WO2009107191A1 - Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate - Google Patents
Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate Download PDFInfo
- Publication number
- WO2009107191A1 WO2009107191A1 PCT/JP2008/053195 JP2008053195W WO2009107191A1 WO 2009107191 A1 WO2009107191 A1 WO 2009107191A1 JP 2008053195 W JP2008053195 W JP 2008053195W WO 2009107191 A1 WO2009107191 A1 WO 2009107191A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- oil
- repellent
- glass plate
- antifouling
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/006—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
- C03C17/007—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/006—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
- C03C17/008—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/22—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
- C08G77/24—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/42—Coatings comprising at least one inhomogeneous layer consisting of particles only
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/75—Hydrophilic and oleophilic coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/76—Hydrophobic and oleophobic coatings
Definitions
- the present invention relates to a glass plate having a highly durable, water-repellent, oil-repellent, and antifouling coating formed on the surface thereof, a method for producing the same, and vehicles and buildings using the same.
- a chemical adsorption solution consisting of a fluorocarbon group-containing chlorosilane-based adsorbent and a non-aqueous organic solvent can be used for chemical adsorption in the liquid phase to form a monomolecular film-like water / oil repellent / antifouling chemical adsorption film.
- the principle of production of a chemisorbed monolayer in such a solution is to form a monolayer using a dehydrochlorination reaction between active hydrogen such as hydroxyl groups on the substrate surface and chlorosilyl groups of chlorosilane-based adsorbents. It is in.
- the conventional chemical adsorption film uses only the chemical bond between the adsorbent and the flat substrate surface, the contact angle of the water droplet is only about 120 degrees, and the water droplets and dirt are naturally removed. Has problems of poor water and oil repellency and antifouling properties and water separation. Moreover, the subject that durability, such as abrasion resistance and a weather resistance, was also scarce occurred.
- the present invention relates to a glass plate for a window of a vehicle such as an automobile or a building that requires a water / oil repellent / antifouling function and a glass plate for an optical device filter.
- the purpose is to improve durability such as water resistance (also referred to as water slidability) and abrasion resistance and weather resistance.
- a water and oil repellent and antifouling glass plate according to a first invention provided as means for solving the above problems is a plate-like glass substrate and a water and water repellent material fused to the surface of the glass substrate. It has oil-repellent transparent fine particles and a water- and oil-repellent and antifouling coating covering a portion of the surface of the glass substrate where the transparent fine particles are not fused.
- a part of the surface of the transparent fine particles is fused to the surface of the glass substrate, and the other exposed part is the water-repellent part. It is preferably covered with an oil repellent antifouling film.
- the water / oil repellent / antifouling coating is covalently bonded to the surface of the transparent fine particles and the glass substrate.
- the transparent fine particles having different particle diameters may be mixed and used.
- the water / oil repellent / antifouling coating preferably contains a —CF 3 group.
- the transparent fine particles are translucent, and the softening temperature thereof is higher than the softening temperature of the glass substrate surface. Preferably it is either.
- the transparent fine particles preferably have a particle size of less than 400 nm.
- the contact angle with respect to water is 140 degrees or more.
- the transparent fine particles are formed on the glass substrate via a metal oxide transparent film that is fused to the transparent fine particles at a temperature lower than that of the glass substrate.
- the water- and oil-repellent and antifouling coating covers the portion where the transparent fine particles are not fused via the transparent coating.
- the vehicle according to the second invention is equipped with the water / oil repellent / antifouling glass plate according to the first invention.
- the building according to the third invention is equipped with the water- and oil-repellent antifouling glass plate according to the first invention.
- the method for producing a water / oil / oil repellent antifouling glass plate according to the fourth invention comprises a step C of preparing a fine particle dispersion in which transparent fine particles are dispersed, and the fine particle dispersion is applied to the surface of the glass substrate and dried.
- the process D for attaching the transparent fine particles to the surface of the glass substrate, and the glass substrate with the transparent fine particles attached to the surface are heat-treated at a temperature lower than the softening temperature of the transparent fine particles,
- the surface of the glass base material is not dissolved in the fine particle dispersion and is more than the glass base material.
- metal includes a so-called metalloid element such as boron (B) or silicon (Si).
- a sol-gel method may be used for forming the transparent film.
- the metal alkoxide solution used for forming the transparent film by the sol-gel method contains either one or both of phosphoric acid and boric acid. May be.
- the heat treatment temperature in the step E is 250 ° C. or higher and lower than the softening temperature of the glass substrate and the transparent fine particles. preferable.
- the first silane compound containing a linear group and a non-aqueous organic solvent are included before Step C.
- the first silane compound is obtained by dispersing transparent fine particles a (original transparent fine particles) in the chemical adsorption liquid and reacting the silyl group of the first silane compound with the reactive group on the surface of the transparent fine particles a. It is preferable that the step A for producing the transparent fine particles whose surface is covered with the monomolecular film of Step A and the heat treatment in the step E are performed in an atmosphere containing oxygen.
- an organic solvent is used for the fine particle dispersion, and the linear group may be a fluorocarbon group.
- the fine particle dispersion is one of water and alcohol or a mixture of both, and the linear group is carbonized. It may be a hydrogen group.
- the formation of the water- and oil-repellent and antifouling coating film in the step G is performed with a second silane compound containing a fluorocarbon group and non-
- a second chemical adsorption liquid containing an aqueous organic solvent is brought into contact with the fine particle fused glass substrate, and a silyl group of the second silane compound and a reactive group on the surface of the fine particle fused glass substrate are obtained. It is preferable to carry out by this reaction.
- the unreacted second silane compound is washed away. May be.
- one or both of the first and second silane compounds contained in the first and second chemical adsorption liquids, respectively, An alkoxysilane compound may be used.
- the first and second chemical adsorption liquids containing the alkoxysilane compound further include a metal carboxylate as a condensation catalyst.
- a metal carboxylate as a condensation catalyst. 1 or 2 or more compounds selected from the group consisting of a carboxylate metal salt, a carboxylate metal salt polymer, a carboxylate metal salt chelate, a titanate ester, and a titanate ester chelate may be included.
- the promoter may contain one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds.
- the first and second chemical adsorption liquids containing the alkoxysilane compound include a ketimine compound and an organic acid as a condensation catalyst.
- An aldimine compound, an enamine compound, an oxazolidine compound, and one or more compounds selected from the group consisting of aminoalkylalkoxysilane compounds may be further included.
- the water / oil repellent / antifouling glass plate according to claims 1 to 9 and the method for producing the water / oil repellent / antifouling glass plate according to claims 12 to 27 require a water / oil repellent / antifouling function. It is possible to provide a water / oil-repellent and antifouling glass plate excellent in durability such as water-drop separation (also referred to as water slidability), antifouling properties, abrasion resistance, and weather resistance in glass plates for windows of vehicles and buildings. .
- the water- and oil-repellent and antifouling glass plate exhibits a complex surface shape having irregularities. . Therefore, it has high water and oil repellency and antifouling properties due to the so-called “lotus leaf effect”.
- the water- and oil-repellent and antifouling glass plate according to claim 2 has a complex uneven structure on the surface because the transparent fine particles are fused to the surface of the glass substrate at a part of the surface. Since the exposed portion is covered with a water / oil repellent / antifouling film, it has high water / oil repellent / antifouling properties.
- the water / oil repellent / antifouling glass plate according to claim 3 can improve durability because the water / oil repellent / antifouling coating is covalently bonded to the transparent fine particles and the surface of the glass substrate.
- the surface shape of the water / oil repellent and antifouling glass plate has fractal properties. Water and oil repellency can be improved.
- the water / oil repellent / antifouling glass plate according to claim 5 can improve the water / oil repellent / antifouling property since the water / oil repellent / antifouling coating film contains —CF 3 groups.
- the water / oil repellent / antifouling glass plate according to claim 6 is silica, alumina, or zirconia in which the transparent fine particles are translucent and the softening temperature thereof is higher than the softening temperature of the glass substrate surface. It can be fused to the surface of the glass substrate without impairing the shape of the fine particles.
- the particle diameter of the transparent fine particles is less than 400 nm, which is smaller than the wavelength of visible light, there is little scattering of visible light and high translucency can be maintained.
- the water / oil repellent / antifouling glass plate according to claim 8 has a contact angle with water of 140 ° or more, so that the drop angle of water drops becomes small and water drops do not substantially adhere.
- the water- and oil-repellent and antifouling glass plate according to claim 9 is formed on the surface of the glass substrate, a metal oxide transparent film that is fused to the transparent fine particles at a temperature lower than that of the glass substrate is formed.
- the heat treatment temperature at the time of fusion can be lowered, and the thermal deformation of the transparent fine particles at the time of fusion can be suppressed.
- the vehicle according to claim 10 is equipped with the water / oil repellent antifouling glass plate according to claims 1 to 9, it is possible to prevent adhesion of raindrops and improve visibility outside the vehicle in the rain.
- the building according to claim 11 is equipped with the water / oil / oil repellent and antifouling glass plate according to claims 1 to 9, so that it is possible to prevent adhesion of raindrops and to improve outdoor visibility in rainy weather.
- the sol-gel method is used for forming the metal oxide transparent film, the metal oxide transparent film can be easily formed.
- the metal alkoxide solution used for forming the transparent film by the sol-gel method contains one or both of phosphoric acid and boric acid.
- the softening point of the transparent oxide film is lowered, and the heat treatment temperature during fusion can be lowered.
- the heat treatment temperature in step E is 250 ° C. or higher and lower than the softening temperature of the glass substrate and transparent fine particles. The deformation of the transparent fine particles can be suppressed.
- the method for producing a water- and oil-repellent and antifouling glass plate according to claim 17 comprises a first chemistry comprising a first silane compound containing a linear group and a non-aqueous organic solvent before Step C.
- transparent fine particles whose surface is covered with a monomolecular film of the first silane compound are used in the step C, so that the transparent fine particles in the fine particle dispersion are used. Can be dispersed uniformly.
- the heat treatment in step E is performed in an atmosphere containing oxygen, the monomolecular film of the first silane compound can be completely decomposed and removed at a low heating temperature.
- an organic solvent is used for the fine particle dispersion, and the linear group of the first silane compound is a fluorocarbon group.
- the surface energy of the fine particles is reduced, and the aggregation of the transparent fine particles can be reliably suppressed.
- either one of water and alcohol or a mixture of both is used for the fine particle dispersion, and the linear group of the first silane compound is used. Since is a hydrocarbon group, the cost required for the preparation of the fine particle dispersion can be reduced, and the safety of the fine particle acid solution is further increased.
- Step G The method for producing a water / oil / oil / repellency / antifouling glass plate according to claim 20, wherein the formation of the water / oil / oil / repellency / antifouling coating in Step G is performed by applying a second silane compound containing a fluorocarbon group to a fine particle fused glass Since it is carried out by the reaction between the silyl group of the second silane compound and the reactive group on the surface of the fine particle fused glass substrate in contact with the substrate, the durability of the water / oil repellent / antifouling coating is improved. Can do.
- the unreacted second silane compound is washed away after the reaction between the silyl group and the reactive group in Step G.
- one or both of the first and second silane compounds do not generate harmful hydrogen chloride upon reaction with a reactive group. Since it is an alkoxysilane compound, it is possible to manufacture a water / oil repellent and antifouling glass plate more safely, and to suppress the corrosion of production equipment and the generation of acidic waste liquid.
- either one or both of the first and second silane compounds are halosilane compounds highly reactive with a reactive group.
- the production of the water / oil repellent and antifouling glass plate can be carried out more efficiently, and the addition of a catalyst becomes unnecessary.
- a water- and oil-repellent and antifouling glass plate 10 includes a plate-shaped glass substrate 5 and a transparent film of metal oxide on the surface of the glass substrate 5.
- Silica fine particles 1a (an example of water- and oil-repellent / antifouling transparent fine particles) fused through a silica-based transparent film 6 as an example, and a water- and oil-repellent and anti-repellent agent covering a portion where silica fine particles are not fused.
- a chemisorbed monomolecular film 8 containing a fluorocarbon group which is an example of a dirty coating.
- the method for producing the water / oil repellent / antifouling glass plate 10 includes a first silane compound containing a linear group and a non-aqueous organic solvent.
- Silica fine particles 1 as an example of transparent fine particles are dispersed in the first chemical adsorption liquid, and the silyl group of the first silane compound and the hydroxyl group 2 (reactive group) on the surface of the silica fine particles 1 are dispersed.
- a step B for forming the transparent coating 6 a step B for forming the transparent coating 6
- the fine particle content on the surface of the glass substrate 5 (specifically, the surface of the silica-based transparent coating 6).
- Step D step D for attaching the silica fine particles 4 on the silica-based transparent coating 6 on the surface of the glass substrate 5, and the glass substrate 5 with the silica fine particles 4 attached to the surface are heat-treated, Silica fine particles 4 are fused to the surface of a glass substrate 5 through a silica-based transparent coating 6 to produce an uneven glass substrate (an example of a fine-particle fused glass substrate) 7 covered with the fused silica fine particles 1a.
- Step E step F for washing and removing silica fine particles 4 that have not been fused to the surface of the glass substrate 5, and formation of a chemisorption monomolecular film 8 containing a fluorocarbon group on the surface of the concavo-convex glass substrate 7.
- Process G to be performed.
- steps A to G will be described in more detail.
- step A silica fine particles 4 whose surfaces are covered with the monomolecular film 3 of the first silane compound are produced.
- the diameter of the silica fine particles 1 used for producing the silica fine particles 4 whose surface is covered with the monomolecular film 3 of the first silane compound. is preferably smaller than the visible light wavelength (380 to 700 nm).
- the diameter of the fine particles is preferably 10 to 400 nm, more preferably 10 to 300 nm, and even more preferably 10 to 100 nm.
- the silica fine particles 1 used may have a single particle diameter, but when mixed with two or more silica fine particles having different particle diameters, the surface thereof has a fractal structure. 11 (see FIG. 5) is obtained, and the water / oil repellency / antifouling property is improved.
- silica fine particles are used as the transparent fine particles.
- the surface has active hydrogen groups (an example of reactive groups) that react with alkoxysilyl groups and halosilyl groups, such as hydroxyl groups and amino groups. Any fine particles that are light and have a softening point higher than that of the glass substrate can be used. Examples of transparent fine particles that can be used other than silica include fine particles such as alumina and zirconia.
- the first chemical adsorption liquid used for the production of the silica fine particles 4 whose surface is covered with the monomolecular film 3 of the first silane compound includes the first silane compound, the silyl group, and the hydroxyl group 2 on the surface of the silica fine particle 1. It is prepared by mixing a condensation catalyst for accelerating the condensation reaction with a non-aqueous organic solvent.
- an alkoxysilane compound represented by any one of the following chemical formulas 1 and 2 is used as the first silane compound.
- m represents an integer of 5 to 20
- n represents an integer of 0 to 9
- R represents an alkyl group having 1 to 4 carbon atoms.
- Y represents (CH 2 ) k (k represents an integer of 1 to 3) and a single bond
- Z represents O (ether oxygen), COO, Si (CH 3 ) 2 , and single bond Represents one of the bonds.
- condensation catalyst metal salts such as carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates can be used.
- the addition amount of the condensation catalyst is preferably 0.2 to 5% by mass of the alkoxysilane compound, more preferably 0.5 to 1% by mass.
- carboxylic acid metal salts include stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, naphthenic acid Lead, cobalt naphthenate, iron 2-ethylhexenoate.
- carboxylic acid ester metal salt examples include dioctyltin bisoctylthioglycolate ester salt and dioctyltin maleate ester salt.
- carboxylic acid metal salt polymer examples include dibutyltin maleate polymer and dimethyltin mercaptopropionate polymer.
- carboxylic acid metal salt chelate examples include dibutyltin bisacetylacetate and dioctyltin bisacetyllaurate.
- titanate ester examples include tetrabutyl titanate and tetranonyl titanate.
- titanate ester chelates include bis (acetylacetonyl) dipropyl titanate.
- the silica fine particles 1 When the silica fine particles 1 are dispersed in the first chemical adsorption liquid containing the alkoxysilane compound and reacted in air at room temperature, the alkoxysilyl group and the hydroxyl groups 2 on the surface of the silica fine particles 1 cause a condensation reaction, and A monomolecular film 3 of the first silane compound having a structure as shown in either Chemical Formula 3 or Chemical Formula 4 is generated.
- the three single bonds extending from the oxygen atom are bonded to the surface of the silica fine particle 1 or the silicon (Si) atom of the adjacent silane compound, at least one of which is bonded to the silicon atom on the surface of the silica fine particle 1. is doing.
- the reaction is preferably performed in air with a relative humidity of 45% or less.
- the condensation reaction is hindered by oils and fats and moisture adhering to the surface of the silica fine particles 1, and it is preferable to remove these impurities in advance by thoroughly washing and drying the silica fine particles 1.
- the time required for completion of the condensation reaction is about 2 hours.
- Time can be shortened to about 1/2 to 2/3.
- reaction time is further shortened. it can.
- silica fine particles 4 whose surface is covered with a monomolecular film 3 of a first silane compound under the same conditions except that H3 of Japan Epoxy Resin Co., which is a ketimine compound, is used instead of dibutyltin oxide.
- H3 of Japan Epoxy Resin Co. which is a ketimine compound
- condensation catalyst a mixture of H3 and dibutyltin bisacetylacetonate (Japan epoxy resin) (mixing ratio is 1: 1) was used, and the other conditions were the same, and the monomolecular film 3 of the first silane compound was used.
- the reaction time can be shortened to about 20 minutes.
- the ketimine compound that can be used here is not particularly limited.
- organic acid that can be used is not particularly limited, and examples thereof include formic acid, acetic acid, propionic acid, butyric acid, and malonic acid.
- an organic chlorine solvent, a hydrocarbon solvent, a fluorocarbon solvent, a silicone solvent, and a mixed solvent thereof can be used.
- a hydrocarbon solvent e.g., a hydrocarbon solvent, a fluorocarbon solvent, a silicone solvent, and a mixed solvent thereof.
- water e.g., water from the desiccant or the solvent used by distillation.
- the boiling point of the solvent is preferably 50 to 250 ° C.
- Specific usable solvents include non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone, and alkyl-modified silicone. , Polyether silicone, dimethylformamide and the like. Furthermore, alcohol solvents such as methanol, ethanol, propanol, or a mixture thereof can also be used.
- Fluorocarbon solvents that can be used include chlorofluorocarbon solvents, Fluorinert (manufactured by 3M USA), Afludo (manufactured by Asahi Glass Co., Ltd.), and the like. In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Furthermore, an organic chlorine solvent such as dichloromethane or chloroform may be added.
- a preferred concentration of the alkoxysilane compound in the first chemical adsorption solution is 0.5 to 3% by mass.
- FIG. 2B shows a schematic diagram of a cross-sectional structure of the silica fine particles 4 covered with the monomolecular film 3 of the first silane compound thus manufactured.
- FIG. 2B shows an example of the monomolecular film 3 of the first silane compound having a structure represented by the following chemical formula 5.
- any solvent that can dissolve the alkoxysilane compound can be used, but dichloromethane, chloroform, N-methylpyrrolidone, etc. that are inexpensive, have high solubility, and can be easily removed by air drying are preferable. .
- the silica fine particles 4 covered with the monomolecular film 3 of the first silane compound produced are left in the air without being washed with a solvent, a part of the alkoxysilane compound remaining on the surface is absorbed in the air.
- the resulting silanol group undergoes a condensation reaction with the alkoxysilyl group.
- an ultrathin polymer film made of polysiloxane is formed on the surface of the silica fine particles 4 covered with the monomolecular film 3 of the first silane compound.
- This polymer film is not fixed by covalent bonding to the surface of the silica fine particles 4 covered with the monomolecular film 3 of the first silane compound, but does not particularly hinder the manufacturing process after the process A.
- a halosilane compound or an isocyanate silane compound having a fluorocarbon group may be used.
- these silane compounds are used, a condensation catalyst and a co-catalyst are not required, alcohol solvents cannot be used, and they are more susceptible to hydrolysis than alkoxysilane compounds.
- the reaction is carried out at a humidity of 30% or less, the first chemical adsorption solution can be prepared and the silica fine particles covered with the monomolecular film of the first silane compound can be produced in the same manner as the alkoxysilane compound.
- Examples of the halosilane compound and isocyanate silane compound that can be used as the first silane compound include compounds shown in the following (41) to (52).
- a silica-based transparent coating 6 that does not dissolve in the fine particle dispersion (used in step C) and is fused to the transparent fine particles 4 at a temperature lower than that of the glass substrate 5 is formed on the surface of the glass substrate 5.
- a silica-based transparent coating 6 that does not dissolve in the fine particle dispersion (used in step C) and is fused to the transparent fine particles 4 at a temperature lower than that of the glass substrate 5 is formed on the surface of the glass substrate 5.
- the active hydrogen group may be a hydroxyl group, but may be another functional group having an active hydrogen such as an amino group.
- the silica-based transparent film 6 formed on the surface of the glass substrate 5 is preferably a silica dry gel film formed by a sol-gel method. Since there are more free hydroxyl groups on the surface and inside of the unsintered dry gel film than on the surface of the glass substrate 5 having no transparent coating, the silica fine particles 4 and Can be fused.
- Formation of a silica dry gel film is achieved by using a sol solution (an example of a metal alkoxide solution) obtained by mixing a tetraalkoxysilane such as tetramethoxysilane (Si (OCH 3 ) 4 ), a condensation catalyst and a solvent with a glass substrate. 5 can be applied by evaporating the solvent. As a result, a condensation reaction occurs between the hydroxyl group generated by hydrolysis of the alkoxyl group by moisture in the air and the alkoxyl group, and a transparent dry gel film of silica (silica-based transparent film 6) is formed on the surface of the glass substrate 5.
- a sol solution an example of a metal alkoxide solution
- a condensation catalyst and a solvent with a glass substrate. 5 can be applied by evaporating the solvent.
- a condensation reaction occurs between the hydroxyl group generated by hydrolysis of the alkoxyl group by moisture in the air and the alkoxyl group, and a transparent dry gel
- the application of the sol solution can be performed by an arbitrary method such as a dip coating method, a spin coating method, a spray method, or a screen printing method.
- the thickness of the dry gel film is preferably 10 to 50 nm, although it depends on the particle diameter of the silica fine particles 1 used for producing the water / oil / oil / antifouling glass plate 10.
- FIG. 3 shows a schematic diagram of a cross-sectional structure of the glass substrate 5 having the silica dried gel film thus produced.
- the heat treatment in the step E can be performed at a low temperature of 300 ° C. or less.
- the concavo-convex glass substrate 7 to which the silica fine particles 1a are fused can be produced without deteriorating the strengthening degree of the glass that has been tempered in advance with air cooling.
- a dry gel film of silica is formed as the transparent film.
- the silica fine particles 1 can be fused at a temperature lower than that of the glass substrate 5 with transparency.
- a transparent film can be formed and used. Examples of the transparent film that can be used include dry gel films such as alumina and titanium oxide.
- phosphoric acid or boric acid is added to the sol solution at several percents, a dry gel film of phosphorus silicate glass (PSG) or boron silicate glass (BSG) is formed, and the heat treatment temperature in step E is 250 ° C. Can be reduced to the extent (step B).
- step C a fine particle dispersion in which silica fine particles 4 whose surfaces are covered with the monomolecular film 3 of the first silane compound is dispersed is prepared.
