[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009107596A1 - Organic luminescent medium and organic el element - Google Patents

Organic luminescent medium and organic el element Download PDF

Info

Publication number
WO2009107596A1
WO2009107596A1 PCT/JP2009/053247 JP2009053247W WO2009107596A1 WO 2009107596 A1 WO2009107596 A1 WO 2009107596A1 JP 2009053247 W JP2009053247 W JP 2009053247W WO 2009107596 A1 WO2009107596 A1 WO 2009107596A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
formula
Prior art date
Application number
PCT/JP2009/053247
Other languages
French (fr)
Japanese (ja)
Inventor
正和 舟橋
昌宏 河村
光則 伊藤
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2009107596A1 publication Critical patent/WO2009107596A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene

Definitions

  • the present invention relates to an organic light emitting medium and an organic EL element using the same.
  • an organic EL element (organic electroluminescence element) using light emission of an organic compound.
  • the organic EL element has a plurality of organic thin films stacked between an anode and a cathode.
  • a voltage is applied between the anode and the cathode, holes and electrons are injected into the organic thin film from the anode and the cathode, respectively.
  • Excited molecules are generated in the light emitting layer in the organic thin film by the injected holes and electrons. Then, energy when returning from the excited state to the ground state is emitted as light.
  • Patent Document 1 discloses a combination of an anthracene host and an arylamine.
  • Patent Documents 2 to 4 disclose a combination of an anthracene host having a specific structure and a diaminopyrene dopant.
  • Patent Documents 5 and 6 disclose anthracene-based host materials.
  • WO 2004/018588 WO2004 / 018587 JP 2004-204238 A WO2005 / 108348 publication WO2005 / 054162 publication WO2005 / 061656
  • An object of the present invention is to provide an organic EL element including a combination of a specific host material and a dopant material capable of realizing short-wavelength light emission and long-lifetime blue light emission and high-efficiency and long-lifetime green light emission.
  • An organic light-emitting medium that can be used for an organic thin film layer of an EL element is provided.
  • Another object of the present invention is to use an organic EL element including a combination of a specific host material and a dopant material, which can obtain high luminous efficiency and has a long lifetime, and an organic thin film layer of the organic EL element. It is to provide an organic light-emitting medium that can be used.
  • the present inventors have found that the following problems can be solved by the present invention. According to the present invention, the following organic light emitting media and the like are provided.
  • R 21 to R 24 each independently represents a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted
  • R 21 to R 24 each independently represents a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted
  • a substituted cycloalkyl group having 3 to 50 carbon atoms or a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms and one or two pairs of adjacent alkyl groups on the same benzene ring The adjacent alkyl groups may be bonded to each other to form a substituted or unsubstituted divalent linking group, provided that the adjacent alkyl group forms a 1-naphthyl group together
  • n1 to n4 are each independently an integer of 0 to 5.
  • R a and R b are each independently a hydrogen atom, a substituted or unsubstituted heterocyclic group having 5 to 50 nucleus atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted nucleus, A cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted nucleus having 6 to 50 carbon atoms An aryloxy group, a substituted or unsubstituted silyl group, a halogen atom, or a cyano group.
  • R a and R b are hydrogen atoms at the same time.
  • Ar 11 and Ar 12 are each independently a substituted or unsubstituted aryl group having 6 to 20 nuclear carbon atoms
  • R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted group
  • Ar 11 and Ar 12 when one of Ar 11 and Ar 12 is an unsubstituted 2-naphthyl group, the other is not a 4- (1-naphthyl) phenyl-1-yl group. Further, at least one of Ar 11 and Ar 12 is not a substituted or unsubstituted anthryl group.
  • An organic light-emitting medium comprising a diaminopyrene derivative represented by the following formula (1) ′ and an anthracene derivative represented by the following formula (2) ′.
  • R 21 ′ to R 24 ′ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted 1 to 50 carbon atoms, An alkyl group, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, or a substituted or unsubstituted silyl group having 3 to 20 carbon atoms, When there are one or two sets of adjacent alkyl groups on the same benzene ring, the adjacent alkyl groups may be bonded to each other to form a substituted or unsubstituted divalent linking group.
  • n1 ′ to n4 ′ are each independently an integer of 1 to 5.
  • R a ′ and R b ′ are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms.
  • Ar 11 ′ and Ar 12 ′ are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms or a heterocyclic group having 5 to 50 nuclear atoms
  • R 1 ′ to R 8 ′ each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, substituted or unsubstituted An alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted aryloxy
  • R 1 ′ to R 8 ′ are hydrogen atoms and one of Ar 11 ′ and Ar 12 ′ is an unsubstituted 2-naphthyl group, the other is 4- (1-naphthyl) phenyl-1- It is not an ill group. )
  • An organic electroluminescence device comprising an anode, a cathode, and one or more organic thin film layers between the anode and the cathode, wherein at least one of the organic thin film layers contains the organic light emitting medium.
  • an organic EL element including a combination of a specific host material and a dopant material capable of realizing short-wavelength light emission and long-lifetime blue light emission, and high-efficiency and long-lifetime green light emission, and the organic An organic light-emitting medium that can be used for an organic thin film layer of an EL element can be provided. According to the present invention, it is possible to provide an organic EL element that can obtain high luminous efficiency and has a long lifetime, and an organic light emitting medium that can be used for an organic thin film layer of the organic EL element.
  • the organic light-emitting medium of the present invention includes the organic light-emitting medium I and the organic light-emitting medium II, each including a specific diaminopyrene derivative and a specific anthracene derivative.
  • the organic light-emitting medium contributes to light emission as a constituent component of the organic thin film layer of the organic EL element, and is present in the layer as, for example, a deposit.
  • the organic light emitting medium I can emit light of a short wavelength including blue light emission with high color purity, contributes to a long life, or obtains high light emission efficiency. it can.
  • the organic light emitting medium II can realize a green organic EL element having a high light emission rate and a long lifetime.
  • the organic light emitting media I and II will be described.
  • nuclear carbon means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring.
  • nuclear atom means a carbon atom and a hetero atom constituting a hetero ring (including a saturated ring, an unsaturated ring, and an aromatic ring).
  • the substituent in “substituted or unsubstituted...” Is an alkyl group, aryl group, cycloalkyl group, alkoxy group, heterocyclic group, aralkyl group as described later.
  • Organic luminescent medium I includes a diaminopyrene derivative according to the present invention represented by the following formula (1) and an anthracene derivative represented by the following formula (2).
  • the diaminopyrene derivative according to the organic light-emitting medium I is represented by the following formula (1).
  • R 21 to R 24 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted group.
  • cycloalkyl group is a cycloalkyl group having 3 to 50 nuclear carbon atoms, or a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, and one or two adjacent alkyl groups are present on the same benzene ring
  • Adjacent alkyl groups may be bonded to each other to form a substituted or unsubstituted divalent linking group, provided that the adjacent alkyl group forms a 1-naphthyl group together with the benzene ring to which they are bonded.
  • n1 to n4 are each independently an integer of 0 to 5.
  • R a and R b are each independently a hydrogen atom, a substituted or unsubstituted heterocyclic group having 5 to 50 nucleus atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted nucleus, A cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted nucleus having 6 to 50 carbon atoms An aryloxy group, a substituted or unsubstituted silyl group, a halogen atom, or a cyano group. However, it excludes when R a and R b are hydrogen atoms at the same time.
  • R a and R b are preferably an alkyl group or a cycloalkyl group.
  • the alkyl group is more preferably an alkyl group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, or a t-butyl group.
  • the cycloalkyl group is more preferably a cycloalkyl group having 3 to 6 carbon atoms, such as a cyclopropanyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • Examples of the substituted or unsubstituted aryl group represented by R 21 to R 24 include a phenyl group, a methylphenyl group, an ethylphenyl group, a biphenyl group, a cyclopentylphenyl group, a cyclohexylphenyl group, a methylbiphenyl group, an ethylbiphenyl group, and a cyclopentylphenyl.
  • Examples of the substituted or unsubstituted alkyl group of R 21 to R 24 include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl Group, octyl group, stearyl group, 2-phenylisopropyl group, trichloromethyl group, trifluoromethyl group, and the like.
  • Preferred are methyl group, ethyl group, propyl group, and tert-butyl group.
  • the adjacent alkyl groups are bonded to each other to form a substituted or unsubstituted divalent saturated or unsubstituted group.
  • a saturated linking group may be formed.
  • A, D, E, G and J are —CH 2 —, —CR 50 R 51 — (R 50 and R 51 each represent a substituent), —O—, —S—, — N- or -CO- a to h each represents an integer of 1 to 10;
  • R 50 and R 51 each represent a substituent
  • —O—, —S—, — N- or -CO- a to h each represents an integer of 1 to 10;
  • a, b, c, g, and h are 2 or more, a plurality of A, D, E, G, and J may be the same or different.
  • a to c are each preferably 5 or 6
  • d to f are each preferably 2
  • g and h are each preferably 1.
  • the substituent for R 50 and R 51 is preferably a halogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a nucleus having 6 to 14 carbon atoms.
  • the substituent formed by the bonding group and the benzene ring directly bonded to the nitrogen atom is more preferably a ring having the following structure.
  • Examples of the cycloalkyl group represented by R 21 to R 24 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a bicycloheptyl group, a bicyclooctyl group, and a tricycloheptyl group.
  • Examples of the substituted or unsubstituted aralkyl group of R 21 to R 24 include benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, and phenyl-t-butyl.
  • ⁇ -naphthylmethyl group 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ - Naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, 1-pyrrolylmethyl group, 2- (1-pyrrolyl) ethyl group, p-methylbenzyl group, m -Methylbenzyl group, o-methylbenzyl group, p-chlorobenzyl group, m-chlorobenzyl group, o-chlorobenzyl group, p-bromine Benzyl group, m
  • R a and R b examples include the same as R 1 to R 8 in the formula (2) described later.
  • the diaminopyrene derivative of the formula (1) is represented by the following formula.
  • R 21 to R 24 , R a and R b are the same as described above.
  • R 21 to R 24 may be the same or different from each other, but it is preferable that R 21 and R 23 , and R 22 and R 24 are the same.
  • R a and R b may be the same or different, but are preferably the same.
  • diaminopyrene derivative represented by the formula (1) include compounds represented by the following formula.
  • An anthracene derivative according to the organic light-emitting medium I is represented by the following formula (2).
  • Ar 11 and Ar 12 are each independently a substituted or unsubstituted aryl group having 6 to 20 nuclear carbon atoms
  • R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted group
  • Ar 11 and Ar 12 when one of Ar 11 and Ar 12 is an unsubstituted 2-naphthyl group, the other is not a 4- (1-naphthyl) phenyl-1-yl group. Further, at least one of Ar 11 and Ar 12 is not a substituted or unsubstituted anthryl group.
  • anthracene derivative represented by the formula (2) preferably when one of Ar 11 and Ar 12 is an unsubstituted 2-naphthyl group, the other is not an aryl-substituted phenyl group.
  • the anthracene derivative according to the present invention is preferably any of the following anthracene derivatives (A), (B), and (C), and is selected depending on the configuration of the organic EL element to be applied and the required characteristics.
  • Ar 11 and Ar 12 in the formula (2) are each independently a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms.
  • the anthracene derivative can be classified into a case where Ar 11 and Ar 12 are the same substituted or unsubstituted condensed aryl group and a case where they are different substituted or unsubstituted condensed aryl groups.
  • anthracene derivatives represented by the following formulas (2-1) to (2-3) and anthracene derivatives in which Ar 11 and Ar 12 in formula (2) are different substituted or unsubstituted condensed aryl groups Is mentioned.
  • Ar 11 and Ar 12 are substituted or unsubstituted 9-phenanthrenyl groups.
  • R 1 to R 8 are the same as above, R 11 represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • Ar 11 and Ar 12 in the formula (2) are substituted or unsubstituted 2-naphthyl groups.
  • R 1 to R 8 and R 11 are the same as above, b is an integer of 1 to 7.
  • b is an integer of 2 or more, a plurality of R 11 may be the same or different on condition that two substituted or unsubstituted 2-naphthyl groups are the same.
  • Ar 11 and Ar 12 in the formula (2) are substituted or unsubstituted 1-naphthyl groups.
  • R 1 to R 8 , R 11 and b are the same as described above.
  • b is an integer of 2 or more, a plurality of R 11 are two substituted or unsubstituted. Each may be the same or different, provided that the 1-naphthyl groups are the same.
  • Examples of the anthracene derivative in which Ar 11 and Ar 12 in Formula (2) are different substituted or unsubstituted condensed aryl groups include a substituted or unsubstituted 9-phenanthrenyl group, a substituted or unsubstituted 1-naphthyl group, and substituted or unsubstituted It is preferably any one of unsubstituted 2-naphthyl groups.
  • Ar 11 is a 1-naphthyl group and Ar 12 is a 2-naphthyl group
  • Ar 11 is a 1-naphthyl group and Ar 12 is a 9-phenanthryl group
  • Ar 11 is 2- This is the case where the naphthyl group and Ar 12 are a 9-phenanthryl group.
  • anthracene derivative (B) In the anthracene derivative, one of Ar 11 and Ar 12 in Formula (2) is a substituted or unsubstituted phenyl group, and the other is a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms.
  • Specific examples of the anthracene derivative include anthracene derivatives represented by the following formulas (2-4) and (2-5).
  • Ar 11 in the formula (2) is a substituted or unsubstituted 1-naphthyl group
  • Ar 12 is a substituted or unsubstituted phenyl group.
  • Ar 6 is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted group Or an unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nucleus atoms, a 9,9-dimethylfluoren-1-yl group, or a 9,9-dimethylfluorene-2- Yl group, 9,9-dimethylfluoren-3-yl group, 9,9-dimethylfluoren-4-yl group, dibenzofuran-1-yl group, dibenzofuran-2-yl group, dibenzofuran-3
  • Ar 6 may form a substituted or unsubstituted fluorenyl group or a substituted or unsubstituted dibenzofluorenyl group together with the benzene ring to which Ar 6 is bonded.
  • b is an integer of 2 or more, the plurality of R 11 may be the same or different.
  • Ar 11 in the formula (2) is a substituted or unsubstituted 2-naphthyl group
  • Ar 12 is a substituted or unsubstituted phenyl group .
  • Ar 7 is a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted group Alternatively, it is an unsubstituted heterocyclic group having 5 to 50 nucleus atoms, a dibenzofuran-1-yl group, a dibenzofuran-2-yl group, a dibenzofuran-3-yl group, or a dibenzofuran-4-yl group.
  • Ar 7 may form a substituted or unsubstituted fluorenyl group or a substituted or unsubstituted dibenzofluorenyl group together with the benzene ring to which Ar 7 is bonded.
  • b is an integer of 2 or more
  • the plurality of R 11 may be the same or different.
  • Ar 7 excludes the case where 4- (1-naphthyl) phenyl-1-yl group is formed with the adjacent phenylene group.
  • the anthracene derivative is represented by the following formula (2-6), specifically, any one of the following formulas (2-6-1), (2-6-2), and (2-6-3) It is preferable that it is a derivative represented.
  • R 1 to R 8 and Ar 6 are the same as above,
  • Ar 5 is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted group Alternatively, it is an unsubstituted aralkyl group having 7 to 50 carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, and Ar 5 and Ar 6 are each independently selected.
  • Examples of the substituted or unsubstituted aryl group having 6 to 20 nuclear carbon atoms of Ar 11 and Ar 12 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, and a 9-anthryl group.
  • a substituted phenyl group and a substituted or unsubstituted aryl group having 10 to 14 nuclear carbon atoms for example, 1-naphthyl group, 2-naphthyl group, 9-phenanthryl group.
  • Ar 5a , Ar 6a and Ar 8 substituted or unsubstituted condensed aryl groups having 10 to 20 nuclear carbon atoms include 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9 -Anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2 -Pyrenyl group, 4-pyrenyl group, 2-fluorenyl group and the like can be mentioned.
  • a 1-naphthyl group, a 2-naphthyl group, and a 9-phenanthryl group are preferable.
  • Examples of the substituted or unsubstituted aryl group having 6 to 50 carbon atoms of R 1 to R 8 , R 11 , Ar 5 and Ar 6 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, 2 -Anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1 -Pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl Group, p-terpheny
  • Examples of the substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms of R 1 to R 8 , R 11 and Ar 5 to Ar 7 include 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, pyrazinyl group 2-pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 1-indolyl group, 2-indolyl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7-indolyl group 1-isoindolyl group, 2-isoindolyl group, 3-isoindolyl group, 4-isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 2-furyl group, 3-furyl group, 2-benzofuranyl group 3-benzofuranyl group, 4-benzofuranyl group
  • Examples of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms of R 1 to R 8 , R 11 and Ar 5 to Ar 7 include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s- Butyl, isobutyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2-hydroxy Isobutyl group, 1,2-dihydroxyethyl group, 1,3-dihydroxyisopropyl group, 2,3-dihydroxy-t-butyl group, 1,2,3-trihydroxypropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 2-chloroisobutyl group, 1,2-dichloroethyl group, 1,3-d
  • Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms of the substituents R 1 to R 8 , R 11 and Ar 5 to Ar 7 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, 4 -Methylcyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group, 2-norbornyl group and the like.
  • the substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms of R 1 to R 8 and R 11 is a group represented by —OZ, and Z is the substituted or unsubstituted carbon number of R 1 to R 8. Selected from 1 to 50 alkyl groups.
  • the substituted or unsubstituted aryloxy group having 6 to 50 nuclear carbon atoms of R 1 to R 8 and R 11 is represented as —OY, and Y represents the substituted or unsubstituted nuclear carbon number of the above R 1 to R 8. Selected from 6 to 50 aryl groups.
  • the substituted or unsubstituted arylthio group having 6 to 50 nuclear carbon atoms represented by R 11 is represented by —SY, and Y represents the substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms represented by R 1 to R 8. To be elected.
  • the substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms of R 11 (the alkyl part has 1 to 49 carbon atoms) is represented as —COOZ, and Z is the substituted or unsubstituted carbon number of R 1 to R 8. It is selected from 1 to 49 alkyl groups.
  • Examples of the substituted silyl group of R 1 to R 8 and R 11 include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, and a triphenylsilyl group.
  • halogen atoms for R 1 to R 8 and R 11 include fluorine, chlorine, bromine, iodine and the like.
  • R 1 to R 8 are hydrogen atoms.
  • anthracene derivative represented by the formula (2) include derivatives represented by the following formula.
  • the diaminopyrene derivative represented by the formula (1) is, for example, introduced into a dibromopyrene obtained by bromination of commercially available pyrene by a known method, then brominated again, and correspondingly reacted under a metal catalyst. It can be synthesized by reacting with a secondary amine compound.
  • the anthracene derivative represented by Formula (2) is compoundable by the method of WO2004 / 018587, for example.
  • the organic light-emitting medium of the present invention is in a state in which the anthracene derivative represented by the diaminopyrene derivative represented by the formula (1) as described above coexists.
  • the mass ratio of the diaminopyrene derivative represented by the formula (1) and the anthracene derivative represented by the formula (2) is preferably 50:50 to 0.1: 99.9, and 20:80 to 1 : 99 is more preferable.
  • Organic light emitting medium II includes a diaminopyrene derivative according to the present invention represented by the following formula (1) ′ and an anthracene derivative represented by the following formula (2) ′.
  • the diaminopyrene derivative according to the organic light emitting medium II is represented by the following formula (1) ′.
  • R 21 ′ to R 24 ′ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • the adjacent alkyl groups may be bonded to each other to form a substituted or unsubstituted divalent linking group.
  • n1 ′ to n4 ′ are each independently an integer of 1 to 5.
  • R a ′ and R b ′ are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms.
  • Examples of the substituted or unsubstituted aryl group and substituted or unsubstituted alkyl group having 6 to 50 nuclear carbon atoms of R 21 ′ to R 24 ′ are the same as those of R 21 to R 24 in the above formula (1). is there.
  • the adjacent alkyl groups are bonded to each other to form a substituted or unsubstituted divalent saturated or unsubstituted group.
  • a saturated linking group may be formed.
  • A, D, E, G and J are —CH 2 —, —CR 50 R 51 — (R 50 and R 51 each represent a substituent), —O—, —S—, — N- or -CO- a to h each represents an integer of 1 to 10;
  • R 50 and R 51 each represent a substituent
  • —O—, —S—, — N- or -CO- a to h each represents an integer of 1 to 10;
  • a, b, c, g, and h are 2 or more, a plurality of A, D, E, G, and J may be the same or different.
  • a to c are each preferably 5 or 6
  • d to f are each preferably 2
  • g and h are each preferably 1.
  • the substituent for R 50 and R 51 is preferably a halogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a nucleus having 6 to 14 carbon atoms.
  • the substituent formed by the bonding group and the benzene ring directly bonded to the nitrogen atom is more preferably a ring having the following structure.
  • R 21 ' ⁇ R 24' in R 21 ' ⁇ R 24' are the same as those of R 21 ⁇ R 24 in the formula (1).
  • R 21 ′ to R 24 ′ are preferably a hydrogen atom, a substituted or unsubstituted phenyl group, a substituted or unsubstituted methyl group, a substituted or unsubstituted isopropyl group, a substituted or unsubstituted t-butyl group, substituted or unsubstituted An unsubstituted cyclohexyl group, or a substituted or unsubstituted trimethylsilyl group.
  • the substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms of R a ′ and R b ′ is defined as “substituted or unsubstituted nuclear carbon atoms of 6 to 50 defined by R 11 in formula (2) ′ described later. And is preferably a substituted or unsubstituted phenyl group or a substituted or unsubstituted naphthyl group.
  • the diaminopyrene derivative of the formula (1) ′ is represented by the following formula.
  • R 21 ′ to R 24 ′ , R a ′ and R b ′ are the same as described above.
  • R 21 ′ to R 24 ′ may be the same or different, but it is preferable that R 21 ′ and R 23 ′ and R 22 ′ and R 24 ′ are the same.
  • R a ′ and R b ′ may be the same or different, but are preferably the same.
  • diaminopyrene derivative represented by the formula (1) ′ include compounds represented by the following formula.
  • An anthracene derivative according to the organic light-emitting medium II is represented by the following formula (2) ′.
  • Ar 11 ′ and Ar 12 ′ are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms or a heterocyclic group having 5 to 50 nuclear atoms
  • R 1 ′ to R 8 ′ each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, substituted or unsubstituted
  • anthracene derivative of the present invention preferably, when one of Ar 11 ′ and Ar 12 ′ is an unsubstituted 2-naphthyl group, the other is not an aryl-substituted phenyl group.
  • the anthracene derivative according to the present invention is preferably any of the following anthracene derivatives (A) ′, (B) ′, and (C) ′, and is selected depending on the configuration of the organic EL element to be applied and the required characteristics.
  • Ar 11 ′ and Ar 12 ′ in the formula (2) ′ are each independently a substituted or unsubstituted condensed aryl group having 10 to 50 nuclear carbon atoms.
  • the anthracene derivative can be classified into a case where Ar 11 ′ and Ar 12 ′ are the same substituted or unsubstituted condensed aryl group and a case where they are different substituted or unsubstituted condensed aryl groups.
  • anthracene derivatives represented by the following formulas (2-1) ′ to (2-3) ′, and substituted or unsubstituted condensed aryl in which Ar 11 ′ and Ar 12 ′ in formula (2) ′ are different And anthracene derivatives as groups.
  • Ar 11 ′ and Ar 12 ′ are substituted or unsubstituted 9-phenanthrenyl groups.
  • R 1 ′ to R 8 ′ are the same as above, R 11 represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • Ar 11 ′ and Ar 12 ′ in the formula (2) ′ are substituted or unsubstituted 2-naphthyl groups.
  • R 1 ′ to R 8 ′ and R 11 are the same as above, b is an integer of 1 to 7.
  • a plurality of R 11 may be the same or different on condition that two substituted or unsubstituted 2-naphthyl groups are the same.
  • Ar 11 ′ and Ar 12 ′ in the formula (2) ′ are substituted or unsubstituted 1-naphthyl groups.
  • R 1 ′ to R 8 ′ , R 11 and b are the same as those described above.
  • b is an integer of 2 or more, a plurality of R 11 are substituted with two substituents or Each may be the same or different, provided that the unsubstituted 1-naphthyl groups are the same.
  • Ar 11 ′ and Ar 12 ′ in the formula (2) ′ are the same substituted or unsubstituted fluoranthenyl group.
  • an anthracene derivative in which Ar 11 ′ and Ar 12 ′ in the formula (2) ′ are the same substituted or unsubstituted pyrenyl group are also preferable.
  • Ar 11 ′ and Ar 12 ′ in formula (2) ′ are different substituted or unsubstituted condensed aryl groups
  • Ar 11 ′ and Ar 12 ′ are represented by formulas (2-1) ′ to (2- 3) ′, a substituted or unsubstituted 9-phenanthrenyl group, a substituted or unsubstituted 1-naphthyl group, a substituted or unsubstituted 2-naphthyl group, and a substituted or unsubstituted fluoranthenyl group Is preferred.
  • Ar 11 ′ is a 1-naphthyl group and Ar 12 ′ is a 2-naphthyl group
  • Ar 11 ′ is a 1-naphthyl group and Ar 12 ′ is a 9-phenanthryl group
  • Ar This is the case where 11 ′ is a 2-naphthyl group and Ar 12 ′ is a 9-phenanthryl group.
  • anthracene derivative (B) ') In the anthracene derivative, one of Ar 11 ′ and Ar 12 ′ in the formula (2) ′ is a substituted or unsubstituted phenyl group, and the other is a substituted or unsubstituted condensed aryl group having 10 to 50 nuclear carbon atoms. ing. Specific examples of the anthracene derivative include anthracene derivatives represented by the following formulas (2-4) ′ and (2-5) ′.
  • Ar 11 ′ in the formula (2) ′ is a substituted or unsubstituted 1-naphthyl group
  • Ar 12 ′ is a substituted or unsubstituted phenyl group. It has become.
  • Ar 6 is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted group Or an unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nucleus atoms, a 9,9-dimethylfluoren-1-yl group, or a 9,9-dimethylfluorene-2- Yl group, 9,9-dimethylfluoren-3-yl group, 9,9-dimethylfluoren-4-yl group, dibenzofuran-1-yl group, dibenzofuran-2-yl group
  • Ar 6 may form a substituted or unsubstituted fluorenyl group or a substituted or unsubstituted dibenzofluorenyl group together with the benzene ring to which Ar 6 is bonded.
  • b is an integer of 2 or more, the plurality of R 11 may be the same or different.
  • Ar 11 ′ in the formula (2) ′ is a substituted or unsubstituted 2-naphthyl group
  • Ar 12 ′ is a substituted or unsubstituted phenyl group. It has become.
  • Ar 7 is a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted group Alternatively, it is an unsubstituted heterocyclic group having 5 to 50 nucleus atoms, a dibenzofuran-1-yl group, a dibenzofuran-2-yl group, a dibenzofuran-3-yl group, or a dibenzofuran-4-yl group.
  • Ar 7 may form a substituted or unsubstituted fluorenyl group or a substituted or unsubstituted dibenzofluorenyl group together with the benzene ring to which Ar 7 is bonded.
  • b is an integer of 2 or more
  • the plurality of R 11 may be the same or different.
  • Ar 7 excludes the case where 4- (1-naphthyl) phenyl-1-yl group is formed with the adjacent phenylene group.
  • Ar 11 ′ in the formula (2) ′ is a substituted or unsubstituted fluoranthenyl group
  • Ar Anthracene derivatives in which 12 ′ is a substituted or unsubstituted phenyl group are also preferable.
  • the anthracene derivative is represented by the following formula (2-6) ′, specifically, the following formulas (2-6-1) ′, (2-6-2) ′ and (2-6-3) ′. It is preferable that it is a derivative represented by either.
  • Ar 5 is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted group Alternatively, it is an unsubstituted aralkyl group having 7 to 50 carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, and Ar 5 and Ar 6 are each independently selected.
  • substituted or unsubstituted aryl groups having 6 to 50 nuclear carbon atoms of R 11 , Ar 5 and Ar 6 , Ar 11 ′ and Ar 12 ′ are the same as those of Ar 11 and Ar 12 in the above formula (2). It is.
  • an unsubstituted phenyl group, a substituted phenyl group, and a substituted or unsubstituted aryl group having 10 to 14 nuclear carbon atoms eg, 1-naphthyl group, 2-naphthyl group, 9-phenanthryl group
  • fused aryl groups Ar 5a, Ar 6a and substituted or unsubstituted C 10 -C 20 Ar 8 is the same as this of Ar 5a, Ar 6a and Ar 8 in the formula (2) .
  • 1-naphthyl group, 2-naphthyl group, 9-phenanthryl group, pyrenyl group (1-pyrenyl group, 2-pyrenyl group and 4-pyrenyl group), and fluorenyl group (2-fluorenyl group) are preferable.
  • Examples of the heterocyclic group of R 11 and Ar 5 ⁇ substituted or unsubstituted 5 to 50 ring atoms of Ar 7, this of R 1 ⁇ R 8, R 11 and Ar 5 ⁇ Ar 7 in the above formula (2) Is the same.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms of R 1 ′ to R 8 ′ , R 11 and Ar 5 to Ar 7 include R 1 to R 8 , R 11 and Ar in the above formula (2). This is the same as 5 to Ar 7 .
  • Preferred are methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group and t-butyl group.
  • Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms of the substituents R 1 ′ to R 8 ′ , R 11 and Ar 5 to Ar 7 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group. 4-methylcyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group, 2-norbornyl group and the like. Preferably, they are a cyclopentyl group and a cyclohexyl group.
  • the substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms of R 1 ′ to R 8 ′ and R 11 is a group represented by —OZ, and Z is the substituted or unsubstituted group of R 1 ′ to R 8 ′. It is selected from substituted alkyl groups having 1 to 50 carbon atoms.
  • R 1 ′ to R 8 ′ , R 11 and Ar 5 to Ar 7 substituted or unsubstituted C 7-50 aralkyl groups (the aryl moiety has 6 to 49 carbon atoms, the alkyl moiety has 1 to 44 carbon atoms) ) are the same as those of R 1 to R 8 , R 11 and Ar 5 to Ar 7 in the above formula (2).
  • the substituted or unsubstituted aryloxy group and arylthio group having 6 to 50 nuclear carbon atoms of R 1 ′ to R 8 ′ and R 11 are represented by —OY and —SY, respectively, and Y represents the above R 1 ′ to R It is selected from 8 ' substituted or unsubstituted aryl groups having 6 to 50 nuclear carbon atoms.
  • a substituted or unsubstituted alkoxy group having 2 to 50 carbon atoms (the alkyl moiety has 1 to 49 carbon atoms) of R 1 ′ to R 8 ′ and R 11 is represented as —COOZ, and Z represents the above R 1 ′ to R It is selected from 8 ' substituted or unsubstituted alkyl groups having 1 to 49 carbon atoms.
  • Examples of the substituted silyl group of R 1 ′ to R 8 ′ and R 11 include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, and a triphenylsilyl group.
  • halogen atoms for R 1 ′ to R 8 ′ and R 11 include fluorine, chlorine, bromine and iodine.
  • anthracene derivative represented by the formula (2) ′ of the present invention include the following.
  • the diaminopyrene derivative represented by the formula (1) ′ is prepared by, for example, introducing a substituent into dibromopyrene obtained by bromination of commercially available pyrene by a known method, and then brominating it again under a metal catalyst. Can be synthesized by reacting with a secondary amine compound.
  • the anthracene derivative represented by the formula (2) ′ can be synthesized, for example, by the method described in WO 2004/018585.
  • the organic light-emitting medium of the present invention is in a state where an anthracene derivative represented by the diaminopyrene derivative formula (2) ′ represented by the formula (1) ′ as described above coexists.
  • the mass ratio of the diaminopyrene derivative represented by the formula (1) ′ and the anthracene derivative represented by the formula (2) ′ is preferably 50:50 to 0.1: 99.9, and 20:80 More preferably, it is ⁇ 1: 99.
  • the organic EL device of the present invention is a device in which one or more organic thin film layers are formed between an anode and a cathode.
  • the organic thin film layer is a plurality of layers, one layer is a light emitting layer.
  • a light emitting layer as an organic thin film layer is formed between the anode and the cathode.
  • At least one of the organic thin film layers contains the organic light emitting medium of the present invention, and in order to transport holes injected from the anode or electrons injected from the cathode to the light emitting material. Further, a hole injection material or an electron injection material may be contained.
  • at least one layer (preferably light emitting layer) of the organic thin film layers may be formed from the organic light emitting medium of the present invention.
  • the organic light emitting medium of the present invention has high light emission characteristics.
  • the organic EL device of the present invention is an organic EL device in which an organic thin film layer comprising at least two layers including at least a light emitting layer is sandwiched between a cathode and an anode, and the organic EL device of the present invention is interposed between the anode and the light emitting layer. It is also preferable to have an organic layer whose main component is a luminescent medium. Examples of the organic layer include a hole injection layer and a hole transport layer.
  • organic EL elements having a plurality of organic thin film layers are (anode / hole injection layer / light emitting layer / cathode), (anode / light emitting layer / electron injection layer / cathode), (anode / hole). (Injection layer / light emitting layer / electron injection layer / cathode) and the like.
  • organic light-emitting medium of the present invention further known light-emitting materials, doping materials, hole-injecting materials, and electron-injecting materials can be used for the multiple layers as needed.
  • the organic EL element can prevent the brightness
  • a light emitting material, a doping material, a hole injection material, and an electron injection material can be used in combination. Further, by using a doping material, it is possible to improve light emission luminance and light emission efficiency and to obtain red and blue light emission.
  • the hole injection layer, the light emitting layer, and the electron injection layer may each be formed of two or more layers. In that case, in the case of a hole injection layer, the layer that injects holes from the electrode is a hole injection layer, and the layer that receives holes from the hole injection layer and transports holes to the light emitting layer is a hole transport layer. Call.
  • an electron injection layer a layer that injects electrons from an electrode is referred to as an electron injection layer, and a layer that receives electrons from the electron injection layer and transports electrons to a light emitting layer is referred to as an electron transport layer.
  • an electron injection layer a layer that injects electrons from an electrode
  • an electron transport layer a layer that receives electrons from the electron injection layer and transports electrons to a light emitting layer.
  • Each of these layers is selected and used depending on factors such as the energy level of the material, heat resistance, and adhesion to the organic layer or metal electrode.
  • Examples of host materials or doping materials that can be used in the light emitting layer together with the organic light emitting medium of the present invention include, for example, naphthalene, phenanthrene, rubrene, anthracene, tetracene, pyrene, perylene, chrysene, decacyclene, coronene, tetraphenylcyclopentadiene, pentaphenylcyclopentaene.
  • Condensed polyaromatic compounds such as pentadiene, fluorene, spirofluorene, 9,10-diphenylanthracene, 9,10-bis (phenylethynyl) anthracene, 1,4-bis (9′-ethynylanthracenyl) benzene, and the like
  • organometallic complexes such as tris (8-quinolinolato) aluminum, bis- (2-methyl-8-quinolinolato) -4- (phenylphenolinato) aluminum, triarylamine derivatives, styrylamido Derivatives, stilbene derivatives, coumarin derivatives, pyran derivatives, oxazone derivatives, benzothiazole derivatives, benzoxazole derivatives, benzimidazole derivatives, pyrazine derivatives, cinnamic acid ester derivatives, diketopyrrolopyrrole derivatives, acridone derivatives,
  • a hole injection material As a hole injection material, it has the ability to transport holes, has a hole injection effect from the anode, an excellent hole injection effect for the light emitting layer or organic light emitting medium, and excitons generated in the light emitting layer
  • the compound which prevents the movement to the electron injection layer or the electron injection material and has an excellent thin film forming ability is preferable.
  • phthalocyanine derivatives naphthalocyanine derivatives, porphyrin derivatives, oxazole, oxadiazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acylhydrazone, polyaryl Examples include alkane, stilbene, butadiene, benzidine type triphenylamine, styrylamine type triphenylamine, diamine type triphenylamine, and derivatives thereof, and polymer materials such as polyvinylcarbazole, polysilane, and conductive polymers. However, it is not limited to these.
  • more effective hole injection materials are aromatic tertiary amine derivatives and phthalocyanine derivatives.
  • aromatic tertiary amine derivative include triphenylamine, tolylamine, tolyldiphenylamine, N, N′-diphenyl-N, N ′-(3-methylphenyl) -1,1′-biphenyl-4,4 '-Diamine, N, N, N', N '-(4-methylphenyl) -1,1'-phenyl-4,4'-diamine, N, N, N', N '-(4-methylphenyl) ) -1,1′-biphenyl-4,4′-diamine, N, N′-diphenyl-N, N′-dinaphthyl-1,1′-biphenyl-4,4′-diamine, N, N ′-( Methylpheny
  • phthalocyanine (Pc) derivative examples include H 2 Pc, CuPc, CoPc, NiPc, ZnPc, PdPc, FePc, MnPc, ClAlPc, ClGaPc, ClInPc, ClSnPc, Cl 2 SiPc, (HO) AlPc, (HO) GaPc, Examples include, but are not limited to, phthalocyanine derivatives and naphthalocyanine derivatives such as VOPc, TiOPc, MoOPc, and GaPc—O—GaPc.
  • the organic EL device of the present invention includes a layer containing these aromatic tertiary amine derivatives and / or phthalocyanine derivatives, for example, the hole transport layer or the hole injection layer, between the light emitting layer and the anode. Preferably formed.
  • an electron injection material it has the ability to transport electrons, has an electron injection effect from the cathode, and an excellent electron injection effect for the light emitting layer or light emitting material.
  • the compound which prevents the movement to and is excellent in thin film forming ability is preferable.
  • 8-hydroxyquinoline or a metal complex of its derivative or an oxadiazole derivative is preferable.
  • a metal chelate oxinoid compound containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), such as tris (8-quinolinolato) aluminum, is injected. It can be used as a material.
  • examples of the oxadiazole derivative include electron transfer compounds represented by the following general formula.
  • Ar 1 , Ar 2 , Ar 3 , Ar 5 , Ar 6 , and Ar 9 each represent a substituted or unsubstituted aryl group, and may be the same or different from each other.
  • Ar 4 , Ar 7 and Ar 8 represent a substituted or unsubstituted arylene group, and may be the same or different.
  • examples of the aryl group include a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group.
  • This electron transfer compound is preferably a thin film-forming compound.
  • electron transfer compound examples include the following. Me represents methyl and tBu represents tbutyl.
  • materials represented by the following general formulas (A) to (F) can also be used as the electron injection material.
  • a 1 to A 3 are each independently a nitrogen atom or a carbon atom.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 60 nuclear atoms
  • Ar 2 represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 60 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • any one of Ar 1 and Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 5 to 60 nucleus atoms.
  • L 1 , L 2 and L are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 5 to 60 nuclear atoms, or a substituted or unsubstituted An unsubstituted fluorenylene group.
  • R represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 60 nuclear atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • R 1 represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms or —L 1 —Ar 1 —Ar 2 The nitrogen-containing heterocyclic derivative represented by this.
  • HAr-L-Ar 1 -Ar 2 (Wherein HAr is a nitrogen-containing heterocycle having 3 to 40 carbon atoms which may have a substituent, L has a single bond, an arylene group having 6 to 60 nuclear carbon atoms which may have a substituent, a heteroarylene group having 5 to 60 nuclear atoms which may have a substituent, or a substituent.
  • a fluorenylene group which may be Ar 1 is an optionally substituted divalent aromatic hydrocarbon group having 6 to 60 nuclear carbon atoms
  • Ar 2 is an aryl group having 6 to 60 nuclear carbon atoms which may have a substituent or a heterocyclic group having 5 to 60 nuclear atoms which may have a substituent.
  • X and Y are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, alkoxy group, alkenyloxy group, alkynyloxy group, hydroxy group, substituted or unsubstituted aryl group, substituted Or an unsubstituted heterocyclic ring or a structure in which X and Y are combined to form a saturated or unsaturated ring
  • R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, an alkoxy group, an aryloxy group, a perfluoroalkyl group, a perfluoroalkoxy group, an amino group, Alkylcarbonyl group, arylcarbonyl group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, alkylcarbonyloxy group, arylcarbonyloxy group, alkoxycarbonyloxy group
  • R 1 to R 8 and Z 2 are each independently a hydrogen atom, a saturated or unsaturated hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic group, a substituted amino group, a substituted boryl group, or an alkoxy group.
  • an aryloxy group, X, Y and Z 1 each independently represent a saturated or unsaturated hydrocarbon group, aromatic hydrocarbon group, heterocyclic group, substituted amino group, alkoxy group or aryloxy group;
  • the substituents of Z 1 and Z 2 may be bonded to each other to form a condensed ring.
  • N represents an integer of 1 to 3, and when n is 2 or more, Z 1 may be different.
  • Q 1 and Q 2 each independently represent a ligand represented by the following general formula (G)
  • L is a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, —OR 1 (R 1 is a hydrogen atom, A substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group) or —O—Ga—Q 3 (Q 4 ) (Q 3 and Q 4 are the same as Q 1 and Q 2 ).
  • rings A 1 and A 2 are 6-membered aryl ring structures condensed with each other which may have a substituent.
  • This metal complex has strong properties as an n-type semiconductor and has a large electron injection capability. Furthermore, since the generation energy at the time of complex formation is also low, the bond between the metal of the formed metal complex and the ligand is strengthened, and the fluorescence quantum efficiency as a light emitting material is also increased.
  • substituents of the rings A 1 and A 2 forming the ligand of the general formula (G) include chlorine, bromine, iodine, halogen atoms of fluorine, methyl group, ethyl group, propyl group, Substituted or unsubstituted alkyl groups such as butyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, phenyl group, naphthyl group, 3-methyl A substituted or unsubstituted aryl group such as phenyl group, 3-methoxyphenyl group, 3-fluorophenyl group, 3-trichloromethylphenyl group, 3-trifluoromethylphenyl group, 3-nitrophenyl group, methoxy group, n- Butoxy group, t-butoxy group, trichlor
  • the organic EL device of the present invention include a device containing a reducing dopant in an electron transporting region or an interface region between a cathode and an organic layer.
  • the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals.
  • preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1 .95 eV), at least one alkali metal selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.52 eV).
  • a more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb, and Cs, more preferably Rb or Cs, and most preferably Cs. .
  • alkali metals have particularly high reducing ability, and the addition of a relatively small amount to the electron injection region can improve the light emission luminance and extend the life of the organic EL element.
  • a combination of two or more alkali metals is also preferable.
  • a combination containing Cs such as Cs and Na, Cs and K, Cs and Rb, or Cs. And a combination of Na and K.
  • Cs such as Cs and Na, Cs and K, Cs and Rb, or Cs.
  • Na and K a combination of Na and K.
  • an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer. At this time, current leakage can be effectively prevented and the electron injection property can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS, and CaSe
  • preferable alkali metal halides include, for example, LiF, NaF, KF, CsF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • the inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film. If the electron injection layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
  • a cathode what uses a metal, an alloy, an electroconductive compound, and a mixture thereof with a small work function (4 eV or less) as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, cesium, magnesium / silver alloy, aluminum / aluminum oxide, Al / Li 2 O, Al / LiO, Al / LiF, aluminum Examples include lithium alloys, indium, and rare earth metals.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the light emitted from the cathode is larger than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • an organic EL element applies an electric field to an ultra-thin film, pixel defects are likely to occur due to leakage or short circuit.
  • an insulating thin film layer may be inserted between the pair of electrodes.
  • Examples of the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, and silicon oxide. Germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide, and the like. A mixture or laminate of these may be used.
  • a material having a work function larger than 4 eV is suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum Further, palladium, etc. and alloys thereof, ITO (indium tin oxide) substrate, tin oxide used for NESA substrate, metal oxide such as indium oxide, and organic conductive resin such as polythiophene and polypyrrole are used.
  • Suitable conductive materials for the cathode are those having a work function smaller than 4 eV, such as magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, lithium fluoride, and the like. However, it is not limited to these.
  • Examples of alloys include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto. The ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio. If necessary, the anode and the cathode may be formed of two or more layers.
  • the organic EL device of the present invention in order to emit light efficiently, it is desirable that at least one surface is sufficiently transparent in the light emission wavelength region of the device.
  • the substrate is also preferably transparent.
  • the transparent electrode is set using the above-described conductive material so as to ensure a predetermined translucency by a method such as vapor deposition or sputtering.
  • the electrode on the light emitting surface preferably has a light transmittance of 10% or more.
  • the substrate is not limited as long as it has mechanical and thermal strength and has transparency, and includes a glass substrate and a transparent resin film.
  • Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone.
  • each layer of the organic EL device for the formation of each layer of the organic EL device according to the present invention, any of dry film forming methods such as vacuum deposition, sputtering, plasma, ion plating, etc. and wet film forming methods such as spin coating, dipping, and flow coating is applied. be able to.
  • the film thickness is not particularly limited, but must be set to an appropriate film thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied.
  • the normal film thickness is suitably in the range of 5 nm to 10 ⁇ m, but more preferably in the range of 10 nm to 0.2 ⁇ m.
  • the material for forming each layer is dissolved or dispersed in an appropriate solvent such as ethanol, chloroform, tetrahydrofuran, dioxane or the like to form a thin film, and any solvent may be used.
  • an appropriate resin or additive may be used for improving film formability and preventing pinholes in the film.
  • Usable resins include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose and other insulating resins and copolymers thereof, poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole.
  • the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
  • the organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a copying machine, a printer, a light source such as a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like.
  • the material of the present invention can be used not only in an organic EL device but also in fields such as an electrophotographic photosensitive member, a photoelectric conversion device, a solar cell, and an image sensor.
  • Example 1 A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate with ITO transparent electrode (anode) (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • the glass substrate with the transparent electrode line after cleaning is mounted on a substrate holder of a vacuum deposition apparatus, and first, a compound A-1 having a film thickness of 60 nm is formed so as to cover the transparent electrode on the surface on which the transparent electrode line is formed. Was deposited. Subsequent to the formation of the A-1 film, A-2 having a thickness of 20 nm was formed on the A-1 film. Further, the host material EM1 and the dopant material DM7-4 of the present invention were formed on the A-2 film at a film thickness ratio of 40: 2 to form a blue light emitting layer.
  • Alq having a thickness of 20 nm was deposited as an electron transport layer by vapor deposition. Thereafter, LiF was formed to a thickness of 1 nm. On the LiF film, metal Al was deposited to a thickness of 150 nm to form a metal cathode to form an organic EL light emitting device.
  • Example 2 organic EL devices were similarly produced using the host materials and dopant materials shown in Tables 1 to 5 instead of the host material EM1 and the dopant material DM7-4.
  • Example 1 an organic EL device was prepared in the same manner using the following compound A instead of the host material EM1 and the following compound B instead of the dopant material DM7-4.
  • Example 2 an organic EL device was similarly prepared using the following compound C instead of the host material EM1 and the following compound D instead of the dopant material DM7-4.
  • Example 3 an organic EL device was similarly prepared using the following compound E instead of the host material EM1 and the following compound F instead of the dopant material DM7-4.
  • Tables 1 to 5 show the light emission wavelength and the half-life at an initial luminance of 1000 cd / m 2 of the organic EL element.
  • Example 4 Comparative Example 4 In Example 1, the following compound H-1 ′ was used instead of the host material EM1, and the dopant material DM2-4 ′ was used instead of the dopant material DM7-4, and an organic EL device was similarly produced.
  • Example 1 an organic EL device was produced in the same manner using the compound H-1 ′ in place of the host material EM1 and the dopant material DM10-4 ′ in place of the dopant material DM7-4.
  • Example 6 Comparative Example 6 In Example 1, the following compound H-2 ′ was used in place of the host material EM1, and the following compound D-1 ′ was used in place of the dopant material DM7-4 to similarly produce an organic EL device.
  • Example 7 Comparative Example 7 In Example 1, the following compound H-3 ′ was used in place of the host material EM1, and the following compound D-2 ′ was used in place of the dopant material DM7-4 to similarly produce an organic EL device.
  • Tables 6 to 12 show the luminous efficiencies of the organic EL devices obtained in Examples 175 to 430 and Comparative Examples 4 to 7 and the half lives at an initial luminance of 1000 cd / m 2 .
  • the organic EL element using the organic light emitting medium of the present invention is useful as a light source such as a flat light emitter of a wall-mounted television or a backlight of a display.
  • a light source such as a flat light emitter of a wall-mounted television or a backlight of a display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is an organic luminescent medium comprising a diaminopyrene derivative represented by formula (1) and an anthracene derivative represented by formula (2).

