明で用いられるアルミニウム基材としては、上記のような表面処理をされ陽極酸化皮膜を有する基板そのままでも良いが、上層との接着性の一層改良のため、必要に応じて、特開2001-253181号公報や特開2001-322365号公報に記載されている陽極酸化皮膜のマイクロポアの拡大処理や封孔処理および親水性化合物を含有する水溶液に浸漬する表面親水化処理などを適宜選択して行うことができる。もちろんこれら拡大処理、封孔処理はこれらに記載のものに限られたものではなく従来公知の何れも方法も行うことができる。
 たとえば封孔処理としては、蒸気封孔のほかフッ化ジルコン酸の単独処理、フッ化ナトリウムによる処理、塩化リチウムを添加した蒸気封孔でも可能である。
As the aluminum base material used in the present invention, the substrate having the surface treatment as described above and having an anodized film may be used as it is. However, for further improvement of the adhesion with the upper layer, if necessary, The micropore enlargement treatment or sealing treatment of the anodized film and surface hydrophilization treatment immersed in an aqueous solution containing a hydrophilic compound described in Japanese Patent No. 253181 and Japanese Patent Application Laid-Open No. 2001-322365 are appropriately selected. It can be carried out. Of course, the enlargement process and the sealing process are not limited to those described above, and any conventionally known method can be performed.
For example, as the sealing treatment, in addition to the vapor sealing, a single treatment with fluorinated zirconic acid, a treatment with sodium fluoride, or a vapor sealing with addition of lithium chloride is possible.
<封孔処理>
 本発明に用いられる封孔処理は、特に限定されず、従来公知の方法を用いることができるが、中でも、無機フッ素化合物を含有する水溶液による封孔処理、水蒸気による封孔処理および熱水による封孔処理が好ましい。以下にそれぞれ説明する。
<Sealing treatment>
The sealing treatment used in the present invention is not particularly limited, and a conventionally known method can be used. Among them, sealing treatment with an aqueous solution containing an inorganic fluorine compound, sealing treatment with water vapor, and sealing with hot water are particularly preferable. Hole treatment is preferred. Each will be described below.
<無機フッ素化合物を含有する水溶液による封孔処理>
 無機フッ素化合物を含有する水溶液による封孔処理に用いられる無機フッ素化合物としては、金属フッ化物が好適に挙げられる。
 具体的には、例えば、フッ化ナトリウム、フッ化カリウム、フッ化カルシウム、フッ化マグネシウム、フッ化ジルコン酸ナトリウム、フッ化ジルコン酸カリウム、フッ化チタン酸ナトリウム、フッ化チタン酸カリウム、フッ化ジルコン酸アンモニウム、フッ化チタン酸アンモニウム、フッ化チタン酸カリウム、フッ化ジルコン酸、フッ化チタン酸、ヘキサフルオロケイ酸、フッ化ニッケル、フッ化鉄、フッ化リン酸、フッ化リン酸アンモニウムが挙げられる。中でも、フッ化ジルコン酸ナトリウム、フッ化チタン酸ナトリウム、フッ化ジルコン酸、フッ化チタン酸が好ましい。
<Sealing treatment with an aqueous solution containing an inorganic fluorine compound>
As the inorganic fluorine compound used for the sealing treatment with an aqueous solution containing an inorganic fluorine compound, a metal fluoride is preferably exemplified.
Specifically, for example, sodium fluoride, potassium fluoride, calcium fluoride, magnesium fluoride, sodium fluoride zirconate, potassium fluoride zirconate, sodium fluoride titanate, potassium fluoride titanate, zircon fluoride Ammonium acid, ammonium fluoride titanate, potassium fluoride titanate, fluorinated zirconate, fluorinated titanate, hexafluorosilicic acid, nickel fluoride, iron fluoride, phosphor fluoride, ammonium fluoride phosphate It is done. Among these, sodium fluorinated zirconate, sodium fluorinated titanate, fluorinated zirconic acid, and fluorinated titanic acid are preferable.
 水溶液中の無機フッ素化合物の濃度は、陽極酸化皮膜のマイクロポアの封孔を十分に行う点で、0.01質量%以上であるのが好ましく、0.05質量%以上であるのがより好ましく、また、耐汚れ性の点で、1質量%以下であるのが好ましく、0.5質量%以下であるのがより好ましい。 The concentration of the inorganic fluorine compound in the aqueous solution is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, from the viewpoint of sufficiently sealing the micropores of the anodized film. Further, in terms of stain resistance, it is preferably 1% by mass or less, and more preferably 0.5% by mass or less.