- the silica fine particles 4 whose surface is covered with the monomolecular film 3 of the first silane compound are added to the solvent, and vigorously stirred by any stirring means such as a stirring spring or a magnetic stirrer, or by ultrasonic irradiation.
- the silica fine particles 4 whose surface is covered with the monomolecular film 3 of the first silane compound are uniformly dispersed in the solvent.
- a solvent that can be used for the preparation of the fine particle dispersion any solvent that can uniformly disperse the silica fine particles 4 and that can be easily removed by evaporation after coating on the glass substrate 5 is used. Can do.
- any water or alcohol-based solvent is excluded.
- a non-aqueous organic solvent is preferable, and when using a silane compound having a hydrocarbon group represented by Chemical Formula 2 (for example, the above (21) to (32)), any organic solvent including water and an alcohol-based solvent may be used.
- a solvent can be used, water and alcohol solvents are preferable from the viewpoint of low toxicity and ease of waste disposal.
- the mass ratio of the silica fine particles 4 whose surface is covered with the monomolecular film 3 of the first silane compound in the fine particle dispersion is preferably 0.5 to 5% by mass.
- the mass ratio is less than 0.5% by mass, a large amount of the fine particle dispersion is required, and when it exceeds 5% by mass, it is difficult to uniformly disperse the silica fine particles 4, which is not preferable.
- the monomolecular film 3 of the first silane compound covering the surface of the silica fine particles 4 has an effect of reducing the surface energy of the silica fine particles 4, and has an effect of suppressing aggregation in the fine particle liquid and improving dispersibility.
- the silica fine particles 4 whose surfaces are covered with the monomolecular film 3 of the first silane compound produced in the process A are used.
- the silica fine particles 1 are directly removed by omitting the process A.
- step C Even when a fine particle dispersion is prepared by dispersing in a solvent, although the defect density on the surface of the concavo-convex glass substrate 7 produced in the step E is slightly increased, the water-repellent / oil-repellent / antifouling glass plate 10 is produced. There will be no major hindrance (step C).
- step D the fine particle dispersion is applied to the surface of the glass substrate 5 (the surface of the silica-based transparent coating 6) and dried, whereby the silica fine particles 4 are formed on the surface of the glass substrate 5 via the silica-based transparent coating 6.
- the fine particle dispersion can be applied by an arbitrary method such as a dip coating method, a spin coating method, a spray method, or a screen printing method. Further, for the evaporation of the solvent, known methods such as air drying, reduced pressure drying, heat drying and the like can be used alone or in appropriate combination depending on the boiling point, vapor pressure and the like of the solvent used.
- step D is a schematic diagram of the cross-sectional structure of the glass substrate 5 having the silica-based transparent coating 6 to which the silica fine particles 4 whose surfaces are covered with the monomolecular film 3 of the first silane compound attached are obtained in this manner. Shown in (a) (step D above).
- step E a glass substrate 5 having a silica-based transparent coating 6 on which silica fine particles 4 whose surfaces are covered with a monomolecular film 3 of a first silane compound is mounted is heat-treated in an atmosphere containing oxygen, and silica
- the silica fine particles 4 were fused by decomposing the monomolecular film 3 of the first silane compound covering the surfaces of the fine particles 4 and fusing the silica-based transparent coating 6 and the silica fine particles 4 on the surface of the glass substrate 5.
- the concavo-convex glass substrate 7 that has the fused silica fine particles 1a on the surface) (see FIG. 4B) is manufactured.
- the heat treatment is performed in an oxygen-containing atmosphere at a temperature higher than the temperature at which the glass substrate 5 and the silica fine particles 4 are fused and lower than the melting temperature of the glass substrate 5 and the silica fine particles 4.
- the higher the heat treatment temperature the stronger the silica particles 4 can be fused to the surface of the glass substrate 5.
- the temperature is too high, the silica particles are buried in the glass substrate 5 (or the transparent coating 6). Therefore, it is not preferable.
- heat treatment can be performed at a low temperature of about 250 to 300 ° C. for fusing the glass substrate 5 and the silica fine particles 4 together.
- the glass substrate 5 on which the silica-based transparent coating 6 is formed is used.
- the step B may be omitted and the glass substrate 5 not having the silica-based transparent coating 6 may be used as it is.
- a preferable heat treatment temperature is about 650 degrees.
- the treatment time is 30 minutes when heat treatment is performed in air at 650 ° C. (step E above).
- step F the silica fine particles 4 not fused to the surface of the glass substrate 5 are washed away.
- any solvent can be used for washing, water that is harmless and can easily be disposed of is most preferable (step F).
- step G a chemically adsorbed monomolecular film 8 containing a fluorocarbon group is formed on the surface of the concavo-convex glass substrate 7 having the fused silica fine particles 1a, and a water / oil repellent / antifouling glass plate 10 is produced.
- the second chemisorption liquid used for forming the chemisorption monomolecular film 8 containing a fluorocarbon group is composed of an alkoxysilane compound (an example of the second silane compound) containing a fluorocarbon group and the concavo-convex glass substrate 7. It is prepared by mixing a condensation catalyst for promoting a condensation reaction between a hydroxyl group on the surface (an example of a reactive group) and an alkoxysilyl group and a non-aqueous organic solvent.
- alkoxysilane compound containing a fluorocarbon group examples include the alkoxysilane compounds represented by the general formula (Formula 1).
- condensation catalyst cocatalyst and combinations thereof that can be used for the second chemical adsorption solution, solvent type, alkoxysilane compound, condensation catalyst, and cocatalyst concentration, reaction conditions and reaction time are Since it is the same as a chemical adsorption liquid, description is abbreviate
- the exposed portion of the fused silica fine particles 1a and the silica fine particles 1a on the surface of the glass substrate 5 are not fused. It is covalently attached to the part.
- FIG. 1 shows a schematic diagram of a cross-sectional structure of the water / oil repellent / antifouling glass plate 10 thus obtained.
- Chemical formula 5 is shown as an example of the chemisorption monomolecular film 8 containing a fluorocarbon group (the above process G).
- the film thickness of the chemical adsorption monomolecular film 8 having a fluorocarbon group is at most about 1 nm, the unevenness of about 50 nm formed on the surface of the glass substrate covered with the fused silica fine particles 1a is Almost no damage.
- the apparent surface energy of the water / oil repellent / antifouling glass plate 10 can be reduced, and the water droplet contact angle is 140 degrees or more (this embodiment). Is about 150 degrees), and super water repellency can be realized.
- the wear resistance is increased. Has also improved significantly.
- the thickness of the coating including the silica fine particles 1 a fused to the surface of the glass substrate 5 and the chemical adsorption monomolecular film 8 having a fluorocarbon group is as a whole. Since it is about 100 nm, the transparency of the glass substrate 5 is not impaired.
- alkoxysilane compound containing a fluorocarbon group examples include the compounds shown in the above (1) to (12).
- examples of the halosilane compound and isocyanate silane compound containing a fluorocarbon group that can be used in the step G include the compounds shown in the above (41) to (52).
- the water / oil / oil / repellency antifouling glass plate 10 is excellent in durability such as abrasion resistance and weather resistance, water droplet separation (sliding), and antifouling, and is required to have a water / oil / oil repellent and antifouling function. It can be used as a glass plate for windows of vehicles and buildings. Vehicles that can use the water- and oil-repellent and antifouling glass plate 10 include automobiles, railway vehicles, ships, etc., and are used as window glass plates for all windows regardless of whether they are driver seats or cabins. Can do. Moreover, as a building which can use the water-repellent / oil-repellent antifouling glass plate 10, any building such as a detached house, an apartment house, and an office building can be cited.
- Example 1 Production of silica fine particles covered with a monomolecular film having a fluorocarbon group Silica fine particles having an average particle diameter of 100 nm were prepared, washed thoroughly and dried. (Heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane (Chemical 6, Shin-Etsu Chemical Co., Ltd.) 0.99 parts by weight, and dibutyltin bisacetylacetonate (condensation catalyst) 0.01 parts by weight Parts were weighed and dissolved in 100 parts by weight of hexamethyldisiloxane solvent to prepare a first chemical adsorption solution.
- (Heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane (Chemical 6, Shin-Etsu Chemical Co., Ltd.) 0.99 parts by weight
- dibutyltin bisacetylacetonate condensation catalyst
- the first chemisorbed liquid thus obtained was mixed and stirred with dried silica fine particles and reacted in air (relative humidity 45%) for about 2 hours. Thereafter, the mixture was washed with chloroform to remove excess alkoxysilane compound and dibutyltin bisacetylacetonate.
- the apparent water droplet contact angle of the water-repellent / oil-repellent antifouling automotive window glass plate thus obtained was about 151 degrees.
- a water / oil repellent / antifouling film was formed on the surface of an automotive window glass plate to which silica fine particles had not been fused in the same manner as in (5), and the water droplet contact angle was measured.
- the contact angle was about 115 degrees.
- Example 2 As silica fine particles, a mixture of 1 part by weight of silica fine particles with an average particle diameter of 200 nm and 10 parts by weight of silica fine particles with an average particle diameter of 50 nm is used, and the same operations as in (1) to (5) of Example 1 are performed. As a result, a water / oil / oil / fouling and anti-fouling glass plate 11 having a fractal structure on the surface and a water / water / oil / fouling / antifouling effect with a water droplet contact angle of about 160 degrees could be produced (see FIG. 5).
- Example 3 Water and oil repellent and water repellent having a water droplet contact angle of about 150 degrees (similar effect was obtained if the water droplet contact angle was 140 degrees or more for practical use) prepared under the same conditions as the glass plate prepared in Example 1. Dirty glass plates are installed as front window glass for passenger cars (also called windshield, tilt angle is approximately 45 degrees), side window glass (tilt angle is approximately 70 degrees), and rear window glass (tilt angle is approximately 30 degrees). I tried an experiment.
- Example 4 A water-repellent / oil-repellent / fouling-resistant glass plate having a water droplet contact angle of 152 degrees, which was prepared in the same manner as in Example 1, was attached to a window glass of a building, and the raindrop adhesion in rainy weather was confirmed. The raindrops did not attach at all. In addition, dust and dirt that had adhered to in fine weather were washed away by raindrops, and the glass became clean.
- silica fine particles 1: fused silica fine particles, 2: hydroxyl group, 3: monomolecular film of first silane compound, 4: silica fine particles, 5: glass substrate, 6: silica-based transparent coating, 7: irregularities Glass substrate, 8: chemical adsorption monomolecular film containing fluorocarbon group, 10: water / oil repellent / antifouling glass plate, 11: water / oil / oil repellent / antifouling glass plate having a fractal structure on the surface
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Wood Science & Technology (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
A water repellent, oil repellent antifouling glass plate that is enhanced in the durability such as wear resistance and weather resistance, water droplet repellency (or water slip tendency) and antifouling capability; a process for producing the same; and a vehicle and building utilizing the glass plate. There is disclosed a water repellent, oil repellent antifouling glass plate (10) produced by forming a water repellent, oil repellent antifouling film (8) on a surface of microparticle-fusion-bonded glass substrate (7) obtained by coating a surface of glass substrate (5) with a microparticle dispersion having transparent microparticles (4) dispersed therein, followed by drying and heat treatment in an oxygenous atmosphere. Further, there are disclosed a vehicle and building utilizing the glass plate.
Description
本発明は、高耐久性でかつ撥水撥油防汚性の被膜が表面に形成されたガラス板およびその製造方法、ならびにそれを用いた乗り物および建築物に関するものである。
The present invention relates to a glass plate having a highly durable, water-repellent, oil-repellent, and antifouling coating formed on the surface thereof, a method for producing the same, and vehicles and buildings using the same.
一般にフッ化炭素基含有クロロシラン系の吸着剤と非水系の有機溶媒よりなる化学吸着液を用い、液相で化学吸着して単分子膜状の撥水撥油防汚性化学吸着膜を形成できることはすでによく知られている(例えば、特許文献1参照)。
In general, a chemical adsorption solution consisting of a fluorocarbon group-containing chlorosilane-based adsorbent and a non-aqueous organic solvent can be used for chemical adsorption in the liquid phase to form a monomolecular film-like water / oil repellent / antifouling chemical adsorption film. Is already well known (see, for example, Patent Document 1).
このような溶液中での化学吸着単分子膜の製造原理は、基材表面の水酸基などの活性水素とクロロシラン系の吸着剤のクロロシリル基との脱塩酸反応を用いて単分子膜を形成することにある。
The principle of production of a chemisorbed monolayer in such a solution is to form a monolayer using a dehydrochlorination reaction between active hydrogen such as hydroxyl groups on the substrate surface and chlorosilyl groups of chlorosilane-based adsorbents. It is in.
しかしながら、従来の化学吸着膜は吸着剤と平坦な基材表面との化学結合のみを用いているため、水滴接触角は高々120度程度止まりであり、水滴や汚れが自然に除去されるためには撥水撥油防汚性や離水性が乏しいという課題があった。また、耐摩耗性や耐候性等の耐久性も乏しいという課題があった。
However, since the conventional chemical adsorption film uses only the chemical bond between the adsorbent and the flat substrate surface, the contact angle of the water droplet is only about 120 degrees, and the water droplets and dirt are naturally removed. Has problems of poor water and oil repellency and antifouling properties and water separation. Moreover, the subject that durability, such as abrasion resistance and a weather resistance, was also scarce occurred.
本発明は、撥水撥油防汚機能が要求される自動車などの乗り物やビル等の建築物の窓用ガラス板および光学機器フィルター用のガラス板において、撥水撥油防汚性や水滴離水性(滑水性ともいう)および耐摩耗性や耐候性等の耐久性の向上を目的とする。
The present invention relates to a glass plate for a window of a vehicle such as an automobile or a building that requires a water / oil repellent / antifouling function and a glass plate for an optical device filter. The purpose is to improve durability such as water resistance (also referred to as water slidability) and abrasion resistance and weather resistance.
前記課題を解決するための手段として提供される第1の発明に係る撥水撥油防汚性ガラス板は、板状のガラス基材と、前記ガラス基材の表面に融着した撥水撥油防汚性の透明微粒子と、前記ガラス基材の表面のうち前記透明微粒子が融着していない部分を覆う撥水撥油防汚性被膜とを有する。
A water and oil repellent and antifouling glass plate according to a first invention provided as means for solving the above problems is a plate-like glass substrate and a water and water repellent material fused to the surface of the glass substrate. It has oil-repellent transparent fine particles and a water- and oil-repellent and antifouling coating covering a portion of the surface of the glass substrate where the transparent fine particles are not fused.
第1の発明に係る撥水撥油防汚性ガラス板において、前記透明微粒子は、その表面の一部分が前記ガラス基材の表面に融着しており、かつ他の露出した部分が前記撥水撥油防汚性被膜で被われているのが好ましい。
In the water- and oil-repellent and antifouling glass plate according to the first invention, a part of the surface of the transparent fine particles is fused to the surface of the glass substrate, and the other exposed part is the water-repellent part. It is preferably covered with an oil repellent antifouling film.
第1の発明に係る撥水撥油防汚性ガラス板において、前記撥水撥油防汚性被膜が、前記透明微粒子および前記ガラス基材の表面に共有結合しているのが好ましい。
In the water / oil repellent / antifouling glass plate according to the first aspect of the invention, it is preferable that the water / oil repellent / antifouling coating is covalently bonded to the surface of the transparent fine particles and the glass substrate.
第1の発明に係る撥水撥油防汚性ガラス板において、前記透明微粒子として、粒径の異なるものが混合して用いられていてもよい。
In the water- and oil-repellent and antifouling glass plate according to the first invention, the transparent fine particles having different particle diameters may be mixed and used.
第1の発明に係る撥水撥油防汚性ガラス板において、前記撥水撥油防汚性被膜が-CF3基を含んでいることが好ましい。
In the water / oil repellent / antifouling glass plate according to the first aspect of the invention, the water / oil repellent / antifouling coating preferably contains a —CF 3 group.
第1の発明に係る撥水撥油防汚性ガラス板において、前記透明微粒子が透光性であり、かつその軟化温度が前記ガラス基材表面の軟化温度よりも高いシリカ、アルミナ、およびジルコニアのいずれかであるのが好ましい。
In the water- and oil-repellent and antifouling glass plate according to the first invention, the transparent fine particles are translucent, and the softening temperature thereof is higher than the softening temperature of the glass substrate surface. Preferably it is either.
第1の発明に係る撥水撥油防汚性ガラス板において、前記透明微粒子の粒径が400nm未満であるのが好ましい。
In the water- and oil-repellent and antifouling glass plate according to the first invention, the transparent fine particles preferably have a particle size of less than 400 nm.
第1の発明に係る撥水撥油防汚性ガラス板において、水に対する接触角が140度以上であるのが好ましい。
In the water and oil repellent antifouling glass plate according to the first invention, it is preferable that the contact angle with respect to water is 140 degrees or more.
第1の発明に係る撥水撥油防汚性ガラス板において、前記透明微粒子は、前記ガラス基材よりも低い温度で前記透明微粒子と融着する金属酸化物の透明被膜を介して前記ガラス基材の表面に融着しており、前記撥水撥油防汚性被膜は、前記透明被膜を介して前記透明微粒子が融着していない部分を覆っていることが好ましい。
In the water- and oil-repellent and antifouling glass plate according to the first aspect of the present invention, the transparent fine particles are formed on the glass substrate via a metal oxide transparent film that is fused to the transparent fine particles at a temperature lower than that of the glass substrate. Preferably, the water- and oil-repellent and antifouling coating covers the portion where the transparent fine particles are not fused via the transparent coating.
第2の発明に係る乗り物は、第1の発明に係る撥水撥油防汚性ガラス板を装着している。
The vehicle according to the second invention is equipped with the water / oil repellent / antifouling glass plate according to the first invention.
第3の発明に係る建築物は、第1の発明に係る撥水撥油防汚性ガラス板を装着している。
The building according to the third invention is equipped with the water- and oil-repellent antifouling glass plate according to the first invention.
第4の発明に係る撥水撥油防汚性ガラス板の製造方法は、透明微粒子を分散した微粒子分散液を調製する工程Cと、ガラス基材の表面に前記微粒子分散液を塗布し乾燥することにより、前記ガラス基材の表面に前記透明微粒子を付着させる工程Dと、前記透明微粒子が表面に付着した前記ガラス基材を、前記透明微粒子の軟化温度よりも低い温度で加熱処理し、前記ガラス基材の表面に前記透明微粒子を融着させる工程Eと、前記ガラス基材の表面に融着しなかった前記透明微粒子を洗浄除去する工程Fと、前記透明微粒子が融着した微粒子融着ガラス基材の表面に撥水撥油防汚性被膜を形成する工程Gとを含む。
The method for producing a water / oil / oil repellent antifouling glass plate according to the fourth invention comprises a step C of preparing a fine particle dispersion in which transparent fine particles are dispersed, and the fine particle dispersion is applied to the surface of the glass substrate and dried. The process D for attaching the transparent fine particles to the surface of the glass substrate, and the glass substrate with the transparent fine particles attached to the surface are heat-treated at a temperature lower than the softening temperature of the transparent fine particles, A step E of fusing the transparent fine particles to the surface of the glass substrate, a step F of washing and removing the transparent fine particles not fused to the surface of the glass substrate, and a fine particle fusion in which the transparent fine particles are fused. And a step G of forming a water / oil repellent / antifouling coating on the surface of the glass substrate.
第4の発明に係る撥水撥油防汚性ガラス板の製造方法において、前記工程Dの前に、前記ガラス基材の表面に、前記微粒子分散液に溶解せず、前記ガラス基材よりも低い温度で前記透明微粒子と融着する金属酸化物の透明被膜を形成する工程Bをさらに有していてもよい。
なお、本発明において「金属」は、ホウ素(B)、ケイ素(Si)等のいわゆる半金属元素を含むものとする。 In the method for producing a water- and oil-repellent and antifouling glass plate according to the fourth invention, before the step D, the surface of the glass base material is not dissolved in the fine particle dispersion and is more than the glass base material. You may further have the process B which forms the transparent film of the metal oxide fuse | melted with the said transparent fine particle at low temperature.
In the present invention, “metal” includes a so-called metalloid element such as boron (B) or silicon (Si).
なお、本発明において「金属」は、ホウ素(B)、ケイ素(Si)等のいわゆる半金属元素を含むものとする。 In the method for producing a water- and oil-repellent and antifouling glass plate according to the fourth invention, before the step D, the surface of the glass base material is not dissolved in the fine particle dispersion and is more than the glass base material. You may further have the process B which forms the transparent film of the metal oxide fuse | melted with the said transparent fine particle at low temperature.
In the present invention, “metal” includes a so-called metalloid element such as boron (B) or silicon (Si).
第4の発明に係る撥水撥油防汚性ガラス板の製造方法において、前記透明被膜の形成にゾルゲル法を用いてもよい。
In the method for producing a water / oil repellent antifouling glass plate according to the fourth invention, a sol-gel method may be used for forming the transparent film.
第4の発明に係る撥水撥油防汚性ガラス板の製造方法において、ゾルゲル法による前記透明被膜の形成に用いる金属アルコキシドの溶液が、リン酸およびホウ酸のいずれか一方または双方を含んでいてもよい。
In the method for producing a water- and oil-repellent and antifouling glass plate according to the fourth invention, the metal alkoxide solution used for forming the transparent film by the sol-gel method contains either one or both of phosphoric acid and boric acid. May be.
第4の発明に係る撥水撥油防汚性ガラス板の製造方法において、前記工程Eにおける加熱処理温度が、250℃以上でかつ前記ガラス基材および前記透明微粒子の軟化温度よりも低い方が好ましい。
In the method for producing a water / oil repellent / antifouling glass plate according to the fourth invention, the heat treatment temperature in the step E is 250 ° C. or higher and lower than the softening temperature of the glass substrate and the transparent fine particles. preferable.
第4の発明に係る撥水撥油防汚性ガラス板の製造方法において、前記工程Cの前に、直鎖状の基を含む第1のシラン化合物と非水系の有機溶媒とを含む第1の化学吸着液中に透明微粒子a(元となる透明微粒子)を分散し、前記第1のシラン化合物のシリル基と前記透明微粒子aの表面の反応性基との反応により前記第1のシラン化合物の単分子膜で表面が覆われた前記透明微粒子を製造する工程Aを有し、かつ前記工程Eにおける加熱処理は酸素を含む雰囲気中で行われるのが好ましい。
In the method for producing a water- and oil-repellent and antifouling glass plate according to the fourth invention, the first silane compound containing a linear group and a non-aqueous organic solvent are included before Step C. The first silane compound is obtained by dispersing transparent fine particles a (original transparent fine particles) in the chemical adsorption liquid and reacting the silyl group of the first silane compound with the reactive group on the surface of the transparent fine particles a. It is preferable that the step A for producing the transparent fine particles whose surface is covered with the monomolecular film of Step A and the heat treatment in the step E are performed in an atmosphere containing oxygen.
第4の発明に係る撥水撥油防汚性ガラス板の製造方法において、前記微粒子分散液には有機溶媒が用いられ、前記直鎖状の基はフッ化炭素基であってもよい。
In the method for producing a water- and oil-repellent and antifouling glass plate according to the fourth invention, an organic solvent is used for the fine particle dispersion, and the linear group may be a fluorocarbon group.