Description

有機発光媒体及び有機EL素子Organic light-emitting medium and organic EL device
 本発明は、有機発光媒体及びこれを用いた有機EL素子に関する。 The present invention relates to an organic light emitting medium and an organic EL element using the same.
 従来、有機化合物の発光を利用した有機EL素子(有機電界発光素子)が知られている。有機EL素子は、陽極と陰極との間に積層された複数の有機薄膜を有する。この構成において、陽極と陰極との間に電圧を印加すると、有機薄膜に、陽極と陰極とから、正孔と電子とがそれぞれ注入される。注入されたホールと電子とにより有機薄膜中の発光層で励起状態の分子が生成される。そして、励起状態から基底状態に戻る際のエネルギーが光として放出される。 Conventionally, an organic EL element (organic electroluminescence element) using light emission of an organic compound is known. The organic EL element has a plurality of organic thin films stacked between an anode and a cathode. In this configuration, when a voltage is applied between the anode and the cathode, holes and electrons are injected into the organic thin film from the anode and the cathode, respectively. Excited molecules are generated in the light emitting layer in the organic thin film by the injected holes and electrons. Then, energy when returning from the excited state to the ground state is emitted as light.
 発光層に使用される材料の例として、特許文献1には、アントラセンホストとアリールアミンとの組み合わせが開示されている。また、特許文献2~4には、特定の構造のアントラセンホストとジアミノピレンドーパントとの組み合わせが開示されている。さらに、特許文献5,6には、アントラセン系のホスト材料が開示されている。
 しかし、これらの文献に開示されているホストとドーパントの組合せを用いても青色発光素子においては、長寿命を維持し、かつ短波長青色発光を得るのは困難であった。また、緑色発光素子においては、高い効率を維持し、かつ長寿命な有機EL素子を得ることが困難であった。
WO2004/018588号公報 WO2004/018587号公報 特開2004-204238号公報 WO2005/108348号公報 WO2005/054162号公報 WO2005/061656号公報
As an example of the material used for the light emitting layer, Patent Document 1 discloses a combination of an anthracene host and an arylamine. Patent Documents 2 to 4 disclose a combination of an anthracene host having a specific structure and a diaminopyrene dopant. Furthermore, Patent Documents 5 and 6 disclose anthracene-based host materials.
However, even if the combination of the host and the dopant disclosed in these documents is used, it is difficult for the blue light emitting device to maintain a long lifetime and to obtain short wavelength blue light emission. In addition, in the green light emitting element, it is difficult to obtain an organic EL element that maintains high efficiency and has a long lifetime.
WO 2004/018588 WO2004 / 018587 JP 2004-204238 A WO2005 / 108348 publication WO2005 / 054162 publication WO2005 / 061656
 本発明の目的は、短波長の発光でかつ長寿命な青色発光、また、高効率でかつ長寿命な緑色発光を実現できる特定のホスト材料とドーパント材料の組み合わせを含む有機EL素子、及び当該有機EL素子の有機薄膜層に用いることができる有機発光媒体を提供することである。
 本発明の他の目的は、高い発光効率を得ることが可能で、寿命が長い、特定のホスト材料とドーパント材料の組み合わせを含む有機EL素子、及び当該有機EL素子の有機薄膜層に用いることができる有機発光媒体を提供することである。
An object of the present invention is to provide an organic EL element including a combination of a specific host material and a dopant material capable of realizing short-wavelength light emission and long-lifetime blue light emission and high-efficiency and long-lifetime green light emission. An organic light-emitting medium that can be used for an organic thin film layer of an EL element is provided.
Another object of the present invention is to use an organic EL element including a combination of a specific host material and a dopant material, which can obtain high luminous efficiency and has a long lifetime, and an organic thin film layer of the organic EL element. It is to provide an organic light-emitting medium that can be used.
 上記課題を解決すべく鋭意検討した結果、本発明者らは下記本発明により当該課題を解決できることを見出した。
 本発明によれば、以下の有機発光媒体等が提供される。
As a result of intensive studies to solve the above problems, the present inventors have found that the following problems can be solved by the present invention.
According to the present invention, the following organic light emitting media and the like are provided.
 下記式(1)で表されるジアミノピレン誘導体と、下記式(2)で表されるアントラセン誘導体とを含む有機発光媒体。
Figure JPOXMLDOC01-appb-C000007
 
(式(1)中、R21~R24は、それぞれ独立に、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、又は、置換もしくは無置換の炭素数7~50のアラルキル基であり、同一のベンゼン環上に1又は2組の隣接するアルキル基がある場合、該隣接するアルキル基は互いに結合して置換もしくは無置換の2価の結合基を形成してもよい、但し、該隣接するアルキル基がそれらが結合するベンゼン環と共に1-ナフチル基を形成する場合は除く。
 n1~n4は、それぞれ独立に、0~5の整数である。
 R及びRは、それぞれ独立に、水素原子、置換もしくは無置換の核原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換のシリル基、ハロゲン原子又はシアノ基である。
 但し、R及びRが同時に水素原子である場合は除く。)
Figure JPOXMLDOC01-appb-C000008
 
(式(2)中、Ar11及びAr12は、それぞれ独立に、置換もしくは無置換の核炭素数6~20のアリール基であり、
 R~Rは、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換のシリル基、ハロゲン原子、シアノ基から選ばれる基である。
 但し、Ar11及びAr12の一方が無置換の2-ナフチル基である場合、他方は4-(1-ナフチル)フェニル-1-イル基ではない。
 また、Ar11及びAr12の少なくとも1つが置換もしくは無置換のアントリル基ではない。)
An organic light-emitting medium comprising a diaminopyrene derivative represented by the following formula (1) and an anthracene derivative represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000007

(In the formula (1), R 21 to R 24 each independently represents a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted When a substituted cycloalkyl group having 3 to 50 carbon atoms or a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms and one or two pairs of adjacent alkyl groups on the same benzene ring, The adjacent alkyl groups may be bonded to each other to form a substituted or unsubstituted divalent linking group, provided that the adjacent alkyl group forms a 1-naphthyl group together with the benzene ring to which they are bonded. Is excluded.
n1 to n4 are each independently an integer of 0 to 5.
R a and R b are each independently a hydrogen atom, a substituted or unsubstituted heterocyclic group having 5 to 50 nucleus atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted nucleus, A cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted nucleus having 6 to 50 carbon atoms An aryloxy group, a substituted or unsubstituted silyl group, a halogen atom, or a cyano group.
However, it excludes when R a and R b are hydrogen atoms at the same time. )
Figure JPOXMLDOC01-appb-C000008

(In the formula (2), Ar 11 and Ar 12 are each independently a substituted or unsubstituted aryl group having 6 to 20 nuclear carbon atoms,
R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted group; An alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted carbon group having 7 to 50 carbon atoms. A group selected from an aralkyl group, a substituted or unsubstituted aryloxy group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted silyl group, a halogen atom, and a cyano group.
However, when one of Ar 11 and Ar 12 is an unsubstituted 2-naphthyl group, the other is not a 4- (1-naphthyl) phenyl-1-yl group.
Further, at least one of Ar 11 and Ar 12 is not a substituted or unsubstituted anthryl group. )
 下記式(1)’で表されるジアミノピレン誘導体と、下記式(2)’で表されるアントラセン誘導体とを含む有機発光媒体。
Figure JPOXMLDOC01-appb-C000009
 
(式(1)’中、R21’~R24’は、それぞれ独立に、水素原子、核炭素数6~50の置換もしくは無置換のアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、又は置換もしくは無置換の炭素数3~20のシリル基であり、同一のベンゼン環上に1又は2組の隣接するアルキル基がある場合、該隣接するアルキル基は互いに結合して置換もしくは無置換の2価の結合基を形成してもよい。
 n1’~n4’は、それぞれ独立に、1~5の整数である。
 Ra’及びRb’は、それぞれ独立に、置換もしくは無置換の核炭素数6~50のアリール基である。)
Figure JPOXMLDOC01-appb-C000010
 
(式(2)’中、Ar11’及びAr12’は、それぞれ独立に、置換もしくは無置換の核炭素数6~50のアリール基、又は核原子数5~50の複素環基であり、
 R1’~R8’は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換の核炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基及びヒドロキシル基から選ばれる基である。
 但し、R1’~R8’が水素原子であって、Ar11’及びAr12’の一方が無置換の2-ナフチル基である場合、他方は4-(1-ナフチル)フェニル-1-イル基ではない。)
An organic light-emitting medium comprising a diaminopyrene derivative represented by the following formula (1) ′ and an anthracene derivative represented by the following formula (2) ′.
Figure JPOXMLDOC01-appb-C000009

