WO2009113244A1 - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- WO2009113244A1 WO2009113244A1 PCT/JP2009/000660 JP2009000660W WO2009113244A1 WO 2009113244 A1 WO2009113244 A1 WO 2009113244A1 JP 2009000660 W JP2009000660 W JP 2009000660W WO 2009113244 A1 WO2009113244 A1 WO 2009113244A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- discharge electrode
- air conditioner
- counter electrode
- discharge
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/22—Means for preventing condensation or evacuating condensate
- F24F13/222—Means for preventing condensation or evacuating condensate for evacuating condensate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B5/00—Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
- B05B5/025—Discharge apparatus, e.g. electrostatic spray guns
- B05B5/0255—Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B5/00—Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
- B05B5/025—Discharge apparatus, e.g. electrostatic spray guns
- B05B5/057—Arrangements for discharging liquids or other fluent material without using a gun or nozzle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0043—Indoor units, e.g. fan coil units characterised by mounting arrangements
- F24F1/0057—Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
- F24F1/0063—Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0042—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater characterised by the application of thermo-electric units or the Peltier effect
Definitions
- the present invention relates to an air conditioner including an indoor unit having an air cleaning function for purifying indoor air.
- Some conventional air conditioners have a deodorizing function, for example, adsorb odor components with an air cleaning pre-filter provided at an air inlet of an indoor unit, or have an oxidative decomposition function provided in the middle of an air passage. Odor components are adsorbed by the deodorizing unit.
- the air conditioner with a deodorizing function removes odor components contained in the air sucked from the suction port and deodorizes it, the odor components contained in the indoor air and the odor adhering to curtains, walls, etc. The component could not be removed.
- an odorous component contained in the indoor air is provided by providing an electrostatic atomizer in the air passage of the indoor unit, and blowing out the electrostatic mist generated by the electrostatic atomizer with a nanometer-size electrostatic mist.
- An air conditioner that removes odorous components adhering to curtains and walls has also been proposed (see, for example, Patent Document 1 or 2).
- the electrostatic atomizer is disposed in the vicinity of the inlet or outlet, or downstream of the heat exchanger or indoor fan.
- the electrostatic atomizer includes a water conveyance unit that conveys water by capillary action, a heat exchange unit that supplies condensed water generated by cooling air on the heat absorption surface to the water conveyance unit, and a water conveyance unit.
- An application electrode for applying a voltage to the water to be transported, a counter electrode facing the water transport unit, and a high voltage application unit for applying a high voltage between the application electrode and the counter electrode to replenish water The thing which can be used continuously is proposed (for example, refer patent document 3).
- the low-temperature air that has passed through the heat exchanger of the indoor unit has a high relative humidity.
- a Peltier element is provided to replenish moisture. Since dew condensation tends to occur not only in the pin-shaped discharge electrode of the Peltier element but also in the entire Peltier element, it is not possible to guarantee high safety by applying a high voltage to the Peltier element itself.
- the high-temperature air that has passed through the heat exchanger has a low relative humidity, so there is a high possibility that no condensation will occur on the discharge electrode.
- the electrostatic atomizer is arranged in the vicinity of the inlet or outlet, or downstream of the heat exchanger or indoor fan.
- the electrostatic atomizer is arranged in the vicinity of the inlet or outlet, or downstream of the heat exchanger or indoor fan.
- the electrostatic atomizer since the electrostatic atomizer generates electrostatic mist by utilizing the discharge phenomenon, it causes a discharge noise and increases the noise of the air conditioner.
- the electrostatic atomizer described in Patent Document 3 does not consider reduction of discharge noise.
- an air atomizer is equipped with an electrostatic atomizer, and an electrostatic mist having a particle size of nanometer generated by the electrostatic atomizer is blown into the room together with the air, so that the odor components contained in the room air and When trying to exert the effect of removing odorous components adhering to curtains, walls, etc., it is necessary to generate more electrostatic mist because the indoor space is large. Along with this, the discharge noise is correspondingly increased.
- the air conditioner described in Patent Document 1 or 2 does not take into consideration the generation of a considerable amount of electrostatic mist corresponding to the size of the indoor space and the reduction of discharge noise.
- an air conditioner depending on the indoor environment, for example, there may be a large amount of smoking by residents, a lot of dust flying in the air, or cooking utensils nearby and oil smoke. Such dirt may adhere to the equipment mounted on the machine and the performance of the equipment may deteriorate.
- the air conditioner described in Patent Document 1 or 2 and the electrostatic atomizer described in Patent Document 3 are not considered at all for prevention of a decrease in the amount of electrostatic mist generated due to contamination of the electrodes. .
- the present invention has been made in view of the above-described problems of the prior art, and can reliably generate more electrostatic mist over a long period of time, while suppressing an increase in discharge sound associated therewith. It aims to provide an air conditioner with improved quietness.
- a first aspect of the present invention is an air conditioner including an indoor unit having an air purifying function for purifying indoor air, wherein the indoor unit sucks indoor air and A heat exchanger that exchanges heat with the sucked air, an indoor fan that conveys the air heat-exchanged by the heat exchanger, and a blowout port that blows out the air blown from the indoor fan, a discharge electrode, A counter electrode disposed opposite to the discharge electrode; a high-voltage power source; and a Peltier element that condenses moisture in the air, wherein water is supplied to the discharge electrode by the Peltier element and the discharge electrode And an electrostatic atomizer that generates electrostatic mist by applying a high voltage from the high-voltage power source between the counter electrode and the counter electrode. Ring shape Characterized in that the configuration was.
- the discharge electrode has a tip or a sharp tip.
- the inner surface of the counter electrode on the discharge electrode side is preferably configured as a part of a spherical surface with the tip of the discharge electrode as a spherical center.
- the inner surface of the counter electrode on the discharge electrode side may be configured as a part of a spherical surface centered on the position away from the counter electrode along the discharge electrode from the tip of the discharge electrode.
- the width between the ring inner periphery and the ring outer periphery of the counter electrode is 0 ° in the direction perpendicular to the central axis of the discharge electrode with the spherical center as the origin, ⁇ 1 up to the ring outer periphery of the counter electrode, and the ring inner periphery
- ⁇ 2 is preferably set to 50 ° or more.
- the standing part is formed on the inner peripheral part of the ring of the counter electrode in the direction opposite to the discharge electrode.
- the height of the standing portion is formed equal to or less than the hole diameter of the counter electrode, and the inner side of the base of the standing portion is formed in a round shape. Further, the tip of the standing portion is formed to be bent outward.
- an air conditioner including an indoor unit having an air purifying function for purifying indoor air, wherein the indoor unit sucks indoor air and exchanges heat with the sucked air.
- a heat exchanger an indoor fan that conveys the air heat-exchanged by the heat exchanger, and a blowout port that blows out air blown from the indoor fan.
- a counter electrode disposed between the discharge electrode and the counter electrode by supplying water to the discharge electrode by the Peltier element; Further comprising an electrostatic atomizer that generates electrostatic mist by applying a high voltage from the high-voltage power source, wherein the counter electrode has a ring shape with a hole in the center and is erected on the inner periphery of the ring On the opposite side of the discharge electrode Characterized by being formed towards.
- the height of the standing portion is formed equal to or less than the hole diameter of the counter electrode, and the inner side of the root of the standing portion is formed in a round shape. Further, the tip of the standing portion is formed to be bent outward.
- the discharge area of the counter electrode is increased, more electrostatic mist can be generated reliably, and the increase in the discharge sound associated therewith is suppressed, thereby reducing the noise.
- An improved air conditioner can be provided.
- the tip of the discharge electrode is formed in a spherical shape or a sharp shape
- moisture generated by condensation on the surface of the sphere tends to aggregate on the tip due to electrostatic force, and can be easily held by surface tension.
- even a sharp shape tends to agglomerate at the tip due to electrostatic force, and can be easily held by surface tension.
- the inner surface of the counter electrode on the discharge electrode side is configured as a part of a spherical surface with the tip of the discharge electrode as the center of the sphere, the inner surface of the counter electrode is disposed so as to be substantially equidistant from the tip of the discharge electrode.
- the discharge area can be set large.
- the inner surface of the counter electrode on the discharge electrode side is configured as a part of a spherical surface centered at the position away from the counter electrode along the discharge electrode from the tip of the discharge electrode, the tip of the discharge electrode and the counter electrode
- the distance of the ring becomes the shortest in the ring inner periphery, and the ring outer periphery becomes larger. Therefore, the electrostatic force on the ring inner peripheral side becomes relatively larger than that on the ring outer peripheral side, and the movement of the tip water condensed in a conical shape at the tip of the discharge electrode is narrowed down, and the overall movement is also suppressed. Discharge noise can be suppressed.
- the width of the inner periphery of the ring of the counter electrode and the outer periphery of the ring is set to 0 ° in the direction perpendicular to the center axis of the discharge electrode with the spherical center as the origin, ⁇ 1 to the ring outer periphery of the counter electrode,
- ⁇ 2 is set to 50 ° or more, the state of the tip of the tip water swung in a conical shape at the tip of the discharge electrode does not become too large.
- the standing part is formed on the inner peripheral part of the ring of the counter electrode in the direction opposite to the discharge electrode, the discharge distance does not change even if dirt particles accumulate on the tip of the standing part. Furthermore, since the direction of the tip of the standing portion which is the end face is the same direction as the air flow, the turbulence of the air flow is reduced, the accumulation itself is less, it takes time, and more electrostatic mist is applied for a long time. Can be reliably generated.
- the discharge distance will not be shortened even if dirt particles accumulate. Furthermore, as the height H of the standing portion is increased, the period until the accumulation of dirt particles shortens the discharge distance and has an adverse effect increases, but the flow path of the air flow becomes longer and the resistance increases. , The deposits do not sag and do not sag or close to the flow path.
- the inner side of the base of the standing part is formed in a round shape, it becomes smooth from the inner surface of the counter electrode to the standing part, and the turbulence of the air current can be suppressed to prevent the electrostatic mist from disappearing.
- the tip of the standing portion is bent outward, the end surface of the tip of the standing portion is completely moved away from the electrostatic mist and the air flow of the dirt particles, and the accumulation of dirt particles can be prevented.
- the discharge distance does not change even if dirt particles accumulate on the tip of the standing portion. Furthermore, since the direction of the tip of the standing portion which is the end face is the same direction as the air flow, the turbulence of the air flow is reduced, the accumulation itself is less, it takes time, and more electrostatic mist is applied over a long period of time. It can be generated reliably.
- FIG. 1 is a perspective view of an indoor unit of an air conditioner according to the present invention showing a state in which a part is removed.
- 2 is a schematic longitudinal sectional view of the indoor unit of FIG. 3 is a perspective view of the electrostatic atomizer provided in the indoor unit of FIG.
- FIG. 4 is a front view showing a part of the frame of the indoor unit of FIG. 1 and the electrostatic atomizer.
- FIG. 5 is a schematic configuration diagram of the electrostatic atomizer.
- FIG. 6 is a block diagram of the electrostatic atomizer.
- FIG. 7 is a perspective view showing a state where the electrostatic atomizer is attached to the indoor unit main body.
- FIG. 8 is a perspective view of a modified example showing the attachment state of the electrostatic atomizer to the indoor unit main body.
- 9 is a side view of the indoor unit of FIG. 1 showing the positional relationship between the electrostatic atomizer and the ventilation fan unit.
- 10 is a perspective view of an automatic prefilter cleaning device provided in the indoor unit of FIG.
- FIG. 11 is a perspective view showing a modification of the electrostatic atomizer.
- 12 is a side view of the indoor unit of FIG. 1 showing the positional relationship between the electrostatic atomizer of FIG. 11 and the ventilation fan unit.
- FIG. 13 is a cross-sectional view of the electrostatic atomization unit of the air conditioner of the present embodiment. (A), (b), (c), and (d) of FIG.
- FIG. 14 are sectional views showing an example of the state of the tip water in detail of the main part of the discharge electrode of FIG.
- FIG. 15 is a schematic diagram in the case where the hole diameter of the counter electrode is reduced in detail of the main part of FIG.
- FIG. 16 is a schematic view of the main part in FIG. 13 with the counter electrode separated.
- FIG. 17 is a schematic diagram in the case where the discharge voltage is lowered in detail of the main part of FIG.
- FIG. 18 is a cross-sectional view of another electrostatic atomizing unit of the air conditioner of the present embodiment.
- FIG. 19 is a schematic view of the main part of FIG. 18 with the counter electrode separated.
- FIG. 20 is a schematic diagram in the case where the discharge voltage is lowered in detail of the main part of FIG. FIG.
- FIG. 21 is a schematic diagram of the main part of FIG. 18 in detail when the discharge distance on the ring outer peripheral side of the counter electrode is increased.
- FIG. 22 is a cross-sectional view of a principal part of the electrostatic atomization unit of the air conditioner according to the present embodiment.
- FIG. 23 is a cross-sectional view of the main part of another electrostatic atomizing unit of the air conditioner of the present embodiment.
- FIGS. 1 and 2 show the indoor unit of the air conditioner according to the present invention.
- the indoor unit has a front suction port 2a and a top suction port 2b as suction ports for sucking room air into the main body 2, and the front suction port 2a has a movable front panel that can be opened and closed. 4 (hereinafter simply referred to as the front panel).
- the front panel 4 When the air conditioner is stopped, the front panel 4 is in close contact with the main body 2 and closes the front suction port 2a. The front panel 4 moves in a direction away from the main body 2 to open the front suction port 2a.
- a prefilter 5 is provided on the downstream side of the front suction port 2 a and the upper surface suction port 2 b for removing dust contained in the air, and a front suction is provided on the downstream side of the prefilter 5.
- Air is blown from the heat exchanger 6 for exchanging heat with the indoor air sucked from the mouth 2a and the upper surface suction port 2b, the indoor fan 8 for conveying the heat exchanged by the heat exchanger 6, and the indoor fan 8.
- the upper and lower blades 12 change the air blowing direction up and down, and the left and right blades 14 change the air blowing direction left and right.
- the upper portion of the front panel 4 is connected to the upper portion of the main body 2 via a plurality of arms (not shown) provided at both ends thereof, and a drive motor connected to one of the plurality of arms ( By driving and controlling the air conditioner, the front panel 4 moves forward from the position when the air conditioner is stopped (closed position of the front suction port 2a) during the air conditioner operation.
- the upper and lower blades 12 are connected to the lower portion of the main body 2 through a plurality of arms (not shown) provided at both ends thereof.
- a ventilation fan unit 16 for ventilating room air is provided at one end of the indoor unit (on the left side when viewed from the front of the indoor unit and on the bypass channel 22 side of a partition wall 46c described later).
- an electrostatic atomizer 18 having an air cleaning function that generates electrostatic mist and purifies indoor air is provided behind the ventilation fan unit 16.
- FIG. 1 shows a state in which a main body cover (not shown) covering the front panel 4 and the main body 2 is removed
- FIG. 2 clearly shows a connection position between the indoor unit main body 2 and the electrostatic atomizer 18. Therefore, the electrostatic atomizer 18 accommodated in the main body 2 is separated from the main body 2.
- the electrostatic atomizer 18 actually has the shape shown in FIG. 3 and is attached to the left side of the main body 2 as shown in FIG. 1 or FIG.
- the electrostatic atomizer 18 includes a main channel that communicates from the front suction port 2 a and the upper suction port 2 b to the blowout port 10 via the heat exchanger 6, the indoor fan 8, and the like.
- a high-voltage transformer 24 and a bypass blower fan 26 serving as a high-voltage power source are provided on the upstream side of the bypass flow path 22 and are provided in the middle of the bypass flow path 22 that bypasses the heat exchanger 6 and the indoor fan 8.
- An electrostatic atomizing unit 30 and a silencer 32 that are provided and have a heat radiation portion 28 that promotes heat radiation of the electrostatic atomization unit 30 are provided on the downstream side of the bypass flow path 22.
- the casing 34 constituting a part of the bypass flow path 22 is arranged. Contained.
- the assembly is improved and the flow path is formed by the casing 34, so that space is saved and the flow of air by the bypass blower fan 26 is changed to a high voltage that is a heat generating part.
- the transformer 24 and the heat radiating section 28 can be reliably applied and cooled, and the electrostatic mist generated from the electrostatic atomization unit 30 can be reliably introduced into the air outlet 10 of the air conditioner. Electric mist can be discharged into the air-conditioned room.
- the casing 34 is arranged in the vertical direction so that the direction of the airflow flowing through the inside of the casing 34 is parallel to the direction of the airflow flowing through the main flow path 20 when viewed from the front of the indoor unit body 2. As a result, it can be disposed adjacent to the position overlapping the ventilation fan unit 16 when viewed from the front of the indoor unit main body 2, and further space saving is achieved.
- the high-voltage transformer 24 is not necessarily accommodated in the casing 34, but is cooled by the ventilation of the bypass flow path, so that it is accommodated in the casing 34 from the viewpoint of suppressing temperature rise or saving space. preferable.
- the electrostatic atomization unit 30 includes a plurality of Peltier elements 36 having a heat radiating surface 36a and a cooling surface 36b, and the above-described heat radiating portion connected in thermal contact with the heat radiating surface 36a. (E.g., radiation fins) 28, a discharge electrode 38 installed in thermal contact with the cooling surface 36b via an electrical insulating material (not shown), and a predetermined distance from the discharge electrode 38. It is comprised with the counter electrode 40 arrange
- the Peltier drive power supply 44 and the high voltage transformer 24 are electrically connected to the control unit 42 (see FIG. 1) disposed in the vicinity of the ventilation fan unit 16, and the Peltier element 36 and the discharge electrode 38 are electrically connected to the Peltier drive power supply 44 and the high voltage transformer 24, respectively.
- the frame-connected structure can be regarded as the counter electrode 40.
- the electrostatic atomization unit 30 configured as described above, when the control unit 42 controls the Peltier drive power supply 44 to cause a current to flow through the Peltier element 36, heat is transferred from the cooling surface 36 b toward the heat radiating surface 36 a, and the discharge electrode 38. Condensation occurs on the discharge electrode 38 due to a decrease in temperature. Further, when the high voltage transformer 24 is controlled by the control unit 42 and a high voltage is applied to the discharge electrode 38 to which the condensed water has adhered, a discharge phenomenon occurs in the condensed water, and electrostatic mist having a particle size of nanometer size is generated. appear. In the present embodiment, since a negative high voltage power source is used as the high voltage transformer 24, the electrostatic mist is negatively charged.
- the main flow path 20 includes a rear wall 46 a of the base frame 46 constituting the main body 2, and both side walls extending forward from both ends of the rear wall 46 a ( 7 shows only the left side wall 46b, a rear wall 48a of the rear guider 48 formed below the underframe 46, and both side walls extending forward from both ends of the rear wall 48a (left side in FIG. 7).
- 48b a partition wall separating the bypass channel 22 from the main channel 20 by one side wall (left side wall) 46b of the underframe 46 and one side wall (left side wall) 48b of the rear guider 48.
- 46c is constituted.
- the bypass suction port 22a of the bypass channel 22 is formed on one side wall 46b of the frame 46, while the bypass outlet 22b of the bypass channel 22 is formed on one side wall 48b of the rear guider 48.
- the electrostatic atomizer 18 includes a Peltier element 36 for replenishing moisture.
- dew condensation is likely to occur not only on the pin-shaped discharge electrode 38 of the Peltier element 36 but also on the entire Peltier element 36.
- the high-temperature air that has passed through the heat exchanger 6 has a low relative humidity, so there is a very high possibility that no condensation will occur on the discharge electrode 38 of the Peltier element 36.
- the main flow path 20 and the bypass flow path 22 are separated by the partition wall 46c, and an electrostatic atomizer 18 that generates electrostatic mist is provided in the bypass flow path 22.
- Air that has not passed through and that has not been adjusted in temperature and humidity is supplied to the electrostatic atomizer 18.
- safety is improved by effectively preventing the occurrence of condensation on the entire Peltier element 36 of the electrostatic atomization unit 30 during cooling.
- electrostatic mist can be reliably generated during heating.
- the bypass passage 22 includes a bypass suction pipe 22c, a casing 34, and a bypass outlet pipe 22d, and the bypass suction pipe 22c having one end connected to the bypass suction port 22a formed in the frame side wall 46b is located on the left side (
- the bypass outlet 22d which extends in a direction substantially orthogonal to the left side wall 46b and extends in a direction substantially parallel to the front panel 4, is connected to one end of the casing 34 and further connected to the other end of the casing 34.
- the other end of the rear guider 48 is connected to the bypass outlet 22b of the side wall 48b.
- bypass channel 22 by comprising a part of bypass channel 22 with casing 34, space saving can be achieved, and electrostatic atomization unit can be formed via bypass outlet pipe 22d by comprising these in series.
- the electrostatic mist can be reliably attracted from 18 toward the main flow path 20, and the electrostatic mist can be discharged into the air-conditioned room.
- the bypass suction port 22a is located between the prefilter 5 and the heat exchanger 6, that is, downstream of the prefilter 5 and upstream of the heat exchanger 6, and is sucked from the front suction port 2a and the upper suction port 2b. Since the dust contained in the air is effectively removed by the pre-filter 5, it is possible to prevent the dust from entering the electrostatic atomizer 18. Thereby, it can prevent effectively that dust accumulates on the electrostatic atomization unit 30, and can discharge
- the prefilter 5 serves as a prefilter for the electrostatic atomizer 18 and the main flow path 20, but this requires maintenance to clean only the prefilter 5. Since it is not necessary to care for each separately, the care can be simplified. Furthermore, in an air conditioner equipped with a pre-filter automatic cleaning device as will be described later, the pre-filter 5 does not require special care, and can be made maintenance-free.