第4の発明に係る撥水撥油防汚性ガラス板の製造方法において、前記微粒子分散液には水およびアルコールのいずれか一方または両者の混合液が用いられ、前記直鎖状の基は炭化水素基であってもよい。
In the method for producing a water- and oil-repellent and antifouling glass plate according to the fourth invention, the fine particle dispersion is one of water and alcohol or a mixture of both, and the linear group is carbonized. It may be a hydrogen group.
第4の発明に係る撥水撥油防汚性ガラス板の製造方法において、前記工程Gにおける前記撥水撥油防汚性被膜の形成は、フッ化炭素基を含む第2のシラン化合物と非水系の有機溶媒とを含む第2の化学吸着液を前記微粒子融着ガラス基材に接触させて、前記第2のシラン化合物のシリル基と前記微粒子融着ガラス基材の表面の反応性基との反応により行うのが好ましい。
In the method for producing a water- and oil-repellent and antifouling glass plate according to the fourth invention, the formation of the water- and oil-repellent and antifouling coating film in the step G is performed with a second silane compound containing a fluorocarbon group and non- A second chemical adsorption liquid containing an aqueous organic solvent is brought into contact with the fine particle fused glass substrate, and a silyl group of the second silane compound and a reactive group on the surface of the fine particle fused glass substrate are obtained. It is preferable to carry out by this reaction.
第4の発明に係る撥水撥油防汚性ガラス板の製造方法において、前記工程Gにおける前記シリル基と前記反応性基との反応後、未反応の前記第2のシラン化合物を洗浄除去してもよい。
In the method for producing a water- and oil-repellent and antifouling glass plate according to the fourth invention, after the reaction between the silyl group and the reactive group in the step G, the unreacted second silane compound is washed away. May be.
第4の発明に係る撥水撥油防汚性ガラス板の製造方法において、前記第1および第2の化学吸着液にそれぞれ含まれる前記第1および第2のシラン化合物のいずれか一方または双方がアルコキシシラン化合物であってもよい。
In the method for producing a water- and oil-repellent and antifouling glass plate according to the fourth invention, one or both of the first and second silane compounds contained in the first and second chemical adsorption liquids, respectively, An alkoxysilane compound may be used.
第4の発明に係る撥水撥油防汚性ガラス板の製造方法において、前記第1および第2の化学吸着液にそれぞれ含まれる前記第1および第2のシラン化合物のいずれか一方または双方がハロシラン化合物であってもよい。
In the method for producing a water- and oil-repellent and antifouling glass plate according to the fourth invention, one or both of the first and second silane compounds contained in the first and second chemical adsorption liquids, respectively, It may be a halosilane compound.
第4の発明に係る撥水撥油防汚性ガラス板の製造方法において、前記第1および第2の化学吸着液にそれぞれ含まれる前記第1および第2のシラン化合物のいずれか一方または双方がイソシアネートシラン化合物であってもよい。
In the method for producing a water- and oil-repellent and antifouling glass plate according to the fourth invention, one or both of the first and second silane compounds contained in the first and second chemical adsorption liquids, respectively, It may be an isocyanate silane compound.
第4の発明に係る撥水撥油防汚性ガラス板の製造方法において、前記第1および第2の化学吸着液のうち前記アルコキシシラン化合物を含むものは、さらに縮合触媒として、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル、およびチタン酸エステルキレートからなる群から選択される1または2以上の化合物を含んでいてもよい。
さらに、助触媒として、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を含んでいてもよい。 In the method for producing a water- and oil-repellent and antifouling glass plate according to the fourth invention, the first and second chemical adsorption liquids containing the alkoxysilane compound further include a metal carboxylate as a condensation catalyst. 1 or 2 or more compounds selected from the group consisting of a carboxylate metal salt, a carboxylate metal salt polymer, a carboxylate metal salt chelate, a titanate ester, and a titanate ester chelate may be included.
Further, the promoter may contain one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds.
さらに、助触媒として、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を含んでいてもよい。 In the method for producing a water- and oil-repellent and antifouling glass plate according to the fourth invention, the first and second chemical adsorption liquids containing the alkoxysilane compound further include a metal carboxylate as a condensation catalyst. 1 or 2 or more compounds selected from the group consisting of a carboxylate metal salt, a carboxylate metal salt polymer, a carboxylate metal salt chelate, a titanate ester, and a titanate ester chelate may be included.
Further, the promoter may contain one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds.
第4の発明に係る撥水撥油防汚性ガラス板の製造方法において、前記第1および第2の化学吸着液のうち前記アルコキシシラン化合物を含むものは、縮合触媒として、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物をさらに含んでいてもよい。
In the method for producing a water- and oil-repellent and antifouling glass plate according to the fourth invention, the first and second chemical adsorption liquids containing the alkoxysilane compound include a ketimine compound and an organic acid as a condensation catalyst. , An aldimine compound, an enamine compound, an oxazolidine compound, and one or more compounds selected from the group consisting of aminoalkylalkoxysilane compounds may be further included.
請求項1~9記載の撥水撥油防汚性ガラス板、および請求項12~27記載の撥水撥油防汚性ガラス板の製造方法は、撥水撥油防汚機能が要求される乗り物や建築物の窓用ガラス板において、水滴離水性(滑水性ともいう)や防汚性および耐摩耗性や耐候性等の耐久性に優れた撥水撥油防汚性ガラス板を提供できる。
The water / oil repellent / antifouling glass plate according to claims 1 to 9 and the method for producing the water / oil repellent / antifouling glass plate according to claims 12 to 27 require a water / oil repellent / antifouling function. It is possible to provide a water / oil-repellent and antifouling glass plate excellent in durability such as water-drop separation (also referred to as water slidability), antifouling properties, abrasion resistance, and weather resistance in glass plates for windows of vehicles and buildings. .
請求項1~9記載の撥水撥油防汚性ガラス板、請求項10記載の乗り物、請求項11記載の建築物、および請求項12~27記載の撥水撥油防汚性ガラス板の製造方法においては、ガラス基材の表面が融着した撥水撥油防汚性の透明微粒子で覆われているので、撥水撥油防汚性ガラス板が凹凸を有する複雑な表面形状を呈する。そのため、いわゆる「蓮の葉効果」により高い撥水撥油防汚性を有する。
The water- and oil-repellent and antifouling glass plate according to claims 1 to 9, the vehicle according to claim 10, the building according to claim 11, and the water and oil repellent and antifouling glass plate according to claims 12 to 27. In the manufacturing method, since the surface of the glass substrate is covered with fused water- and oil-repellent and antifouling transparent fine particles, the water- and oil-repellent and antifouling glass plate exhibits a complex surface shape having irregularities. . Therefore, it has high water and oil repellency and antifouling properties due to the so-called “lotus leaf effect”.
特に請求項2記載の撥水撥油防汚性ガラス板は、透明微粒子が、その表面の一部分でガラス基材の表面に融着しているので、表面が複雑な凹凸構造を呈するとともに、他の露出した部分が撥水撥油防汚性被膜で被われているので、高い撥水撥油防汚性を有する。
In particular, the water- and oil-repellent and antifouling glass plate according to claim 2 has a complex uneven structure on the surface because the transparent fine particles are fused to the surface of the glass substrate at a part of the surface. Since the exposed portion is covered with a water / oil repellent / antifouling film, it has high water / oil repellent / antifouling properties.
請求項3記載の撥水撥油防汚性ガラス板は、撥水撥油防汚性被膜が透明微粒子およびガラス基材の表面に共有結合しているので、その耐久性を向上できる。
The water / oil repellent / antifouling glass plate according to claim 3 can improve durability because the water / oil repellent / antifouling coating is covalently bonded to the transparent fine particles and the surface of the glass substrate.
請求項4記載の撥水撥油防汚性ガラス板は、粒径の異なる透明微粒子が混合して用いられているので、撥水撥油防汚性ガラス板の表面形状がフラクタル性を有し、撥水撥油防汚性を向上できる。
Since the water repellent / oil repellent and antifouling glass plate according to claim 4 is used by mixing transparent fine particles having different particle diameters, the surface shape of the water / oil repellent and antifouling glass plate has fractal properties. Water and oil repellency can be improved.
請求項5記載の撥水撥油防汚性ガラス板は、撥水撥油防汚性被膜が-CF3基を含んでいるので、撥水撥油防汚性を向上できる。
The water / oil repellent / antifouling glass plate according to claim 5 can improve the water / oil repellent / antifouling property since the water / oil repellent / antifouling coating film contains —CF 3 groups.
請求項6記載の撥水撥油防汚性ガラス板は、透明微粒子が透光性であり、かつその軟化温度がガラス基材表面の軟化温度よりも高いシリカ、アルミナ、あるいはジルコニアであるので、微粒子の形状を損なうことなくガラス基材の表面に融着できる。
The water / oil repellent / antifouling glass plate according to claim 6 is silica, alumina, or zirconia in which the transparent fine particles are translucent and the softening temperature thereof is higher than the softening temperature of the glass substrate surface. It can be fused to the surface of the glass substrate without impairing the shape of the fine particles.
請求項7記載の撥水撥油防汚性ガラス板は、透明微粒子の粒径が可視光の波長より小さい400nm未満であるので、可視光の散乱が少なく、高い透光性を維持できる。
In the water and oil repellent and antifouling glass plate according to claim 7, since the particle diameter of the transparent fine particles is less than 400 nm, which is smaller than the wavelength of visible light, there is little scattering of visible light and high translucency can be maintained.
請求項8記載の撥水撥油防汚性ガラス板は、水に対する接触角が140度以上であるので、水滴の転落角が小さくなり、実質上水滴が付着しなくなる。
The water / oil repellent / antifouling glass plate according to claim 8 has a contact angle with water of 140 ° or more, so that the drop angle of water drops becomes small and water drops do not substantially adhere.
請求項9記載の撥水撥油防汚性ガラス板は、ガラス基材の表面に、ガラス基材よりも低い温度で透明微粒子と融着する金属酸化物の透明被膜が形成されているので、融着時の加熱処理温度を低くすることが可能となり、融着時における透明微粒子の熱変形を抑制できる。
Since the water- and oil-repellent and antifouling glass plate according to claim 9 is formed on the surface of the glass substrate, a metal oxide transparent film that is fused to the transparent fine particles at a temperature lower than that of the glass substrate is formed. The heat treatment temperature at the time of fusion can be lowered, and the thermal deformation of the transparent fine particles at the time of fusion can be suppressed.
請求項10記載の乗り物は、請求項1~9記載の撥水撥油防汚性ガラス板を装着しているので、雨滴の付着を防ぎ、雨天時の車外視認性を向上できる。
Since the vehicle according to claim 10 is equipped with the water / oil repellent antifouling glass plate according to claims 1 to 9, it is possible to prevent adhesion of raindrops and improve visibility outside the vehicle in the rain.
請求項11記載の建築物は、請求項1~9記載の撥水撥油防汚性ガラス板を装着しているので、雨滴の付着を防ぎ、雨天時の屋外視認性を向上できる。
The building according to claim 11 is equipped with the water / oil / oil repellent and antifouling glass plate according to claims 1 to 9, so that it is possible to prevent adhesion of raindrops and to improve outdoor visibility in rainy weather.
請求項12~27記載の撥水撥油防汚性ガラス板の製造方法では、ガラス基材の表面に微粒子分散液を塗布し乾燥することにより、ガラス基材の表面に透明微粒子を付着させ、次いでこれを加熱処理して、微粒子融着ガラス基材を製造し、その上に撥水撥油防汚性被膜を形成しているので、全表面にわたり実質的に均一に透明微粒子で覆われ、視認性、透明性、および耐久性に優れた撥水撥油防汚性ガラス板が得られる。
また、加熱処理温度が透明微粒子の軟化温度よりも低いので、融着時における透明微粒子の熱変形を抑制できる。 In the method for producing a water- and oil-repellent and antifouling glass plate according to claims 12 to 27, by applying a fine particle dispersion on the surface of the glass substrate and drying, the transparent fine particles are adhered to the surface of the glass substrate, Next, this is heat-treated to produce a fine-particle fused glass substrate, and a water-repellent / oil-repellent / fouling-resistant film is formed thereon, so that the entire surface is substantially uniformly covered with transparent fine particles, A water- and oil-repellent and antifouling glass plate excellent in visibility, transparency and durability can be obtained.
Moreover, since the heat treatment temperature is lower than the softening temperature of the transparent fine particles, thermal deformation of the transparent fine particles at the time of fusion can be suppressed.
また、加熱処理温度が透明微粒子の軟化温度よりも低いので、融着時における透明微粒子の熱変形を抑制できる。 In the method for producing a water- and oil-repellent and antifouling glass plate according to claims 12 to 27, by applying a fine particle dispersion on the surface of the glass substrate and drying, the transparent fine particles are adhered to the surface of the glass substrate, Next, this is heat-treated to produce a fine-particle fused glass substrate, and a water-repellent / oil-repellent / fouling-resistant film is formed thereon, so that the entire surface is substantially uniformly covered with transparent fine particles, A water- and oil-repellent and antifouling glass plate excellent in visibility, transparency and durability can be obtained.
Moreover, since the heat treatment temperature is lower than the softening temperature of the transparent fine particles, thermal deformation of the transparent fine particles at the time of fusion can be suppressed.
請求項13記載の撥水撥油防汚性ガラス板の製造方法は、工程Dの前に、ガラス基材の表面に、微粒子分散液に溶解せず、ガラス基材よりも低い温度で透明微粒子と融着する金属酸化物の透明被膜を形成する工程Bを有するので、工程Eにおける加熱処理をより低温で行うことが可能となる。
The method for producing a water- and oil-repellent and antifouling glass plate according to claim 13, wherein the transparent fine particles are not dissolved in the fine particle dispersion on the surface of the glass substrate before Step D, but at a temperature lower than that of the glass substrate. Therefore, the heat treatment in the step E can be performed at a lower temperature.
請求項14記載の撥水撥油防汚性ガラス板の製造方法では、金属酸化物の透明被膜の形成にゾルゲル法を用いるので、金属酸化物の透明被膜の形成を簡便に行うことができる。
In the method for producing a water- and oil-repellent and antifouling glass plate according to claim 14, since the sol-gel method is used for forming the metal oxide transparent film, the metal oxide transparent film can be easily formed.
請求項15記載の撥水撥油防汚性ガラス板の製造方法では、ゾルゲル法による透明被膜の形成に用いる金属アルコキシドの溶液が、リン酸およびホウ酸のいずれか一方または双方を含むので、金属酸化物の透明被膜の軟化点が低くなり、融着時の加熱処理温度を低くできる。
In the method for producing a water- and oil-repellent and antifouling glass plate according to claim 15, the metal alkoxide solution used for forming the transparent film by the sol-gel method contains one or both of phosphoric acid and boric acid. The softening point of the transparent oxide film is lowered, and the heat treatment temperature during fusion can be lowered.
請求項16記載の撥水撥油防汚性ガラス板の製造方法では、工程Eにおける加熱処理温度が、250℃以上でかつガラス基材および透明微粒子の軟化温度よりも低いので、融着時における透明微粒子の変形を抑制できる。
In the method for producing a water- and oil-repellent and antifouling glass plate according to claim 16, the heat treatment temperature in step E is 250 ° C. or higher and lower than the softening temperature of the glass substrate and transparent fine particles. The deformation of the transparent fine particles can be suppressed.
請求項17記載の撥水撥油防汚性ガラス板の製造方法は、工程Cの前に、直鎖状の基を含む第1のシラン化合物と非水系の有機溶媒とを含む第1の化学吸着液中に透明微粒子aを分散し、第1のシラン化合物のシリル基と透明微粒子aの表面の反応性基との反応により第1のシラン化合物の単分子膜で表面が覆われた透明微粒子を製造する工程Aを有し、工程Cにおいて、微粒子分散液の調製には第1のシラン化合物の単分子膜で表面が覆われた透明微粒子が用いられるので、微粒子分散液中での透明微粒子の凝集を抑制し、均一に分散させることができる。
また、工程Eにおける加熱処理が酸素を含む雰囲気中で行われるので、低い加熱温度で第1のシラン化合物の単分子膜を完全に分解除去できる。 The method for producing a water- and oil-repellent and antifouling glass plate according to claim 17 comprises a first chemistry comprising a first silane compound containing a linear group and a non-aqueous organic solvent before Step C. Transparent fine particles in which transparent fine particles a are dispersed in an adsorbent and the surfaces are covered with a monomolecular film of the first silane compound by the reaction between the silyl group of the first silane compound and the reactive groups on the surface of the transparent fine particles a In the step C, transparent fine particles whose surface is covered with a monomolecular film of the first silane compound are used in the step C, so that the transparent fine particles in the fine particle dispersion are used. Can be dispersed uniformly.
In addition, since the heat treatment in step E is performed in an atmosphere containing oxygen, the monomolecular film of the first silane compound can be completely decomposed and removed at a low heating temperature.
また、工程Eにおける加熱処理が酸素を含む雰囲気中で行われるので、低い加熱温度で第1のシラン化合物の単分子膜を完全に分解除去できる。 The method for producing a water- and oil-repellent and antifouling glass plate according to claim 17 comprises a first chemistry comprising a first silane compound containing a linear group and a non-aqueous organic solvent before Step C. Transparent fine particles in which transparent fine particles a are dispersed in an adsorbent and the surfaces are covered with a monomolecular film of the first silane compound by the reaction between the silyl group of the first silane compound and the reactive groups on the surface of the transparent fine particles a In the step C, transparent fine particles whose surface is covered with a monomolecular film of the first silane compound are used in the step C, so that the transparent fine particles in the fine particle dispersion are used. Can be dispersed uniformly.
In addition, since the heat treatment in step E is performed in an atmosphere containing oxygen, the monomolecular film of the first silane compound can be completely decomposed and removed at a low heating temperature.
請求項18記載の撥水撥油防汚性ガラス板の製造方法では、微粒子分散液に有機溶媒が用いられ、第1のシラン化合物の直鎖状の基はフッ化炭素基であるので、透明微粒子の表面エネルギーが小さくなり、透明微粒子の凝集を確実に抑制できる。
In the method for producing a water- and oil-repellent and antifouling glass plate according to claim 18, an organic solvent is used for the fine particle dispersion, and the linear group of the first silane compound is a fluorocarbon group. The surface energy of the fine particles is reduced, and the aggregation of the transparent fine particles can be reliably suppressed.
請求項19記載の撥水撥油防汚性ガラス板の製造方法では、微粒子分散液に水およびアルコールのいずれか一方または両者の混合液が用いられ、第1のシラン化合物の直鎖状の基は炭化水素基であるので、微粒子分散液の調製に要するコストを低下できるとともに、微粒子分酸液の安全性がより高くなる。
In the method for producing a water- and oil-repellent and antifouling glass plate according to claim 19, either one of water and alcohol or a mixture of both is used for the fine particle dispersion, and the linear group of the first silane compound is used. Since is a hydrocarbon group, the cost required for the preparation of the fine particle dispersion can be reduced, and the safety of the fine particle acid solution is further increased.
請求項20記載の撥水撥油防汚性ガラス板の製造方法では、工程Gにおける撥水撥油防汚性被膜の形成が、フッ化炭素基を含む第2のシラン化合物を微粒子融着ガラス基材に接触させて、第2のシラン化合物のシリル基と微粒子融着ガラス基材の表面の反応性基との反応により行われるので、撥水撥油防汚性被膜の耐久性を高めることができる。
21. The method for producing a water / oil / oil / repellency / antifouling glass plate according to claim 20, wherein the formation of the water / oil / oil / repellency / antifouling coating in Step G is performed by applying a second silane compound containing a fluorocarbon group to a fine particle fused glass Since it is carried out by the reaction between the silyl group of the second silane compound and the reactive group on the surface of the fine particle fused glass substrate in contact with the substrate, the durability of the water / oil repellent / antifouling coating is improved. Can do.
請求項21記載の撥水撥油防汚性ガラス板の製造方法では、工程Gにおけるシリル基と反応性基との反応後、未反応の第2のシラン化合物を洗浄除去するので、微粒子融着ガラス基材の表面に共有結合した撥水撥油防汚性被膜のみが形成されることにより、撥水撥油防汚性ガラス板の撥水撥油防汚性および耐久性を向上できる。
In the method for producing a water- and oil-repellent and antifouling glass plate according to claim 21, the unreacted second silane compound is washed away after the reaction between the silyl group and the reactive group in Step G. By forming only the water / oil repellent / antifouling coating film covalently bonded to the surface of the glass substrate, the water / oil / oil repellent / antifouling property and durability of the water / oil repellent / antifouling glass plate can be improved.
請求項22記載の撥水撥油防汚性ガラスの製造方法では、第1および第2のシラン化合物のいずれか一方または双方が、反応性基との反応の際に有害な塩化水素を発生しないアルコキシシラン化合物であるので、撥水撥油防汚性ガラス板の製造をより安全に行うことができるとともに、製造設備の腐食や酸性廃液の発生を抑制できる。
In the method for producing a water- and oil-repellent and antifouling glass according to claim 22, one or both of the first and second silane compounds do not generate harmful hydrogen chloride upon reaction with a reactive group. Since it is an alkoxysilane compound, it is possible to manufacture a water / oil repellent and antifouling glass plate more safely, and to suppress the corrosion of production equipment and the generation of acidic waste liquid.
請求項23記載の撥水撥油防汚性ガラスの製造方法では、第1および第2のシラン化合物のいずれか一方または双方が、反応性基との反応性の高いハロシラン化合物であるので、撥水撥油防汚性ガラス板の製造をより高効率に行うことができるとともに、触媒の添加が不要になる。
In the method for producing a water- and oil-repellent and antifouling glass according to claim 23, either one or both of the first and second silane compounds are halosilane compounds highly reactive with a reactive group. The production of the water / oil repellent and antifouling glass plate can be carried out more efficiently, and the addition of a catalyst becomes unnecessary.
請求項24記載の撥水撥油防汚性ガラス板の製造方法では、第1および第2のシラン化合物のいずれか一方または双方が、反応性基との反応の際に有害な塩化水素を発生せず、かつ反応性の高いイソシアネートシラン化合物であるので、製造設備の腐食や酸性廃液の発生を抑制できるとともに、触媒の添加が不要になる。
25. The method for producing a water / oil repellent / antifouling glass plate according to claim 24, wherein one or both of the first and second silane compounds generate harmful hydrogen chloride upon reaction with a reactive group. In addition, since it is a highly reactive isocyanate silane compound, corrosion of production facilities and generation of acidic waste liquid can be suppressed, and addition of a catalyst becomes unnecessary.
請求項25記載の撥水撥油防汚性ガラスの製造方法は、第1および第2の化学吸着液のうちアルコキシシラン化合物を含むものが、さらに縮合触媒として、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル、およびチタン酸エステルキレートからなる群から選択される1または2以上の化合物を含むので、アルコキシシラン化合物と反応性基との反応時間を短縮し、撥水撥油防汚性ガラス板の製造をより高効率に行うことができる。
The method for producing a water- and oil-repellent antifouling glass according to claim 25, wherein the first and second chemical adsorption liquids containing an alkoxysilane compound are further used as a condensation catalyst as a carboxylic acid metal salt or a carboxylic acid ester. Since it contains one or more compounds selected from the group consisting of metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates, alkoxysilane compounds and reactive groups The reaction time can be shortened, and the production of the water / oil / oil / repellency antifouling glass plate can be carried out more efficiently.