 無機フッ素化合物を含有する水溶液は、更に、リン酸塩化合物を含有するのが好ましい。リン酸塩化合物としては、例えば、アルカリ金属、アルカリ土類金属等の金属のリン酸塩が好適に挙げられる。
 具体的には、例えば、リン酸亜鉛、リン酸アルミニウム、リン酸アンモニウム、リン酸水素二アンモニウム、リン酸二水素アンモニウム、リン酸一アンモニウム、リン酸一カリウム、リン酸一ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸カルシウム、リン酸水素アンモニウムナトリウム、リン酸水素マグネシウム、リン酸マグネシウム、リン酸第一鉄、リン酸第二鉄、リン酸二水素ナトリウム、リン酸ナトリウム、リン酸水素二ナトリウム、リン酸鉛、リン酸二アンモニウム、リン酸二水素カルシウム、リン酸リチウム、リンタングステン酸、リンタングステン酸アンモニウム、リンタングステン酸ナトリウム、リンモリブデン酸アンモニウム、リンモリブデン酸ナトリウム、亜リン酸ナトリウム、トリポリリン酸ナトリウム、ピロリン酸ナトリウムが挙げられる。中でも、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素カリウム、リン酸水素二カリウムが好ましい。
 無機フッ素化合物とリン酸塩化合物の組合せは、特に限定されないが、水溶液が、無機フッ素化合物として、少なくともフッ化ジルコン酸ナトリウムを含有し、リン酸塩化合物として、少なくともリン酸二水素ナトリウムを含有するのが好ましい。
It is preferable that the aqueous solution containing an inorganic fluorine compound further contains a phosphate compound. Suitable examples of the phosphate compound include phosphates of metals such as alkali metals and alkaline earth metals.
Specifically, for example, zinc phosphate, aluminum phosphate, ammonium phosphate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, monoammonium phosphate, monopotassium phosphate, monosodium phosphate, dihydrogen phosphate Potassium, dipotassium hydrogen phosphate, calcium phosphate, sodium ammonium hydrogen phosphate, magnesium hydrogen phosphate, magnesium phosphate, ferrous phosphate, ferric phosphate, sodium dihydrogen phosphate, sodium phosphate, hydrogen phosphate Disodium, lead phosphate, diammonium phosphate, calcium dihydrogen phosphate, lithium phosphate, phosphotungstic acid, ammonium phosphotungstate, sodium phosphotungstate, ammonium phosphomolybdate, sodium phosphomolybdate, sodium phosphite , Tripolyphosphate Potassium, and sodium pyrophosphate. Among these, sodium dihydrogen phosphate, disodium hydrogen phosphate, potassium dihydrogen phosphate, and dipotassium hydrogen phosphate are preferable.
The combination of the inorganic fluorine compound and the phosphate compound is not particularly limited, but the aqueous solution contains at least sodium zirconate fluoride as the inorganic fluorine compound and contains at least sodium dihydrogen phosphate as the phosphate compound. Is preferred.
 水溶液中のリン酸塩化合物の濃度は、耐汚れ性の向上の点で、0.01質量%以上であるのが好ましく、0.1質量%以上であるのがより好ましく、また、溶解性の点で、20質量%以下であるのが好ましく、5質量%以下であるのがより好ましい。 The concentration of the phosphate compound in the aqueous solution is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, from the viewpoint of improving stain resistance, In this respect, it is preferably 20% by mass or less, and more preferably 5% by mass or less.
 水溶液中の各化合物の割合は、特に限定されないが、無機フッ素化合物とリン酸塩化合物の質量比が、1/200~10/1であるのが好ましく、1/30~2/1であるのがより好ましい。
 また、水溶液の温度は、20℃以上であるのが好ましく、40℃以上であるのがより好ましく、また、100℃以下であるのが好ましく、80℃以下であるのがより好ましい。
 また、水溶液は、pH1以上であるのが好ましく、pH2以上であるのがより好ましく、また、pH11以下であるのが好ましく、pH5以下であるのがより好ましい。
 無機フッ素化合物を含有する水溶液による封孔処理の方法は、特に限定されず、例えば、浸漬法、スプレー法が挙げられる。これらは単独で1回または複数回用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、浸漬法が好ましい。浸漬法を用いて処理する場合、処理時間は、1秒以上であるのが好ましく、3秒以上であるのがより好ましく、また、100秒以下であるのが好ましく、20秒以下であるのがより好ましい。
The ratio of each compound in the aqueous solution is not particularly limited, but the mass ratio of the inorganic fluorine compound and the phosphate compound is preferably 1/200 to 10/1, and preferably 1/30 to 2/1. Is more preferable.
Further, the temperature of the aqueous solution is preferably 20 ° C. or higher, more preferably 40 ° C. or higher, preferably 100 ° C. or lower, more preferably 80 ° C. or lower.
Further, the aqueous solution preferably has a pH of 1 or more, more preferably has a pH of 2 or more, preferably has a pH of 11 or less, and more preferably has a pH of 5 or less.
A method for sealing with an aqueous solution containing an inorganic fluorine compound is not particularly limited, and examples thereof include an immersion method and a spray method. These may be used alone or in combination, or may be used in combination of two or more.
Of these, the dipping method is preferred. When the treatment is performed using the dipping method, the treatment time is preferably 1 second or longer, more preferably 3 seconds or longer, more preferably 100 seconds or shorter, and 20 seconds or shorter. More preferred.