(In the formula (1) ′, R 21 ′ to R 24 ′ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted 1 to 50 carbon atoms, An alkyl group, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, or a substituted or unsubstituted silyl group having 3 to 20 carbon atoms, When there are one or two sets of adjacent alkyl groups on the same benzene ring, the adjacent alkyl groups may be bonded to each other to form a substituted or unsubstituted divalent linking group.
n1 ′ to n4 ′ are each independently an integer of 1 to 5.
R a ′ and R b ′ are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms. )
Figure JPOXMLDOC01-appb-C000010

(In the formula (2) ′, Ar 11 ′ and Ar 12 ′ are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms or a heterocyclic group having 5 to 50 nuclear atoms,
R 1 ′ to R 8 ′ each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, substituted or unsubstituted An alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted nuclear carbon number 6 to It is a group selected from 50 arylthio groups, substituted or unsubstituted alkoxycarbonyl groups having 2 to 50 carbon atoms, substituted or unsubstituted silyl groups, carboxyl groups, halogen atoms, cyano groups, nitro groups and hydroxyl groups.
Provided that when R 1 ′ to R 8 ′ are hydrogen atoms and one of Ar 11 ′ and Ar 12 ′ is an unsubstituted 2-naphthyl group, the other is 4- (1-naphthyl) phenyl-1- It is not an ill group. )
 陽極と陰極と、前記陽極と陰極の間にある1以上の有機薄膜層とを有し、前記有機薄膜層の少なくとも一層が上記の有機発光媒体を含有する有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising an anode, a cathode, and one or more organic thin film layers between the anode and the cathode, wherein at least one of the organic thin film layers contains the organic light emitting medium.
 本発明によれば、短波長の発光でかつ長寿命な青色発光、また、高効率でかつ長寿命な緑色発光を実現できる特定のホスト材料とドーパント材料の組み合わせを含む有機EL素子、及び当該有機EL素子の有機薄膜層に用いることができる有機発光媒体を提供することができる。
 本発明によれば、高い発光効率を得ることが可能で、寿命が長い有機EL素子、及び当該有機EL素子の有機薄膜層に用いることができる有機発光媒体を提供することができる。
According to the present invention, an organic EL element including a combination of a specific host material and a dopant material capable of realizing short-wavelength light emission and long-lifetime blue light emission, and high-efficiency and long-lifetime green light emission, and the organic An organic light-emitting medium that can be used for an organic thin film layer of an EL element can be provided.
According to the present invention, it is possible to provide an organic EL element that can obtain high luminous efficiency and has a long lifetime, and an organic light emitting medium that can be used for an organic thin film layer of the organic EL element.
[有機発光媒体]
 本発明の有機発光媒体には有機発光媒体I,有機発光媒体IIの態様があり、それぞれ、特定のジアミノピレン誘導体と、特定のアントラセン誘導体とを含む。当該有機発光媒体は、有機EL素子の有機薄膜層の構成成分として発光に寄与し、例えば、蒸着物として当該層中に存在する。そして、有機EL素子に使用した場合に、有機発光媒体Iでは、色純度の高い青色発光をはじめとした短波長の発光を可能とし、長寿命化に寄与し、又は高い発光効率を得ることができる。また有機発光媒体IIでは、高い発光率でかつ長寿命な緑色の有機EL素子を実現することができる。以下、有機発光媒体I,IIについて説明する。
[Organic light-emitting medium]
The organic light-emitting medium of the present invention includes the organic light-emitting medium I and the organic light-emitting medium II, each including a specific diaminopyrene derivative and a specific anthracene derivative. The organic light-emitting medium contributes to light emission as a constituent component of the organic thin film layer of the organic EL element, and is present in the layer as, for example, a deposit. When used in an organic EL device, the organic light emitting medium I can emit light of a short wavelength including blue light emission with high color purity, contributes to a long life, or obtains high light emission efficiency. it can. In addition, the organic light emitting medium II can realize a green organic EL element having a high light emission rate and a long lifetime. Hereinafter, the organic light emitting media I and II will be described.
 尚、本発明において、「核炭素」とは飽和環、不飽和環、又は芳香環を構成する炭素原子を意味する。「核原子」とはヘテロ環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
 また、本発明の各式の定義において、「置換もしくは無置換の・・・」における置換基としては、後述するようなアルキル基、アリール基、シクロアルキル基、アルコキシ基、複素環基、アラルキル基、アリールオキシ基、アリールチオ基、アルコキシカルボニル基、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基等が挙げられ、好ましくはアルキル基、アリール基、シクロアルキル基、複素環基である。
In the present invention, “nuclear carbon” means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring. The “nuclear atom” means a carbon atom and a hetero atom constituting a hetero ring (including a saturated ring, an unsaturated ring, and an aromatic ring).
In the definition of each formula of the present invention, the substituent in “substituted or unsubstituted...” Is an alkyl group, aryl group, cycloalkyl group, alkoxy group, heterocyclic group, aralkyl group as described later. , An aryloxy group, an arylthio group, an alkoxycarbonyl group, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a carboxyl group and the like, preferably an alkyl group, an aryl group, a cycloalkyl group, and a heterocyclic group.
[有機発光媒体I]
 有機発光媒体Iは、下記式(1)で表される本発明に係るジアミノピレン誘導体と、下記式(2)で表されるアントラセン誘導体を含む。
[Organic light emitting medium I]
The organic luminescent medium I includes a diaminopyrene derivative according to the present invention represented by the following formula (1) and an anthracene derivative represented by the following formula (2).
(ジアミノピレン誘導体)
 有機発光媒体Iに係るジアミノピレン誘導体は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000011
 
(Diaminopyrene derivative)
The diaminopyrene derivative according to the organic light-emitting medium I is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000011
 式(1)中、R21~R24は、それぞれ独立に、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、又は、置換もしくは無置換の炭素数7~50のアラルキル基であり、同一のベンゼン環上に1又は2組の隣接するアルキル基がある場合、該隣接するアルキル基は互いに結合して置換もしくは無置換の2価の結合基を形成してもよい、但し、該隣接するアルキル基がそれらが結合するベンゼン環と共に1-ナフチル基を形成する場合は除く。
 n1~n4は、それぞれ独立に、0~5の整数である。
 R及びRは、それぞれ独立に、水素原子、置換もしくは無置換の核原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換のシリル基、ハロゲン原子又はシアノ基である。但し、R及びRが同時に水素原子である場合は除く。
In formula (1), R 21 to R 24 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted group. When the cycloalkyl group is a cycloalkyl group having 3 to 50 nuclear carbon atoms, or a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, and one or two adjacent alkyl groups are present on the same benzene ring, Adjacent alkyl groups may be bonded to each other to form a substituted or unsubstituted divalent linking group, provided that the adjacent alkyl group forms a 1-naphthyl group together with the benzene ring to which they are bonded. except.
n1 to n4 are each independently an integer of 0 to 5.
R a and R b are each independently a hydrogen atom, a substituted or unsubstituted heterocyclic group having 5 to 50 nucleus atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted nucleus, A cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted nucleus having 6 to 50 carbon atoms An aryloxy group, a substituted or unsubstituted silyl group, a halogen atom, or a cyano group. However, it excludes when R a and R b are hydrogen atoms at the same time.
 R及びRは、好ましくはアルキル基、シクロアルキル基である。
 上記アルキル基は、より好ましくは炭素数1~6のアルキル基であり、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基である。
 上記シクロアルキル基は、より好ましくは炭素数3~6シクロアルキル基であり、例えばシクロプロパニル基、シクロブチル基、シクロペンチル基、シクロヘキシル基である。
R a and R b are preferably an alkyl group or a cycloalkyl group.
The alkyl group is more preferably an alkyl group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, or a t-butyl group.
The cycloalkyl group is more preferably a cycloalkyl group having 3 to 6 carbon atoms, such as a cyclopropanyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
 R21~R24の置換もしくは無置換のアリール基としては、例えば、フェニル基、メチルフェニル基、エチルフェニル基、ビフェニル基、シクロペンチルフェニル基、シクロヘキシルフェニル基、メチルビフェニル基、エチルビフェニル基、シクロペンチルフェニル基、シクロヘキシルビフェニル基、ターフェニル基、ナフチル基、メチルナフチル基、アントリル基、ピレニル基、クリセニル基、フルオランテニル基、ペリレニル基、フルオレニル基等が挙げられ、好ましくはフェニル基、ナフチル基、フルオレニル基である。 Examples of the substituted or unsubstituted aryl group represented by R 21 to R 24 include a phenyl group, a methylphenyl group, an ethylphenyl group, a biphenyl group, a cyclopentylphenyl group, a cyclohexylphenyl group, a methylbiphenyl group, an ethylbiphenyl group, and a cyclopentylphenyl. Group, cyclohexylbiphenyl group, terphenyl group, naphthyl group, methylnaphthyl group, anthryl group, pyrenyl group, chrysenyl group, fluoranthenyl group, perylenyl group, fluorenyl group, etc., preferably phenyl group, naphthyl group, fluorenyl group It is a group.
 R21~R24の置換もしくは無置換のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、2-フェニルイソプロピル基、トリクロロメチル基、トリフルオロメチル基等が挙げられ、好ましくはメチル基、エチル基、プロピル基、tert-ブチル基である。 Examples of the substituted or unsubstituted alkyl group of R 21 to R 24 include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl Group, octyl group, stearyl group, 2-phenylisopropyl group, trichloromethyl group, trifluoromethyl group, and the like. Preferred are methyl group, ethyl group, propyl group, and tert-butyl group.
 同一のベンゼン環(窒素原子に直接結合するベンゼン環)上に1又は2組の隣接するアルキル基がある場合、各隣接するアルキル基は互いに結合して置換もしくは無置換の2価の飽和もしくは不飽和の結合基を形成してもよい。 When there are one or two pairs of adjacent alkyl groups on the same benzene ring (a benzene ring directly bonded to a nitrogen atom), the adjacent alkyl groups are bonded to each other to form a substituted or unsubstituted divalent saturated or unsubstituted group. A saturated linking group may be formed.
 窒素原子に直接結合するベンゼン環と結合基が形成する置換基としては、下記一般式(3-1)~(3-6)で表される母核を形成することが好ましく、これらの母核にはさらにアルキル基、アルケニル基、アルキニル基、アリール基等の置換基を有していてもよい。但し、1-ナフチル基を形成する場合は除く。
Figure JPOXMLDOC01-appb-C000012
 
(式中、A,D,E,G,Jは、それぞれ-CH-、-CR5051-(R50及びR51はそれぞれ置換基を表す)、-O-、-S-、-N-、又は-CO-であり、
 a~hはそれぞれ1~10の整数を表す。
 a,b,c,g,hが2以上の場合は、複数存在するA,D,E,G,Jはそれぞれ同一でも異なっていてもよい。)
As the substituent formed by the bonding group and the benzene ring directly bonded to the nitrogen atom, it is preferable to form a mother nucleus represented by the following general formulas (3-1) to (3-6). May further have a substituent such as an alkyl group, an alkenyl group, an alkynyl group, and an aryl group. However, this does not apply when a 1-naphthyl group is formed.
Figure JPOXMLDOC01-appb-C000012

Wherein A, D, E, G and J are —CH 2 —, —CR 50 R 51 — (R 50 and R 51 each represent a substituent), —O—, —S—, — N- or -CO-
a to h each represents an integer of 1 to 10;
When a, b, c, g, and h are 2 or more, a plurality of A, D, E, G, and J may be the same or different. )
 a~cはそれぞれ5又は6であることが好ましく、d~fはそれぞれ2であることが好ましく、g,hはそれぞれ1であることが好ましい。
 R50、R51の置換基は、好ましくはハロゲン原子、炭素数1から10のアルキル基、炭素数3~10のシクロアルキル基、炭素数7~20のアラルキル基、核炭素数6~14のアリール基、核原子数5~14の複素環基であり、さらに好ましくは炭素数1~6のアルキル基、核炭素数6~14のアリール基である。
a to c are each preferably 5 or 6, d to f are each preferably 2, and g and h are each preferably 1.
The substituent for R 50 and R 51 is preferably a halogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a nucleus having 6 to 14 carbon atoms. An aryl group, a heterocyclic group having 5 to 14 nuclear atoms, and more preferably an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 14 nuclear carbon atoms.
 上記窒素原子に直接結合するベンゼン環と結合基が形成する置換基は、さらに好ましくは下記構造の環である。
Figure JPOXMLDOC01-appb-C000013
 
The substituent formed by the bonding group and the benzene ring directly bonded to the nitrogen atom is more preferably a ring having the following structure.
Figure JPOXMLDOC01-appb-C000013
 R21~R24のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基、シクロノニル基、ビシクロヘプチル基、ビシクロオクチル基、トリシクロヘプチル基、アダマンチル基等が挙げられ、シクロペンチル基、シクロヘキシル基、シクロへプチル基、ビシクロヘプチル基、ビシクロオクチル基、アダマンチル基が好ましい。 Examples of the cycloalkyl group represented by R 21 to R 24 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a bicycloheptyl group, a bicyclooctyl group, and a tricycloheptyl group. A cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a bicycloheptyl group, a bicyclooctyl group, and an adamantyl group.
 R21~R24の置換もしくは無置換のアラルキル基としては、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-クロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキシベンジル基、m-ヒドロキシベンジル基、o-ヒドロキシベンジル基、p-アミノベンジル基、m-アミノベンジル基、o-アミノベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベンジル基、m-シアノベンジル基、o-シアノベンジル基、1-ヒドロキシ-2-フェニルイソプロピル基、1-クロロ-2-フェニルイソプロピル基、α-フェノキシベンジル基、α,α-ジメチルベンジル基、α,α-メチルフェニルベンジル基、α,α-ジトリフルオロメチルベンジル基、トリフェニルメチル基、α-ベンジルオキシベンジル基等が挙げられる。 Examples of the substituted or unsubstituted aralkyl group of R 21 to R 24 include benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, and phenyl-t-butyl. Group, α-naphthylmethyl group, 1-α-naphthylethyl group, 2-α-naphthylethyl group, 1-α-naphthylisopropyl group, 2-α-naphthylisopropyl group, β-naphthylmethyl group, 1-β- Naphthylethyl group, 2-β-naphthylethyl group, 1-β-naphthylisopropyl group, 2-β-naphthylisopropyl group, 1-pyrrolylmethyl group, 2- (1-pyrrolyl) ethyl group, p-methylbenzyl group, m -Methylbenzyl group, o-methylbenzyl group, p-chlorobenzyl group, m-chlorobenzyl group, o-chlorobenzyl group, p-bromine Benzyl group, m-bromobenzyl group, o-bromobenzyl group, p-iodobenzyl group, m-iodobenzyl group, o-iodobenzyl group, p-hydroxybenzyl group, m-hydroxybenzyl group, o-hydroxybenzyl group P-aminobenzyl group, m-aminobenzyl group, o-aminobenzyl group, p-nitrobenzyl group, m-nitrobenzyl group, o-nitrobenzyl group, p-cyanobenzyl group, m-cyanobenzyl group, o -Cyanobenzyl group, 1-hydroxy-2-phenylisopropyl group, 1-chloro-2-phenylisopropyl group, α-phenoxybenzyl group, α, α-dimethylbenzyl group, α, α-methylphenylbenzyl group, α, α-ditrifluoromethylbenzyl group, triphenylmethyl group, α-benzyloxybenzyl group, etc. That.
 R及びRの例としては、後述する式(2)のR~Rと同様のものが挙げられる。 Examples of R a and R b include the same as R 1 to R 8 in the formula (2) described later.
 本発明の好ましい態様において、式(1)のジアミノピレン誘導体は下記式で表される。
Figure JPOXMLDOC01-appb-C000014
 
In a preferred embodiment of the present invention, the diaminopyrene derivative of the formula (1) is represented by the following formula.
Figure JPOXMLDOC01-appb-C000014
 上記式において、R21~R24、R及びRは前記と同様である。R21~R24はそれぞれ同一でも異なっていてもよいが、R21とR23、及び、R22とR24がそれぞれ同一であることが好ましい。また、RとRは同一でも異なっていてもよいが、同一であることが好ましい。 In the above formula, R 21 to R 24 , R a and R b are the same as described above. R 21 to R 24 may be the same or different from each other, but it is preferable that R 21 and R 23 , and R 22 and R 24 are the same. R a and R b may be the same or different, but are preferably the same.
 式(1)で表されるジアミノピレン誘導体の具体例としては、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000029
 
Specific examples of the diaminopyrene derivative represented by the formula (1) include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-C000016

Figure JPOXMLDOC01-appb-C000017

Figure JPOXMLDOC01-appb-C000018

Figure JPOXMLDOC01-appb-C000019

Figure JPOXMLDOC01-appb-C000020

Figure JPOXMLDOC01-appb-C000021

Figure JPOXMLDOC01-appb-C000022

Figure JPOXMLDOC01-appb-C000023

Figure JPOXMLDOC01-appb-C000024

Figure JPOXMLDOC01-appb-C000025

Figure JPOXMLDOC01-appb-C000026

Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028

Figure JPOXMLDOC01-appb-C000029
(アントラセン誘導体)
 有機発光媒体Iに係るアントラセン誘導体は、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000030
 
(式(2)中、Ar11及びAr12は、それぞれ独立に、置換もしくは無置換の核炭素数6~20のアリール基であり、
 R~Rは、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換のシリル基、ハロゲン原子、シアノ基から選ばれる基である。
 但し、Ar11及びAr12の一方が無置換の2-ナフチル基である場合、他方は4-(1-ナフチル)フェニル-1-イル基ではない。
 また、Ar11及びAr12の少なくとも1つが置換もしくは無置換のアントリル基ではない。)
(Anthracene derivative)
An anthracene derivative according to the organic light-emitting medium I is represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000030

(In the formula (2), Ar 11 and Ar 12 are each independently a substituted or unsubstituted aryl group having 6 to 20 nuclear carbon atoms,
R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted group; An alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted carbon group having 7 to 50 carbon atoms. A group selected from an aralkyl group, a substituted or unsubstituted aryloxy group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted silyl group, a halogen atom, and a cyano group.
However, when one of Ar 11 and Ar 12 is an unsubstituted 2-naphthyl group, the other is not a 4- (1-naphthyl) phenyl-1-yl group.
Further, at least one of Ar 11 and Ar 12 is not a substituted or unsubstituted anthryl group. )
 式(2)で表されるアントラセン誘導体は、好ましくはAr11及びAr12の一方が無置換の2-ナフチル基である場合、他方はアリール置換のフェニル基ではない。 In the anthracene derivative represented by the formula (2), preferably when one of Ar 11 and Ar 12 is an unsubstituted 2-naphthyl group, the other is not an aryl-substituted phenyl group.
 本発明に係るアントラセン誘導体は、下記アントラセン誘導体(A)、(B)、及び(C)のいずれかであることが好ましく、適用する有機EL素子の構成や求める特性により選択される。 The anthracene derivative according to the present invention is preferably any of the following anthracene derivatives (A), (B), and (C), and is selected depending on the configuration of the organic EL element to be applied and the required characteristics.
(アントラセン誘導体(A))
 当該アントラセン誘導体は、式(2)におけるAr11及びAr12が、それぞれ独立に、置換もしくは無置換の核炭素数10~20の縮合アリール基となっている。当該アントラセン誘導体としては、Ar11及びAr12が同一の置換もしくは無置換の縮合アリール基である場合、及び異なる置換もしくは無置換の縮合アリール基である場合に分けることができる。
 具体的には、下記式(2-1)~(2-3)で表されるアントラセン誘導体、及び式(2)におけるAr11及びAr12が異なる置換もしくは無置換の縮合アリール基であるアントラセン誘導体が挙げられる。
(Anthracene derivative (A))
In the anthracene derivative, Ar 11 and Ar 12 in the formula (2) are each independently a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms. The anthracene derivative can be classified into a case where Ar 11 and Ar 12 are the same substituted or unsubstituted condensed aryl group and a case where they are different substituted or unsubstituted condensed aryl groups.
Specifically, anthracene derivatives represented by the following formulas (2-1) to (2-3) and anthracene derivatives in which Ar 11 and Ar 12 in formula (2) are different substituted or unsubstituted condensed aryl groups Is mentioned.
 下記式(2-1)で表されるアントラセン誘導体は、Ar11及びAr12が、置換もしくは無置換の9-フェナントレニル基となっている。
Figure JPOXMLDOC01-appb-C000031
 
(式(2-1)中、R~Rは前記と同様であり、
 R11は水素原子、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換の核炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基及びヒドロキシル基から選ばれる基であり、
 aは0~9の整数である。aが2以上の整数の場合、複数あるR11は、2つの置換もしくは無置換のフェナントレニル基が同一であることを条件に、それぞれが同一でも異なっていてもよい。)
In the anthracene derivative represented by the following formula (2-1), Ar 11 and Ar 12 are substituted or unsubstituted 9-phenanthrenyl groups.
Figure JPOXMLDOC01-appb-C000031

(In the formula (2-1), R 1 to R 8 are the same as above,
R 11 represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms. Substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, substituted or unsubstituted Aryloxy group having 6 to 50 nuclear carbon atoms, substituted or unsubstituted arylthio group having 6 to 50 nuclear carbon atoms, substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, substituted or unsubstituted silyl group, carboxyl A group selected from a group, a halogen atom, a cyano group, a nitro group and a hydroxyl group,
a is an integer of 0 to 9. When a is an integer of 2 or more, a plurality of R 11 s may be the same or different on condition that two substituted or unsubstituted phenanthrenyl groups are the same. )
 下記式(2-2)で表されるアントラセン誘導体は、式(2)におけるAr11及びAr12が、置換もしくは無置換の2-ナフチル基となっている。
Figure JPOXMLDOC01-appb-C000032
 
(式(2-2)中、R~R及びR11は前記と同様であり、
 bは1~7の整数である。bが2以上の整数の場合、複数あるR11は、2つの置換もしくは無置換の2-ナフチル基が同一であることを条件に、それぞれが同一でも異なっていてもよい。)
In the anthracene derivative represented by the following formula (2-2), Ar 11 and Ar 12 in the formula (2) are substituted or unsubstituted 2-naphthyl groups.
Figure JPOXMLDOC01-appb-C000032

(In the formula (2-2), R 1 to R 8 and R 11 are the same as above,
b is an integer of 1 to 7. When b is an integer of 2 or more, a plurality of R 11 may be the same or different on condition that two substituted or unsubstituted 2-naphthyl groups are the same. )
 下記式(2-3)で表されるアントラセン誘導体は、式(2)におけるAr11及びAr12が、置換もしくは無置換の1-ナフチル基となっている。
Figure JPOXMLDOC01-appb-C000033
 
(式(2-2)中、R~R、R11及びbは前記と同様である。また、bが2以上の整数の場合、複数あるR11は、2つの置換もしくは無置換の1-ナフチル基が同一であることを条件に、それぞれが同一でも異なっていてもよい。)
In the anthracene derivative represented by the following formula (2-3), Ar 11 and Ar 12 in the formula (2) are substituted or unsubstituted 1-naphthyl groups.
Figure JPOXMLDOC01-appb-C000033

(In the formula (2-2), R 1 to R 8 , R 11 and b are the same as described above. When b is an integer of 2 or more, a plurality of R 11 are two substituted or unsubstituted. Each may be the same or different, provided that the 1-naphthyl groups are the same.)
 式(2)におけるAr11及びAr12が異なる置換もしくは無置換の縮合アリール基であるアントラセン誘導体としては、置換もしくは無置換の9-フェナントレニル基、置換もしくは無置換の1-ナフチル基、及び置換もしくは無置換の2-ナフチル基のいずれかであることが好ましい。
 具体的には、Ar11が1-ナフチル基、及びAr12が2-ナフチル基である場合、Ar11が1-ナフチル基及びAr12が9-フェナントリル基である場合、並びにAr11が2-ナフチル基及びAr12が9-フェナントリル基である場合である。
Examples of the anthracene derivative in which Ar 11 and Ar 12 in Formula (2) are different substituted or unsubstituted condensed aryl groups include a substituted or unsubstituted 9-phenanthrenyl group, a substituted or unsubstituted 1-naphthyl group, and substituted or unsubstituted It is preferably any one of unsubstituted 2-naphthyl groups.
Specifically, when Ar 11 is a 1-naphthyl group and Ar 12 is a 2-naphthyl group, Ar 11 is a 1-naphthyl group and Ar 12 is a 9-phenanthryl group, and Ar 11 is 2- This is the case where the naphthyl group and Ar 12 are a 9-phenanthryl group.
(アントラセン誘導体(B))
 当該アントラセン誘導体は、式(2)におけるAr11及びAr12の一方が置換もしくは無置換のフェニル基であり、他方が置換もしくは無置換の核炭素数10~20の縮合アリール基となっている。当該アントラセン誘導体としては、具体的には、下記式(2-4)及び(2-5)で表されるアントラセン誘導体が挙げられる。
(Anthracene derivative (B))
In the anthracene derivative, one of Ar 11 and Ar 12 in Formula (2) is a substituted or unsubstituted phenyl group, and the other is a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms. Specific examples of the anthracene derivative include anthracene derivatives represented by the following formulas (2-4) and (2-5).
 下記式(2-4)で表されるアントラセン誘導体は、式(2)におけるAr11が置換もしくは無置換の1-ナフチル基であり、Ar12が、置換もしくは無置換のフェニル基となっている。
Figure JPOXMLDOC01-appb-C000034
 
(式(2-4)中、R~R、R11及びbは前記と同様であり、
 Arは置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核原子数5~50の複素環基、9,9-ジメチルフルオレン-1-イル基、9,9-ジメチルフルオレン-2-イル基、9,9-ジメチルフルオレン-3-イル基、9,9-ジメチルフルオレン-4-イル基、ジベンゾフラン-1-イル基、ジベンゾフラン-2-イル基、ジベンゾフラン-3-イル基、又はジベンゾフラン-4-イル基である。また、Arはそれが結合しているベンゼン環と共に、置換もしくは無置換のフルオレニル基又は置換もしくは無置換のジベンゾフルオレニル基を形成していてもよい。bが2以上の整数の場合、複数あるR11は、それぞれが同一でも異なっていてもよい。)
In the anthracene derivative represented by the following formula (2-4), Ar 11 in the formula (2) is a substituted or unsubstituted 1-naphthyl group, and Ar 12 is a substituted or unsubstituted phenyl group. .
Figure JPOXMLDOC01-appb-C000034

(In the formula (2-4), R 1 to R 8 , R 11 and b are the same as above,
Ar 6 is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted group Or an unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nucleus atoms, a 9,9-dimethylfluoren-1-yl group, or a 9,9-dimethylfluorene-2- Yl group, 9,9-dimethylfluoren-3-yl group, 9,9-dimethylfluoren-4-yl group, dibenzofuran-1-yl group, dibenzofuran-2-yl group, dibenzofuran-3-yl group, or dibenzofuran It is a -4-yl group. Ar 6 may form a substituted or unsubstituted fluorenyl group or a substituted or unsubstituted dibenzofluorenyl group together with the benzene ring to which Ar 6 is bonded. When b is an integer of 2 or more, the plurality of R 11 may be the same or different. )
 下記式(2-5)で表されるアントラセン誘導体は、式(2)におけるAr11が置換もしくは無置換の2-ナフチル基であり、Ar12が、置換もしくは無置換のフェニル基となっている。
Figure JPOXMLDOC01-appb-C000035
 
(式(2-5)中、R~R、R11及びbは前記と同様であり、
 Arは、置換もしくは無置換の核炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核原子数5~50の複素環基、ジベンゾフラン-1-イル基、ジベンゾフラン-2-イル基、ジベンゾフラン-3-イル基、又はジベンゾフラン-4-イル基である。また、Arはそれが結合しているベンゼン環と共に、置換もしくは無置換のフルオレニル基又は置換もしくは無置換のジベンゾフルオレニル基を形成していてもよい。bが2以上の整数の場合、複数あるR11は、それぞれが同一でも異なっていてもよい。
 但し、Arは、隣接するフェニレン基と共に4-(1-ナフチル)フェニル-1-イル基を形成する場合を除く。)
In the anthracene derivative represented by the following formula (2-5), Ar 11 in the formula (2) is a substituted or unsubstituted 2-naphthyl group, and Ar 12 is a substituted or unsubstituted phenyl group .
Figure JPOXMLDOC01-appb-C000035

(In the formula (2-5), R 1 to R 8 , R 11 and b are the same as above,
Ar 7 is a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted group Alternatively, it is an unsubstituted heterocyclic group having 5 to 50 nucleus atoms, a dibenzofuran-1-yl group, a dibenzofuran-2-yl group, a dibenzofuran-3-yl group, or a dibenzofuran-4-yl group. Ar 7 may form a substituted or unsubstituted fluorenyl group or a substituted or unsubstituted dibenzofluorenyl group together with the benzene ring to which Ar 7 is bonded. When b is an integer of 2 or more, the plurality of R 11 may be the same or different.
However, Ar 7 excludes the case where 4- (1-naphthyl) phenyl-1-yl group is formed with the adjacent phenylene group. )
(アントラセン誘導体(C))
 当該アントラセン誘導体は、下記式(2-6)で表され、具体的には、下記式(2-6-1)、(2-6-2)及び(2-6-3)のいずれかで表される誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000036
 