請求項26および27記載の撥水撥油防汚性ガラスの製造方法は、第1および第2の化学吸着液のうちアルコキシシラン化合物を含むものが、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物からからなる群より選択される1または2以上の化合物をさらに含むので、アルコキシシラン化合物と活性水素基との反応時間を短縮し、撥水撥油防汚性ガラス板の製造をより高効率に行うことができる。特に、これらの化合物と上述の縮合触媒の両者をともに含む場合には、反応時間をさらに短縮できる。
28. The method for producing a water- and oil-repellent and antifouling glass according to claim 26 and 27, wherein the first and second chemical adsorption liquids containing an alkoxysilane compound are ketimine compounds, organic acids, aldimine compounds, enamine compounds. 1 or 2 or more compounds selected from the group consisting of an oxazolidine compound and an aminoalkylalkoxysilane compound further reduce the reaction time between the alkoxysilane compound and the active hydrogen group, resulting in water and oil repellency and antifouling properties The glass plate can be produced with higher efficiency. In particular, when both of these compounds and the above condensation catalyst are included, the reaction time can be further shortened.
以下、図面を参照しながら本発明の一実施の形態に係る撥水撥油防汚性ガラス板について説明する。
図1に示すように、本発明の一実施の形態に係る撥水撥油防汚性ガラス板10は、板状のガラス基材5と、ガラス基材5の表面に金属酸化物の透明被膜の一例であるシリカ系透明皮膜6を介して融着したシリカ微粒子1a(撥水撥油防汚性の透明微粒子の一例)と、シリカ微粒子が融着していない部分を覆う撥水撥油防汚性被膜の一例であるフッ化炭素基を含む化学吸着単分子膜8とを有する。 Hereinafter, a water / oil repellent / antifouling glass plate according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a water- and oil-repellent and antifouling glass plate 10 according to an embodiment of the present invention includes a plate-shapedglass substrate 5 and a transparent film of metal oxide on the surface of the glass substrate 5. Silica fine particles 1a (an example of water- and oil-repellent / antifouling transparent fine particles) fused through a silica-based transparent film 6 as an example, and a water- and oil-repellent and anti-repellent agent covering a portion where silica fine particles are not fused. And a chemisorbed monomolecular film 8 containing a fluorocarbon group, which is an example of a dirty coating.
図1に示すように、本発明の一実施の形態に係る撥水撥油防汚性ガラス板10は、板状のガラス基材5と、ガラス基材5の表面に金属酸化物の透明被膜の一例であるシリカ系透明皮膜6を介して融着したシリカ微粒子1a(撥水撥油防汚性の透明微粒子の一例)と、シリカ微粒子が融着していない部分を覆う撥水撥油防汚性被膜の一例であるフッ化炭素基を含む化学吸着単分子膜8とを有する。 Hereinafter, a water / oil repellent / antifouling glass plate according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a water- and oil-repellent and antifouling glass plate 10 according to an embodiment of the present invention includes a plate-shaped
撥水撥油防汚性ガラス板10の製造方法は、図2(a)および(b)に示すように、直鎖状の基を含む第1のシラン化合物と非水系の有機溶媒とを含む第1の化学吸着液中に透明微粒子(元となる透明微粒子a)の一例であるシリカ微粒子1を分散し、第1のシラン化合物のシリル基とシリカ微粒子1の表面の水酸基2(反応性基の一例)との反応により第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4を製造する工程Aと、図3に示すように、ガラス基材5の表面に、シリカ系透明被膜6を形成する工程Bと、第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4を分散した微粒子分散液を調製する工程Cと、図4(a)に示すようにガラス基材5の表面(詳しくは、シリカ系透明被膜6の表面)に微粒子分散液を塗布し乾燥することにより、ガラス基材5表面のシリカ系透明被膜6の上にシリカ微粒子4を付着させる工程Dと、シリカ微粒子4が表面に付着したガラス基材5を加熱処理し、シリカ微粒子4をシリカ系透明被膜6を介してガラス基材5の表面に融着させ、融着したシリカ微粒子1aで覆われた凹凸ガラス基材(微粒子融着ガラス基材の一例)7を製造する工程Eと、ガラス基材5の表面に融着しなかったシリカ微粒子4を洗浄除去する工程Fと、凹凸ガラス基材7の表面にフッ化炭素基を含む化学吸着単分子膜8を形成する工程Gとを含んでいる。
以下、工程A~Gについてより詳細に説明する。 As shown in FIGS. 2A and 2B, the method for producing the water / oil repellent / antifouling glass plate 10 includes a first silane compound containing a linear group and a non-aqueous organic solvent. Silicafine particles 1 as an example of transparent fine particles (original transparent fine particles a) are dispersed in the first chemical adsorption liquid, and the silyl group of the first silane compound and the hydroxyl group 2 (reactive group) on the surface of the silica fine particles 1 are dispersed. Step A for producing the silica fine particles 4 whose surface is covered with the monomolecular film 3 of the first silane compound by reaction with the first example), and as shown in FIG. As shown in FIG. 4A, a step B for forming the transparent coating 6, a step C for preparing a fine particle dispersion in which the silica fine particles 4 whose surfaces are covered with the monomolecular film 3 of the first silane compound are dispersed. The fine particle content on the surface of the glass substrate 5 (specifically, the surface of the silica-based transparent coating 6). Applying and drying the liquid, the process D for attaching the silica fine particles 4 on the silica-based transparent coating 6 on the surface of the glass substrate 5, and the glass substrate 5 with the silica fine particles 4 attached to the surface are heat-treated, Silica fine particles 4 are fused to the surface of a glass substrate 5 through a silica-based transparent coating 6 to produce an uneven glass substrate (an example of a fine-particle fused glass substrate) 7 covered with the fused silica fine particles 1a. Step E, step F for washing and removing silica fine particles 4 that have not been fused to the surface of the glass substrate 5, and formation of a chemisorption monomolecular film 8 containing a fluorocarbon group on the surface of the concavo-convex glass substrate 7. Process G to be performed.
Hereinafter, steps A to G will be described in more detail.
以下、工程A~Gについてより詳細に説明する。 As shown in FIGS. 2A and 2B, the method for producing the water / oil repellent / antifouling glass plate 10 includes a first silane compound containing a linear group and a non-aqueous organic solvent. Silica
Hereinafter, steps A to G will be described in more detail.
工程Aでは、第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4を製造する。
製造される撥水撥油防汚製ガラス板10の透明度を損なわないためには、第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4の製造に用いるシリカ微粒子1の直径は、可視光波長(380~700nm)より小さいことが好ましい。具体的には、微粒子の直径は10~400nmであることが好ましく、10~300nmであることがより好ましく、10~100nmであることがさらに好ましい。用いられるシリカ微粒子1の粒径は単一であってもよいが、2以上の異なる粒径を有するシリカ微粒子を混合して用いると、表面がフラクタル構造を有する撥水撥油防汚性ガラス板11(図5参照)が得られ、撥水撥油防汚性が向上するため好ましい。 In step A, silicafine particles 4 whose surfaces are covered with the monomolecular film 3 of the first silane compound are produced.
In order not to impair the transparency of the water / oil repellent / antifouling glass plate 10 to be produced, the diameter of thesilica fine particles 1 used for producing the silica fine particles 4 whose surface is covered with the monomolecular film 3 of the first silane compound. Is preferably smaller than the visible light wavelength (380 to 700 nm). Specifically, the diameter of the fine particles is preferably 10 to 400 nm, more preferably 10 to 300 nm, and even more preferably 10 to 100 nm. The silica fine particles 1 used may have a single particle diameter, but when mixed with two or more silica fine particles having different particle diameters, the surface thereof has a fractal structure. 11 (see FIG. 5) is obtained, and the water / oil repellency / antifouling property is improved.
製造される撥水撥油防汚製ガラス板10の透明度を損なわないためには、第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4の製造に用いるシリカ微粒子1の直径は、可視光波長(380~700nm)より小さいことが好ましい。具体的には、微粒子の直径は10~400nmであることが好ましく、10~300nmであることがより好ましく、10~100nmであることがさらに好ましい。用いられるシリカ微粒子1の粒径は単一であってもよいが、2以上の異なる粒径を有するシリカ微粒子を混合して用いると、表面がフラクタル構造を有する撥水撥油防汚性ガラス板11(図5参照)が得られ、撥水撥油防汚性が向上するため好ましい。 In step A, silica
In order not to impair the transparency of the water / oil repellent / antifouling glass plate 10 to be produced, the diameter of the
本実施の形態では、透明微粒子としてシリカ微粒子を用いているが、水酸基、アミノ基等の、アルコキシシリル基およびハロシリル基と反応する活性水素基(反応性基の一例)を表面に有し、透光性でガラス基材よりも軟化点の高い任意の微粒子を用いることができる。シリカ以外に用いることのできる透明微粒子としては、アルミナ、ジルコニア等の微粒子が挙げられる。
In the present embodiment, silica fine particles are used as the transparent fine particles. However, the surface has active hydrogen groups (an example of reactive groups) that react with alkoxysilyl groups and halosilyl groups, such as hydroxyl groups and amino groups. Any fine particles that are light and have a softening point higher than that of the glass substrate can be used. Examples of transparent fine particles that can be used other than silica include fine particles such as alumina and zirconia.
第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4の製造に用いる第1の化学吸着液は、第1のシラン化合物と、シリル基とシリカ微粒子1の表面の水酸基2との縮合反応を促進するための縮合触媒と、非水系の有機溶媒とを混合することにより調製される。
The first chemical adsorption liquid used for the production of the silica fine particles 4 whose surface is covered with the monomolecular film 3 of the first silane compound includes the first silane compound, the silyl group, and the hydroxyl group 2 on the surface of the silica fine particle 1. It is prepared by mixing a condensation catalyst for accelerating the condensation reaction with a non-aqueous organic solvent.
第1のシラン化合物としては、下記の化1および化2のいずれか一方で表されるアルコキシシラン化合物が用いられる。
As the first silane compound, an alkoxysilane compound represented by any one of the following chemical formulas 1 and 2 is used.
前記化1および化2において、mは5~20の整数を、nは0~9の整数を、Rは炭素数1~4のアルキル基をそれぞれ表す。
また、Yは、(CH2)k(kは1~3の整数を表す)および単結合のいずれかを表し、Zは、O(エーテル酸素)、COO、Si(CH3)2、および単結合のいずれかを表す。 In the chemical formulas 1 and 2, m represents an integer of 5 to 20, n represents an integer of 0 to 9, and R represents an alkyl group having 1 to 4 carbon atoms.
Y represents (CH 2 ) k (k represents an integer of 1 to 3) and a single bond, and Z represents O (ether oxygen), COO, Si (CH 3 ) 2 , and single bond Represents one of the bonds.
また、Yは、(CH2)k(kは1~3の整数を表す)および単結合のいずれかを表し、Zは、O(エーテル酸素)、COO、Si(CH3)2、および単結合のいずれかを表す。 In the
Y represents (CH 2 ) k (k represents an integer of 1 to 3) and a single bond, and Z represents O (ether oxygen), COO, Si (CH 3 ) 2 , and single bond Represents one of the bonds.
第1のシラン化合物として用いることのできるアルコキシシラン化合物の具体例としては、下記の(1)~(12)に示すフッ化炭素基を含むアルコキシシラン誘導体、および下記の(21)~(32)に示す炭化水素基を含むアルコキシシラン誘導体が挙げられる。
Specific examples of the alkoxysilane compound that can be used as the first silane compound include alkoxysilane derivatives containing a fluorocarbon group shown in the following (1) to (12), and the following (21) to (32). And alkoxysilane derivatives containing the hydrocarbon group shown in FIG.
(1)CF3CH2O(CH2)15Si(OCH3)3
(2)CF3(CH2)3Si(CH3)2(CH2)15Si(OCH3)3
(3)CF3(CF2)5(CH2)2Si(CH3)2(CH2)9Si(OCH3)3
(4)CF3(CF2)7(CH2)2Si(CH3)2(CH2)9Si(OCH3)3
(5)CF3COO(CH2)15Si(OCH3)3
(6)CF3(CF2)5(CH2)2Si(OCH3)3
(7)CF3CH2O(CH2)15Si(OC2H5)3
(8)CF3(CH2)3Si(CH3)2(CH2)15Si(OC2H5)3
(9)CF3(CF2)5(CH2)2Si(CH3)2(CH2)9Si(OC2H5)3
(10)CF3(CF2)7(CH2)2Si(CH3)2(CH2)9Si(OC2H5)3
(11)CF3COO(CH2)15Si(OC2H5)3
(12)CF3(CF2)5(CH2)2Si(OC2H5)3 (1) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(2) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(3) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(4) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(5) CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(7) CF 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(8) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OC 2 H 5 ) 3
(9) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(10) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(11) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(12) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(2)CF3(CH2)3Si(CH3)2(CH2)15Si(OCH3)3
(3)CF3(CF2)5(CH2)2Si(CH3)2(CH2)9Si(OCH3)3
(4)CF3(CF2)7(CH2)2Si(CH3)2(CH2)9Si(OCH3)3
(5)CF3COO(CH2)15Si(OCH3)3
(6)CF3(CF2)5(CH2)2Si(OCH3)3
(7)CF3CH2O(CH2)15Si(OC2H5)3
(8)CF3(CH2)3Si(CH3)2(CH2)15Si(OC2H5)3
(9)CF3(CF2)5(CH2)2Si(CH3)2(CH2)9Si(OC2H5)3
(10)CF3(CF2)7(CH2)2Si(CH3)2(CH2)9Si(OC2H5)3
(11)CF3COO(CH2)15Si(OC2H5)3
(12)CF3(CF2)5(CH2)2Si(OC2H5)3 (1) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(2) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(3) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(4) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(5) CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(7) CF 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(8) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OC 2 H 5 ) 3
(9) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(10) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(11) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(12) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(21)CH3CH2O(CH2)15Si(OCH3)3
(22)CH3(CH2)3Si(CH3)2(CH2)15Si(OCH3)3
(23)CH3(CH2)5(CH2)2Si(CH3)2(CH2)9Si(OCH3)3
(24)CH3(CH2)9Si(CH3)2(CH2)9Si(OCH3)3
(25)CH3COO(CH2)15Si(OCH3)3
(26)CH3(CH2)7Si(OCH3)3
(27)CH3CH2O(CH2)15Si(OC2H5)3
(28)CH3(CH2)3Si(CH3)2(CH2)15Si(OC2H5)3
(29)CH3(CH2)7Si(CH3)2(CH2)9Si(OC2H5)3
(30)CH3(CH2)9Si(CH3)2(CH2)9Si(OC2H5)3
(31)CH3COO(CH2)15Si(OC2H5)3
(32)CH3(CH2)7Si(OC2H5)3 (21) CH 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(22) CH 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(23) CH 3 (CH 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(24) CH 3 (CH 2 ) 9 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(25) CH 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(26) CH 3 (CH 2 ) 7 Si (OCH 3 ) 3
(27) CH 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(28) CH 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OC 2 H 5 ) 3
(29) CH 3 (CH 2 ) 7 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(30) CH 3 (CH 2 ) 9 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(31) CH 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(32) CH 3 (CH 2 ) 7 Si (OC 2 H 5 ) 3
(22)CH3(CH2)3Si(CH3)2(CH2)15Si(OCH3)3
(23)CH3(CH2)5(CH2)2Si(CH3)2(CH2)9Si(OCH3)3
(24)CH3(CH2)9Si(CH3)2(CH2)9Si(OCH3)3
(25)CH3COO(CH2)15Si(OCH3)3
(26)CH3(CH2)7Si(OCH3)3
(27)CH3CH2O(CH2)15Si(OC2H5)3
(28)CH3(CH2)3Si(CH3)2(CH2)15Si(OC2H5)3
(29)CH3(CH2)7Si(CH3)2(CH2)9Si(OC2H5)3
(30)CH3(CH2)9Si(CH3)2(CH2)9Si(OC2H5)3
(31)CH3COO(CH2)15Si(OC2H5)3
(32)CH3(CH2)7Si(OC2H5)3 (21) CH 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(22) CH 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(23) CH 3 (CH 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(24) CH 3 (CH 2 ) 9 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(25) CH 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(26) CH 3 (CH 2 ) 7 Si (OCH 3 ) 3
(27) CH 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(28) CH 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OC 2 H 5 ) 3
(29) CH 3 (CH 2 ) 7 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(30) CH 3 (CH 2 ) 9 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(31) CH 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(32) CH 3 (CH 2 ) 7 Si (OC 2 H 5 ) 3
縮合触媒としては、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル、およびチタン酸エステルキレート等の金属塩が利用可能である。
縮合触媒の添加量は、好ましくはアルコキシシラン化合物の0.2~5質量%であり、より好ましくは0.5~1質量%である。 As the condensation catalyst, metal salts such as carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates can be used.
The addition amount of the condensation catalyst is preferably 0.2 to 5% by mass of the alkoxysilane compound, more preferably 0.5 to 1% by mass.
縮合触媒の添加量は、好ましくはアルコキシシラン化合物の0.2~5質量%であり、より好ましくは0.5~1質量%である。 As the condensation catalyst, metal salts such as carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates can be used.
The addition amount of the condensation catalyst is preferably 0.2 to 5% by mass of the alkoxysilane compound, more preferably 0.5 to 1% by mass.
カルボン酸金属塩の具体例としては、酢酸第1スズ、ジブチルスズジラウレート、ジブチルスズジオクテート、ジブチルスズジアセテート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジアセテート、ジオクタン酸第1スズ、ナフテン酸鉛、ナフテン酸コバルト、2-エチルヘキセン酸鉄が挙げられる。
Specific examples of carboxylic acid metal salts include stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, naphthenic acid Lead, cobalt naphthenate, iron 2-ethylhexenoate.
カルボン酸エステル金属塩の具体例としては、ジオクチルスズビスオクチリチオグリコール酸エステル塩、ジオクチルスズマレイン酸エステル塩が挙げられる。
カルボン酸金属塩ポリマーの具体例としては、ジブチルスズマレイン酸塩ポリマー、ジメチルスズメルカプトプロピオン酸塩ポリマーが挙げられる。
カルボン酸金属塩キレートの具体例としては、ジブチルスズビスアセチルアセテート、ジオクチルスズビスアセチルラウレートが挙げられる。 Specific examples of the carboxylic acid ester metal salt include dioctyltin bisoctylthioglycolate ester salt and dioctyltin maleate ester salt.
Specific examples of the carboxylic acid metal salt polymer include dibutyltin maleate polymer and dimethyltin mercaptopropionate polymer.
Specific examples of the carboxylic acid metal salt chelate include dibutyltin bisacetylacetate and dioctyltin bisacetyllaurate.
カルボン酸金属塩ポリマーの具体例としては、ジブチルスズマレイン酸塩ポリマー、ジメチルスズメルカプトプロピオン酸塩ポリマーが挙げられる。
カルボン酸金属塩キレートの具体例としては、ジブチルスズビスアセチルアセテート、ジオクチルスズビスアセチルラウレートが挙げられる。 Specific examples of the carboxylic acid ester metal salt include dioctyltin bisoctylthioglycolate ester salt and dioctyltin maleate ester salt.
Specific examples of the carboxylic acid metal salt polymer include dibutyltin maleate polymer and dimethyltin mercaptopropionate polymer.
Specific examples of the carboxylic acid metal salt chelate include dibutyltin bisacetylacetate and dioctyltin bisacetyllaurate.
チタン酸エステルの具体例としては、テトラブチルチタネート、テトラノニルチタネートが挙げられる。
チタン酸エステルキレート類の具体例としては、ビス(アセチルアセトニル)ジ-プロピルチタネートが挙げられる。 Specific examples of the titanate ester include tetrabutyl titanate and tetranonyl titanate.
Specific examples of titanate ester chelates include bis (acetylacetonyl) dipropyl titanate.
チタン酸エステルキレート類の具体例としては、ビス(アセチルアセトニル)ジ-プロピルチタネートが挙げられる。 Specific examples of the titanate ester include tetrabutyl titanate and tetranonyl titanate.
Specific examples of titanate ester chelates include bis (acetylacetonyl) dipropyl titanate.
アルコキシシラン化合物を含む第1の化学吸着液中にシリカ微粒子1を分散させ、室温の空気中で反応させると、アルコキシシリル基とシリカ微粒子1の表面の水酸基2とが縮合反応を起こし、下記の化3または化4のいずれか一方で示されるような構造を有する第1のシラン化合物の単分子膜3を生成する。なお、酸素原子から延びた3本の単結合はシリカ微粒子1の表面または隣接するシラン化合物のケイ素(Si)原子と結合しており、そのうち少なくとも1本はシリカ微粒子1の表面のケイ素原子と結合している。
When the silica fine particles 1 are dispersed in the first chemical adsorption liquid containing the alkoxysilane compound and reacted in air at room temperature, the alkoxysilyl group and the hydroxyl groups 2 on the surface of the silica fine particles 1 cause a condensation reaction, and A monomolecular film 3 of the first silane compound having a structure as shown in either Chemical Formula 3 or Chemical Formula 4 is generated. The three single bonds extending from the oxygen atom are bonded to the surface of the silica fine particle 1 or the silicon (Si) atom of the adjacent silane compound, at least one of which is bonded to the silicon atom on the surface of the silica fine particle 1. is doing.
アルコキシシリル基は、水分の存在下で分解するので、反応は相対湿度45%以下の空気中で行うことが好ましい。なお、縮合反応は、シリカ微粒子1の表面に付着した油脂分や水分により阻害されるので、シリカ微粒子1をよく洗浄して乾燥することにより、これらの不純物を予め除去しておくことが好ましい。
縮合触媒として上述の金属塩のいずれかを用いた場合、縮合反応の完了までに要する時間は2時間程度である。 Since the alkoxysilyl group decomposes in the presence of moisture, the reaction is preferably performed in air with a relative humidity of 45% or less. The condensation reaction is hindered by oils and fats and moisture adhering to the surface of thesilica fine particles 1, and it is preferable to remove these impurities in advance by thoroughly washing and drying the silica fine particles 1.
When any of the above metal salts is used as the condensation catalyst, the time required for completion of the condensation reaction is about 2 hours.
縮合触媒として上述の金属塩のいずれかを用いた場合、縮合反応の完了までに要する時間は2時間程度である。 Since the alkoxysilyl group decomposes in the presence of moisture, the reaction is preferably performed in air with a relative humidity of 45% or less. The condensation reaction is hindered by oils and fats and moisture adhering to the surface of the
When any of the above metal salts is used as the condensation catalyst, the time required for completion of the condensation reaction is about 2 hours.
上述の金属塩の代わりに、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を縮合触媒として用いた場合、反応時間を1/2~2/3程度まで短縮できる。
When one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are used as the condensation catalyst instead of the above metal salts, Time can be shortened to about 1/2 to 2/3.
あるいは、これらの化合物を助触媒として、上述の金属塩と混合(質量比1:9~9:1の範囲で使用可能だが、1:1前後が好ましい)して用いると、反応時間をさらに短縮できる。
Alternatively, when these compounds are used as a co-catalyst and mixed with the above-mentioned metal salts (mass ratio 1: 9 to 9: 1 can be used, preferably around 1: 1), the reaction time is further shortened. it can.