<水蒸気による封孔処理>
 水蒸気による封孔処理は、例えば、加圧または常圧の水蒸気を連続的にまたは非連続的に、陽極酸化皮膜に接触させる方法が挙げられる。
 水蒸気の温度は、80℃以上であるのが好ましく、95℃以上であるのがより好ましく、また、105℃以下であるのが好ましい。
 水蒸気の圧力は、(大気圧-50mmAq)から(大気圧+300mmAq)までの範囲(1.00×105~1.043×105Pa)であるのが好ましい。
 また、水蒸気を接触させる時間は、1秒以上であるのが好ましく、3秒以上であるのがより好ましく、また、100秒以下であるのが好ましく、20秒以下であるのがより好ましい。
<Sealing treatment with water vapor>
Examples of the sealing treatment with water vapor include a method in which pressurized or normal-pressure water vapor is brought into contact with the anodized film continuously or discontinuously.
The temperature of the water vapor is preferably 80 ° C. or higher, more preferably 95 ° C. or higher, and preferably 105 ° C. or lower.
The pressure of water vapor is preferably in the range (1.00 × 10 5 to 1.043 × 10 5 Pa) from (atmospheric pressure−50 mmAq) to (atmospheric pressure + 300 mmAq).
Further, the time for which the water vapor is contacted is preferably 1 second or longer, more preferably 3 seconds or longer, 100 seconds or shorter, more preferably 20 seconds or shorter.
<熱水による封孔処理>
 水蒸気による封孔処理は、例えば、陽極酸化皮膜を形成させたアルミニウム基材を熱水に浸漬させる方法が挙げられる。
 熱水は、無機塩(例えば、リン酸塩)または有機塩を含有していてもよい。
 熱水の温度は、80℃以上であるのが好ましく、95℃以上であるのがより好ましく、また、100℃以下であるのが好ましい。
 また、熱水に浸漬させる時間は、1秒以上であるのが好ましく、3秒以上であるのがより好ましく、また、100秒以下であるのが好ましく、20秒以下であるのがより好ましい。
<Sealing treatment with hot water>
Examples of the sealing treatment with water vapor include a method in which an aluminum base material on which an anodized film is formed is immersed in hot water.
The hot water may contain an inorganic salt (for example, phosphate) or an organic salt.
The temperature of the hot water is preferably 80 ° C. or higher, more preferably 95 ° C. or higher, and preferably 100 ° C. or lower.
Further, the time of immersion in hot water is preferably 1 second or longer, more preferably 3 seconds or longer, 100 seconds or shorter, more preferably 20 seconds or shorter.
<親水化処理>
 親水化処理としては、米国特許第2,714,066号、同第3,181,461号、同第3,280,734号および同第3,902,734号の各明細書に記載されているようなアルカリ金属シリケート法がある。この方法においては、支持体をケイ酸ナトリウム等の水溶液で浸漬処理し、または電解処理する。そのほかに、特公昭36-22063号公報に記載されているフッ化ジルコン酸カリウムで処理する方法、米国特許第3,276,868号、同第4,153,461号および同第4,689,272号の各明細書に記載されているようなポリビニルホスホン酸で処理する方法等が挙げられる。
<Hydrophilic treatment>
The hydrophilization treatment is described in US Pat. Nos. 2,714,066, 3,181,461, 3,280,734, and 3,902,734. There are such alkali metal silicate methods. In this method, the support is immersed in an aqueous solution such as sodium silicate or electrolytically treated. In addition, the treatment with potassium fluoride zirconate described in JP-B 36-22063, U.S. Pat. Nos. 3,276,868, 4,153,461 and 4,689, And a method of treating with polyvinylphosphonic acid as described in each specification of No.272.
 アルミニウム基材は、その表面形状には特に制限はないが、通常、中心線平均粗さが0.10~1.2μmであるのが好ましい。この範囲であればアルミニウム基材とその上の層との良好な密着性と良好な汚れ難さが得られる。 The surface shape of the aluminum substrate is not particularly limited, but it is usually preferable that the center line average roughness is 0.10 to 1.2 μm. If it is this range, the favorable adhesiveness of the aluminum base material and the layer on it and the favorable stain | pollution | contamination difficulty will be obtained.
 本発明のフィン材は、アルミニウム製のフィン本体と、フィン本体の表面の少なくとも一部に設けられた親水膜とを具備するフィン材であって、前記親水膜は、本発明に係る親水膜形成用組成物が塗設されてなる。
 室内エアコンや自動車エアコン等の熱交換器等に用いられるアルミニウム製フィン材(アルミニウム製フィン本体そのもの)は、冷房時に発生する凝集水が水滴となりフィン間にとどまることで水のブリッジが発生し、冷房能力が低下する。またフィン間に埃などが付着することでも、同様に冷房能力が低下する。これらの問題に対し、本発明のフィン材によれば、親水性、防汚性、及びそれらの持続性に優れたフィン材が得られる。
 本発明に係るフィン材は、パルミチン酸に1時間曝気、30分水洗、30分乾燥を5サイクル繰返した後の水接触角が40°以下であることが好ましい。
The fin material of the present invention is a fin material comprising an aluminum fin main body and a hydrophilic film provided on at least a part of the surface of the fin main body, the hydrophilic film forming the hydrophilic film according to the present invention. The composition for use is coated.
Aluminum fin material (aluminum fin body itself) used in heat exchangers such as indoor air conditioners and automobile air conditioners causes water droplets to form as water droplets and stay between the fins. Ability is reduced. In addition, the adhering dust between the fins similarly reduces the cooling capacity. In order to solve these problems, the fin material of the present invention can provide a fin material excellent in hydrophilicity, antifouling property, and sustainability thereof.
The fin material according to the present invention preferably has a water contact angle of 40 ° or less after 5 cycles of 1 hour aeration, 30 minute water washing, and 30 minute drying for palmitic acid.
 フィン材のフィン本体に用いられるアルミニウムとしては、表面が脱脂されたもの、必要に応じて化成処理されたアルミニウム板を挙げることができる。アルミニウム製のフィン本体は、表面が化成処理されていることが親水化処理皮膜の付着性、耐食性などの点から好適である。上記化成処理としては、例えば、クロメート処理を挙げることができ、その代表例として、アルカリ塩-クロム酸塩法(B.V.法、M.B.V.法、E.W.法、アルロック法、ピルミン法)、クロム酸法、クロメート法、リン酸クロム酸法などの処理法、及びクロム酸クロムを主体とした組成物による無水洗塗布型処理法などが挙げられる。 Examples of the aluminum used for the fin body of the fin material include those having a degreased surface and, if necessary, a chemically treated aluminum plate. It is preferable that the surface of the fin body made of aluminum is subjected to a chemical conversion treatment in terms of adhesion of the hydrophilic treatment film, corrosion resistance, and the like. Examples of the chemical conversion treatment include chromate treatment, and typical examples thereof include alkali salt-chromate method (BV method, MBV method, EW method, Al And a treatment method such as a chromic acid method, a chromate method, and a chromic phosphate method, and an anhydrous washing coating type treatment with a composition mainly composed of chromium chromate.
 例えば、熱交換器用フィン材のフィン本体に用いられるアルミニウム等薄板としては、JIS規格で、1100、1050、1200、1N30等の純アルミニウム板、2017、2014等のAl-Cu系合金板、3003、3004等のAl-Mn系合金板、5052、5083等のAl-Mg系合金板、さらには6061等のAl-Mg-Si系合金板等のいずれを用いても良く、またその形状はシートおよびコイルのいずれでも良い。 For example, as a thin plate of aluminum used for the fin body of the fin material for heat exchanger, according to JIS standard, pure aluminum plate such as 1100, 1050, 1200, 1N30, Al—Cu based alloy plate such as 2017, 2014, 3003, Any of Al-Mn alloy plates such as 3004, Al-Mg alloy plates such as 5052 and 5083, and Al-Mg-Si alloy plates such as 6061 may be used. Any of the coils may be used.
 また、本発明に係るフィン材は、熱交換器に用いることが好ましい。本発明に係るフィン材を用いた熱交換器は、優れた親水性、防汚性及びそれらの持続性を有しているので、フィン間に水滴や埃などが付着するのを防止することができる。熱交換器としては、例えば、室内用クーラーやエアコン、建設機械用オイルクーラー、自動車のラジエーター、キャパシタ等に使用される熱交換器が挙げられる。
 また、本発明に係るフィン材を用いた熱交換器をエアコンに使用することが好ましい。本発明に係るフィン材は、優れた親水性、防汚性及びそれらの持続性を有しているので、前述のような冷房能力の低下等の問題が改善されたエアコンを提供することができる。エアコンとしては、ルームエアコン、パッケージエアコン、カーエアコン等、いずれのものでもよい。
 その他、本発明の熱交換器、エアコンには公知の技術(例えば特開2002-106882号公報、特開2002-156135号公報など)を用いることができ、特に制限されない。
Moreover, it is preferable to use the fin material which concerns on this invention for a heat exchanger. Since the heat exchanger using the fin material according to the present invention has excellent hydrophilicity, antifouling properties and durability thereof, it is possible to prevent water droplets and dust from adhering between the fins. it can. Examples of the heat exchanger include heat exchangers used for indoor coolers, air conditioners, oil coolers for construction machines, automobile radiators, capacitors, and the like.
Moreover, it is preferable to use the heat exchanger using the fin material according to the present invention for an air conditioner. Since the fin material according to the present invention has excellent hydrophilicity, antifouling property, and sustainability thereof, it is possible to provide an air conditioner in which problems such as a decrease in cooling capacity as described above are improved. . As the air conditioner, any of room air conditioner, packaged air conditioner, car air conditioner, etc. may be used.
In addition, publicly known techniques (for example, JP 2002-106882 A, JP 2002-156135 A, etc.) can be used for the heat exchanger and the air conditioner of the present invention, and are not particularly limited.
 以下本発明を実施例によって詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
実施例1
<アルミニウム材脱脂処理>
 アルミニウム板(A1050、厚み0.1mm)をアルカリ性洗浄液(横浜油脂製、セミクリーンA 5%水溶液)に5分浸漬し、水洗、乾燥した。
<アルミニウム板陽極酸化>
 実施例および比較例で酸化被膜がある場合は、前記の脱脂処理したアルミニウム板を、15%硫酸(アルミニウムイオンを0.5質量%含む)を電解液として電流密度15A/dmで2.5g/mの直流陽極酸化被膜を設けた後、水洗、乾燥した。得られた酸化被膜層の厚さは、0.5μmであった。
Example 1
<Aluminum material degreasing treatment>
An aluminum plate (A1050, thickness 0.1 mm) was immersed in an alkaline cleaning liquid (Yokohama Yushi, semi-clean A 5% aqueous solution) for 5 minutes, washed with water and dried.
<Aluminum plate anodization>
When there is an oxide film in the examples and comparative examples, 2.5 g of the degreased aluminum plate is used at a current density of 15 A / dm 2 using 15% sulfuric acid (containing 0.5 mass% of aluminum ions) as an electrolyte. After providing a DC anodized film of / m 2 , it was washed with water and dried. The thickness of the obtained oxide film layer was 0.5 μm.
 使用した親水性ポリマーである化合物Bと化合物Eの合成方法を示す。その他の親水性ポリマーも同様にして合成することができる。 The synthesis method of Compound B and Compound E, which are the hydrophilic polymers used, is shown. Other hydrophilic polymers can be synthesized in the same manner.
化合物B
 三口フラスコにアクリルアミド213質量部、3-メルカプトプロピルトリメトキシシラン14.7質量部、1-メトキシ-2-プロパノール460質量部を加え、窒素気流下にて80℃で加熱混合した。ついで2,2’アゾビス(2,4ジメチルバレロニトリル)2質量部を加えて4時間反応を行った。得られた反応液をメタノール2L中に滴下し、固形物を析出させた。ろ過にて固形物を取り出したあと60℃で12時間乾燥を行い化合物Bを得た。得られた化合物Bの分子量はGPCにて測定し標準ポリスチレン換算値より求めた。
Compound B
To a three-necked flask, 213 parts by mass of acrylamide, 14.7 parts by mass of 3-mercaptopropyltrimethoxysilane, and 460 parts by mass of 1-methoxy-2-propanol were added, and the mixture was heated and mixed at 80 ° C. in a nitrogen stream. Then, 2 parts by mass of 2,2′azobis (2,4dimethylvaleronitrile) was added and the reaction was carried out for 4 hours. The obtained reaction solution was dropped into 2 L of methanol to precipitate a solid. The solid matter was taken out by filtration and then dried at 60 ° C. for 12 hours to obtain Compound B. The molecular weight of the obtained compound B was measured by GPC and obtained from the standard polystyrene equivalent value.
化合物E
 三口フラスコにアクリルアミド15.6質量部、アクリルアミド-プロピルトリエトキシシラン15.2質量部、1-メトキシ-2-プロパノール71.8質量部を加え窒素気流下にて80℃で混合した。ついで2,2’アゾビス(2,4ジメチルバレロニトリル)0.1質量部を加えて5時間反応を行った。得られた反応液をn-ヘキサン350質量部中に滴下し、固形物を析出させた。ろ過にて固形物を取り出したあと60℃で12時間乾燥を行い化合物Eを得た。得られた化合物Eの分子量はGPCにて測定し標準ポリスチレン換算値より求めた。
Compound E
To a three-necked flask, 15.6 parts by mass of acrylamide, 15.2 parts by mass of acrylamide-propyltriethoxysilane, and 71.8 parts by mass of 1-methoxy-2-propanol were added and mixed at 80 ° C. under a nitrogen stream. Subsequently, 0.1 part by mass of 2,2′azobis (2,4dimethylvaleronitrile) was added and the reaction was carried out for 5 hours. The obtained reaction solution was dropped into 350 parts by mass of n-hexane to precipitate a solid. After taking out the solid substance by filtration, it was dried at 60 ° C. for 12 hours to obtain Compound E. The molecular weight of the obtained compound E was measured by GPC and obtained from the standard polystyrene equivalent value.
<親水性組成物>
 下記のゾルゲル液          98g
 下記アニオン系界面活性剤5%水溶液  2g
<ゾルゲル液の調液>
 エタノール1.8質量部、アセチルアセトン0.1質量部、テトラエトキシチタン0.1質量部、蒸留水86.5質量部に、下記表1に示す質量部の親水性ポリマーおよびテトラメトキシシランを加え2時間攪拌した。
<Hydrophilic composition>
98g of the following sol-gel solution
The following anionic surfactant 5% aqueous solution 2g
<Preparation of sol-gel solution>
1 part by mass of ethanol, 0.1 part by mass of acetylacetone, 0.1 part by mass of tetraethoxytitanium, and 86.5 parts by mass of distilled water were added 2 parts by mass of hydrophilic polymer and tetramethoxysilane shown in Table 1 below. Stir for hours.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
<親水性ポリマー含量>
 親水性組成物の固形分に占める親水性ポリマーの割合をポリマー含量とした。表1には質量%で示した。
<塗布>
 上記酸化被膜層上またはアルミニウム板上に、親水性組成物を#3バーにて塗布し、150℃で30分乾燥し、親水膜を形成した。得られた親水膜の厚さは、0.4μmであった。
<Hydrophilic polymer content>
The ratio of the hydrophilic polymer in the solid content of the hydrophilic composition was defined as the polymer content. Table 1 shows the mass%.
<Application>
A hydrophilic composition was applied on the oxide film layer or aluminum plate with a # 3 bar and dried at 150 ° C. for 30 minutes to form a hydrophilic film. The thickness of the obtained hydrophilic film was 0.4 μm.
<塗布液液状>
 調液後の親水性組成物の液状外観を目視にて確認した。
 ◎:ゲル化なし、浮遊物なし
 ○:ゲル化なしも若干浮遊物あり
 ×:ゲル化しており、塗布できず
<Liquid coating liquid>
The liquid appearance of the hydrophilic composition after preparation was visually confirmed.
◎: No gelation, no floating matter ○: No gelation, some floating matter ×: Gelled, cannot be applied
<接触角>
 協和界面科学製DROP MASTER 500にて、親水膜の表面の蒸留水の水滴接触角を測定した。
 ◎ 5°以下
 ○ 15°以下
 △ 16~39°
 × 40°以上
<Contact angle>
The water droplet contact angle of distilled water on the surface of the hydrophilic film was measured with DROP MASTER 500 manufactured by Kyowa Interface Science.
◎ 5 ° or less ○ 15 ° or less △ 16-39 °
× 40 ° or more
<塩水噴霧試験>
 防錆性評価として、親水膜に対し、JIS Z2371中性条件を用いて塩水噴霧試験を実施した。
 ◎ 腐食なし
 ○ ごく一部腐食あり
 △ 部分的に腐食あり
 × 全面に腐食あり
<Salt spray test>
As rust prevention evaluation, the salt spray test was implemented with respect to the hydrophilic film using JIS Z2371 neutral conditions.
◎ No corrosion ○ Partially corrosive △ Partially corrosive × Corrosion on the entire surface
<耐水性>
 試料を3L/時間の流水に240時間曝露後、乾燥し、親水膜の表面における水滴接触角を前記方法で測定した。
 ◎ 10°以下
 ○ 15°以下
 △ 16~39°
 × 40°以上
<Water resistance>
The sample was exposed to running water of 3 L / hour for 240 hours and then dried, and the water droplet contact angle on the surface of the hydrophilic film was measured by the above method.
◎ 10 ° or less ○ 15 ° or less △ 16-39 °
× 40 ° or more
<密着性>
 親水膜上にセロハンテープを貼着したのちに剥がし、親水膜が剥がれるか目視で確認した。 
 ◎ 剥れなし
 ○ 塗布面のエッジ部にごく一部剥れ有り
 △ 塗布面のエッジ部に剥れ有り
 × 全面的に剥れ有り
<Adhesion>
After the cellophane tape was stuck on the hydrophilic film, it was peeled off, and it was visually confirmed whether the hydrophilic film was peeled off.
◎ No peeling ○ Partial peeling on the edge of the coated surface △ Stripped on the edge of the coated surface × Fully peeled
<打抜き耐性>
 加工成型適性代替評価として、試料を事務用パンチで打抜き、打抜きのエッジをSEMで観察した。 
 ◎ クラック、剥れなし
 ○ ごく一部剥れあり
 △ 部分的に剥がれ、またはクラックあり
 × クラック、剥れあり
<Punching resistance>
As an alternative evaluation for processing moldability, the sample was punched with an office punch, and the punched edge was observed with an SEM.
◎ No cracks or peeling ○ Partially peeled △ Partially peeled or cracked × Cracked or peeled
 上記各種評価の結果を表2に示す。 Table 2 shows the results of the above various evaluations.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 化合物Aの質量平均分子量は、1,000であり、
 化合物Bの質量平均分子量は、7,000であり、
 化合物Cの質量平均分子量は、1,000,000であり、
 化合物Dの質量平均分子量は、1,000であり、
 化合物Eの質量平均分子量は、30,000であり、
 化合物Fの質量平均分子量は、1,000,000であり、
 化合物Gの質量平均分子量は、10,000であり、
 化合物Hの質量平均分子量は、5,000である。
 上記式中、nは繰り返し数を表し、繰り返し単位に付された数値は、組成比である。質量平均分子量は、GPC(ポリエチレンオキシド標準)により求めた。また、テトラメトキシシラン、アセチルアセトン、テトラエトキシチタンは、東京化成工業(株)製のものを用い、化合物G、化合物Hは和光純薬工業(株)製のものを用いた。
Compound A has a weight average molecular weight of 1,000,
Compound B has a mass average molecular weight of 7,000,
Compound C has a weight average molecular weight of 1,000,000,
Compound D has a weight average molecular weight of 1,000,
Compound E has a weight average molecular weight of 30,000,
Compound F has a mass average molecular weight of 1,000,000,
Compound G has a weight average molecular weight of 10,000,
Compound H has a weight average molecular weight of 5,000.
In the above formula, n represents the number of repetitions, and the numerical value given to the repeating unit is the composition ratio. The mass average molecular weight was determined by GPC (polyethylene oxide standard). Tetramethoxysilane, acetylacetone, and tetraethoxytitanium were manufactured by Tokyo Chemical Industry Co., Ltd., and Compound G and Compound H were manufactured by Wako Pure Chemical Industries, Ltd.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 本発明のフィン材は、高い親水性、防錆性、耐水性、および加工成型適性を有するため、例えばエアコンの熱交換器用など、様々な用途に利用することができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は2008年3月12日出願の日本特許出願(特願2008-62954)に基づくものであり、それらの内容はここに参照して組み込まれる。
Since the fin material of the present invention has high hydrophilicity, rust resistance, water resistance, and processability, it can be used in various applications such as for air conditioner heat exchangers.
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on March 12, 2008 (Japanese Patent Application No. 2008-62954), the contents of which are incorporated herein by reference.

Claims (9)

  1.  アルミニウム基材上に酸化被膜層を有し、該酸化被膜層上に最表層として親水性組成物を用いて形成した親水膜を有するフィン材であって、該親水性組成物は親水性ポリマーを固形分中に80質量%以上含み、該親水性ポリマーは、下記一般式(I)または(II)で表される構造を含むことを特徴とするフィン材。
    Figure JPOXMLDOC01-appb-C000001
    {一般式(I)および(II)中、R1、R2、R3、R4、R5およびR6はそれぞれ独立に水素原子又は炭化水素基を表し、Xは反応性基を表し、A、L、LおよびLは、それぞれ独立に単結合または連結基を示し、Yは-NHCOR、-CONH2、-CON(R2、-COR、-OM、-CO2M、-SO3M、-POM、-OPOM、又は-N(Rを表し、ここで、Rはアルキル基、アリール基、又はアラルキル基を表し、複数存在する場合、各Rは同一でも異なっていてもよい。Mは水素原子、アルカリ金属、アルカリ土類金属又はオニウムを表し、Zはハロゲンイオンを表す。}
    A fin material having an oxide film layer on an aluminum substrate and having a hydrophilic film formed on the oxide film layer by using a hydrophilic composition as an outermost layer, the hydrophilic composition comprising a hydrophilic polymer A fin material comprising 80% by mass or more in a solid content, wherein the hydrophilic polymer includes a structure represented by the following general formula (I) or (II).
    Figure JPOXMLDOC01-appb-C000001
    {In General Formulas (I) and (II), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a hydrocarbon group, X represents a reactive group, A, L 1 , L 2 and L 3 each independently represents a single bond or a linking group, and Y represents —NHCOR 7 , —CONH 2 , —CON (R 7 ) 2 , —COR 7 , —OM, —CO 2 M, —SO 3 M, —PO 3 M, —OPO 3 M, or —N (R 7 ) 3 Z 1 , wherein R 7 represents an alkyl group, an aryl group, or an aralkyl group, When present, each R 7 may be the same or different. M represents a hydrogen atom, an alkali metal, an alkaline earth metal, or onium, and Z 1 represents a halogen ion. }
  2.  前記親水性ポリマーが、前記一般式(I)で表される構造を含むことを特徴とする請求項1に記載のフィン材。 The fin material according to claim 1, wherein the hydrophilic polymer includes a structure represented by the general formula (I).
  3.  前記親水性ポリマーが、前記一般式(II)で表される構造を含むことを特徴とする請求項1に記載のフィン材。 The fin material according to claim 1, wherein the hydrophilic polymer includes a structure represented by the general formula (II).
  4.  前記親水性組成物が、親水性ポリマーを固形分中に80~99質量%含むことを特徴とする請求項1~3のいずれかに記載のフィン材。 The fin material according to any one of claims 1 to 3, wherein the hydrophilic composition contains a hydrophilic polymer in a solid content of 80 to 99 mass%.
  5.  前記一般式(I)で表される構造を含む親水性ポリマーの質量平均分子量が2000~50000であることを特徴とする請求項1~4のいずれかに記載のフィン材。 The fin material according to any one of claims 1 to 4, wherein the hydrophilic polymer including the structure represented by the general formula (I) has a mass average molecular weight of 2,000 to 50,000.
  6.  前記一般式(II)で表される構造を含む親水性ポリマーの質量平均分子量が20000~100000であることを特徴とする請求項1~5のいずれかに記載のフィン材。 The fin material according to any one of claims 1 to 5, wherein the hydrophilic polymer including the structure represented by the general formula (II) has a mass average molecular weight of 20,000 to 100,000.
  7.  3L/時間の流水に240時間曝露した後の、前記親水膜の表面における水滴の接触角が15°以下であることを特徴とする請求項1~6のいずれかに記載のフィン材。 The fin material according to any one of claims 1 to 6, wherein a contact angle of water droplets on the surface of the hydrophilic film after exposure to flowing water of 3 L / hour for 240 hours is 15 ° or less.
  8.  請求項1~7のいずれかに記載のフィン材であることを特徴とする熱交換器用フィン材。 A heat exchanger fin material, wherein the fin material is any one of claims 1 to 7.
  9.  請求項8に記載の熱交換器用フィン材を備えたエアコン。 An air conditioner provided with the heat exchanger fin material according to claim 8.
PCT/JP2009/054337 2008-03-12 2009-03-06 Fin material, fin material for heat exchangers, and air conditioners WO2009113461A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008062954 2008-03-12
JP2008-062954 2008-03-12

Publications (1)

Publication Number Publication Date
WO2009113461A1 true WO2009113461A1 (en) 2009-09-17

Family

ID=41065130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054337 WO2009113461A1 (en) 2008-03-12 2009-03-06 Fin material, fin material for heat exchangers, and air conditioners

Country Status (2)

Country Link
JP (1) JP2009243873A (en)
WO (1) WO2009113461A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013437A1 (en) * 2013-11-20 2015-05-22 Valeo Systemes Thermiques COATING FOR HEAT EXCHANGER
EP3379192A4 (en) * 2015-11-20 2019-07-17 UACJ Corporation Pre-coat fin and heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101464358B1 (en) * 2013-10-29 2014-11-25 경기대학교 산학협력단 Evaporator for Air conditioner
WO2017073437A1 (en) * 2015-10-29 2017-05-04 富士フイルム株式会社 Antifouling film, antifouling film forming composition, antifouling film laminate, and production method for antifouling film laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162186A (en) * 2000-11-20 2002-06-07 Mitsubishi Alum Co Ltd Fin member for heat exchanger having non-chromate reaction type substrate layer and heat exchanger equipped with the same
JP2002365146A (en) * 2001-06-12 2002-12-18 Ishida Co Ltd Load cell
JP2005125546A (en) * 2003-10-22 2005-05-19 Fuji Photo Film Co Ltd Support for lithographic printing plate and lithographic printing plate master
JP2007225174A (en) * 2006-02-22 2007-09-06 Fujifilm Corp Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162186A (en) * 2000-11-20 2002-06-07 Mitsubishi Alum Co Ltd Fin member for heat exchanger having non-chromate reaction type substrate layer and heat exchanger equipped with the same
JP2002365146A (en) * 2001-06-12 2002-12-18 Ishida Co Ltd Load cell
JP2005125546A (en) * 2003-10-22 2005-05-19 Fuji Photo Film Co Ltd Support for lithographic printing plate and lithographic printing plate master
JP2007225174A (en) * 2006-02-22 2007-09-06 Fujifilm Corp Heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013437A1 (en) * 2013-11-20 2015-05-22 Valeo Systemes Thermiques COATING FOR HEAT EXCHANGER
WO2015074844A1 (en) * 2013-11-20 2015-05-28 Valeo Systemes Thermiques Heat exchanger coating
CN105849499A (en) * 2013-11-20 2016-08-10 法雷奥热系统公司 Heat exchanger coating
JP2016537605A (en) * 2013-11-20 2016-12-01 ヴァレオ システム テルミク Heat exchanger coating
US10465998B2 (en) 2013-11-20 2019-11-05 Valeo Systemes Thermiques Heat exchanger coating
EP3379192A4 (en) * 2015-11-20 2019-07-17 UACJ Corporation Pre-coat fin and heat exchanger

Also Published As

Publication number Publication date
JP2009243873A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5124496B2 (en) Hydrophilic member
JP5427382B2 (en) Hydrophilic member, fin material, aluminum fin material, heat exchanger and air conditioner
US20110259571A1 (en) Hydrophilic composition and hydrophilic member having antifungal property
JP2008238711A (en) Hydrophilic member, and undercoating composition
WO2009093688A1 (en) Hydrophilic composition having mildewproofing effect and hydrophilic member
JP2009256564A (en) Composition for formation of hydrophilic film, and hydrophilic member
US20080207849A1 (en) Hydrophilic film forming composition and hydrophilic member
US20100215928A1 (en) Antifogging cover, and meter cover using said antifogging cover
JP2007225174A (en) Heat exchanger
JP5271576B2 (en) Hydrophilic composition
WO2009113461A1 (en) Fin material, fin material for heat exchangers, and air conditioners
JP2010070735A (en) Hydrophilic composition, hydrophilic member, fin material, heat exchanger, and air conditioner
WO2010027001A1 (en) Method for producing hydrophilic member and hydrophilic member
JP2008088260A (en) Hydrophilic film-forming composition and hydrophilic member
JP2009079889A (en) Fin material
WO2009119605A1 (en) Hydrophilic member
WO2010087417A1 (en) Hydrophilic composition, hydrophilic member, fin material, heat exchanger, and air conditioner
JP2011073359A (en) Hydrophilic member
JP2011051266A (en) Hydrophilic member
JP2008225466A (en) Anti-fogging and anti-reflection optical product
JP2008200881A (en) Hydrophilic member and its manufacturing method
JP2010057690A (en) Goggle
JP2009256578A (en) Hydrophilic composition and hydrophilic member using the same
JP2010228958A (en) Glass member
WO2009096532A1 (en) Hydrophilic member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09718628

Country of ref document: EP

Kind code of ref document: A1