(式(2-6)中、R~R及びArは前記と同様であり、
 Arは置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、又は置換もしくは無置換の核原子数5~50の複素環基であり、ArとArはそれぞれ独立に選択される。)
Figure JPOXMLDOC01-appb-C000037
 
(式(2-6-1)中、R~Rは前記と同様である。)
Figure JPOXMLDOC01-appb-C000038
 
(式(2-6-2)中、R~Rは前記と同様である。Arは置換もしくは無置換の核炭素数10~20の縮合アリール基である。)
Figure JPOXMLDOC01-appb-C000039
 
(式(2-6-3)中、R~Rは式(2)と同様である。
 Ar5a及びAr6aはそれぞれ独立に、置換もしくは無置換の核炭素数10~20の縮合アリール基である。)
(Anthracene derivative (C))
The anthracene derivative is represented by the following formula (2-6), specifically, any one of the following formulas (2-6-1), (2-6-2), and (2-6-3) It is preferable that it is a derivative represented.
Figure JPOXMLDOC01-appb-C000036

(In the formula (2-6), R 1 to R 8 and Ar 6 are the same as above,
Ar 5 is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted group Alternatively, it is an unsubstituted aralkyl group having 7 to 50 carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, and Ar 5 and Ar 6 are each independently selected. )
Figure JPOXMLDOC01-appb-C000037

(In formula (2-6-1), R 1 to R 8 are as defined above.)
Figure JPOXMLDOC01-appb-C000038

(In formula (2-6-2), R 1 to R 8 are the same as described above. Ar 8 is a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms.)
Figure JPOXMLDOC01-appb-C000039

(In the formula (2-6-3), R 1 to R 8 are the same as in the formula (2).
Ar 5a and Ar 6a are each independently a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms. )
 Ar11、Ar12の置換もしくは無置換の核炭素数6~20のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、6-クリセニル基、1-ベンゾ[c]フェナントリル基、2-ベンゾ[c]フェナントリル基、3-ベンゾ[c]フェナントリル基、4-ベンゾ[c]フェナントリル基、5-ベンゾ[c]フェナントリル基、6-ベンゾ[c]フェナントリル基、1-ベンゾ[g]クリセニル基、2-ベンゾ[g]クリセニル基、3-ベンゾ[g]クリセニル基、4-ベンゾ[g]クリセニル基、5-ベンゾ[g]クリセニル基、6-ベンゾ[g]クリセニル基、7-ベンゾ[g]クリセニル基、8-ベンゾ[g]クリセニル基、9-ベンゾ[g]クリセニル基、10-ベンゾ[g]クリセニル基、11-ベンゾ[g]クリセニル基、12-ベンゾ[g]クリセニル基、13-ベンゾ[g]クリセニル基、14-ベンゾ[g]クリセニル基、1-トリフェニル基、2-トリフェニル基、2-フルオレニル基、9,9-ジメチルフルオレン-2-イル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(2-フェニルプロピル)フェニル基、3-メチル-2-ナフチル基、4-メチル-1-ナフチル基、4-メチル-1-アントリル基、4’-メチルビフェニルイル基、4”-t-ブチル-p-ターフェニル-4-イル基等が挙げられる。好ましくは、置換フェニル基及び置換もしくは無置換の核炭素数10~14のアリール基(例えば、1-ナフチル基、2-ナフチル基、9-フェナントリル基)である。 Examples of the substituted or unsubstituted aryl group having 6 to 20 nuclear carbon atoms of Ar 11 and Ar 12 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, and a 9-anthryl group. 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group 4-pyrenyl group, 6-chrycenyl group, 1-benzo [c] phenanthryl group, 2-benzo [c] phenanthryl group, 3-benzo [c] phenanthryl group, 4-benzo [c] phenanthryl group, 5-benzo [C] phenanthryl group, 6-benzo [c] phenanthryl group, 1-benzo [g] chrysenyl group, 2-benzo [g] group Senyl group, 3-benzo [g] chrysenyl group, 4-benzo [g] chrysenyl group, 5-benzo [g] chrysenyl group, 6-benzo [g] chrysenyl group, 7-benzo [g] chrysenyl group, 8- Benzo [g] chrysenyl group, 9-benzo [g] chrysenyl group, 10-benzo [g] chrysenyl group, 11-benzo [g] chrysenyl group, 12-benzo [g] chrysenyl group, 13-benzo [g] chrysenyl group Group, 14-benzo [g] chrysenyl group, 1-triphenyl group, 2-triphenyl group, 2-fluorenyl group, 9,9-dimethylfluoren-2-yl group, benzofluorenyl group, dibenzofluorenyl Group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphe Ru-2-yl, m-terphenyl-4-yl, m-terphenyl-3-yl, m-terphenyl-2-yl, o-tolyl, m-tolyl, p-tolyl Group, pt-butylphenyl group, p- (2-phenylpropyl) phenyl group, 3-methyl-2-naphthyl group, 4-methyl-1-naphthyl group, 4-methyl-1-anthryl group, 4 ′ -Methylbiphenylyl group, 4 ″ -t-butyl-p-terphenyl-4-yl group and the like. Preferably, a substituted phenyl group and a substituted or unsubstituted aryl group having 10 to 14 nuclear carbon atoms (for example, 1-naphthyl group, 2-naphthyl group, 9-phenanthryl group).
 また、Ar5a、Ar6a及びArの置換もしくは無置換の核炭素数10~20の縮合アリール基としては、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基等が挙げられる。特に、1-ナフチル基、2-ナフチル基、9-フェナントリル基が好ましい。 In addition, Ar 5a , Ar 6a and Ar 8 substituted or unsubstituted condensed aryl groups having 10 to 20 nuclear carbon atoms include 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9 -Anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2 -Pyrenyl group, 4-pyrenyl group, 2-fluorenyl group and the like can be mentioned. In particular, a 1-naphthyl group, a 2-naphthyl group, and a 9-phenanthryl group are preferable.
 R~R、R11、Ar及びArの置換もしくは無置換の炭素数6~50のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(2-フェニルプロピル)フェニル基、3-メチル-2-ナフチル基、4-メチル-1-ナフチル基、4-メチル-1-アントリル基、4’-メチルビフェニルイル基、4”-t-ブチル-p-ターフェニル-4-イル基等が挙げられる。 Examples of the substituted or unsubstituted aryl group having 6 to 50 carbon atoms of R 1 to R 8 , R 11 , Ar 5 and Ar 6 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, 2 -Anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1 -Pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl Group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o- A tolyl group, m-tolyl group, p-tolyl group, pt-butylphenyl group, p- (2-phenylpropyl) phenyl group, 3-methyl-2-naphthyl group, 4-methyl-1-naphthyl group, 4-methyl-1-anthryl group, 4′-methylbiphenylyl group, 4 ″ -t-butyl-p-terphenyl-4-yl group and the like.
 R~R、R11及びAr~Arの置換もしくは無置換の核原子数5~50の複素環基としては、1-ピロリル基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、1-インドリル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、2-イソインドリル基、3-イソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イソベンゾフラニル基、7-イソベンゾフラニル基、1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチオフェニル基、2-ジベンゾチオフェニル基、3-ジベンゾチオフェニル基、4-ジベンゾチオフェニル基、キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基、1-フェナントリジニル基、2-フェナントリジニル基、3-フェナントリジニル基、4-フェナントリジニル基、6-フェナントリジニル基、7-フェナントリジニル基、8-フェナントリジニル基、9-フェナントリジニル基、10-フェナントリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリジニル基、1,7-フェナントロリン-2-イル基、1,7-フェナントロリン-3-イル基、1,7-フェナントロリン-4-イル基、1,7-フェナントロリン-5-イル基、1,7-フェナントロリン-6-イル基、1,7-フェナントロリン-8-イル基、1,7-フェナントロリン-9-イル基、1,7-フェナントロリン-10-イル基、1,8-フェナントロリン-2-イル基、1,8-フェナントロリン-3-イル基、1,8-フェナントロリン-4-イル基、1,8-フェナントロリン-5-イル基、1,8-フェナントロリン-6-イル基、1,8-フェナントロリン-7-イル基、1,8-フェナントロリン-9-イル基、1,8-フェナントロリン-10-イル基、1,9-フェナントロリン-2-イル基、1,9-フェナントロリン-3-イル基、1,9-フェナントロリン-4-イル基、1,9-フェナントロリン-5-イル基、1,9-フェナントロリン-6-イル基、1,9-フェナントロリン-7-イル基、1,9-フェナントロリン-8-イル基、1,9-フェナントロリン-10-イル基、1,10-フェナントロリン-2-イル基、1,10-フェナントロリン-3-イル基、1,10-フェナントロリン-4-イル基、1,10-フェナントロリン-5-イル基、2,9-フェナントロリン-1-イル基、2,9-フェナントロリン-3-イル基、2,9-フェナントロリン-4-イル基、2,9-フェナントロリン-5-イル基、2,9-フェナントロリン-6-イル基、2,9-フェナントロリン-7-イル基、2,9-フェナントロリン-8-イル基、2,9-フェナントロリン-10-イル基、2,8-フェナントロリン-1-イル基、2,8-フェナントロリン-3-イル基、2,8-フェナントロリン-4-イル基、2,8-フェナントロリン-5-イル基、2,8-フェナントロリン-6-イル基、2,8-フェナントロリン-7-イル基、2,8-フェナントロリン-9-イル基、2,8-フェナントロリン-10-イル基、2,7-フェナントロリン-1-イル基、2,7-フェナントロリン-3-イル基、2,7-フェナントロリン-4-イル基、2,7-フェナントロリン-5-イル基、2,7-フェナントロリン-6-イル基、2,7-フェナントロリン-8-イル基、2,7-フェナントロリン-9-イル基、2,7-フェナントロリン-10-イル基、1-フェナジニル基、2-フェナジニル基、1-フェノチアジニル基、2-フェノチアジニル基、3-フェノチアジニル基、4-フェノチアジニル基、10-フェノチアジニル基、1-フェノキサジニル基、2-フェノキサジニル基、3-フェノキサジニル基、4-フェノキサジニル基、10-フェノキサジニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、2-オキサジアゾリル基、5-オキサジアゾリル基、3-フラザニル基、2-チエニル基、3-チエニル基、2-メチルピロール-1-イル基、2-メチルピロール-3-イル基、2-メチルピロール-4-イル基、2-メチルピロール-5-イル基、3-メチルピロール-1-イル基、3-メチルピロール-2-イル基、3-メチルピロール-4-イル基、3-メチルピロール-5-イル基、2-t-ブチルピロール-4-イル基、3-(2-フェニルプロピル)ピロール-1-イル基、2-メチル-1-インドリル基、4-メチル-1-インドリル基、2-メチル-3-インドリル基、4-メチル-3-インドリル基、2-t-ブチル-1-インドリル基、4-t-ブチル-1-インドリル基、2-t-ブチル-3-インドリル基、4-t-ブチル-3-インドリル基等が挙げられる。 Examples of the substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms of R 1 to R 8 , R 11 and Ar 5 to Ar 7 include 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, pyrazinyl group 2-pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 1-indolyl group, 2-indolyl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7-indolyl group 1-isoindolyl group, 2-isoindolyl group, 3-isoindolyl group, 4-isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 2-furyl group, 3-furyl group, 2-benzofuranyl group 3-benzofuranyl group, 4-benzofuranyl group, 5-benzofuranyl group, 6-benzofuranyl group, 7-benzofuranyl group, 1-isofuranyl group Zofuranyl group, 3-isobenzofuranyl group, 4-isobenzofuranyl group, 5-isobenzofuranyl group, 6-isobenzofuranyl group, 7-isobenzofuranyl group, 1-dibenzofuranyl group, 2-dibenzofuranyl group, 3-dibenzofuranyl group, 4-dibenzofuranyl group, 1-dibenzothiophenyl group, 2-dibenzothiophenyl group, 3-dibenzothiophenyl group, 4-dibenzothiophenyl group, quinolyl Group, 3-quinolyl group, 4-quinolyl group, 5-quinolyl group, 6-quinolyl group, 7-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 3-isoquinolyl group, 4-isoquinolyl group, 5-isoquinolyl group Group, 6-isoquinolyl group, 7-isoquinolyl group, 8-isoquinolyl group, 2-quinoxalinyl group, 5-quinoxalinyl group, 6-quinoxalinyl group, 1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, 9-carbazolyl group, 1-phenanthridinyl group, 2-phenanthridinyl group, 3-phenanthridinyl group, 4 -Phenanthridinyl group, 6-phenanthridinyl group, 7-phenanthridinyl group, 8-phenanthridinyl group, 9-phenanthridinyl group, 10-phenanthridinyl group, 1-acridinyl group Group, 2-acridinyl group, 3-acridinyl group, 4-acridinyl group, 9-acridinyl group, 1,7-phenanthrolin-2-yl group, 1,7-phenanthroline-3-yl group, 1,7-phenanthroline- 4-yl group, 1,7-phenanthroline-5-yl group, 1,7-phenanthroline-6-yl group, 1,7-phenanthroline-8-yl group, 1 7-phenanthroline-9-yl group, 1,7-phenanthroline-10-yl group, 1,8-phenanthroline-2-yl group, 1,8-phenanthroline-3-yl group, 1,8-phenanthroline-4- Yl group, 1,8-phenanthroline-5-yl group, 1,8-phenanthroline-6-yl group, 1,8-phenanthroline-7-yl group, 1,8-phenanthroline-9-yl group, 1,8 -Phenanthroline-10-yl group, 1,9-phenanthroline-2-yl group, 1,9-phenanthroline-3-yl group, 1,9-phenanthroline-4-yl group, 1,9-phenanthroline-5-yl group Group, 1,9-phenanthroline-6-yl group, 1,9-phenanthroline-7-yl group, 1,9-phenanthroline-8-yl group, 1,9-phenant Rin-10-yl group, 1,10-phenanthroline-2-yl group, 1,10-phenanthroline-3-yl group, 1,10-phenanthroline-4-yl group, 1,10-phenanthroline-5-yl group 2,9-phenanthroline-1-yl group, 2,9-phenanthroline-3-yl group, 2,9-phenanthroline-4-yl group, 2,9-phenanthroline-5-yl group, 2,9-phenanthroline -6-yl group, 2,9-phenanthroline-7-yl group, 2,9-phenanthroline-8-yl group, 2,9-phenanthroline-10-yl group, 2,8-phenanthroline-1-yl group, 2,8-phenanthroline-3-yl group, 2,8-phenanthroline-4-yl group, 2,8-phenanthroline-5-yl group, 2,8-phenanthroline-6 -Yl group, 2,8-phenanthroline-7-yl group, 2,8-phenanthroline-9-yl group, 2,8-phenanthroline-10-yl group, 2,7-phenanthroline-1-yl group, 2, 7-phenanthroline-3-yl group, 2,7-phenanthroline-4-yl group, 2,7-phenanthroline-5-yl group, 2,7-phenanthroline-6-yl group, 2,7-phenanthroline-8- Yl group, 2,7-phenanthroline-9-yl group, 2,7-phenanthroline-10-yl group, 1-phenazinyl group, 2-phenazinyl group, 1-phenothiazinyl group, 2-phenothiazinyl group, 3-pheno Thiazinyl group, 4-phenothiazinyl group, 10-phenothiazinyl group, 1-phenoxazinyl group, 2-phenoxazinyl group, 3-phenoxazinyl group, -Phenoxazinyl group, 10-phenoxazinyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 2-oxadiazolyl group, 5-oxadiazolyl group, 3-flazanyl group, 2-thienyl group, 3-thienyl group, 2 -Methylpyrrol-1-yl group, 2-methylpyrrol-3-yl group, 2-methylpyrrol-4-yl group, 2-methylpyrrol-5-yl group, 3-methylpyrrol-1-yl group, 3 -Methylpyrrol-2-yl group, 3-methylpyrrol-4-yl group, 3-methylpyrrol-5-yl group, 2-t-butylpyrrol-4-yl group, 3- (2-phenylpropyl) pyrrole -1-yl group, 2-methyl-1-indolyl group, 4-methyl-1-indolyl group, 2-methyl-3-indolyl group, 4-methyl-3-indolyl group , 2-t-butyl-1-indolyl group, 4-t-butyl-1-indolyl group, 2-t-butyl-3-indolyl group, and 4-t-butyl-3-indolyl group and the like.
 R~R、R11及びAr~Arの置換もしくは無置換の炭素数1~50のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒドロキシ-t-ブチル基、1,2,3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3-ジクロロ-t-ブチル基、1,2,3-トリクロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1,2-ジブロモエチル基、1,3-ジブロモイソプロピル基、2,3-ジブロモ-t-ブチル基、1,2,3-トリブロモプロピル基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1,2-ジヨードエチル基、1,3-ジヨードイソプロピル基、2,3-ジヨード-t-ブチル基、1,2,3-トリヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1,2-ジアミノエチル基、1,3-ジアミノイソプロピル基、2,3-ジアミノ-t-ブチル基、1,2,3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプロピル基、2,3-ジシアノ-t-ブチル基、1,2,3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1,2-ジニトロエチル基、1,3-ジニトロイソプロピル基、2,3-ジニトロ-t-ブチル基、1,2,3-トリニトロプロピル基等が挙げられる。 Examples of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms of R 1 to R 8 , R 11 and Ar 5 to Ar 7 include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s- Butyl, isobutyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2-hydroxy Isobutyl group, 1,2-dihydroxyethyl group, 1,3-dihydroxyisopropyl group, 2,3-dihydroxy-t-butyl group, 1,2,3-trihydroxypropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 2-chloroisobutyl group, 1,2-dichloroethyl group, 1,3-dichloroisopropyl group, 2,3-dichloro-t-butyl Group, 1,2,3-trichloropropyl group, bromomethyl group, 1-bromoethyl group, 2-bromoethyl group, 2-bromoisobutyl group, 1,2-dibromoethyl group, 1,3-dibromoisopropyl group, 2, 3-dibromo-t-butyl group, 1,2,3-tribromopropyl group, iodomethyl group, 1-iodoethyl group, 2-iodoethyl group, 2-iodoisobutyl group, 1,2-diiodoethyl group, 1,3- Diiodoisopropyl group, 2,3-diiodo-t-butyl group, 1,2,3-triiodopropyl group, aminomethyl group, 1-aminoethyl group, 2-aminoethyl group, 2-aminoisobutyl group, 1 , 2-diaminoethyl group, 1,3-diaminoisopropyl group, 2,3-diamino-t-butyl group, 1,2,3-triaminopropyl group, cyanomethyl group 1-cyanoethyl group, 2-cyanoethyl group, 2-cyanoisobutyl group, 1,2-dicyanoethyl group, 1,3-dicyanoisopropyl group, 2,3-dicyano-t-butyl group, 1,2,3- Tricyanopropyl group, nitromethyl group, 1-nitroethyl group, 2-nitroethyl group, 2-nitroisobutyl group, 1,2-dinitroethyl group, 1,3-dinitroisopropyl group, 2,3-dinitro-t-butyl group 1,2,3-trinitropropyl group and the like.
 R~R、R11及びAr~Arの置換基の置換もしくは無置換の核炭素数3~50のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等が挙げられる。 Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms of the substituents R 1 to R 8 , R 11 and Ar 5 to Ar 7 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, 4 -Methylcyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group, 2-norbornyl group and the like.
 R~R及びR11の置換もしくは無置換の炭素数1~50のアルコキシ基は-OZで表される基であり、Zは、前記R~Rの置換もしくは無置換の炭素数1~50のアルキル基から選択される。 The substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms of R 1 to R 8 and R 11 is a group represented by —OZ, and Z is the substituted or unsubstituted carbon number of R 1 to R 8. Selected from 1 to 50 alkyl groups.
 R~R、R11及びAr~Arの置換基の置換もしくは無置換の炭素数7~50アラルキル基(アリール部分は炭素数6~49、アルキル部分は炭素数1~44)としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-クロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキシベンジル基、m-ヒドロキシベンジル基、o-ヒドロキシベンジル基、p-アミノベンジル基、m-アミノベンジル基、o-アミノベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベンジル基、m-シアノベンジル基、o-シアノベンジル基、1-ヒドロキシ-2-フェニルイソプロピル基、1-クロロ-2-フェニルイソプロピル基等が挙げられる。 R 1 ~ R 8, R 11 and Ar 5 ~ Ar number 7 carbon atoms of the substituted or unsubstituted substituent 7-50 aralkyl group (the aryl moiety having 6 to 49 alkyl moiety is a number 1-44 carbon atoms) as Are benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group, α-naphthylmethyl group, 1-α-naphthylethyl group, 2-α-naphthylethyl group, 1-α-naphthylisopropyl group, 2-α-naphthylisopropyl group, β-naphthylmethyl group, 1-β-naphthylethyl group, 2-β-naphthylethyl group, 1-β- Naphthylisopropyl group, 2-β-naphthylisopropyl group, 1-pyrrolylmethyl group, 2- (1-pyrrolyl) ethyl group, p-methylbenzyl group, m-methylbenzyl Group, o-methylbenzyl group, p-chlorobenzyl group, m-chlorobenzyl group, o-chlorobenzyl group, p-bromobenzyl group, m-bromobenzyl group, o-bromobenzyl group, p-iodobenzyl group, m-iodobenzyl group, o-iodobenzyl group, p-hydroxybenzyl group, m-hydroxybenzyl group, o-hydroxybenzyl group, p-aminobenzyl group, m-aminobenzyl group, o-aminobenzyl group, p- Nitrobenzyl group, m-nitrobenzyl group, o-nitrobenzyl group, p-cyanobenzyl group, m-cyanobenzyl group, o-cyanobenzyl group, 1-hydroxy-2-phenylisopropyl group, 1-chloro-2- A phenyl isopropyl group etc. are mentioned.
 R~R及びR11の置換もしくは無置換の核炭素数6~50のアリールオキシ基は、-OYと表され、Yは、前記R~Rの置換もしくは無置換の核炭素数6~50のアリール基から選ばれる。 The substituted or unsubstituted aryloxy group having 6 to 50 nuclear carbon atoms of R 1 to R 8 and R 11 is represented as —OY, and Y represents the substituted or unsubstituted nuclear carbon number of the above R 1 to R 8. Selected from 6 to 50 aryl groups.
 R11の置換もしくは無置換の核炭素数6~50のアリールチオ基は、-SYと表され、Yは、前記R~Rの置換もしくは無置換の核炭素数6~50のアリール基から選ばれる。 The substituted or unsubstituted arylthio group having 6 to 50 nuclear carbon atoms represented by R 11 is represented by —SY, and Y represents the substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms represented by R 1 to R 8. To be elected.
 R11の置換もしくは無置換の炭素数2~50アルコキシカルボニル基(アルキル部分は炭素数1~49)は-COOZと表され、Zは、前記R~Rの置換もしくは無置換の炭素数1~49のアルキル基から選ばれる。 The substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms of R 11 (the alkyl part has 1 to 49 carbon atoms) is represented as —COOZ, and Z is the substituted or unsubstituted carbon number of R 1 to R 8. It is selected from 1 to 49 alkyl groups.
 R~R及びR11の置換シリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、トリフェニルシリル基等が挙げられる。 Examples of the substituted silyl group of R 1 to R 8 and R 11 include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, and a triphenylsilyl group.
 R~R及びR11のハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられる。 Examples of the halogen atom for R 1 to R 8 and R 11 include fluorine, chlorine, bromine, iodine and the like.
 上述の式(2)、式(2-1)~(2-6)、式(2-6-1)、(2-6-2)及び(2-6-3)で表されるアントラセン誘導体において、好ましくはR~Rの全てが水素原子である。 Anthracene derivatives represented by the above formula (2), formula (2-1) to (2-6), formula (2-6-1), (2-6-2) and (2-6-3) Preferably, all of R 1 to R 8 are hydrogen atoms.
 式(2)で表されるアントラセン誘導体の具体例としては、下記式で表される誘導体が挙げられる。
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-C000044
 
Figure JPOXMLDOC01-appb-C000045
 
Figure JPOXMLDOC01-appb-C000046
 
Figure JPOXMLDOC01-appb-C000047
 
Figure JPOXMLDOC01-appb-C000048
 
Figure JPOXMLDOC01-appb-C000049
 
Figure JPOXMLDOC01-appb-C000050
 
Figure JPOXMLDOC01-appb-C000051
 
Figure JPOXMLDOC01-appb-C000052
 
Figure JPOXMLDOC01-appb-C000053
 
Figure JPOXMLDOC01-appb-C000054
 
Figure JPOXMLDOC01-appb-C000055
 
Figure JPOXMLDOC01-appb-C000056
 
Figure JPOXMLDOC01-appb-C000057
 
Figure JPOXMLDOC01-appb-C000058
 
Figure JPOXMLDOC01-appb-C000059
 
Specific examples of the anthracene derivative represented by the formula (2) include derivatives represented by the following formula.
Figure JPOXMLDOC01-appb-C000040

Figure JPOXMLDOC01-appb-C000041

Figure JPOXMLDOC01-appb-C000042

Figure JPOXMLDOC01-appb-C000043

Figure JPOXMLDOC01-appb-C000044

Figure JPOXMLDOC01-appb-C000045

Figure JPOXMLDOC01-appb-C000046

Figure JPOXMLDOC01-appb-C000047

Figure JPOXMLDOC01-appb-C000048

Figure JPOXMLDOC01-appb-C000049

Figure JPOXMLDOC01-appb-C000050

Figure JPOXMLDOC01-appb-C000051

Figure JPOXMLDOC01-appb-C000052

Figure JPOXMLDOC01-appb-C000053

Figure JPOXMLDOC01-appb-C000054

Figure JPOXMLDOC01-appb-C000055

Figure JPOXMLDOC01-appb-C000056

Figure JPOXMLDOC01-appb-C000057

Figure JPOXMLDOC01-appb-C000058

Figure JPOXMLDOC01-appb-C000059
 式(1)で表されるジアミノピレン誘導体は、例えば、市販のピレンを臭素化することにより得られるジブロモピレンに既知の方法で置換基を導入した後、再び臭素化し、金属触媒下、対応する2級アミン化合物と反応させることによって合成することができる。また、式(2)で表されるアントラセン誘導体は、例えば、WO2004/018587号公報記載の方法によって合成することができる。 The diaminopyrene derivative represented by the formula (1) is, for example, introduced into a dibromopyrene obtained by bromination of commercially available pyrene by a known method, then brominated again, and correspondingly reacted under a metal catalyst. It can be synthesized by reacting with a secondary amine compound. Moreover, the anthracene derivative represented by Formula (2) is compoundable by the method of WO2004 / 018587, for example.
 本発明の有機発光媒体は、既述のような式(1)で表されるジアミノピレン誘導体式(2)で表されるアントラセン誘導体が共存した状態となっている。
 式(1)で表されるジアミノピレン誘導体と式(2)で表されるアントラセン誘導体との質量比は、50:50~0.1:99.9であることが好ましく、20:80~1:99であることがより好ましい。
The organic light-emitting medium of the present invention is in a state in which the anthracene derivative represented by the diaminopyrene derivative represented by the formula (1) as described above coexists.
The mass ratio of the diaminopyrene derivative represented by the formula (1) and the anthracene derivative represented by the formula (2) is preferably 50:50 to 0.1: 99.9, and 20:80 to 1 : 99 is more preferable.
[有機発光媒体II]
 有機発光媒体IIは、下記式(1)’で表される本発明に係るジアミノピレン誘導体と、下記式(2)’で表されるアントラセン誘導体を含む。
[Organic light emitting medium II]
The organic light emitting medium II includes a diaminopyrene derivative according to the present invention represented by the following formula (1) ′ and an anthracene derivative represented by the following formula (2) ′.
(ジアミノピレン誘導体)
 有機発光媒体IIに係るジアミノピレン誘導体は、下記式(1)’で表される。
Figure JPOXMLDOC01-appb-C000060
 