例えば、縮合触媒として、ジブチルスズオキサイドの代わりにケチミン化合物であるジャパンエポキシレジン社のH3を用い、その他の条件は同一にして第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4の製造を行うと、品質を損なうことなく反応時間を1時間程度にまで短縮できる。
For example, as a condensation catalyst, silica fine particles 4 whose surface is covered with a monomolecular film 3 of a first silane compound under the same conditions except that H3 of Japan Epoxy Resin Co., which is a ketimine compound, is used instead of dibutyltin oxide. When the production of is carried out, the reaction time can be shortened to about 1 hour without impairing the quality.
さらに、縮合触媒として、ジャパンエポキシレジン社のH3とジブチルスズビスアセチルアセトネートとの混合物(混合比は1:1)を用い、その他の条件は同一にして第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4の製造を行うと、反応時間を20分程度に短縮できる。
Further, as a condensation catalyst, a mixture of H3 and dibutyltin bisacetylacetonate (Japan epoxy resin) (mixing ratio is 1: 1) was used, and the other conditions were the same, and the monomolecular film 3 of the first silane compound was used. When the silica fine particles 4 whose surface is covered are manufactured, the reaction time can be shortened to about 20 minutes.
なお、ここで用いることができるケチミン化合物は特に限定されるものではないが、例えば、2,5,8-トリアザ-1,8-ノナジエン、3,11-ジメチル-4,7,10-トリアザ-3,10-トリデカジエン、2,10-ジメチル-3,6,9-トリアザ-2,9-ウンデカジエン、2,4,12,14-テトラメチル-5,8,11-トリアザ-4,11-ペンタデカジエン、2,4,15,17-テトラメチル-5,8,11,14-テトラアザ-4,14-オクタデカジエン、2,4,20,22-テトラメチル-5,12,19-トリアザ-4,19-トリエイコサジエン等が挙げられる。
The ketimine compound that can be used here is not particularly limited. For example, 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza- 3,10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-penta Decadiene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza -4,19-trieicosadiene and the like.
また、用いることができる有機酸としても特に限定されるものではないが、例えば、ギ酸、酢酸、プロピオン酸、酪酸、マロン酸等が挙げられる。
Also, the organic acid that can be used is not particularly limited, and examples thereof include formic acid, acetic acid, propionic acid, butyric acid, and malonic acid.
第1の化学吸着液の調製には、有機塩素系溶媒、炭化水素系溶媒、フッ化炭素系溶媒、シリコーン系溶媒、およびこれらの混合溶媒を用いることができる。アルコキシシラン化合物の加水分解を防止するために、乾燥剤または蒸留により使用する溶媒から水分を除去しておくことが好ましい。また、溶媒の沸点は50~250℃であることが好ましい。
For the preparation of the first chemical adsorption solution, an organic chlorine solvent, a hydrocarbon solvent, a fluorocarbon solvent, a silicone solvent, and a mixed solvent thereof can be used. In order to prevent hydrolysis of the alkoxysilane compound, it is preferable to remove water from the desiccant or the solvent used by distillation. The boiling point of the solvent is preferably 50 to 250 ° C.
具体的に使用可能な溶媒としては、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。
さらに、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれらの混合物を用いることもできる。 Specific usable solvents include non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone, and alkyl-modified silicone. , Polyether silicone, dimethylformamide and the like.
Furthermore, alcohol solvents such as methanol, ethanol, propanol, or a mixture thereof can also be used.
さらに、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれらの混合物を用いることもできる。 Specific usable solvents include non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone, and alkyl-modified silicone. , Polyether silicone, dimethylformamide and the like.
Furthermore, alcohol solvents such as methanol, ethanol, propanol, or a mixture thereof can also be used.
また、用いることができるフッ化炭素系溶媒としては、フロン系溶媒、フロリナート(米国3M社製)、アフルード(旭硝子株式会社製)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、ジクロロメタン、クロロホルム等の有機塩素系溶媒を添加してもよい。
Fluorocarbon solvents that can be used include chlorofluorocarbon solvents, Fluorinert (manufactured by 3M USA), Afludo (manufactured by Asahi Glass Co., Ltd.), and the like. In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Furthermore, an organic chlorine solvent such as dichloromethane or chloroform may be added.
第1の化学吸着液におけるアルコキシシラン化合物の好ましい濃度は、0.5~3質量%である。
A preferred concentration of the alkoxysilane compound in the first chemical adsorption solution is 0.5 to 3% by mass.
反応後、溶媒で洗浄し、表面に残った過剰なアルコキシシラン化合物および縮合触媒を除去すると、第1のシラン化合物の単分子膜3で覆われたシリカ微粒子4が得られる。このようにして製造される第1のシラン化合物の単分子膜3で覆われたシリカ微粒子4の断面構造の模式図を図2(b)に示す。なお、図2(b)においては、第1のシラン化合物の単分子膜3の一例として、下記の化5で表される構造を有するものを示している。
After the reaction, washing with a solvent to remove excess alkoxysilane compound and condensation catalyst remaining on the surface, silica particles 4 covered with the monomolecular film 3 of the first silane compound are obtained. FIG. 2B shows a schematic diagram of a cross-sectional structure of the silica fine particles 4 covered with the monomolecular film 3 of the first silane compound thus manufactured. FIG. 2B shows an example of the monomolecular film 3 of the first silane compound having a structure represented by the following chemical formula 5.
洗浄溶媒としては、アルコキシシラン化合物を溶解できる任意の溶媒を用いることができるが、安価であり、溶解性が高く、風乾により容易に除去することのできるジクロロメタン、クロロホルム、N-メチルピロリドン等が好ましい。
As the cleaning solvent, any solvent that can dissolve the alkoxysilane compound can be used, but dichloromethane, chloroform, N-methylpyrrolidone, etc. that are inexpensive, have high solubility, and can be easily removed by air drying are preferable. .
反応後、生成した第1のシラン化合物の単分子膜3で覆われたシリカ微粒子4を溶媒で洗浄せずに空気中に放置すると、表面に残ったアルコキシシラン化合物の一部が空気中の水分により加水分解を受け、生成したシラノール基がアルコキシシリル基と縮合反応を起こす。その結果、第1のシラン化合物の単分子膜3で覆われたシリカ微粒子4の表面にポリシロキサンよりなる極薄のポリマー膜が形成される。このポリマー膜は、第1のシラン化合物の単分子膜3で覆われたシリカ微粒子4の表面に共有結合により固定されていないが、工程A以降の製造工程に特に支障をきたすことはない
After the reaction, if the silica fine particles 4 covered with the monomolecular film 3 of the first silane compound produced are left in the air without being washed with a solvent, a part of the alkoxysilane compound remaining on the surface is absorbed in the air. The resulting silanol group undergoes a condensation reaction with the alkoxysilyl group. As a result, an ultrathin polymer film made of polysiloxane is formed on the surface of the silica fine particles 4 covered with the monomolecular film 3 of the first silane compound. This polymer film is not fixed by covalent bonding to the surface of the silica fine particles 4 covered with the monomolecular film 3 of the first silane compound, but does not particularly hinder the manufacturing process after the process A.
本実施の形態においては、第1のシラン化合物としてアルコキシシラン化合物を用いた場合について説明したが、フッ化炭素基を有するハロシラン化合物またはイソシアネートシラン化合物を用いてもよい。これらのシラン化合物を用いる場合には、縮合触媒および助触媒が不要であること、アルコール系溶媒が使用できないこと、アルコキシシラン化合物より加水分解を受けやすいので、乾燥溶媒を用い、乾燥空気中(相対湿度30%以下)で反応を行うことを除き、アルコキシシラン化合物と同様に第1の化学吸着液の調製および第1のシラン化合物の単分子膜で覆われたシリカ微粒子の製造を行うことができる。
第1のシラン化合物として用いることのできるハロシラン化合物およびイソシアネートシラン化合物としては、下記の(41)~(52)に示す化合物が挙げられる。 Although the case where an alkoxysilane compound is used as the first silane compound has been described in this embodiment, a halosilane compound or an isocyanate silane compound having a fluorocarbon group may be used. When these silane compounds are used, a condensation catalyst and a co-catalyst are not required, alcohol solvents cannot be used, and they are more susceptible to hydrolysis than alkoxysilane compounds. Except that the reaction is carried out at a humidity of 30% or less, the first chemical adsorption solution can be prepared and the silica fine particles covered with the monomolecular film of the first silane compound can be produced in the same manner as the alkoxysilane compound. .
Examples of the halosilane compound and isocyanate silane compound that can be used as the first silane compound include compounds shown in the following (41) to (52).
第1のシラン化合物として用いることのできるハロシラン化合物およびイソシアネートシラン化合物としては、下記の(41)~(52)に示す化合物が挙げられる。 Although the case where an alkoxysilane compound is used as the first silane compound has been described in this embodiment, a halosilane compound or an isocyanate silane compound having a fluorocarbon group may be used. When these silane compounds are used, a condensation catalyst and a co-catalyst are not required, alcohol solvents cannot be used, and they are more susceptible to hydrolysis than alkoxysilane compounds. Except that the reaction is carried out at a humidity of 30% or less, the first chemical adsorption solution can be prepared and the silica fine particles covered with the monomolecular film of the first silane compound can be produced in the same manner as the alkoxysilane compound. .
Examples of the halosilane compound and isocyanate silane compound that can be used as the first silane compound include compounds shown in the following (41) to (52).
(41)CF3CH2O(CH2)15SiCl3
(42)CF3(CH2)3Si(CH3)2(CH2)15SiCl3
(43)CF3(CF2)5(CH2)2Si(CH3)2(CH2)9SiCl3
(44)CF3(CF2)7(CH2)2Si(CH3)2(CH2)9SiCl3
(45)CF3COO(CH2)15SiCl3
(46)CF3(CF2)5(CH2)2Si(NCO)3
(47)CF3CH2O(CH2)15Si(NCO)3
(48)CF3(CH2)3Si(CH3)2(CH2)15Si(NCO)3
(49)CF3(CF2)5(CH2)2Si(CH3)2(CH2)9Si(NCO)3
(50)CF3(CF2)7(CH2)2Si(CH3)2(CH2)9Si(NCO)3
(51)CF3COO(CH2)15Si(NCO)3
(52)CF3(CF2)5(CH2)2Si(NCO)3
(以上工程A)。 (41) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(42) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(43) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(44) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(45) CF 3 COO (CH 2 ) 15 SiCl 3
(46) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (NCO) 3
(47) CF 3 CH 2 O (CH 2 ) 15 Si (NCO) 3
(48) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (NCO) 3
(49) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(50) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(51) CF 3 COO (CH 2 ) 15 Si (NCO) 3
(52) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (NCO) 3
(Step A).
(42)CF3(CH2)3Si(CH3)2(CH2)15SiCl3
(43)CF3(CF2)5(CH2)2Si(CH3)2(CH2)9SiCl3
(44)CF3(CF2)7(CH2)2Si(CH3)2(CH2)9SiCl3
(45)CF3COO(CH2)15SiCl3
(46)CF3(CF2)5(CH2)2Si(NCO)3
(47)CF3CH2O(CH2)15Si(NCO)3
(48)CF3(CH2)3Si(CH3)2(CH2)15Si(NCO)3
(49)CF3(CF2)5(CH2)2Si(CH3)2(CH2)9Si(NCO)3
(50)CF3(CF2)7(CH2)2Si(CH3)2(CH2)9Si(NCO)3
(51)CF3COO(CH2)15Si(NCO)3
(52)CF3(CF2)5(CH2)2Si(NCO)3
(以上工程A)。 (41) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(42) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(43) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(44) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(45) CF 3 COO (CH 2 ) 15 SiCl 3
(46) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (NCO) 3
(47) CF 3 CH 2 O (CH 2 ) 15 Si (NCO) 3
(48) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (NCO) 3
(49) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(50) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(51) CF 3 COO (CH 2 ) 15 Si (NCO) 3
(52) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (NCO) 3
(Step A).
工程Bでは、ガラス基材5の表面に、微粒子分散液(工程Cで使用)に溶解せず、ガラス基材5よりも低い温度で透明微粒子4と融着するシリカ系透明被膜6を形成する(図3参照)。
用いるガラス基材5の材質、形状、および大きさについて特に制限はなく、乗り物および建築物において使用される任意の窓ガラス材を用いることができる。また、表面に活性水素基が存在していれば、表面被膜が形成されていてもよい。なお、活性水素基は、水酸基でもよいが、アミノ基等の活性水素を有する他の官能基であってもよい。 In step B, a silica-basedtransparent coating 6 that does not dissolve in the fine particle dispersion (used in step C) and is fused to the transparent fine particles 4 at a temperature lower than that of the glass substrate 5 is formed on the surface of the glass substrate 5. (See FIG. 3).
There is no restriction | limiting in particular about the material of theglass base material 5 to be used, a shape, and a magnitude | size, Arbitrary window glass materials used in a vehicle and a building can be used. Moreover, as long as an active hydrogen group exists on the surface, a surface film may be formed. The active hydrogen group may be a hydroxyl group, but may be another functional group having an active hydrogen such as an amino group.
用いるガラス基材5の材質、形状、および大きさについて特に制限はなく、乗り物および建築物において使用される任意の窓ガラス材を用いることができる。また、表面に活性水素基が存在していれば、表面被膜が形成されていてもよい。なお、活性水素基は、水酸基でもよいが、アミノ基等の活性水素を有する他の官能基であってもよい。 In step B, a silica-based
There is no restriction | limiting in particular about the material of the
ガラス基材5の表面に形成されるシリカ系透明被膜6としては、ゾルゲル法により形成されたシリカの乾燥ゲル膜が好ましい。
未焼結の乾燥ゲル膜の表面および内部には、透明被膜を有しないガラス基材5の表面よりも多くの遊離の水酸基が存在するため、ガラス基材5よりも低い温度でシリカ微粒子4と融着できる。 The silica-basedtransparent film 6 formed on the surface of the glass substrate 5 is preferably a silica dry gel film formed by a sol-gel method.
Since there are more free hydroxyl groups on the surface and inside of the unsintered dry gel film than on the surface of theglass substrate 5 having no transparent coating, the silica fine particles 4 and Can be fused.
未焼結の乾燥ゲル膜の表面および内部には、透明被膜を有しないガラス基材5の表面よりも多くの遊離の水酸基が存在するため、ガラス基材5よりも低い温度でシリカ微粒子4と融着できる。 The silica-based
Since there are more free hydroxyl groups on the surface and inside of the unsintered dry gel film than on the surface of the
シリカの乾燥ゲル膜の形成は、テトラメトキシシラン(Si(OCH3)4)等のテトラアルコキシシラン、縮合触媒および溶媒を混合して得られるゾル溶液(金属アルコキシドの溶液の一例)をガラス基材5の表面に塗布し、溶媒を蒸発させることにより行うことができる。
その結果、空気中の水分によるアルコキシル基の加水分解により生成する水酸基とアルコキシル基との間で縮合反応が起こり、ガラス基材5の表面に、シリカの透明な乾燥ゲル膜(シリカ系透明被膜6の一例)が形成される。
用いることのできる縮合触媒、助触媒、溶媒の種類、テトラアルコキシシランの濃度、触媒の添加量については第1の化学吸着液と同様であるので、説明を省略する。 Formation of a silica dry gel film is achieved by using a sol solution (an example of a metal alkoxide solution) obtained by mixing a tetraalkoxysilane such as tetramethoxysilane (Si (OCH 3 ) 4 ), a condensation catalyst and a solvent with a glass substrate. 5 can be applied by evaporating the solvent.
As a result, a condensation reaction occurs between the hydroxyl group generated by hydrolysis of the alkoxyl group by moisture in the air and the alkoxyl group, and a transparent dry gel film of silica (silica-based transparent film 6) is formed on the surface of theglass substrate 5. Example) is formed.
Since the condensation catalyst, cocatalyst, solvent type, tetraalkoxysilane concentration, and addition amount of the catalyst that can be used are the same as those in the first chemical adsorption solution, description thereof is omitted.
その結果、空気中の水分によるアルコキシル基の加水分解により生成する水酸基とアルコキシル基との間で縮合反応が起こり、ガラス基材5の表面に、シリカの透明な乾燥ゲル膜(シリカ系透明被膜6の一例)が形成される。
用いることのできる縮合触媒、助触媒、溶媒の種類、テトラアルコキシシランの濃度、触媒の添加量については第1の化学吸着液と同様であるので、説明を省略する。 Formation of a silica dry gel film is achieved by using a sol solution (an example of a metal alkoxide solution) obtained by mixing a tetraalkoxysilane such as tetramethoxysilane (Si (OCH 3 ) 4 ), a condensation catalyst and a solvent with a glass substrate. 5 can be applied by evaporating the solvent.
As a result, a condensation reaction occurs between the hydroxyl group generated by hydrolysis of the alkoxyl group by moisture in the air and the alkoxyl group, and a transparent dry gel film of silica (silica-based transparent film 6) is formed on the surface of the
Since the condensation catalyst, cocatalyst, solvent type, tetraalkoxysilane concentration, and addition amount of the catalyst that can be used are the same as those in the first chemical adsorption solution, description thereof is omitted.
ゾル溶液の塗布は、ディップコート法、スピンコート法、スプレー法、スクリーン印刷法等の任意の方法により行うことができる。
また、乾燥ゲル膜の膜厚は、撥水撥油防汚性ガラス板10の製造に用いるシリカ微粒子1の粒径にもよるが、10~50nmが好ましい。
このようにして製造されるシリカの乾燥ゲル膜を有するガラス基材5の断面構造の模式図を図3に示す。
透明被膜としてシリカの乾燥ゲル膜を有するガラス基材5を用いて撥水撥油防汚性ガラス板10の製造を行うと、工程Eにおける加熱処理を300度以下の低温で行うことが可能となり、あらかじめ風冷強化されたガラスの強化度を劣化させることなくシリカ微粒子1aを融着した凹凸ガラス基材7を製造できる。 The application of the sol solution can be performed by an arbitrary method such as a dip coating method, a spin coating method, a spray method, or a screen printing method.
The thickness of the dry gel film is preferably 10 to 50 nm, although it depends on the particle diameter of thesilica fine particles 1 used for producing the water / oil / oil / antifouling glass plate 10.
FIG. 3 shows a schematic diagram of a cross-sectional structure of theglass substrate 5 having the silica dried gel film thus produced.
When theglass substrate 5 having a silica dry gel film as a transparent film is used to produce the water / oil repellent / antifouling glass plate 10, the heat treatment in the step E can be performed at a low temperature of 300 ° C. or less. The concavo-convex glass substrate 7 to which the silica fine particles 1a are fused can be produced without deteriorating the strengthening degree of the glass that has been tempered in advance with air cooling.
また、乾燥ゲル膜の膜厚は、撥水撥油防汚性ガラス板10の製造に用いるシリカ微粒子1の粒径にもよるが、10~50nmが好ましい。
このようにして製造されるシリカの乾燥ゲル膜を有するガラス基材5の断面構造の模式図を図3に示す。
透明被膜としてシリカの乾燥ゲル膜を有するガラス基材5を用いて撥水撥油防汚性ガラス板10の製造を行うと、工程Eにおける加熱処理を300度以下の低温で行うことが可能となり、あらかじめ風冷強化されたガラスの強化度を劣化させることなくシリカ微粒子1aを融着した凹凸ガラス基材7を製造できる。 The application of the sol solution can be performed by an arbitrary method such as a dip coating method, a spin coating method, a spray method, or a screen printing method.
The thickness of the dry gel film is preferably 10 to 50 nm, although it depends on the particle diameter of the
FIG. 3 shows a schematic diagram of a cross-sectional structure of the
When the
なお、本実施の形態においては、透明被膜としてシリカの乾燥ゲル膜を形成しているが、透明性を有しガラス基材5よりも低い温度でシリカ微粒子1を融着することのできる任意の透明被膜を形成し用いることができる。用いることのできる透明被膜としては、例えば、アルミナ、酸化チタン等の乾燥ゲル膜等が挙げられる。
また、ゾル溶液にリン酸またはホウ酸をそれぞれ数パーセント添加しておくと、リンシリケートガラス(PSG)やボロンシリケートガラス(BSG)の乾燥ゲル膜が形成され、工程Eにおける加熱処理温度を250℃程度まで低減できる(以上工程B)。 In the present embodiment, a dry gel film of silica is formed as the transparent film. However, thesilica fine particles 1 can be fused at a temperature lower than that of the glass substrate 5 with transparency. A transparent film can be formed and used. Examples of the transparent film that can be used include dry gel films such as alumina and titanium oxide.
Moreover, when phosphoric acid or boric acid is added to the sol solution at several percents, a dry gel film of phosphorus silicate glass (PSG) or boron silicate glass (BSG) is formed, and the heat treatment temperature in step E is 250 ° C. Can be reduced to the extent (step B).
また、ゾル溶液にリン酸またはホウ酸をそれぞれ数パーセント添加しておくと、リンシリケートガラス(PSG)やボロンシリケートガラス(BSG)の乾燥ゲル膜が形成され、工程Eにおける加熱処理温度を250℃程度まで低減できる(以上工程B)。 In the present embodiment, a dry gel film of silica is formed as the transparent film. However, the
Moreover, when phosphoric acid or boric acid is added to the sol solution at several percents, a dry gel film of phosphorus silicate glass (PSG) or boron silicate glass (BSG) is formed, and the heat treatment temperature in step E is 250 ° C. Can be reduced to the extent (step B).
工程Cでは、第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4を分散した微粒子分散液を調製する。
第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4を溶媒に加え、撹拌ばね、マグネチックスターラー等の任意の撹拌手段により激しく撹拌するか、超音波照射を行うことにより、第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4を溶媒中に均一に分散させる。
微粒子分散液の調製に用いることのできる溶媒としては、シリカ微粒子4を均一に分散させることができ、ガラス基材5上に塗布した後、蒸発させることで容易に除去できる任意の溶媒を用いることができる。 In step C, a fine particle dispersion in which silicafine particles 4 whose surfaces are covered with the monomolecular film 3 of the first silane compound is dispersed is prepared.
Thesilica fine particles 4 whose surface is covered with the monomolecular film 3 of the first silane compound are added to the solvent, and vigorously stirred by any stirring means such as a stirring spring or a magnetic stirrer, or by ultrasonic irradiation. The silica fine particles 4 whose surface is covered with the monomolecular film 3 of the first silane compound are uniformly dispersed in the solvent.
As a solvent that can be used for the preparation of the fine particle dispersion, any solvent that can uniformly disperse thesilica fine particles 4 and that can be easily removed by evaporation after coating on the glass substrate 5 is used. Can do.
第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4を溶媒に加え、撹拌ばね、マグネチックスターラー等の任意の撹拌手段により激しく撹拌するか、超音波照射を行うことにより、第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4を溶媒中に均一に分散させる。
微粒子分散液の調製に用いることのできる溶媒としては、シリカ微粒子4を均一に分散させることができ、ガラス基材5上に塗布した後、蒸発させることで容易に除去できる任意の溶媒を用いることができる。 In step C, a fine particle dispersion in which silica
The
As a solvent that can be used for the preparation of the fine particle dispersion, any solvent that can uniformly disperse the
第1のシラン化合物として、前記化1で表されるフッ化炭素基を有するシラン化合物(例えば前記(1)~(12)等)を用いる場合には、水およびアルコール系の溶媒を除く任意の非水系の有機溶媒が好ましく、前記化2で表される炭化水素基を有するシラン化合物(例えば前記(21)~(32))を用いる場合には、水およびアルコール系の溶媒を含む任意の有機溶媒を用いることができるが、毒性の低さや廃棄物処理の容易さの観点からは水およびアルコール系の溶媒が好ましい。
When a silane compound having a fluorocarbon group represented by the above chemical formula 1 (for example, the above (1) to (12)) is used as the first silane compound, any water or alcohol-based solvent is excluded. A non-aqueous organic solvent is preferable, and when using a silane compound having a hydrocarbon group represented by Chemical Formula 2 (for example, the above (21) to (32)), any organic solvent including water and an alcohol-based solvent may be used. Although a solvent can be used, water and alcohol solvents are preferable from the viewpoint of low toxicity and ease of waste disposal.