- bypass air outlet 22b is positioned in the vicinity of the air outlet 10 on the downstream side of the heat exchanger 6 and the indoor fan 8, and the electrostatic mist discharged from the bypass air outlet 22b rides on the air flow in the main flow path 20. It spreads and fills the entire room.
- the bypass outlet 22b is arranged on the downstream side of the heat exchanger 6 as described above. If the bypass air outlet 22b is arranged on the upstream side of the heat exchanger 6, since the heat exchanger 6 is made of metal, the electrostatic mist that is charged particles is This is because most of the heat exchanger 6 (about 80 to 90% or more) is absorbed.
- the bypass outlet 22b is arranged on the downstream side of the indoor fan 8.
- bypass outlet 22b is arranged on the upstream side of the indoor fan 8, turbulent flow exists in the indoor fan 8 and passes through the indoor fan 8. This is because a part (about 50%) of the electrostatic mist is absorbed in the process of air colliding with various parts of the indoor fan 8.
- the main flow path 20 side of one side wall 48b of the rear guider 48 provided with the bypass outlet 22b is given a predetermined speed to the air flow by the indoor fan 8, so that the main flow path 20 side of the side wall 48b is bypassed.
- a pressure difference is generated on the side of the path 22, a negative pressure portion in which the main channel 20 side is relatively low in pressure relative to the bypass channel 22, and air is attracted from the bypass channel 22 toward the main channel 20.
- the bypass blower fan 26 has a small capacity, and the bypass blower fan 26 may not be provided in some cases.
- bypass outlet pipe 22d is provided on the partition wall 46c (side wall 48b of the rear guider 48) so as to be directed in a direction substantially orthogonal to the air flow in the main channel 20 at the junction with the main channel 20 (bypass outlet 22b). It is connected.
- the electrostatic atomization unit 30 generates the electrostatic mist by utilizing the discharge phenomenon as described above, so that the discharge sound is inevitably accompanied and the discharge sound has directivity. is there.
- bypass passage 22 to the front panel 4 substantially parallel to the front panel 4 at the junction of the bypass passage 22 and the main passage 20 (bypass outlet 22b), a person in front of the indoor unit or diagonally forward
- the noise it is possible to reduce the noise by configuring so that the discharge sound is not directed as much as possible.
- the main flow path 20 and the bypass flow path 22 are separated by the partition wall 46 c, and the electrostatic atomizer 18 that generates electrostatic mist bypasses the heat exchanger 6 and communicates with the main flow path 20. Since the air that has not been passed through the heat exchanger 6 and has not been adjusted in temperature and humidity is supplied to the electrostatic atomizer 18 because it is provided in the path 22, the Peltier element 36 of the electrostatic atomization unit 30 is used during cooling. Effectively preventing the occurrence of dew condensation on the whole, safety is improved, and electrostatic mist can be reliably generated during heating, regardless of the operation mode of the air conditioner, that is, the season The electrostatic mist can be generated stably regardless of the above.
- the ventilation fan unit 16 will be described with reference to FIG. 9. Even if the ventilation fan unit 16 is dedicated to ventilation, the ventilation fan unit 16 also serves to supply air to a suction device provided in an indoor unit having a pre-filter automatic cleaning device. May be.
- the ventilation fan unit 16 shown in FIG. 9 is incorporated in the suction device 58 of the automatic prefilter cleaning device on the bypass flow path 22 side of the partition wall 46c.
- the automatic prefilter cleaning device is already known, see FIG. While briefly explaining.
- the detailed structure and operation method of the pre-filter automatic cleaning device are not particularly limited.
- the pre-filter automatic cleaning device 50 includes suction nozzles 52 that are slidable along the surface of the pre-filter 5, and the suction nozzles 52 are installed at the upper and lower ends of the pre-filter 5.
- the pair of guide rails 54 can smoothly move left and right while maintaining a very narrow gap with the prefilter 5, and dust adhering to the prefilter 5 is sucked and removed by the suction nozzle 52.
- one end of a bendable suction duct 56 is connected to the suction nozzle 52, and the other end of the suction duct 56 is connected to a suction device 58 having a variable suction amount.
- an exhaust duct 60 is connected to the suction device 58 and led out to the outside.
- a belt (not shown) that is slidable along the suction nozzle 52 is wound around the suction nozzle 52 in the vertical direction.
- a slit-like nozzle opening having a length substantially equal to the vertical length of the filter 5 is formed, while a slit-like suction hole having a length of, for example, 1/4 of the vertical length of the prefilter 5 is formed in the belt. ing.
- the automatic prefilter cleaning device 50 configured as described above sequentially cleans the cleaning ranges A, B, C, and D of the prefilter 5 as necessary.
- the belt is driven and the suction holes are driven.
- the suction nozzle 52 is driven from the right end to the left end of the prefilter 5 while sucking, whereby the horizontal range A of the prefilter 5 is suction-cleaned.
- the belt is driven to fix the suction hole at a position in the range B, and the suction nozzle 52 is driven from the left end to the right end of the prefilter 5 while sucking in this state, so that the horizontal direction of the prefilter 5 is now achieved.
- a range B is suction-cleaned.
- the areas C and D of the pre-filter 5 are also cleaned by suction.
- the dust adhering to the pre-filter 5 and sucked by the suction nozzle 52 is discharged outside through the suction duct 56, the suction device 58, and the exhaust duct 60.
- an opening 62 is formed in the suction path of the suction device 58, and a damper 64 for opening and closing the opening 62 is provided.
- the ventilation fan unit 16 includes the damper 64.
- the opening 62 is opened, it is used for ventilation.
- the opening 62 is closed by a damper 64 and used for sucking dust from the suction hole of the belt. That is, the same suction device 58 is used to realize the suction cleaning function and the ventilation function.
- the exhaust duct 60 is not shown in FIG. 9, the exhaust duct 60 is connected to the exhaust port 58 a of the suction device 58.
- FIG. 11 shows an electrostatic atomizer 18A having no casing 34, and this electrostatic atomizer 18A is incorporated in the indoor unit body 2 as shown in FIG. Alternatively, it is incorporated into a broken line region 18B shown in FIG. 12 (substantially the same position as the electrostatic atomizer unit 30 and the silencer 32 provided on the downstream side of the bypass flow path 22 in the electrostatic atomizer 18 shown in FIG. 9). It is. These are disposed at a position overlapping the ventilation fan unit 16 when the electrostatic atomizer 18A is viewed from the front or top surface of the indoor unit, and the electrostatic atomizer 18A is disposed at the opening 62 and the damper 64 of the ventilation fan unit 16. Is disposed in a portion where the suction air by the ventilation fan unit 16 flows.
- the electrostatic atomizing device 18A of FIG. 11 includes an electrostatic atomizing unit 30 having a heat radiating portion 28 and a silencer 32 integrally attached, and the electrostatic atomizing unit 30 portion excluding the heat radiating portion 28;
- the silencer 32 is accommodated in each housing (unit housing 66 and silencer housing 68), and one of the bypass blowing pipes 22d is connected to and communicated with the silencer housing 68, and the other of the bypass blowing pipes 22d is connected to the main flow path 20. Communicate.
- the housing portion 22e that is separated from the main flow path 20 by the partition wall 46c and formed between the left side surface of the main body cover (not shown) and in which the ventilation fan unit 16, the electrostatic atomizer 18A, and the like are disposed is described above.
- the bypass blow-out pipe 22d is also accommodated to constitute the bypass flow path 22.
- the bypass blow-out pipe 22d can reduce noise in a direction directed to the air flow of the main flow path 20. However, this is not always necessary, and the bypass blower pipe 22d directly bypasses the silencer housing 68. You may connect to the outlet 22b. Thereby, the structure of 18 A of electrostatic atomizers can be simplified more. However, it is the same as the bypass outlet pipe 22d that consideration of the direction is necessary for noise reduction.
- the air sucked into the main body 2 through the prefilter 5 is sucked into the accommodating portion 22e from the bypass suction port 22a on the downstream side of the prefilter 5, and the direction of the airflow is the air flowing through the main channel 20
- the indoor unit main body 2 flows in the accommodating portion 22e in parallel with the flow direction when viewed from the front.
- the heat radiating portion 28 is cooled by the air flowing through the housing portion 22e, and taken into the electrostatic atomizing unit 30 through an opening (not shown) formed in the unit housing 66.
- the space around the ventilation fan unit 16 that overlaps the ventilation fan unit 16 when viewed from the front or top surface of the indoor unit becomes the bypass flow path 22, and the ventilation fan unit 16, the electrostatic atomizer 18 ⁇ / b> A, etc. Space can be saved by effectively utilizing the accommodating portion 22e.
- the high voltage transformer 24 is disposed at an arbitrary portion in the housing portion 22e such as the ventilation fan unit 16 and the electrostatic atomizer 18A, and the bypass blower fan 26 is not provided.
- bypass flow path 22 is described in detail above by configuring the bypass flow path 22 so that the air flow flows in parallel with the air flow passing through the main flow path 20 as viewed from the front.
- the bypass flow path 22 can be easily formed, and the number of parts can be reduced.
- the prefilter of the electrostatic atomizer 18A and the prefilter of the main flow path 20 can be shared by the prefilter 5. Since the sharing effect is as described above, the details are omitted here.
- an opening 46d may be formed in the vicinity of the lower portion of the base frame 46 corresponding to the rear portion of the ventilation fan unit 16 so that a pipe (not shown) connecting the indoor unit and the outdoor unit can be drawn out.
- the bypass suction port 22a described above is one opening in the housing portion 22e formed in the partition wall 46c (the frame side wall 46b) in order to suck air into the housing portion 22e, and communicates with the outside of the indoor unit through the prefilter 5.
- the accommodating portion 22e is an opening that directly communicates with the outside of the indoor unit and sucks ambient air. In such a case, the accommodating portion 22e serves as a bypass flow path that also bypasses the prefilter 5.
- the air sucked into the electrostatic atomizer 18A flows from the opening 46d and does not pass through the prefilter 5, so that a separate prefilter for the electrostatic atomizer 18A is provided as necessary. Just do it. Further, even in the configuration in which the opening 46d is formed, the electrostatic atomizer 18A is disposed at a position overlapping the ventilation fan unit 16 when viewed from the front or top surface of the indoor unit, and the housing portion 22e is effectively used. Similarly, space saving can be achieved.
- the main flow path 20 side of the bypass outlet 22b is a negative pressure part that is attracted by the pressure difference generated by the indoor fan 8 being given a predetermined speed to the air flow. Even if the bypass blower fan 26 is not provided, the heat radiating portion 28 is cooled by the air drawn toward the main passage 20 from the accommodating portion 22e which is a bypass passage via the bypass outlet pipe 22d, and the electrostatic atomizing unit 30 is provided. The electrostatic mist generated by the above is attracted to the main channel 20 and can be discharged into the air-conditioned room.
- the heat dissipating part 28 is arranged in the vicinity of the opening 62 and the damper 64 as shown by the broken line area 18B, the air is sucked into the opening 62, so that it is also cooled by the air sucked by the ventilation fan unit 16. .
- the heat radiating portion 28 of the electrostatic atomizer 18 ⁇ / b> A close to the opening 62 provided in the suction device 58 the heat radiating portion is caused by the air sucked into the opening 62. 28 is further cooled, and heat dissipation from the electrostatic atomization unit 30 is promoted. Further, when a ventilation-only fan is used as the ventilation fan unit 16, the damper 64 is not provided. Therefore, by disposing the heat radiating unit 28 close to the suction port of the ventilation fan unit 16, the heat radiating unit 28 is efficiently arranged. To be cooled.
- the container 22e is provided with the electrostatic atomizer 18A that separates the main channel 20 and the container 22e serving as the bypass channel by the partition wall 46c and generates electrostatic mist. Therefore, since air that has not passed through the heat exchanger 6 and is not adjusted in temperature and humidity is supplied to the electrostatic atomizer 18A, dew condensation occurs on the entire Peltier element 36 of the electrostatic atomizer unit 30 during cooling. Effectively preventing this from occurring, safety is improved, and electrostatic mist can be reliably generated during heating, and it is quiet regardless of the operation mode of the air conditioner, that is, regardless of the season. Electric mist can be generated stably.
- FIG. 13 is a cross-sectional view of the electrostatic atomization unit of the air conditioner of the present embodiment.
- the basic configuration of the electrostatic atomizing unit 70 is the same as that of the prior art, and a plurality of Peltier elements 36 having a heat radiating surface 36a and a cooling surface 36b are connected in thermal contact with the heat radiating surface 36a.
- the heat radiating portion (for example, heat radiating fins) 28 the discharge electrode 72 provided in thermal contact with the cooling surface 36b via the electrical insulating material 71, and a predetermined distance from the discharge electrode 72
- the counter electrode 73 is arranged.
- a high voltage transformer 24 is connected between the discharge electrode 72 and the counter electrode 73 as a high voltage power source so that a high voltage can be applied.
- the discharge electrode 72 has a thin rod shape, and the discharge electrode tip 72a has a small spherical shape with a diameter of 1 mm or less. In this spherical shape, moisture generated by dew condensation on the surface of the sphere tends to aggregate at the tip due to electrostatic force and can be easily held by surface tension.
- the discharge electrode tip 72a is not limited to a spherical shape, but may be a sharp shape or the like, but a shape that can hold water for electrostatic atomization moderately and is not too sharp due to electrostatic force. It is desirable that it easily aggregates at the tip and is easily held by surface tension.
- the counter electrode 73 has a flat ring shape with a circular hole in the center, and the ring inner peripheral portion 73a is surrounded perpendicularly to the central axis of the discharge electrode 72 so as to be substantially equidistant from the discharge electrode distal end portion 72a.
- the discharge area is set large.
- the counter electrode 73 has a ring shape, a terminal connection portion or a support portion (not shown) may be provided on the outer peripheral side.
- the amount of condensed water is controlled by the capability of the Peltier element 36 so that the discharge current is constant, the circular shape opened in the counter electrode 73
- the hole diameter R, the discharge distance, the high voltage applied voltage, and the amount of condensed water are determined in association with each other.
- the discharge distance here is the distance between the discharge electrode 72 side including the tip water 74 and the counter electrode 73.
- the discharge at this time is performed at the point where the tip water 74 and the ring inner peripheral portion 73a, that is, the shortest distance between the tip water 74 and the counter electrode 73, and the electrostatic mist is basically generated by the tip water 74. Water splits from the vicinity of the tip.
- the counter electrode 73 may have a ring shape, and it is considered that the discharge itself is performed over a wide range including the skirt portion 74a (see FIG. 14) near the discharge electrode 72 of the tip water 74. .
- the conical shape of the tip water 74 is not stable toward the counter electrode 73, but due to the impact of discharge, movement of the discharge position, the influence of the surrounding air current, and electrostatic atomization. Due to the fact that the dew condensation water cannot be supplied constantly and stably with respect to the decrease in moisture, it behaves in such a way that it expands and contracts quite violently in small increments in the vertical direction, and further swings in all directions.
- An example of the shape of the deformed tip water 74 is shown in FIGS. 14 (a), (b), (c), and (d).
- the water film thickness W is temporarily small at the hem portion 74a of the tip water 74 when the tip water 74 swings back and forth, or when it extends upward.
- Water portion X may be generated. The thin water portion X is generated because the discharge electrode tip 72a stably holds the tip water 74 and is inclined to the outside as a spherical shape or a sharp shape. Yes.
- the skirt portion 74a where the thin water portion X is generated is a vicinity where the discharge electrode tip portion 72a and the ring inner peripheral portion 73a of the counter electrode 73 are close to each other.
- the discharge noise it is only necessary to prevent the thin water portion X from being generated near the counter electrode 73 of the discharge electrode 72. Specifically, the discharge noise could be suppressed by suppressing the movement of the tip water 74 or increasing the water retention amount of the skirt portion 74a of the tip water 74. An example of the method is shown below.
- the hole diameter R of the counter electrode 73 is reduced (Ra) (see FIG. 15).
- the ring inner peripheral portion 73a of the counter electrode 73 moves to the center axis side of the discharge electrode 72, the movement of the tip of the tip water 74 is narrowed down, and the entire movement is also suppressed to generate the thin water portion X. Can be reduced. Further, since the direction of the line connecting the skirt portion 74a of the tip water 74 and the ring inner peripheral portion 73a is close to parallel to the central axis of the discharge electrode 72, the apparent water film thickness W is also increased.
- the counter electrode 73 is released (see FIG. 16).
- the tip water is equivalent to the dimension d where the counter electrode 73 is separated so that the discharge distance itself becomes equal. Since the height of 74 becomes higher, the tip water 74 of the discharge electrode 72 becomes larger and the amount of condensed water increases. Since the conical skirt portion 74a of the tip water 74 has a small electric field strength, it becomes thicker in a shape close to a sphere when the electrostatic force is weakened.
- the tip water 74 moves repeatedly in the front / rear / right / left and up / down directions due to the impact of the discharge, etc.
- the water film thickness W increases because the water content of the skirt portion 74a can be secured.
- the occurrence of the thin water portion X itself can be prevented, and the discharge noise can be suppressed.
- the discharge voltage is lowered (see FIG. 17). Since the electrostatic force is reduced, the water film thickness W can be increased by reducing the sharpness of the conical shape of the tip water 74 and increasing the skirt portion 74a. Further, the movement of the tip water 74 itself is also reduced, and the occurrence of the thin water portion X can be reduced. However, in this case, the generation of electrostatic mist is also reduced.
- the counter electrode 73 has been described as a flat ring shape.
- the counter electrode 75 may have a dome-shaped ring shape with the discharge electrode 72 side as an inner surface 75b.
- FIG. 18 shows a thin plate formed into a dome shape.
- the inner surface 75b on the discharge electrode 72 side is basically formed in a dome shape. Any ring shape may be used.
- the dome shape of the counter electrode 75 is a part of a spherical surface with the discharge electrode tip 72a as the center. From the discharge electrode tip 72a, the ring inner peripheral portion 75a and the inner side surface 75b of the counter electrode 75 Is almost the same distance.
- the spherical center O may be aligned with the position of the tip spherical surface of the discharge electrode 72 as shown in FIG. 18, or the discharge electrode 72 is sharp. In some cases, the tip may be the center.
- the width L between the ring inner peripheral portion 75a and the ring outer peripheral portion 75c of the counter electrode 75 is not represented by the length dimension, but the vertical direction with respect to the central axis of the discharge electrode is 0 ° with the spherical center O as the origin,
- the conical shape of the tip water 74 also changes. That is, since the electrostatic force covers a wide range of the discharge electrode tip portion 72a, the conical skirt portion 74a of the tip water 74 spreads and the movement becomes intense in the front-rear and left-right directions. And since the amount of discharge also increases, the amount of electrostatic mist generated also increases, but the discharge sound also increases accordingly.
- the counter electrode 75 is released (see FIG. 19).
- the ring outer peripheral portion 75c of the counter electrode 75 becomes relatively closer to the discharge electrode 72 than the ring inner peripheral portion 75a.
- the electrostatic force of the skirt portion 74a of the tip water 74 is also relatively increased.
- the water film thickness W of the skirt portion 74a of the tip water 74 is also increased.
- the tip water 74 is equivalent to the distance d away from the counter electrode 75.
- the tip water 74 of the discharge electrode 72 becomes larger and the amount of condensed water increases. Since the conical skirt portion 74a of the tip water 74 has a small electric field strength, it becomes thicker in a shape close to a sphere when the electrostatic force is weakened. From the above, the water film thickness W increases because the water content of the skirt portion 74a can be secured even if the atomization discharge is repeated while the tip water 74 is swung in the front and rear, right and left directions and up and down directions due to the impact of the discharge. Thus, the occurrence of the thin water portion X itself can be prevented, and the discharge noise can be suppressed.
- the discharge voltage is lowered (see FIG. 20). Since the electrostatic force is reduced, the water film thickness W can be increased by reducing the sharpness of the conical shape of the tip water 74 and increasing the skirt portion 74a. Further, the movement of the tip water 74 itself is also reduced, and the occurrence of the thin water portion X can be reduced.
- the distance between the discharge electrode tip 72a and the counter electrode 75 is set so that the ring inner periphery 75a is the shortest and the ring outer periphery 75c side is increased (see FIG. 21).
- the spherical center O of the counter electrode 75 is moved to the rod-shaped side of the discharge electrode 72, and a spherical surface having a spherical center O at a position away from the counter electrode 75 along the discharge electrode from the tip of the discharge electrode 72. It is configured as a part.
- the electrostatic force on the ring inner peripheral portion 75a side is relatively larger than that on the ring outer peripheral portion 75c side, the movement of the tip of the tip water 74 is narrowed down, and the entire movement is also suppressed, and the thin water portion X is generated.
- the discharge on the ring outer peripheral portion 75c side is relatively weak, so that the discharge noise can be suppressed.
- the ring-shaped width L is in the same angular range as when the distance from the discharge electrode tip 72a to the counter electrode 75 is the same.
- the counter electrode regardless of whether the counter electrode has a flat plate shape or a dome shape, it can be configured as described above, and the generation of the thin water portion X can be suppressed at the discharge electrode tip portion 72a. By suppressing the discharge at the portion X, the discharge noise can be greatly suppressed.
- the shape of the counter electrode is not limited to the above flat plate or dome shape, but it is close to the dome shape, and the shape of the side portion of the polygonal frustum shape should be applied in accordance with the concept described above. Can do.
- the discharge state changes greatly even if it is a straight line that is not dome-shaped. Absent.
- FIG. 22 is a cross-sectional view of a main part of the electrostatic atomization unit of the air conditioner according to the present embodiment.
- a cylindrical standing portion 77 is provided in the opposite direction of the discharge electrode 72 on the ring inner periphery 76 a of the counter electrode 76. It is provided for. With this configuration, the end face of the counter electrode 76 moves from the ring inner peripheral portion 76a to the standing portion distal end 77a.
- the discharge distance does not change. Further, since the direction of the standing portion distal end 77a which is the end face is the same direction as the air flow, the turbulence of the air flow is reduced, the accumulation itself is less, and it takes time.
- the height H of the standing portion 77 depends on the shape and the plate thickness of the counter electrode 76, but may be at least about twice the plate thickness in the case of a flat plate, and in the airflow direction when a thin plate is molded into a dome shape. It suffices if the straight line portion is at least equal to the plate thickness. Even at this level, it can be confirmed that the discharge distance is not shortened even if a little dirt particles are deposited. Therefore, the height H of the standing portion 77 may be a little. Conversely, as the height H of the standing portion 77 is increased, the period until the accumulation of dirt particles shortens the discharge distance and has an adverse effect increases, but on the contrary, the air flow path becomes longer and the resistance increases.
- the height H of the standing portion 77 is equal to the cylindrical hole diameter r of the standing portion 77, that is, the opposite direction. It is desirable that the diameter is equal to the hole diameter R of the electrode 76.
- the inner side of the root of the standing portion 77 that is, the ring inner peripheral portion 76a has a round shape and is smoothly formed from the inner side surface 76b of the counter electrode 76 to the standing portion 77, so that Disturbance can be suppressed and the disappearance of electrostatic mist can be prevented.
- the standing portion tip 77a is further bent outward, the end face is completely moved away from the electrostatic mist and the air flow of the dirt particles, and the accumulation of the dirt particles can be almost prevented.
- the configuration for preventing the decrease in the amount of electrostatic mist generated due to the electrode contamination of the electrostatic atomizer by the standing portion 77 is to reduce the noise caused by the electrostatic atomizer described above.
- it can be configured together with the configuration, and by installing the electrostatic atomizer having these configurations in the air conditioner, more electrostatic mist can be reliably generated over a long period of time.
- it is possible to provide an air conditioner that can suppress an increase in discharge sound and improve quietness.
- the air conditioner according to the present invention can reliably generate more electrostatic mist over a long period of time and sufficiently considers safety or noise. Therefore, various air conditioners including general home air conditioners can be used. It is extremely useful as a simple air conditioner.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Electrostatic Separation (AREA)
Abstract
An air conditioner indoor device includes: intake openings (2a, 2b) for sucking indoor air; a heat exchanger (6) which performs heat exchange with the sucked air; an indoor fan (8) which feeds the air subjected to the heat exchange by the heat exchanger (6); and an outlet (10) for blowing out the air fed from the indoor fan (8). An electrostatic atomization device (70) is arranged on the air conditioner indoor device. The electrostatic atomization device (70) includes a discharge electrode (72), an opposing electrode (75) arranged to oppose to the discharge electrode (72), a high voltage power source (24), and a Peltier device (36) which condenses moisture in the air and supplies water to the discharge electrode (72). The high voltage power source (24) applies a high voltage between the discharge electrode (72) and the opposing electrode (75) so as to generate an electrostatic mist. Moreover, the opposing electrode (75) is formed in such a shape that the inner surface (75b) of the discharge electrode (72) is a dome-shaped ring.
Description
本発明は、室内空気を浄化する空気清浄機能を有する室内機を備えた空気調和機に関するものである。
The present invention relates to an air conditioner including an indoor unit having an air cleaning function for purifying indoor air.
従来の空気調和機には脱臭機能を備えたものがあり、例えば室内機の吸込口に設けた空気清浄用プレフィルタにより臭気成分を吸着したり、送風路の途中に設けた酸化分解機能を有する脱臭ユニットにより臭気成分を吸着したりしている。
Some conventional air conditioners have a deodorizing function, for example, adsorb odor components with an air cleaning pre-filter provided at an air inlet of an indoor unit, or have an oxidative decomposition function provided in the middle of an air passage. Odor components are adsorbed by the deodorizing unit.
しかしながら、脱臭機能を有する空気調和機は、吸込口から吸い込まれた空気中に含まれる臭気成分を取り除いて脱臭するため、室内の空気中に含まれる臭気成分や、カーテンや壁等に付着した臭気成分を除去することはできなかった。
However, since the air conditioner with a deodorizing function removes odor components contained in the air sucked from the suction port and deodorizes it, the odor components contained in the indoor air and the odor adhering to curtains, walls, etc. The component could not be removed.
そこで、室内機の送風路に静電霧化装置を設け、静電霧化装置により発生した粒子径がナノメートルサイズの静電ミストを空気とともに室内に吹き出すことで、室内空気に含まれる臭気成分や、カーテンや壁等に付着した臭気成分を除去するようにした空気調和機も提案されている(例えば、特許文献1あるいは2参照)。
Therefore, an odorous component contained in the indoor air is provided by providing an electrostatic atomizer in the air passage of the indoor unit, and blowing out the electrostatic mist generated by the electrostatic atomizer with a nanometer-size electrostatic mist. An air conditioner that removes odorous components adhering to curtains and walls has also been proposed (see, for example, Patent Document 1 or 2).
このような空気調和機においては、静電霧化装置は吸込口あるいは吹出口の近傍や、熱交換器あるいは室内ファンの下流側に配置されている。
In such an air conditioner, the electrostatic atomizer is disposed in the vicinity of the inlet or outlet, or downstream of the heat exchanger or indoor fan.
また、静電霧化装置としては、毛細管現象により水を搬送する水搬送部と、吸熱面で空気を冷却して発生した結露水を水搬送部に供給する熱交換部と、水搬送部が搬送する水に対して電圧を印加する印加電極と、水搬送部に対向する対向電極と、印加電極と対向電極との間に高電圧を印加する高電圧印加部とを備え、水を補給することなく継続的に使用可能なものが提案されている(例えば、特許文献3参照)。
In addition, the electrostatic atomizer includes a water conveyance unit that conveys water by capillary action, a heat exchange unit that supplies condensed water generated by cooling air on the heat absorption surface to the water conveyance unit, and a water conveyance unit. An application electrode for applying a voltage to the water to be transported, a counter electrode facing the water transport unit, and a high voltage application unit for applying a high voltage between the application electrode and the counter electrode to replenish water The thing which can be used continuously is proposed (for example, refer patent document 3).
空気調和機の場合、冷房時においては、室内機の熱交換器を通過した低温の空気は相対湿度が高く、例えば静電霧化装置において、水分を補給するためにペルチェ素子を備えた場合に、ペルチェ素子のピン状の放電電極のみならずペルチェ素子全体に結露が発生しやすくなることから、ペルチェ素子に高電圧を印加すること自体に高い安全性を保障できない。一方、暖房時においては、熱交換器を通過した高温の空気は相対湿度が低いため、放電電極に結露しない可能性が極めて高い。
In the case of an air conditioner, during cooling, the low-temperature air that has passed through the heat exchanger of the indoor unit has a high relative humidity. For example, in an electrostatic atomizer, a Peltier element is provided to replenish moisture. Since dew condensation tends to occur not only in the pin-shaped discharge electrode of the Peltier element but also in the entire Peltier element, it is not possible to guarantee high safety by applying a high voltage to the Peltier element itself. On the other hand, during heating, the high-temperature air that has passed through the heat exchanger has a low relative humidity, so there is a high possibility that no condensation will occur on the discharge electrode.
したがって、特許文献1あるいは2に記載の空気調和機のように、静電霧化装置を吸込口あるいは吹出口の近傍や、熱交換器あるいは室内ファンの下流側に配置した構成のものにあっては、運転モードに関係なく、すなわち季節に関係なく静電霧化現象により静電ミストを確実に発生させつつ高い安全性を保障するには依然改善の余地がある。
Therefore, as in the air conditioner described in Patent Document 1 or 2, the electrostatic atomizer is arranged in the vicinity of the inlet or outlet, or downstream of the heat exchanger or indoor fan. However, there is still room for improvement in order to ensure high safety while reliably generating electrostatic mist by the electrostatic atomization phenomenon regardless of the operation mode, that is, regardless of the season.
また、静電霧化装置は放電現象を利用して静電ミストを発生させているので少なからず放電音を伴い、空気調和機の騒音を増加させることとなる。しかしながら、特許文献3に記載の静電霧化装置は放電音の低減については考慮されていない。特に、空気調和機において静電霧化装置を搭載し、静電霧化装置により発生した粒子径がナノメートルサイズの静電ミストを空気とともに室内に吹き出すことで、室内空気に含まれる臭気成分や、カーテンや壁等に付着した臭気成分を除去する効果を発揮させようとする場合には、室内空間が大きいためにより多くの静電ミストを発生させる必要がある。また、それに伴って放電音も相応に大きくなる。しかしながら、特許文献1あるいは2に記載の空気調和機は、室内空間の大きさに応じた相当量の静電ミストを発生させることや放電音の低減については何ら考慮されていない。
Also, since the electrostatic atomizer generates electrostatic mist by utilizing the discharge phenomenon, it causes a discharge noise and increases the noise of the air conditioner. However, the electrostatic atomizer described in Patent Document 3 does not consider reduction of discharge noise. In particular, an air atomizer is equipped with an electrostatic atomizer, and an electrostatic mist having a particle size of nanometer generated by the electrostatic atomizer is blown into the room together with the air, so that the odor components contained in the room air and When trying to exert the effect of removing odorous components adhering to curtains, walls, etc., it is necessary to generate more electrostatic mist because the indoor space is large. Along with this, the discharge noise is correspondingly increased. However, the air conditioner described in Patent Document 1 or 2 does not take into consideration the generation of a considerable amount of electrostatic mist corresponding to the size of the indoor space and the reduction of discharge noise.
さらに、空気調和機においては室内環境によって、例えば居住者の喫煙量が多かったり、空気中に多くの埃が舞っていたり、調理器具が近くにあって油煙が舞っていたりすることがあり、室内機に搭載された機器にそれらの汚れが付着して機器の性能が低下することがある。静電霧化装置の搭載においても同様で、特に静電霧化ユニットの電極に汚れが付着するとその汚れを通して放電することになって放電距離が短くなってしまい、放電の状態が変化して静電ミストの発生量が大きく低下することになる。しかしながら、特許文献1あるいは2に記載の空気調和機や特許文献3に記載の静電霧化装置は、このような電極の汚れによる静電ミストの発生量低下の防止については何ら考慮されていない。
Furthermore, in an air conditioner, depending on the indoor environment, for example, there may be a large amount of smoking by residents, a lot of dust flying in the air, or cooking utensils nearby and oil smoke. Such dirt may adhere to the equipment mounted on the machine and the performance of the equipment may deteriorate. The same applies to the mounting of the electrostatic atomizer, and in particular, if dirt adheres to the electrodes of the electrostatic atomizer unit, discharge occurs through the dirt and the discharge distance is shortened, and the discharge state changes and static electricity is discharged. The amount of electric mist generated is greatly reduced. However, the air conditioner described in Patent Document 1 or 2 and the electrostatic atomizer described in Patent Document 3 are not considered at all for prevention of a decrease in the amount of electrostatic mist generated due to contamination of the electrodes. .
本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、より多くの静電ミストを長期間にわたって確実に発生させることができるとともに、それに伴う放電音の増大を抑制して静音性を向上した空気調和機を提供することを目的としている。
The present invention has been made in view of the above-described problems of the prior art, and can reliably generate more electrostatic mist over a long period of time, while suppressing an increase in discharge sound associated therewith. It aims to provide an air conditioner with improved quietness.
上記目的を達成するため、本発明の第1の形態は、室内空気を浄化する空気清浄機能を有する室内機を備えた空気調和機であって、前記室内機が、室内空気を吸い込む吸込口と、吸い込んだ空気と熱交換する熱交換器と、該熱交換器で熱交換された空気を搬送する室内ファンと、該室内ファンから送風された空気を吹き出す吹出口とを備え、放電電極と、前記放電電極に対向して配設された対向電極と、高電圧電源と、空気中の水分を凝縮するペルチェ素子とを有し、前記放電電極に前記ペルチェ素子により水を供給して前記放電電極と前記対向電極との間に前記高電圧電源により高電圧を印加することによって静電ミストを発生させる静電霧化装置をさらに備え、前記対向電極の形状を、放電電極側の内側面をドーム状のリング形状として構成したことを特徴とする。
In order to achieve the above object, a first aspect of the present invention is an air conditioner including an indoor unit having an air purifying function for purifying indoor air, wherein the indoor unit sucks indoor air and A heat exchanger that exchanges heat with the sucked air, an indoor fan that conveys the air heat-exchanged by the heat exchanger, and a blowout port that blows out the air blown from the indoor fan, a discharge electrode, A counter electrode disposed opposite to the discharge electrode; a high-voltage power source; and a Peltier element that condenses moisture in the air, wherein water is supplied to the discharge electrode by the Peltier element and the discharge electrode And an electrostatic atomizer that generates electrostatic mist by applying a high voltage from the high-voltage power source between the counter electrode and the counter electrode. Ring shape Characterized in that the configuration was.
放電電極は、先端部を球体形状又は先鋭形状として構成するのが好ましい。
It is preferable that the discharge electrode has a tip or a sharp tip.
また、対向電極の放電電極側の内側面は、放電電極の先端を球面中心とした球面の一部として構成するのがよい。
Also, the inner surface of the counter electrode on the discharge electrode side is preferably configured as a part of a spherical surface with the tip of the discharge electrode as a spherical center.
あるいは、対向電極の放電電極側の内側面は、放電電極の先端より放電電極に沿って対向電極から離れた位置を球面中心とした球面の一部として構成するようにしてもよい。
Alternatively, the inner surface of the counter electrode on the discharge electrode side may be configured as a part of a spherical surface centered on the position away from the counter electrode along the discharge electrode from the tip of the discharge electrode.
対向電極のリング内周部とリング外周部との幅は、球面中心を原点として放電電極の中心軸に対して垂直方向を0°とし、対向電極のリング外周部までをθ1、リング内周部までをθ2として角度で表した場合、θ1=0°からθ2=80°の範囲で構成される。この場合、θ2を50°以上に設定するのが好ましい。
The width between the ring inner periphery and the ring outer periphery of the counter electrode is 0 ° in the direction perpendicular to the central axis of the discharge electrode with the spherical center as the origin, θ1 up to the ring outer periphery of the counter electrode, and the ring inner periphery When θ2 is expressed as an angle, θ1 = 0 ° to θ2 = 80 °. In this case, θ2 is preferably set to 50 ° or more.
また、対向電極のリング内周部に立設部を放電電極と反対方向に向けて形成するのがよい。立設部の高さは、対向電極の穴径と同等以下に形成され、立設部の根元の内側はラウンド形状に形成される。また、立設部先端は外側に曲げて形成される。
Also, it is preferable to form a standing part on the inner peripheral part of the ring of the counter electrode in the direction opposite to the discharge electrode. The height of the standing portion is formed equal to or less than the hole diameter of the counter electrode, and the inner side of the base of the standing portion is formed in a round shape. Further, the tip of the standing portion is formed to be bent outward.
本発明の第2の形態は、室内空気を浄化する空気清浄機能を有する室内機を備えた空気調和機であって、前記室内機が、室内空気を吸い込む吸込口と、吸い込んだ空気と熱交換する熱交換器と、該熱交換器で熱交換された空気を搬送する室内ファンと、該室内ファンから送風された空気を吹き出す吹出口とを備え、放電電極と、前記放電電極に対向して配設された対向電極と、高電圧電源と、空気中の水分を凝縮するペルチェ素子とを有し、前記放電電極に前記ペルチェ素子により水を供給して前記放電電極と前記対向電極との間に前記高電圧電源により高電圧を印加することによって静電ミストを発生させる静電霧化装置をさらに備え、前記対向電極の形状を中央に穴を有するリング形状とし、リング内周部に立設部を放電電極の反対方向に向けて形成したことを特徴とする。
According to a second aspect of the present invention, there is provided an air conditioner including an indoor unit having an air purifying function for purifying indoor air, wherein the indoor unit sucks indoor air and exchanges heat with the sucked air. A heat exchanger, an indoor fan that conveys the air heat-exchanged by the heat exchanger, and a blowout port that blows out air blown from the indoor fan. A counter electrode disposed between the discharge electrode and the counter electrode by supplying water to the discharge electrode by the Peltier element; Further comprising an electrostatic atomizer that generates electrostatic mist by applying a high voltage from the high-voltage power source, wherein the counter electrode has a ring shape with a hole in the center and is erected on the inner periphery of the ring On the opposite side of the discharge electrode Characterized by being formed towards.
この場合も、立設部の高さは、対向電極の穴径と同等以下に形成され、立設部の根元の内側はラウンド形状に形成される。また、立設部先端は外側に曲げて形成される。
Also in this case, the height of the standing portion is formed equal to or less than the hole diameter of the counter electrode, and the inner side of the root of the standing portion is formed in a round shape. Further, the tip of the standing portion is formed to be bent outward.
本発明の第1の形態によれば、対向電極の放電面積が大きくなって、より多くの静電ミストを確実に発生させることができるとともに、それに伴う放電音の増大を抑制して静音性を向上した空気調和機を提供することができる。
According to the first aspect of the present invention, the discharge area of the counter electrode is increased, more electrostatic mist can be generated reliably, and the increase in the discharge sound associated therewith is suppressed, thereby reducing the noise. An improved air conditioner can be provided.
また、放電電極の先端部を球体形状又は先鋭形状として構成すると、球体の表面で結露により生成された水分が静電気力により先端に凝集しやすく、表面張力による保持が容易である。さらに、先鋭形状でも静電気力により先端に凝集しやすく、表面張力による保持が容易である。
In addition, when the tip of the discharge electrode is formed in a spherical shape or a sharp shape, moisture generated by condensation on the surface of the sphere tends to aggregate on the tip due to electrostatic force, and can be easily held by surface tension. Furthermore, even a sharp shape tends to agglomerate at the tip due to electrostatic force, and can be easily held by surface tension.
また、対向電極の放電電極側の内側面を、放電電極の先端を球面中心とした球面の一部として構成すると、対向電極の内側面を放電電極の先端からほぼ等距離になるように配設することができ放電面積を大きく設定することができる。
In addition, when the inner surface of the counter electrode on the discharge electrode side is configured as a part of a spherical surface with the tip of the discharge electrode as the center of the sphere, the inner surface of the counter electrode is disposed so as to be substantially equidistant from the tip of the discharge electrode. The discharge area can be set large.
あるいは、対向電極の放電電極側の内側面を、放電電極の先端より放電電極に沿って対向電極から離れた位置を球面中心とした球面の一部として構成すると、放電電極の先端と対向電極との距離はリング内周部を最短としてリング外周部側が大きくなる。したがって、リング内周部側の静電気力がリング外周部側より相対的に大きくなって、放電電極の先端に円錐形状に凝集した先端水の先端の動きが絞り込まれ、全体の動きも抑制されて放電音を抑制することができる。
Alternatively, if the inner surface of the counter electrode on the discharge electrode side is configured as a part of a spherical surface centered at the position away from the counter electrode along the discharge electrode from the tip of the discharge electrode, the tip of the discharge electrode and the counter electrode The distance of the ring becomes the shortest in the ring inner periphery, and the ring outer periphery becomes larger. Therefore, the electrostatic force on the ring inner peripheral side becomes relatively larger than that on the ring outer peripheral side, and the movement of the tip water condensed in a conical shape at the tip of the discharge electrode is narrowed down, and the overall movement is also suppressed. Discharge noise can be suppressed.
また、対向電極のリング内周部とリング外周部との幅を、球面中心を原点として放電電極の中心軸に対して垂直方向を0°とし、対向電極のリング外周部までをθ1、リング内周部までをθ2として角度で表した場合、θ1=0°からθ2=80°の範囲で構成すると、放電電極側から対向電極の中央の穴を通過して流れる気流がスムーズに流れる流路を確保して、放電電極で発生した静電ミストがスムーズに流出することができる。
In addition, the width of the inner periphery of the ring of the counter electrode and the outer periphery of the ring is set to 0 ° in the direction perpendicular to the center axis of the discharge electrode with the spherical center as the origin, θ1 to the ring outer periphery of the counter electrode, When the angle is expressed as θ2 up to the periphery, if it is configured in the range of θ1 = 0 ° to θ2 = 80 °, the flow path through which the airflow flowing through the central hole of the counter electrode from the discharge electrode side flows smoothly This ensures that the electrostatic mist generated at the discharge electrode can flow out smoothly.
さらに、θ2を50°以上に設定すると、放電電極の先端に円錐形状に凝集した先端水の先端の振れ動く状態が大きくなりすぎない。
Furthermore, when θ2 is set to 50 ° or more, the state of the tip of the tip water swung in a conical shape at the tip of the discharge electrode does not become too large.
また、対向電極のリング内周部に立設部を放電電極と反対方向に向けて形成すると、立設部先端に汚れ粒子が堆積したとしても、放電距離が変わることがない。さらに、端面である立設部先端の向きが気流と同じ方向となるので、気流の乱れも少なくなり、堆積すること自体も少なく、時間がかかるようになり、より多くの静電ミストを長期間にわたって確実に発生させることができる。
Also, if the standing part is formed on the inner peripheral part of the ring of the counter electrode in the direction opposite to the discharge electrode, the discharge distance does not change even if dirt particles accumulate on the tip of the standing part. Furthermore, since the direction of the tip of the standing portion which is the end face is the same direction as the air flow, the turbulence of the air flow is reduced, the accumulation itself is less, it takes time, and more electrostatic mist is applied for a long time. Can be reliably generated.
また、立設部の高さを対向電極の穴径と同等以下に形成すると、汚れ粒子が堆積しても放電距離が短くならない。さらに、立設部の高さHを大きくするほど、汚れ粒子の堆積が放電距離を短くして悪影響を来すまでの期間が長くなるが、かえって気流の流路が長くなって抵抗が増えたり、堆積物が多くなって垂れ下がったり、流路を塞ぐほどまでになったりすることがない。
Also, if the height of the standing part is formed equal to or less than the hole diameter of the counter electrode, the discharge distance will not be shortened even if dirt particles accumulate. Furthermore, as the height H of the standing portion is increased, the period until the accumulation of dirt particles shortens the discharge distance and has an adverse effect increases, but the flow path of the air flow becomes longer and the resistance increases. , The deposits do not sag and do not sag or close to the flow path.
また、立設部の根元の内側をラウンド形状に形成すると、対向電極の内側面から立設部にかけてなめらかになり、気流の乱れを抑制して静電ミストの消滅を防止することができる。
In addition, when the inner side of the base of the standing part is formed in a round shape, it becomes smooth from the inner surface of the counter electrode to the standing part, and the turbulence of the air current can be suppressed to prevent the electrostatic mist from disappearing.
また、立設部先端を外側に曲げて形成すると、立設部先端の端面を静電ミストと汚れ粒子の気流から完全に遠ざけることとなり、汚れ粒子の堆積を防止することができる。
Also, if the tip of the standing portion is bent outward, the end surface of the tip of the standing portion is completely moved away from the electrostatic mist and the air flow of the dirt particles, and the accumulation of dirt particles can be prevented.
本発明の第2の形態によれば、立設部先端に汚れ粒子が堆積したとしても、放電距離が変わることがない。さらに、端面である立設部先端の向きが気流と同じ方向となるため気流の乱れも少なくなり、堆積すること自体も少なく、時間がかかるようになり、より多くの静電ミストを長期間にわたって確実に発生させることができる。
According to the second aspect of the present invention, the discharge distance does not change even if dirt particles accumulate on the tip of the standing portion. Furthermore, since the direction of the tip of the standing portion which is the end face is the same direction as the air flow, the turbulence of the air flow is reduced, the accumulation itself is less, it takes time, and more electrostatic mist is applied over a long period of time. It can be generated reliably.
2 室内機本体、 2a 前面吸込口、 2b 上面吸込口、
4 前面パネル、 5 プレフィルタ、 6 熱交換器、
8 室内ファン、 10 吹出口、 12 上下羽根、 14 左右羽根、
16 換気ファンユニット、 18,18A 静電霧化装置、
20 主流路、 22 バイパス流路、 22a バイパス吸入口、
22b バイパス吹出口、 22c バイパス吸入管、
22d バイパス吹出管、 22e 収容部、 24 高電圧トランス、
26 バイパス送風ファン、 28 放熱部、 30 静電霧化ユニット、
32 サイレンサ、 34 ケーシング、 36 ペルチェ素子、
36a 放熱面、 36b 冷却面、 38 放電電極、
40 対向電極、 42 制御部、 44 ペルチェ駆動電源、
46 台枠、 46a 後部壁、 46b 側壁、 46c 隔壁、
46d 開口、 48 リヤガイダ、 48a 後部壁、 48b 側壁、
50 プレフィルタ自動清掃装置、 52 吸引ノズル、
54 ガイドレール、 56 吸引ダクト、 58 吸引装置、
58a 排気口、 60 排気ダクト、 62 開口部、 64 ダンパ、
66 ユニットハウジング、 68 サイレンサハウジング、
70 静電霧化ユニット、 72 放電電極、 72a 放電電極先端部、
73,75,76 対向電極、 73a,75a,76a リング内周部、
74 先端水、 74a 裾部分、 75b,76b 内側面、
75c リング外周部、 77 立設部、 77a 立設部先端、
H 立設部の高さ、 L 対向電極の幅、 O 球面中心、
R,Ra 穴径、 W 水膜厚、 X 薄水部分。 2 indoor unit body, 2a front inlet, 2b upper inlet,
4 front panel, 5 pre-filter, 6 heat exchanger,
8 indoor fans, 10 outlets, 12 top and bottom blades, 14 left and right blades,
16 Ventilation fan unit, 18, 18A electrostatic atomizer,
20 main flow path, 22 bypass flow path, 22a bypass suction port,
22b Bypass outlet, 22c Bypass suction pipe,
22d bypass outlet, 22e housing, 24 high voltage transformer,
26 bypass fan, 28 heat radiating section, 30 electrostatic atomizing unit,
32 Silencer, 34 Casing, 36 Peltier element,
36a heat radiation surface, 36b cooling surface, 38 discharge electrode,
40 counter electrode, 42 control unit, 44 Peltier drive power supply,
46 underframe, 46a rear wall, 46b side wall, 46c bulkhead,
46d opening, 48 rear guider, 48a rear wall, 48b side wall,
50 Pre-filter automatic cleaning device, 52 Suction nozzle,
54 guide rails, 56 suction ducts, 58 suction devices,
58a exhaust port, 60 exhaust duct, 62 opening, 64 damper,
66 unit housing, 68 silencer housing,
70 electrostatic atomizing unit, 72 discharge electrode, 72a tip of discharge electrode,
73, 75, 76 counter electrode, 73a, 75a, 76a ring inner periphery,
74 tip water, 74a hem, 75b, 76b inner surface,
75c Ring outer peripheral part, 77 Standing part, 77a Standing part tip,
H Height of standing part, L Width of counter electrode, O Spherical center,
R, Ra hole diameter, W water film thickness, X thin water part.
4 前面パネル、 5 プレフィルタ、 6 熱交換器、
8 室内ファン、 10 吹出口、 12 上下羽根、 14 左右羽根、
16 換気ファンユニット、 18,18A 静電霧化装置、
20 主流路、 22 バイパス流路、 22a バイパス吸入口、
22b バイパス吹出口、 22c バイパス吸入管、
22d バイパス吹出管、 22e 収容部、 24 高電圧トランス、
26 バイパス送風ファン、 28 放熱部、 30 静電霧化ユニット、
32 サイレンサ、 34 ケーシング、 36 ペルチェ素子、
36a 放熱面、 36b 冷却面、 38 放電電極、
40 対向電極、 42 制御部、 44 ペルチェ駆動電源、
46 台枠、 46a 後部壁、 46b 側壁、 46c 隔壁、
46d 開口、 48 リヤガイダ、 48a 後部壁、 48b 側壁、
50 プレフィルタ自動清掃装置、 52 吸引ノズル、
54 ガイドレール、 56 吸引ダクト、 58 吸引装置、
58a 排気口、 60 排気ダクト、 62 開口部、 64 ダンパ、
66 ユニットハウジング、 68 サイレンサハウジング、
70 静電霧化ユニット、 72 放電電極、 72a 放電電極先端部、
73,75,76 対向電極、 73a,75a,76a リング内周部、
74 先端水、 74a 裾部分、 75b,76b 内側面、
75c リング外周部、 77 立設部、 77a 立設部先端、
H 立設部の高さ、 L 対向電極の幅、 O 球面中心、
R,Ra 穴径、 W 水膜厚、 X 薄水部分。 2 indoor unit body, 2a front inlet, 2b upper inlet,
4 front panel, 5 pre-filter, 6 heat exchanger,
8 indoor fans, 10 outlets, 12 top and bottom blades, 14 left and right blades,
16 Ventilation fan unit, 18, 18A electrostatic atomizer,
20 main flow path, 22 bypass flow path, 22a bypass suction port,
22b Bypass outlet, 22c Bypass suction pipe,
22d bypass outlet, 22e housing, 24 high voltage transformer,
26 bypass fan, 28 heat radiating section, 30 electrostatic atomizing unit,
32 Silencer, 34 Casing, 36 Peltier element,
36a heat radiation surface, 36b cooling surface, 38 discharge electrode,
40 counter electrode, 42 control unit, 44 Peltier drive power supply,
46 underframe, 46a rear wall, 46b side wall, 46c bulkhead,
46d opening, 48 rear guider, 48a rear wall, 48b side wall,
50 Pre-filter automatic cleaning device, 52 Suction nozzle,
54 guide rails, 56 suction ducts, 58 suction devices,
58a exhaust port, 60 exhaust duct, 62 opening, 64 damper,
66 unit housing, 68 silencer housing,
70 electrostatic atomizing unit, 72 discharge electrode, 72a tip of discharge electrode,
73, 75, 76 counter electrode, 73a, 75a, 76a ring inner periphery,
74 tip water, 74a hem, 75b, 76b inner surface,
75c Ring outer peripheral part, 77 Standing part, 77a Standing part tip,
H Height of standing part, L Width of counter electrode, O Spherical center,
R, Ra hole diameter, W water film thickness, X thin water part.
以下、本発明の実施の形態について、図面を参照しながら説明する。
<静電霧化装置を搭載した空気調和機の構成>
空気調和機は、通常冷媒配管で互いに接続された室外機と室内機とで構成されており、図1及び図2は、本発明にかかる空気調和機の室内機を示している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<Configuration of air conditioner equipped with electrostatic atomizer>
The air conditioner is composed of an outdoor unit and an indoor unit that are usually connected to each other by refrigerant piping. FIGS. 1 and 2 show the indoor unit of the air conditioner according to the present invention.
<静電霧化装置を搭載した空気調和機の構成>
空気調和機は、通常冷媒配管で互いに接続された室外機と室内機とで構成されており、図1及び図2は、本発明にかかる空気調和機の室内機を示している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<Configuration of air conditioner equipped with electrostatic atomizer>
The air conditioner is composed of an outdoor unit and an indoor unit that are usually connected to each other by refrigerant piping. FIGS. 1 and 2 show the indoor unit of the air conditioner according to the present invention.
図1及び図2に示されるように、室内機は、本体2に室内空気を吸い込む吸込口として前面吸込口2a及び上面吸込口2bを有し、前面吸込口2aには開閉自在の可動前面パネル(以下、単に前面パネルという)4を有しており、空気調和機停止時は、前面パネル4は本体2に密着して前面吸込口2aを閉じているのに対し、空気調和機運転時は、前面パネル4は本体2から離反する方向に移動して前面吸込口2aを開放する。
As shown in FIGS. 1 and 2, the indoor unit has a front suction port 2a and a top suction port 2b as suction ports for sucking room air into the main body 2, and the front suction port 2a has a movable front panel that can be opened and closed. 4 (hereinafter simply referred to as the front panel). When the air conditioner is stopped, the front panel 4 is in close contact with the main body 2 and closes the front suction port 2a. The front panel 4 moves in a direction away from the main body 2 to open the front suction port 2a.
本体2の内部には、前面吸込口2a及び上面吸込口2bの下流側に設けられ空気中に含まれる塵埃を除去するためのプレフィルタ5と、このプレフィルタ5の下流側に設けられ前面吸込口2a及び上面吸込口2bから吸い込まれた室内空気と熱交換するための熱交換器6と、熱交換器6で熱交換した空気を搬送するための室内ファン8と、室内ファン8から送風された空気を室内に吹き出す吹出口10を開閉するとともに空気の吹き出し方向を上下に変更する上下羽根12と、空気の吹き出し方向を左右に変更する左右羽根14とを備えている。また、前面パネル4の上部は、その両端部に設けられた複数のアーム(図示せず)を介して本体2の上部に連結されており、複数のアームの一つに連結された駆動モータ(図示せず)を駆動制御することで、空気調和機運転時、前面パネル4は空気調和機停止時の位置(前面吸込口2aの閉塞位置)から前方に向かって移動する。上下羽根12も同様に、その両端部に設けられた複数のアーム(図示せず)を介して本体2の下部に連結されている。
Inside the main body 2, a prefilter 5 is provided on the downstream side of the front suction port 2 a and the upper surface suction port 2 b for removing dust contained in the air, and a front suction is provided on the downstream side of the prefilter 5. Air is blown from the heat exchanger 6 for exchanging heat with the indoor air sucked from the mouth 2a and the upper surface suction port 2b, the indoor fan 8 for conveying the heat exchanged by the heat exchanger 6, and the indoor fan 8. The upper and lower blades 12 change the air blowing direction up and down, and the left and right blades 14 change the air blowing direction left and right. Further, the upper portion of the front panel 4 is connected to the upper portion of the main body 2 via a plurality of arms (not shown) provided at both ends thereof, and a drive motor connected to one of the plurality of arms ( By driving and controlling the air conditioner, the front panel 4 moves forward from the position when the air conditioner is stopped (closed position of the front suction port 2a) during the air conditioner operation. Similarly, the upper and lower blades 12 are connected to the lower portion of the main body 2 through a plurality of arms (not shown) provided at both ends thereof.
また、室内機の一方の端部(室内機正面から見て左側端部で、後述する隔壁46cのバイパス流路22側)には、室内空気を換気するための換気ファンユニット16が設けられており、換気ファンユニット16の後方には、静電ミストを発生させて室内空気を浄化する空気清浄機能を有する静電霧化装置18が設けられている。
In addition, a ventilation fan unit 16 for ventilating room air is provided at one end of the indoor unit (on the left side when viewed from the front of the indoor unit and on the bypass channel 22 side of a partition wall 46c described later). In addition, an electrostatic atomizer 18 having an air cleaning function that generates electrostatic mist and purifies indoor air is provided behind the ventilation fan unit 16.
なお、図1は前面パネル4及び本体2を覆う本体カバー(図示せず)を取り除いた状態を示しており、図2は室内機本体2と静電霧化装置18との接続位置を明確にするために本体2の内部に収容されている静電霧化装置18を本体2とは分離した状態を示している。静電霧化装置18は実際には図3に示される形状を呈し、図1あるいは図4に示されるように、本体2の左側部に取り付けられている。
FIG. 1 shows a state in which a main body cover (not shown) covering the front panel 4 and the main body 2 is removed, and FIG. 2 clearly shows a connection position between the indoor unit main body 2 and the electrostatic atomizer 18. Therefore, the electrostatic atomizer 18 accommodated in the main body 2 is separated from the main body 2. The electrostatic atomizer 18 actually has the shape shown in FIG. 3 and is attached to the left side of the main body 2 as shown in FIG. 1 or FIG.
図2乃至図4に示されるように、静電霧化装置18は、前面吸込口2a及び上面吸込口2bから熱交換器6、室内ファン8等を経由して吹出口10に連通する主流路20において、熱交換器6と室内ファン8とをバイパスするバイパス流路22の途中に設けられており、バイパス流路22の上流側に高電圧電源となる高電圧トランス24とバイパス送風ファン26が設けられ、バイパス流路22の下流側に静電霧化ユニット30の放熱を促進する放熱部28を有する静電霧化ユニット30とサイレンサ32が設けられている。したがって、上流側から順に高電圧トランス24、バイパス送風ファン26、放熱部28、静電霧化ユニット30、及びサイレンサ32が配置された状態で、バイパス流路22の一部を構成するケーシング34に収容されている。このようにケーシング34に収容することにより、組み立て性が向上し、ケーシング34で流路を形成するので、省スペース化を図るとともに、バイパス送風ファン26による空気の流れを、発熱部である高電圧トランス24や放熱部28に確実に当てて冷却することができるとともに、静電霧化ユニット30から発生した静電ミストを確実に空気調和機の吹出口10に導入することができ、発生した静電ミストを被空調室内に放出させることができる。
As shown in FIGS. 2 to 4, the electrostatic atomizer 18 includes a main channel that communicates from the front suction port 2 a and the upper suction port 2 b to the blowout port 10 via the heat exchanger 6, the indoor fan 8, and the like. 20, a high-voltage transformer 24 and a bypass blower fan 26 serving as a high-voltage power source are provided on the upstream side of the bypass flow path 22 and are provided in the middle of the bypass flow path 22 that bypasses the heat exchanger 6 and the indoor fan 8. An electrostatic atomizing unit 30 and a silencer 32 that are provided and have a heat radiation portion 28 that promotes heat radiation of the electrostatic atomization unit 30 are provided on the downstream side of the bypass flow path 22. Therefore, in the state where the high voltage transformer 24, the bypass blower fan 26, the heat radiating unit 28, the electrostatic atomizing unit 30, and the silencer 32 are arranged in order from the upstream side, the casing 34 constituting a part of the bypass flow path 22 is arranged. Contained. By housing in the casing 34 in this way, the assembly is improved and the flow path is formed by the casing 34, so that space is saved and the flow of air by the bypass blower fan 26 is changed to a high voltage that is a heat generating part. The transformer 24 and the heat radiating section 28 can be reliably applied and cooled, and the electrostatic mist generated from the electrostatic atomization unit 30 can be reliably introduced into the air outlet 10 of the air conditioner. Electric mist can be discharged into the air-conditioned room.
また、ケーシング34は、ケーシング34の内部を流れる空気流の方向が、主流路20を流れる空気流の方向に対して、室内機本体2の正面から見て平行にとなるように縦方向に配置されており、これにより室内機本体2の正面から見て換気ファンユニット16と重なる位置に隣接配置することができ、さらに省スペース化を達成している。
Further, the casing 34 is arranged in the vertical direction so that the direction of the airflow flowing through the inside of the casing 34 is parallel to the direction of the airflow flowing through the main flow path 20 when viewed from the front of the indoor unit body 2. As a result, it can be disposed adjacent to the position overlapping the ventilation fan unit 16 when viewed from the front of the indoor unit main body 2, and further space saving is achieved.
なお、高電圧トランス24は必ずしもケーシング34内に収容する必要はないが、バイパス流路の通風により冷却されるため、温度上昇の抑制あるいは省スペース化の点で、ケーシング34内に収容するのが好ましい。
The high-voltage transformer 24 is not necessarily accommodated in the casing 34, but is cooled by the ventilation of the bypass flow path, so that it is accommodated in the casing 34 from the viewpoint of suppressing temperature rise or saving space. preferable.
ここで、従来公知の静電霧化ユニット30について図5及び図6を参照しながら説明する。
Here, a conventionally known electrostatic atomization unit 30 will be described with reference to FIGS.
図5に示されるように、静電霧化ユニット30は、放熱面36aと冷却面36bとを有する複数のペルチェ素子36と、放熱面36aに熱的に密着して接続された上述した放熱部(例えば、放熱フィン)28と、冷却面36bに電気絶縁材(図示せず)を介して熱的に密着して立設された放電電極38と、この放電電極38に対し所定距離だけ離隔して配置された対向電極40とで構成されている。
As shown in FIG. 5, the electrostatic atomization unit 30 includes a plurality of Peltier elements 36 having a heat radiating surface 36a and a cooling surface 36b, and the above-described heat radiating portion connected in thermal contact with the heat radiating surface 36a. (E.g., radiation fins) 28, a discharge electrode 38 installed in thermal contact with the cooling surface 36b via an electrical insulating material (not shown), and a predetermined distance from the discharge electrode 38. It is comprised with the counter electrode 40 arrange | positioned.
また、図6に示されるように、換気ファンユニット16の近傍に配置された制御部42(図1参照)に、ペルチェ駆動電源44と高電圧トランス24は電気的に接続されており、ペルチェ素子36及び放電電極38はペルチェ駆動電源44及び高電圧トランス24にそれぞれ電気的に接続されている。
Further, as shown in FIG. 6, the Peltier drive power supply 44 and the high voltage transformer 24 are electrically connected to the control unit 42 (see FIG. 1) disposed in the vicinity of the ventilation fan unit 16, and the Peltier element 36 and the discharge electrode 38 are electrically connected to the Peltier drive power supply 44 and the high voltage transformer 24, respectively.
なお、静電霧化ユニット30として放電電極38から高電圧放電させて静電ミストを発生させるためには、対向電極40を設けなくても可能である。例えば、放電電極38に高電圧電源の一方の端子を接続し、他方の端子をフレーム接続するようにしておけば、フレーム接続された構造体の放電電極38に近接した部分と放電電極38との間で放電することとなる。そのような構成の場合には、そのフレーム接続された構造体を対向電極40と見なすことができる。
In addition, in order to generate the electrostatic mist by discharging high voltage from the discharge electrode 38 as the electrostatic atomizing unit 30, it is possible even without providing the counter electrode 40. For example, if one terminal of a high-voltage power supply is connected to the discharge electrode 38 and the other terminal is connected to the frame, the portion close to the discharge electrode 38 of the frame-connected structure and the discharge electrode 38 Will be discharged between. In such a configuration, the frame-connected structure can be regarded as the counter electrode 40.
上記構成の静電霧化ユニット30において、制御部42によりペルチェ駆動電源44を制御してペルチェ素子36に電流を流すと、冷却面36bから放熱面36aに向かって熱が移動し、放電電極38の温度が低下することで放電電極38に結露する。さらに、制御部42により高電圧トランス24を制御して、結露水が付着した放電電極38に高電圧を印可すると、結露水に放電現象が発生して粒子径がナノメートルサイズの静電ミストが発生する。なお、本実施の形態においては、高電圧トランス24としてマイナス高電圧電源を用いているので、静電ミストは負に帯電している。
In the electrostatic atomization unit 30 configured as described above, when the control unit 42 controls the Peltier drive power supply 44 to cause a current to flow through the Peltier element 36, heat is transferred from the cooling surface 36 b toward the heat radiating surface 36 a, and the discharge electrode 38. Condensation occurs on the discharge electrode 38 due to a decrease in temperature. Further, when the high voltage transformer 24 is controlled by the control unit 42 and a high voltage is applied to the discharge electrode 38 to which the condensed water has adhered, a discharge phenomenon occurs in the condensed water, and electrostatic mist having a particle size of nanometer size is generated. appear. In the present embodiment, since a negative high voltage power source is used as the high voltage transformer 24, the electrostatic mist is negatively charged.
また、本実施の形態においては、図7に示されるように、主流路20は、本体2を構成する台枠46の後部壁46aと、この後部壁46aの両端部より前方に延びる両側壁(図7では左側壁のみ示す)46bと、台枠46の下方に形成されたリヤガイダ(送風ガイド)48の後部壁48aと、この後部壁48aの両端部より前方に延びる両側壁(図7では左側壁のみ示す)48bとで形成されており、台枠46の一方の側壁(左側壁)46bとリヤガイダ48の一方の側壁(左側壁)48bとでバイパス流路22を主流路20から分離する隔壁46cを構成している。さらに、台枠46の一方の側壁46bにバイパス流路22のバイパス吸入口22aが形成される一方、リヤガイダ48の一方の側壁48bにバイパス流路22のバイパス吹出口22bが形成されている。
In the present embodiment, as shown in FIG. 7, the main flow path 20 includes a rear wall 46 a of the base frame 46 constituting the main body 2, and both side walls extending forward from both ends of the rear wall 46 a ( 7 shows only the left side wall 46b, a rear wall 48a of the rear guider 48 formed below the underframe 46, and both side walls extending forward from both ends of the rear wall 48a (left side in FIG. 7). 48b, a partition wall separating the bypass channel 22 from the main channel 20 by one side wall (left side wall) 46b of the underframe 46 and one side wall (left side wall) 48b of the rear guider 48. 46c is constituted. Further, the bypass suction port 22a of the bypass channel 22 is formed on one side wall 46b of the frame 46, while the bypass outlet 22b of the bypass channel 22 is formed on one side wall 48b of the rear guider 48.
空気調和機の場合、冷房時においては、室内機の熱交換器6を通過した低温の空気は相対湿度が高く、静電霧化装置18において、水分を補給するためにペルチェ素子36を備えた場合に、ペルチェ素子36のピン状の放電電極38のみならずペルチェ素子36全体に結露が発生しやすくなる。一方、暖房時においては、熱交換器6を通過した高温の空気は相対湿度が低いため、ペルチェ素子36の放電電極38に結露しない可能性が極めて高い。
In the case of an air conditioner, during cooling, the low-temperature air that has passed through the heat exchanger 6 of the indoor unit has a high relative humidity, and the electrostatic atomizer 18 includes a Peltier element 36 for replenishing moisture. In this case, dew condensation is likely to occur not only on the pin-shaped discharge electrode 38 of the Peltier element 36 but also on the entire Peltier element 36. On the other hand, at the time of heating, the high-temperature air that has passed through the heat exchanger 6 has a low relative humidity, so there is a very high possibility that no condensation will occur on the discharge electrode 38 of the Peltier element 36.
そこで上記構成のように、主流路20とバイパス流路22を隔壁46cで分離し、静電ミストを発生させる静電霧化装置18をバイパス流路22に設けたことにより、熱交換器6を通過せず温湿度調整がなされていない空気が静電霧化装置18に供給される。これにより、冷房時においては静電霧化ユニット30のペルチェ素子36全体に結露が発生することを有効に防止することで安全性が向上する。また、暖房時においては静電ミストを確実に発生させることができる。
Thus, as in the above configuration, the main flow path 20 and the bypass flow path 22 are separated by the partition wall 46c, and an electrostatic atomizer 18 that generates electrostatic mist is provided in the bypass flow path 22. Air that has not passed through and that has not been adjusted in temperature and humidity is supplied to the electrostatic atomizer 18. Thereby, safety is improved by effectively preventing the occurrence of condensation on the entire Peltier element 36 of the electrostatic atomization unit 30 during cooling. Moreover, electrostatic mist can be reliably generated during heating.
バイパス流路22は、バイパス吸入管22cとケーシング34とバイパス吹出管22dから構成されており、台枠側壁46bに形成されたバイパス吸入口22aに一端が接続されたバイパス吸入管22cは左方(左側壁46bに略直交し、前面パネル4に略平行な方向)に延びて、その他端はケーシング34の一端に接続され、さらにケーシング34の他端に一端が接続されたバイパス吹出管22dは下方に延びて右方に折曲され、その他端はリヤガイダ48の一方の側壁48bのバイパス吹出口22bに接続されている。このようにバイパス流路22の一部をケーシング34で構成することで、省スペース化を達成することができるとともに、これらを一連に構成することでバイパス吹出管22dを介して静電霧化ユニット18から静電ミストを主流路20に向けて確実に誘引することができ、静電ミストを被空調室内に放出させることができる。
The bypass passage 22 includes a bypass suction pipe 22c, a casing 34, and a bypass outlet pipe 22d, and the bypass suction pipe 22c having one end connected to the bypass suction port 22a formed in the frame side wall 46b is located on the left side ( The bypass outlet 22d, which extends in a direction substantially orthogonal to the left side wall 46b and extends in a direction substantially parallel to the front panel 4, is connected to one end of the casing 34 and further connected to the other end of the casing 34. The other end of the rear guider 48 is connected to the bypass outlet 22b of the side wall 48b. Thus, by comprising a part of bypass channel 22 with casing 34, space saving can be achieved, and electrostatic atomization unit can be formed via bypass outlet pipe 22d by comprising these in series. The electrostatic mist can be reliably attracted from 18 toward the main flow path 20, and the electrostatic mist can be discharged into the air-conditioned room.
バイパス吸入口22aはプレフィルタ5と熱交換器6との間、すなわちプレフィルタ5の下流側で熱交換器6の上流側に位置しており、前面吸込口2a及び上面吸込口2bより吸い込まれた空気に含まれる塵埃はプレフィルタ5により有効に除去されるので、静電霧化装置18に塵埃が侵入することを抑制できる。これにより、静電霧化ユニット30に塵埃が堆積することを有効に防止でき、静電ミストを安定的に放出することができる。
The bypass suction port 22a is located between the prefilter 5 and the heat exchanger 6, that is, downstream of the prefilter 5 and upstream of the heat exchanger 6, and is sucked from the front suction port 2a and the upper suction port 2b. Since the dust contained in the air is effectively removed by the pre-filter 5, it is possible to prevent the dust from entering the electrostatic atomizer 18. Thereby, it can prevent effectively that dust accumulates on the electrostatic atomization unit 30, and can discharge | release electrostatic mist stably.
このように本実施の形態においては、プレフィルタ5で静電霧化装置18と主流路20のプレフィルタを兼ねる構成となっているが、これによりメンテナンスはプレフィルタ5のみを清掃すればよく、それぞれ別に手入れをする必要がないので、手入れを簡略化することができる。さらには、後述するようなプレフィルタ自動清掃装置を備えた空気調和機においては、プレフィルタ5に特別の手入れは必要なく、メンテンナンスフリー化を実現することができる。
As described above, in the present embodiment, the prefilter 5 serves as a prefilter for the electrostatic atomizer 18 and the main flow path 20, but this requires maintenance to clean only the prefilter 5. Since it is not necessary to care for each separately, the care can be simplified. Furthermore, in an air conditioner equipped with a pre-filter automatic cleaning device as will be described later, the pre-filter 5 does not require special care, and can be made maintenance-free.
一方、バイパス吹出口22bは熱交換器6及び室内ファン8の下流側で吹出口10の近傍に位置しており、バイパス吹出口22bから吐出された静電ミストが主流路20の空気流に乗って拡散し部屋全体に充満するように構成されている。このようにバイパス吹出口22bを熱交換器6の下流側に配置したのは、熱交換器6の上流側に配置すると、熱交換器6は金属製のため、荷電粒子である静電ミストは熱交換器6にその大部分(約8~9割以上)が吸収されるからである。また、バイパス吹出口22bを室内ファン8の下流側に配置したのは、室内ファン8の上流側に配置すると、室内ファン8の内部には乱流が存在し、室内ファン8の内部を通過する空気が室内ファン8の様々な部位に衝突する過程で静電ミストの一部(約5割程度)が吸収されるからである。
On the other hand, the bypass air outlet 22b is positioned in the vicinity of the air outlet 10 on the downstream side of the heat exchanger 6 and the indoor fan 8, and the electrostatic mist discharged from the bypass air outlet 22b rides on the air flow in the main flow path 20. It spreads and fills the entire room. The bypass outlet 22b is arranged on the downstream side of the heat exchanger 6 as described above. If the bypass air outlet 22b is arranged on the upstream side of the heat exchanger 6, since the heat exchanger 6 is made of metal, the electrostatic mist that is charged particles is This is because most of the heat exchanger 6 (about 80 to 90% or more) is absorbed. In addition, the bypass outlet 22b is arranged on the downstream side of the indoor fan 8. If the bypass outlet 22b is arranged on the upstream side of the indoor fan 8, turbulent flow exists in the indoor fan 8 and passes through the indoor fan 8. This is because a part (about 50%) of the electrostatic mist is absorbed in the process of air colliding with various parts of the indoor fan 8.
また、バイパス吹出口22bを設けたリヤガイダ48の一方の側壁48bの主流路20側は、室内ファン8により空気流に所定の速度が付与されることで、側壁48bの主流路20側とバイパス流路22側において圧力差が生じ、バイパス流路22に対し主流路20側が相対的に低圧となる負圧部となっており、バイパス流路22から主流路20に向かって空気が誘引される。したがって、バイパス送風ファン26は小容量のもので済み、場合によってはバイパス送風ファン26を設けなくてもよい。
In addition, the main flow path 20 side of one side wall 48b of the rear guider 48 provided with the bypass outlet 22b is given a predetermined speed to the air flow by the indoor fan 8, so that the main flow path 20 side of the side wall 48b is bypassed. A pressure difference is generated on the side of the path 22, a negative pressure portion in which the main channel 20 side is relatively low in pressure relative to the bypass channel 22, and air is attracted from the bypass channel 22 toward the main channel 20. Accordingly, the bypass blower fan 26 has a small capacity, and the bypass blower fan 26 may not be provided in some cases.
さらに、バイパス吹出管22dは、主流路20との合流点(バイパス吹出口22b)において主流路20内の空気流に対し略直交する方向に指向するように隔壁46c(リヤガイダ48の側壁48b)に接続されている。これは、静電霧化ユニット30は、上述したように放電現象を利用して静電ミストを発生させていることから、必然的に放電音を伴い、放電音には指向性があるからである。したがって、バイパス流路22と主流路20の合流点(バイパス吹出口22b)において、バイパス流路22を前面パネル4に略平行に接続することで、室内機の前方あるいは斜め前方にいる人に対して、放電音が極力指向しないように構成して騒音を低減することができる。
Further, the bypass outlet pipe 22d is provided on the partition wall 46c (side wall 48b of the rear guider 48) so as to be directed in a direction substantially orthogonal to the air flow in the main channel 20 at the junction with the main channel 20 (bypass outlet 22b). It is connected. This is because the electrostatic atomization unit 30 generates the electrostatic mist by utilizing the discharge phenomenon as described above, so that the discharge sound is inevitably accompanied and the discharge sound has directivity. is there. Therefore, by connecting the bypass passage 22 to the front panel 4 substantially parallel to the front panel 4 at the junction of the bypass passage 22 and the main passage 20 (bypass outlet 22b), a person in front of the indoor unit or diagonally forward Thus, it is possible to reduce the noise by configuring so that the discharge sound is not directed as much as possible.
また、図8に示されるように、バイパス吹出管22dを主流路20との合流点において隔壁46cに対し傾斜させ、主流路20内の空気流に対し上流側に指向するように接続すると、より一層放電音による騒音の低減に効果がある。
Further, as shown in FIG. 8, when the bypass outlet pipe 22 d is inclined with respect to the partition wall 46 c at the junction with the main flow path 20 and connected so as to be directed upstream with respect to the air flow in the main flow path 20, It is effective in reducing noise due to further discharge noise.
なお、バイパス吹出管22dの指向する方向が主流路20内の空気流の下流方向に指向して接続した場合においても、その延長線が吹出口10から外部に出ないようにしておけば、発生する放電音が吹出口10から直接外部に出る量が少なく、直接的に使用者の耳に入射することも少ないため、騒音低減効果を奏することができる。
In addition, even when the direction in which the bypass outlet pipe 22d is directed is connected to the downstream direction of the air flow in the main flow path 20, if the extension line does not come out from the outlet 10, it will occur. Since the amount of discharge sound that goes out directly from the air outlet 10 is small and does not directly enter the user's ear, a noise reduction effect can be achieved.
以上説明したように、主流路20とバイパス流路22を隔壁46cで分離し、静電ミストを発生させる静電霧化装置18を熱交換器6をバイパスして主流路20に連通するバイパス流路22に設けたので、熱交換器6を通過せず温湿度調整がなされていない空気が静電霧化装置18に供給されるので、冷房時においては静電霧化ユニット30のペルチェ素子36全体に結露が発生することを有効に防止することで安全性が向上するとともに、暖房時においては静電ミストを確実に発生させることができ、空気調和機の運転モードに関わらず、すなわち、季節に関係なく静電ミストを安定的に発生させることができる。
As described above, the main flow path 20 and the bypass flow path 22 are separated by the partition wall 46 c, and the electrostatic atomizer 18 that generates electrostatic mist bypasses the heat exchanger 6 and communicates with the main flow path 20. Since the air that has not been passed through the heat exchanger 6 and has not been adjusted in temperature and humidity is supplied to the electrostatic atomizer 18 because it is provided in the path 22, the Peltier element 36 of the electrostatic atomization unit 30 is used during cooling. Effectively preventing the occurrence of dew condensation on the whole, safety is improved, and electrostatic mist can be reliably generated during heating, regardless of the operation mode of the air conditioner, that is, the season The electrostatic mist can be generated stably regardless of the above.
次に、プレフィルタ5に付着した塵埃を吸引して除去する吸引装置を有するプレフィルタ自動清掃装置をさらに設けた空気調和機について説明する。図9を参照しながら換気ファンユニット16を説明すると、換気ファンユニット16は換気専用であっても、プレフィルタ自動清掃装置を有する室内機に設けられた吸引装置の給気用を兼ねるものであってもよい。図9に示される換気ファンユニット16は、隔壁46cのバイパス流路22側でプレフィルタ自動清掃装置の吸引装置58に組み込まれているが、プレフィルタ自動清掃装置は既に公知なので、図10を参照しながら簡単に説明する。プレフィルタ自動清掃装置の詳細な構造や運転方法については、特に限定されるものではない。
Next, an air conditioner provided with a prefilter automatic cleaning device having a suction device that sucks and removes dust adhering to the prefilter 5 will be described. The ventilation fan unit 16 will be described with reference to FIG. 9. Even if the ventilation fan unit 16 is dedicated to ventilation, the ventilation fan unit 16 also serves to supply air to a suction device provided in an indoor unit having a pre-filter automatic cleaning device. May be. The ventilation fan unit 16 shown in FIG. 9 is incorporated in the suction device 58 of the automatic prefilter cleaning device on the bypass flow path 22 side of the partition wall 46c. However, since the automatic prefilter cleaning device is already known, see FIG. While briefly explaining. The detailed structure and operation method of the pre-filter automatic cleaning device are not particularly limited.
図10に示されるように、プレフィルタ自動清掃装置50は、プレフィルタ5の表面に沿って摺動自在の吸引ノズル52を備えており、吸引ノズル52はプレフィルタ5の上下端に設置された一対のガイドレール54により、プレフィルタ5と極めて狭い間隙を保って円滑に左右に移動することができ、プレフィルタ5に付着した塵埃は吸引ノズル52より吸引して除去される。また、吸引ノズル52には屈曲自在の吸引ダクト56の一端が連結され、吸引ダクト56の他端は吸引量可変の吸引装置58に連結されている。さらに、吸引装置58には排気ダクト60が連結され、室外へ導出されている。
As shown in FIG. 10, the pre-filter automatic cleaning device 50 includes suction nozzles 52 that are slidable along the surface of the pre-filter 5, and the suction nozzles 52 are installed at the upper and lower ends of the pre-filter 5. The pair of guide rails 54 can smoothly move left and right while maintaining a very narrow gap with the prefilter 5, and dust adhering to the prefilter 5 is sucked and removed by the suction nozzle 52. Further, one end of a bendable suction duct 56 is connected to the suction nozzle 52, and the other end of the suction duct 56 is connected to a suction device 58 having a variable suction amount. Further, an exhaust duct 60 is connected to the suction device 58 and led out to the outside.
また、吸引ノズル52の上下方向の周囲には吸引ノズル52に沿って摺動自在のベルト(図示せず)が巻回されており、吸引ノズル52のプレフィルタ5と対向する面には、プレフィルタ5の縦長さに略等しい長さのスリット状のノズル開口部が形成される一方、ベルトには、プレフィルタ5の縦長さの例えば1/4の長さのスリット状の吸引孔が形成されている。
Further, a belt (not shown) that is slidable along the suction nozzle 52 is wound around the suction nozzle 52 in the vertical direction. A slit-like nozzle opening having a length substantially equal to the vertical length of the filter 5 is formed, while a slit-like suction hole having a length of, for example, 1/4 of the vertical length of the prefilter 5 is formed in the belt. ing.
上記構成のプレフィルタ自動清掃装置50は、必要に応じてプレフィルタ5の清掃範囲A,B,C,Dを順次清掃するが、範囲Aを吸引清掃する場合、ベルトを駆動してその吸引孔を範囲Aの位置に固定した状態で、吸引しながら吸引ノズル52をプレフィルタ5の右端から左端まで駆動することでプレフィルタ5の水平方向の範囲Aが吸引清掃される。
The automatic prefilter cleaning device 50 configured as described above sequentially cleans the cleaning ranges A, B, C, and D of the prefilter 5 as necessary. When the range A is suction-cleaned, the belt is driven and the suction holes are driven. In the state where the position is fixed to the position of the range A, the suction nozzle 52 is driven from the right end to the left end of the prefilter 5 while sucking, whereby the horizontal range A of the prefilter 5 is suction-cleaned.
次に、ベルトを駆動してその吸引孔を範囲Bの位置に固定し、この状態で吸引しながら吸引ノズル52をプレフィルタ5の左端から右端まで駆動することで今度はプレフィルタ5の水平方向の範囲Bが吸引清掃される。同様に、プレフィルタ5の範囲C、Dも吸引清掃される。
Next, the belt is driven to fix the suction hole at a position in the range B, and the suction nozzle 52 is driven from the left end to the right end of the prefilter 5 while sucking in this state, so that the horizontal direction of the prefilter 5 is now achieved. A range B is suction-cleaned. Similarly, the areas C and D of the pre-filter 5 are also cleaned by suction.
プレフィルタ5に付着し、吸引ノズル52により吸引された塵埃は吸引ダクト56、吸引装置58、排気ダクト60を経由して室外へ排出される。
The dust adhering to the pre-filter 5 and sucked by the suction nozzle 52 is discharged outside through the suction duct 56, the suction device 58, and the exhaust duct 60.
図9をさらに参照すると、吸引装置58の吸入路には開口部62が形成されるとともに、この開口部62を開閉するためのダンパ64が設けられており、換気ファンユニット16は、ダンパ64が開口部62を開いた時は換気用として、吸引清掃を行う場合はダンパ64により開口部62を閉じてベルトの吸引孔から塵埃を吸引する吸引用として使用される。すなわち、同じ吸引装置58を使用して吸引清掃機能と換気機能を実現させている。
Further referring to FIG. 9, an opening 62 is formed in the suction path of the suction device 58, and a damper 64 for opening and closing the opening 62 is provided. The ventilation fan unit 16 includes the damper 64. When the opening 62 is opened, it is used for ventilation. When suction cleaning is performed, the opening 62 is closed by a damper 64 and used for sucking dust from the suction hole of the belt. That is, the same suction device 58 is used to realize the suction cleaning function and the ventilation function.
なお、図9には排気ダクト60は図示されていないが、排気ダクト60は吸引装置58の排気口58aに接続されている。
Although the exhaust duct 60 is not shown in FIG. 9, the exhaust duct 60 is connected to the exhaust port 58 a of the suction device 58.
図11はケーシング34を持たない静電霧化装置18Aを示しており、この静電霧化装置18Aは図12に示されるように室内機本体2に組み込まれる。あるいは、図12に示される破線領域18B(図9に示される静電霧化装置18においてバイパス流路22の下流側に設けられた静電霧化ユニット30とサイレンサ32と略同じ位置)に組み込まれる。これらは、静電霧化装置18Aを室内機の正面又は上面から見て換気ファンユニット16と重なる位置に配設するとともに、静電霧化装置18Aを換気ファンユニット16の開口部62及びダンパ64の近傍で、換気ファンユニット16による吸引空気が流れる部分に配置するものである。
FIG. 11 shows an electrostatic atomizer 18A having no casing 34, and this electrostatic atomizer 18A is incorporated in the indoor unit body 2 as shown in FIG. Alternatively, it is incorporated into a broken line region 18B shown in FIG. 12 (substantially the same position as the electrostatic atomizer unit 30 and the silencer 32 provided on the downstream side of the bypass flow path 22 in the electrostatic atomizer 18 shown in FIG. 9). It is. These are disposed at a position overlapping the ventilation fan unit 16 when the electrostatic atomizer 18A is viewed from the front or top surface of the indoor unit, and the electrostatic atomizer 18A is disposed at the opening 62 and the damper 64 of the ventilation fan unit 16. Is disposed in a portion where the suction air by the ventilation fan unit 16 flows.
さらに詳述すると、図11の静電霧化装置18Aは、放熱部28を有する静電霧化ユニット30とサイレンサ32が一体的に取り付けられ、放熱部28を除く静電霧化ユニット30部分とサイレンサ32はそれぞれのハウジング(ユニットハウジング66とサイレンサハウジング68)に収容され、サイレンサハウジング68にバイパス吹出管22dの一方が接続されて連通し、バイパス吹出管22dの他方が主流路20に接続されて連通している。この場合、隔壁46cにより主流路20から分離され、図示しない本体カバーの左側面との間に形成されて、換気ファンユニット16、静電霧化装置18A等が配設された収容部22eが前述したバイパス吸入管22cとケーシング34との代わりとなるとともに、バイパス吹出管22dまでも収容してバイパス流路22として構成することになる。
More specifically, the electrostatic atomizing device 18A of FIG. 11 includes an electrostatic atomizing unit 30 having a heat radiating portion 28 and a silencer 32 integrally attached, and the electrostatic atomizing unit 30 portion excluding the heat radiating portion 28; The silencer 32 is accommodated in each housing (unit housing 66 and silencer housing 68), and one of the bypass blowing pipes 22d is connected to and communicated with the silencer housing 68, and the other of the bypass blowing pipes 22d is connected to the main flow path 20. Communicate. In this case, the housing portion 22e that is separated from the main flow path 20 by the partition wall 46c and formed between the left side surface of the main body cover (not shown) and in which the ventilation fan unit 16, the electrostatic atomizer 18A, and the like are disposed is described above. In addition to the bypass suction pipe 22c and the casing 34, the bypass blow-out pipe 22d is also accommodated to constitute the bypass flow path 22.
なお、バイパス吹出管22dは、主流路20の空気流に対して指向する向きで騒音低減が図れることは上述したとおりであるが、必ずしも必要というものではなく、サイレンサハウジング68を直接的にバイパス吹出口22bに接続してもよい。これにより、静電霧化装置18Aの構成をより簡素化することができる。ただし、騒音低減のために向きの配慮が必要なことはバイパス吹出管22dと同様である。
As described above, the bypass blow-out pipe 22d can reduce noise in a direction directed to the air flow of the main flow path 20. However, this is not always necessary, and the bypass blower pipe 22d directly bypasses the silencer housing 68. You may connect to the outlet 22b. Thereby, the structure of 18 A of electrostatic atomizers can be simplified more. However, it is the same as the bypass outlet pipe 22d that consideration of the direction is necessary for noise reduction.
これにより、プレフィルタ5を介して本体2内に吸い込まれる空気は、プレフィルタ5の下流側のバイパス吸入口22aより収容部22eに吸い込まれ、その空気流の方向は、主流路20を流れる空気流の方向に対して、室内機本体2を正面から見て平行に収容部22e内を流れることになる。このように収容部22e内を流れた空気により放熱部28は冷却されるとともに、ユニットハウジング66に形成された開口部(図示せず)より静電霧化ユニット30に取り込まれる。
Thereby, the air sucked into the main body 2 through the prefilter 5 is sucked into the accommodating portion 22e from the bypass suction port 22a on the downstream side of the prefilter 5, and the direction of the airflow is the air flowing through the main channel 20 The indoor unit main body 2 flows in the accommodating portion 22e in parallel with the flow direction when viewed from the front. Thus, the heat radiating portion 28 is cooled by the air flowing through the housing portion 22e, and taken into the electrostatic atomizing unit 30 through an opening (not shown) formed in the unit housing 66.
このように構成することで、室内機の正面又は上面から見て換気ファンユニット16と重なる換気ファンユニット16の周囲空間がバイパス流路22となり、換気ファンユニット16、静電霧化装置18A等の収容部22eを有効に活用して省スペース化を達成することができる。なお、この構成では、高電圧トランス24は換気ファンユニット16、静電霧化装置18A等の収容部22eにおける任意の部位に配置され、バイパス送風ファン26は設けられない。
With this configuration, the space around the ventilation fan unit 16 that overlaps the ventilation fan unit 16 when viewed from the front or top surface of the indoor unit becomes the bypass flow path 22, and the ventilation fan unit 16, the electrostatic atomizer 18 </ b> A, etc. Space can be saved by effectively utilizing the accommodating portion 22e. In this configuration, the high voltage transformer 24 is disposed at an arbitrary portion in the housing portion 22e such as the ventilation fan unit 16 and the electrostatic atomizer 18A, and the bypass blower fan 26 is not provided.
また、このようにバイパス流路22を、主流路20を通過する空気流に対して、室内機本体2を正面から見て平行に空気流が流れるように構成することにより、上で詳述したように隔壁46cという簡略な構成で主流路20とバイパス流路22を分岐することができるため、容易にバイパス流路22が形成でき、部品点数を削減することができる。
Further, the bypass flow path 22 is described in detail above by configuring the bypass flow path 22 so that the air flow flows in parallel with the air flow passing through the main flow path 20 as viewed from the front. Thus, since the main flow path 20 and the bypass flow path 22 can be branched with a simple configuration of the partition wall 46c, the bypass flow path 22 can be easily formed, and the number of parts can be reduced.
さらに、本構成とすることで、静電霧化装置18Aのプレフィルタと主流路20のプレフィルタをプレフィルタ5で共有化することができる。共有化の効果については、先述の通りであるので、ここでは詳細は省略する。
Furthermore, by using this configuration, the prefilter of the electrostatic atomizer 18A and the prefilter of the main flow path 20 can be shared by the prefilter 5. Since the sharing effect is as described above, the details are omitted here.
なお、換気ファンユニット16の後部にあたる台枠46の下部近傍において、室内機と室外機とを接続する配管(図示せず)を引き出せるように開口46dを形成してもよい。上述したバイパス吸入口22aは、収容部22eに空気を吸い込むために隔壁46c(台枠側壁46b)に形成された収容部22eにおける1つの開口であり、室内機の外部とはプレフィルタ5を通して連通していたが、台枠46の下部に形成された開口46dにおいては、収容部22eが室内機の外部と直接連通して周囲の空気を吸い込む開口となる。このような場合には、収容部22eはプレフィルタ5をもバイパスするバイパス流路となる。したがって、静電霧化装置18Aに吸い込まれる空気は開口46dから流入したものとなってプレフィルタ5を通過しないことになるので、必要に応じて別途静電霧化装置18A用のプレフィルタを設ければよい。また、開口46dを形成した構成でも室内機の正面又は上面から見て換気ファンユニット16と重なる位置に静電霧化装置18Aが配設されていることは変わらず、収容部22eを有効に活用して省スペース化を達成することができるのは同様である。
It should be noted that an opening 46d may be formed in the vicinity of the lower portion of the base frame 46 corresponding to the rear portion of the ventilation fan unit 16 so that a pipe (not shown) connecting the indoor unit and the outdoor unit can be drawn out. The bypass suction port 22a described above is one opening in the housing portion 22e formed in the partition wall 46c (the frame side wall 46b) in order to suck air into the housing portion 22e, and communicates with the outside of the indoor unit through the prefilter 5. However, in the opening 46d formed in the lower part of the underframe 46, the accommodating portion 22e is an opening that directly communicates with the outside of the indoor unit and sucks ambient air. In such a case, the accommodating portion 22e serves as a bypass flow path that also bypasses the prefilter 5. Accordingly, the air sucked into the electrostatic atomizer 18A flows from the opening 46d and does not pass through the prefilter 5, so that a separate prefilter for the electrostatic atomizer 18A is provided as necessary. Just do it. Further, even in the configuration in which the opening 46d is formed, the electrostatic atomizer 18A is disposed at a position overlapping the ventilation fan unit 16 when viewed from the front or top surface of the indoor unit, and the housing portion 22e is effectively used. Similarly, space saving can be achieved.
上述したように、バイパス吹出口22bの主流路20側は、室内ファン8により空気流に所定の速度が付与されることで圧力差が発生して誘引される負圧部となっているので、バイパス送風ファン26は設けなくても、バイパス吹出管22dを介してバイパス流路である収容部22eから主流路20に向かって誘引される空気により放熱部28は冷却され、静電霧化ユニット30により発生した静電ミストが主流路20に誘引され、被空調室内に放出させることができる。また、放熱部28は、破線領域18Bのように開口部62及びダンパ64の近傍で、開口部62に吸い込まれる空気が流れる部分に配置したことから換気ファンユニット16による吸引空気によっても冷却される。
As described above, the main flow path 20 side of the bypass outlet 22b is a negative pressure part that is attracted by the pressure difference generated by the indoor fan 8 being given a predetermined speed to the air flow. Even if the bypass blower fan 26 is not provided, the heat radiating portion 28 is cooled by the air drawn toward the main passage 20 from the accommodating portion 22e which is a bypass passage via the bypass outlet pipe 22d, and the electrostatic atomizing unit 30 is provided. The electrostatic mist generated by the above is attracted to the main channel 20 and can be discharged into the air-conditioned room. Further, since the heat dissipating part 28 is arranged in the vicinity of the opening 62 and the damper 64 as shown by the broken line area 18B, the air is sucked into the opening 62, so that it is also cooled by the air sucked by the ventilation fan unit 16. .
なお、図12に示されるように、静電霧化装置18Aの放熱部28を吸引装置58に設けられた開口部62に近接して配置することで、開口部62に吸い込まれる空気により放熱部28がより冷却され、静電霧化ユニット30からの放熱が促進される。また、換気ファンユニット16として換気専用のファンを使用した場合、ダンパ64は設けられることがないので、換気ファンユニット16の吸込口に放熱部28を近接配置することで、放熱部28は効率よく冷却される。
As shown in FIG. 12, by disposing the heat radiating portion 28 of the electrostatic atomizer 18 </ b> A close to the opening 62 provided in the suction device 58, the heat radiating portion is caused by the air sucked into the opening 62. 28 is further cooled, and heat dissipation from the electrostatic atomization unit 30 is promoted. Further, when a ventilation-only fan is used as the ventilation fan unit 16, the damper 64 is not provided. Therefore, by disposing the heat radiating unit 28 close to the suction port of the ventilation fan unit 16, the heat radiating unit 28 is efficiently arranged. To be cooled.
以上説明したように、上記構成によれば、主流路20とバイパス流路となる収容部22eとを隔壁46cで分離し、静電ミストを発生させる静電霧化装置18Aを収容部22eに設けたので、熱交換器6を通過せず温湿度調整がなされていない空気が静電霧化装置18Aに供給されるので、冷房時においては静電霧化ユニット30のペルチェ素子36全体に結露が発生することを有効に防止することで安全性が向上するとともに、暖房時においては静電ミストを確実に発生させることができ、空気調和機の運転モードに関わらず、すなわち、季節に関係なく静電ミストを安定的に発生させることができる。
As described above, according to the above configuration, the container 22e is provided with the electrostatic atomizer 18A that separates the main channel 20 and the container 22e serving as the bypass channel by the partition wall 46c and generates electrostatic mist. Therefore, since air that has not passed through the heat exchanger 6 and is not adjusted in temperature and humidity is supplied to the electrostatic atomizer 18A, dew condensation occurs on the entire Peltier element 36 of the electrostatic atomizer unit 30 during cooling. Effectively preventing this from occurring, safety is improved, and electrostatic mist can be reliably generated during heating, and it is quiet regardless of the operation mode of the air conditioner, that is, regardless of the season. Electric mist can be generated stably.
<静電霧化装置に起因する騒音を低減するための構成>
空気調和機において、騒音の低減は大きな課題である。放電音が大きい静電霧化装置の搭載については課題が大きく、放電音の低減が必須である。従来公知の静電霧化ユニット30の概略については図5及び図6を参照してすでに説明したが、本発明の空気調和機における放電音低減の構成について、放電現象を交えて詳細に説明する。 <Configuration for reducing noise caused by electrostatic atomizer>
In air conditioners, noise reduction is a major issue. The mounting of an electrostatic atomizer that generates a large amount of discharge sound has many problems, and it is essential to reduce the discharge sound. Although the outline of the conventionally knownelectrostatic atomizing unit 30 has already been described with reference to FIGS. 5 and 6, the configuration of reducing discharge noise in the air conditioner of the present invention will be described in detail along with the discharge phenomenon. .
空気調和機において、騒音の低減は大きな課題である。放電音が大きい静電霧化装置の搭載については課題が大きく、放電音の低減が必須である。従来公知の静電霧化ユニット30の概略については図5及び図6を参照してすでに説明したが、本発明の空気調和機における放電音低減の構成について、放電現象を交えて詳細に説明する。 <Configuration for reducing noise caused by electrostatic atomizer>
In air conditioners, noise reduction is a major issue. The mounting of an electrostatic atomizer that generates a large amount of discharge sound has many problems, and it is essential to reduce the discharge sound. Although the outline of the conventionally known
図13は、本実施の形態の空気調和機の静電霧化ユニットの断面図である。図13において、静電霧化ユニット70の基本的な構成は従来と変わらず、放熱面36aと冷却面36bとを有する複数のペルチェ素子36と、放熱面36aに熱的に密着して接続された放熱部(例えば、放熱フィン)28と、冷却面36bに電気絶縁材71を介して熱的に密着して立設された放電電極72と、この放電電極72に対し所定距離だけ離隔して配置された対向電極73とで構成されている。放電電極72と対向電極73との間には、高電圧が印加できるように高圧電源として高圧トランス24が接続されている。
FIG. 13 is a cross-sectional view of the electrostatic atomization unit of the air conditioner of the present embodiment. In FIG. 13, the basic configuration of the electrostatic atomizing unit 70 is the same as that of the prior art, and a plurality of Peltier elements 36 having a heat radiating surface 36a and a cooling surface 36b are connected in thermal contact with the heat radiating surface 36a. The heat radiating portion (for example, heat radiating fins) 28, the discharge electrode 72 provided in thermal contact with the cooling surface 36b via the electrical insulating material 71, and a predetermined distance from the discharge electrode 72 The counter electrode 73 is arranged. A high voltage transformer 24 is connected between the discharge electrode 72 and the counter electrode 73 as a high voltage power source so that a high voltage can be applied.
放電電極72は細い棒形状で、その放電電極先端部72aは直径が1mm以下の小さな球体形状をしている。この球体形状においては、球体の表面で結露により生成された水分が静電気力により先端に凝集しやすいとともに、表面張力による保持が容易である。なお、放電電極先端部72aは球体形状に限るものではなく、先鋭形状などでもかまわないが、静電霧化するための水を適度に保持できるような形状であまり尖りすぎない形状が静電気力により先端に凝集しやすいとともに、表面張力による保持が容易であり望ましい。
The discharge electrode 72 has a thin rod shape, and the discharge electrode tip 72a has a small spherical shape with a diameter of 1 mm or less. In this spherical shape, moisture generated by dew condensation on the surface of the sphere tends to aggregate at the tip due to electrostatic force and can be easily held by surface tension. Note that the discharge electrode tip 72a is not limited to a spherical shape, but may be a sharp shape or the like, but a shape that can hold water for electrostatic atomization moderately and is not too sharp due to electrostatic force. It is desirable that it easily aggregates at the tip and is easily held by surface tension.
対向電極73は中央に円形の穴を有する平板のリング形状をなして、リング内周部73aが放電電極72の中心軸に対して垂直に取り囲んで放電電極先端部72aからほぼ等距離になるように配設されて放電面積を大きく設定している。なお、対向電極73はリング形状ではあるが、図示はしない端子接続部や支持部を外周側に有するのは構わない。
The counter electrode 73 has a flat ring shape with a circular hole in the center, and the ring inner peripheral portion 73a is surrounded perpendicularly to the central axis of the discharge electrode 72 so as to be substantially equidistant from the discharge electrode distal end portion 72a. The discharge area is set large. Although the counter electrode 73 has a ring shape, a terminal connection portion or a support portion (not shown) may be provided on the outer peripheral side.
上記構成において、静電霧化を行うときの放電現象について説明する。放電電極72にはペルチェ素子36による冷却により空気中の水分が凝縮して結露する。このようにペルチェ素子36により放電電極72に水を供給された状態で、放電電極72と対向電極73との間に高圧トランス24によって数kVの高電圧を印加すると、放電電極72に付いた結露水が静電気力により放電電極先端部72aに引き寄せられるとともに、対向電極73の方向に向けて円錐形状の先端水74を形成する。つまり、対向電極73に近づくほど尖った円錐形状となり、この先鋭度合いは放電電流を一定にするように結露水量をペルチェ素子36の能力で制御するとするならば、対向電極73に開けられた円形の穴径R、放電距離、高圧印加電圧、及び結露水量がそれぞれ関連し合って決定される。ここでいう放電距離は、先端水74を含む放電電極72側と対向電極73との距離である。
In the above configuration, the discharge phenomenon when performing electrostatic atomization will be described. Due to cooling by the Peltier element 36, moisture in the air is condensed and condensed on the discharge electrode 72. When water is supplied to the discharge electrode 72 by the Peltier element 36 as described above, when a high voltage of several kV is applied between the discharge electrode 72 and the counter electrode 73 by the high-voltage transformer 24, dew condensation on the discharge electrode 72 is caused. Water is attracted to the discharge electrode tip 72 a by electrostatic force, and conical tip water 74 is formed in the direction of the counter electrode 73. That is, the closer to the counter electrode 73, the more the cone shape becomes sharper. If the amount of condensed water is controlled by the capability of the Peltier element 36 so that the discharge current is constant, the circular shape opened in the counter electrode 73 The hole diameter R, the discharge distance, the high voltage applied voltage, and the amount of condensed water are determined in association with each other. The discharge distance here is the distance between the discharge electrode 72 side including the tip water 74 and the counter electrode 73.
この時の放電は、先端水74とリング内周部73a、すなわち先端水74と対向電極73との最短距離となる箇所で大部分が行われ、静電ミストは基本的には先端水74の先端付近から水が分裂して発生する。しかしながら、対向電極73がリング形状となっていることもあり、放電自体は先端水74の放電電極72に近い裾部分74a(図14参照)を含めてある程度広い範囲で行われていると考えられる。
Most of the discharge at this time is performed at the point where the tip water 74 and the ring inner peripheral portion 73a, that is, the shortest distance between the tip water 74 and the counter electrode 73, and the electrostatic mist is basically generated by the tip water 74. Water splits from the vicinity of the tip. However, the counter electrode 73 may have a ring shape, and it is considered that the discharge itself is performed over a wide range including the skirt portion 74a (see FIG. 14) near the discharge electrode 72 of the tip water 74. .
ところが、実際には、先端水74の円錐形状は対向電極73方向に向けて安定しているのではなく、放電の衝撃や放電位置の移動、周囲の気流の影響、また、静電霧化による水分の減少に対して結露水を常時安定して供給できないことなどを理由として、特に上下方向に小刻みでかなり激しく伸縮するような挙動を示し、さらに前後左右のあらゆる方向に揺れ動く。そのような変形した先端水74の形状の一例を図14(a),(b),(c),(d)に示す。このように先端水74が動きながら霧化放電を行うために、前後左右に振れたときや上方に伸び上がったときに、先端水74の裾部分74aで一時的に水膜厚Wが小さい薄水部分Xが発生することがある。この薄水部分Xが発生するのは、放電電極先端部72aが先端水74を安定して保持するために、球体形状や先鋭形状として外側に傾斜していることも薄くなりやすい原因となっている。
However, in practice, the conical shape of the tip water 74 is not stable toward the counter electrode 73, but due to the impact of discharge, movement of the discharge position, the influence of the surrounding air current, and electrostatic atomization. Due to the fact that the dew condensation water cannot be supplied constantly and stably with respect to the decrease in moisture, it behaves in such a way that it expands and contracts quite violently in small increments in the vertical direction, and further swings in all directions. An example of the shape of the deformed tip water 74 is shown in FIGS. 14 (a), (b), (c), and (d). In order to perform the atomizing discharge while the tip water 74 is moving in this way, the water film thickness W is temporarily small at the hem portion 74a of the tip water 74 when the tip water 74 swings back and forth, or when it extends upward. Water portion X may be generated. The thin water portion X is generated because the discharge electrode tip 72a stably holds the tip water 74 and is inclined to the outside as a spherical shape or a sharp shape. Yes.
この薄水部分Xが発生する裾部分74aは放電電極先端部72aと対向電極73のリング内周部73aとが近接している付近である。この時の放電状態の詳細は不明であるが、本願発明者らはこの薄水部分Xが発生する状態が多く見られる時ほど放電音が増大する傾向があることを見出した。
The skirt portion 74a where the thin water portion X is generated is a vicinity where the discharge electrode tip portion 72a and the ring inner peripheral portion 73a of the counter electrode 73 are close to each other. Although the details of the discharge state at this time are unknown, the inventors of the present application have found that the discharge sound tends to increase as the state in which the thin water portion X is generated is observed.
したがって、放電音を抑制するためには、放電電極72の対向電極73に近い部分で薄水部分Xが発生することを防止すればよい。具体的には、先端水74の動きを抑制したり、先端水74の裾部分74aの水保持量を増加したりすることによって、放電音を抑制することができた。その方法の一例を以下に示す。
Therefore, in order to suppress the discharge noise, it is only necessary to prevent the thin water portion X from being generated near the counter electrode 73 of the discharge electrode 72. Specifically, the discharge noise could be suppressed by suppressing the movement of the tip water 74 or increasing the water retention amount of the skirt portion 74a of the tip water 74. An example of the method is shown below.
1.対向電極73の穴径Rを小さく(Ra)する(図15参照)。
対向電極73のリング内周部73aが放電電極72の中心軸側に移動することになり、先端水74の先端の動きが絞り込まれて全体の動きも抑制されて薄水部分Xが発生することを少なくすることができる。また、先端水74の裾部分74aとリング内周部73aとを結ぶ線の方向が放電電極72の中心軸と平行に近くなるので、見かけ上の水膜厚Wも大きくなる。 1. The hole diameter R of thecounter electrode 73 is reduced (Ra) (see FIG. 15).
The ring innerperipheral portion 73a of the counter electrode 73 moves to the center axis side of the discharge electrode 72, the movement of the tip of the tip water 74 is narrowed down, and the entire movement is also suppressed to generate the thin water portion X. Can be reduced. Further, since the direction of the line connecting the skirt portion 74a of the tip water 74 and the ring inner peripheral portion 73a is close to parallel to the central axis of the discharge electrode 72, the apparent water film thickness W is also increased.
対向電極73のリング内周部73aが放電電極72の中心軸側に移動することになり、先端水74の先端の動きが絞り込まれて全体の動きも抑制されて薄水部分Xが発生することを少なくすることができる。また、先端水74の裾部分74aとリング内周部73aとを結ぶ線の方向が放電電極72の中心軸と平行に近くなるので、見かけ上の水膜厚Wも大きくなる。 1. The hole diameter R of the
The ring inner
2.対向電極73を離す(図16参照)。
放電電流を一定にするようにペルチェ素子36の能力を制御して結露水を生成する場合には、放電距離自体が同等になるように対向電極73が離れた寸法dに相当する分だけ先端水74の高さが高くなるため、放電電極72の先端水74が大きくなり結露水量が増加する。この先端水74の円錐形状の裾部分74aは電界強度が小さいため、静電気力が弱まることで球状に近づいた形状で太くなる。以上のことから、放電の衝撃などによって前後左右方向及び上下方向に先端水74が動きながら霧化放電を繰り返しても、裾部分74aの水分量が確保できているため水膜厚Wが大きくなって薄水部分X自体の発生を防止することができ、放電音を抑制することができる。 2. Thecounter electrode 73 is released (see FIG. 16).
When the dew condensation water is generated by controlling the ability of thePeltier element 36 so as to make the discharge current constant, the tip water is equivalent to the dimension d where the counter electrode 73 is separated so that the discharge distance itself becomes equal. Since the height of 74 becomes higher, the tip water 74 of the discharge electrode 72 becomes larger and the amount of condensed water increases. Since the conical skirt portion 74a of the tip water 74 has a small electric field strength, it becomes thicker in a shape close to a sphere when the electrostatic force is weakened. From the above, even if the tip water 74 moves repeatedly in the front / rear / right / left and up / down directions due to the impact of the discharge, etc., the water film thickness W increases because the water content of the skirt portion 74a can be secured. Thus, the occurrence of the thin water portion X itself can be prevented, and the discharge noise can be suppressed.
放電電流を一定にするようにペルチェ素子36の能力を制御して結露水を生成する場合には、放電距離自体が同等になるように対向電極73が離れた寸法dに相当する分だけ先端水74の高さが高くなるため、放電電極72の先端水74が大きくなり結露水量が増加する。この先端水74の円錐形状の裾部分74aは電界強度が小さいため、静電気力が弱まることで球状に近づいた形状で太くなる。以上のことから、放電の衝撃などによって前後左右方向及び上下方向に先端水74が動きながら霧化放電を繰り返しても、裾部分74aの水分量が確保できているため水膜厚Wが大きくなって薄水部分X自体の発生を防止することができ、放電音を抑制することができる。 2. The
When the dew condensation water is generated by controlling the ability of the
3.放電電圧を低くする(図17参照)。
静電気力が小さくなるため、先端水74の円錐形状の先鋭度合いが減少して裾部分74aが太くなることで水膜厚Wを大きくすることができる。また、先端水74の動き自体も小さくなり薄水部分Xが発生することを少なくすることができる。ただし、この場合は静電ミストの発生も減少してしまう。 3. The discharge voltage is lowered (see FIG. 17).
Since the electrostatic force is reduced, the water film thickness W can be increased by reducing the sharpness of the conical shape of thetip water 74 and increasing the skirt portion 74a. Further, the movement of the tip water 74 itself is also reduced, and the occurrence of the thin water portion X can be reduced. However, in this case, the generation of electrostatic mist is also reduced.
静電気力が小さくなるため、先端水74の円錐形状の先鋭度合いが減少して裾部分74aが太くなることで水膜厚Wを大きくすることができる。また、先端水74の動き自体も小さくなり薄水部分Xが発生することを少なくすることができる。ただし、この場合は静電ミストの発生も減少してしまう。 3. The discharge voltage is lowered (see FIG. 17).
Since the electrostatic force is reduced, the water film thickness W can be increased by reducing the sharpness of the conical shape of the
以上の説明は、対向電極73が平板のリング形状として説明してきたが、図18に示すように、対向電極75が放電電極72側を内側面75bとするドーム状のリング形状としてもよい。図18では薄板をドーム形状に成形したものを示しているが、対向電極75を固まりをくり抜き加工により成形したようなものを考慮すると、要は、放電電極72側の内側面75bをドーム状のリング形状としたものであればよい。
In the above description, the counter electrode 73 has been described as a flat ring shape. However, as shown in FIG. 18, the counter electrode 75 may have a dome-shaped ring shape with the discharge electrode 72 side as an inner surface 75b. FIG. 18 shows a thin plate formed into a dome shape. However, in consideration of a shape in which the counter electrode 75 is formed by hollowing out a lump, the inner surface 75b on the discharge electrode 72 side is basically formed in a dome shape. Any ring shape may be used.
図18において、対向電極75のドーム形状は、放電電極先端部72aを中心とした球面の一部であり、放電電極先端部72aからは対向電極75のリング内周部75a及び内側面75bのどこにおいてもほぼ同じ距離である。なお、球面中心Oは、放電電極先端部72aが球体形状でその直径が小さい場合には、図18のように放電電極72の先端球面位置と合わせてもよいし、放電電極72が先鋭形状の場合はその先端を中心としてもよい。
In FIG. 18, the dome shape of the counter electrode 75 is a part of a spherical surface with the discharge electrode tip 72a as the center. From the discharge electrode tip 72a, the ring inner peripheral portion 75a and the inner side surface 75b of the counter electrode 75 Is almost the same distance. When the discharge electrode tip 72a is spherical and has a small diameter, the spherical center O may be aligned with the position of the tip spherical surface of the discharge electrode 72 as shown in FIG. 18, or the discharge electrode 72 is sharp. In some cases, the tip may be the center.
対向電極75のリング内周部75aとリング外周部75cとの幅Lは、長さ寸法で表すのではなく、球面中心Oを原点として放電電極の中心軸に対して垂直方向を0°とし、対向電極75のリング外周部75cまでをθ1、リング内周部75aまでをθ2として角度で表した場合、およそθ1=30°±10°からθ2=65°±10°の範囲で構成するのが望ましい。これは、静電ミストが発生して流出してゆくために、放電電極72側から対向電極75の穴を通過して流れる気流がスムーズに流れる流路を確保することを考慮したものである。したがって、気流がスムーズに流れるように構成できればθ1=0°からθ2=80°程度の範囲で任意に構成することも可能である。なお、θ2を小さくしてリング内周径を大きくするほど先端水74が振れ動く状態が大きくなるので、リング内周部75aは最小でもθ2=50°までにしておくことが望ましい。
The width L between the ring inner peripheral portion 75a and the ring outer peripheral portion 75c of the counter electrode 75 is not represented by the length dimension, but the vertical direction with respect to the central axis of the discharge electrode is 0 ° with the spherical center O as the origin, When the counter electrode 75 is expressed as an angle with θ1 up to the ring outer peripheral portion 75c and θ2 up to the ring inner peripheral portion 75a, it is configured in a range of approximately θ1 = 30 ° ± 10 ° to θ2 = 65 ° ± 10 °. desirable. This is because the electrostatic mist is generated and flows out, so that a flow path through which airflow flowing through the hole of the counter electrode 75 from the discharge electrode 72 side smoothly flows is secured. Accordingly, if the airflow can be configured to flow smoothly, it can be arbitrarily configured within the range of θ1 = 0 ° to θ2 = 80 °. Note that the smaller the θ2 is and the larger the inner diameter of the ring, the larger the state in which the tip water 74 swings. Therefore, it is desirable that the ring inner periphery 75a be at least θ2 = 50 °.
上記のように構成したドーム状の対向電極75を用いた空気調和機の静電霧化装置においては、放電電極先端部72aから対向電極75のリング内周部75a及び内側面75bのどこにおいてもほぼ同じ距離であることから、平板の対向電極73ではリング内周部73aが最短距離であったものに対して、リング内周部75a及び内側面75bのどこにおいても最短距離となる。したがって、放電方向が放射状になって広範囲になり、静電ミストの静電量を多くすることができる。
In the electrostatic atomizer of an air conditioner using the dome-shaped counter electrode 75 configured as described above, anywhere from the discharge electrode tip 72a to the ring inner periphery 75a and the inner surface 75b of the counter electrode 75. Since the distance between the ring inner peripheral portion 73a and the inner peripheral portion 75b of the flat counter electrode 73 is the shortest distance in the flat counter electrode 73, the shortest distance is obtained. Therefore, the discharge direction becomes radial and wide, and the electrostatic quantity of the electrostatic mist can be increased.
それとともに、先端水74の円錐形状も変化が見られる。すなわち、静電気力が放電電極先端部72aの広い範囲に及ぶことから、先端水74の円錐形状の裾部分74aが広がるとともに、動きは前後左右方向に激しくなる。そして、放電量も増加することから静電ミストの発生量も増加するが、その分、放電音も増大する。
Along with that, the conical shape of the tip water 74 also changes. That is, since the electrostatic force covers a wide range of the discharge electrode tip portion 72a, the conical skirt portion 74a of the tip water 74 spreads and the movement becomes intense in the front-rear and left-right directions. And since the amount of discharge also increases, the amount of electrostatic mist generated also increases, but the discharge sound also increases accordingly.
以上のことから、あらためてドーム状の対向電極75において放電音を抑制するために放電電極72における薄水部分Xが発生することを防止する方法の一例を以下に示す。
From the above, an example of a method for preventing the occurrence of the thin water portion X in the discharge electrode 72 in order to suppress the discharge noise in the dome-shaped counter electrode 75 will be described below.
1.対向電極75を離す(図19参照)。
対向電極75の内側面の曲率は同じままで放電電極72から寸法dだけ離すことにより、対向電極75のリング外周部75cがリング内周部75aと比較して相対的に放電電極72に近くなり、先端水74の裾部分74aの静電気力も相対的に大きくなる。これにより先端水74の裾部分74aの水膜厚Wも大きくなる。また、平板と同様に、放電電流を一定にするようにペルチェ素子36の能力を制御して結露水を生成する場合には、対向電極75が離れた寸法dに相当する分だけ先端水74が高くなるため、放電電極72の先端水74が大きくなり結露水量が増加する。この先端水74の円錐形状の裾部分74aは電界強度が小さいため、静電気力が弱まることで球状に近づいた形状で太くなる。以上のことから、放電の衝撃などによって前後左右方向及び上下方向に先端水74が揺れ動きながら霧化放電を繰り返しても、裾部分74aの水分量が確保できているため水膜厚Wが大きくなって薄水部分X自体の発生を防止することができ、放電音を抑制することができる。 1. Thecounter electrode 75 is released (see FIG. 19).
When the curvature of the inner surface of thecounter electrode 75 remains the same and is separated from the discharge electrode 72 by the dimension d, the ring outer peripheral portion 75c of the counter electrode 75 becomes relatively closer to the discharge electrode 72 than the ring inner peripheral portion 75a. The electrostatic force of the skirt portion 74a of the tip water 74 is also relatively increased. Thereby, the water film thickness W of the skirt portion 74a of the tip water 74 is also increased. Similarly to the flat plate, when the dew condensation water is generated by controlling the capability of the Peltier element 36 so as to make the discharge current constant, the tip water 74 is equivalent to the distance d away from the counter electrode 75. Therefore, the tip water 74 of the discharge electrode 72 becomes larger and the amount of condensed water increases. Since the conical skirt portion 74a of the tip water 74 has a small electric field strength, it becomes thicker in a shape close to a sphere when the electrostatic force is weakened. From the above, the water film thickness W increases because the water content of the skirt portion 74a can be secured even if the atomization discharge is repeated while the tip water 74 is swung in the front and rear, right and left directions and up and down directions due to the impact of the discharge. Thus, the occurrence of the thin water portion X itself can be prevented, and the discharge noise can be suppressed.
対向電極75の内側面の曲率は同じままで放電電極72から寸法dだけ離すことにより、対向電極75のリング外周部75cがリング内周部75aと比較して相対的に放電電極72に近くなり、先端水74の裾部分74aの静電気力も相対的に大きくなる。これにより先端水74の裾部分74aの水膜厚Wも大きくなる。また、平板と同様に、放電電流を一定にするようにペルチェ素子36の能力を制御して結露水を生成する場合には、対向電極75が離れた寸法dに相当する分だけ先端水74が高くなるため、放電電極72の先端水74が大きくなり結露水量が増加する。この先端水74の円錐形状の裾部分74aは電界強度が小さいため、静電気力が弱まることで球状に近づいた形状で太くなる。以上のことから、放電の衝撃などによって前後左右方向及び上下方向に先端水74が揺れ動きながら霧化放電を繰り返しても、裾部分74aの水分量が確保できているため水膜厚Wが大きくなって薄水部分X自体の発生を防止することができ、放電音を抑制することができる。 1. The
When the curvature of the inner surface of the
2.放電電圧を低くする(図20参照)。
静電気力が小さくなるため、先端水74の円錐形状の先鋭度合いが減少して裾部分74aが太くなることで水膜厚Wを大きくすることができる。また、先端水74の動き自体も小さくなり薄水部分Xが発生することを少なくすることができる。 2. The discharge voltage is lowered (see FIG. 20).
Since the electrostatic force is reduced, the water film thickness W can be increased by reducing the sharpness of the conical shape of thetip water 74 and increasing the skirt portion 74a. Further, the movement of the tip water 74 itself is also reduced, and the occurrence of the thin water portion X can be reduced.
静電気力が小さくなるため、先端水74の円錐形状の先鋭度合いが減少して裾部分74aが太くなることで水膜厚Wを大きくすることができる。また、先端水74の動き自体も小さくなり薄水部分Xが発生することを少なくすることができる。 2. The discharge voltage is lowered (see FIG. 20).
Since the electrostatic force is reduced, the water film thickness W can be increased by reducing the sharpness of the conical shape of the
3.放電電極先端部72aと対向電極75との距離をリング内周部75aを最短としてリング外周部75c側を大きくする(図21参照)。
例えば、対向電極75の球面中心Oを放電電極72の棒形状側に移動するようにして、放電電極72の先端より放電電極に沿って対向電極75から離れた位置を球面中心Oとした球面の一部として構成するものである。これにより、リング内周部75a側の静電気力がリング外周部75c側より相対的に大きくなって先端水74の先端の動きが絞り込まれて全体の動きも抑制されて薄水部分Xが発生することを抑制するとともに、もし薄水部分Xが発生したとしてもリング外周部75c側の放電が相対的に弱くなっているので放電音を抑制することができる。なお、リング形状の幅Lは、放電電極先端部72aから対向電極75までの距離が同じ場合と同様の角度範囲である。 3. The distance between thedischarge electrode tip 72a and the counter electrode 75 is set so that the ring inner periphery 75a is the shortest and the ring outer periphery 75c side is increased (see FIG. 21).
For example, the spherical center O of thecounter electrode 75 is moved to the rod-shaped side of the discharge electrode 72, and a spherical surface having a spherical center O at a position away from the counter electrode 75 along the discharge electrode from the tip of the discharge electrode 72. It is configured as a part. Thereby, the electrostatic force on the ring inner peripheral portion 75a side is relatively larger than that on the ring outer peripheral portion 75c side, the movement of the tip of the tip water 74 is narrowed down, and the entire movement is also suppressed, and the thin water portion X is generated. In addition to this, even if the thin water portion X occurs, the discharge on the ring outer peripheral portion 75c side is relatively weak, so that the discharge noise can be suppressed. The ring-shaped width L is in the same angular range as when the distance from the discharge electrode tip 72a to the counter electrode 75 is the same.
例えば、対向電極75の球面中心Oを放電電極72の棒形状側に移動するようにして、放電電極72の先端より放電電極に沿って対向電極75から離れた位置を球面中心Oとした球面の一部として構成するものである。これにより、リング内周部75a側の静電気力がリング外周部75c側より相対的に大きくなって先端水74の先端の動きが絞り込まれて全体の動きも抑制されて薄水部分Xが発生することを抑制するとともに、もし薄水部分Xが発生したとしてもリング外周部75c側の放電が相対的に弱くなっているので放電音を抑制することができる。なお、リング形状の幅Lは、放電電極先端部72aから対向電極75までの距離が同じ場合と同様の角度範囲である。 3. The distance between the
For example, the spherical center O of the
4.対向電極75の穴径Rについて
対向電極75に開けられた円形の穴径Rについては、平板と違って条件により異なる。すなわち、元々放電範囲が広いので穴径Rが大きくなっても先端水74の動きが大きくなる割合が少なく、むしろ先端水74の先鋭度合いが低くなって裾部分74aが太くなって水膜厚Wが大きくなる傾向があり、穴径Rが大きくなっても放電音を抑制できることもある。 4). About the hole diameter R of thecounter electrode 75 About the circular hole diameter R opened in the counter electrode 75, it differs with conditions unlike a flat plate. That is, since the discharge range is originally wide, even when the hole diameter R is increased, the rate of movement of the tip water 74 is small. Rather, the sharpness of the tip water 74 is lowered, the skirt portion 74a is thickened, and the water film thickness W is increased. There is a tendency that the discharge noise can be suppressed even when the hole diameter R is increased.
対向電極75に開けられた円形の穴径Rについては、平板と違って条件により異なる。すなわち、元々放電範囲が広いので穴径Rが大きくなっても先端水74の動きが大きくなる割合が少なく、むしろ先端水74の先鋭度合いが低くなって裾部分74aが太くなって水膜厚Wが大きくなる傾向があり、穴径Rが大きくなっても放電音を抑制できることもある。 4). About the hole diameter R of the
以上説明したように、対向電極が平板又はドーム状のいずれであっても、上記のように構成して放電電極先端部72aで薄水部分Xの発生を抑制することができ、さらに、薄水部分Xでの放電を抑制することで放電音を大きく抑制することができる。
なお、対向電極の形状は上記の平板又はドーム状だけに限定するものではなく、ドーム状に近いもので、多角錐台形の側面部の形状としたものでも上記説明の考え方に沿って適用することができる。特に、対向電極75の幅Lがθ2-θ1=40°程度までで、長さ寸法としても数mm程度の小さな構成であれば、ドーム状でない直線状であっても放電の状態は大きくは変わらない。 As described above, regardless of whether the counter electrode has a flat plate shape or a dome shape, it can be configured as described above, and the generation of the thin water portion X can be suppressed at the dischargeelectrode tip portion 72a. By suppressing the discharge at the portion X, the discharge noise can be greatly suppressed.
The shape of the counter electrode is not limited to the above flat plate or dome shape, but it is close to the dome shape, and the shape of the side portion of the polygonal frustum shape should be applied in accordance with the concept described above. Can do. In particular, if the width L of thecounter electrode 75 is up to about θ2−θ1 = 40 ° and the length is small, such as a few millimeters, the discharge state changes greatly even if it is a straight line that is not dome-shaped. Absent.
なお、対向電極の形状は上記の平板又はドーム状だけに限定するものではなく、ドーム状に近いもので、多角錐台形の側面部の形状としたものでも上記説明の考え方に沿って適用することができる。特に、対向電極75の幅Lがθ2-θ1=40°程度までで、長さ寸法としても数mm程度の小さな構成であれば、ドーム状でない直線状であっても放電の状態は大きくは変わらない。 As described above, regardless of whether the counter electrode has a flat plate shape or a dome shape, it can be configured as described above, and the generation of the thin water portion X can be suppressed at the discharge
The shape of the counter electrode is not limited to the above flat plate or dome shape, but it is close to the dome shape, and the shape of the side portion of the polygonal frustum shape should be applied in accordance with the concept described above. Can do. In particular, if the width L of the
<静電霧化装置の電極汚れに起因する静電ミスト発生量低下を防止するための構成>
空気調和機においては室内環境によって、例えば居住者の喫煙量が多かったり、空気中に多くの埃が舞っていたり、調理器具が近くにあって油煙が舞っていたりすることがあり、静電霧化ユニットの電極にこれらの汚れが付着することによって静電ミストの発生量が大きく低下する。特に、静電ミストを発生させるために高電圧を印加していることが、ヤニや油分や埃等の汚れ粒子にも帯電させることになり、帯電した汚れ粒子は対向電極に付着しやすくなる。 <Configuration for preventing reduction in electrostatic mist generation due to electrode contamination of electrostatic atomizer>
In an air conditioner, depending on the indoor environment, for example, there may be a large amount of smoking by residents, a lot of dust in the air, or cooking utensils nearby and oil smoke. The amount of generated electrostatic mist is greatly reduced due to the adhesion of these contaminants to the electrodes of the conversion unit. In particular, application of a high voltage to generate electrostatic mist also charges dirt particles such as dust, oil and dust, and the charged dirt particles tend to adhere to the counter electrode.
空気調和機においては室内環境によって、例えば居住者の喫煙量が多かったり、空気中に多くの埃が舞っていたり、調理器具が近くにあって油煙が舞っていたりすることがあり、静電霧化ユニットの電極にこれらの汚れが付着することによって静電ミストの発生量が大きく低下する。特に、静電ミストを発生させるために高電圧を印加していることが、ヤニや油分や埃等の汚れ粒子にも帯電させることになり、帯電した汚れ粒子は対向電極に付着しやすくなる。 <Configuration for preventing reduction in electrostatic mist generation due to electrode contamination of electrostatic atomizer>
In an air conditioner, depending on the indoor environment, for example, there may be a large amount of smoking by residents, a lot of dust in the air, or cooking utensils nearby and oil smoke. The amount of generated electrostatic mist is greatly reduced due to the adhesion of these contaminants to the electrodes of the conversion unit. In particular, application of a high voltage to generate electrostatic mist also charges dirt particles such as dust, oil and dust, and the charged dirt particles tend to adhere to the counter electrode.
中でも、静電ミストや汚れ粒子が気流に乗って通過する流路となる対向電極のリング内周部の端面に集中的に付着する傾向がある。これは、端面が切断などによる凹凸やバリがある上に、端面の向きが気流の向きに対して直角方向に近いために気流が大きく乱れて巻き込むような流れが発生したりしていることが原因と考えられる。
Among them, there is a tendency that electrostatic mist and dirt particles are intensively attached to the end surface of the inner peripheral portion of the ring of the counter electrode that becomes a flow path through which the air mist rides. This is because the end surface has irregularities and burrs due to cutting etc., and the direction of the end surface is close to the direction perpendicular to the direction of the air flow, so that the air flow is greatly disturbed and the flow is generated. Possible cause.
このようにして対向電極の一部に集中的に汚れ粒子が堆積すると、放電電極72とリング内周部との放電距離が変わるのはもちろんのこと、前述したドーム状の対向電極では汚れ粒子が堆積したリング内周部が放電電極ともっとも近接した部分となってしまい、そこで放電が行われることになる。このようにして、当初設計した放電電極と対向電極との放電距離が小さくなることで、放電音が増大したり、静電ミストの発生量が低下したり、放電電流が過大となることで運転率が低下したりすることとなる。特に、たばこのヤニや調理油等の堆積物は垂れ下がったりすることもあり、放電距離を大きく変化させてしまうものである。
When the dirt particles are concentrated on a part of the counter electrode in this way, the discharge distance between the discharge electrode 72 and the inner periphery of the ring is changed. The deposited ring inner periphery becomes the portion closest to the discharge electrode, and discharge is performed there. In this way, the discharge distance between the initially designed discharge electrode and the counter electrode is reduced, so that the discharge noise increases, the amount of electrostatic mist generated decreases, and the discharge current becomes excessive. The rate will decrease. In particular, deposits such as cigarette crabs and cooking oil may hang down, greatly changing the discharge distance.
このような課題に対して、本発明の空気調和機における静電霧化ユニットの放電距離の変化を防止し、静電ミストの発生量が低下することを抑制する構成について説明する。
For such a problem, a configuration for preventing a change in the discharge distance of the electrostatic atomization unit in the air conditioner of the present invention and suppressing a decrease in the amount of generated electrostatic mist will be described.
図22は、本実施の形態の空気調和機の静電霧化ユニットの要部断面図である。図18に示す構成に対して、放電電極72と対向電極76との位置関係は変わらないが、対向電極76のリング内周部76aに円筒形の立設部77が放電電極72の反対方向に向けて設けてある。この構成により、対向電極76の端面がリング内周部76aから立設部先端77aに移動する。
FIG. 22 is a cross-sectional view of a main part of the electrostatic atomization unit of the air conditioner according to the present embodiment. Although the positional relationship between the discharge electrode 72 and the counter electrode 76 does not change with respect to the configuration shown in FIG. 18, a cylindrical standing portion 77 is provided in the opposite direction of the discharge electrode 72 on the ring inner periphery 76 a of the counter electrode 76. It is provided for. With this configuration, the end face of the counter electrode 76 moves from the ring inner peripheral portion 76a to the standing portion distal end 77a.
すなわち、立設部先端77aに汚れ粒子が堆積したとしても、放電距離が変わることがない。さらに、端面である立設部先端77aの向きが気流と同じ方向となるため気流の乱れも少なくなり、堆積すること自体も少なく、時間がかかるようになる。
That is, even if dirt particles accumulate on the standing portion tip 77a, the discharge distance does not change. Further, since the direction of the standing portion distal end 77a which is the end face is the same direction as the air flow, the turbulence of the air flow is reduced, the accumulation itself is less, and it takes time.
立設部77の高さHは、対向電極76の形状や板厚にもよるが、平板の場合で板厚の少なくとも2倍程度あればよく、薄板をドーム形状に成型した場合で気流方向の直線部が少なくとも板厚と同程度あればよい。この程度でも少しくらい汚れ粒子が堆積しても放電距離が短くならないという効果が確認できる。したがって、立設部77の高さHは少しでもあればよい。逆に、立設部77の高さHを大きくするほど汚れ粒子の堆積が放電距離を短くして悪影響を来すまでの期間が長くなるが、かえって気流の流路が長くなって抵抗が増えたり、堆積物が多くなって垂れ下がったり、流路を塞ぐほどまでになったりする可能性を考えると、立設部77の高さHは立設部77の円筒状の穴径r、すなわち対向電極76の穴径Rと同等程度までが望ましい。
The height H of the standing portion 77 depends on the shape and the plate thickness of the counter electrode 76, but may be at least about twice the plate thickness in the case of a flat plate, and in the airflow direction when a thin plate is molded into a dome shape. It suffices if the straight line portion is at least equal to the plate thickness. Even at this level, it can be confirmed that the discharge distance is not shortened even if a little dirt particles are deposited. Therefore, the height H of the standing portion 77 may be a little. Conversely, as the height H of the standing portion 77 is increased, the period until the accumulation of dirt particles shortens the discharge distance and has an adverse effect increases, but on the contrary, the air flow path becomes longer and the resistance increases. The height H of the standing portion 77 is equal to the cylindrical hole diameter r of the standing portion 77, that is, the opposite direction. It is desirable that the diameter is equal to the hole diameter R of the electrode 76.
以上説明した構成によれば、静電霧化ユニットの対向電極に汚れが付着しても放電距離が短くなることを防止することができ、静電ミストの発生量が大きく低下したり、放電音が増大したり、放電電流が過大となることで運転率が低下したりすることを抑制することができる。
According to the configuration described above, it is possible to prevent the discharge distance from being shortened even if dirt is attached to the counter electrode of the electrostatic atomization unit, and the generation amount of electrostatic mist is greatly reduced or the discharge sound is reduced. It is possible to suppress a decrease in operating rate due to an increase in discharge current or an excessive discharge current.
なお、図23に示すように、立設部77の根元の内側、すなわちリング内周部76aをラウンド形状として対向電極76の内側面76bから立設部77にかけてなめらかに形成することで、気流の乱れを抑制して静電ミストの消滅を防止することができる。
As shown in FIG. 23, the inner side of the root of the standing portion 77, that is, the ring inner peripheral portion 76a has a round shape and is smoothly formed from the inner side surface 76b of the counter electrode 76 to the standing portion 77, so that Disturbance can be suppressed and the disappearance of electrostatic mist can be prevented.
また、立設部先端77aをさらに外側に曲げれば、端面を静電ミストと汚れ粒子の気流から完全に遠ざけることとなり、汚れ粒子の堆積をほとんど防止することができる。
Further, if the standing portion tip 77a is further bent outward, the end face is completely moved away from the electrostatic mist and the air flow of the dirt particles, and the accumulation of the dirt particles can be almost prevented.
さらに、この立設部77による静電霧化装置の電極汚れに起因する静電ミスト発生量の低下を防止するための構成は、前述した静電霧化装置に起因する騒音を低減するための構成と合わせて構成することができるのはもちろんのことで、これらの構成を有する静電霧化装置を空気調和機に搭載することにより、より多くの静電ミストを長期間にわたって確実に発生させることができるとともに、それに伴う放電音の増大を抑制して静音性を向上した空気調和機を提供することができる。
Furthermore, the configuration for preventing the decrease in the amount of electrostatic mist generated due to the electrode contamination of the electrostatic atomizer by the standing portion 77 is to reduce the noise caused by the electrostatic atomizer described above. Of course, it can be configured together with the configuration, and by installing the electrostatic atomizer having these configurations in the air conditioner, more electrostatic mist can be reliably generated over a long period of time. In addition, it is possible to provide an air conditioner that can suppress an increase in discharge sound and improve quietness.
本発明に係る空気調和機は、より多くの静電ミストを長期間にわたって確実に発生させることができるとともに安全性あるいは騒音についても十分考慮しているので、一般家庭用の空気調和機を含む様々な空気調和機として極めて有用である。
The air conditioner according to the present invention can reliably generate more electrostatic mist over a long period of time and sufficiently considers safety or noise. Therefore, various air conditioners including general home air conditioners can be used. It is extremely useful as a simple air conditioner.
Claims (14)
- 室内空気を浄化する空気清浄機能を有する室内機を備えた空気調和機であって、
前記室内機が、室内空気を吸い込む吸込口と、吸い込んだ空気と熱交換する熱交換器と、該熱交換器で熱交換された空気を搬送する室内ファンと、該室内ファンから送風された空気を吹き出す吹出口とを備え、
放電電極と、前記放電電極に対向して配設された対向電極と、高電圧電源と、空気中の水分を凝縮するペルチェ素子とを有し、前記放電電極に前記ペルチェ素子により水を供給して前記放電電極と前記対向電極との間に前記高電圧電源により高電圧を印加することによって静電ミストを発生させる静電霧化装置をさらに備え、
前記対向電極の形状を、放電電極側の内側面をドーム状のリング形状として構成したことを特徴とする空気調和機。 An air conditioner including an indoor unit having an air cleaning function to purify indoor air,
The indoor unit sucks indoor air, a heat exchanger that exchanges heat with the sucked air, an indoor fan that conveys air heat-exchanged by the heat exchanger, and air blown from the indoor fan And a blowout port for blowing out
A discharge electrode; a counter electrode disposed opposite to the discharge electrode; a high-voltage power supply; and a Peltier element that condenses moisture in the air, and supplies water to the discharge electrode by the Peltier element. An electrostatic atomizer that generates electrostatic mist by applying a high voltage from the high-voltage power source between the discharge electrode and the counter electrode;
An air conditioner characterized in that the shape of the counter electrode is configured such that the inner surface on the discharge electrode side is a dome-shaped ring shape. - 放電電極は、先端部を球体形状又は先鋭形状として構成したことを特徴とする請求項1記載の空気調和機。 The air conditioner according to claim 1, wherein the discharge electrode has a tip portion formed in a spherical shape or a sharp shape.
- 対向電極の放電電極側の内側面は、放電電極の先端を球面中心とした球面の一部として構成したことを特徴とする請求項1又は2記載の空気調和機。 The air conditioner according to claim 1 or 2, wherein the inner surface of the counter electrode on the discharge electrode side is configured as a part of a spherical surface with the tip of the discharge electrode as a spherical center.
- 対向電極の放電電極側の内側面は、放電電極の先端より放電電極に沿って対向電極から離れた位置を球面中心とした球面の一部として構成したことを特徴とする請求項1又は2記載の空気調和機。 3. The inner surface of the counter electrode on the discharge electrode side is configured as a part of a spherical surface having a spherical center at a position away from the counter electrode along the discharge electrode from the tip of the discharge electrode. Air conditioner.
- 対向電極のリング内周部とリング外周部との幅は、球面中心を原点として放電電極の中心軸に対して垂直方向を0°とし、対向電極のリング外周部までをθ1、リング内周部までをθ2として角度で表した場合、θ1=0°からθ2=80°の範囲で構成したことを特徴とする請求項1~4のいずれか1項記載の空気調和機。 The width between the ring inner periphery of the counter electrode and the ring outer periphery is 0 ° in the direction perpendicular to the center axis of the discharge electrode with the spherical center as the origin, θ1 up to the ring outer periphery of the counter electrode, and the ring inner periphery The air conditioner according to any one of claims 1 to 4, wherein the air conditioner is configured in a range of θ1 = 0 ° to θ2 = 80 ° when θ is expressed as an angle.
- θ2を50°以上に構成したことを特徴とする請求項5記載の空気調和機。 The air conditioner according to claim 5, wherein θ2 is set to 50 ° or more.
- 対向電極のリング内周部に立設部を放電電極と反対方向に向けて形成したことを特徴とする請求項1~6のいずれか1項記載の空気調和機。 The air conditioner according to any one of claims 1 to 6, wherein an upright portion is formed on the inner peripheral portion of the ring of the counter electrode in a direction opposite to the discharge electrode.
- 立設部の高さは、対向電極の穴径と同等以下に形成したことを特徴とする請求項7記載の空気調和機。 8. The air conditioner according to claim 7, wherein the height of the standing portion is equal to or less than a hole diameter of the counter electrode.
- 立設部の根元の内側をラウンド形状に形成したことを特徴とする請求項7又は8記載の空気調和機。 The air conditioner according to claim 7 or 8, wherein the inside of the base of the standing portion is formed in a round shape.
- 立設部先端を外側に曲げて形成したことを特徴とする請求項7~9のいずれか1項記載の空気調和機。 The air conditioner according to any one of claims 7 to 9, characterized in that it is formed by bending the front end of the standing part outward.
- 室内空気を浄化する空気清浄機能を有する室内機を備えた空気調和機であって、
前記室内機が、室内空気を吸い込む吸込口と、吸い込んだ空気と熱交換する熱交換器と、該熱交換器で熱交換された空気を搬送する室内ファンと、該室内ファンから送風された空気を吹き出す吹出口とを備え、
放電電極と、前記放電電極に対向して配設された対向電極と、高電圧電源と、空気中の水分を凝縮するペルチェ素子とを有し、前記放電電極に前記ペルチェ素子により水を供給して前記放電電極と前記対向電極との間に前記高電圧電源により高電圧を印加することによって静電ミストを発生させる静電霧化装置をさらに備え、
前記対向電極の形状を中央に穴を有するリング形状とし、リング内周部に立設部を放電電極の反対方向に向けて形成したことを特徴とする空気調和機。 An air conditioner including an indoor unit having an air cleaning function to purify indoor air,
The indoor unit sucks indoor air, a heat exchanger that exchanges heat with the sucked air, an indoor fan that conveys air heat-exchanged by the heat exchanger, and air blown from the indoor fan And a blowout port for blowing out
A discharge electrode; a counter electrode disposed opposite to the discharge electrode; a high-voltage power supply; and a Peltier element that condenses moisture in the air, and supplies water to the discharge electrode by the Peltier element. An electrostatic atomizer that generates electrostatic mist by applying a high voltage from the high-voltage power source between the discharge electrode and the counter electrode;
An air conditioner characterized in that the shape of the counter electrode is a ring shape having a hole in the center, and an upright portion is formed on the inner periphery of the ring in a direction opposite to the discharge electrode. - 立設部の高さは、対向電極の穴径と同等以下に形成したことを特徴とする請求項11記載の空気調和機。 The air conditioner according to claim 11, wherein the height of the standing portion is equal to or less than a hole diameter of the counter electrode.
- 立設部の根元の内側をラウンド形状に形成したことを特徴とする請求項11又は12記載の空気調和機。 The air conditioner according to claim 11 or 12, wherein the inside of the base of the standing portion is formed in a round shape.
- 立設部先端を外側に曲げて形成したことを特徴とする請求項11~13のいずれか1項記載の空気調和機。 The air conditioner according to any one of claims 11 to 13, characterized in that it is formed by bending the front end of the standing portion outward.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801086219A CN101970942B (en) | 2008-03-10 | 2009-02-18 | Air conditioner |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008059394A JP2009216286A (en) | 2008-03-10 | 2008-03-10 | Air conditioner |
JP2008-059394 | 2008-03-10 | ||
JP2008059391A JP5060349B2 (en) | 2008-03-10 | 2008-03-10 | Air conditioner |
JP2008-059391 | 2008-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009113244A1 true WO2009113244A1 (en) | 2009-09-17 |
Family
ID=41064917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/000660 WO2009113244A1 (en) | 2008-03-10 | 2009-02-18 | Air conditioner |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN101970942B (en) |
TW (1) | TWI443292B (en) |
WO (1) | WO2009113244A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012019252A1 (en) * | 2010-08-11 | 2012-02-16 | William Luca Cabariti | Electric environmental climate control system with heat exchange by natural convection |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3093564B1 (en) * | 2015-05-12 | 2018-09-19 | Blueair AB | Air cleaning device |
JP5819560B1 (en) * | 2015-05-25 | 2015-11-24 | 株式会社 徳武製作所 | A device that discharges atomized liquid with a negative charge. |
MY173725A (en) * | 2017-12-13 | 2020-02-18 | Hitachi Johnson Controls Air Conditioning Inc | Air conditioner |
CN110190520B (en) * | 2019-05-06 | 2024-02-23 | 平流层复合水离子(深圳)有限公司 | Nanometer water ion generating device |
JP7228764B2 (en) | 2019-09-24 | 2023-02-27 | パナソニックIpマネジメント株式会社 | Discharge device and electrode device |
CN113531701A (en) * | 2021-06-09 | 2021-10-22 | 青岛海信日立空调系统有限公司 | Air purification device and air conditioner |
CN113531699A (en) * | 2021-06-09 | 2021-10-22 | 青岛海信日立空调系统有限公司 | Air purification method and device and air conditioner |
CN113719906A (en) * | 2021-09-26 | 2021-11-30 | 青岛海信日立空调系统有限公司 | Air conditioner |
CN114893828B (en) * | 2022-03-30 | 2023-08-18 | 青岛海信日立空调系统有限公司 | Air conditioner |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006234245A (en) * | 2005-02-23 | 2006-09-07 | Matsushita Electric Works Ltd | Air-conditioner with air cleaning function |
JP2007137282A (en) * | 2005-11-18 | 2007-06-07 | Japan Climate Systems Corp | Air conditioner |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003178854A (en) * | 2002-09-20 | 2003-06-27 | Toyota Central Res & Dev Lab Inc | Minus ion generator |
JP4096905B2 (en) * | 2004-03-26 | 2008-06-04 | 松下電工株式会社 | Air conditioner |
DE102004036884A1 (en) * | 2004-07-22 | 2006-02-16 | Ltg Aktiengesellschaft | Room ventilation or room air conditioner |
JP4301107B2 (en) * | 2004-08-12 | 2009-07-22 | セイコーエプソン株式会社 | Pharmaceutical diffusion device |
JP4600247B2 (en) * | 2005-10-31 | 2010-12-15 | パナソニック電工株式会社 | Electrostatic atomizer |
-
2009
- 2009-02-18 CN CN2009801086219A patent/CN101970942B/en not_active Expired - Fee Related
- 2009-02-18 WO PCT/JP2009/000660 patent/WO2009113244A1/en active Application Filing
- 2009-02-25 TW TW098105972A patent/TWI443292B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006234245A (en) * | 2005-02-23 | 2006-09-07 | Matsushita Electric Works Ltd | Air-conditioner with air cleaning function |
JP2007137282A (en) * | 2005-11-18 | 2007-06-07 | Japan Climate Systems Corp | Air conditioner |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012019252A1 (en) * | 2010-08-11 | 2012-02-16 | William Luca Cabariti | Electric environmental climate control system with heat exchange by natural convection |
Also Published As
Publication number | Publication date |
---|---|
CN101970942B (en) | 2013-11-13 |
TW200946842A (en) | 2009-11-16 |
TWI443292B (en) | 2014-07-01 |
CN101970942A (en) | 2011-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009113244A1 (en) | Air conditioner | |
JP5405943B2 (en) | Air conditioner | |
JP4168085B1 (en) | Air conditioner | |
JP2009216286A (en) | Air conditioner | |
JP5060349B2 (en) | Air conditioner | |
JP5189381B2 (en) | Air conditioner | |
WO2010029713A1 (en) | Air conditioner | |
JP2009216312A (en) | Air conditioner | |
WO2010029755A1 (en) | Air conditioner | |
JP5109889B2 (en) | Air conditioner | |
JP2010164251A (en) | Air conditioner | |
JP5120168B2 (en) | Air conditioner | |
JP2014020578A (en) | Air conditioner | |
JP2009204230A (en) | Air conditioner | |
JP2009216313A (en) | Air conditioner | |
JP4985567B2 (en) | Air conditioner | |
JP5526508B2 (en) | Air conditioner | |
JP4867953B2 (en) | Air conditioner | |
JP2009210227A (en) | Air conditioner | |
JP2019010627A (en) | Air purifying facility | |
JP2014020577A (en) | Air conditioner | |
WO2011037016A1 (en) | Panel device | |
JP2012042072A (en) | Indoor unit for air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980108621.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09720257 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09720257 Country of ref document: EP Kind code of ref document: A1 |