(Diaminopyrene derivative)
The diaminopyrene derivative according to the organic light emitting medium II is represented by the following formula (1) ′.
Figure JPOXMLDOC01-appb-C000060
 式(1)’中、R21’~R24’は、それぞれ独立に、水素原子、核炭素数6~50の置換もしくは無置換のアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、又は置換もしくは無置換の炭素数3~20のシリル基であり、同一のベンゼン環上に1又は2組の隣接するアルキル基がある場合、該隣接するアルキル基は互いに結合して置換もしくは無置換の2価の結合基を形成してもよい。
 n1’~n4’は、それぞれ独立に、1~5の整数である。
 Ra’及びRb’は、それぞれ独立に、置換もしくは無置換の核炭素数6~50のアリール基である。
In formula (1) ′, R 21 ′ to R 24 ′ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms. A substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, or a substituted or unsubstituted silyl group having 3 to 20 carbon atoms, and the same When there are one or two sets of adjacent alkyl groups on the benzene ring, the adjacent alkyl groups may be bonded to each other to form a substituted or unsubstituted divalent linking group.
n1 ′ to n4 ′ are each independently an integer of 1 to 5.
R a ′ and R b ′ are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms.
 R21’~R24’の核炭素数6~50の置換もしくは無置換のアリール基、置換もしくは無置換のアルキル基の例は、上記式(1)のR21~R24のこれらと同じである。 Examples of the substituted or unsubstituted aryl group and substituted or unsubstituted alkyl group having 6 to 50 nuclear carbon atoms of R 21 ′ to R 24 ′ are the same as those of R 21 to R 24 in the above formula (1). is there.
 同一のベンゼン環(窒素原子に直接結合するベンゼン環)上に1又は2組の隣接するアルキル基がある場合、各隣接するアルキル基は互いに結合して置換もしくは無置換の2価の飽和もしくは不飽和の結合基を形成してもよい。 When there are one or two pairs of adjacent alkyl groups on the same benzene ring (a benzene ring directly bonded to a nitrogen atom), the adjacent alkyl groups are bonded to each other to form a substituted or unsubstituted divalent saturated or unsubstituted group. A saturated linking group may be formed.
 窒素原子に直接結合するベンゼン環と結合基が形成する置換基としては、上記一般式(3-1)~(3-6)で表される母核を形成することが好ましく、これらの母核にはさらにアルキル基、アルケニル基、アルキニル基、アリール基等の置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000061
 
(式中、A,D,E,G,Jは、それぞれ-CH-、-CR5051-(R50及びR51はそれぞれ置換基を表す)、-O-、-S-、-N-、又は-CO-であり、
 a~hはそれぞれ1~10の整数を表す。
 a,b,c,g,hが2以上の場合は、複数存在するA,D,E,G,Jはそれぞれ同一でも異なっていてもよい。)
As the substituent formed by the benzene ring directly bonded to the nitrogen atom and the bonding group, it is preferable to form a mother nucleus represented by the above general formulas (3-1) to (3-6). May further have a substituent such as an alkyl group, an alkenyl group, an alkynyl group, and an aryl group.
Figure JPOXMLDOC01-appb-C000061

Wherein A, D, E, G and J are —CH 2 —, —CR 50 R 51 — (R 50 and R 51 each represent a substituent), —O—, —S—, — N- or -CO-
a to h each represents an integer of 1 to 10;
When a, b, c, g, and h are 2 or more, a plurality of A, D, E, G, and J may be the same or different. )
 a~cはそれぞれ5又は6であることが好ましく、d~fはそれぞれ2であることが好ましく、g,hはそれぞれ1であることが好ましい。
 R50、R51の置換基は、好ましくはハロゲン原子、炭素数1から10のアルキル基、炭素数3~10のシクロアルキル基、炭素数7~20のアラルキル基、核炭素数6~14のアリール基、核原子数5~14の複素環基であり、さらに好ましくは炭素数1~6のアルキル基、核炭素数6~14のアリール基である。
a to c are each preferably 5 or 6, d to f are each preferably 2, and g and h are each preferably 1.
The substituent for R 50 and R 51 is preferably a halogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a nucleus having 6 to 14 carbon atoms. An aryl group, a heterocyclic group having 5 to 14 nuclear atoms, and more preferably an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 14 nuclear carbon atoms.
 上記窒素原子に直接結合するベンゼン環と結合基が形成する置換基は、さらに好ましくは下記構造の環である。
Figure JPOXMLDOC01-appb-C000062
 
The substituent formed by the bonding group and the benzene ring directly bonded to the nitrogen atom is more preferably a ring having the following structure.
Figure JPOXMLDOC01-appb-C000062
 R21’~R24’のシクロアルキル基、R21’~R24’の置換もしくは無置換のアラルキル基の例は、上記式(1)のR21~R24のこれらと同じである。 Examples of cycloalkyl groups, substituted or unsubstituted aralkyl group R 21 '~ R 24' in R 21 '~ R 24' are the same as those of R 21 ~ R 24 in the formula (1).
 R21’~R24’は、好ましくは水素原子、置換もしくは無置換のフェニル基、置換もしくは無置換のメチル基、置換もしくは無置換のイソプロピル基、置換もしくは無置換のt-ブチル基、置換もしくは無置換のシクロヘキシル基、又は置換もしくは無置換のトリメチルシリル基である。 R 21 ′ to R 24 ′ are preferably a hydrogen atom, a substituted or unsubstituted phenyl group, a substituted or unsubstituted methyl group, a substituted or unsubstituted isopropyl group, a substituted or unsubstituted t-butyl group, substituted or unsubstituted An unsubstituted cyclohexyl group, or a substituted or unsubstituted trimethylsilyl group.
 Ra’及びRb’の置換もしくは無置換の核炭素数6~50のアリール基は、後述する式(2)’のR11で定義される「置換もしくは無置換の核炭素数6~50のアリール基」と同様であり、好ましくは置換もしくは無置換のフェニル基、又は置換もしくは無置換のナフチル基である。 The substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms of R a ′ and R b ′ is defined as “substituted or unsubstituted nuclear carbon atoms of 6 to 50 defined by R 11 in formula (2) ′ described later. And is preferably a substituted or unsubstituted phenyl group or a substituted or unsubstituted naphthyl group.
 本発明の好ましい態様において、式(1)’のジアミノピレン誘導体は下記式で表される。
Figure JPOXMLDOC01-appb-C000063
 
In a preferred embodiment of the present invention, the diaminopyrene derivative of the formula (1) ′ is represented by the following formula.
Figure JPOXMLDOC01-appb-C000063
 上記式において、R21’~R24’、Ra’及びRb’は前記と同様である。R21’~R24’はそれぞれ同一でも異なっていてもよいが、R21’とR23’、及び、R22’とR24’がそれぞれ同一であることが好ましい。また、Ra’とRb’は同一でも異なっていてもよいが、同一であることが好ましい。 In the above formula, R 21 ′ to R 24 ′ , R a ′ and R b ′ are the same as described above. R 21 ′ to R 24 ′ may be the same or different, but it is preferable that R 21 ′ and R 23 ′ and R 22 ′ and R 24 ′ are the same. R a ′ and R b ′ may be the same or different, but are preferably the same.
 式(1)’で表されるジアミノピレン誘導体の具体例としては、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000064
 
Figure JPOXMLDOC01-appb-C000065
 
Figure JPOXMLDOC01-appb-C000066
 
Figure JPOXMLDOC01-appb-C000067
 
Figure JPOXMLDOC01-appb-C000068
 
Figure JPOXMLDOC01-appb-C000069
 
Figure JPOXMLDOC01-appb-C000070
 
Figure JPOXMLDOC01-appb-C000071
 
Figure JPOXMLDOC01-appb-C000072
 
Figure JPOXMLDOC01-appb-C000073
 
Figure JPOXMLDOC01-appb-C000074
 
Figure JPOXMLDOC01-appb-C000075
 
 
Figure JPOXMLDOC01-appb-C000077
 
Figure JPOXMLDOC01-appb-C000078
 
Figure JPOXMLDOC01-appb-C000079
 
Specific examples of the diaminopyrene derivative represented by the formula (1) ′ include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000064

Figure JPOXMLDOC01-appb-C000065

Figure JPOXMLDOC01-appb-C000066

Figure JPOXMLDOC01-appb-C000067

Figure JPOXMLDOC01-appb-C000068

Figure JPOXMLDOC01-appb-C000069

Figure JPOXMLDOC01-appb-C000070

Figure JPOXMLDOC01-appb-C000071

Figure JPOXMLDOC01-appb-C000072

Figure JPOXMLDOC01-appb-C000073

Figure JPOXMLDOC01-appb-C000074

Figure JPOXMLDOC01-appb-C000075


Figure JPOXMLDOC01-appb-C000077

Figure JPOXMLDOC01-appb-C000078

Figure JPOXMLDOC01-appb-C000079
(アントラセン誘導体)
 有機発光媒体IIに係るアントラセン誘導体は、下記式(2)’で表される。
Figure JPOXMLDOC01-appb-C000080
 
(式(2)’中、Ar11’及びAr12’は、それぞれ独立に、置換もしくは無置換の核炭素数6~50のアリール基、又は核原子数5~50の複素環基であり、
 R1’~R8’は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換の核炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基及びヒドロキシル基から選ばれる基である。
 但し、Ar11’及びAr12’の一方が無置換の2-ナフチル基である場合、他方は4-(1-ナフチル)フェニル-1-イル基ではない。)
(Anthracene derivative)
An anthracene derivative according to the organic light-emitting medium II is represented by the following formula (2) ′.
Figure JPOXMLDOC01-appb-C000080

(In the formula (2) ′, Ar 11 ′ and Ar 12 ′ are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms or a heterocyclic group having 5 to 50 nuclear atoms,
R 1 ′ to R 8 ′ each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, substituted or unsubstituted An alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted nuclear carbon number 6 to It is a group selected from 50 arylthio groups, substituted or unsubstituted alkoxycarbonyl groups having 2 to 50 carbon atoms, substituted or unsubstituted silyl groups, carboxyl groups, halogen atoms, cyano groups, nitro groups and hydroxyl groups.
However, when one of Ar 11 ′ and Ar 12 ′ is an unsubstituted 2-naphthyl group, the other is not a 4- (1-naphthyl) phenyl-1-yl group. )
 本発明のアントラセン誘導体は、好ましくはAr11’及びAr12’の一方が無置換の2-ナフチル基である場合、他方はアリール置換のフェニル基ではない。 In the anthracene derivative of the present invention, preferably, when one of Ar 11 ′ and Ar 12 ′ is an unsubstituted 2-naphthyl group, the other is not an aryl-substituted phenyl group.
 本発明に係るアントラセン誘導体は、下記アントラセン誘導体(A)’、(B)’、及び(C)’のいずれかであることが好ましく、適用する有機EL素子の構成や求める特性により選択される。 The anthracene derivative according to the present invention is preferably any of the following anthracene derivatives (A) ′, (B) ′, and (C) ′, and is selected depending on the configuration of the organic EL element to be applied and the required characteristics.
(アントラセン誘導体(A)’)
 当該アントラセン誘導体は、式(2)’におけるAr11’及びAr12’が、それぞれ独立に、置換もしくは無置換の核炭素数10~50の縮合アリール基となっている。当該アントラセン誘導体としては、Ar11’及びAr12’が同一の置換もしくは無置換の縮合アリール基である場合、及び異なる置換もしくは無置換の縮合アリール基である場合に分けることができる。
 具体的には、下記式(2-1)’~(2-3)’で表されるアントラセン誘導体、及び式(2)’におけるAr11’及びAr12’が異なる置換もしくは無置換の縮合アリール基であるアントラセン誘導体が挙げられる。
(Anthracene derivative (A) ')
In the anthracene derivative, Ar 11 ′ and Ar 12 ′ in the formula (2) ′ are each independently a substituted or unsubstituted condensed aryl group having 10 to 50 nuclear carbon atoms. The anthracene derivative can be classified into a case where Ar 11 ′ and Ar 12 ′ are the same substituted or unsubstituted condensed aryl group and a case where they are different substituted or unsubstituted condensed aryl groups.
Specifically, anthracene derivatives represented by the following formulas (2-1) ′ to (2-3) ′, and substituted or unsubstituted condensed aryl in which Ar 11 ′ and Ar 12 ′ in formula (2) are different And anthracene derivatives as groups.
 下記式(2-1)’で表されるアントラセン誘導体は、Ar11’及びAr12’が、置換もしくは無置換の9-フェナントレニル基となっている。
Figure JPOXMLDOC01-appb-C000081
 
(式(2-1)’中、R1’~R8’は前記と同様であり、
 R11は水素原子、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換の核炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基及びヒドロキシル基から選ばれる基であり、
 aは0~9の整数である。aが2以上の整数の場合、複数あるR11は、2つの置換もしくは無置換のフェナントレニル基が同一であることを条件に、それぞれが同一でも異なっていてもよい。)
In the anthracene derivative represented by the following formula (2-1) ′, Ar 11 ′ and Ar 12 ′ are substituted or unsubstituted 9-phenanthrenyl groups.
Figure JPOXMLDOC01-appb-C000081

(In the formula (2-1) ′, R 1 ′ to R 8 ′ are the same as above,
R 11 represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms. Substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, substituted or unsubstituted Aryloxy group having 6 to 50 nuclear carbon atoms, substituted or unsubstituted arylthio group having 6 to 50 nuclear carbon atoms, substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, substituted or unsubstituted silyl group, carboxyl A group selected from a group, a halogen atom, a cyano group, a nitro group and a hydroxyl group,
a is an integer of 0 to 9. When a is an integer of 2 or more, a plurality of R 11 s may be the same or different on condition that two substituted or unsubstituted phenanthrenyl groups are the same. )
 下記式(2-2)’で表されるアントラセン誘導体は、式(2)’におけるAr11’及びAr12’が、置換もしくは無置換の2-ナフチル基となっている。
Figure JPOXMLDOC01-appb-C000082
 
(式(2-2)’中、R1’~R8’及びR11は前記と同様であり、
 bは1~7の整数である。bが2以上の整数の場合、複数あるR11は、2つの置換もしくは無置換の2-ナフチル基が同一であることを条件に、それぞれが同一でも異なっていてもよい。)
In the anthracene derivative represented by the following formula (2-2) ′, Ar 11 ′ and Ar 12 ′ in the formula (2) are substituted or unsubstituted 2-naphthyl groups.
Figure JPOXMLDOC01-appb-C000082

(In the formula (2-2) ′, R 1 ′ to R 8 ′ and R 11 are the same as above,
b is an integer of 1 to 7. When b is an integer of 2 or more, a plurality of R 11 may be the same or different on condition that two substituted or unsubstituted 2-naphthyl groups are the same. )
 下記式(2-3)’で表されるアントラセン誘導体は、式(2)’におけるAr11’及びAr12’が、置換もしくは無置換の1-ナフチル基となっている。
Figure JPOXMLDOC01-appb-C000083
 
(式(2-2)’中、R1’~R8’、R11及びbは前記と同様である。また、bが2以上の整数の場合、複数あるR11は、2つの置換もしくは無置換の1-ナフチル基が同一であることを条件に、それぞれが同一でも異なっていてもよい。)
In the anthracene derivative represented by the following formula (2-3) ′, Ar 11 ′ and Ar 12 ′ in the formula (2) are substituted or unsubstituted 1-naphthyl groups.
Figure JPOXMLDOC01-appb-C000083

(In the formula (2-2) ′, R 1 ′ to R 8 ′ , R 11 and b are the same as those described above. When b is an integer of 2 or more, a plurality of R 11 are substituted with two substituents or Each may be the same or different, provided that the unsubstituted 1-naphthyl groups are the same.
 上述した式(2-1)’~(2-3)’で表されるアントラセン誘導体に加え、式(2)’におけるAr11’及びAr12’が同一の置換もしくは無置換のフルオランテニル基であるアントラセン誘導体、及び式(2)’におけるAr11’及びAr12’が同一の置換もしくは無置換のピレニル基であるアントラセン誘導体も好ましい。 In addition to the anthracene derivatives represented by the above formulas (2-1) ′ to (2-3) ′, Ar 11 ′ and Ar 12 ′ in the formula (2) are the same substituted or unsubstituted fluoranthenyl group. And an anthracene derivative in which Ar 11 ′ and Ar 12 ′ in the formula (2) are the same substituted or unsubstituted pyrenyl group are also preferable.
 式(2)’におけるAr11’及びAr12’が異なる置換もしくは無置換の縮合アリール基であるアントラセン誘導体としては、Ar11’及びAr12’が、式(2-1)’~(2-3)’、置換もしくは無置換の9-フェナントレニル基、置換もしくは無置換の1-ナフチル基、置換もしくは無置換の2-ナフチル基、及び置換もしくは無置換のフルオランテニル基のいずれかであることが好ましい。
 具体的には、Ar11’が1-ナフチル基、及びAr12’が2-ナフチル基である場合、Ar11’が1-ナフチル基及びAr12’が9-フェナントリル基である場合、並びにAr11’が2-ナフチル基及びAr12’が9-フェナントリル基である場合である。
As an anthracene derivative in which Ar 11 ′ and Ar 12 ′ in formula (2) ′ are different substituted or unsubstituted condensed aryl groups, Ar 11 ′ and Ar 12 ′ are represented by formulas (2-1) ′ to (2- 3) ′, a substituted or unsubstituted 9-phenanthrenyl group, a substituted or unsubstituted 1-naphthyl group, a substituted or unsubstituted 2-naphthyl group, and a substituted or unsubstituted fluoranthenyl group Is preferred.
Specifically, when Ar 11 ′ is a 1-naphthyl group and Ar 12 ′ is a 2-naphthyl group, Ar 11 ′ is a 1-naphthyl group and Ar 12 ′ is a 9-phenanthryl group, and Ar This is the case where 11 ′ is a 2-naphthyl group and Ar 12 ′ is a 9-phenanthryl group.
(アントラセン誘導体(B)’)
 当該アントラセン誘導体は、式(2)’におけるAr11’及びAr12’の一方が置換もしくは無置換のフェニル基であり、他方が置換もしくは無置換の核炭素数10~50の縮合アリール基となっている。当該アントラセン誘導体としては、具体的には、下記式(2-4)’及び(2-5)’で表されるアントラセン誘導体が挙げられる。
(Anthracene derivative (B) ')
In the anthracene derivative, one of Ar 11 ′ and Ar 12 ′ in the formula (2) ′ is a substituted or unsubstituted phenyl group, and the other is a substituted or unsubstituted condensed aryl group having 10 to 50 nuclear carbon atoms. ing. Specific examples of the anthracene derivative include anthracene derivatives represented by the following formulas (2-4) ′ and (2-5) ′.
 下記式(2-4)’で表されるアントラセン誘導体は、式(2)’におけるAr11’が置換もしくは無置換の1-ナフチル基であり、Ar12’が、置換もしくは無置換のフェニル基となっている。
Figure JPOXMLDOC01-appb-C000084
 
(式(2-4)’中、R1’~R8’、R11及びbは前記と同様であり、
 Arは置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核原子数5~50の複素環基、9,9-ジメチルフルオレン-1-イル基、9,9-ジメチルフルオレン-2-イル基、9,9-ジメチルフルオレン-3-イル基、9,9-ジメチルフルオレン-4-イル基、ジベンゾフラン-1-イル基、ジベンゾフラン-2-イル基、ジベンゾフラン-3-イル基、又はジベンゾフラン-4-イル基である。また、Arはそれが結合しているベンゼン環と共に、置換もしくは無置換のフルオレニル基又は置換もしくは無置換のジベンゾフルオレニル基を形成していてもよい。bが2以上の整数の場合、複数あるR11は、それぞれが同一でも異なっていてもよい。)
In the anthracene derivative represented by the following formula (2-4) ′, Ar 11 ′ in the formula (2) is a substituted or unsubstituted 1-naphthyl group, and Ar 12 ′ is a substituted or unsubstituted phenyl group. It has become.
Figure JPOXMLDOC01-appb-C000084

(In the formula (2-4) ′, R 1 ′ to R 8 ′ , R 11 and b are the same as above,
Ar 6 is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted group Or an unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nucleus atoms, a 9,9-dimethylfluoren-1-yl group, or a 9,9-dimethylfluorene-2- Yl group, 9,9-dimethylfluoren-3-yl group, 9,9-dimethylfluoren-4-yl group, dibenzofuran-1-yl group, dibenzofuran-2-yl group, dibenzofuran-3-yl group, or dibenzofuran It is a -4-yl group. Ar 6 may form a substituted or unsubstituted fluorenyl group or a substituted or unsubstituted dibenzofluorenyl group together with the benzene ring to which Ar 6 is bonded. When b is an integer of 2 or more, the plurality of R 11 may be the same or different. )
 下記式(2-5)’で表されるアントラセン誘導体は、式(2)’におけるAr11’が置換もしくは無置換の2-ナフチル基であり、Ar12’が、置換もしくは無置換のフェニル基となっている。
Figure JPOXMLDOC01-appb-C000085
 
(式(2-5)’中、R1’~R8’、R11及びbは前記と同様であり、
 Arは、置換もしくは無置換の核炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核原子数5~50の複素環基、ジベンゾフラン-1-イル基、ジベンゾフラン-2-イル基、ジベンゾフラン-3-イル基、又はジベンゾフラン-4-イル基である。また、Arはそれが結合しているベンゼン環と共に、置換もしくは無置換のフルオレニル基又は置換もしくは無置換のジベンゾフルオレニル基を形成していてもよい。bが2以上の整数の場合、複数あるR11は、それぞれが同一でも異なっていてもよい。
 但し、Arは、隣接するフェニレン基と共に4-(1-ナフチル)フェニル-1-イル基を形成する場合を除く。)
In the anthracene derivative represented by the following formula (2-5) ′, Ar 11 ′ in the formula (2) is a substituted or unsubstituted 2-naphthyl group, and Ar 12 ′ is a substituted or unsubstituted phenyl group. It has become.
Figure JPOXMLDOC01-appb-C000085

(In the formula (2-5) ′, R 1 ′ to R 8 ′ , R 11 and b are the same as above,
Ar 7 is a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted group Alternatively, it is an unsubstituted heterocyclic group having 5 to 50 nucleus atoms, a dibenzofuran-1-yl group, a dibenzofuran-2-yl group, a dibenzofuran-3-yl group, or a dibenzofuran-4-yl group. Ar 7 may form a substituted or unsubstituted fluorenyl group or a substituted or unsubstituted dibenzofluorenyl group together with the benzene ring to which Ar 7 is bonded. When b is an integer of 2 or more, the plurality of R 11 may be the same or different.
However, Ar 7 excludes the case where 4- (1-naphthyl) phenyl-1-yl group is formed with the adjacent phenylene group. )
 上述の式(2-4)’及び式(2-5)’で表されるアントラセン誘導体に加えて、式(2)’におけるAr11’が置換もしくは無置換のフルオランテニル基であり、Ar12’が、置換もしくは無置換のフェニル基であるアントラセン誘導体も好ましい。 In addition to the anthracene derivatives represented by the above formulas (2-4) ′ and (2-5) ′, Ar 11 ′ in the formula (2) is a substituted or unsubstituted fluoranthenyl group, and Ar Anthracene derivatives in which 12 ′ is a substituted or unsubstituted phenyl group are also preferable.
(アントラセン誘導体(C)’)
 当該アントラセン誘導体は、下記式(2-6)’で表され、具体的には、下記式(2-6-1)’、(2-6-2)’及び(2-6-3)’のいずれかで表される誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000086
 
(式(2-6)’中、R1’~R8’及びArは前記と同様であり、
 Arは置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、又は置換もしくは無置換の核原子数5~50の複素環基であり、ArとArはそれぞれ独立に選択される。)
Figure JPOXMLDOC01-appb-C000087
 
(式(2-6-1)’中、R1’~R8’は前記と同様である。)
Figure JPOXMLDOC01-appb-C000088
 
(式(2-6-2)’中、R1’~R8’は前記と同様である。Arは置換もしくは無置換の核炭素数10~20の縮合アリール基である。)
Figure JPOXMLDOC01-appb-C000089
 
(式(2-6-3)’中、R1’~R8’は式(2)’と同様である。
 Ar5a及びAr6aはそれぞれ独立に、置換もしくは無置換の核炭素数10~20の縮合アリール基である。)
(Anthracene derivative (C) ')
The anthracene derivative is represented by the following formula (2-6) ′, specifically, the following formulas (2-6-1) ′, (2-6-2) ′ and (2-6-3) ′. It is preferable that it is a derivative represented by either.
Figure JPOXMLDOC01-appb-C000086

(In the formula (2-6) ′, R 1 ′ to R 8 ′ and Ar 6 are the same as defined above;
Ar 5 is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted group Alternatively, it is an unsubstituted aralkyl group having 7 to 50 carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, and Ar 5 and Ar 6 are each independently selected. )
Figure JPOXMLDOC01-appb-C000087

(In formula (2-6-1) ′, R 1 ′ to R 8 ′ are the same as described above.)
Figure JPOXMLDOC01-appb-C000088

(In the formula (2-6-2) ′, R 1 ′ to R 8 ′ are the same as described above. Ar 8 is a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms.)
Figure JPOXMLDOC01-appb-C000089

( 'In, R 1' formula (2-6-3) ~ R 8 'has the formula (2)' is the same as.
Ar 5a and Ar 6a are each independently a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms. )
 R11、Ar及びAr、Ar11’及びAr12’の置換もしくは無置換の核炭素数6~50のアリール基の例は、上記式(2)のAr11及びAr12のこれらと同じである。好ましくは、無置換のフェニル基、置換フェニル基及び置換もしくは無置換の核炭素数10~14のアリール基(例えば、1-ナフチル基、2-ナフチル基、9-フェナントリル基)、置換もしくは無置換のフルオレニル基(2-フルオレニル基)、及び置換もしくは無置換のピレニル基(1-ピレニル基、2-ピレニル基、4-ピレニル基)である。 Examples of substituted or unsubstituted aryl groups having 6 to 50 nuclear carbon atoms of R 11 , Ar 5 and Ar 6 , Ar 11 ′ and Ar 12 ′ are the same as those of Ar 11 and Ar 12 in the above formula (2). It is. Preferably, an unsubstituted phenyl group, a substituted phenyl group, and a substituted or unsubstituted aryl group having 10 to 14 nuclear carbon atoms (eg, 1-naphthyl group, 2-naphthyl group, 9-phenanthryl group), substituted or unsubstituted A fluorenyl group (2-fluorenyl group) and a substituted or unsubstituted pyrenyl group (1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group).
 また、Ar5a、Ar6a及びArの置換もしくは無置換の核炭素数10~20の縮合アリール基の例は、上記式(2)のAr5a、Ar6a及びArのこれと同じである。特に、1-ナフチル基、2-ナフチル基、9-フェナントリル基、ピレニル基(1-ピレニル基、2-ピレニル基及び4-ピレニル基)、及びフルオレニル基(2-フルオレニル基)が好ましい。 Further, examples of fused aryl groups Ar 5a, Ar 6a and substituted or unsubstituted C 10 -C 20 Ar 8 is the same as this of Ar 5a, Ar 6a and Ar 8 in the formula (2) . In particular, 1-naphthyl group, 2-naphthyl group, 9-phenanthryl group, pyrenyl group (1-pyrenyl group, 2-pyrenyl group and 4-pyrenyl group), and fluorenyl group (2-fluorenyl group) are preferable.
 R11及びAr~Arの置換もしくは無置換の核原子数5~50の複素環基の例は、上記式(2)のR~R、R11及びAr~Arのこれと同じである。好ましくは、1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチオフェニル基、2-ジベンゾチオフェニル基、3-ジベンゾチオフェニル基、4-ジベンゾチオフェニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基である。 Examples of the heterocyclic group of R 11 and Ar 5 ~ substituted or unsubstituted 5 to 50 ring atoms of Ar 7, this of R 1 ~ R 8, R 11 and Ar 5 ~ Ar 7 in the above formula (2) Is the same. Preferably, 1-dibenzofuranyl group, 2-dibenzofuranyl group, 3-dibenzofuranyl group, 4-dibenzofuranyl group, 1-dibenzothiophenyl group, 2-dibenzothiophenyl group, 3-dibenzothiophenyl group Group, 4-dibenzothiophenyl group, 1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, 9-carbazolyl group.
 R1’~R8’、R11及びAr~Arの置換もしくは無置換の炭素数1~50のアルキル基の例は、上記式(2)のR~R、R11及びAr~Arのこれと同じである。好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基である。 Examples of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms of R 1 ′ to R 8 ′ , R 11 and Ar 5 to Ar 7 include R 1 to R 8 , R 11 and Ar in the above formula (2). This is the same as 5 to Ar 7 . Preferred are methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group and t-butyl group.
 R1’~R8’、R11及びAr~Arの置換基の置換もしくは無置換の核炭素数3~50のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等が挙げられる。好ましくは、シクロペンチル基、シクロヘキシル基である。 Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms of the substituents R 1 ′ to R 8 ′ , R 11 and Ar 5 to Ar 7 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group. 4-methylcyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group, 2-norbornyl group and the like. Preferably, they are a cyclopentyl group and a cyclohexyl group.
 R1’~R8’及びR11の置換もしくは無置換の炭素数1~50のアルコキシ基は-OZで表される基であり、Zは、前記R1’~R8’の置換もしくは無置換の炭素数1~50のアルキル基から選択される。 The substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms of R 1 ′ to R 8 ′ and R 11 is a group represented by —OZ, and Z is the substituted or unsubstituted group of R 1 ′ to R 8 ′. It is selected from substituted alkyl groups having 1 to 50 carbon atoms.
 R1’~R8’、R11及びAr~Arの置換基の置換もしくは無置換の炭素数7~50アラルキル基(アリール部分は炭素数6~49、アルキル部分は炭素数1~44)の例は、上記式(2)のR~R、R11及びAr~Arのこれと同じである。 R 1 ′ to R 8 ′ , R 11 and Ar 5 to Ar 7 substituted or unsubstituted C 7-50 aralkyl groups (the aryl moiety has 6 to 49 carbon atoms, the alkyl moiety has 1 to 44 carbon atoms) ) Are the same as those of R 1 to R 8 , R 11 and Ar 5 to Ar 7 in the above formula (2).
 R1’~R8’及びR11の置換もしくは無置換の核炭素数6~50のアリールオキシ基及びアリールチオ基は、それぞれ-OY及び-SYと表され、Yは、前記R1’~R8’の置換もしくは無置換の核炭素数6~50のアリール基から選ばれる。 The substituted or unsubstituted aryloxy group and arylthio group having 6 to 50 nuclear carbon atoms of R 1 ′ to R 8 ′ and R 11 are represented by —OY and —SY, respectively, and Y represents the above R 1 ′ to R It is selected from 8 ' substituted or unsubstituted aryl groups having 6 to 50 nuclear carbon atoms.
 R1’~R8’及びR11の置換もしくは無置換の炭素数2~50アルコキシカルボニル基(アルキル部分は炭素数1~49)は-COOZと表され、Zは、前記R1’~R8’の置換もしくは無置換の炭素数1~49のアルキル基から選ばれる。 A substituted or unsubstituted alkoxy group having 2 to 50 carbon atoms (the alkyl moiety has 1 to 49 carbon atoms) of R 1 ′ to R 8 ′ and R 11 is represented as —COOZ, and Z represents the above R 1 ′ to R It is selected from 8 ' substituted or unsubstituted alkyl groups having 1 to 49 carbon atoms.
 R1’~R8’及びR11の置換シリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、トリフェニルシリル基等が挙げられる。 Examples of the substituted silyl group of R 1 ′ to R 8 ′ and R 11 include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, and a triphenylsilyl group.
 R1’~R8’及びR11のハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられる。 Examples of the halogen atom for R 1 ′ to R 8 ′ and R 11 include fluorine, chlorine, bromine and iodine.
 本発明の式(2)’で表されるアントラセン誘導体の具体例としては、以下が挙げられる。
Figure JPOXMLDOC01-appb-C000090
 