第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4の微粒子分散液中における質量比は、0.5~5質量%であることが好ましい。質量比が0.5質量%を下回ると多量の微粒子分散液が必要となり、5質量%を上回るとシリカ微粒子4を均一に分散させることが困難になるため、ともに好ましくない。
The mass ratio of the silica fine particles 4 whose surface is covered with the monomolecular film 3 of the first silane compound in the fine particle dispersion is preferably 0.5 to 5% by mass. When the mass ratio is less than 0.5% by mass, a large amount of the fine particle dispersion is required, and when it exceeds 5% by mass, it is difficult to uniformly disperse the silica fine particles 4, which is not preferable.
シリカ微粒子4の表面を覆う第1のシラン化合物の単分子膜3は、シリカ微粒子4の表面エネルギーを小さくする作用があり、微粒子液内での凝集を押さえ、分散性を向上できる効果を有する。
なお、本実施の形態においては工程Aにより製造した第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4を用いたが、工程Aを省略して直接シリカ微粒子1を前記の溶媒中に分散させることにより微粒子分散液を調製した場合でも、工程Eにおいて製造される凹凸ガラス基材7表面の欠陥密度はやや大きくなるものの、撥水撥油防汚性ガラス板10の製造に大きな支障をきたすことはない(以上工程C)。 Themonomolecular film 3 of the first silane compound covering the surface of the silica fine particles 4 has an effect of reducing the surface energy of the silica fine particles 4, and has an effect of suppressing aggregation in the fine particle liquid and improving dispersibility.
In the present embodiment, thesilica fine particles 4 whose surfaces are covered with the monomolecular film 3 of the first silane compound produced in the process A are used. However, the silica fine particles 1 are directly removed by omitting the process A. Even when a fine particle dispersion is prepared by dispersing in a solvent, although the defect density on the surface of the concavo-convex glass substrate 7 produced in the step E is slightly increased, the water-repellent / oil-repellent / antifouling glass plate 10 is produced. There will be no major hindrance (step C).
なお、本実施の形態においては工程Aにより製造した第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4を用いたが、工程Aを省略して直接シリカ微粒子1を前記の溶媒中に分散させることにより微粒子分散液を調製した場合でも、工程Eにおいて製造される凹凸ガラス基材7表面の欠陥密度はやや大きくなるものの、撥水撥油防汚性ガラス板10の製造に大きな支障をきたすことはない(以上工程C)。 The
In the present embodiment, the
工程Dでは、ガラス基材5の表面(シリカ系透明被膜6の表面)に微粒子分散液を塗布し乾燥することにより、ガラス基材5の表面にシリカ系透明被膜6を介してシリカ微粒子4を付着させる。
微粒子分散液の塗布は、ディップコート法、スピンコート法、スプレー法、スクリーン印刷法等の任意の方法により行うことができる。また、溶媒の蒸発は、用いた溶媒の沸点、蒸気圧等に応じて、風乾、減圧乾燥、加熱乾燥等の公知の方法を単独で、または適宜組み合わせて用いることができる。
このようにして得られる、第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4が付着した、シリカ系透明被膜6を有するガラス基材5の断面構造の模式図を図4(a)に示す(以上工程D)。 In step D, the fine particle dispersion is applied to the surface of the glass substrate 5 (the surface of the silica-based transparent coating 6) and dried, whereby thesilica fine particles 4 are formed on the surface of the glass substrate 5 via the silica-based transparent coating 6. Adhere.
The fine particle dispersion can be applied by an arbitrary method such as a dip coating method, a spin coating method, a spray method, or a screen printing method. Further, for the evaporation of the solvent, known methods such as air drying, reduced pressure drying, heat drying and the like can be used alone or in appropriate combination depending on the boiling point, vapor pressure and the like of the solvent used.
FIG. 4 is a schematic diagram of the cross-sectional structure of theglass substrate 5 having the silica-based transparent coating 6 to which the silica fine particles 4 whose surfaces are covered with the monomolecular film 3 of the first silane compound attached are obtained in this manner. Shown in (a) (step D above).
微粒子分散液の塗布は、ディップコート法、スピンコート法、スプレー法、スクリーン印刷法等の任意の方法により行うことができる。また、溶媒の蒸発は、用いた溶媒の沸点、蒸気圧等に応じて、風乾、減圧乾燥、加熱乾燥等の公知の方法を単独で、または適宜組み合わせて用いることができる。
このようにして得られる、第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4が付着した、シリカ系透明被膜6を有するガラス基材5の断面構造の模式図を図4(a)に示す(以上工程D)。 In step D, the fine particle dispersion is applied to the surface of the glass substrate 5 (the surface of the silica-based transparent coating 6) and dried, whereby the
The fine particle dispersion can be applied by an arbitrary method such as a dip coating method, a spin coating method, a spray method, or a screen printing method. Further, for the evaporation of the solvent, known methods such as air drying, reduced pressure drying, heat drying and the like can be used alone or in appropriate combination depending on the boiling point, vapor pressure and the like of the solvent used.
FIG. 4 is a schematic diagram of the cross-sectional structure of the
工程Eでは、第1のシラン化合物の単分子膜3で表面が覆われたシリカ微粒子4が乗ったシリカ系透明被膜6を有するガラス基材5を、酸素を含む雰囲気中で加熱処理し、シリカ微粒子4の表面を覆う第1のシラン化合物の単分子膜3を分解させ、ガラス基材5表面のシリカ系透明被膜6とシリカ微粒子4とを融着させることにより、シリカ微粒子4を融着した(すなわち、融着したシリカ微粒子1aを表面に有する)凹凸ガラス基材7(図4(b)参照)を製造する。
加熱処理は、酸素を含む雰囲気中で、ガラス基材5とシリカ微粒子4との融着が起こる温度よりも高く、かつガラス基材5およびシリカ微粒子4の融解温度よりも低い温度で行われる。加熱処理温度が高いほどシリカ微粒子4をより強固にガラス基材5の表面に融着できるが、温度が高くなりすぎるとシリカ微粒子がガラス基材5(または透明被膜6)の内部に埋没してしまうため好ましくない。
ガラス基材5がシリカ系透明被膜6を有する場合、ガラス基材5とシリカ微粒子4との融着のためには、250~300℃程度の低温で加熱処理を行うことができる。しかし、シリカ微粒子4の表面を覆う第1のシラン化合物の単分子膜3を完全に分解させるためには、350~400℃で加熱処理を行う必要がある。
第1のシラン化合物がフッ化炭素基を有する場合、その単分子膜を完全に分解するためには400℃程度で加熱処理を行う必要があるが、炭化水素基を有する場合には、350℃程度でその単分子膜を完全に分解できる。したがって、工程Aにおいて炭化水素基を含む第1のシラン化合物を用いた場合、ガラス基材5として強化ガラスを用いても、その風冷強化処理の効果を損なうことがないため好ましい。
このようにして得られた凹凸ガラス基材7の断面構造の模式図を図4(b)に示す。 In step E, aglass substrate 5 having a silica-based transparent coating 6 on which silica fine particles 4 whose surfaces are covered with a monomolecular film 3 of a first silane compound is mounted is heat-treated in an atmosphere containing oxygen, and silica The silica fine particles 4 were fused by decomposing the monomolecular film 3 of the first silane compound covering the surfaces of the fine particles 4 and fusing the silica-based transparent coating 6 and the silica fine particles 4 on the surface of the glass substrate 5. The concavo-convex glass substrate 7 (that has the fused silica fine particles 1a on the surface) (see FIG. 4B) is manufactured.
The heat treatment is performed in an oxygen-containing atmosphere at a temperature higher than the temperature at which theglass substrate 5 and the silica fine particles 4 are fused and lower than the melting temperature of the glass substrate 5 and the silica fine particles 4. The higher the heat treatment temperature, the stronger the silica particles 4 can be fused to the surface of the glass substrate 5. However, when the temperature is too high, the silica particles are buried in the glass substrate 5 (or the transparent coating 6). Therefore, it is not preferable.
When theglass substrate 5 has the silica-based transparent coating 6, heat treatment can be performed at a low temperature of about 250 to 300 ° C. for fusing the glass substrate 5 and the silica fine particles 4 together. However, in order to completely decompose the monomolecular film 3 of the first silane compound covering the surface of the silica fine particles 4, it is necessary to perform a heat treatment at 350 to 400 ° C.
When the first silane compound has a fluorocarbon group, it is necessary to perform heat treatment at about 400 ° C. in order to completely decompose the monomolecular film, but in the case of having a hydrocarbon group, 350 ° C. The monolayer can be completely decomposed to a certain degree. Therefore, when the 1st silane compound containing a hydrocarbon group is used in the process A, even if it uses tempered glass as theglass base material 5, since the effect of the air-cooling strengthening process is not impaired, it is preferable.
A schematic diagram of the cross-sectional structure of the concavo-convex glass substrate 7 thus obtained is shown in FIG.
加熱処理は、酸素を含む雰囲気中で、ガラス基材5とシリカ微粒子4との融着が起こる温度よりも高く、かつガラス基材5およびシリカ微粒子4の融解温度よりも低い温度で行われる。加熱処理温度が高いほどシリカ微粒子4をより強固にガラス基材5の表面に融着できるが、温度が高くなりすぎるとシリカ微粒子がガラス基材5(または透明被膜6)の内部に埋没してしまうため好ましくない。
ガラス基材5がシリカ系透明被膜6を有する場合、ガラス基材5とシリカ微粒子4との融着のためには、250~300℃程度の低温で加熱処理を行うことができる。しかし、シリカ微粒子4の表面を覆う第1のシラン化合物の単分子膜3を完全に分解させるためには、350~400℃で加熱処理を行う必要がある。
第1のシラン化合物がフッ化炭素基を有する場合、その単分子膜を完全に分解するためには400℃程度で加熱処理を行う必要があるが、炭化水素基を有する場合には、350℃程度でその単分子膜を完全に分解できる。したがって、工程Aにおいて炭化水素基を含む第1のシラン化合物を用いた場合、ガラス基材5として強化ガラスを用いても、その風冷強化処理の効果を損なうことがないため好ましい。
このようにして得られた凹凸ガラス基材7の断面構造の模式図を図4(b)に示す。 In step E, a
The heat treatment is performed in an oxygen-containing atmosphere at a temperature higher than the temperature at which the
When the
When the first silane compound has a fluorocarbon group, it is necessary to perform heat treatment at about 400 ° C. in order to completely decompose the monomolecular film, but in the case of having a hydrocarbon group, 350 ° C. The monolayer can be completely decomposed to a certain degree. Therefore, when the 1st silane compound containing a hydrocarbon group is used in the process A, even if it uses tempered glass as the
A schematic diagram of the cross-sectional structure of the concavo-
なお、本実施の形態においては、シリカ系透明被膜6が形成されたガラス基材5を用いたが、工程Bを省略してシリカ系透明被膜6を有しないガラス基材5をそのまま用いてもよい。ガラス基材5として青板ガラスを用いた場合には、好ましい加熱処理温度は650度程度である。また、処理時間は、650℃の空気中で加熱処理を行った場合には30分である(以上工程E)。
In the present embodiment, the glass substrate 5 on which the silica-based transparent coating 6 is formed is used. However, the step B may be omitted and the glass substrate 5 not having the silica-based transparent coating 6 may be used as it is. Good. When blue plate glass is used as the glass substrate 5, a preferable heat treatment temperature is about 650 degrees. The treatment time is 30 minutes when heat treatment is performed in air at 650 ° C. (step E above).
工程Fでは、ガラス基材5の表面に融着しなかったシリカ微粒子4を洗浄除去する。洗浄には任意の溶媒を用いることができるが、無害であり廃棄物の処理が容易である水が最も好ましい(以上工程F)。
In step F, the silica fine particles 4 not fused to the surface of the glass substrate 5 are washed away. Although any solvent can be used for washing, water that is harmless and can easily be disposed of is most preferable (step F).
工程Gでは、融着したシリカ微粒子1aを有する凹凸ガラス基材7の表面にフッ化炭素基を含む化学吸着単分子膜8を形成し、撥水撥油防汚性ガラス板10を製造する。
In step G, a chemically adsorbed monomolecular film 8 containing a fluorocarbon group is formed on the surface of the concavo-convex glass substrate 7 having the fused silica fine particles 1a, and a water / oil repellent / antifouling glass plate 10 is produced.
フッ化炭素基を含む化学吸着単分子膜8の形成に用いる第2の化学吸着液は、フッ化炭素基を含むアルコキシシラン化合物(第2のシラン化合物の一例)と、凹凸ガラス基材7の表面の水酸基(反応性基の一例)とアルコキシシリル基との縮合反応を促進するための縮合触媒と、非水系の有機溶媒とを混合することにより調製される。
The second chemisorption liquid used for forming the chemisorption monomolecular film 8 containing a fluorocarbon group is composed of an alkoxysilane compound (an example of the second silane compound) containing a fluorocarbon group and the concavo-convex glass substrate 7. It is prepared by mixing a condensation catalyst for promoting a condensation reaction between a hydroxyl group on the surface (an example of a reactive group) and an alkoxysilyl group and a non-aqueous organic solvent.
フッ化炭素基を含むアルコキシシラン化合物としては、前記一般式(化1)で表されるアルコキシシラン化合物が挙げられる。
Examples of the alkoxysilane compound containing a fluorocarbon group include the alkoxysilane compounds represented by the general formula (Formula 1).
第2の化学吸着液に用いることのできる縮合触媒、助触媒の種類およびそれらの組み合わせ、溶媒の種類、アルコキシシラン化合物、縮合触媒、および助触媒の濃度、反応条件ならびに反応時間については第1の化学吸着液と同様であるので、説明を省略する。
Concentrations of the condensation catalyst, cocatalyst and combinations thereof that can be used for the second chemical adsorption solution, solvent type, alkoxysilane compound, condensation catalyst, and cocatalyst concentration, reaction conditions and reaction time are Since it is the same as a chemical adsorption liquid, description is abbreviate | omitted.
フッ化炭素基を有する化学吸着単分子膜8は、融着したシリカ微粒子1aの露出した部分およびガラス基材5の表面(シリカ系透明被膜6の表面)のシリカ微粒子1aが融着していない部分に共有結合している。
In the chemisorption monomolecular film 8 having a fluorocarbon group, the exposed portion of the fused silica fine particles 1a and the silica fine particles 1a on the surface of the glass substrate 5 (the surface of the silica-based transparent coating 6) are not fused. It is covalently attached to the part.
本実施の形態においては、第2のシラン化合物として、アルコキシシラン化合物を用いた場合について説明したが、フッ化炭素基を有するハロシラン化合物またはイソシアネートシラン化合物を用いてもよい。ハロシラン化合物を用いる場合には、縮合触媒および助触媒が不要であること、アルコール系溶媒が使用できないこと、アルコキシシラン化合物より加水分解を受けやすいので、乾燥溶媒を用い、乾燥空気中(相対湿度30%以下)で反応を行うことを除き、アルコキシシラン化合物と同様に第2の化学吸着液の調製および凹凸ガラス基材7との反応を行うことができる。
このようにして得られる撥水撥油防汚性ガラス板10の断面構造の模式図を図1に示す。なお、図1においては、フッ化炭素基を含む化学吸着単分子膜8の一例として、前記化5で表される構造を有するものを示している(以上工程G)。 Although the case where an alkoxysilane compound is used as the second silane compound has been described in this embodiment, a halosilane compound or an isocyanate silane compound having a fluorocarbon group may be used. When a halosilane compound is used, a condensation catalyst and a cocatalyst are not required, an alcohol solvent cannot be used, and it is more susceptible to hydrolysis than an alkoxysilane compound. %), The second chemical adsorption solution can be prepared and reacted with the concavo-convex glass substrate 7 in the same manner as the alkoxysilane compound.
FIG. 1 shows a schematic diagram of a cross-sectional structure of the water / oil repellent / antifouling glass plate 10 thus obtained. In addition, in FIG. 1, what has the structure represented by saidChemical formula 5 is shown as an example of the chemisorption monomolecular film 8 containing a fluorocarbon group (the above process G).
このようにして得られる撥水撥油防汚性ガラス板10の断面構造の模式図を図1に示す。なお、図1においては、フッ化炭素基を含む化学吸着単分子膜8の一例として、前記化5で表される構造を有するものを示している(以上工程G)。 Although the case where an alkoxysilane compound is used as the second silane compound has been described in this embodiment, a halosilane compound or an isocyanate silane compound having a fluorocarbon group may be used. When a halosilane compound is used, a condensation catalyst and a cocatalyst are not required, an alcohol solvent cannot be used, and it is more susceptible to hydrolysis than an alkoxysilane compound. %), The second chemical adsorption solution can be prepared and reacted with the concavo-
FIG. 1 shows a schematic diagram of a cross-sectional structure of the water / oil repellent / antifouling glass plate 10 thus obtained. In addition, in FIG. 1, what has the structure represented by said
フッ化炭素基を有する化学吸着単分子膜8の膜厚は、たかだか1nm程度であるため、融着したシリカ微粒子1aで表面が覆われたガラス基材の表面に形成された50nm程度の凸凹はほとんど損なわれることがない。また、この凸凹の効果(いわゆる「蓮の葉効果」)により、撥水撥油防汚性ガラス板10の見かけ上の表面エネルギーを小さくでき、水滴接触角は、140度以上(本実施の形態では150度程度)となり、超撥水が実現できる。
Since the film thickness of the chemical adsorption monomolecular film 8 having a fluorocarbon group is at most about 1 nm, the unevenness of about 50 nm formed on the surface of the glass substrate covered with the fused silica fine particles 1a is Almost no damage. In addition, due to this unevenness effect (so-called “lotus leaf effect”), the apparent surface energy of the water / oil repellent / antifouling glass plate 10 can be reduced, and the water droplet contact angle is 140 degrees or more (this embodiment). Is about 150 degrees), and super water repellency can be realized.
また、撥水撥油防汚性ガラス板10の基材ガラス5の表面には、シリカ系透明被膜6を介してガラスよりも硬度が高いシリカ微粒子1aが融着しているので、耐摩耗性も大幅に向上している。
また、撥水撥油防汚性ガラス板10において、ガラス基材5の表面に融着したシリカ微粒子1aおよびフッ化炭素基を有する化学吸着単分子膜8を含む被膜の厚さは、全体で100nm程度であるため、ガラス基材5の透明性が損なわれることもない。 Further, since the silica fine particles 1a having a hardness higher than that of the glass are fused to the surface of thebase glass 5 of the water / oil repellent / antifouling glass plate 10 via the silica-based transparent coating 6, the wear resistance is increased. Has also improved significantly.
Further, in the water / oil repellent / antifouling glass plate 10, the thickness of the coating including the silica fine particles 1 a fused to the surface of theglass substrate 5 and the chemical adsorption monomolecular film 8 having a fluorocarbon group is as a whole. Since it is about 100 nm, the transparency of the glass substrate 5 is not impaired.
また、撥水撥油防汚性ガラス板10において、ガラス基材5の表面に融着したシリカ微粒子1aおよびフッ化炭素基を有する化学吸着単分子膜8を含む被膜の厚さは、全体で100nm程度であるため、ガラス基材5の透明性が損なわれることもない。 Further, since the silica fine particles 1a having a hardness higher than that of the glass are fused to the surface of the
Further, in the water / oil repellent / antifouling glass plate 10, the thickness of the coating including the silica fine particles 1 a fused to the surface of the
反応後、生成した撥水撥油防汚性ガラス板10を溶媒で洗浄せずに空気中に放置すると、表面に残ったアルコキシシラン化合物の一部が空気中の水分により加水分解を受け、生成したシラノール基がアルコキシシリル基と縮合反応を起こす。その結果、撥水撥油防汚性ガラス板10の表面にポリシロキサンよりなる極薄のポリマー膜が形成される。このポリマー膜は、単分子膜と異なりその全体が撥水撥油防汚性ガラス板10の表面に共有結合により固定されていることはないが、フッ化炭素基を有しているため撥水撥油防汚性を有している。そのため、多少耐久性に劣る点を除けば、このままの状態でも撥水撥油防汚性ガラス板10として使用できる。
After the reaction, when the generated water / oil / oil repellent and antifouling glass plate 10 is left in the air without being washed with a solvent, a part of the alkoxysilane compound remaining on the surface is hydrolyzed by moisture in the air and formed. The resulting silanol group causes a condensation reaction with the alkoxysilyl group. As a result, an extremely thin polymer film made of polysiloxane is formed on the surface of the water / oil repellent / antifouling glass plate 10. Unlike the monomolecular film, the polymer film is not entirely fixed to the surface of the water / oil / oil / fouling and anti-fouling glass plate 10 by a covalent bond, but has a fluorocarbon group. It has oil repellency and antifouling properties. Therefore, it can be used as the water / oil repellent / antifouling glass plate 10 in this state as long as the durability is somewhat inferior.
また、工程Gにおいて用いることができるフッ化炭素基を含むアルコキシシラン化合物としては、前記(1)~(12)に示す化合物が挙げられる。
Further, examples of the alkoxysilane compound containing a fluorocarbon group that can be used in Step G include the compounds shown in the above (1) to (12).
また、工程Gにおいて用いることができるフッ化炭素基を含むハロシラン化合物およびイソシアネートシラン化合物としては、前記(41)~(52)に示す化合物が挙げられる。
Also, examples of the halosilane compound and isocyanate silane compound containing a fluorocarbon group that can be used in the step G include the compounds shown in the above (41) to (52).
異なる体積の水滴(0.02~0.08ml)を用いた実験より求められた、撥水性表面上における水滴に対する接触角と転落角の関係より、水滴接触角が150度以上のとき、水滴の体積に関係なく転落角は15度以下となることがわかっている。
そのため、撥水撥油防汚性ガラス板10を乗り物や建築物の窓ガラス板として用いた場合、ほとんどの水滴は表面にとどまることができずに転落することがわかる。 Based on the relationship between the contact angle of the water droplet on the water-repellent surface and the falling angle obtained from experiments using water droplets of different volumes (0.02 to 0.08 ml), when the water droplet contact angle is 150 degrees or more, It is known that the falling angle is 15 degrees or less regardless of the volume.
Therefore, it can be seen that when the water / oil repellent / antifouling glass plate 10 is used as a window glass plate for a vehicle or a building, most of the water droplets cannot fall on the surface and fall down.
そのため、撥水撥油防汚性ガラス板10を乗り物や建築物の窓ガラス板として用いた場合、ほとんどの水滴は表面にとどまることができずに転落することがわかる。 Based on the relationship between the contact angle of the water droplet on the water-repellent surface and the falling angle obtained from experiments using water droplets of different volumes (0.02 to 0.08 ml), when the water droplet contact angle is 150 degrees or more, It is known that the falling angle is 15 degrees or less regardless of the volume.
Therefore, it can be seen that when the water / oil repellent / antifouling glass plate 10 is used as a window glass plate for a vehicle or a building, most of the water droplets cannot fall on the surface and fall down.
撥水撥油防汚性ガラス板10は、耐摩耗性および耐候性等の耐久性、水滴離水性(滑水性)、ならびに防汚性に優れており、撥水撥油防汚機能が要求される乗り物や建築物の窓用ガラス板として用いることができる。
撥水撥油防汚性ガラス板10を用いることのできる乗り物としては、自動車、鉄道車両、船舶等が挙げられ、運転席、客室等の別を問わずあらゆる窓の窓用ガラス板として用いることができる。
また、撥水撥油防汚性ガラス板10を用いることのできる建築物としては、一戸建て住宅、集合住宅、オフィスビル等の任意の建築物が挙げられる。 The water / oil / oil / repellency antifouling glass plate 10 is excellent in durability such as abrasion resistance and weather resistance, water droplet separation (sliding), and antifouling, and is required to have a water / oil / oil repellent and antifouling function. It can be used as a glass plate for windows of vehicles and buildings.
Vehicles that can use the water- and oil-repellent and antifouling glass plate 10 include automobiles, railway vehicles, ships, etc., and are used as window glass plates for all windows regardless of whether they are driver seats or cabins. Can do.
Moreover, as a building which can use the water-repellent / oil-repellent antifouling glass plate 10, any building such as a detached house, an apartment house, and an office building can be cited.
撥水撥油防汚性ガラス板10を用いることのできる乗り物としては、自動車、鉄道車両、船舶等が挙げられ、運転席、客室等の別を問わずあらゆる窓の窓用ガラス板として用いることができる。
また、撥水撥油防汚性ガラス板10を用いることのできる建築物としては、一戸建て住宅、集合住宅、オフィスビル等の任意の建築物が挙げられる。 The water / oil / oil / repellency antifouling glass plate 10 is excellent in durability such as abrasion resistance and weather resistance, water droplet separation (sliding), and antifouling, and is required to have a water / oil / oil repellent and antifouling function. It can be used as a glass plate for windows of vehicles and buildings.
Vehicles that can use the water- and oil-repellent and antifouling glass plate 10 include automobiles, railway vehicles, ships, etc., and are used as window glass plates for all windows regardless of whether they are driver seats or cabins. Can do.
Moreover, as a building which can use the water-repellent / oil-repellent antifouling glass plate 10, any building such as a detached house, an apartment house, and an office building can be cited.
以下、本発明の効果を確認するために行った実施例について説明するが、本願発明は、これら実施例によって何ら制限されるものではない。
Hereinafter, examples performed for confirming the effects of the present invention will be described, but the present invention is not limited to these examples.
(実施例1)
(1)フッ化炭素基を有する単分子膜で覆われたシリカ微粒子の製造
平均粒径100nmのシリカ微粒子を用意し、よく洗浄して乾燥した。
(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリメトキシシラン(化6、信越化学工業株式会社製)0.99重量部、およびジブチルスズビスアセチルアセトナート(縮合触媒)0.01重量部を秤量し、これを100重量部のヘキサメチルジシロキサン溶媒に溶解し、第1の化学吸着液を調製した。 Example 1
(1) Production of silica fine particles covered with a monomolecular film having a fluorocarbon group Silica fine particles having an average particle diameter of 100 nm were prepared, washed thoroughly and dried.
(Heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane (Chemical 6, Shin-Etsu Chemical Co., Ltd.) 0.99 parts by weight, and dibutyltin bisacetylacetonate (condensation catalyst) 0.01 parts by weight Parts were weighed and dissolved in 100 parts by weight of hexamethyldisiloxane solvent to prepare a first chemical adsorption solution.
(1)フッ化炭素基を有する単分子膜で覆われたシリカ微粒子の製造
平均粒径100nmのシリカ微粒子を用意し、よく洗浄して乾燥した。
(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリメトキシシラン(化6、信越化学工業株式会社製)0.99重量部、およびジブチルスズビスアセチルアセトナート(縮合触媒)0.01重量部を秤量し、これを100重量部のヘキサメチルジシロキサン溶媒に溶解し、第1の化学吸着液を調製した。 Example 1
(1) Production of silica fine particles covered with a monomolecular film having a fluorocarbon group Silica fine particles having an average particle diameter of 100 nm were prepared, washed thoroughly and dried.
(Heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane (
その後、クロロホルムで洗浄し、過剰なアルコキシシラン化合物およびジブチルスズビスアセチルアセトナートを除去した。
Thereafter, the mixture was washed with chloroform to remove excess alkoxysilane compound and dibutyltin bisacetylacetonate.
(2)ガラス基材の表面へのシリカ系透明被膜の形成
自動車用窓ガラス板(フロントスクリーン、サイドスクリーン、およびリアスクリーン)を用意し、よく洗浄して乾燥した。
テトラメトキシシラン(Si(OCH3)4)0.99重量部、およびジブチルスズジアセチルアセトナート(縮合触媒)0.01重量部を秤量し、これを100重量部のヘキサメチルジシロキサン溶媒に溶解し、ゾル溶液を調製した。このようにして得られたゾル溶液を自動車用窓ガラス板の表面に塗布し、溶媒を蒸発させると、テトラメトキシシランが加水分解し脱アルコール反応して膜厚50nm程度の多量の水酸基を含むシリカ系透明被膜(シリカ乾燥ゲル膜)が形成された。 (2) Formation of a silica-based transparent coating on the surface of a glass substrate An automotive window glass plate (front screen, side screen, and rear screen) was prepared, washed thoroughly, and dried.
0.99 parts by weight of tetramethoxysilane (Si (OCH 3 ) 4 ) and 0.01 parts by weight of dibutyltin diacetylacetonate (condensation catalyst) are weighed and dissolved in 100 parts by weight of hexamethyldisiloxane solvent, A sol solution was prepared. When the sol solution thus obtained is applied to the surface of an automotive window glass plate and the solvent is evaporated, tetramethoxysilane is hydrolyzed and dealcoholized, resulting in silica containing a large amount of hydroxyl groups having a film thickness of about 50 nm. A system transparent film (silica dry gel film) was formed.
自動車用窓ガラス板(フロントスクリーン、サイドスクリーン、およびリアスクリーン)を用意し、よく洗浄して乾燥した。
テトラメトキシシラン(Si(OCH3)4)0.99重量部、およびジブチルスズジアセチルアセトナート(縮合触媒)0.01重量部を秤量し、これを100重量部のヘキサメチルジシロキサン溶媒に溶解し、ゾル溶液を調製した。このようにして得られたゾル溶液を自動車用窓ガラス板の表面に塗布し、溶媒を蒸発させると、テトラメトキシシランが加水分解し脱アルコール反応して膜厚50nm程度の多量の水酸基を含むシリカ系透明被膜(シリカ乾燥ゲル膜)が形成された。 (2) Formation of a silica-based transparent coating on the surface of a glass substrate An automotive window glass plate (front screen, side screen, and rear screen) was prepared, washed thoroughly, and dried.
0.99 parts by weight of tetramethoxysilane (Si (OCH 3 ) 4 ) and 0.01 parts by weight of dibutyltin diacetylacetonate (condensation catalyst) are weighed and dissolved in 100 parts by weight of hexamethyldisiloxane solvent, A sol solution was prepared. When the sol solution thus obtained is applied to the surface of an automotive window glass plate and the solvent is evaporated, tetramethoxysilane is hydrolyzed and dealcoholized, resulting in silica containing a large amount of hydroxyl groups having a film thickness of about 50 nm. A system transparent film (silica dry gel film) was formed.
(3)ガラス基材の表面への微粒子溶液の塗布
(1)で製造した、フッ化炭素基を含む単分子膜で表面が覆われたシリカ微粒子1重量部をキシレン99重量部中に加え、激しく撹拌して微粒子分散液を調製した。
(2)で形成した、シリカ乾燥ゲル膜の透明被膜を有する自動車用窓ガラス板の表面に微粒子分散液を塗布後、溶剤を蒸発させ、フッ化炭素基を含む単分子膜で表面が覆われたシリカ微粒子が表面に付着したガラス基材が得られた。 (3) Application of fine particle solution to the surface of aglass substrate 1 part by weight of silica fine particles produced by (1) whose surface is covered with a monomolecular film containing a fluorocarbon group is added to 99 parts by weight of xylene. A fine particle dispersion was prepared by vigorous stirring.
After applying the fine particle dispersion on the surface of the automotive window glass plate having a transparent coating of silica dry gel film formed in (2), the solvent is evaporated and the surface is covered with a monomolecular film containing a fluorocarbon group. A glass substrate having silica fine particles adhered to the surface was obtained.
(1)で製造した、フッ化炭素基を含む単分子膜で表面が覆われたシリカ微粒子1重量部をキシレン99重量部中に加え、激しく撹拌して微粒子分散液を調製した。
(2)で形成した、シリカ乾燥ゲル膜の透明被膜を有する自動車用窓ガラス板の表面に微粒子分散液を塗布後、溶剤を蒸発させ、フッ化炭素基を含む単分子膜で表面が覆われたシリカ微粒子が表面に付着したガラス基材が得られた。 (3) Application of fine particle solution to the surface of a
After applying the fine particle dispersion on the surface of the automotive window glass plate having a transparent coating of silica dry gel film formed in (2), the solvent is evaporated and the surface is covered with a monomolecular film containing a fluorocarbon group. A glass substrate having silica fine particles adhered to the surface was obtained.
(4)シリカ微粒子を融着した凹凸ガラス基材の製造
フッ化炭素基を含む単分子膜で表面が覆われたシリカ微粒子が表面に付着したガラス基材を、空気中500℃で30分焼成すると、シリカ微粒子の表面を覆っていたフッ化炭素基を含む単分子膜が分解除去されるとともにシリカ微粒子のガラス基材表面の融着が起こった。その後、水で洗浄すると、ガラス基材の表面に融着しなかったシリカ微粒子が除去れ、単層のシリカ微粒子を融着した凹凸ガラス基材が得られた。 (4) Production of concavo-convex glass base material fused with silica fine particles A glass base material having silica fine particles whose surface is covered with a monomolecular film containing a fluorocarbon group adhered to the surface is baked at 500 ° C. in air for 30 minutes. Then, the monomolecular film containing the fluorocarbon group covering the surface of the silica fine particles was decomposed and removed, and the silica fine particles were fused to the glass substrate surface. Thereafter, when washed with water, silica fine particles that were not fused to the surface of the glass substrate were removed, and an uneven glass substrate fused with a single layer of silica fine particles was obtained.
フッ化炭素基を含む単分子膜で表面が覆われたシリカ微粒子が表面に付着したガラス基材を、空気中500℃で30分焼成すると、シリカ微粒子の表面を覆っていたフッ化炭素基を含む単分子膜が分解除去されるとともにシリカ微粒子のガラス基材表面の融着が起こった。その後、水で洗浄すると、ガラス基材の表面に融着しなかったシリカ微粒子が除去れ、単層のシリカ微粒子を融着した凹凸ガラス基材が得られた。 (4) Production of concavo-convex glass base material fused with silica fine particles A glass base material having silica fine particles whose surface is covered with a monomolecular film containing a fluorocarbon group adhered to the surface is baked at 500 ° C. in air for 30 minutes. Then, the monomolecular film containing the fluorocarbon group covering the surface of the silica fine particles was decomposed and removed, and the silica fine particles were fused to the glass substrate surface. Thereafter, when washed with water, silica fine particles that were not fused to the surface of the glass substrate were removed, and an uneven glass substrate fused with a single layer of silica fine particles was obtained.
(5)フッ化炭素基を含む単分子化学吸着膜の形成
(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリクロロシラン(化7、信越化学工業株式会社製)1重量部を、脱水したノナン100重量部に溶解し、第2の化学吸着液を調製した。
(4)で製造した、表面にシリカ微粒子が融着固定された自動車用窓ガラス板の表面に、相対湿度30%以下の乾燥空気中で第2の化学吸着液を塗布し反応させた。反応後、フロン系溶媒で洗浄し、未反応のトリクロロシラン化合物を除去した。 (5) Formation of a monomolecular chemical adsorption film containing a fluorocarbon group (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trichlorosilane (Chemical Formula 7, manufactured by Shin-Etsu Chemical Co., Ltd.) It melt | dissolved in 100 weight part of dehydrated nonane, and prepared the 2nd chemical adsorption liquid.
The second chemically adsorbed liquid was applied to the surface of the automobile window glass plate produced in (4), on which silica fine particles were fused and fixed, in dry air having a relative humidity of 30% or less and reacted. After the reaction, it was washed with a fluorocarbon solvent to remove the unreacted trichlorosilane compound.
(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリクロロシラン(化7、信越化学工業株式会社製)1重量部を、脱水したノナン100重量部に溶解し、第2の化学吸着液を調製した。
(4)で製造した、表面にシリカ微粒子が融着固定された自動車用窓ガラス板の表面に、相対湿度30%以下の乾燥空気中で第2の化学吸着液を塗布し反応させた。反応後、フロン系溶媒で洗浄し、未反応のトリクロロシラン化合物を除去した。 (5) Formation of a monomolecular chemical adsorption film containing a fluorocarbon group (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trichlorosilane (
The second chemically adsorbed liquid was applied to the surface of the automobile window glass plate produced in (4), on which silica fine particles were fused and fixed, in dry air having a relative humidity of 30% or less and reacted. After the reaction, it was washed with a fluorocarbon solvent to remove the unreacted trichlorosilane compound.
このようにして得られた撥水撥油防汚性自動車用窓ガラス板の見かけ上の水滴接触角を測定したところ、約151度であった。
比較のために、シリカ微粒子を融着していない自動車用窓ガラス板の表面に(5)と同様に撥水撥油防汚性被膜を形成し、水滴接触角の測定を行ったところ最大水滴接触角は115度程度であった。 The apparent water droplet contact angle of the water-repellent / oil-repellent antifouling automotive window glass plate thus obtained was about 151 degrees.
For comparison, a water / oil repellent / antifouling film was formed on the surface of an automotive window glass plate to which silica fine particles had not been fused in the same manner as in (5), and the water droplet contact angle was measured. The contact angle was about 115 degrees.
比較のために、シリカ微粒子を融着していない自動車用窓ガラス板の表面に(5)と同様に撥水撥油防汚性被膜を形成し、水滴接触角の測定を行ったところ最大水滴接触角は115度程度であった。 The apparent water droplet contact angle of the water-repellent / oil-repellent antifouling automotive window glass plate thus obtained was about 151 degrees.
For comparison, a water / oil repellent / antifouling film was formed on the surface of an automotive window glass plate to which silica fine particles had not been fused in the same manner as in (5), and the water droplet contact angle was measured. The contact angle was about 115 degrees.
(実施例2)
シリカ微粒子として、平均粒径200nmのシリカ微粒子1重量部と、平均粒径50nmのシリカ微粒子10重量部を混合したものを用い、実施例1の(1)~(5)と同様の操作を行うと、表面がフラクタル構造を有し、水滴接触角がおよそ160度のより撥水撥油防汚効果の高い撥水撥油防汚性ガラス板11を製造できた(図5参照)。 (Example 2)
As silica fine particles, a mixture of 1 part by weight of silica fine particles with an average particle diameter of 200 nm and 10 parts by weight of silica fine particles with an average particle diameter of 50 nm is used, and the same operations as in (1) to (5) of Example 1 are performed. As a result, a water / oil / oil / fouling andanti-fouling glass plate 11 having a fractal structure on the surface and a water / water / oil / fouling / antifouling effect with a water droplet contact angle of about 160 degrees could be produced (see FIG. 5).
シリカ微粒子として、平均粒径200nmのシリカ微粒子1重量部と、平均粒径50nmのシリカ微粒子10重量部を混合したものを用い、実施例1の(1)~(5)と同様の操作を行うと、表面がフラクタル構造を有し、水滴接触角がおよそ160度のより撥水撥油防汚効果の高い撥水撥油防汚性ガラス板11を製造できた(図5参照)。 (Example 2)
As silica fine particles, a mixture of 1 part by weight of silica fine particles with an average particle diameter of 200 nm and 10 parts by weight of silica fine particles with an average particle diameter of 50 nm is used, and the same operations as in (1) to (5) of Example 1 are performed. As a result, a water / oil / oil / fouling and
(実施例3)
実施例1で作成したガラス板と同条件で作成した水滴接触角が150度程度(実用上、水滴接触角が140度以上であれば同様の効果が得られた。)の撥水撥油防汚性ガラス板を乗用車のフロント窓ガラス(ウインドシールドともいう、傾斜角略45度)、サイド窓ガラス(傾斜角略70度)、リア窓ガラス(傾斜角略30度)として装着し、雨天走行実験を試みた。 (Example 3)
Water and oil repellent and water repellent having a water droplet contact angle of about 150 degrees (similar effect was obtained if the water droplet contact angle was 140 degrees or more for practical use) prepared under the same conditions as the glass plate prepared in Example 1. Dirty glass plates are installed as front window glass for passenger cars (also called windshield, tilt angle is approximately 45 degrees), side window glass (tilt angle is approximately 70 degrees), and rear window glass (tilt angle is approximately 30 degrees). I tried an experiment.
実施例1で作成したガラス板と同条件で作成した水滴接触角が150度程度(実用上、水滴接触角が140度以上であれば同様の効果が得られた。)の撥水撥油防汚性ガラス板を乗用車のフロント窓ガラス(ウインドシールドともいう、傾斜角略45度)、サイド窓ガラス(傾斜角略70度)、リア窓ガラス(傾斜角略30度)として装着し、雨天走行実験を試みた。 (Example 3)
Water and oil repellent and water repellent having a water droplet contact angle of about 150 degrees (similar effect was obtained if the water droplet contact angle was 140 degrees or more for practical use) prepared under the same conditions as the glass plate prepared in Example 1. Dirty glass plates are installed as front window glass for passenger cars (also called windshield, tilt angle is approximately 45 degrees), side window glass (tilt angle is approximately 70 degrees), and rear window glass (tilt angle is approximately 30 degrees). I tried an experiment.
まず、停車中の雨水滴の付着状況を確認したが、どのガラスにも直径5mm程度以上の水滴の付着はほとんど見られなかった。
First, the state of attachment of rain water droplets while stopped was confirmed, but almost no water droplets having a diameter of about 5 mm or more were observed on any glass.
次に、45km/時および60km/時での走行実験を行った。
45km/時走行時における雨水滴の付着状況を確認したところ、直径2mm程度以上の水滴の付着は、サイド窓ガラス、リア窓ガラスともほとんど無かった。また、フロント窓ガラスでは、走行時、雨水滴が連続して多量に付着したが、直径2mm程度以上の水滴は上方にすばやく移動し、その後飛散して視界を妨げるほどには残らなかった。
更に速度を上げて60km/時になると、直径2mm程度以上の水滴は瞬時に飛散してほぼ完全に除去された。 Next, running experiments were conducted at 45 km / hour and 60 km / hour.
When the state of attachment of rainwater droplets during traveling at 45 km / hour was confirmed, there was almost no adhesion of waterdrops having a diameter of about 2 mm or more on the side window glass and the rear window glass. Further, on the front window glass, a large amount of raindrops adhered continuously during traveling, but the waterdrops having a diameter of about 2 mm or more quickly moved upward and did not remain so as to scatter and obstruct the view.
When the speed was further increased to 60 km / hour, water droplets having a diameter of about 2 mm or more were instantaneously scattered and almost completely removed.
45km/時走行時における雨水滴の付着状況を確認したところ、直径2mm程度以上の水滴の付着は、サイド窓ガラス、リア窓ガラスともほとんど無かった。また、フロント窓ガラスでは、走行時、雨水滴が連続して多量に付着したが、直径2mm程度以上の水滴は上方にすばやく移動し、その後飛散して視界を妨げるほどには残らなかった。
更に速度を上げて60km/時になると、直径2mm程度以上の水滴は瞬時に飛散してほぼ完全に除去された。 Next, running experiments were conducted at 45 km / hour and 60 km / hour.
When the state of attachment of rainwater droplets during traveling at 45 km / hour was confirmed, there was almost no adhesion of waterdrops having a diameter of about 2 mm or more on the side window glass and the rear window glass. Further, on the front window glass, a large amount of raindrops adhered continuously during traveling, but the waterdrops having a diameter of about 2 mm or more quickly moved upward and did not remain so as to scatter and obstruct the view.
When the speed was further increased to 60 km / hour, water droplets having a diameter of about 2 mm or more were instantaneously scattered and almost completely removed.
なお、走行実験中ドアミラーを用い、サイド窓ガラス板を透して後方の視界状況を目視により確認したが、雨水滴による視界のゆがみや視認性の劣化はほとんど感じられなかった。
In the driving experiment, the rear view condition was visually confirmed through the side window glass plate using a door mirror. However, the distortion of visibility and deterioration of visibility due to rain water droplets were hardly felt.
また、晴天時、被膜(アルミナ微粒子および撥水撥油防汚性被膜を含む)の有無による車外視認性を比較してみたが、被膜の透明度が、波長400~700nmの光に対して97%以上であったため、被膜なしの自動車に比べても視認性の劣化は感じられなかった。また、ワイパーに対する耐摩耗性も、ガラスそのままで撥水性被膜を形成した場合に比べ、アルミナ微粒子は硬度が高いので大幅に改善できた。
In addition, we compared the visibility outside the vehicle with and without a coating (including alumina fine particles and water / oil repellent / antifouling coating) in fine weather. The transparency of the coating was 97% for light with a wavelength of 400 to 700 nm. Because of the above, deterioration in visibility was not felt even when compared with a car without a coating. In addition, the wear resistance against the wiper can be significantly improved because the alumina fine particles have a higher hardness than when the water-repellent coating is formed with the glass as it is.
以上の実験より、撥水撥油防汚性ガラス板を装着した自動車が、雨天時の安全運転に格別の効果を発揮することが確認できた。
From the above experiments, it was confirmed that a car equipped with a water- and oil-repellent and antifouling glass plate exerts an exceptional effect on safe driving in rainy weather.
(実施例4)
実施例1と同様の方法で作成した、水滴接触角が152度の撥水撥油防汚性ガラス板をビルの窓ガラスに装着し、雨天時の雨滴付着性を確認したが、直径1mm以上の雨滴は全く付着することがなかった。また、晴天時付着していたゴミや埃も雨滴に流されてガラスはきれいになった。 Example 4
A water-repellent / oil-repellent / fouling-resistant glass plate having a water droplet contact angle of 152 degrees, which was prepared in the same manner as in Example 1, was attached to a window glass of a building, and the raindrop adhesion in rainy weather was confirmed. The raindrops did not attach at all. In addition, dust and dirt that had adhered to in fine weather were washed away by raindrops, and the glass became clean.
実施例1と同様の方法で作成した、水滴接触角が152度の撥水撥油防汚性ガラス板をビルの窓ガラスに装着し、雨天時の雨滴付着性を確認したが、直径1mm以上の雨滴は全く付着することがなかった。また、晴天時付着していたゴミや埃も雨滴に流されてガラスはきれいになった。 Example 4
A water-repellent / oil-repellent / fouling-resistant glass plate having a water droplet contact angle of 152 degrees, which was prepared in the same manner as in Example 1, was attached to a window glass of a building, and the raindrop adhesion in rainy weather was confirmed. The raindrops did not attach at all. In addition, dust and dirt that had adhered to in fine weather were washed away by raindrops, and the glass became clean.
1:シリカ微粒子、1a:融着したシリカ微粒子、2:水酸基、3:第1のシラン化合物
の単分子膜、4:シリカ微粒子、5:ガラス基材、6:シリカ系透明被膜、7:凹凸ガラ
ス基材、8:フッ化炭素基を含む化学吸着単分子膜、10:撥水撥油防汚性ガラス板、11:表面がフラクタル構造を有する撥水撥油防汚性ガラス板 1: silica fine particles, 1a: fused silica fine particles, 2: hydroxyl group, 3: monomolecular film of first silane compound, 4: silica fine particles, 5: glass substrate, 6: silica-based transparent coating, 7: irregularities Glass substrate, 8: chemical adsorption monomolecular film containing fluorocarbon group, 10: water / oil repellent / antifouling glass plate, 11: water / oil / oil repellent / antifouling glass plate having a fractal structure on the surface
の単分子膜、4:シリカ微粒子、5:ガラス基材、6:シリカ系透明被膜、7:凹凸ガラ
ス基材、8:フッ化炭素基を含む化学吸着単分子膜、10:撥水撥油防汚性ガラス板、11:表面がフラクタル構造を有する撥水撥油防汚性ガラス板 1: silica fine particles, 1a: fused silica fine particles, 2: hydroxyl group, 3: monomolecular film of first silane compound, 4: silica fine particles, 5: glass substrate, 6: silica-based transparent coating, 7: irregularities Glass substrate, 8: chemical adsorption monomolecular film containing fluorocarbon group, 10: water / oil repellent / antifouling glass plate, 11: water / oil / oil repellent / antifouling glass plate having a fractal structure on the surface
Claims (27)
- 板状のガラス基材と、前記ガラス基材の表面に融着した撥水撥油防汚性の透明微粒子と、前記ガラス基材の表面のうち前記透明微粒子が融着していない部分を覆う撥水撥油防汚性被膜とを有することを特徴とする撥水撥油防汚性ガラス板。 Covers the plate-shaped glass substrate, the water- and oil-repellent antifouling transparent fine particles fused to the surface of the glass substrate, and the portion of the surface of the glass substrate where the transparent fine particles are not fused. A water / oil / oil repellent / anti-fouling glass plate having a water / oil / oil / repellent / anti-fouling coating.
- 請求項1記載の撥水撥油防汚性ガラス板において、前記透明微粒子は、その表面の一部分が前記ガラス基材の表面に融着しており、かつ他の露出した部分が前記撥水撥油防汚性被膜で被われていることを特徴とする撥水撥油防汚性ガラス板。 2. The water / oil repellent / antifouling glass plate according to claim 1, wherein a part of the surface of the transparent fine particles is fused to the surface of the glass substrate, and the other exposed part is the water / oil repellent. A water- and oil-repellent and antifouling glass plate which is covered with an oil and antifouling coating.
- 請求項2記載の撥水撥油防汚性ガラス板において、前記撥水撥油防汚性被膜が、前記透明微粒子および前記ガラス基材の表面に共有結合していることを特徴とする撥水撥油防汚性ガラス板。 The water / oil repellent / antifouling glass plate according to claim 2, wherein the water / oil repellent / antifouling coating is covalently bonded to the surface of the transparent fine particles and the glass substrate. Oil-repellent antifouling glass plate.
- 請求項1~3のいずれか1項に記載の撥水撥油防汚性ガラス板において、前記透明微粒子として、粒径の異なるものが混合して用いられていることを特徴とする撥水撥油防汚性ガラス板。 The water / oil repellent / antifouling glass plate according to any one of claims 1 to 3, wherein the transparent fine particles having different particle diameters are mixed and used. Oil-resistant antifouling glass plate.
- 請求項1~4のいずれか1項に記載の撥水撥油防汚性ガラス板において、前記撥水撥油防汚性被膜が-CF3基を含むことを特徴とする撥水撥油防汚性ガラス板。 The water / oil repellent / antifouling glass plate according to any one of claims 1 to 4, wherein the water / oil repellent / antifouling coating contains a -CF 3 group. Dirty glass plate.
- 請求項1~5のいずれか1項に記載の撥水撥油防汚性ガラス板において、前記透明微粒子が透光性であり、かつその軟化温度が前記ガラス基材表面の軟化温度よりも高いシリカ、アルミナ、およびジルコニアのいずれかであることを特徴とする撥水撥油防汚性ガラス板。 The water / oil repellent / antifouling glass plate according to any one of claims 1 to 5, wherein the transparent fine particles are translucent and have a softening temperature higher than a softening temperature of the glass substrate surface. A water- and oil-repellent antifouling glass plate characterized by being any one of silica, alumina and zirconia.
- 請求項1~6のいずれか1項に記載の撥水撥油防汚性ガラス板において、前記透明微粒子の粒径が400nm未満であることを特徴とする撥水撥油防汚性ガラス板。 7. The water / oil repellent / antifouling glass plate according to any one of claims 1 to 6, wherein the transparent fine particles have a particle size of less than 400 nm.
- 請求項1~7のいずれか1項に記載の撥水撥油防汚性ガラス板において、水に対する接触角が140度以上であることを特徴とする撥水撥油防汚性ガラス板。 The water / oil repellent / antifouling glass plate according to any one of claims 1 to 7, wherein the water contact angle is 140 ° or more.
- 請求項1~8のいずれか1項に記載の撥水撥油防汚性ガラス板において、前記透明微粒子は、前記ガラス基材よりも低い温度で前記透明微粒子と融着する金属酸化物の透明被膜を介して前記ガラス基材の表面に融着しており、前記撥水撥油防汚性被膜は、前記透明被膜を介して前記透明微粒子が融着していない部分を覆っていることを特徴とする撥水撥油防汚性ガラス板。 The water / oil repellent / antifouling glass plate according to any one of claims 1 to 8, wherein the transparent fine particles are transparent metal oxides fused to the transparent fine particles at a temperature lower than that of the glass substrate. It is fused to the surface of the glass substrate through a coating, and the water and oil repellent antifouling coating covers a portion where the transparent fine particles are not fused through the transparent coating. Characteristic water and oil repellent antifouling glass plate.
- 請求項1~9のいずれか1項に記載の撥水撥油防汚性ガラス板を装着したことを特徴とする乗り物。 A vehicle comprising the water- and oil-repellent antifouling glass plate according to any one of claims 1 to 9.
- 請求項1~9のいずれか1項に記載の撥水撥油防汚性ガラス板を装着したことを特徴とする建築物。 A building equipped with the water / oil repellent / antifouling glass plate according to any one of claims 1 to 9.
- 透明微粒子を分散した微粒子分散液を調製する工程Cと、ガラス基材の表面に前記微粒子分散液を塗布し乾燥することにより、前記ガラス基材の表面に前記透明微粒子を付着させる工程Dと、前記透明微粒子が表面に付着した前記ガラス基材を、前記透明微粒子の軟化温度よりも低い温度で加熱処理し、前記ガラス基材の表面に前記透明微粒子を融着させる工程Eと、前記ガラス基材の表面に融着しなかった前記透明微粒子を洗浄除去する工程Fと、前記透明微粒子が融着した微粒子融着ガラス基材の表面に撥水撥油防汚性被膜を形成する工程Gとを含むことを特徴とする撥水撥油防汚性ガラス板の製造方法。 Step C for preparing a fine particle dispersion in which transparent fine particles are dispersed, and Step D for attaching the transparent fine particles to the surface of the glass substrate by applying and drying the fine particle dispersion on the surface of the glass substrate. The glass substrate on which the transparent fine particles adhere to the surface is heated at a temperature lower than the softening temperature of the transparent fine particles, and the transparent fine particles are fused to the surface of the glass substrate; and the glass substrate A step F for cleaning and removing the transparent fine particles not fused to the surface of the material, and a step G for forming a water / oil repellent antifouling film on the surface of the fine particle fused glass substrate to which the transparent fine particles are fused. A method for producing a water- and oil-repellent and antifouling glass plate, comprising:
- 請求項12記載の撥水撥油防汚性ガラス板の製造方法において、前記工程Dの前に、前記ガラス基材の表面に、前記微粒子分散液に溶解せず、前記ガラス基材よりも低い温度で前記透明微粒子と融着する金属酸化物の透明被膜を形成する工程Bをさらに有することを特徴とする撥水撥油防汚性ガラス板の製造方法。 13. The method for producing a water / oil repellent / antifouling glass plate according to claim 12, wherein before the step D, the surface of the glass substrate is not dissolved in the fine particle dispersion and is lower than the glass substrate. A method for producing a water- and oil-repellent and antifouling glass plate, further comprising a step B of forming a transparent film of a metal oxide fused with the transparent fine particles at a temperature.
- 請求項13記載の撥水撥油防汚性ガラス板の製造方法において、前記透明被膜の形成にゾルゲル法を用いることを特徴とする撥水撥油防汚性ガラス板の製造方法。 14. The method for producing a water- and oil-repellent and antifouling glass plate according to claim 13, wherein a sol-gel method is used for forming the transparent film.
- 請求項14記載の撥水撥油防汚性ガラス板の製造方法において、ゾルゲル法による前記透明被膜の形成に用いる金属アルコキシドの溶液が、リン酸およびホウ酸のいずれか一方または双方を含むことを特徴とする撥水撥油防汚性ガラス板の製造方法。 The method for producing a water- and oil-repellent and antifouling glass plate according to claim 14, wherein the metal alkoxide solution used for forming the transparent film by a sol-gel method contains one or both of phosphoric acid and boric acid. A method for producing a water- and oil-repellent antifouling glass plate.
- 請求項15記載の撥水撥油防汚性ガラス板の製造方法において、前記工程Eにおける加熱処理温度が、250℃以上でかつ前記ガラス基材および前記透明微粒子の軟化温度よりも低いことを特徴とする撥水撥油防汚性ガラス板の製造方法。 16. The method for producing a water / oil repellent / antifouling glass plate according to claim 15, wherein the heat treatment temperature in the step E is 250 ° C. or higher and lower than the softening temperature of the glass substrate and the transparent fine particles. A method for producing a water- and oil-repellent antifouling glass plate.
- 請求項12~16のいずれか1項に記載の撥水撥油防汚性ガラス板の製造方法において、前記工程Cの前に、直鎖状の基を含む第1のシラン化合物と非水系の有機溶媒とを含む第1の化学吸着液中に透明微粒子aを分散し、前記第1のシラン化合物のシリル基と前記透明微粒子aの表面の反応性基との反応により前記第1のシラン化合物の単分子膜で表面が覆われた前記透明微粒子を製造する工程Aを有し、かつ前記工程Eにおける加熱処理は酸素を含む雰囲気中で行われることを特徴とする撥水撥油防汚性ガラス板の製造方法。 The method for producing a water- and oil-repellent and antifouling glass plate according to any one of claims 12 to 16, wherein before the step C, the first silane compound containing a linear group and a non-aqueous system are used. Transparent fine particles a are dispersed in a first chemical adsorption solution containing an organic solvent, and the first silane compound is reacted with a silyl group of the first silane compound and a reactive group on the surface of the transparent fine particles a. A process A for producing the transparent fine particles whose surface is covered with a monomolecular film, and the heat treatment in the process E is performed in an oxygen-containing atmosphere. Manufacturing method of glass plate.
- 請求項17記載の撥水撥油防汚性ガラス板の製造方法において、前記微粒子分散液には有機溶媒が用いられ、前記直鎖状の基はフッ化炭素基であることを特徴とする撥水撥油防汚性ガラス板の製造方法。 18. The method for producing a water / oil repellent antifouling glass plate according to claim 17, wherein an organic solvent is used for the fine particle dispersion, and the linear group is a fluorocarbon group. A method for producing a water / oil repellent antifouling glass plate.
- 請求項17記載の撥水撥油防汚性ガラス板の製造方法において、前記微粒子分散液には水およびアルコールのいずれか一方または両者の混合液が用いられ、前記直鎖状の基は炭化水素基であることを特徴とする撥水撥油防汚性ガラス板の製造方法。 18. The method for producing a water / oil repellent / antifouling glass plate according to claim 17, wherein the fine particle dispersion is one of water and alcohol or a mixture thereof, and the linear group is a hydrocarbon. A method for producing a water- and oil-repellent and antifouling glass plate, characterized in that it is a base.
- 請求項12~19のいずれか1項に記載の撥水撥油防汚性ガラス板の製造方法において、前記工程Gにおける前記撥水撥油防汚性被膜の形成は、フッ化炭素基を含む第2のシラン化合物と非水系の有機溶媒とを含む第2の化学吸着液を前記微粒子融着ガラス基材に接触させて、前記第2のシラン化合物のシリル基と前記微粒子融着ガラス基材の表面の反応性基との反応により行われることを特徴とする撥水撥油防汚性ガラス板の製造方法。 The method for producing a water / oil repellent / antifouling glass sheet according to any one of claims 12 to 19, wherein the formation of the water / oil repellent / antifouling coating film in the step G includes a fluorocarbon group. A second chemical adsorption liquid containing a second silane compound and a non-aqueous organic solvent is brought into contact with the fine particle fused glass substrate, so that the silyl group of the second silane compound and the fine particle fused glass substrate are brought into contact with each other. A method for producing a water- and oil-repellent and antifouling glass plate, which is carried out by a reaction with a reactive group on the surface.
- 請求項20記載の撥水撥油防汚性ガラス板の製造方法において、前記工程Gにおける前記シリル基と前記反応性基との反応後、未反応の前記第2のシラン化合物を洗浄除去することを特徴とする撥水撥油防汚性ガラス板の製造方法。 21. The method for producing a water- and oil-repellent and antifouling glass plate according to claim 20, wherein after the reaction between the silyl group and the reactive group in the step G, the unreacted second silane compound is washed away. A method for producing a water- and oil-repellent and antifouling glass plate.
- 請求項20および21のいずれか1項に記載の撥水撥油防汚性ガラス板の製造方法において、前記第1および第2の化学吸着液にそれぞれ含まれる前記第1および第2のシラン化合物のいずれか一方または双方がアルコキシシラン化合物であることを特徴とする撥水撥油防汚性ガラス板の製造方法。 The method for producing a water- and oil-repellent and antifouling glass plate according to any one of claims 20 and 21, wherein the first and second silane compounds contained in the first and second chemical adsorption liquids, respectively. Either or both of them are alkoxysilane compounds, A method for producing a water / oil repellent antifouling glass plate.
- 請求項20および21のいずれか1項に記載の撥水撥油防汚性ガラス板の製造方法において、前記第1および第2の化学吸着液にそれぞれ含まれる前記第1および第2のシラン化合物のいずれか一方または双方がハロシラン化合物であることを特徴とする撥水撥油防汚性ガラス板の製造方法。 The method for producing a water- and oil-repellent and antifouling glass plate according to any one of claims 20 and 21, wherein the first and second silane compounds contained in the first and second chemical adsorption liquids, respectively. Any one or both of these are a halosilane compound, The manufacturing method of the water repellent and oil repellent antifouling glass plate characterized by the above-mentioned.
- 請求項20および21のいずれか1項に記載の撥水撥油防汚性ガラス板の製造方法において、前記第1および第2の化学吸着液にそれぞれ含まれる前記第1および第2のシラン化合物のいずれか一方または双方がイソシアネートシラン化合物であることを特徴とする撥水撥油防汚性ガラス板の製造方法。 The method for producing a water- and oil-repellent and antifouling glass plate according to any one of claims 20 and 21, wherein the first and second silane compounds contained in the first and second chemical adsorption liquids, respectively. Any one or both of these are an isocyanate silane compound, The manufacturing method of the water / oil repellent antifouling glass plate characterized by the above-mentioned.
- 請求項22記載の撥水撥油防汚性ガラス板の製造方法において、前記第1および第2の化学吸着液のうち前記アルコキシシラン化合物を含むものは、さらに縮合触媒として、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル、およびチタン酸エステルキレートからなる群から選択される1または2以上の化合物を含むことを特徴とする撥水撥油防汚性ガラス板の製造方法。 The method for producing a water- and oil-repellent and antifouling glass plate according to claim 22, wherein the first and second chemical adsorption liquids containing the alkoxysilane compound further include a metal carboxylate as a condensation catalyst, Water repellent and water repellent characterized by comprising one or more compounds selected from the group consisting of carboxylate metal salts, carboxylate metal salt polymers, carboxylate metal salt chelates, titanate esters, and titanate ester chelates. Manufacturing method of oil-proof antifouling glass plate.
- 請求項22記載の撥水撥油防汚性ガラス板の製造方法において、前記第1および第2の化学吸着液のうち前記アルコキシシラン化合物を含むものは、縮合触媒としてケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物をさらに含むことを特徴とする撥水撥油防汚性ガラス板の製造方法。 23. The method for producing a water- and oil-repellent and antifouling glass plate according to claim 22, wherein the first and second chemical adsorption liquids containing the alkoxysilane compound are a ketimine compound, an organic acid, an aldimine as a condensation catalyst. A method for producing a water / oil repellent / antifouling glass plate, further comprising one or more compounds selected from the group consisting of a compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound.
- 請求項25記載の撥水撥油防汚性ガラス板の製造方法において、さらに助触媒として、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を含むことを特徴とする撥水撥油防汚性ガラス板の製造方法。 26. The method for producing a water / oil repellent / antifouling glass plate according to claim 25, wherein the cocatalyst is further selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds. A method for producing a water- and oil-repellent and antifouling glass plate, comprising one or more compounds.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/053195 WO2009107191A1 (en) | 2008-02-25 | 2008-02-25 | Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/053195 WO2009107191A1 (en) | 2008-02-25 | 2008-02-25 | Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009107191A1 true WO2009107191A1 (en) | 2009-09-03 |
Family
ID=41015605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/053195 WO2009107191A1 (en) | 2008-02-25 | 2008-02-25 | Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009107191A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2881423A4 (en) * | 2013-08-02 | 2016-04-27 | Lg Chemical Ltd | Film having water repellency and oil repellency and electric/electronic device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09235138A (en) * | 1996-03-02 | 1997-09-09 | Ricoh Co Ltd | Contact glass for placing draft and production thereof |
JPH11286784A (en) * | 1999-02-18 | 1999-10-19 | Kansai Shingijutsu Kenkyusho:Kk | Method for modifying surface of glass |
JP2004002187A (en) * | 1991-01-23 | 2004-01-08 | Matsushita Electric Ind Co Ltd | Water repellent and oil repellent coating film |
JP2005343016A (en) * | 2004-06-03 | 2005-12-15 | Nippon Sheet Glass Co Ltd | Water super-repellent film-coated article |
JP2007333291A (en) * | 2006-06-14 | 2007-12-27 | Kagawa Univ | Solar energy using device and method of manufacturing the same |
JP2008007363A (en) * | 2006-06-28 | 2008-01-17 | Kagawa Univ | Water-repellent, oil-repellent and antifouling glass plate, method for manufacturing the same, and transport equipment, building and optical instrument using the same |
-
2008
- 2008-02-25 WO PCT/JP2008/053195 patent/WO2009107191A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004002187A (en) * | 1991-01-23 | 2004-01-08 | Matsushita Electric Ind Co Ltd | Water repellent and oil repellent coating film |
JPH09235138A (en) * | 1996-03-02 | 1997-09-09 | Ricoh Co Ltd | Contact glass for placing draft and production thereof |
JPH11286784A (en) * | 1999-02-18 | 1999-10-19 | Kansai Shingijutsu Kenkyusho:Kk | Method for modifying surface of glass |
JP2005343016A (en) * | 2004-06-03 | 2005-12-15 | Nippon Sheet Glass Co Ltd | Water super-repellent film-coated article |
JP2007333291A (en) * | 2006-06-14 | 2007-12-27 | Kagawa Univ | Solar energy using device and method of manufacturing the same |
JP2008007363A (en) * | 2006-06-28 | 2008-01-17 | Kagawa Univ | Water-repellent, oil-repellent and antifouling glass plate, method for manufacturing the same, and transport equipment, building and optical instrument using the same |
Non-Patent Citations (1)
Title |
---|
SU C. ET AL.: "Fabrication of an optically transparent super-hydrophobic surface via embedding nano-silica", APPL. SURF. SCI., vol. 253, 30 December 2006 (2006-12-30), pages 2633 - 2636, XP024892319, DOI: doi:10.1016/j.apsusc.2006.05.038 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2881423A4 (en) * | 2013-08-02 | 2016-04-27 | Lg Chemical Ltd | Film having water repellency and oil repellency and electric/electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5347124B2 (en) | Water and oil repellent and antifouling antireflection film, method for producing the same, lens, glass plate and glass formed therewith, optical device using them, solar energy utilization device, display | |
JP4670057B2 (en) | Method for producing water and oil repellent antifouling glass plate | |
JP5572803B2 (en) | Water repellent and oil repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization apparatus and optical instrument | |
WO2007018184A1 (en) | Water-repellent coating clad article and process for producing the same | |
JPWO2010007956A1 (en) | Water-repellent substrate and method for producing the same | |
JP5347125B2 (en) | Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display | |
JP5660500B2 (en) | Abrasion-resistant super water- and oil-repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization device, optical device and display device | |
JP5347123B2 (en) | Water and oil repellent antifouling glass plate, method for producing the same, vehicle and building using the same | |
US7422642B2 (en) | Method for preparing chemical adsorption film and solution for preparing chemical adsorption film used in the method | |
JP5092130B2 (en) | Water and oil repellent antifouling glass plate, method for producing the same and automobile using the same | |
JP5526393B2 (en) | Water repellent / oil repellent / antifouling composite film forming solution, method for producing water / oil repellent / antifouling composite film using the same, and water / oil repellent / antifouling composite film using the same | |
JP2000256040A (en) | Glass panel for automobile window | |
JP4792575B2 (en) | Water-repellent glass plate, method for producing the same, and vehicle or glass window using the same | |
JP2008282751A (en) | Ice-accretion and snow-accretion preventive insulator and electric wire, antenna, their manufacturing method, and power transmission steel tower using them | |
JP2006076829A (en) | Anti-fogging article and its producing method | |
JP5343271B2 (en) | Water repellent and oil repellent antifouling glass plate, production method thereof, automobile and electromagnetic cooker using the same | |
JPWO2006011605A1 (en) | Anti-fog article and method for producing the same | |
WO2009107191A1 (en) | Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate | |
JP2008246959A (en) | Water-repellent and oil-repellent anti-staining reflecting plate, its manufacturing method, and tunnel, road sign, sign board, vehicle and building using the water and oil repellent anti-staining reflecting plate | |
JP4929459B2 (en) | Method for producing water and oil repellent antifouling glass plate | |
WO2009104236A1 (en) | Water repellent, oil repellent antifouling glass plate, process for producing the same and automobile utilizing the glass plate | |
JP5343226B2 (en) | Water-repellent glass plate, vehicle and building window glass using the same, and method for producing water-repellent glass plate | |
WO2009107190A1 (en) | Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate | |
JP6031653B2 (en) | Water / oil repellent composite film forming solution, method for producing water / oil repellent composite film using the same, and water / oil repellent composite film produced using the method | |
WO2009087983A1 (en) | Low-friction film-covered article, and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08720836 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08720836 Country of ref document: EP Kind code of ref document: A1 |