Figure JPOXMLDOC01-appb-C000091
 
Figure JPOXMLDOC01-appb-C000092
 
Figure JPOXMLDOC01-appb-C000093
 
Figure JPOXMLDOC01-appb-C000094
 
Figure JPOXMLDOC01-appb-C000095
 
Figure JPOXMLDOC01-appb-C000096
 
Figure JPOXMLDOC01-appb-C000097
 
Figure JPOXMLDOC01-appb-C000098
 
Figure JPOXMLDOC01-appb-C000099
 
Figure JPOXMLDOC01-appb-C000100
 
Figure JPOXMLDOC01-appb-C000101
 
Figure JPOXMLDOC01-appb-C000102
 
Figure JPOXMLDOC01-appb-C000103
 
Figure JPOXMLDOC01-appb-C000104
 
Figure JPOXMLDOC01-appb-C000105
 
Figure JPOXMLDOC01-appb-C000106
 
Figure JPOXMLDOC01-appb-C000107
 
Figure JPOXMLDOC01-appb-C000108
 
Figure JPOXMLDOC01-appb-C000109
 
Specific examples of the anthracene derivative represented by the formula (2) ′ of the present invention include the following.
Figure JPOXMLDOC01-appb-C000090

Figure JPOXMLDOC01-appb-C000091

Figure JPOXMLDOC01-appb-C000092

Figure JPOXMLDOC01-appb-C000093

Figure JPOXMLDOC01-appb-C000094

Figure JPOXMLDOC01-appb-C000095

Figure JPOXMLDOC01-appb-C000096

Figure JPOXMLDOC01-appb-C000097

Figure JPOXMLDOC01-appb-C000098

Figure JPOXMLDOC01-appb-C000099

Figure JPOXMLDOC01-appb-C000100

Figure JPOXMLDOC01-appb-C000101

Figure JPOXMLDOC01-appb-C000102

Figure JPOXMLDOC01-appb-C000103

Figure JPOXMLDOC01-appb-C000104

Figure JPOXMLDOC01-appb-C000105

Figure JPOXMLDOC01-appb-C000106

Figure JPOXMLDOC01-appb-C000107

Figure JPOXMLDOC01-appb-C000108

Figure JPOXMLDOC01-appb-C000109
 式(1)’で表されるジアミノピレン誘導体は、例えば、市販のピレンを臭素化することにより得られるジブロモピレンに既知の方法で置換基を導入した後、再び臭素化し、金属触媒下、対応する2級アミン化合物と反応させることによって合成することができる。また、式(2)’で表されるアントラセン誘導体は、例えば、WO2004/018587号公報記載の方法によって合成することができる。 The diaminopyrene derivative represented by the formula (1) ′ is prepared by, for example, introducing a substituent into dibromopyrene obtained by bromination of commercially available pyrene by a known method, and then brominating it again under a metal catalyst. Can be synthesized by reacting with a secondary amine compound. In addition, the anthracene derivative represented by the formula (2) ′ can be synthesized, for example, by the method described in WO 2004/018585.
 本発明の有機発光媒体は、既述ような式(1)’で表されるジアミノピレン誘導体式(2)’で表されるアントラセン誘導体が共存した状態となっている。
 式(1)’で表されるジアミノピレン誘導体と式(2)’で表されるアントラセン誘導体との質量比は、50:50~0.1:99.9であることが好ましく、20:80~1:99であることがより好ましい。
The organic light-emitting medium of the present invention is in a state where an anthracene derivative represented by the diaminopyrene derivative formula (2) ′ represented by the formula (1) ′ as described above coexists.
The mass ratio of the diaminopyrene derivative represented by the formula (1) ′ and the anthracene derivative represented by the formula (2) ′ is preferably 50:50 to 0.1: 99.9, and 20:80 More preferably, it is ˜1: 99.
[有機EL素子]
 本発明の有機EL素子は、陽極と陰極との間に一層又は複数層の有機薄膜層が形成された素子である。有機薄膜層が複数層となっている場合は、一層が発光層となっている。有機薄膜層が一層の場合、陽極と陰極との間には、有機薄膜層としての発光層が形成されている。有機薄膜層のうち少なくとも一層(好ましくは発光層)は、本発明の有機発光媒体を含有しており、さらに、陽極から注入した正孔、又は陰極から注入した電子を発光材料まで輸送させるために、正孔注入材料又は電子注入材料を含有してもよい。また、有機薄膜層のうち少なくとも一層(好ましくは発光層)は、本発明の有機発光媒体から形成されていてもよい。本発明の有機発光媒体は、高い発光特性を持つ。
[Organic EL device]
The organic EL device of the present invention is a device in which one or more organic thin film layers are formed between an anode and a cathode. When the organic thin film layer is a plurality of layers, one layer is a light emitting layer. When the organic thin film layer is a single layer, a light emitting layer as an organic thin film layer is formed between the anode and the cathode. At least one of the organic thin film layers (preferably the light emitting layer) contains the organic light emitting medium of the present invention, and in order to transport holes injected from the anode or electrons injected from the cathode to the light emitting material. Further, a hole injection material or an electron injection material may be contained. Moreover, at least one layer (preferably light emitting layer) of the organic thin film layers may be formed from the organic light emitting medium of the present invention. The organic light emitting medium of the present invention has high light emission characteristics.
 また、本発明の有機EL素子は、陰極と陽極間に少なくとも発光層を含む二層以上からなる有機薄膜層が挟持されている有機EL素子において、陽極と発光層との間に本発明の有機発光媒体を主成分とする有機層を有しても好ましい。この有機層としては、正孔注入層、正孔輸送層等が挙げられる。 Further, the organic EL device of the present invention is an organic EL device in which an organic thin film layer comprising at least two layers including at least a light emitting layer is sandwiched between a cathode and an anode, and the organic EL device of the present invention is interposed between the anode and the light emitting layer. It is also preferable to have an organic layer whose main component is a luminescent medium. Examples of the organic layer include a hole injection layer and a hole transport layer.
 本発明において、有機薄膜層が複数層型の有機EL素子としては、(陽極/正孔注入層/発光層/陰極)、(陽極/発光層/電子注入層/陰極)、(陽極/正孔注入層/発光層/電子注入層/陰極)等の構成で積層したものが挙げられる。
 複数層には、必要に応じて、本発明の有機発光媒体に加えてさらなる公知の発光材料、ドーピング材料、正孔注入材料や電子注入材料を使用することもできる。有機EL素子は、前記有機薄膜層を複数層構造にすることにより、クエンチングによる輝度や寿命の低下を防ぐことができる。必要があれば、発光材料、ドーピング材料、正孔注入材料や電子注入材料を組み合わせて使用することができる。また、ドーピング材料により、発光輝度や発光効率の向上、赤色や青色の発光を得ることもできる。また、正孔注入層、発光層、電子注入層は、それぞれ二層以上の層構成により形成されてもよい。その際には、正孔注入層の場合、電極から正孔を注入する層を正孔注入層、正孔注入層から正孔を受け取り発光層まで正孔を輸送する層を正孔輸送層と呼ぶ。同様に、電子注入層の場合、電極から電子を注入する層を電子注入層、電子注入層から電子を受け取り発光層まで電子を輸送する層を電子輸送層と呼ぶ。これらの各層は、材料のエネルギー準位、耐熱性、有機層又は金属電極との密着性等の各要因により選択されて使用される。
In the present invention, organic EL elements having a plurality of organic thin film layers are (anode / hole injection layer / light emitting layer / cathode), (anode / light emitting layer / electron injection layer / cathode), (anode / hole). (Injection layer / light emitting layer / electron injection layer / cathode) and the like.
In addition to the organic light-emitting medium of the present invention, further known light-emitting materials, doping materials, hole-injecting materials, and electron-injecting materials can be used for the multiple layers as needed. The organic EL element can prevent the brightness | luminance and lifetime fall by quenching by making the said organic thin film layer into a multilayer structure. If necessary, a light emitting material, a doping material, a hole injection material, and an electron injection material can be used in combination. Further, by using a doping material, it is possible to improve light emission luminance and light emission efficiency and to obtain red and blue light emission. Further, the hole injection layer, the light emitting layer, and the electron injection layer may each be formed of two or more layers. In that case, in the case of a hole injection layer, the layer that injects holes from the electrode is a hole injection layer, and the layer that receives holes from the hole injection layer and transports holes to the light emitting layer is a hole transport layer. Call. Similarly, in the case of an electron injection layer, a layer that injects electrons from an electrode is referred to as an electron injection layer, and a layer that receives electrons from the electron injection layer and transports electrons to a light emitting layer is referred to as an electron transport layer. Each of these layers is selected and used depending on factors such as the energy level of the material, heat resistance, and adhesion to the organic layer or metal electrode.
 本発明の有機発光媒体と共に発光層に使用できるホスト材料又はドーピング材料としては、例えば、ナフタレン、フェナントレン、ルブレン、アントラセン、テトラセン、ピレン、ペリレン、クリセン、デカシクレン、コロネン、テトラフェニルシクロペンタジエン、ペンタフェニルシクロペンタジエン、フルオレン、スピロフルオレン、9,10-ジフェニルアントラセン、9,10-ビス(フェニルエチニル)アントラセン、1,4-ビス(9’-エチニルアントラセニル)ベンゼン等の縮合多量芳香族化合物及びそれらの誘導体、トリス(8-キノリノラート)アルミニウム、ビス-(2-メチル-8-キノリノラート)-4-(フェニルフェノリナート)アルミニウム等の有機金属錯体、トリアリールアミン誘導体、スチリルアミン誘導体、スチルベン誘導体、クマリン誘導体、ピラン誘導体、オキサゾン誘導体、ベンゾチアゾール誘導体、ベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ピラジン誘導体、ケイ皮酸エステル誘導体、ジケトピロロピロール誘導体、アクリドン誘導体、キナクリドン誘導体等が挙げられるが、これらに限定されるものではない。 Examples of host materials or doping materials that can be used in the light emitting layer together with the organic light emitting medium of the present invention include, for example, naphthalene, phenanthrene, rubrene, anthracene, tetracene, pyrene, perylene, chrysene, decacyclene, coronene, tetraphenylcyclopentadiene, pentaphenylcyclopentaene. Condensed polyaromatic compounds such as pentadiene, fluorene, spirofluorene, 9,10-diphenylanthracene, 9,10-bis (phenylethynyl) anthracene, 1,4-bis (9′-ethynylanthracenyl) benzene, and the like Derivatives, organometallic complexes such as tris (8-quinolinolato) aluminum, bis- (2-methyl-8-quinolinolato) -4- (phenylphenolinato) aluminum, triarylamine derivatives, styrylamido Derivatives, stilbene derivatives, coumarin derivatives, pyran derivatives, oxazone derivatives, benzothiazole derivatives, benzoxazole derivatives, benzimidazole derivatives, pyrazine derivatives, cinnamic acid ester derivatives, diketopyrrolopyrrole derivatives, acridone derivatives, quinacridone derivatives, etc. However, it is not limited to these.
 正孔注入材料としては、正孔を輸送する能力を持ち、陽極からの正孔注入効果、発光層又は有機発光媒体に対して優れた正孔注入効果を有し、発光層で生成した励起子の電子注入層又は電子注入材料への移動を防止し、且つ薄膜形成能力の優れた化合物が好ましい。具体的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、オキサゾール、オキサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミン等と、それらの誘導体、及びポリビニルカルバゾール、ポリシラン、導電性高分子等の高分子材料が挙げられるが、これらに限定されるものではない。 As a hole injection material, it has the ability to transport holes, has a hole injection effect from the anode, an excellent hole injection effect for the light emitting layer or organic light emitting medium, and excitons generated in the light emitting layer The compound which prevents the movement to the electron injection layer or the electron injection material and has an excellent thin film forming ability is preferable. Specifically, phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, oxazole, oxadiazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acylhydrazone, polyaryl Examples include alkane, stilbene, butadiene, benzidine type triphenylamine, styrylamine type triphenylamine, diamine type triphenylamine, and derivatives thereof, and polymer materials such as polyvinylcarbazole, polysilane, and conductive polymers. However, it is not limited to these.
 本発明の有機EL素子において使用できる正孔注入材料の中で、さらに効果的な正孔注入材料は、芳香族三級アミン誘導体及びフタロシアニン誘導体である。
 芳香族三級アミン誘導体としては、例えば、トリフェニルアミン、トリトリルアミン、トリルジフェニルアミン、N,N’-ジフェニル-N,N’-(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N,N’,N’-(4-メチルフェニル)-1,1’-フェニル-4,4’-ジアミン、N,N,N’,N’-(4-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ジナフチル-1,1’-ビフェニル-4,4’-ジアミン、N,N’-(メチルフェニル)-N,N’-(4-n-ブチルフェニル)-フェナントレン-9,10-ジアミン、N,N-ビス(4-ジ-4-トリルアミノフェニル)-4-フェニル-シクロヘキサン等、又はこれらの芳香族三級アミン骨格を有したオリゴマーもしくはポリマーであるが、これらに限定されるものではない。
Among the hole injection materials that can be used in the organic EL device of the present invention, more effective hole injection materials are aromatic tertiary amine derivatives and phthalocyanine derivatives.
Examples of the aromatic tertiary amine derivative include triphenylamine, tolylamine, tolyldiphenylamine, N, N′-diphenyl-N, N ′-(3-methylphenyl) -1,1′-biphenyl-4,4 '-Diamine, N, N, N', N '-(4-methylphenyl) -1,1'-phenyl-4,4'-diamine, N, N, N', N '-(4-methylphenyl) ) -1,1′-biphenyl-4,4′-diamine, N, N′-diphenyl-N, N′-dinaphthyl-1,1′-biphenyl-4,4′-diamine, N, N ′-( Methylphenyl) -N, N ′-(4-n-butylphenyl) -phenanthrene-9,10-diamine, N, N-bis (4-di-4-tolylaminophenyl) -4-phenyl-cyclohexane, etc. Or oligomers having these aromatic tertiary amine skeletons Or is a polymer, but is not limited thereto.
 フタロシアニン(Pc)誘導体としては、例えば、HPc、CuPc、CoPc、NiPc、ZnPc、PdPc、FePc、MnPc、ClAlPc、ClGaPc、ClInPc、ClSnPc、ClSiPc、(HO)AlPc、(HO)GaPc、VOPc、TiOPc、MoOPc、GaPc-O-GaPc等のフタロシアニン誘導体及びナフタロシアニン誘導体があるが、これらに限定されるものではない。 Examples of the phthalocyanine (Pc) derivative include H 2 Pc, CuPc, CoPc, NiPc, ZnPc, PdPc, FePc, MnPc, ClAlPc, ClGaPc, ClInPc, ClSnPc, Cl 2 SiPc, (HO) AlPc, (HO) GaPc, Examples include, but are not limited to, phthalocyanine derivatives and naphthalocyanine derivatives such as VOPc, TiOPc, MoOPc, and GaPc—O—GaPc.
 また、本発明の有機EL素子は、発光層と陽極との間に、これらの芳香族三級アミン誘導体及び/又はフタロシアニン誘導体を含有する層、例えば、前記正孔輸送層又は正孔注入層を形成してなると好ましい。 Further, the organic EL device of the present invention includes a layer containing these aromatic tertiary amine derivatives and / or phthalocyanine derivatives, for example, the hole transport layer or the hole injection layer, between the light emitting layer and the anode. Preferably formed.
 電子注入材料としては、電子を輸送する能力を持ち、陰極からの電子注入効果、発光層又は発光材料に対して優れた電子注入効果を有し、発光層で生成した励起子の正孔注入層への移動を防止し、且つ薄膜形成能力の優れた化合物が好ましい。
 電子注入材料の具体例としては、8-ヒドロキシキノリン又はその誘導体の金属錯体やオキサジアゾール誘導体が好適である。上記8-ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、オキシン(一般に8-キノリノール又は8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8-キノリノラト)アルミニウムを電子注入材料として用いることができる。
As an electron injection material, it has the ability to transport electrons, has an electron injection effect from the cathode, and an excellent electron injection effect for the light emitting layer or light emitting material. The compound which prevents the movement to and is excellent in thin film forming ability is preferable.
As specific examples of the electron injecting material, 8-hydroxyquinoline or a metal complex of its derivative or an oxadiazole derivative is preferable. As a specific example of the metal complex of 8-hydroxyquinoline or its derivative, a metal chelate oxinoid compound containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), such as tris (8-quinolinolato) aluminum, is injected. It can be used as a material.
 一方、オキサジアゾール誘導体としては、以下の一般式で表される電子伝達化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000110
 
On the other hand, examples of the oxadiazole derivative include electron transfer compounds represented by the following general formula.
Figure JPOXMLDOC01-appb-C000110
(上記式中、Ar、Ar、Ar、Ar、Ar、及びArはそれぞれ置換又は無置換のアリール基を示し、それぞれ互いに同一であっても異なっていてもよい。
 Ar、Ar、Arは置換又は無置換のアリーレン基を示し、それぞれ同一であっても異なっていてもよい)
(In the above formula, Ar 1 , Ar 2 , Ar 3 , Ar 5 , Ar 6 , and Ar 9 each represent a substituted or unsubstituted aryl group, and may be the same or different from each other.
Ar 4 , Ar 7 and Ar 8 represent a substituted or unsubstituted arylene group, and may be the same or different.
 ここでアリール基としてはフェニル基、ビフェニル基、アントラニル基、ペリレニル基、ピレニル基が挙げられる。また、アリーレン基としてはフェニレン基、ナフチレン基、ビフェニレン基、アントラニレン基、ペリレニレン基、ピレニレン基等が挙げられる。また、置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。この電子伝達化合物は薄膜形成性のものが好ましい。 Here, examples of the aryl group include a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group. Examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group. Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group. This electron transfer compound is preferably a thin film-forming compound.
 上記電子伝達性化合物の具体例としては下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000111
 
 Meはメチルを、tBuはtブチルを表す。
Specific examples of the electron transfer compound include the following.
Figure JPOXMLDOC01-appb-C000111

Me represents methyl and tBu represents tbutyl.
 さらに、電子注入材料として、下記一般式(A)~(F)で表されるものも用いることができる。
Figure JPOXMLDOC01-appb-C000112
 
Further, materials represented by the following general formulas (A) to (F) can also be used as the electron injection material.
Figure JPOXMLDOC01-appb-C000112
(一般式(A)及び(B)中、A~Aは、それぞれ独立に、窒素原子又は炭素原子である。
 Arは、置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核原子数5~60の複素環基であり、
 Arは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核原子数5~60の複素環基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基、あるいはこれらの2価の基である。
 但し、Ar及びArのいずれか一方は、置換もしくは無置換の核炭素数10~60の縮合環基、又は置換もしくは無置換の核原子数5~60のモノヘテロ縮合環基である。
 L、L及びLは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数6~60のアリーレン基、置換もしくは無置換の核原子数5~60のヘテロアリーレン基、又は置換もしくは無置換のフルオレニレン基である。
 Rは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核原子数5~60の複素環基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基であり、nは0~5の整数であり、nが2以上の場合、複数のRは同一でも異なっていてもよく、また、隣接する複数のR基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環を形成していてもよい。
 Rは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基、又は-L-Ar-Arである。)で表される含窒素複素環誘導体。
(In the general formulas (A) and (B), A 1 to A 3 are each independently a nitrogen atom or a carbon atom.
Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 60 nuclear atoms,
Ar 2 represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 60 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms. Or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms or a divalent group thereof.
However, any one of Ar 1 and Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 5 to 60 nucleus atoms.
L 1 , L 2 and L are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 5 to 60 nuclear atoms, or a substituted or unsubstituted An unsubstituted fluorenylene group.
R represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 60 nuclear atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms. Or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, n is an integer of 0 to 5, and when n is 2 or more, a plurality of R may be the same or different and adjacent to each other A plurality of R groups may be bonded to each other to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring.
R 1 represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms. Or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms or —L 1 —Ar 1 —Ar 2 . The nitrogen-containing heterocyclic derivative represented by this.
     HAr-L-Ar-Ar    (C)
(式中、HArは、置換基を有していてもよい炭素数3~40の含窒素複素環であり、
 Lは、単結合、置換基を有していてもよい核炭素数6~60のアリーレン基、置換基を有していてもよい核原子数5~60のヘテロアリーレン基又は置換基を有していてもよいフルオレニレン基であり、
 Arは、置換基を有していてもよい核炭素数6~60の2価の芳香族炭化水素基であり、
 Arは、置換基を有していてもよい核炭素数6~60のアリール基又は置換基を有していてもよい核原子数5~60の複素環基である。)で表される含窒素複素環誘導体。
Figure JPOXMLDOC01-appb-C000113
 
HAr-L-Ar 1 -Ar 2 (C)
(Wherein HAr is a nitrogen-containing heterocycle having 3 to 40 carbon atoms which may have a substituent,
L has a single bond, an arylene group having 6 to 60 nuclear carbon atoms which may have a substituent, a heteroarylene group having 5 to 60 nuclear atoms which may have a substituent, or a substituent. A fluorenylene group which may be
Ar 1 is an optionally substituted divalent aromatic hydrocarbon group having 6 to 60 nuclear carbon atoms,
Ar 2 is an aryl group having 6 to 60 nuclear carbon atoms which may have a substituent or a heterocyclic group having 5 to 60 nuclear atoms which may have a substituent. The nitrogen-containing heterocyclic derivative represented by this.
Figure JPOXMLDOC01-appb-C000113
(式中、X及びYは、それぞれ独立に炭素数1~6の飽和若しくは不飽和の炭化水素基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、ヒドロキシ基、置換若しくは無置換のアリール基、置換若しくは無置換のヘテロ環又はXとYが結合して飽和又は不飽和の環を形成した構造であり、
 R~Rは、それぞれ独立に水素、ハロゲン原子、置換もしくは無置換の炭素数1から6までのアルキル基、アルコキシ基、アリールオキシ基、パーフルオロアルキル基、パーフルオロアルコキシ基、アミノ基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アゾ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、スルフィニル基、スルフォニル基、スルファニル基、シリル基、カルバモイル基、アリール基、ヘテロ環基、アルケニル基、アルキニル基、ニトロ基、ホルミル基、ニトロソ基、ホルミルオキシ基、イソシアノ基、シアネート基、イソシアネート基、チオシアネート基、イソチオシアネート基もしくはシアノ基又は隣接した場合には置換若しくは無置換の環が縮合した構造である。)で表されるシラシクロペンタジエン誘導体。
Figure JPOXMLDOC01-appb-C000114
 
Wherein X and Y are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, alkoxy group, alkenyloxy group, alkynyloxy group, hydroxy group, substituted or unsubstituted aryl group, substituted Or an unsubstituted heterocyclic ring or a structure in which X and Y are combined to form a saturated or unsaturated ring,
R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, an alkoxy group, an aryloxy group, a perfluoroalkyl group, a perfluoroalkoxy group, an amino group, Alkylcarbonyl group, arylcarbonyl group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, alkylcarbonyloxy group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, sulfinyl group, sulfonyl group, sulfanyl group, Silyl, carbamoyl, aryl, heterocyclic, alkenyl, alkynyl, nitro, formyl, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothi If the cyanate were group or cyano group, or adjacent a structure substituted or the unsubstituted rings are fused. A silacyclopentadiene derivative represented by:
Figure JPOXMLDOC01-appb-C000114
(式中、R~R及びZは、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化水素基、芳香族炭化水素基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又はアリールオキシ基を示し、
 X、Y及びZは、それぞれ独立に、飽和もしくは不飽和の炭化水素基、芳香族炭化水素基、ヘテロ環基、置換アミノ基、アルコキシ基又はアリールオキシ基を示し、
 ZとZの置換基は相互に結合して縮合環を形成してもよく、nは1~3の整数を示し、nが2以上の場合、Zは異なってもよい。
 但し、nが1、X、Y及びRがメチル基であって、Rが、水素原子又は置換ボリル基の場合、及びnが3でZがメチル基の場合を含まない。)で表されるボラン誘導体。
Figure JPOXMLDOC01-appb-C000115
 
(Wherein R 1 to R 8 and Z 2 are each independently a hydrogen atom, a saturated or unsaturated hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic group, a substituted amino group, a substituted boryl group, or an alkoxy group. Or an aryloxy group,
X, Y and Z 1 each independently represent a saturated or unsaturated hydrocarbon group, aromatic hydrocarbon group, heterocyclic group, substituted amino group, alkoxy group or aryloxy group;
The substituents of Z 1 and Z 2 may be bonded to each other to form a condensed ring. N represents an integer of 1 to 3, and when n is 2 or more, Z 1 may be different.
However, the case where n is 1, X, Y and R 2 are methyl groups and R 8 is a hydrogen atom or a substituted boryl group and the case where n is 3 and Z 1 is a methyl group are not included. A borane derivative represented by:
Figure JPOXMLDOC01-appb-C000115
[式中、Q及びQは、それぞれ独立に、下記一般式(G)で示される配位子を表し、
 Lは、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基、-OR(Rは、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基である。)又は-O-Ga-Q(Q)(Q及びQは、Q及びQと同じ)で示される配位子を表す。]
Figure JPOXMLDOC01-appb-C000116
 
[式中、環A及びAは、置換基を有してよい互いに縮合した6員アリール環構造である。]
[Wherein, Q 1 and Q 2 each independently represent a ligand represented by the following general formula (G),
L is a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, —OR 1 (R 1 is a hydrogen atom, A substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group) or —O—Ga—Q 3 (Q 4 ) (Q 3 and Q 4 are the same as Q 1 and Q 2 ). ]
Figure JPOXMLDOC01-appb-C000116

[Wherein, rings A 1 and A 2 are 6-membered aryl ring structures condensed with each other which may have a substituent. ]
 この金属錯体は、n型半導体としての性質が強く、電子注入能力が大きい。さらには、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子との結合性も強固になり、発光材料としての蛍光量子効率も大きくなっている。 This metal complex has strong properties as an n-type semiconductor and has a large electron injection capability. Furthermore, since the generation energy at the time of complex formation is also low, the bond between the metal of the formed metal complex and the ligand is strengthened, and the fluorescence quantum efficiency as a light emitting material is also increased.
 一般式(G)の配位子を形成する環A及びAの置換基の具体的な例を挙げると、塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、エチル基、プロピル基、ブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フェニル基、ナフチル基、3-メチルフェニル基、3-メトキシフェニル基、3-フルオロフェニル基、3-トリクロロメチルフェニル基、3-トリフルオロメチルフェニル基、3-ニトロフェニル基等の置換もしくは無置換のアリール基、メトキシ基、n-ブトキシ基、t-ブトキシ基、トリクロロメトキシ基、トリフルオロエトキシ基、ペンタフルオロプロポキシ基、2,2,3,3-テトラフルオロプロポキシ基、1,1,1,3,3,3-ヘキサフルオロ-2-プロポキシ基、6-(パーフルオロエチル)ヘキシルオキシ基等の置換もしくは無置換のアルコキシ基、フェノキシ基、p-ニトロフェノキシ基、p-t-ブチルフェノキシ基、3-フルオロフェノキシ基、ペンタフルオロフェノキシ基、3-トリフルオロメチルフェノキシ基等の置換もしくは無置換のアリールオキシ基、メチルチオ基、エチルチオ基、t-ブチルチオ基、ヘキシルチオ基、オクチルチオ基、トリフルオロメチルチオ基等の置換もしくは無置換のアルキルチオ基、フェニルチオ基、p-ニトロフェニルチオ基、p-t-ブチルフェニルチオ基、3-フルオロフェニルチオ基、ペンタフルオロフェニルチオ基、3-トリフルオロメチルフェニルチオ基等の置換もしくは無置換のアリールチオ基、シアノ基、ニトロ基、アミノ基、メチルアミノ基、エチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジフェニルアミノ基等のモノ又はジ置換アミノ基、ビス(アセトキシメチル)アミノ基、ビス(アセトキシエチル)アミノ基、ビスアセトキシプロピル)アミノ基、ビス(アセトキシブチル)アミノ基等のアシルアミノ基、水酸基、シロキシ基、アシル基、メチルカルバモイル基、ジメチルカルバモイル基、エチルカルバモイル基、ジエチルカルバモイル基、プロイピルカルバモイル基、ブチルカルバモイル基、フェニルカルバモイル基等のカルバモイル基、カルボン酸基、スルフォン酸基、イミド基、シクロペンタン基、シクロヘキシル基等のシクロアルキル基、フェニル基、ナフチル基、ビフェニル基、アントラニル基、フェナントリル基、フルオレニル基、ピレニル基等のアリール基、ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、インドリニル基、キノリニル基、アクリジニル基、ピロリジニル基、ジオキサニル基、ピペリジニル基、モルフォリニル基、ピペラジニル基、カルバゾリル基、フラニル基、チオフェニル基、オキサゾリル基、オキサジアゾリル基、ベンゾオキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリル基、トリアゾリル基、イミダゾリル基、ベンゾイミダゾリル基等の複素環基等がある。また、以上の置換基同士が結合してさらなる6員アリール環もしくは複素環を形成してもよい。 Specific examples of the substituents of the rings A 1 and A 2 forming the ligand of the general formula (G) include chlorine, bromine, iodine, halogen atoms of fluorine, methyl group, ethyl group, propyl group, Substituted or unsubstituted alkyl groups such as butyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, phenyl group, naphthyl group, 3-methyl A substituted or unsubstituted aryl group such as phenyl group, 3-methoxyphenyl group, 3-fluorophenyl group, 3-trichloromethylphenyl group, 3-trifluoromethylphenyl group, 3-nitrophenyl group, methoxy group, n- Butoxy group, t-butoxy group, trichloromethoxy group, trifluoroethoxy group, pentafluoropropoxy group, 2,2,3,3-tetrafur Substituted or unsubstituted alkoxy group such as lopropoxy group, 1,1,1,3,3,3-hexafluoro-2-propoxy group, 6- (perfluoroethyl) hexyloxy group, phenoxy group, p-nitrophenoxy Group, pt-butylphenoxy group, 3-fluorophenoxy group, pentafluorophenoxy group, substituted or unsubstituted aryloxy group such as 3-trifluoromethylphenoxy group, methylthio group, ethylthio group, t-butylthio group, Substituted or unsubstituted alkylthio groups such as hexylthio group, octylthio group, trifluoromethylthio group, phenylthio group, p-nitrophenylthio group, pt-butylphenylthio group, 3-fluorophenylthio group, pentafluorophenylthio Group, 3-trifluoromethylphenylthio group, etc. Or an unsubstituted arylthio group, a cyano group, a nitro group, an amino group, a methylamino group, an ethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, a diphenylamino group or the like mono or disubstituted amino group, bis ( Acetoxymethyl) amino group, bis (acetoxyethyl) amino group, bisacetoxypropyl) amino group, bis (acetoxybutyl) amino group and other acylamino groups, hydroxyl group, siloxy group, acyl group, methylcarbamoyl group, dimethylcarbamoyl group, ethyl Carbamoyl group, diethylcarbamoyl group, propylcarbamoyl group, butylcarbamoyl group, carbamoyl group such as phenylcarbamoyl group, carboxylic acid group, sulfonic acid group, imide group, cyclopentane group, cycloalkyl group such as cyclohexyl group, phenyl Aryl groups such as naphthyl group, biphenyl group, anthranyl group, phenanthryl group, fluorenyl group, pyrenyl group, pyridinyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, triazinyl group, indolinyl group, quinolinyl group, acridinyl group, pyrrolidinyl group, Dioxanyl group, piperidinyl group, morpholinyl group, piperazinyl group, carbazolyl group, furanyl group, thiophenyl group, oxazolyl group, oxadiazolyl group, benzoxazolyl group, thiazolyl group, thiadiazolyl group, benzothiazolyl group, triazolyl group, imidazolyl group, benzimidazolyl group And the like. Moreover, the above substituents may combine to form a further 6-membered aryl ring or heterocyclic ring.
 本発明の有機EL素子の好ましい形態に、電子を輸送する領域又は陰極と有機層の界面領域に、還元性ドーパントを含有する素子がある。ここで、還元性ドーパントとは、電子輸送性化合物を還元ができる物質と定義される。従って、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物又は希土類金属のハロゲン化物、アルカリ金属の炭酸塩、アルカリ土類金属の炭酸塩、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好適に使用することができる。 Favorable forms of the organic EL device of the present invention include a device containing a reducing dopant in an electron transporting region or an interface region between a cathode and an organic layer. Here, the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals. Oxides, alkaline earth metal halides, rare earth metal oxides or rare earth metal halides, alkali metal carbonates, alkaline earth metal carbonates, alkali metal organic complexes, alkaline earth metal organic complexes In addition, at least one substance selected from the group consisting of organic complexes of rare earth metals can be preferably used.
 また、より具体的に、好ましい還元性ドーパントとしては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)及びCs(仕事関数:1.95eV)からなる群から選択される少なくとも一つのアルカリ金属や、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0~2.5eV)、及びBa(仕事関数:2.52eV)からなる群から選択される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性ドーパントは、K、Rb及びCsからなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、Rb又はCsであり、最も好ましのは、Csである。これらのアルカリ金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性ドーパントとして、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRbあるいはCsとNaとKとの組み合わせであることが好ましい。Csを組み合わせて含むことにより、還元能力を効率的に発揮することができ、電子注入域への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。 More specifically, preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1 .95 eV), at least one alkali metal selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.52 eV). Particularly preferred are those having a work function of 2.9 eV or less, including at least one alkaline earth metal selected from the group consisting of: Among these, a more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb, and Cs, more preferably Rb or Cs, and most preferably Cs. . These alkali metals have particularly high reducing ability, and the addition of a relatively small amount to the electron injection region can improve the light emission luminance and extend the life of the organic EL element. Further, as a reducing dopant having a work function of 2.9 eV or less, a combination of two or more alkali metals is also preferable. Particularly, a combination containing Cs, such as Cs and Na, Cs and K, Cs and Rb, or Cs. And a combination of Na and K. By including Cs in combination, the reducing ability can be efficiently exhibited, and by adding to the electron injection region, the emission luminance and the life of the organic EL element can be improved.
 本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層をさらに設けても良い。このとき、電流のリークを有効に防止して、電子注入性を向上させることができる。このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。
 具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、LiO、KO、NaS、NaSe及びNaOが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS、及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、CsF、LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF、BaF、SrF、MgF及びBeFといったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
In the present invention, an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer. At this time, current leakage can be effectively prevented and the electron injection property can be improved. As such an insulator, it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
Specifically, preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O, and preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS, and CaSe. Further, preferable alkali metal halides include, for example, LiF, NaF, KF, CsF, LiCl, KCl, and NaCl. Examples of preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
 また、電子注入層を構成する半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子注入層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子注入層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。尚、このような無機化合物としては、上述したアルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。 In addition, as a semiconductor constituting the electron injection layer, an oxide containing at least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn. , Nitrides or oxynitrides, or a combination of two or more. In addition, the inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film. If the electron injection layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
 次に、陰極としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、セシウム、マグネシウム・銀合金、アルミニウム/酸化アルミニウム、Al/LiO、Al/LiO、Al/LiF、アルミニウム・リチウム合金、インジウム、希土類金属等が挙げられる。
 この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
Next, as a cathode, what uses a metal, an alloy, an electroconductive compound, and a mixture thereof with a small work function (4 eV or less) as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, cesium, magnesium / silver alloy, aluminum / aluminum oxide, Al / Li 2 O, Al / LiO, Al / LiF, aluminum Examples include lithium alloys, indium, and rare earth metals.
The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
 ここで、発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、さらに、膜厚は通常10nm~1μm、好ましくは50~200nmである。 Here, when light emitted from the light emitting layer is taken out from the cathode, it is preferable that the transmittance of the light emitted from the cathode is larger than 10%. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually 10 nm to 1 μm, preferably 50 to 200 nm.
 また、一般に、有機EL素子は、超薄膜に電界を印加するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入しても良い。 In general, since an organic EL element applies an electric field to an ultra-thin film, pixel defects are likely to occur due to leakage or short circuit. In order to prevent this, an insulating thin film layer may be inserted between the pair of electrodes.
 絶縁層に用いられる材料としては、例えば、酸化アルミニウム、弗化リチウム、酸化リチウム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられる。これらの混合物や積層物を用いてもよい。 Examples of the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, and silicon oxide. Germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide, and the like. A mixture or laminate of these may be used.
 本発明により得られた有機EL素子の、温度、湿度、雰囲気等に対する安定性の向上のために、素子の表面に保護層を設けたり、シリコンオイル、樹脂等により素子全体を保護することも可能である。 In order to improve the stability of the organic EL device obtained by the present invention against temperature, humidity, atmosphere, etc., it is possible to provide a protective layer on the surface of the device, or to protect the entire device with silicon oil, resin, etc. It is.
 本発明の有機EL素子の陽極に使用される導電性材料としては、4eVより大きな仕事関数を持つものが適しており、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等及びそれらの合金、ITO(インジウム錫酸化物)基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。陰極に使用される導電性物質としては、4eVより小さな仕事関数を持つものが適しており、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム、フッ化リチウム等及びそれらの合金が用いられるが、これらに限定されるものではない。合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。陽極及び陰極は、必要があれば二層以上の層構成により形成されていても良い。 As the conductive material used for the anode of the organic EL element of the present invention, a material having a work function larger than 4 eV is suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum Further, palladium, etc. and alloys thereof, ITO (indium tin oxide) substrate, tin oxide used for NESA substrate, metal oxide such as indium oxide, and organic conductive resin such as polythiophene and polypyrrole are used. Suitable conductive materials for the cathode are those having a work function smaller than 4 eV, such as magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, lithium fluoride, and the like. However, it is not limited to these. Examples of alloys include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto. The ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio. If necessary, the anode and the cathode may be formed of two or more layers.
 本発明の有機EL素子では、効率良く発光させるために、少なくとも一方の面は素子の発光波長領域において充分透明にすることが望ましい。また、基板も透明であることが望ましい。透明電極は、上記の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性が確保するように設定する。発光面の電極は、光透過率を10%以上にすることが望ましい。基板は、機械的、熱的強度を有し、透明性を有するものであれば限定されるものではないが、ガラス基板及び透明性樹脂フィルムがある。
 透明性樹脂フィルムとしては、ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリプロピレン等が挙げられる。
In the organic EL device of the present invention, in order to emit light efficiently, it is desirable that at least one surface is sufficiently transparent in the light emission wavelength region of the device. The substrate is also preferably transparent. The transparent electrode is set using the above-described conductive material so as to ensure a predetermined translucency by a method such as vapor deposition or sputtering. The electrode on the light emitting surface preferably has a light transmittance of 10% or more. The substrate is not limited as long as it has mechanical and thermal strength and has transparency, and includes a glass substrate and a transparent resin film.
Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone. , Polysulfone, polyethersulfone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, Polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, polyimide, polypropylene, etc. It is.
 本発明に係わる有機EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれの方法を適用することができる。膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nm~10μmの範囲が適しているが、10nm~0.2μmの範囲がさらに好ましい。 For the formation of each layer of the organic EL device according to the present invention, any of dry film forming methods such as vacuum deposition, sputtering, plasma, ion plating, etc. and wet film forming methods such as spin coating, dipping, and flow coating is applied. be able to. The film thickness is not particularly limited, but must be set to an appropriate film thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. The normal film thickness is suitably in the range of 5 nm to 10 μm, but more preferably in the range of 10 nm to 0.2 μm.
 湿式成膜法の場合、各層を形成する材料を、エタノール、クロロホルム、テトラヒドロフラン、ジオキサン等の適切な溶媒に溶解又は分散させて薄膜を形成するが、その溶媒はいずれであっても良い。また、いずれの有機薄膜層においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用しても良い。使用の可能な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂及びそれらの共重合体、ポリ-N-ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げられる。また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等を挙げられる。 In the case of the wet film-forming method, the material for forming each layer is dissolved or dispersed in an appropriate solvent such as ethanol, chloroform, tetrahydrofuran, dioxane or the like to form a thin film, and any solvent may be used. In any organic thin film layer, an appropriate resin or additive may be used for improving film formability and preventing pinholes in the film. Usable resins include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose and other insulating resins and copolymers thereof, poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole. Examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
 本発明の有機EL素子は、壁掛けテレビのフラットパネルディスプレイ等の平面発光体、複写機、プリンター、液晶ディスプレイのバックライト又は計器類等の光源、表示板、標識灯等に利用できる。また、本発明の材料は、有機EL素子だけでなく、電子写真感光体、光電変換素子、太陽電池、イメージセンサー等の分野においても使用できる。 The organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a copying machine, a printer, a light source such as a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like. The material of the present invention can be used not only in an organic EL device but also in fields such as an electrophotographic photosensitive member, a photoelectric conversion device, a solar cell, and an image sensor.
 次に、合成例、実施例及び比較例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに制限されるものではない。 Next, the present invention will be described in more detail with reference to synthesis examples, examples and comparative examples, but the present invention is not limited thereto.
実施例1
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして膜厚60nmの化合物A-1を成膜した。A-1膜の成膜に続けて、このA-1膜上に膜厚20nmのA-2を成膜した。さらに、このA-2膜上に膜厚40nmで本発明のホスト材料EM1とドーパント材料DM7-4を40:2の膜厚比で成膜し青色系発光層とした。
Figure JPOXMLDOC01-appb-C000117
 
Example 1
A 25 mm × 75 mm × 1.1 mm thick glass substrate with ITO transparent electrode (anode) (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. The glass substrate with the transparent electrode line after cleaning is mounted on a substrate holder of a vacuum deposition apparatus, and first, a compound A-1 having a film thickness of 60 nm is formed so as to cover the transparent electrode on the surface on which the transparent electrode line is formed. Was deposited. Subsequent to the formation of the A-1 film, A-2 having a thickness of 20 nm was formed on the A-1 film. Further, the host material EM1 and the dopant material DM7-4 of the present invention were formed on the A-2 film at a film thickness ratio of 40: 2 to form a blue light emitting layer.
Figure JPOXMLDOC01-appb-C000117
 この膜上に電子輸送層として膜厚20nmで下記構造のAlqを蒸着により成膜した。この後、LiFを膜厚1nmで成膜した。このLiF膜上に金属Alを150nm蒸着させ金属陰極を形成し有機EL発光素子を形成した。
Figure JPOXMLDOC01-appb-C000118
 
   Alq
On this film, Alq having a thickness of 20 nm was deposited as an electron transport layer by vapor deposition. Thereafter, LiF was formed to a thickness of 1 nm. On the LiF film, metal Al was deposited to a thickness of 150 nm to form a metal cathode to form an organic EL light emitting device.
Figure JPOXMLDOC01-appb-C000118

Alq
実施例2~174
 実施例1において、ホスト材料EM1、ドーパント材料DM7-4の代わりに表1~5に示すホスト材料とドーパント材料を用いて同様に有機EL素子を作成した。
Examples 2 to 174
In Example 1, organic EL devices were similarly produced using the host materials and dopant materials shown in Tables 1 to 5 instead of the host material EM1 and the dopant material DM7-4.
比較例1
 実施例1において、ホスト材料EM1の代わりに下記化合物Aを、ドーパント材料DM7-4の代わりに下記化合物Bを用いて同様に有機EL素子を作成した。
Figure JPOXMLDOC01-appb-C000119
 
Comparative Example 1
In Example 1, an organic EL device was prepared in the same manner using the following compound A instead of the host material EM1 and the following compound B instead of the dopant material DM7-4.
Figure JPOXMLDOC01-appb-C000119
比較例2
 実施例1において、ホスト材料EM1の代わりに下記化合物Cを、ドーパント材料DM7-4の代わりに下記化合物Dを用いて同様に有機EL素子を作成した。
Figure JPOXMLDOC01-appb-C000120
 
Comparative Example 2
In Example 1, an organic EL device was similarly prepared using the following compound C instead of the host material EM1 and the following compound D instead of the dopant material DM7-4.
Figure JPOXMLDOC01-appb-C000120
比較例3
 実施例1において、ホスト材料EM1の代わりに下記化合物Eを、ドーパント材料DM7-4の代わりに下記化合物Fを用いて同様に有機EL素子を作成した。
Figure JPOXMLDOC01-appb-C000121
 
Comparative Example 3
In Example 1, an organic EL device was similarly prepared using the following compound E instead of the host material EM1 and the following compound F instead of the dopant material DM7-4.
Figure JPOXMLDOC01-appb-C000121
 表1~5に有機EL素子の発光波長及び初期輝度1000cd/mにおける半減寿命を示す。
Figure JPOXMLDOC01-appb-T000122
 
Figure JPOXMLDOC01-appb-T000123
 
Figure JPOXMLDOC01-appb-T000124
 
Figure JPOXMLDOC01-appb-T000125
 
Figure JPOXMLDOC01-appb-T000126
 
Tables 1 to 5 show the light emission wavelength and the half-life at an initial luminance of 1000 cd / m 2 of the organic EL element.
Figure JPOXMLDOC01-appb-T000122

Figure JPOXMLDOC01-appb-T000123

Figure JPOXMLDOC01-appb-T000124

Figure JPOXMLDOC01-appb-T000125

Figure JPOXMLDOC01-appb-T000126
実施例175~430
 実施例1において、ホスト材料EM1、ドーパント材料DM7-4の代わりに表6~12に示すホスト材料とドーパント材料を用いて同様に有機EL素子を作製した。
Examples 175-430
In Example 1, organic EL devices were similarly produced using the host materials and dopant materials shown in Tables 6 to 12 instead of the host material EM1 and the dopant material DM7-4.
比較例4
 実施例1において、ホスト材料EM1の代わりに下記化合物H-1’を、ドーパント材料DM7-4の代わりにドーパント材料DM2-4’を用いて同様に有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000127
 
Comparative Example 4
In Example 1, the following compound H-1 ′ was used instead of the host material EM1, and the dopant material DM2-4 ′ was used instead of the dopant material DM7-4, and an organic EL device was similarly produced.
Figure JPOXMLDOC01-appb-C000127
比較例5
 実施例1において、ホスト材料EM1の代わりに上記化合物H-1’を、ドーパント材料DM7-4の代わりにドーパント材料DM10-4’を用いて同様に有機EL素子を作製した。
Comparative Example 5
In Example 1, an organic EL device was produced in the same manner using the compound H-1 ′ in place of the host material EM1 and the dopant material DM10-4 ′ in place of the dopant material DM7-4.
比較例6
 実施例1において、ホスト材料EM1の代わりに下記化合物H-2’を、ドーパント材料DM7-4の代わりに下記化合物D-1’を用いて同様に有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000128
 
Comparative Example 6
In Example 1, the following compound H-2 ′ was used in place of the host material EM1, and the following compound D-1 ′ was used in place of the dopant material DM7-4 to similarly produce an organic EL device.
Figure JPOXMLDOC01-appb-C000128
比較例7
 実施例1において、ホスト材料EM1の代わりに下記化合物H-3’を、ドーパント材料DM7-4の代わりに下記化合物D-2’を用いて同様に有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000129
 
Comparative Example 7
In Example 1, the following compound H-3 ′ was used in place of the host material EM1, and the following compound D-2 ′ was used in place of the dopant material DM7-4 to similarly produce an organic EL device.
Figure JPOXMLDOC01-appb-C000129
 表6~12に実施例175~430及び比較例4~7で得られた有機EL素子の発光効率及び初期輝度1000cd/mにおける半減寿命を示す。
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000136
Tables 6 to 12 show the luminous efficiencies of the organic EL devices obtained in Examples 175 to 430 and Comparative Examples 4 to 7 and the half lives at an initial luminance of 1000 cd / m 2 .
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000136
 本発明の有機発光媒体を用いた有機EL素子は、例えば、壁掛テレビの平面発光体やディスプレイのバックライト等の光源として有用である。
 この明細書に記載の文献の内容をすべてここに援用する。
The organic EL element using the organic light emitting medium of the present invention is useful as a light source such as a flat light emitter of a wall-mounted television or a backlight of a display.
The entire contents of the documents described in this specification are incorporated herein by reference.

Claims (38)

  1.  下記式(1)で表されるジアミノピレン誘導体と、下記式(2)で表されるアントラセン誘導体とを含む有機発光媒体。
    Figure JPOXMLDOC01-appb-C000001
     
    (式(1)中、R21~R24は、それぞれ独立に、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、又は、置換もしくは無置換の炭素数7~50のアラルキル基であり、同一のベンゼン環上に1又は2組の隣接するアルキル基がある場合、該隣接するアルキル基は互いに結合して置換もしくは無置換の2価の結合基を形成してもよい、但し、該隣接するアルキル基がそれらが結合するベンゼン環と共に1-ナフチル基を形成する場合は除く。
     n1~n4は、それぞれ独立に、0~5の整数である。
     R及びRは、それぞれ独立に、水素原子、置換もしくは無置換の核原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換のシリル基、ハロゲン原子又はシアノ基である。
     但し、R及びRが同時に水素原子である場合は除く。)
    Figure JPOXMLDOC01-appb-C000002
     
    (式(2)中、Ar11及びAr12は、それぞれ独立に、置換もしくは無置換の核炭素数6~20のアリール基であり、
     R~Rは、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換のシリル基、ハロゲン原子、シアノ基から選ばれる基である。
     但し、Ar11及びAr12の一方が無置換の2-ナフチル基である場合、他方は4-(1-ナフチル)フェニル-1-イル基ではない。
     また、Ar11及びAr12の少なくとも1つが置換もしくは無置換のアントリル基ではない。)
    An organic light-emitting medium comprising a diaminopyrene derivative represented by the following formula (1) and an anthracene derivative represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000001

    (In the formula (1), R 21 to R 24 each independently represents a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted When a substituted cycloalkyl group having 3 to 50 carbon atoms or a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms and one or two pairs of adjacent alkyl groups on the same benzene ring, The adjacent alkyl groups may be bonded to each other to form a substituted or unsubstituted divalent linking group, provided that the adjacent alkyl group forms a 1-naphthyl group together with the benzene ring to which they are bonded. Is excluded.
    n1 to n4 are each independently an integer of 0 to 5.
    R a and R b are each independently a hydrogen atom, a substituted or unsubstituted heterocyclic group having 5 to 50 nucleus atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted nucleus, A cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted nucleus having 6 to 50 carbon atoms An aryloxy group, a substituted or unsubstituted silyl group, a halogen atom, or a cyano group.
    However, it excludes when R a and R b are hydrogen atoms at the same time. )
    Figure JPOXMLDOC01-appb-C000002

    (In the formula (2), Ar 11 and Ar 12 are each independently a substituted or unsubstituted aryl group having 6 to 20 nuclear carbon atoms,
    R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted group; An alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted carbon group having 7 to 50 carbon atoms. A group selected from an aralkyl group, a substituted or unsubstituted aryloxy group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted silyl group, a halogen atom, and a cyano group.
    However, when one of Ar 11 and Ar 12 is an unsubstituted 2-naphthyl group, the other is not a 4- (1-naphthyl) phenyl-1-yl group.
    Further, at least one of Ar 11 and Ar 12 is not a substituted or unsubstituted anthryl group. )
  2.  前記式(2)で表されるアントラセン誘導体において、Ar11及びAr12の一方が無置換の2-ナフチル基である場合、他方はアリール置換のフェニル基ではない請求項1に記載の有機発光媒体。 The organic light-emitting medium according to claim 1, wherein in the anthracene derivative represented by the formula (2), when one of Ar 11 and Ar 12 is an unsubstituted 2-naphthyl group, the other is not an aryl-substituted phenyl group. .
  3.  前記式(2)におけるAr11及びAr12が、それぞれ独立に、置換もしくは無置換の核炭素数10~20の縮合アリール基である請求項1又は2に記載の有機発光媒体。 The organic light-emitting medium according to claim 1 or 2, wherein Ar 11 and Ar 12 in the formula (2) are each independently a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms.
  4.  前記式(2)におけるAr11及びAr12が同一の基である請求項3に記載の有機発光媒体。 The organic light-emitting medium according to claim 3, wherein Ar 11 and Ar 12 in the formula (2) are the same group.
  5.  前記式(2)におけるAr11及びAr12が、置換もしくは無置換の9-フェナントレニル基である請求項4に記載の有機発光媒体。 The organic light-emitting medium according to claim 4, wherein Ar 11 and Ar 12 in the formula (2) are substituted or unsubstituted 9-phenanthrenyl groups.
  6.  前記式(2)におけるAr11及びAr12が、置換もしくは無置換の2-ナフチル基である請求項4に記載の有機発光媒体。 The organic light-emitting medium according to claim 4, wherein Ar 11 and Ar 12 in the formula (2) are substituted or unsubstituted 2-naphthyl groups.
  7.  前記式(2)におけるAr11及びAr12が、置換もしくは無置換の1-ナフチル基である請求項4に記載の有機発光媒体。 The organic light-emitting medium according to claim 4, wherein Ar 11 and Ar 12 in the formula (2) are substituted or unsubstituted 1-naphthyl groups.
  8.  前記式(2)におけるAr11及びAr12が異なる基である請求項3に記載の有機発光媒体。 The organic light-emitting medium according to claim 3, wherein Ar 11 and Ar 12 in the formula (2) are different groups.
  9.  前記式(2)におけるAr11及びAr12が、置換もしくは無置換の9-フェナントレニル基、置換もしくは無置換の1-ナフチル基、及び置換もしくは無置換の2-ナフチル基のいずれかである請求項8に記載の有機発光媒体。 Ar 11 and Ar 12 in the formula (2) are any one of a substituted or unsubstituted 9-phenanthrenyl group, a substituted or unsubstituted 1-naphthyl group, and a substituted or unsubstituted 2-naphthyl group. 9. The organic light emitting medium according to 8.
  10.  前記式(2)におけるAr11及びAr12の一方が置換もしくは無置換のフェニル基であり、他方が置換もしくは無置換の核炭素数10~20の縮合アリール基である請求項1又は2に記載の有機発光媒体。 3. The formula (2), wherein one of Ar 11 and Ar 12 is a substituted or unsubstituted phenyl group, and the other is a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms. Organic light-emitting medium.
  11.  前記置換もしくは無置換の核炭素数10~20の縮合アリール基が、置換もしくは無置換の1-ナフチル基である請求項10に記載の有機発光媒体。 The organic light-emitting medium according to claim 10, wherein the substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms is a substituted or unsubstituted 1-naphthyl group.
  12.  前記置換もしくは無置換の核炭素数10~20の縮合アリール基が、置換もしくは無置換の2-ナフチル基である請求項10に記載の有機発光媒体。 The organic light-emitting medium according to claim 10, wherein the substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms is a substituted or unsubstituted 2-naphthyl group.
  13.  前記式(2)で表されるアントラセン誘導体が、下記式(2-6)で表される請求項1に記載の有機発光媒体。
    Figure JPOXMLDOC01-appb-C000003
     
    (式(2-6)中、R~Rは式(2)と同様である。
     Ar及びArはそれぞれ独立に、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、又は置換もしくは無置換の核原子数5~50の複素環基である。)
    The organic light-emitting medium according to claim 1, wherein the anthracene derivative represented by the formula (2) is represented by the following formula (2-6).
    Figure JPOXMLDOC01-appb-C000003

    (In the formula (2-6), R 1 to R 8 are the same as in the formula (2).
    Ar 5 and Ar 6 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted nuclear carbon number of 3 to 50 A substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms. )
  14.  前記式(2-6)中のAr及びArがそれぞれ独立に置換もしくは無置換のフェニル基である請求項13に記載の有機発光媒体。 The organic light-emitting medium according to claim 13, wherein Ar 5 and Ar 6 in the formula (2-6) are each independently a substituted or unsubstituted phenyl group.
  15.  前記式(2-6)中のAr及びArの一方が置換もしくは無置換のフェニル基であり、他方が置換もしくは無置換の核炭素数10~20の縮合アリール基である請求項13に記載の有機発光媒体。 14. In the formula (2-6), one of Ar 5 and Ar 6 is a substituted or unsubstituted phenyl group, and the other is a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms. An organic light-emitting medium as described.
  16.  前記式(2-6)中のAr及びArがそれぞれ独立に置換もしくは無置換の核炭素数10~20の縮合アリール基である請求項13に記載の有機発光媒体。 The organic light-emitting medium according to claim 13, wherein Ar 5 and Ar 6 in the formula (2-6) are each independently a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms.
  17.  前記式(2)又は前記式(2-6)中のR~Rの全てが水素原子である請求項1~16のいずれかに記載の有機発光媒体。 The organic light-emitting medium according to any one of claims 1 to 16, wherein all of R 1 to R 8 in the formula (2) or the formula (2-6) are hydrogen atoms.
  18.  下記式(1)’で表されるジアミノピレン誘導体と、下記式(2)’で表されるアントラセン誘導体とを含む有機発光媒体。
    Figure JPOXMLDOC01-appb-C000004
     
    (式(1)’中、R21’~R24’は、それぞれ独立に、水素原子、核炭素数6~50の置換もしくは無置換のアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、又は置換もしくは無置換の炭素数3~20のシリル基であり、同一のベンゼン環上に1又は2組の隣接するアルキル基がある場合、該隣接するアルキル基は互いに結合して置換もしくは無置換の2価の結合基を形成してもよい。
     n1’~n4’は、それぞれ独立に、1~5の整数である。
     Ra’及びRb’は、それぞれ独立に、置換もしくは無置換の核炭素数6~50のアリール基である。)
    Figure JPOXMLDOC01-appb-C000005
     
    (式(2)’中、Ar11’及びAr12’は、それぞれ独立に、置換もしくは無置換の核炭素数6~50のアリール基、又は核原子数5~50の複素環基であり、
     R1’~R8’は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換の核炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基及びヒドロキシル基から選ばれる基である。
     但し、R1’~R8’が水素原子であって、Ar11’及びAr12’の一方が無置換の2-ナフチル基である場合、他方は4-(1-ナフチル)フェニル-1-イル基ではない。)
    An organic light-emitting medium comprising a diaminopyrene derivative represented by the following formula (1) ′ and an anthracene derivative represented by the following formula (2) ′.
    Figure JPOXMLDOC01-appb-C000004

    (In the formula (1) ′, R 21 ′ to R 24 ′ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted 1 to 50 carbon atoms, An alkyl group, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, or a substituted or unsubstituted silyl group having 3 to 20 carbon atoms, When there are one or two sets of adjacent alkyl groups on the same benzene ring, the adjacent alkyl groups may be bonded to each other to form a substituted or unsubstituted divalent linking group.
    n1 ′ to n4 ′ are each independently an integer of 1 to 5.
    R a ′ and R b ′ are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms. )
    Figure JPOXMLDOC01-appb-C000005

    (In the formula (2) ′, Ar 11 ′ and Ar 12 ′ are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms or a heterocyclic group having 5 to 50 nuclear atoms,
    R 1 ′ to R 8 ′ each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, substituted or unsubstituted An alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted nuclear carbon number 6 to It is a group selected from 50 arylthio groups, substituted or unsubstituted alkoxycarbonyl groups having 2 to 50 carbon atoms, substituted or unsubstituted silyl groups, carboxyl groups, halogen atoms, cyano groups, nitro groups and hydroxyl groups.
    Provided that when R 1 ′ to R 8 ′ are hydrogen atoms and one of Ar 11 ′ and Ar 12 ′ is an unsubstituted 2-naphthyl group, the other is 4- (1-naphthyl) phenyl-1- It is not an ill group. )
  19.  前記式(2)’で表されるアントラセン誘導体において、Ar11’及びAr12’の一方が無置換の2-ナフチル基である場合、他方はアリール置換のフェニル基ではない請求項18に記載の有機発光媒体。 19. The anthracene derivative represented by the formula (2) ′, wherein when one of Ar 11 ′ and Ar 12 ′ is an unsubstituted 2-naphthyl group, the other is not an aryl-substituted phenyl group. Organic luminescent medium.
  20.  前記式(2)’におけるAr11’及びAr12’が、それぞれ独立に、置換もしくは無置換の核炭素数10~50の縮合アリール基である請求項18又は19に記載の有機発光媒体。 The organic light-emitting medium according to claim 18 or 19, wherein Ar 11 ' and Ar 12 ' in the formula (2) 'are each independently a substituted or unsubstituted condensed aryl group having 10 to 50 nuclear carbon atoms.
  21.  前記式(2)’におけるAr11’及びAr12’が同一の基である請求項20に記載の有機発光媒体。 The organic light-emitting medium according to claim 20, wherein Ar 11 ' and Ar 12 ' in the formula (2) 'are the same group.
  22.  前記式(2)’におけるAr11’及びAr12’が、置換もしくは無置換の9-フェナントレニル基である請求項21に記載の有機発光媒体。 The organic light-emitting medium according to claim 21, wherein Ar 11 ' and Ar 12 ' in the formula (2) 'are substituted or unsubstituted 9-phenanthrenyl groups.
  23.  前記式(2)’におけるAr11’及びAr12’が、置換もしくは無置換の2-ナフチル基である請求項21に記載の有機発光媒体。 The organic light-emitting medium according to claim 21, wherein Ar 11 ' and Ar 12 ' in the formula (2) 'are substituted or unsubstituted 2-naphthyl groups.
  24.  前記式(2)’におけるAr11’及びAr12’が、置換もしくは無置換の1-ナフチル基である請求項21に記載の有機発光媒体。 The organic light-emitting medium according to claim 21, wherein Ar 11 ' and Ar 12 ' in the formula (2) 'are substituted or unsubstituted 1-naphthyl groups.
  25.  前記式(2)’におけるAr11’及びAr12’が異なる基である請求項20に記載の有機発光媒体。 The organic luminescent medium according to claim 20, wherein Ar 11 ' and Ar 12 ' in the formula (2) 'are different groups.
  26.  前記式(2)’におけるAr11’及びAr12’が、置換もしくは無置換の9-フェナントレニル基、置換もしくは無置換の1-ナフチル基、置換もしくは無置換の2-ナフチル基、置換もしくは無置換のフルオランテニル基、及び置換もしくは無置換のピレニル基のいずれかである請求項25に記載の有機発光媒体。 Ar 11 ′ and Ar 12 ′ in the formula (2) ′ are substituted or unsubstituted 9-phenanthrenyl group, substituted or unsubstituted 1-naphthyl group, substituted or unsubstituted 2-naphthyl group, substituted or unsubstituted The organic luminescent medium according to claim 25, which is any one of a fluoranthenyl group and a substituted or unsubstituted pyrenyl group.
  27.  前記式(2)’におけるAr11’及びAr12’の一方が置換もしくは無置換のフェニル基であり、他方が置換もしくは無置換の核炭素数10~50の縮合アリール基である請求項18又は19に記載の有機発光媒体。 19. In the formula (2) ′, one of Ar 11 ′ and Ar 12 ′ is a substituted or unsubstituted phenyl group, and the other is a substituted or unsubstituted condensed aryl group having 10 to 50 nuclear carbon atoms. 19. The organic light emitting medium according to 19.
  28.  前記置換もしくは無置換の核炭素数10~50の縮合アリール基が、置換もしくは無置換の1-ナフチル基である請求項27に記載の有機発光媒体。 The organic light-emitting medium according to claim 27, wherein the substituted or unsubstituted condensed aryl group having 10 to 50 nuclear carbon atoms is a substituted or unsubstituted 1-naphthyl group.
  29.  前記置換もしくは無置換の核炭素数10~50の縮合アリール基が、置換もしくは無置換の2-ナフチル基である請求項27に記載の有機発光媒体。 The organic light-emitting medium according to claim 27, wherein the substituted or unsubstituted condensed aryl group having 10 to 50 nuclear carbon atoms is a substituted or unsubstituted 2-naphthyl group.
  30.  前記置換もしくは無置換の核炭素数10~50の縮合アリール基が、置換もしくは無置換のフルオランテニル基である請求項27に記載の有機発光媒体。 The organic light-emitting medium according to claim 27, wherein the substituted or unsubstituted condensed aryl group having 10 to 50 nuclear carbon atoms is a substituted or unsubstituted fluoranthenyl group.
  31.  前記置換もしくは無置換の核炭素数10~50の縮合アリール基が、置換もしくは無置換のピレニル基である請求項27に記載の有機発光媒体。 The organic light-emitting medium according to claim 27, wherein the substituted or unsubstituted condensed aryl group having 10 to 50 nuclear carbon atoms is a substituted or unsubstituted pyrenyl group.
  32.  前記式(2)’で表されるアントラセン誘導体が、下記式(2-6)’で表される請求項18又は19に記載の有機発光媒体。
    Figure JPOXMLDOC01-appb-C000006
     
    (式(2-6)’中、R1’~R8’は式(2)’と同様である。
     Ar及びArはそれぞれ独立に、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の核炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、又は置換もしくは無置換の核原子数5~50の複素環基である。)
    The organic light-emitting medium according to claim 18 or 19, wherein the anthracene derivative represented by the formula (2) 'is represented by the following formula (2-6)'.
    Figure JPOXMLDOC01-appb-C000006

    (In the formula (2-6) ′, R 1 ′ to R 8 ′ are the same as in the formula (2) ′.
    Ar 5 and Ar 6 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted nuclear carbon number of 3 to 50 A substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 nuclear atoms. )
  33.  前記式(2-6)’中のAr及びArの一方が置換もしくは無置換のフェニル基であり、他方が置換もしくは無置換の核炭素数10~20の縮合アリール基である請求項32に記載の有機発光媒体。 In the formula (2-6) ′, one of Ar 5 and Ar 6 is a substituted or unsubstituted phenyl group, and the other is a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms. The organic luminescent medium described in 1.
  34.  前記式(2-6)’中のAr及びArがそれぞれ独立に置換もしくは無置換の核炭素数10~20の縮合アリール基である請求項32に記載の有機発光媒体。 The organic light-emitting medium according to claim 32, wherein Ar 5 and Ar 6 in the formula (2-6) ′ are each independently a substituted or unsubstituted condensed aryl group having 10 to 20 nuclear carbon atoms.
  35.  前記式(1)’中のRa’及びRb’がそれぞれ独立に、置換もしくは無置換のフェニル基、又は置換もしくは無置換のナフチル基である請求項18~34のいずれかに記載の有機発光媒体。 The organic compound according to claim 18, wherein R a ′ and R b ′ in the formula (1) ′ are each independently a substituted or unsubstituted phenyl group or a substituted or unsubstituted naphthyl group. Luminescent medium.
  36.  前記式(1)’中のR21’~R24’がそれぞれ独立に、水素原子、置換もしくは無置換のフェニル基、置換もしくは無置換のメチル基、置換もしくは無置換のイソプロピル基、置換もしくは無置換のt-ブチル基、置換もしくは無置換のシクロヘキシル基、又は置換もしくは無置換のトリメチルシリル基である請求項18~35のいずれかに記載の有機発光媒体。 In formula (1) ′, R 21 ′ to R 24 ′ each independently represents a hydrogen atom, a substituted or unsubstituted phenyl group, a substituted or unsubstituted methyl group, a substituted or unsubstituted isopropyl group, substituted or unsubstituted The organic light-emitting medium according to any one of claims 18 to 35, which is a substituted t-butyl group, a substituted or unsubstituted cyclohexyl group, or a substituted or unsubstituted trimethylsilyl group.
  37.  陽極と陰極と、
     前記陽極と陰極の間にある1以上の有機薄膜層とを有し、
     前記有機薄膜層の少なくとも一層が請求項1~36のいずれかに記載の有機発光媒体を含有する有機エレクトロルミネッセンス素子。
    An anode and a cathode;
    Having one or more organic thin film layers between the anode and the cathode;
    An organic electroluminescence device, wherein at least one of the organic thin film layers contains the organic light-emitting medium according to any one of claims 1 to 36.
  38.  前記有機発光媒体を含有する有機薄膜層が発光層である請求項37に記載の有機エレクトロルミネッセンス素子。 38. The organic electroluminescence device according to claim 37, wherein the organic thin film layer containing the organic light emitting medium is a light emitting layer.
PCT/JP2009/053247 2008-02-25 2009-02-24 Organic luminescent medium and organic el element WO2009107596A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008042954 2008-02-25
JP2008-042954 2008-02-25
JP2008-176797 2008-07-07
JP2008176797 2008-07-07
JP2008-193827 2008-07-28
JP2008193827 2008-07-28

Publications (1)

Publication Number Publication Date
WO2009107596A1 true WO2009107596A1 (en) 2009-09-03

Family

ID=41015990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053247 WO2009107596A1 (en) 2008-02-25 2009-02-24 Organic luminescent medium and organic el element

Country Status (1)

Country Link
WO (1) WO2009107596A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068761A1 (en) 2009-12-02 2011-06-09 Universal Display Corporation Oled display architecture with improved aperture ratio
WO2011074252A1 (en) * 2009-12-16 2011-06-23 出光興産株式会社 Aromatic amine derivative and organic electroluminescent element using same
WO2011074253A1 (en) 2009-12-16 2011-06-23 出光興産株式会社 Organic light-emitting medium
WO2011086935A1 (en) * 2010-01-15 2011-07-21 出光興産株式会社 Nitrogenated heterocyclic ring derivative and organic electroluminescent element comprising same
WO2011123134A1 (en) 2010-04-01 2011-10-06 Universal Display Corporation Novel oled display architecture
WO2011129096A1 (en) 2010-04-12 2011-10-20 出光興産株式会社 Organic electroluminescent element
JP2012001449A (en) * 2010-06-14 2012-01-05 Mitsubishi Chemicals Corp Compound, charge transport material, composition for organic electroluminescent element, organic electroluminescent element, organic el display and organic el illumination
WO2012001969A1 (en) 2010-06-30 2012-01-05 出光興産株式会社 Aromatic amine derivative, and organic electroluminescent element comprising same
WO2012005009A1 (en) 2010-07-09 2012-01-12 出光興産株式会社 Imidazopyridine derivatives and organic electroluminescent elements containing same
WO2012017680A1 (en) 2010-08-05 2012-02-09 出光興産株式会社 Organic electroluminescent element
WO2012029253A1 (en) 2010-08-31 2012-03-08 出光興産株式会社 Nitrogen-containing aromatic heterocyclic derivative and organic electroluminescence device using same
WO2012046839A1 (en) 2010-10-08 2012-04-12 出光興産株式会社 Benzo[k]fluoranthene derivative and organic electroluminescence element containing same
WO2012049828A1 (en) 2010-10-12 2012-04-19 出光興産株式会社 Aromatic heterocyclic derivative, and organic electroluminescent element comprising same
WO2012070234A1 (en) 2010-11-22 2012-05-31 Idemitsu Kosan Co.,Ltd. Organic electroluminescence device
WO2012091744A1 (en) 2010-03-24 2012-07-05 Universal Display Corporation Novel oled display architecture
WO2012138790A1 (en) 2011-04-07 2012-10-11 Universal Display Corporation Method for driving quad-subpixel display
WO2012138999A1 (en) 2011-04-08 2012-10-11 Universal Display Corporation Novel oled display architecture
WO2013079217A1 (en) 2011-11-30 2013-06-06 Novaled Ag Display
WO2013149958A1 (en) 2012-04-02 2013-10-10 Novaled Ag Use of a semiconducting compound in an organic light emitting device
EP2840622A1 (en) 2013-08-19 2015-02-25 Novaled GmbH Electronic or optoelectronic device comprising an anchored thin molecular layer, process for its preparation and compound used therein
US9166179B2 (en) 2009-04-24 2015-10-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US9385167B2 (en) 2008-10-01 2016-07-05 Universal Display Corporation OLED display architecture
EP3104428A1 (en) 2009-06-12 2016-12-14 Idemitsu Kosan Co., Ltd Organic electroluminescence device
US9902687B2 (en) 2014-09-19 2018-02-27 Idemitsu Kosan Co., Ltd. Compound
US10056558B2 (en) 2011-11-25 2018-08-21 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, material for organic electroluminescent element, and organic electroluminescent element
WO2019012373A1 (en) * 2017-07-14 2019-01-17 株式会社半導体エネルギー研究所 Organic compound, light-emitting element, light-emitting device, electronic device, and illumination device
CN109776335A (en) * 2017-11-15 2019-05-21 武汉尚赛光电科技有限公司 Amine derivant of pyrene and preparation method thereof, application and device
EP4122934A1 (en) 2021-11-25 2023-01-25 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083162A1 (en) * 2003-03-20 2004-09-30 Idemitsu Kosan Co. Ltd. Aromatic amine derivative and organic electroluminescent element made with the same
WO2005108348A1 (en) * 2004-05-12 2005-11-17 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, organic electroluminescent element employing the same, and process for producing aromatic amine derivative
WO2006070712A1 (en) * 2004-12-28 2006-07-06 Idemitsu Kosan Co., Ltd. Luminescent ink composition for organic electroluminescent device
JP2008214332A (en) * 2007-02-28 2008-09-18 Sfc Co Ltd Blue light emitting compound and organic electroluminescent element using the same
WO2008136522A1 (en) * 2007-05-08 2008-11-13 Idemitsu Kosan Co., Ltd. Diaminopyrene derivative and organic el device using the same
WO2008156052A1 (en) * 2007-06-20 2008-12-24 Idemitsu Kosan Co., Ltd. Polycyclic ring assembly compound and organic electroluminescent device employing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083162A1 (en) * 2003-03-20 2004-09-30 Idemitsu Kosan Co. Ltd. Aromatic amine derivative and organic electroluminescent element made with the same
WO2005108348A1 (en) * 2004-05-12 2005-11-17 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, organic electroluminescent element employing the same, and process for producing aromatic amine derivative
WO2006070712A1 (en) * 2004-12-28 2006-07-06 Idemitsu Kosan Co., Ltd. Luminescent ink composition for organic electroluminescent device
JP2008214332A (en) * 2007-02-28 2008-09-18 Sfc Co Ltd Blue light emitting compound and organic electroluminescent element using the same
WO2008136522A1 (en) * 2007-05-08 2008-11-13 Idemitsu Kosan Co., Ltd. Diaminopyrene derivative and organic el device using the same
WO2008156052A1 (en) * 2007-06-20 2008-12-24 Idemitsu Kosan Co., Ltd. Polycyclic ring assembly compound and organic electroluminescent device employing the same

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177201B2 (en) 2008-10-01 2019-01-08 Universal Display Corporation OLED display architecture
US9559151B2 (en) 2008-10-01 2017-01-31 Universal Display Corporation OLED display architecture
US9385167B2 (en) 2008-10-01 2016-07-05 Universal Display Corporation OLED display architecture
US10192936B1 (en) 2008-10-01 2019-01-29 Universal Display Corporation OLED display architecture
US8827488B2 (en) 2008-10-01 2014-09-09 Universal Display Corporation OLED display architecture
US11024806B2 (en) 2009-04-24 2021-06-01 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US9741938B2 (en) 2009-04-24 2017-08-22 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US9466800B2 (en) 2009-04-24 2016-10-11 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US9166179B2 (en) 2009-04-24 2015-10-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US10263191B2 (en) 2009-04-24 2019-04-16 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US10686137B2 (en) 2009-04-24 2020-06-16 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
EP3104428A1 (en) 2009-06-12 2016-12-14 Idemitsu Kosan Co., Ltd Organic electroluminescence device
WO2011068761A1 (en) 2009-12-02 2011-06-09 Universal Display Corporation Oled display architecture with improved aperture ratio
US8330152B2 (en) 2009-12-02 2012-12-11 Universal Display Corporation OLED display architecture with improved aperture ratio
CN102239141A (en) * 2009-12-16 2011-11-09 出光兴产株式会社 Aromatic amine derivative and organic electroluminescent element using same
WO2011074252A1 (en) * 2009-12-16 2011-06-23 出光興産株式会社 Aromatic amine derivative and organic electroluminescent element using same
WO2011074253A1 (en) 2009-12-16 2011-06-23 出光興産株式会社 Organic light-emitting medium
US9331285B2 (en) 2009-12-16 2016-05-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using same
US9923146B2 (en) 2009-12-16 2018-03-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using same
JPWO2011074252A1 (en) * 2009-12-16 2013-04-25 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
JP5587302B2 (en) * 2009-12-16 2014-09-10 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
JP5722238B2 (en) * 2010-01-15 2015-05-20 出光興産株式会社 Nitrogen-containing heterocyclic derivative and organic electroluminescence device comprising the same
US9126943B2 (en) 2010-01-15 2015-09-08 Idemitsu Kosan Co., Ltd. Nitrogenated heterocyclic ring derivative and organic electroluminescent element comprising same
WO2011086935A1 (en) * 2010-01-15 2011-07-21 出光興産株式会社 Nitrogenated heterocyclic ring derivative and organic electroluminescent element comprising same
WO2012091744A1 (en) 2010-03-24 2012-07-05 Universal Display Corporation Novel oled display architecture
US8334545B2 (en) 2010-03-24 2012-12-18 Universal Display Corporation OLED display architecture
WO2011123134A1 (en) 2010-04-01 2011-10-06 Universal Display Corporation Novel oled display architecture
EP3751618A1 (en) 2010-04-01 2020-12-16 Universal Display Corporation Novel oled display architecture
WO2011129096A1 (en) 2010-04-12 2011-10-20 出光興産株式会社 Organic electroluminescent element
CN102473856A (en) * 2010-04-12 2012-05-23 出光兴产株式会社 Organic electroluminescent element
JP2012001449A (en) * 2010-06-14 2012-01-05 Mitsubishi Chemicals Corp Compound, charge transport material, composition for organic electroluminescent element, organic electroluminescent element, organic el display and organic el illumination
WO2012001969A1 (en) 2010-06-30 2012-01-05 出光興産株式会社 Aromatic amine derivative, and organic electroluminescent element comprising same
WO2012005009A1 (en) 2010-07-09 2012-01-12 出光興産株式会社 Imidazopyridine derivatives and organic electroluminescent elements containing same
WO2012017680A1 (en) 2010-08-05 2012-02-09 出光興産株式会社 Organic electroluminescent element
WO2012029253A1 (en) 2010-08-31 2012-03-08 出光興産株式会社 Nitrogen-containing aromatic heterocyclic derivative and organic electroluminescence device using same
WO2012046839A1 (en) 2010-10-08 2012-04-12 出光興産株式会社 Benzo[k]fluoranthene derivative and organic electroluminescence element containing same
WO2012049828A1 (en) 2010-10-12 2012-04-19 出光興産株式会社 Aromatic heterocyclic derivative, and organic electroluminescent element comprising same
WO2012070233A1 (en) 2010-11-22 2012-05-31 Idemitsu Kosan Co.,Ltd. Organic electroluminescence device
WO2012070234A1 (en) 2010-11-22 2012-05-31 Idemitsu Kosan Co.,Ltd. Organic electroluminescence device
US8902245B2 (en) 2011-04-07 2014-12-02 Universal Display Corporation Method for driving quad-subpixel display
WO2012138790A1 (en) 2011-04-07 2012-10-11 Universal Display Corporation Method for driving quad-subpixel display
WO2012138999A1 (en) 2011-04-08 2012-10-11 Universal Display Corporation Novel oled display architecture
US10056558B2 (en) 2011-11-25 2018-08-21 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, material for organic electroluminescent element, and organic electroluminescent element
US9722183B2 (en) 2011-11-30 2017-08-01 Novaled Gmbh Display
EP3561876A1 (en) 2011-11-30 2019-10-30 Novaled GmbH Display
WO2013079217A1 (en) 2011-11-30 2013-06-06 Novaled Ag Display
WO2013149958A1 (en) 2012-04-02 2013-10-10 Novaled Ag Use of a semiconducting compound in an organic light emitting device
EP2840622A1 (en) 2013-08-19 2015-02-25 Novaled GmbH Electronic or optoelectronic device comprising an anchored thin molecular layer, process for its preparation and compound used therein
US10396293B2 (en) 2013-08-19 2019-08-27 Novaled Gmbh Electronic or optoelectronic device comprising an anchored thin molecular layer, process for its preparation and compound used therein
US10118889B2 (en) 2014-09-19 2018-11-06 Idemitsu Kosan Co., Ltd. Compound
US9902687B2 (en) 2014-09-19 2018-02-27 Idemitsu Kosan Co., Ltd. Compound
US10435350B2 (en) 2014-09-19 2019-10-08 Idemitsu Kosan Co., Ltd. Organic electroluminecence device
WO2019012373A1 (en) * 2017-07-14 2019-01-17 株式会社半導体エネルギー研究所 Organic compound, light-emitting element, light-emitting device, electronic device, and illumination device
JPWO2019012373A1 (en) * 2017-07-14 2020-07-30 株式会社半導体エネルギー研究所 Organic compound, light emitting element, light emitting device, electronic device, and lighting device
JP7225097B2 (en) 2017-07-14 2023-02-20 株式会社半導体エネルギー研究所 organic compounds, light-emitting elements, light-emitting devices, electronic devices, and lighting devices
CN109776335A (en) * 2017-11-15 2019-05-21 武汉尚赛光电科技有限公司 Amine derivant of pyrene and preparation method thereof, application and device
CN109776335B (en) * 2017-11-15 2022-03-18 武汉尚赛光电科技有限公司 Amine derivative of pyrene, preparation method, application and device thereof
EP4122934A1 (en) 2021-11-25 2023-01-25 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device

Similar Documents

Publication Publication Date Title
JP5191496B2 (en) Aromatic amine derivative and organic electroluminescence device using the same
KR101349457B1 (en) Aromatic amine derivative and organic electroluminescent device using same
JP4358884B2 (en) Aromatic amine derivative and organic electroluminescence device using the same
US8647754B2 (en) Aromatic diamine derivative and organic electroluminescent device using the same
WO2009107596A1 (en) Organic luminescent medium and organic el element
WO2009102054A1 (en) Organic luminescent medium and organic el device
JPWO2010013676A1 (en) Organic light-emitting medium and organic EL device
WO2010013675A1 (en) Organic light-emitting medium and organic el element
WO2009102026A1 (en) Organic luminescent medium and organic el device
JPWO2006104044A1 (en) Anthryl arylene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
WO2010052885A1 (en) Organic electroluminescence element
JP2009161470A (en) Asymmetrical aromatic diamine derivative and organic electroluminescent device by using the same
WO2010010924A1 (en) Anthracene derivative, and organic electroluminescence element comprising same
JP5249654B2 (en) Organic electroluminescence device using fluoranthene derivative
JPWO2008156089A1 (en) Aromatic amine derivative and organic electroluminescence device using the same
JP5325484B2 (en) Organic electroluminescence device
JP5525702B2 (en) Organic electroluminescence device using indenoperylene derivative
JP4860849B2 (en) Novel aromatic compound having amino group and organic electroluminescence device using the same
JP5396397B2 (en) Aromatic amine derivative and organic electroluminescence device using the same
JP2010143841A (en) Aromatic amine derivative, and organic electroluminescent device using the same
JP2009161469A (en) Aromatic compound and organic electroluminescent device
JP2009161464A (en) Carbazole derivative and organoelectroluminescent element obtained using the same
JP2009161468A (en) Aromatic amine derivative and organic electroluminescent device using the same
JP2009161465A (en) Aromatic amine derivative and organic electroluminescent device using the same
JP2009161466A (en) Aromatic amine derivative and organic electroluminescent device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09715317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP