WO2009104579A1 - Plasma discharge device and thin film laminate - Google Patents
Plasma discharge device and thin film laminate Download PDFInfo
- Publication number
- WO2009104579A1 WO2009104579A1 PCT/JP2009/052644 JP2009052644W WO2009104579A1 WO 2009104579 A1 WO2009104579 A1 WO 2009104579A1 JP 2009052644 W JP2009052644 W JP 2009052644W WO 2009104579 A1 WO2009104579 A1 WO 2009104579A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plasma discharge
- thin film
- gas
- roll
- film
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
- C23C16/545—Apparatus specially adapted for continuous coating for coating elongated substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/47—Generating plasma using corona discharges
- H05H1/473—Cylindrical electrodes, e.g. rotary drums
Definitions
- the present invention relates to a novel plasma discharge treatment apparatus and a thin film laminate for forming a homogeneous functional thin film on a substrate.
- Such high-functional thin films can be obtained by wet deposition methods such as coating methods, or plasma using vacuum deposition, sputtering, ion beam, ion plating, or glow discharge under reduced pressure.
- -Chemical vapor deposit (CVD) method has been used.
- CVD chemical vapor deposit
- each of these methods comprises a vacuum processing means, and the processing system needs to be considerably depressurized. Therefore, the film forming apparatus to be used is not a large-scale processing chamber or a large vacuum pump. It becomes a device or a device unit, and requires complicated work under a high pressure reduction.
- the roll diameter, width, etc. of the substrate wound in a roll shape There are size, capacity of raw materials for thin film formation, and various other limitations.
- the atmospheric pressure plasma discharge treatment thin film formation method can achieve a higher performance thin film than the wet film formation method, and the productivity compared to the dry film formation method using a vacuum. Is being devised and put to practical use because of its high cost. Since the atmospheric pressure plasma discharge treatment method does not need to be evacuated, it has an advantage that continuous film formation is possible as in the coating method.
- a pair of parallel plate electrodes with a smooth curved edge is used as a discharge plasma treatment electrode to prevent tip discharge. ing.
- Such parallel plate electrodes are easy to manufacture and set the distance between the electrodes, and the electrode area can be widened, so that the film to be processed transferred between the electrodes is sequentially processed in the transfer direction, and the film formation speed is increased.
- the plasma processing gas density can be increased as compared with the above-described low-pressure plasma, and the processing efficiency is excellent.
- the cost of equipment such as electrodes is high, and the key to practical use is to reduce the equipment cost or to reduce the cost by increasing the processing capacity.
- the electric field strength is increased, there is a risk of concentrated discharge of a large current due to the arc.
- the electrode is a fixed electrode, it is constantly exposed to the flow of a mixed gas for film formation, and plasma discharge is continued. Therefore, the surface of the electrode is gradually contaminated, and finally the discharge state.
- the film has a problem in that the film formed and the performance of the treated surface are varied, and in the case of remarks, defects such as streaks and unevenness are clearly recognized.
- a pair of roll electrodes that form a discharge space uses roll electrodes having the same diameter (that is, the same circumference), but each roll electrode is installed.
- the roll electrodes are rotated, fluctuations in the distance between the electrodes are caused by the centering error due to the error of the central axis at the time, the distortion at the circumferential portion when the roll electrodes are processed, and the like.
- the displacements of the opposing roll electrodes are synchronized, strong film thickness irregularities appear periodically. Due to such a variation in the distance between electrodes (a variation in the discharge distance), a variation in the discharge intensity is caused, resulting in a difference in the physical characteristics and the formed film thickness of the thin film formed on the substrate.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a plasma discharge treatment apparatus and a thin film laminate that form a thin film with excellent film thickness uniformity.
- a counter electrode composed of a pair of rotating roll electrodes, a plasma discharge space that generates a plasma discharge by applying a voltage between the counter electrodes, and a base material that passes through the plasma discharge space while being held by the counter electrode composed of the roll electrode
- a processing gas supply means for supplying a processing gas to the plasma discharge space, wherein the processing gas includes a discharge gas and a thin film forming gas, and the discharge gas contains at least 90% by volume of nitrogen gas.
- Atmospheric pressure plasma discharge device 10 10 ', 10A, 10B, 10C Roll electrode 11A, 11B, 11C, 11D Folding roll (U-turn roll) 11E, 11F Support roll 20, 21 Guide roll 200a, 200A Conductive base material 200b Ceramic coating dielectric 200B Lining dielectric 30 Processing gas supply unit 31 Nip roller 32 Blade 40 Discharge port 80 Power supply 801 First power supply 802 Second power supply 81, 82, 811, 812, 821, 822 Voltage supply means 831 1st filter 832 2nd filter 100 Discharge section A1, B1, C1 Rotation cycle of roll electrode CG Auxiliary gas d1, d2 Diameter of roll electrode F, F1, F2 Base material G Reaction gas G 'Gas after treatment L Discharge distance
- a counter electrode composed of a pair of rotating roll electrodes, a plasma discharge space for generating a plasma discharge by applying a voltage between the counter electrodes, and the roll electrode
- a plasma discharge processing apparatus having a base material that passes through a plasma discharge space while being held by a counter electrode, and a processing gas supply means for supplying a processing gas to the plasma discharge space.
- the discharge gas contains at least 90% by volume of nitrogen gas, and the diameter ratio of a pair of roll electrodes constituting the counter electrode is 1.00: 0.55 to 1.00: 0. It was found that a plasma discharge processing apparatus capable of forming a thin film with excellent film thickness uniformity can be realized by the plasma discharge processing apparatus characterized by being 95. Tsu was is up.
- the plasma discharge treatment apparatus is characterized in that the diameter ratio of a pair of roll electrodes constituting a counter electrode is 1.00: 0.55 to 1.00: 0.95.
- Excellent effect on surface treatment for example, highly functional thin films with high homogeneity using discharge gas and source gas (for example, antireflection film, gas barrier film, hard coat film, antiglare film) Film, antifouling film, conductive film, etc.), surface modification of substrates and functional thin films, for example, oxidation treatment or reduction treatment after functional thin film is formed, or hydrophilic It can be widely applied to the surface treatment field such as chemical treatment.
- the plasma discharge treatment apparatus of the present invention applicable to a wide range of fields will be described by taking as an example a method for forming a functional thin film, but the field of application of the present invention is limited only to these exemplified film forming methods. is not.
- FIG. 1 is an example of a conventional plasma discharge treatment apparatus, schematically showing a plasma discharge treatment apparatus used for forming a thin film by reciprocating a substrate using roll electrodes having the same diameter.
- This plasma discharge treatment apparatus 1 has a pair of roll electrodes 10A and 10B having the same diameter, and a power supply 80 capable of applying a voltage for plasma discharge to these roll electrodes 10A and 10B is a voltage supply means. 81 and 82 are connected.
- the roll electrodes 10 ⁇ / b> A and 10 ⁇ / b> B having the same roll diameter are rotary electrodes that can be rotated while winding the base material F.
- the discharge unit (also referred to as discharge space) 100 is maintained at, for example, atmospheric pressure or a pressure in the vicinity thereof, the process gas G is supplied from the process gas supply unit 30, and plasma discharge is performed in the discharge unit 100 having the discharge space gap L. Is done.
- the base material F supplied from the pre-process or the former winding roll is brought into close contact with the roll electrode 10A by the guide roll 20 and rotated and transferred in synchronization, and is subjected to plasma discharge treatment by the processing gas G in the discharge section 100.
- the processing gas supply means 30 is preferably in the form of a slit that is the same as or slightly wider than the width of the base material, or pipe-shaped outlets are arranged side by side so as to be equivalent to the width of the base material.
- the processing gas G may be introduced into the discharge unit 100 at a uniform flow rate or flow rate throughout the width direction.
- the substrate F once processed passes through folding rolls (also referred to as U-turn rolls) 11A, 11B, 11C, and 11D, is transferred in the reverse direction, is held by the roll electrode 10B, and is subjected to plasma discharge treatment again in the discharge unit 100. It is wound up via the guide roll 21 or transferred to the next step (none of which is shown).
- the treated gas G ′ is exhausted from the exhaust port 40.
- the exhaust flow rate from the exhaust port 40 is preferably equal to or slightly higher than the flow rate from the processing gas supply means 30.
- the side surfaces of the roll electrodes 10A and 10B of the discharge unit 100 may be shielded, or the entire apparatus may be surrounded and filled with a rare gas or a processing gas.
- FIG. 2 is a schematic diagram showing the variation of the discharge distance L in the discharge space composed of roll electrodes having the same diameter.
- the solid line represents the roundness pattern of the roll electrode 10A in FIG. 1, and the rotation period is A1.
- a broken line represents the roundness pattern of the roll electrode 10B at a position facing the roll electrode 10A, and the rotation period is B1.
- the rotation period A1 and the rotation period B1 are exactly the same.
- the discharge distance L is as shown by a dashed line in FIG.
- the diameter ratio of the pair of roll electrodes forming the discharge space is set to a configuration of 1.00: 0.55 to 1.00: 0.95. It is a feature.
- FIG. 3 is a view schematically showing a plasma discharge treatment apparatus of the present invention having a pair of roll electrodes having different diameters.
- the basic configuration of the plasma discharge processing apparatus 1 shown in FIG. 3 is almost the same as the configuration described with reference to FIG. 1, but the diameter ratio of the roll electrodes that constitute the discharge space is 1.00: 0.55. 1.00: 0.95, and when the diameter of one roll electrode 10A is d1 and the diameter of the other roll electrode 10C is d2, d1> d2 Yes.
- the diameter ratio between the roll electrode 10A and the roll electrode 10C is 1.00: 0.55 to 1.00: 0.95, preferably d2 / d1 is 0.00. It is in the range of 75 to 0.90.
- the present invention by adopting the configuration of the roll electrode defined in the present invention, the fluctuation range of the discharge distance L due to the distortion of the roll circumference at the time of production of each roll electrode or the eccentricity at the time of roll electrode installation is suppressed. Thus, a thin film laminate having excellent thin film uniformity can be obtained.
- the thin film formed on the substrate using the plasma discharge treatment apparatus of the present invention is a functional thin film.
- the functional thin film as used in the present invention refers to a film having each function such as an antireflection film, a gas barrier film, an antistatic film, an antifouling film, an antiglare film, a hard coat film, etc.
- the conductive thin film is an antireflection film from the viewpoint that the objective effect of the present invention can be exhibited. The details of the antireflection film will be described later.
- FIG. 4 is a schematic diagram showing the variation of the discharge distance L in the discharge space composed of roll electrodes having different diameters.
- the solid line represents the roundness pattern of the roll electrode 10A in FIG. 3, and the rotation period is A1.
- a broken line represents the roundness pattern of the roll electrode 10C at a position facing the roll electrode 10A, and the rotation period is C1.
- the rotation cycle A1 and the rotation cycle B1 there is a feature that there is a phase shift.
- the probability that the maximum diameter part or the minimum diameter part of each roll electrode is synchronized is the same as the roll electrode of the same diameter shown in FIG.
- the discharge distance L is suppressed by showing the discharge distance pattern in which the fluctuation of the discharge distance L is suppressed as the roll electrode rotates, as indicated by the one-dot broken line in FIG. This improves the uniformity and characteristics of the thin film formed on the substrate.
- the base material F processed in the discharge unit 100 is transferred in the reverse direction through the folding rolls 11 ⁇ / b> A, 11 ⁇ / b> B, 11 ⁇ / b> C and 11 ⁇ / b> D, and held by the roll electrode 10 ⁇ / b> C.
- the sheet is wound up through the guide roll 21 or is transferred to the next process (none of which is shown).
- a method in which an endless base material is held between the folding rolls 11A, 11B, 11C, and 11D and the functional thin film is formed while being continuously conveyed by a loop conveying method.
- FIG. 5 is a diagram schematically showing a plasma discharge treatment apparatus having roll electrode pairs with different diameters and performing thin film formation by continuous conveyance in a loop manner.
- the endless base material F held by the folding rolls 11A, 11B, 11C, and 11D is continuously conveyed with the thin film forming surface inside.
- the discharge unit 100 is designated by disposing the roll electrode 10A having a diameter d1 and the roll electrode 10C having a diameter d2 facing each other. At this time, d1> d2.
- a power supply 80 capable of applying a voltage for plasma discharge is connected to each of the roll electrodes 10A and 10C via voltage supply means 81 and 82.
- the roll electrodes 10 ⁇ / b> A and 10 ⁇ / b> C having different diameters are rotating electrodes that can be rotated while winding the base material F, and the discharge unit 100 is maintained at, for example, atmospheric pressure or a pressure in the vicinity thereof, and the processing gas supply unit 30. Then, the processing gas G is supplied, plasma discharge is performed in the discharge section 100 having the discharge space gap L, and the processed gas G ′ is exhausted from the exhaust port 40.
- FIGS. 3 and 5 an example of the thin film forming method using a single base material is shown in FIGS. 3 and 5 as the base material transport system.
- the method it is also called an independent conveyance system
- the method which forms a thin film simultaneously with respect to the different base materials F1 and F2 which carry out independent continuous conveyance through the corresponding support rolls 11E and 11F, respectively.
- the plasma discharge processing apparatus provided with the folding transport mechanism as shown in FIG. 3 or the loop transport mechanism as shown in FIG. 5 is more than the independent transport method shown in FIG. Since the base material passes through different roll electrode surfaces, discharge unevenness of each roll electrode can be canceled, and this is preferable from the viewpoint of forming a more uniform functional thin film.
- the processing gas supply unit 30 for supplying the discharge gas and the raw material gas and the roll electrode 10A.
- Introducing air from the outside of the discharge space 100 (also referred to as entrained air) as the substrate is conveyed by the rotation of each roll electrode through the gap between the discharge gas 100 and the gap between the processing gas supply unit 30 and the roll electrode 10C having a smaller diameter.
- the processing gas supplied to the surface of each roll electrode naturally forms a mixture with the entrained air, thereby causing unevenness in the concentration of the processing gas and the width of the roll electrode. It becomes a factor which produces the thin film nonuniformity in a hand direction.
- the processing gas concentration unevenness pattern in the width direction of the roll electrode becomes an almost constant unevenness pattern when film formation is performed under a certain condition. Is a factor that causes a slightly strong density unevenness at a certain position.
- the discharge gas concentration unevenness occurs due to the carry-in air as described above.
- the non-uniformity in discharge gas concentration due to the specific roll electrode is not emphasized, and the non-uniformity in discharge gas concentration is compensated for, thereby providing a more homogeneous functional film. It is preferable from the viewpoint of formation.
- the processing gas supply means supplies a processing gas having an atmospheric pressure or a pressure near it between the opposing electrodes, or the discharge space is formed under an atmospheric pressure or a pressure near it. It is preferable.
- the plasma discharge processing apparatus of the present invention performed under atmospheric pressure or a pressure close to it does not need to be reduced in pressure, has high productivity, and has a high plasma density. For this reason, the film forming speed is high, and further, under a high pressure condition under atmospheric pressure as compared with the conditions of a normal CVD method, the mean free path of gas is very short, so that a very homogeneous film can be obtained.
- the vicinity of atmospheric pressure represents a pressure of 20 kPa to 110 kPa, but 93 kPa to 104 kPa is preferable in order to obtain a good effect described in the present invention.
- a plasma discharge processing apparatus having a power source 80 that can apply a voltage for a single plasma discharge and a high frequency power source in one frequency band will be described.
- a power source having a different frequency is installed on each roll electrode, and the first high-frequency electric field and the second high-frequency electric field are superimposed to cause plasma discharge.
- the former method including the power source 80 capable of applying a voltage for a single plasma discharge and having a high frequency power source in one frequency band is referred to as an application method A.
- the latter method in which a power source having a different frequency is installed in each roll electrode, the first high-frequency electric field and the second high-frequency electric field are superimposed, and plasma discharge is referred to as an application method B.
- a high-frequency voltage is applied to the discharge part between the first roll electrode and the second roll electrode facing each other.
- the high-frequency voltage has at least a component obtained by superimposing the voltage component of the first frequency ⁇ 1 and the voltage component of the second frequency ⁇ 2 higher than the first frequency ⁇ 1 .
- High frequency refers to one having a frequency of at least 0.5 kHz.
- the high frequency voltage is a component obtained by superimposing the voltage component of the first frequency ⁇ 1 and the voltage component of the second frequency ⁇ 2 higher than the first frequency ⁇ 1 , and the waveform thereof is on the sine wave of the frequency ⁇ 1.
- the sine wave of ⁇ 1 on which the sine wave of higher frequency ⁇ 2 is superimposed becomes a waveform that is jagged.
- FIG. 7 shows an example of the plasma discharge processing apparatus of the present invention, in which plasma discharge processing is performed by reciprocating a substrate using a roll electrode of an application method B in which a first high-frequency electric field and a second high-frequency electric field are superimposed. It is the figure which showed the apparatus typically.
- This apparatus has a pair of roll electrodes 10A (first electrodes) and roll electrodes 10C (second electrodes) having different diameters.
- a first power supply 801 capable of applying a high-frequency voltage V1 having a frequency ⁇ 1 for plasma discharge is connected to the roll electrode 10A via a voltage supply unit 811.
- a second power source 802 capable of applying a high-frequency voltage V2 having a frequency ⁇ 2 for plasma discharge is connected to the roll electrode 10C via a voltage supply unit 812.
- the first power source 801 preferably has the ability to apply a higher frequency voltage (V1> V2) than the second power source 802, and the first frequency ⁇ 1 of the first power source 801 and the second frequency of the second power source 802 are the same.
- the frequency ⁇ 2 is preferably ⁇ 1 ⁇ 2.
- a first filter 831 is installed between the roll electrode 10A and the first power source 801 so that the current from the first power source 801 flows toward the roll electrode 10A, and the current I1 from the first power source 801 is It is designed so that the current I2 from the second power source 802 does not easily pass to the ground side and easily passes to the ground side.
- a second filter 832 is installed between the roll electrode 10B and the second power source 802 so that the current from the second power source 802 flows toward the roll electrode 10C. It is designed to make it difficult for I2 to pass to the ground side and to easily pass the current I1 from the first power source 801 to the ground side.
- a high frequency voltage is applied between the opposed first electrode and second electrode, and the high frequency voltage causes the first high frequency voltage V1 and the second high frequency voltage V2 to be applied.
- V1 ⁇ IV> V2 or V1> IV ⁇ V2 is preferably satisfied, and V1> IV> V2 is more preferable.
- the frequency of the first power source is preferably 200 kHz or less.
- the electric field waveform may be a sine wave or a pulse.
- the lower limit is preferably about 1 kHz.
- the frequency of the second power source is preferably 800 kHz or more.
- the upper limit is preferably about 200 MHz.
- the power applied between the electrodes facing each other is such that power (power density) of 1 W / cm 2 or more is supplied to the second electrode (second high-frequency electric field) to excite the discharge gas to generate plasma.
- the energy is applied to the thin film forming gas to form a thin film.
- the upper limit value of the power supplied to the second electrode is preferably 50 W / cm 2 , more preferably 20 W / cm 2 .
- the lower limit is preferably 1.2 W / cm 2 .
- discharge area (cm ⁇ 2 >) points out the area of the range which discharge occurs in an electrode.
- the output density is improved while maintaining the uniformity of the second high frequency electric field. be able to.
- the further uniform high-density plasma can be produced
- it is 5 W / cm 2 or more.
- the upper limit value of the power supplied to the first electrode is preferably 50 W / cm 2 .
- FIG. 8 shows a configuration in which a dual frequency system is applied as an applied power source to the plasma discharge processing apparatus having the roll electrode pairs having different diameters shown in FIG.
- the application method is the same mechanism as described in FIG.
- first power source 2 high frequency power source
- Applied power symbol Manufacturer Frequency Product name A1 Shinko Electric 3kHz SPG3-4500 A2 Shinko Electric Co., Ltd. 5kHz SPG5-4500 A3 Kasuga Electric 15kHz AGI-023 A4 Shinko Electric 50kHz SPG50-4500 A5 HEIDEN Laboratory 100kHz * PHF-6k A6 Pearl Industry 200kHz CF-2000-200k And the like, and any of them can be used.
- * indicates a HEIDEN Laboratory impulse high-frequency power source (100 kHz in continuous mode). Other than that, it is a high-frequency power source that can apply only a continuous sine wave.
- FIG. 9 is a schematic view showing an example of gas supply means applicable to the plasma discharge treatment apparatus of the present invention.
- the processing gas G is blown out in the direction of the gap between the roll electrodes 10A and 10C.
- the gap between the roll electrodes is narrow at that time, the entire amount of the blown processing gas cannot always pass through the gap. A part of the gas leaks from the gap between the processing gas supply means 30 and the roll electrode and blows out to the outside, so that an extra processing gas is required and the processing chamber is filled. Also, depending on the type of processing gas, there is a concern that it may adversely affect the human body.
- an auxiliary gas CG outlet is provided in the processing gas supply means 30. It is preferable to provide it.
- the processing gas G is composed of a discharge gas and a thin film forming gas, and the discharge gas contains at least 90% by volume of nitrogen gas.
- the thin film forming gas is composed of a raw material gas that is a raw material for a deposited film and a reactive gas that promotes decomposition.
- the auxiliary gas CG is made of an inert gas such as a rare gas or nitrogen, and preferably has the same composition as the discharge gas in the processing gas G or the same composition as the discharge gas and the reactive gas.
- the flow rate at which the auxiliary gas is blown out is preferably equal to or higher than the flow rate at which the processing gas G is blown at the supply port of the processing gas supply means 30 to 5 times or less. If it is less than this, the effect of the auxiliary gas is small, and if it is 5 times or more, it becomes difficult to supply the processing gas G to the discharge space 100.
- the angle ⁇ between the blowing port for blowing the auxiliary gas CG to the roll electrodes 10A and 10C and the blowing direction of the processing gas G is set between 0 ⁇ ⁇ ⁇ 90 °, and the effect of the accompanying gas as well as the effect of the auxiliary gas CG. Mixing between the side surface of the processing gas supply means 30 and the roll electrodes 10A and 10C can be prevented. And preferably 0 ⁇ ⁇ ⁇ 60 °, more preferably 0 ⁇ ⁇ ⁇ 30 °. This is because when the angle is 90 ° or more, the component of the auxiliary gas CG toward the discharge space 100 decreases, and the effect cannot be obtained.
- ⁇ is an angle formed by the direction in which the processing gas blows out and the direction in which the auxiliary gas blows out.
- the material of the gas supply unit 30 for supplying the processing gas G and the auxiliary gas CG is preferably an insulating material such as ceramic such as alumina or resin, and particularly preferably a heat resistant resin such as PEEK (polyether ether ketone).
- FIG. 10 is a schematic view showing another example of the gas supply means applicable to the plasma discharge treatment apparatus of the present invention.
- the basic configuration of the plasma discharge processing apparatus shown in FIG. 10 is substantially the same as that of the plasma discharge processing apparatus shown in FIG. 3 described above, and a new configuration is added to the processing gas supply means 30.
- a new configuration is added to the processing gas supply means 30.
- one end having a width dimension equal to or larger than that of the processing gas supply means 30 contacts the outer peripheral surface of the roll electrodes 10A and 10C, and the other end is processed.
- a blade 32 attached to the gas supply means 30 is provided for each roll electrode.
- the blade 32 is an insulating resin or rubber.
- the resin include polyolefin (PO) resins such as homopolymers or copolymers such as ethylene, polypropylene, and butene, and amorphous polyolefin resins (APO) such as cyclic polyolefins.
- PO polyolefin
- APO amorphous polyolefin resins
- Polyester resin such as polyethylene terephthalate (PET) and polyethylene 2.6-naphthalate (PEN), polyamide (PA) resin such as nylon 6, nylon 12, copolymer nylon, polyvinyl alcohol (PVA) resin, ethylene-vinyl alcohol Polyvinyl alcohol resin such as copolymer (EVOH), polyimide (PI) resin, polyetherimide (PEI) resin, polysulfone (PS) resin, polyethersulfone (PES) resin, polyetheretherketone (PEEK) Resin, polycarbonate (PC) resin, polyvinyl butyrate (PVB) resin, polyarylate (PAR) resin, ethylene-tetrafluoroethylene copolymer (ETFE), ethylene trifluoride chloride (PFA), tetrafluoroethylene Use fluororesin such as perfluoroalkyl vinyl ether copolymer (FEP), vinylidene fluoride (PVDF), vinyl fluoride (PVF), perfluoroethylene-perflu
- a heat-resistant resin such as polycarbonate, polyether sulfone, polyether ether ketone, or polyimide.
- the insulation of the blade is preferably a volume resistance of 10 10 ⁇ cm or more, more preferably 10 12 ⁇ cm or more.
- examples of rubber materials include chloroprene rubber, fluoro rubber, and silicon rubber, which are excellent in wear resistance, weather resistance, and heat aging resistance.
- fluororubber having a low gas permeability is preferably used.
- the hardness at this time is preferably 60 to 85 degrees (JIS K 6253-1997 standard).
- the end portion of the blade has a round cut surface so that the formed thin film is not damaged by coming into contact with the end portion of the blade 32.
- the shape in which the blade 32 is in contact with the outer peripheral surface of the roll electrode 10A and the shape in contact with the outer peripheral surface of the roll electrode 10B are shapes that are in the rotation direction of the roll electrode.
- FIG. 11 is a schematic diagram showing another example of gas supply means applicable to the plasma discharge treatment apparatus of the present invention.
- the basic configuration of the plasma discharge processing apparatus shown in FIG. 1 is substantially the same as that of the plasma discharge processing apparatus shown in FIG. 3 described above, and a new configuration is added to the processing gas supply means 30.
- a nip roller 31 having a width dimension equal to or larger than that of the processing gas supply means 30 is disposed so as to contact the roll electrodes 10A and 10B, and is used for conveying the substrate. Along with this, it is driven to rotate. This is to prevent the substrate surface from being scratched when the substrate F abuts against the nip roller 31.
- each of the pair of roll electrodes has a blade that is in contact with the nip roller at one end and a blade that is attached to the processing gas supply means.
- the nip roller 31 is preferably one that does not easily damage the surface of the functional thin film formed on the substrate, and is preferably hard rubber, plastic, or the like. More specifically, the nip roller 31 has a rubber hardness of 60 to 80 according to JIS K 6253-1997 standard. Plastic and rubber rolls are preferred.
- the blade 32 having the same material and shape as the blade 32 described in FIG. 10 can be applied.
- FIG. 12 is a perspective view showing an example of a roll electrode applicable to the present invention.
- the roll electrode 10 is inorganic after a ceramic is sprayed on a conductive base material 200a (hereinafter also referred to as “electrode base material”) such as metal. It is composed of a combination in which a ceramic-coated dielectric 200b (hereinafter also simply referred to as “dielectric”) coated with a material is covered.
- a ceramic-coated dielectric 200b hereinafter also simply referred to as “dielectric” coated with a material is covered.
- alumina, silicon nitride, or the like is preferably used. Among these, alumina is more preferably used because it is easily processed.
- the roll electrode 10 ′ may be configured by a combination of a conductive base material 200A such as metal covered with a lining dielectric 200B provided with an inorganic material by lining.
- a conductive base material 200A such as metal covered with a lining dielectric 200B provided with an inorganic material by lining.
- the lining material silicate glass, borate glass, phosphate glass, germanate glass, tellurite glass, aluminate glass, vanadate glass and the like are preferably used. Of these, borate glass is more preferred because it is easy to process.
- Examples of the conductive base materials 200a and 200A such as metal include metals such as silver, platinum, stainless steel, aluminum, and iron. Stainless steel is preferable from the viewpoint of processing.
- each roll electrode 10 it is desirable to adjust the temperature of each roll electrode 10 as necessary, such as heating or cooling.
- a liquid is supplied into the roll electrode to control the temperature of the electrode surface and the temperature of the substrate.
- an insulating material such as distilled water or oil is preferable.
- the temperature of the substrate varies depending on the treatment conditions, it is usually preferably room temperature to 200 ° C., more preferably room temperature to 120 ° C.
- the surface of the roll electrode is required to have high smoothness because the base material is in close contact and the base material and the electrode are transferred and rotated synchronously.
- the smoothness is expressed as the maximum surface roughness height (Rmax) and centerline average surface roughness (Ra) specified in JIS B 0601.
- Rmax of the surface roughness of the roll electrode according to the present invention is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and particularly preferably 7 ⁇ m or less.
- Ra is preferably 0.5 ⁇ m or less, and more preferably 0.1 ⁇ m or less.
- the gap between the roll electrodes is determined in consideration of the thickness of the solid dielectric, the magnitude of the applied voltage, the purpose of using plasma, the shape of the electrode, and the like.
- the distance between the electrode surfaces is preferably 0.5 to 20 mm, more preferably 0.5 to 5 mm, and particularly preferably 1 mm ⁇ 0.5 mm from the viewpoint of uniformly generating plasma discharge.
- the gap between the roll electrodes refers to a distance at which the opposing electrode surfaces are closest to each other.
- the diameter of the roll electrode is preferably 10 to 1000 mm, more preferably 20 to 500 mm.
- the peripheral speed of the roll electrode is 1 to 100 m / mim, more preferably 5 to 50 m / mim.
- a mixed gas of a discharge gas and a thin film forming gas (also called a reactive gas) is used as the processing gas, and the discharge gas contains at least 90% by volume of nitrogen gas.
- Commonly used discharge gas (also referred to as rare gas) elements include nitrogen and Group 18 elements of the periodic table, specifically nitrogen, helium, neon, argon, krypton, xenon, radon, and the like.
- the present invention is characterized in that the discharge gas contains at least 90% by volume of nitrogen gas. If the concentration of the nitrogen gas in the processing gas is 90% by volume or more compared to the rare gas, the effect of the present invention is remarkably exhibited and stable plasma can be generated. 90 to 99.99% by volume is particularly preferable.
- Nitrogen gas is necessary for generating a plasma discharge, and the reactive gas in the plasma discharge is ionized or radicalized to contribute to the surface treatment.
- a low refractive index layer and an antifouling layer useful for an antireflection layer can be formed by using an organic fluorine compound as a thin film forming gas, and useful for an antireflection layer by using a silicon compound.
- a low refractive index layer or a gas barrier layer can also be formed.
- an organometallic compound containing a metal such as Ti, Zr, Sn, Si, or Zn
- a metal oxide layer or a metal nitride layer can be formed.
- a useful medium refractive index layer or high refractive index layer can be formed, and a conductive layer or an antistatic layer can also be formed.
- reactive gas substance useful in the present invention include organic fluorine compounds and metal compounds.
- the reactive fluorine-containing organic fluorine compound preferably used in the present invention is preferably a gas such as fluorocarbon or fluorohydrocarbon, such as tetrafluoromethane, hexafluoroethane, 1,1,2,2-tetrafluoro.
- gases such as fluorocarbon or fluorohydrocarbon, such as tetrafluoromethane, hexafluoroethane, 1,1,2,2-tetrafluoro.
- fluorocarbon compounds such as ethylene, 1,1,1,2,3,3-hexafluoropropane and hexafluoropropene. It is preferable to select a compound that does not generate corrosive gas or harmful gas by plasma discharge treatment as the organic fluorine compound, but it is also possible to select a condition in which they are not generated.
- the organic fluorine compound is a gas at room temperature and normal pressure as it can be used as it is as the most suitable reactive gas component for accomplishing the purpose.
- a liquid or solid organic fluorine compound at room temperature and normal pressure it may be used after being vaporized by means of a vaporizer such as heating or decompression, or dissolved or sprayed in an appropriate organic solvent. You may evaporate and use.
- the content of the organic fluorine compound in the treatment gas is 0.01 to 10% by volume from the viewpoint of forming a uniform thin film on the substrate by plasma discharge treatment. Preferably, it is 0.1 to 5% by volume. These may be used alone or in combination.
- the reactive gas metal compounds preferably used in the present invention include Al, As, Au, B, Bi, Ca, Cd, Cr, Co, Cu, Fe, Ga, Ge, Hg, In, Li, and Mg. , Mn, Mo, Na, Ni, Pb, Pt, Rh, Sb, Se, Si, Sn, V, W, Y, Zn, Zr, and other metal compounds or organometallic compounds, Al, Ge, In, Sb, Si, Sn, Ti, W, Zn, or Zr is preferably used as the organometallic compound.
- silicon compounds include silicon such as alkyl silanes such as dimethylsilane and tetramethylsilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, dimethyldiethoxysilane, methyltrimethoxysilane, and ethyltriethoxysilane.
- organosilicon compounds such as alkoxides; silicon hydrogen compounds such as monosilane and disilane, halogenated silicon compounds such as dichlorosilane, trichlorosilane, and tetrachlorosilane, and other organosilanes, all of which can be preferably used.
- the present invention is not limited to these.
- the above organosilicon compounds are preferably silicon alkoxides, alkylsilanes, and organosilicon hydrogen compounds. They are not corrosive, do not generate harmful gases, and have little contamination in the process. Silicon alkoxide is preferred.
- the metal compound other than silicon as the reactive gas useful in the present invention is not particularly limited, and examples thereof include an organometallic compound, a metal halide compound, and a metal hydrogen compound.
- the organic component of the organometallic compound is preferably an alkyl group, an alkoxide group, or an amino group, and preferred examples include tetraethoxy titanium, tetraisopropoxy titanium, tetrabutoxy titanium, and tetradimethylamino titanium.
- the metal halide compound include titanium dichloride, titanium trichloride, and titanium tetrachloride.
- examples of the metal hydrogen compound include monotitanium and dititanium. In the present invention, a titanium-based organometallic compound can be preferably used.
- any of gas, liquid or solid may be used at normal temperature and pressure, but if it is liquid or solid, heating It may be used after being vaporized by means of a vaporizer such as reduced pressure or ultrasonic irradiation. In the present invention, it is preferably vaporized and evaporated to be used as a gas. If the boiling point of the liquid organometallic compound at room temperature and normal pressure is 200 ° C. or less, vaporization can be facilitated, which is suitable for the production of the thin film of the present invention.
- the organometallic compound is a metal alkoxide such as tetraethoxysilane or tetraisopropoxytitanium, it is easily dissolved in an organic solvent, so that it can be diluted with an organic solvent such as methanol, ethanol, n-hexane or the like. Good.
- An organic solvent may be used as a mixed solvent.
- the content in the processing gas is preferably 0.01 to 10% by volume, more preferably 0.1 to 5%. % By volume.
- the above metal compounds may be used by mixing several kinds of the same or different metal compounds.
- hydrogen, oxygen, nitrogen, nitrogen monoxide, nitrogen dioxide, carbon dioxide, ozone, hydrogen peroxide are used as reactive gases of the above organic fluorine compounds and organometallic compounds or any of the above compounds with respect to rare gases.
- the mixture may be used in an amount of 0.1 to 10% by volume, and by using such an auxiliary, the hardness of the thin film can be remarkably improved.
- an organosilicon compound is suitable for forming a low refractive index layer, and a titanium-based organometallic compound forms a high refractive index layer. Any of them is preferably used.
- the refractive index can be controlled by adjusting the mixing ratio using a gas in which these are mixed, so that a medium refractive index layer can be obtained.
- the low-refractive index layer and the high-refractive index layer formed by plasma discharge treatment using the above processing gas are thought to be mainly composed of metal oxides, if not all.
- the low refractive index layer has silicon oxide and the high refractive index layer has titanium oxide as a main component. It is preferable.
- a small amount of silicon oxide may be mixed in the high refractive index layer mainly composed of titanium oxide, and conversely, a small amount of titanium oxide may be mixed in the low refractive index layer mainly composed of silicon oxide. Also good.
- an organic metal compound or fluorine-containing compound other than the main component can be mixed and added to the processing gas for adjusting the refractive index to the desired purpose or for other purposes, and the processing gas is supplied from the processing gas supply unit. It is preferable to mix appropriately at the stage before supply. As described above, the discharge portion is filled with the processing gas, and even if the entrained air slightly enters the processing chamber, the influence of a minute amount of air (oxygen or nitrogen) or moisture can be ignored in practice. Depending on the processing conditions, there may be a case where processing is performed by intentionally adding air (oxygen or nitrogen) or moisture to the processing gas.
- Examples of the substrate according to the present invention include a cellulose ester film, a polyester film, a polycarbonate film, a polystyrene film, a polyolefin film, a polyvinyl alcohol film, a cellulose film, and other resin films.
- a cellulose ester film As cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film, cellulose acetate phthalate film, cellulose triacetate, cellulose nitrate; as polyester film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene phthalate film 1,4-dimethylenecyclohexylene tele Tallate or copolyester film of these structural units; polycarbonate film of bisphenol A; polystyrene film: syndiotactic polystyrene film; polyolefin film: polyethylene film, polypropylene film; polyvinyl alcohol film as polyvinyl alcohol Film, ethylene vinyl alcohol film; cellophane as cellulose film; norbornene resin film, polymethylpentene film, polyetherketone film, polyimide film, polyethersulfone film, polysulfone film, poly Ether ketone imide film, polyamide fill It can fluorores
- a film obtained by appropriately mixing these film materials can also be preferably used.
- a film obtained by mixing a commercially available resin such as ZEONEX (manufactured by Nippon Zeon Co., Ltd.) or ARTON (manufactured by Nippon Synthetic Rubber Co., Ltd.) can also be used.
- materials having a high intrinsic birefringence such as polycarbonate, polyarylate, polysulfone or polyether sulfone, the conditions such as solution casting or melt extrusion, and further the conditions for stretching in the vertical and horizontal directions, etc.
- a base material suitable for the present invention can be obtained.
- the film is not limited to the above-described film.
- a film of about 10 to 1000 ⁇ m can be preferably used, more preferably 10 to 200 ⁇ m, and particularly a thin substrate of 10 to 60 ⁇ m. It can be preferably used.
- the thin film is formed by subjecting the base material to plasma discharge treatment with the above treatment gas at atmospheric pressure or a pressure in the vicinity thereof at the discharge portion in the gap between the counter electrodes.
- the plasma discharge treatment under atmospheric pressure or a pressure in the vicinity thereof can be performed with a substrate having a very wide width of, for example, 2000 mm, and a treatment speed of 100 m / min. You can also.
- a processing gas or a rare gas is introduced into the processing chamber while drawing the air in the processing chamber with a vacuum pump, and the processing gas is supplied to the discharge section after replacing the air.
- the discharge part is preferably filled. Thereafter, the substrate is transferred to carry out processing.
- the film thickness can be appropriately adjusted according to the discharge part, the processing gas concentration, and the conveyance speed of the substrate.
- the thin film formed on the substrate by the plasma discharge treatment apparatus of the present invention is only on one side, but after winding up, the opposite side may be passed through the apparatus for plasma discharge treatment.
- the antistatic layer is formed of a metal oxide
- the antistatic layer or the conductive layer is formed by applying a coating liquid such as metal oxide fine particles or crosslinked cationic polymer particles into a layer having a thickness of about 0.1 to 2 ⁇ m.
- a thin conductive layer can also be formed by the plasma discharge treatment apparatus of the present invention.
- a conductive layer of metal oxide such as tin oxide, indium oxide, or zinc oxide may be formed.
- easy adhesion processing described in JP-A-2002-82223, antistatic processing described in Japanese Patent Application No. 2000-80043, and the like can be performed using the plasma discharge processing apparatus of the present invention.
- the substrate When forming the thin film of the present invention, it is easy to form a uniform thin film by subjecting the substrate to heat treatment at 50 to 120 ° C. and then plasma discharge treatment, and preheating is a preferable method.
- the heat treatment By performing the heat treatment, the substrate that has absorbed moisture can be dried, and it is preferable to perform a plasma discharge treatment while maintaining a low humidity. It is preferable to perform plasma discharge treatment without absorbing moisture on a substrate conditioned at less than 60% RH, more preferably 40% RH.
- the moisture content is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less.
- the thin film can be stabilized by heat-treating the substrate after the plasma discharge treatment in a heat treatment zone at 50 to 130 ° C. for 1 to 30 minutes, which is an effective means.
- the treatment surface may be irradiated with ultraviolet rays before and after each plasma discharge treatment, and the adhesion (adhesion) of the formed thin film to the substrate And stability can be improved.
- the amount of ultraviolet irradiation is preferably 50 to 2000 mJ / cm 2 , and if it is less than 50 mJ / cm 2 , the effect is not sufficient, and if it exceeds 2000 mJ / cm 2 , the substrate may be deformed.
- the film thickness of the thin film formed in the present invention is preferably in the range of 1 to 1000 nm.
- the film thickness deviation with respect to the average film thickness of the thin film formed by the plasma discharge treatment apparatus of the present invention is small, and a uniform thin film can be formed, which is an excellent thin film forming method.
- a film thickness deviation of ⁇ 10% can be easily obtained, and a uniform thin film preferably within ⁇ 5%, particularly within ⁇ 1% can be obtained.
- composition coating liquid containing inorganic or organic fine particles described above is coated on a substrate and dried, and the surface is formed on a functional layer having an uneven surface such as Ra of about 0.1 to 0.5 ⁇ m, such as an antiglare layer.
- a thin film having a uniform thickness can also be formed by the discharge treatment.
- the thin film is a low refractive index layer or a high refractive index layer, it can be provided as an optical interference layer.
- the film of the present invention is composed of a thin film formed by the plasma discharge treatment apparatus of the present invention and a laminate thereof.
- Examples of the film of the present invention include an antireflection film, an antiglare antireflection film, an electromagnetic wave shielding film, a conductive film, an antistatic film, a retardation film, an optical compensation film, a viewing angle widening film, and a brightness enhancement film.
- an antireflection film an antiglare antireflection film, an electromagnetic wave shielding film, a conductive film, an antistatic film, a retardation film, an optical compensation film, a viewing angle widening film, and a brightness enhancement film.
- an antireflection film an antiglare antireflection film
- an electromagnetic wave shielding film a conductive film
- an antistatic film a retardation film
- an optical compensation film a viewing angle widening film
- a viewing angle widening film a viewing angle widening film
- a brightness enhancement film it is not limited to these.
- Example 1 Preparation of thin layer laminate >> [Preparation of thin-layer laminate 1: comparative example]
- an atmospheric pressure plasma discharge treatment apparatus (using only a single power source) that can simultaneously form a thin film on a different base material shown in FIG. 6 on a roll-shaped polyethylene terephthalate film having a thickness of 100 ⁇ m.
- Application method A the diameter of each roll electrode is 300 mm and the roll electrodes 10A and 10B having the discharge distance L pattern shown in FIG. 2 are changed to the antireflection film under the following discharge conditions.
- the thin film stack 1 was manufactured by forming the film thickness to be 100 nm.
- the atmospheric pressure plasma discharge processing apparatus using the roll electrode of the same diameter used for production of the thin layered product 1 is referred to as FIG. 6 ′ for convenience.
- Each roll electrode used was manufactured by covering a dielectric with 1 mm of an alumina molten dielectric on one side and setting the gap between the roll electrodes to 1 mm. Furthermore, the roll electrode used the stainless steel jacket roll base material which has the cooling function by a cooling water. During the plasma discharge, the temperature of the roll rotating electrode was adjusted and kept at 80 ° C.
- FIG. 7 ′ the atmospheric pressure plasma discharge processing apparatus using the roll electrode of the same diameter used for production of the thin layered product 2 is referred to as FIG. 7 ′ for convenience.
- FIG. 5 ′ A thin film laminate 3 was produced in the same manner except that an atmospheric pressure plasma discharge treatment apparatus having 10A and 10B (application method B in which the first high-frequency electric field and the second high-frequency electric field were superimposed) was used.
- an atmospheric pressure plasma discharge treatment apparatus having 10A and 10B application method B in which the first high-frequency electric field and the second high-frequency electric field were superimposed
- FIG. 5 ′ the atmospheric pressure plasma discharge processing apparatus using the roll electrode of the same diameter used for production of the thin layered product 3 is referred to as FIG. 5 ′ for convenience.
- a polyethylene terephthalate film having a thickness of 100 ⁇ m is set as a base material in a vacuum chamber of a vacuum vapor deposition apparatus having the roll electrode configuration shown in FIG. 6, and after vacuum degassing to 10 ⁇ 4 Pa, tetraethoxysilane (TEOS)
- TEOS tetraethoxysilane
- a thin film laminate is formed by forming an antireflection film having a thickness of 100 nm while appropriately adjusting the supply amount of raw materials using hydrogen gas and helium gas under conditions of an applied voltage (RF power) of 100 W and a substrate temperature of 180 ° C. 4 was produced.
- Each roll electrode used was manufactured by coating a dielectric with 1 mm of alumina molten dielectric on a dielectric, and the gap between the electrodes was set to 1 mm on the roll electrode, and the roll electrode 10A had a diameter of 100 mm.
- the diameter of the electrode 10C is 85 mm, and the diameter ratio is 1.0: 0.85.
- the discharge distance L pattern of each roll electrode was the pattern shown in FIG.
- an atmospheric pressure plasma discharge treatment apparatus (using only a single power source) that can simultaneously form a thin film on a different base material shown in FIG. 6 on a roll-shaped polyethylene terephthalate film having a thickness of 100 ⁇ m. 4 is used, and the roll electrode 10A having the discharge distance L pattern shown in FIG. 4 and a roll electrode 10C having a diameter of 255 mm (diameter ratio of the roll electrodes 10A and 10C) is used as the roll electrode. 1.0: 0.85), and the antireflection film was formed to a thickness of 100 nm under the following discharge conditions to produce a thin film laminate 5.
- each used roll electrode 10A, 10C was manufactured by covering a dielectric with an alumina molten dielectric with a thickness of 1 mm and setting the gap between the roll electrodes to 1 mm. Furthermore, the roll electrode used the stainless steel jacket roll base material which has the cooling function by a cooling water. During the plasma discharge, the temperature of the roll rotating electrode was adjusted and kept at 80 ° C.
- the film thickness of the antireflection film is as follows.
- a thin film stack 7 was produced by forming the film so as to have a thickness of 100 nm.
- the roll electrode was the same as that used in the production of the thin film laminate 1.
- a roll-like polyethylene terephthalate film having a thickness of 100 ⁇ m is composed of a folding conveyance mechanism shown in FIG. 3, and has a discharge distance L pattern shown in FIG.
- the roll electrode 10A having a diameter of 300 mm and the roll electrode 10C having a diameter of 255 mm (diameter ratio of the roll electrodes 10A and 10C) as a roll electrode under the following power supply conditions 1.0: 0.85) the antireflection film was formed to a thickness of 100 nm, and the thin film laminate 13 was produced.
- the roll electrode was the same as that used in the production of the thin film laminate 1.
- the thin layer laminate 16 was produced in the same manner except that the gas supply means shown in FIG. 9 was removed and only the atmospheric pressure plasma discharge treatment apparatus having the configuration shown in FIG. 3 was used. .
- Standard deviation of film thickness is 0 to less than 1 nm ⁇ : Standard deviation of film thickness is less than 1 to 2 nm ⁇ : Standard deviation of film thickness is less than 2 to 5 nm ⁇ : Standard deviation of film thickness is 5 nm or more (thin film uniformity Evaluation of 2: measurement of yield)
- a sample of 250 cm 2 is cut out from an arbitrary position of each of the thin film formed bodies described above, the area where the thin film unevenness is clearly measured is measured, the yield is measured from the following formula, and the thin film uniformity is determined according to the following criteria. Evaluation of 2 was performed.
- Yield (%) ⁇ (250 cm 2 ⁇ thin film unevenness occurrence area) / 250 cm 2 ⁇ ⁇ 100 ⁇ : Yield is 95% or more ⁇ : Yield is 90% or more and less than 95% ⁇ : Yield is 85% or more and less than 90% ⁇ : Yield is 75% or more and less than 85% Xx: Yield is less than 75% (Evaluation of thin film hardness) About the antireflection film formation surface of each of the produced thin film formed bodies, the hardness of each antireflection film was measured by a pencil scratch test method based on JIS K 5400.
- the hardness rank is (soft) 6B to B, HB, F, H to 9H (hard) in the order 6B is the softest, and 9H is the hardest.
- Table 1 shows the results obtained as described above.
- the roll electrode has a diameter ratio in the range of 1.00: 0.55 to 1.00: 0.95.
- the thin film laminate produced by the plasma discharge treatment apparatus of the present invention used by volume% or more was formed with respect to the thin film laminate produced by the plasma discharge treatment apparatus comprised of roll electrodes having the same diameter as a comparative example ( It can be seen that the anti-reflection film is excellent in uniformity, thin film unevenness resistance, and hardness.
- an atmospheric pressure plasma discharge processing apparatus is used as a thin film forming apparatus, a two-frequency system is used as a high-frequency power source, and gas supply means shown in FIGS. It turns out that the said effect is exhibited further.
- Example 2 In the production of the thin film laminates 1 to 15 described in the examples, instead of tetraethoxysilane, tetraisopropoxy titanium (titanium oxide film), ethylene, methane (carbon film), manufactured by GE Toshiba Silicon Co. Each thin film laminate was prepared in the same manner except that heptadecafluorodecyltriisopropoxysilane (antifouling layer) was used, and each evaluation similar to the method described in Example 1 was performed. The same results as in Table 1 were obtained.
- Example 3 The thin film laminate 2 produced in Example 1 was subjected to post-treatment for oxidizing the functional thin film under the following conditions using each plasma discharge treatment apparatus described in Table 2, and the thin film laminates 17 to 20 was made.
- a folded conveyance system (first high frequency electric field and second frequency) composed of roll electrodes having different diameters shown in FIG. 7 similar to those used in the production of the thin film formed body 8 described in Example 1 is used.
- a thin film laminate 19 was produced by performing the above-described post-treatment in the same manner as the thin film laminate 17 except that the plasma discharge treatment apparatus of the application method B) in which the high frequency electric field was superimposed was used.
- a loop conveyance system (first high-frequency electric field and second second) composed of roll electrodes having different diameters shown in FIG. 8 similar to those used for the production of the thin film-formed body 8 described in Example 1 is used.
- a thin film laminate 20 was produced by performing the above-mentioned post-treatment in the same manner as the thin film laminate 17 except that the plasma discharge treatment apparatus of the application method B) in which the high frequency electric field was superimposed was used.
- Concentration of oxygen atoms number of oxygen atoms / number of all atoms ⁇ 100
- Each thin film stack is a silicon oxide film, and the theoretical atomic number concentration of oxygen is 67%.
- ESCALAB-200R manufactured by VG Scientific, Inc. was used in the present invention. Specifically, Mg was used for the X-ray anode, and measurement was performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA). The energy resolution was set to be 1.5 eV to 1.7 eV when defined by the half width of a clean Ag3d5 / 2 peak.
- the range of binding energy from 0 eV to 1100 eV was measured at a data acquisition interval of 1.0 eV to determine what elements were detected.
- the data acquisition interval was set to 0.2 eV, and the photoelectron peak giving the maximum intensity was subjected to narrow scan, and the spectrum of each element was measured (in this case) , Silicon, oxygen, carbon, nitrogen, etc.).
- the obtained spectrum is COMMON DATA PROCESSING SYSTEM manufactured by VAMAS-SCA-JAPAN (Ver. 2.3 or later is preferable) in order not to cause a difference in the content calculation result due to a difference in measuring apparatus or computer.
- the content value of oxygen which is an element of the analysis target, processed with the same software was obtained.
- Table 2 shows the results obtained as described above.
- the thin film laminated body of this invention is compared with a comparative example. It was confirmed that the variation width of the oxygen content was small.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Provided are a plasma discharge device that forms thin films of excellent film thickness uniformity and thin film layered products. The plasma discharge device is characterized by the fact that in a plasma discharge device having opposing electrodes consisting of a pair of rotating roll electrodes, a plasma discharge space wherein voltage is applied between the opposing electrodes to generate a plasma discharge, a substrate that passes through the plasma discharge space while being held by said opposing electrodes that consist of roll electrodes, and a process gas supply means that supplies process gas into said plasma discharge space, said process gas is composed of a discharge gas and a thin film-forming gas, said discharge gas contains at least 90 vol% or more of nitrogen gas, and the ratio of the diameters of the above pair of roll electrodes that constitute said opposing electrodes is 1.00:0.55 to 1.00:0.95.
Description
本発明は、基材上に均質の機能性薄膜を形成する新規のプラズマ放電処理装置及び薄膜積層体に関するものである。
The present invention relates to a novel plasma discharge treatment apparatus and a thin film laminate for forming a homogeneous functional thin film on a substrate.
近年、LSI、半導体、表示デバイス、磁気記録デバイス、光電変換デバイス等の各種製品には、基材上に電極膜、誘電体保護膜、半導体膜などの高機能性の薄膜を設けた材料が多数用いられている。
In recent years, various products such as LSIs, semiconductors, display devices, magnetic recording devices, photoelectric conversion devices, etc. have many materials in which high-functional thin films such as electrode films, dielectric protective films, and semiconductor films are provided on a substrate. It is used.
このような高機能性の薄膜は、塗布法に代表される湿式製膜法か、あるいは、真空蒸着法、スパッタリング法、イオンビーム法、イオンプレーティング法、減圧下でのグロー放電を利用したプラズマ・ケミカルベーパーデポジット(CVD)法等が用いられてきた。しかしながら、これらの方法はいずれも真空系処理手段からなるものであって、処理系を相当程度に減圧する必要があるため、使用する成膜装置が、大型処理チャンバーや大型真空ポンプ等の大がかりな機器や機器ユニットとなり、又、高度減圧下の煩瑣な作業を要するものである上、更には、これら機器や機器ユニットの性能上、ロール状に巻回された基材の巻径、巾等のサイズ、薄膜形成用原料等の容量、その他各種の制限・限界がある。
Such high-functional thin films can be obtained by wet deposition methods such as coating methods, or plasma using vacuum deposition, sputtering, ion beam, ion plating, or glow discharge under reduced pressure. -Chemical vapor deposit (CVD) method has been used. However, each of these methods comprises a vacuum processing means, and the processing system needs to be considerably depressurized. Therefore, the film forming apparatus to be used is not a large-scale processing chamber or a large vacuum pump. It becomes a device or a device unit, and requires complicated work under a high pressure reduction. Furthermore, on the performance of these devices and device units, the roll diameter, width, etc. of the substrate wound in a roll shape There are size, capacity of raw materials for thin film formation, and various other limitations.
上記課題に対し、例えば、大気圧プラズマ放電処理薄膜形成法が、上記湿式製膜法に比べてより高性能な薄膜が得られること、且つ、真空を用いた乾式製膜法に比べて生産性が高いこと等から、考案され実用化されつつある。大気圧プラズマ放電処理方法は、真空にする必要がないので、塗布法と同様に連続製膜が可能であることであるという利点を備えている。
For example, the atmospheric pressure plasma discharge treatment thin film formation method can achieve a higher performance thin film than the wet film formation method, and the productivity compared to the dry film formation method using a vacuum. Is being devised and put to practical use because of its high cost. Since the atmospheric pressure plasma discharge treatment method does not need to be evacuated, it has an advantage that continuous film formation is possible as in the coating method.
これらの大気圧プラズマを用いた連続表面処理又は連続成膜に用いられる装置としては、尖端放電を防止するため周縁部を滑らかな曲面で縁取りした一対の平行平板電極が放電プラズマ処理電極として用いられている。
As a device used for continuous surface treatment or continuous film formation using these atmospheric pressure plasmas, a pair of parallel plate electrodes with a smooth curved edge is used as a discharge plasma treatment electrode to prevent tip discharge. ing.
この様な平行平板電極は、電極の製作、電極間距離の設定が容易であり、電極面積が広くとれるので、電極間を移送される被処理フィルムは、移送方向に逐次処理され、成膜速度を速めることができる上に、前記する低圧プラズマに比してプラズマ処理ガス密度を高くとることができ、処理効率に優れた方法である。しかしながら、反面、電極等の設備コストが大きく、設備費用の圧縮、或いは処理能力アップによるコスト低減が実用化の鍵になっている。上記処理能力アップのために、更に、プラズマ密度を高め、或いは電界強度を高める等、エネルギーアップさせることが考えられるが、電界強度を高めた場合、アークによる大電流の集中放電のおそれがある。
Such parallel plate electrodes are easy to manufacture and set the distance between the electrodes, and the electrode area can be widened, so that the film to be processed transferred between the electrodes is sequentially processed in the transfer direction, and the film formation speed is increased. In addition, the plasma processing gas density can be increased as compared with the above-described low-pressure plasma, and the processing efficiency is excellent. However, the cost of equipment such as electrodes is high, and the key to practical use is to reduce the equipment cost or to reduce the cost by increasing the processing capacity. In order to increase the processing capacity, it is conceivable to increase the energy by increasing the plasma density or increasing the electric field strength. However, when the electric field strength is increased, there is a risk of concentrated discharge of a large current due to the arc.
更に、上記電極は固定電極であるために、成膜するための混合ガスの流れに常時曝され、プラズマ放電が続けられているので、上記電極表面は、次第に汚染されて行き、遂には放電状態に変化を及ぼし、形成される被膜や処理面の性能にバラツキを与え、著しい場合にはスジ、ムラ等の外見上判然と認知される欠点の発生に至るという問題点を有する。
Further, since the electrode is a fixed electrode, it is constantly exposed to the flow of a mixed gas for film formation, and plasma discharge is continued. Therefore, the surface of the electrode is gradually contaminated, and finally the discharge state. The film has a problem in that the film formed and the performance of the treated surface are varied, and in the case of remarks, defects such as streaks and unevenness are clearly recognized.
上記電極の汚れを防止するため、電極が互いにロール状である放電プラズマ処理電極間に混合ガスを供給し、放電プラズマ処理する方式が提案されている(例えば、特許文献1~3参照。)。
In order to prevent the electrodes from being contaminated, there has been proposed a method in which a mixed gas is supplied between discharge plasma processing electrodes in which the electrodes are in a roll shape to perform discharge plasma processing (for example, see Patent Documents 1 to 3).
しかしながら、これら特許文献に記載の方法は、何れも放電空間を形成する1対のロール電極は、同直径(すなわち、同円周)のロール電極を使用しているが、各ロール電極を設置する際の中心軸の誤差による芯ぶれや、ロール電極加工時の円周部での歪み等により、各ロール電極回転時に、電極間距離に変動を起こすことになる。特に、対向するロール電極の変位が同期すると、強い膜厚ムラが周期的に出現することになる。この様な電極間距離の変動(放電距離の変動)に起因して、放電強度の変動を引き起こし、基材上に形成する薄膜の物理的な特性や形成膜厚に違いを生じる結果となる。特に、薄膜が、屈折率の異なる薄膜を精緻に制御しながら積層させて形成する反射防止層である場合には、各層の屈折率及び形成する膜厚により、反射率や色調が大きく影響を受けるため、薄膜形成時の放電距離変動を抑制することが重要な要素となってくる。
特開2001-279457号公報
特開2003-93870号公報
特開2004-189958号公報
However, in each of the methods described in these patent documents, a pair of roll electrodes that form a discharge space uses roll electrodes having the same diameter (that is, the same circumference), but each roll electrode is installed. When the roll electrodes are rotated, fluctuations in the distance between the electrodes are caused by the centering error due to the error of the central axis at the time, the distortion at the circumferential portion when the roll electrodes are processed, and the like. In particular, when the displacements of the opposing roll electrodes are synchronized, strong film thickness irregularities appear periodically. Due to such a variation in the distance between electrodes (a variation in the discharge distance), a variation in the discharge intensity is caused, resulting in a difference in the physical characteristics and the formed film thickness of the thin film formed on the substrate. In particular, when the thin film is an antireflection layer formed by laminating thin films with different refractive indexes while precisely controlling them, the reflectance and color tone are greatly affected by the refractive index of each layer and the film thickness to be formed. Therefore, it becomes an important factor to suppress the discharge distance fluctuation at the time of thin film formation.
JP 2001-279457 A JP 2003-93870 A JP 2004-189958 A
本発明は、上記課題に鑑みなされたものであり、その目的は、膜厚均一性に優れた薄膜を形成するプラズマ放電処理装置及び薄膜積層体を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a plasma discharge treatment apparatus and a thin film laminate that form a thin film with excellent film thickness uniformity.
本発明の上記目的は、以下の構成により達成される。
The above object of the present invention is achieved by the following configuration.
1.一対の回転するロール電極からなる対向電極と、対向電極間に電圧を印加してプラズマ放電を発生させるプラズマ放電空間と、該ロール電極からなる対向電極に保持されながらプラズマ放電空間を通過する基材と、該プラズマ放電空間に処理ガスを供給する処理ガス供給手段を有するプラズマ放電処理装置において、該処理ガスは、放電ガス及び薄膜形成ガスから構成され、該放電ガスが少なくとも窒素ガスを90体積%以上含有し、かつ該対向電極を構成する1対のロール電極の直径比が1.00:0.55から1.00:0.95であることを特徴とするプラズマ放電処理装置。
1. A counter electrode composed of a pair of rotating roll electrodes, a plasma discharge space that generates a plasma discharge by applying a voltage between the counter electrodes, and a base material that passes through the plasma discharge space while being held by the counter electrode composed of the roll electrode And a processing gas supply means for supplying a processing gas to the plasma discharge space, wherein the processing gas includes a discharge gas and a thin film forming gas, and the discharge gas contains at least 90% by volume of nitrogen gas. A plasma discharge treatment apparatus characterized in that the diameter ratio of a pair of roll electrodes that are contained above and constitute the counter electrode is 1.00: 0.55 to 1.00: 0.95.
2.前記基材上に、機能性薄膜を形成することを特徴とする前記1に記載のプラズマ放電処理装置。
2. 2. The plasma discharge treatment apparatus according to 1 above, wherein a functional thin film is formed on the substrate.
3.前記処理ガス供給手段が、対向電極間に大気圧またはその近傍の圧力の処理ガスを供給することを特徴とする前記1または2に記載のプラズマ放電処理装置。
3. 3. The plasma discharge processing apparatus according to claim 1 or 2, wherein the processing gas supply means supplies a processing gas having an atmospheric pressure or a pressure in the vicinity thereof between the counter electrodes.
4.前記プラズマ放電は、第1の高周波電界と第2の高周波電界とを重畳し、プラズマ放電させる方法であることを特徴とする前記1から3のいずれか1項に記載のプラズマ放電処理装置。
4. 4. The plasma discharge processing apparatus according to any one of claims 1 to 3, wherein the plasma discharge is a method of superposing a first high-frequency electric field and a second high-frequency electric field to cause plasma discharge.
5.前記基材を折り返し搬送して、該基材上に機能性薄膜を形成することを特徴とする前記1から4のいずれか1項に記載のプラズマ放電処理装置。
5. The plasma discharge treatment apparatus according to any one of 1 to 4, wherein the substrate is folded and conveyed to form a functional thin film on the substrate.
6.前記基材をループ搬送方式で連続搬送して、該基材上に機能性薄膜を形成することを特徴とする前記1から5のいずれか1項に記載のプラズマ放電処理装置。
6. 6. The plasma discharge treatment apparatus according to any one of 1 to 5, wherein the base material is continuously transported by a loop transport method to form a functional thin film on the base material.
7.前記1から6のいずれか1項に記載のプラズマ放電処理装置を用いて、基材表面に機能性薄膜が形成されたことを特徴とする薄膜積層体。
7. 7. A thin film laminate in which a functional thin film is formed on the surface of a substrate using the plasma discharge treatment apparatus according to any one of 1 to 6 above.
8.前記機能性薄膜が、反射防止膜であることを特徴とする前記7に記載の薄膜積層体。
8. 8. The thin film laminate according to 7, wherein the functional thin film is an antireflection film.
本発明により、膜厚均一性に優れた薄膜を形成するプラズマ放電処理装置及び薄膜積層体を提供することができた。
According to the present invention, it was possible to provide a plasma discharge treatment apparatus and a thin film laminate that form a thin film with excellent film thickness uniformity.
1 大気圧プラズマ放電装置
10、10′、10A、10B、10C ロール電極
11A、11B、11C、11D 折り返しロール(Uターンロール)
11E、11F サポートロール
20、21 ガイドロール
200a、200A 導電性母材
200b セラミック被覆処理誘電体
200B ライニング処理誘電体
30 処理ガス供給部
31 ニップローラ
32 ブレード
40 排出口
80 電源
801 第1電源
802 第2電源
81、82、811、812、821、822 電圧供給手段
831 第1フィルター
832 第2フィルター
100 放電部
A1、B1、C1 ロール電極の回転周期
CG 補助ガス
d1、d2 ロール電極の直径
F、F1、F2 基材
G 反応ガス
G′ 処理後のガス
L 放電距離 1 Atmospheric pressure plasma discharge device 10, 10 ', 10A, 10B, 10C Roll electrode 11A, 11B, 11C, 11D Folding roll (U-turn roll)
11E, 11F Support roll 20, 21 Guide roll 200a, 200A Conductive base material 200b Ceramic coating dielectric 200B Lining dielectric 30 Processing gas supply unit 31 Nip roller 32 Blade 40 Discharge port 80 Power supply 801 First power supply 802 Second power supply 81, 82, 811, 812, 821, 822 Voltage supply means 831 1st filter 832 2nd filter 100 Discharge section A1, B1, C1 Rotation cycle of roll electrode CG Auxiliary gas d1, d2 Diameter of roll electrode F, F1, F2 Base material G Reaction gas G 'Gas after treatment L Discharge distance
10、10′、10A、10B、10C ロール電極
11A、11B、11C、11D 折り返しロール(Uターンロール)
11E、11F サポートロール
20、21 ガイドロール
200a、200A 導電性母材
200b セラミック被覆処理誘電体
200B ライニング処理誘電体
30 処理ガス供給部
31 ニップローラ
32 ブレード
40 排出口
80 電源
801 第1電源
802 第2電源
81、82、811、812、821、822 電圧供給手段
831 第1フィルター
832 第2フィルター
100 放電部
A1、B1、C1 ロール電極の回転周期
CG 補助ガス
d1、d2 ロール電極の直径
F、F1、F2 基材
G 反応ガス
G′ 処理後のガス
L 放電距離 1 Atmospheric pressure
11E,
以下、本発明を実施するための最良の形態について詳細に説明する。
Hereinafter, the best mode for carrying out the present invention will be described in detail.
本発明者は、上記課題に鑑み鋭意検討を行った結果、一対の回転するロール電極からなる対向電極と、対向電極間に電圧を印加してプラズマ放電を発生させるプラズマ放電空間と、該ロール電極からなる対向電極に保持されながらプラズマ放電空間を通過する基材と、該プラズマ放電空間に処理ガスを供給する処理ガス供給手段を有するプラズマ放電処理装置において、該処理ガスは、放電ガス及び薄膜形成ガスから構成され、該放電ガスが少なくとも窒素ガスを90体積%以上含有し、かつ該対向電極を構成する1対のロール電極の直径比が1.00:0.55から1.00:0.95であることを特徴とするプラズマ放電処理装置により、膜厚均一性に優れた薄膜を形成するプラズマ放電処理装置を実現できることを見出し、本発明に至った次第である。
As a result of intensive studies in view of the above problems, the present inventor has found that a counter electrode composed of a pair of rotating roll electrodes, a plasma discharge space for generating a plasma discharge by applying a voltage between the counter electrodes, and the roll electrode A plasma discharge processing apparatus having a base material that passes through a plasma discharge space while being held by a counter electrode, and a processing gas supply means for supplying a processing gas to the plasma discharge space. The discharge gas contains at least 90% by volume of nitrogen gas, and the diameter ratio of a pair of roll electrodes constituting the counter electrode is 1.00: 0.55 to 1.00: 0. It was found that a plasma discharge processing apparatus capable of forming a thin film with excellent film thickness uniformity can be realized by the plasma discharge processing apparatus characterized by being 95. Tsu was is up.
以下、本発明のプラズマ放電処理装置及び薄膜積層体の詳細について説明する。
Hereinafter, the details of the plasma discharge treatment apparatus and the thin film laminate of the present invention will be described.
〔プラズマ放電処理装置〕
対向電極を構成する1対のロール電極の直径比が1.00:0.55から1.00:0.95であることを特徴とする本発明のプラズマ放電処理装置は、均一な薄膜形成あるいは表面処理に対し優れた効果を発揮することができ、例えば、放電ガスと原料ガスを用いての均質性の高い精緻な機能性薄膜(例えば、反射防止膜、ガスバリア膜、ハードコート膜、防眩膜、防汚膜、導電性膜等)の製膜に適用できる他、基材や機能性薄膜等の表面改質、例えば、機能性薄膜を製膜した後の酸化処理や還元処理、あるいは親水化処理等の表面処理分野に広く適用することができる。 [Plasma discharge treatment equipment]
The plasma discharge treatment apparatus according to the present invention is characterized in that the diameter ratio of a pair of roll electrodes constituting a counter electrode is 1.00: 0.55 to 1.00: 0.95. Excellent effect on surface treatment, for example, highly functional thin films with high homogeneity using discharge gas and source gas (for example, antireflection film, gas barrier film, hard coat film, antiglare film) Film, antifouling film, conductive film, etc.), surface modification of substrates and functional thin films, for example, oxidation treatment or reduction treatment after functional thin film is formed, or hydrophilic It can be widely applied to the surface treatment field such as chemical treatment.
対向電極を構成する1対のロール電極の直径比が1.00:0.55から1.00:0.95であることを特徴とする本発明のプラズマ放電処理装置は、均一な薄膜形成あるいは表面処理に対し優れた効果を発揮することができ、例えば、放電ガスと原料ガスを用いての均質性の高い精緻な機能性薄膜(例えば、反射防止膜、ガスバリア膜、ハードコート膜、防眩膜、防汚膜、導電性膜等)の製膜に適用できる他、基材や機能性薄膜等の表面改質、例えば、機能性薄膜を製膜した後の酸化処理や還元処理、あるいは親水化処理等の表面処理分野に広く適用することができる。 [Plasma discharge treatment equipment]
The plasma discharge treatment apparatus according to the present invention is characterized in that the diameter ratio of a pair of roll electrodes constituting a counter electrode is 1.00: 0.55 to 1.00: 0.95. Excellent effect on surface treatment, for example, highly functional thin films with high homogeneity using discharge gas and source gas (for example, antireflection film, gas barrier film, hard coat film, antiglare film) Film, antifouling film, conductive film, etc.), surface modification of substrates and functional thin films, for example, oxidation treatment or reduction treatment after functional thin film is formed, or hydrophilic It can be widely applied to the surface treatment field such as chemical treatment.
以下、広範囲の分野に適用可能な本発明のプラズマ放電処理装置について、機能性薄膜の製膜方法を一例として説明するが、本発明の適用分野はこれら例示する製膜方法にのみ限定されるものではない。
Hereinafter, the plasma discharge treatment apparatus of the present invention applicable to a wide range of fields will be described by taking as an example a method for forming a functional thin film, but the field of application of the present invention is limited only to these exemplified film forming methods. is not.
本発明のプラズマ放電処理装置及び比較例のプラズマ放電処理装置について、図を例示して説明する。
The plasma discharge treatment apparatus of the present invention and the plasma discharge treatment apparatus of the comparative example will be described with reference to the drawings.
図1は、従来型のプラズマ放電処理装置の一例で、同一直径のロール電極を用いて基材を往復させて薄膜を形成するのに用いるプラズマ放電処理装置を模式的に示した図である。このプラズマ放電処理装置1は、同一の直径を有する一対のロール電極10Aとロール電極10Bを有し、これらのロール電極10Aと10Bにはプラズマ放電のための電圧を印加できる電源80が電圧供給手段81と82を介して接続されている。同一ロール径のロール電極10Aと10Bは、基材Fを巻き回しながら回転することができる回転電極である。放電部(放電空間ともいう)100は、例えば、大気圧もしくはその近傍の圧力下に維持され、処理ガス供給部30から処理ガスGが供給され、放電空間間隙がLの放電部100においてプラズマ放電が行われる。
FIG. 1 is an example of a conventional plasma discharge treatment apparatus, schematically showing a plasma discharge treatment apparatus used for forming a thin film by reciprocating a substrate using roll electrodes having the same diameter. This plasma discharge treatment apparatus 1 has a pair of roll electrodes 10A and 10B having the same diameter, and a power supply 80 capable of applying a voltage for plasma discharge to these roll electrodes 10A and 10B is a voltage supply means. 81 and 82 are connected. The roll electrodes 10 </ b> A and 10 </ b> B having the same roll diameter are rotary electrodes that can be rotated while winding the base material F. The discharge unit (also referred to as discharge space) 100 is maintained at, for example, atmospheric pressure or a pressure in the vicinity thereof, the process gas G is supplied from the process gas supply unit 30, and plasma discharge is performed in the discharge unit 100 having the discharge space gap L. Is done.
前工程または元巻きロールから供給される基材Fは、ガイドロール20によりロール電極10Aに密着され、同期して回転移送され、放電部100で、処理ガスGによりプラズマ放電処理が施される。
The base material F supplied from the pre-process or the former winding roll is brought into close contact with the roll electrode 10A by the guide roll 20 and rotated and transferred in synchronization, and is subjected to plasma discharge treatment by the processing gas G in the discharge section 100.
処理ガス供給手段30は基材の幅と同等か、あるいはそれよりやや幅が広いスリット状であることが好ましく、あるいはパイプ状の吹き出し口を横に並べて基材の幅同等となるように配置したものでもよく、幅方向全体で均一な流量或いは流速で処理ガスGが放電部100に導入されるようにするのがよい。一旦処理された基材Fは折り返しロール(Uターンロールともいう)11A、11B、11C及び11Dを経て、逆方向に移送されロール電極10Bに抱かれて再び放電部100でプラズマ放電処理が施されガイドロール21を介して巻き取り、または次工程(何れも図示してない)に移送される。処理後のガスG′は排気口40より排気される。排気口40からの排気流量は処理ガス供給手段30からの流量と同等か、やや多いことが好ましい。放電部100のロール電極10A及び10Bの側面側を遮蔽しても、また装置全体を囲い、全体を希ガス或いは処理ガスで満たしてもよい。
The processing gas supply means 30 is preferably in the form of a slit that is the same as or slightly wider than the width of the base material, or pipe-shaped outlets are arranged side by side so as to be equivalent to the width of the base material. The processing gas G may be introduced into the discharge unit 100 at a uniform flow rate or flow rate throughout the width direction. The substrate F once processed passes through folding rolls (also referred to as U-turn rolls) 11A, 11B, 11C, and 11D, is transferred in the reverse direction, is held by the roll electrode 10B, and is subjected to plasma discharge treatment again in the discharge unit 100. It is wound up via the guide roll 21 or transferred to the next step (none of which is shown). The treated gas G ′ is exhausted from the exhaust port 40. The exhaust flow rate from the exhaust port 40 is preferably equal to or slightly higher than the flow rate from the processing gas supply means 30. The side surfaces of the roll electrodes 10A and 10B of the discharge unit 100 may be shielded, or the entire apparatus may be surrounded and filled with a rare gas or a processing gas.
図1に示すような放電部100を構成する一対のロール電極10A、10Bが同一径である場合、各ロール電極作製時の真円からのずれによるロール円周の歪み、あるいは所定の放電空間を形成するため、各ロール電極を互いに対向する位置に設置した際に、各ロール電極の中心部の偏芯等により、ロール電極の回転に伴い、放電空間での放電距離Lに変動が生じ、特に、同直径(同円周)のロール電極を用いた場合には、それぞれのロール電極の偏芯部が常に一定となるため、各々のロール電極の偏差が同期し、大きな放電距離Lの変動が周期的に出現する結果となる。
When the pair of roll electrodes 10A and 10B constituting the discharge unit 100 as shown in FIG. 1 have the same diameter, a roll circumference distortion due to deviation from a perfect circle at the time of producing each roll electrode, or a predetermined discharge space When the roll electrodes are installed at positions facing each other to form, due to the eccentricity of the center of each roll electrode, the discharge distance L in the discharge space varies due to the rotation of the roll electrode, When roll electrodes having the same diameter (same circumference) are used, the eccentric portions of the respective roll electrodes are always constant, so that the deviations of the respective roll electrodes are synchronized, and there is a large variation in the discharge distance L. The result will appear periodically.
図2は、同一径のロール電極から構成される放電空間における放電距離Lの変動を示す模式図である。
FIG. 2 is a schematic diagram showing the variation of the discharge distance L in the discharge space composed of roll electrodes having the same diameter.
図2において、実線は図1におけるロール電極10Aの真円度パターンを表し、回転周期はA1である。破線はロール電極10Aに対向する位置にあるロール電極10Bの真円度パターンを表し、回転周期はB1である。ここで、回転周期A1と回転周期B1とは全く同一となる。
2, the solid line represents the roundness pattern of the roll electrode 10A in FIG. 1, and the rotation period is A1. A broken line represents the roundness pattern of the roll electrode 10B at a position facing the roll electrode 10A, and the rotation period is B1. Here, the rotation period A1 and the rotation period B1 are exactly the same.
この様な真円度特性を備えた各ロール電極により形成された放電空間100において、各ロール電極の最大直径部あるいは最小直径部が同期した場合、放電距離Lは図2の一点破線で示すような放電処理がロール電極の回転に伴い最小距離から最大距離まで大きく変更する放電距離パターンを示すことにより、この放電距離の変動により、基材上に形成される薄膜の均一性や特性が大きく損なわれる結果となる。
In the discharge space 100 formed by each roll electrode having such roundness characteristics, when the maximum diameter part or the minimum diameter part of each roll electrode is synchronized, the discharge distance L is as shown by a dashed line in FIG. By exhibiting a discharge distance pattern in which a simple discharge treatment changes greatly from the minimum distance to the maximum distance as the roll electrode rotates, the uniformity and characteristics of the thin film formed on the substrate are greatly impaired due to the fluctuation of the discharge distance. Result.
上記課題に対し、本発明のプラズマ放電処理装置においては、放電空間を形成する1対のロール電極の直径比を1.00:0.55から1.00:0.95の構成とすることを特徴とするものである。
In response to the above problem, in the plasma discharge processing apparatus of the present invention, the diameter ratio of the pair of roll electrodes forming the discharge space is set to a configuration of 1.00: 0.55 to 1.00: 0.95. It is a feature.
図3は、異なる直径のロール電極対を有する本発明のプラズマ放電処理装置を模式的に示した図である。
FIG. 3 is a view schematically showing a plasma discharge treatment apparatus of the present invention having a pair of roll electrodes having different diameters.
図3に記載のプラズマ放電処理装置1の基本的な構成は、上述の図1で説明した構成とほぼ同一であるが、放電空間を構成するロール電極の直径比が1.00:0.55から1.00:0.95であることを特徴とするものであり、一方のロール電極10Aの直径をd1とし、他方のロール電極10Cの直径をd2としたとき、d1>d2で構成されている。
The basic configuration of the plasma discharge processing apparatus 1 shown in FIG. 3 is almost the same as the configuration described with reference to FIG. 1, but the diameter ratio of the roll electrodes that constitute the discharge space is 1.00: 0.55. 1.00: 0.95, and when the diameter of one roll electrode 10A is d1 and the diameter of the other roll electrode 10C is d2, d1> d2 Yes.
本発明においては、ロール電極10Aとロール電極10Cとの直径比が1.00:0.55から1.00:0.95であることを特徴とするが、好ましくはd2/d1が、0.75~0.90の範囲である。
In the present invention, the diameter ratio between the roll electrode 10A and the roll electrode 10C is 1.00: 0.55 to 1.00: 0.95, preferably d2 / d1 is 0.00. It is in the range of 75 to 0.90.
本発明においては、本発明で規定するロール電極の構成を採ることにより、各ロール電極作製時のロール円周の歪みやロール電極設置時の偏芯等による放電距離Lの変動巾を抑制することができ、薄膜の均一性に優れた薄膜積層体を得ることができる。
In the present invention, by adopting the configuration of the roll electrode defined in the present invention, the fluctuation range of the discharge distance L due to the distortion of the roll circumference at the time of production of each roll electrode or the eccentricity at the time of roll electrode installation is suppressed. Thus, a thin film laminate having excellent thin film uniformity can be obtained.
本発明においては、本発明のプラズマ放電処理装置を用いて基材上に形成する薄膜が機能性薄膜であることが好ましい。本発明でいう機能性薄膜とは、例えば、反射防止膜、ガスバリア膜、帯電防止膜、防汚膜、防眩膜、ハードコート膜等の各機能を備えた膜をいい、その中でも形成する機能性薄膜が、反射防止膜であることが、本発明の目的効果をいかんなく発揮できる観点から好ましい。なお、反射防止膜の詳細に関しては、後述する。
In the present invention, it is preferable that the thin film formed on the substrate using the plasma discharge treatment apparatus of the present invention is a functional thin film. The functional thin film as used in the present invention refers to a film having each function such as an antireflection film, a gas barrier film, an antistatic film, an antifouling film, an antiglare film, a hard coat film, etc. It is preferable that the conductive thin film is an antireflection film from the viewpoint that the objective effect of the present invention can be exhibited. The details of the antireflection film will be described later.
図4は、異なる直径のロール電極から構成される放電空間における放電距離Lの変動を示す模式図である。
FIG. 4 is a schematic diagram showing the variation of the discharge distance L in the discharge space composed of roll electrodes having different diameters.
図4において、実線は図3におけるロール電極10Aの真円度パターンを表し、回転周期はA1である。破線はロール電極10Aに対向する位置にあるロール電極10Cの真円度パターンを表し、回転周期はC1である。ここで、回転周期A1と回転周期B1とは異なり、位相にずれがあることが特徴である。
4, the solid line represents the roundness pattern of the roll electrode 10A in FIG. 3, and the rotation period is A1. A broken line represents the roundness pattern of the roll electrode 10C at a position facing the roll electrode 10A, and the rotation period is C1. Here, unlike the rotation cycle A1 and the rotation cycle B1, there is a feature that there is a phase shift.
この様な真円度特性を備えた各ロール電極により形成された放電空間100において、各ロール電極の最大直径部あるいは最小直径部が同期する確率は、図2に示した同一径のロール電極とは異なり、その結果、放電距離Lは図4の一点破線で示すように、ロール電極の回転に伴い放電距離Lの変動を抑制した放電距離パターンを示すことにより、この放電距離変動が抑制されることにより、基材上に形成される薄膜の均一性や特性が向上するものである。
In the discharge space 100 formed by each roll electrode having such roundness characteristics, the probability that the maximum diameter part or the minimum diameter part of each roll electrode is synchronized is the same as the roll electrode of the same diameter shown in FIG. As a result, the discharge distance L is suppressed by showing the discharge distance pattern in which the fluctuation of the discharge distance L is suppressed as the roll electrode rotates, as indicated by the one-dot broken line in FIG. This improves the uniformity and characteristics of the thin film formed on the substrate.
図3に示したプラズマ放電処理装置は、放電部100で処理された基材Fを折り返しロール11A、11B、11C及び11Dを経て、逆方向に移送されロール電極10Cに抱かれて、放電部100で2回目のプラズマ放電処理を施した後、ガイドロール21を介して巻き取り、または次工程(何れも図示してない)に移送される折り返し搬送方式を示したものであるが、その他の方式として、折り返しロール11A、11B、11C、11D間で無端の基材を保持し、ループ搬送方式で連続搬送しながら機能性薄膜を形成する方式も好ましい態様の一つである。
In the plasma discharge processing apparatus shown in FIG. 3, the base material F processed in the discharge unit 100 is transferred in the reverse direction through the folding rolls 11 </ b> A, 11 </ b> B, 11 </ b> C and 11 </ b> D, and held by the roll electrode 10 </ b> C. In FIG. 2, after the second plasma discharge treatment, the sheet is wound up through the guide roll 21 or is transferred to the next process (none of which is shown). As a preferred embodiment, a method in which an endless base material is held between the folding rolls 11A, 11B, 11C, and 11D and the functional thin film is formed while being continuously conveyed by a loop conveying method.
図5は、異なる直径のロール電極対を有し、ループ方式で連続搬送して薄膜形成を行うプラズマ放電処理装置を模式的に示した図である。
FIG. 5 is a diagram schematically showing a plasma discharge treatment apparatus having roll electrode pairs with different diameters and performing thin film formation by continuous conveyance in a loop manner.
プラズマ放電処理装置1において、折り返しロール11A、11B、11C、11Dで保持されている無端の基材Fを、薄膜形成面を内側にして、連続搬送を行う。直径がd1のロール電極10Aと、直径がd2のロール電極10Cとを対向する位置に配置して、放電部100を構成指定している。この時、d1>d2である。
In the plasma discharge treatment apparatus 1, the endless base material F held by the folding rolls 11A, 11B, 11C, and 11D is continuously conveyed with the thin film forming surface inside. The discharge unit 100 is designated by disposing the roll electrode 10A having a diameter d1 and the roll electrode 10C having a diameter d2 facing each other. At this time, d1> d2.
各ロール電極10A、10Cに、プラズマ放電のための電圧を印加できる電源80が電圧供給手段81と82を介して接続されている。直径の異なるロール電極10Aと10Cは、基材Fを巻き回しながら回転することができる回転電極で、放電部100は、例えば、大気圧もしくはその近傍の圧力下に維持され、処理ガス供給部30から処理ガスGが供給され、放電空間間隙がLの放電部100においてプラズマ放電が行われ、処理後のガスG′は排気口40より排気される。
A power supply 80 capable of applying a voltage for plasma discharge is connected to each of the roll electrodes 10A and 10C via voltage supply means 81 and 82. The roll electrodes 10 </ b> A and 10 </ b> C having different diameters are rotating electrodes that can be rotated while winding the base material F, and the discharge unit 100 is maintained at, for example, atmospheric pressure or a pressure in the vicinity thereof, and the processing gas supply unit 30. Then, the processing gas G is supplied, plasma discharge is performed in the discharge section 100 having the discharge space gap L, and the processed gas G ′ is exhausted from the exhaust port 40.
本発明においては、基材の搬送方式として、図3、図5においては、単一基材を用いた薄膜形成方法の一例を示したが、図6に示すように、各ロール電極10B、10Cに対し、それぞれ対応するサポートロール11E、11Fを介して、独立して連続搬送する異なる基材F1、F2に対し、同時に薄膜を形成する方法(独立搬送方式ともいう)に適用してもよい。
In the present invention, an example of the thin film forming method using a single base material is shown in FIGS. 3 and 5 as the base material transport system. However, as shown in FIG. On the other hand, you may apply to the method (it is also called an independent conveyance system) which forms a thin film simultaneously with respect to the different base materials F1 and F2 which carry out independent continuous conveyance through the corresponding support rolls 11E and 11F, respectively.
上記で説明した各基材搬送方式の中でも、図6に示す独立搬送方式よりも、図3に示すような折り返し搬送機構、あるいは図5に示すようなループ搬送機構を備えたプラズマ放電処理装置は、それぞれ異なるロール電極面を基材が通過することにより、各ロール電極の放電ムラをキャンセルすることができ、より均一の機能性薄膜を形成できる観点から好ましい。
Among the substrate transport methods described above, the plasma discharge processing apparatus provided with the folding transport mechanism as shown in FIG. 3 or the loop transport mechanism as shown in FIG. 5 is more than the independent transport method shown in FIG. Since the base material passes through different roll electrode surfaces, discharge unevenness of each roll electrode can be canceled, and this is preferable from the viewpoint of forming a more uniform functional thin film.
その理由に関しては、現時点ではその機能は明確になっていないが、以下のように推測している。
】 Regarding the reason, its function is not clear at present, but it is estimated as follows.
本発明で規定する直径比が1.00:0.55から1.00:0.95である対向ロール電極を用いる際、対向ロール電極のロール径やロール回転速度の違いによる同伴空気量に変化を生じ場合がある。その結果、弱い放電ムラや薄膜ムラを引き起こす場合があるが、この様な折り返し搬送方式あるいはループ搬送方式は、特に、同伴空気の流入に起因する放電ムラを補償することができ、より均一性の高い薄膜を形成することができる観点から好ましい。
When a counter roll electrode having a diameter ratio specified by the present invention of 1.00: 0.55 to 1.00: 0.95 is used, the amount of air entrained varies depending on the roll diameter or roll rotation speed of the counter roll electrode. May occur. As a result, weak discharge unevenness and thin film unevenness may be caused. However, such a folded transfer method or loop transfer method can particularly compensate for the discharge unevenness caused by the inflow of entrained air, and is more uniform. It is preferable from the viewpoint that a high thin film can be formed.
すなわち、対向するロール電極を用いて放電空間を形成する場合、図6に示す様な独立搬送方式のプラズマ放電処理装置においては、放電ガス及び原料ガスを供給する処理ガス供給部30とロール電極10Aとの間隙、あるいは処理ガス供給部30とより小直径のロール電極10Cとの間隙より、各ロール電極の回転による基材搬送に伴い、放電空間100外部からの空気の導入(同伴空気ともいう)を避けることはできず、その結果、各ロール電極表面に供給される処理ガスは、同伴された空気との混合体を形成することにより、当然、処理ガスの濃度ムラを引き起こし、ロール電極の幅手方向での薄膜ムラを生じる要因となる。このロール電極の幅手方向での処理ガス濃度ムラパターンは、一定の条件で製膜を行う場合には、ほぼ一定のムラパターンとなるため、それぞれのロール電極で独立搬送を行っている場合には、一定の位置にやや強い濃度ムラが生じる要因となる。
That is, when the discharge space is formed using the opposing roll electrodes, in the independent transfer type plasma discharge processing apparatus as shown in FIG. 6, the processing gas supply unit 30 for supplying the discharge gas and the raw material gas and the roll electrode 10A. Introducing air from the outside of the discharge space 100 (also referred to as entrained air) as the substrate is conveyed by the rotation of each roll electrode through the gap between the discharge gas 100 and the gap between the processing gas supply unit 30 and the roll electrode 10C having a smaller diameter. As a result, the processing gas supplied to the surface of each roll electrode naturally forms a mixture with the entrained air, thereby causing unevenness in the concentration of the processing gas and the width of the roll electrode. It becomes a factor which produces the thin film nonuniformity in a hand direction. The processing gas concentration unevenness pattern in the width direction of the roll electrode becomes an almost constant unevenness pattern when film formation is performed under a certain condition. Is a factor that causes a slightly strong density unevenness at a certain position.
これに対し、一つの対向電極のそれぞれを通過する折り返し搬送機構あるいはループ搬送機構を備えたプラズマ放電処理装置では、上記のような同伴空気の持ち込みによる放電ガスの濃度ムラは生じるが、それぞれ放電ガス濃度パターンの異なるロール電極を通過することにより、特定のロール電極に起因する放電ガス濃度ムラを強調することなく、お互いの放電ガス濃度ムラを補償することにより、より均質性の高い機能性膜を形成できる観点から好ましい。
On the other hand, in the plasma discharge processing apparatus provided with the folded transfer mechanism or the loop transfer mechanism that passes through each of the counter electrodes, the discharge gas concentration unevenness occurs due to the carry-in air as described above. By passing through the roll electrodes with different concentration patterns, the non-uniformity in discharge gas concentration due to the specific roll electrode is not emphasized, and the non-uniformity in discharge gas concentration is compensated for, thereby providing a more homogeneous functional film. It is preferable from the viewpoint of formation.
本発明のプラズマ放電処理装置においては、処理ガス供給手段が、対向電極間に大気圧またはその近傍の圧力の処理ガスを供給すること、あるいは放電空間が大気圧またはその近傍の圧力下で形成されていることが好ましい。
In the plasma discharge processing apparatus of the present invention, the processing gas supply means supplies a processing gas having an atmospheric pressure or a pressure near it between the opposing electrodes, or the discharge space is formed under an atmospheric pressure or a pressure near it. It is preferable.
大気圧もしくはその近傍の圧力下で行われる本発明のプラズマ放電処理装置は、真空下のプラズマCVD法に比べ、減圧にする必要がなく、生産性が高いだけでなく、プラズマ密度が高密度であるために製膜速度が速く、さらには通常のCVD法の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて均質の膜が得られる。
Compared with the plasma CVD method under vacuum, the plasma discharge processing apparatus of the present invention performed under atmospheric pressure or a pressure close to it does not need to be reduced in pressure, has high productivity, and has a high plasma density. For this reason, the film forming speed is high, and further, under a high pressure condition under atmospheric pressure as compared with the conditions of a normal CVD method, the mean free path of gas is very short, so that a very homogeneous film can be obtained.
なお、本発明でいう大気圧近傍とは、20kPa~110kPaの圧力を表すが、本発明に記載の良好な効果を得るためには、93kPa~104kPaが好ましい。
In the present invention, the vicinity of atmospheric pressure represents a pressure of 20 kPa to 110 kPa, but 93 kPa to 104 kPa is preferable in order to obtain a good effect described in the present invention.
上記図3、5、6においては、ロール電極に印加する方法として、単一のプラズマ放電のための電圧を印加できる電源80を備え高周波電源が1周波数帯であるプラズマ放電処理装置について説明を行ったが、本発明のプラズマ放電処理装置においては、各々のロール電極に異なる周波数の電源を設置し、第1の高周波電界と第2の高周波電界とを重畳し、プラズマ放電させる方法であることが、より好ましい態様の1つである。本発明では、以降、前者の単一のプラズマ放電のための電圧を印加できる電源80を備え高周波電源が1周波数帯である方式を、印加方式Aと称す。また、後者の各々のロール電極に異なる周波数の電源を設置し、第1の高周波電界と第2の高周波電界とを重畳し、プラズマ放電させる方式を、印加方式Bと称す。
3, 5, and 6, as a method of applying to the roll electrode, a plasma discharge processing apparatus having a power source 80 that can apply a voltage for a single plasma discharge and a high frequency power source in one frequency band will be described. However, in the plasma discharge processing apparatus of the present invention, a power source having a different frequency is installed on each roll electrode, and the first high-frequency electric field and the second high-frequency electric field are superimposed to cause plasma discharge. This is one of the more preferred embodiments. In the present invention, hereinafter, the former method including the power source 80 capable of applying a voltage for a single plasma discharge and having a high frequency power source in one frequency band is referred to as an application method A. Further, the latter method in which a power source having a different frequency is installed in each roll electrode, the first high-frequency electric field and the second high-frequency electric field are superimposed, and plasma discharge is referred to as an application method B.
本発明における第1の高周波電界と第2の高周波電界とを重畳し、プラズマ放電させる印加方式Bとしては、対向する第1のロール電極と第2のロール電極間の放電部に高周波電圧を印加し、高周波電圧が、第1の周波数ω1の電圧成分と、第1の周波数ω1より高い第2の周波数ω2の電圧成分とを重ね合わせた成分を少なくとも有するものである。高周波とは、少なくとも0.5kHzの周波数を有するものを言う。
In the application method B in which the first high-frequency electric field and the second high-frequency electric field are superimposed and plasma discharge is performed in the present invention, a high-frequency voltage is applied to the discharge part between the first roll electrode and the second roll electrode facing each other. The high-frequency voltage has at least a component obtained by superimposing the voltage component of the first frequency ω 1 and the voltage component of the second frequency ω 2 higher than the first frequency ω 1 . High frequency refers to one having a frequency of at least 0.5 kHz.
高周波電圧は、第1の周波数ω1の電圧成分と、第1の周波数ω1より高い第2の周波数ω2の電圧成分とを重ね合わせた成分となり、その波形は周波数ω1のサイン波上に、それより高い周波数ω2のサイン波が重畳されたω1のサイン波がギザギザしたような波形となる。
The high frequency voltage is a component obtained by superimposing the voltage component of the first frequency ω 1 and the voltage component of the second frequency ω 2 higher than the first frequency ω 1 , and the waveform thereof is on the sine wave of the frequency ω 1. In addition, the sine wave of ω 1 on which the sine wave of higher frequency ω 2 is superimposed becomes a waveform that is jagged.
図7は、本発明のプラズマ放電処理装置の一例で、第1の高周波電界と第2の高周波電界とを重畳した印加方式Bのロール電極を用いて基材を往復させて処理するプラズマ放電処理装置を模式的に示した図である。この装置は、一対のそれぞれ直径の異なるロール電極10A(第1電極)とロール電極10C(第2電極)を有する。ロール電極10Aには、プラズマ放電のための周波数ω1の高周波電圧V1を印加できる第1電源801が電圧供給手段811を介して接続されている。ロール電極10Cには、プラズマ放電のための周波数ω2の高周波電圧V2を印加できる第2電源802が電圧供給手段812を介して接続されている。第1電源801は第2電源802より大きな高周波電圧(V1>V2)を印加できる能力を有していることが好ましく、また第1電源801の第1の周波数ω1と第2電源802の第2の周波数ω2はω1<ω2であることが好ましい。ロール電極10Aと第1電源801との間には、第1電源801からの電流がロール電極10Aに向かって流れるように第1フィルター831が設置されており、第1電源801からの電流I1をアース側へ通過しにくくし、第2電源802からの電流I2がアース側へ通過し易くするように設計されている。また、ロール電極10Bと第2電源802との間には、第2電源802からの電流がロール電極10Cに向かって流れるように第2フィルター832が設置されており、第2電源802からの電流I2をアース側へ通過しにくくし、第1電源801からの電流I1がアース側へ通過し易くするように設計されている。
FIG. 7 shows an example of the plasma discharge processing apparatus of the present invention, in which plasma discharge processing is performed by reciprocating a substrate using a roll electrode of an application method B in which a first high-frequency electric field and a second high-frequency electric field are superimposed. It is the figure which showed the apparatus typically. This apparatus has a pair of roll electrodes 10A (first electrodes) and roll electrodes 10C (second electrodes) having different diameters. A first power supply 801 capable of applying a high-frequency voltage V1 having a frequency ω1 for plasma discharge is connected to the roll electrode 10A via a voltage supply unit 811. A second power source 802 capable of applying a high-frequency voltage V2 having a frequency ω2 for plasma discharge is connected to the roll electrode 10C via a voltage supply unit 812. The first power source 801 preferably has the ability to apply a higher frequency voltage (V1> V2) than the second power source 802, and the first frequency ω1 of the first power source 801 and the second frequency of the second power source 802 are the same. The frequency ω2 is preferably ω1 <ω2. A first filter 831 is installed between the roll electrode 10A and the first power source 801 so that the current from the first power source 801 flows toward the roll electrode 10A, and the current I1 from the first power source 801 is It is designed so that the current I2 from the second power source 802 does not easily pass to the ground side and easily passes to the ground side. A second filter 832 is installed between the roll electrode 10B and the second power source 802 so that the current from the second power source 802 flows toward the roll electrode 10C. It is designed to make it difficult for I2 to pass to the ground side and to easily pass the current I1 from the first power source 801 to the ground side.
また、本発明における別の放電条件としては、対向する第1電極と第2電極との間に、高周波電圧を印加し、高周波電圧が、第1の高周波電圧V1及び第2の高周波電圧V2を重畳したものであって、放電開始電圧をIVとしたとき、V1≧IV>V2またはV1>IV≧V2を満たすことが好ましく、更に好ましくは、V1>IV>V2を満たすことである。
As another discharge condition in the present invention, a high frequency voltage is applied between the opposed first electrode and second electrode, and the high frequency voltage causes the first high frequency voltage V1 and the second high frequency voltage V2 to be applied. When the discharge start voltage is IV, V1 ≧ IV> V2 or V1> IV ≧ V2 is preferably satisfied, and V1> IV> V2 is more preferable.
ここで、第1電源の周波数としては、200kHz以下が好ましく用いることができる。またこの電界波形としては、サイン波でもパルスでもよい。下限は1kHz程度が望ましい。
Here, the frequency of the first power source is preferably 200 kHz or less. The electric field waveform may be a sine wave or a pulse. The lower limit is preferably about 1 kHz.
一方、第2電源の周波数としては、800kHz以上が好ましく用いられる。
On the other hand, the frequency of the second power source is preferably 800 kHz or more.
この第2電源の周波数が高い程、プラズマ密度が高くなり、緻密で良質な薄膜が得られる。上限は200MHz程度が望ましい。
The higher the frequency of the second power source, the higher the plasma density, and a dense and good quality thin film can be obtained. The upper limit is preferably about 200 MHz.
本発明において、対向する電極間に印加する電力は、第2電極(第2の高周波電界)に1W/cm2以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発生させ、エネルギーを薄膜形成ガスに与え、薄膜を形成する。第2電極に供給する電力の上限値としては、好ましくは50W/cm2、より好ましくは20W/cm2である。下限値は、好ましくは1.2W/cm2である。なお、放電面積(cm2)は、電極において放電が起こる範囲の面積のことを指す。
In the present invention, the power applied between the electrodes facing each other is such that power (power density) of 1 W / cm 2 or more is supplied to the second electrode (second high-frequency electric field) to excite the discharge gas to generate plasma. The energy is applied to the thin film forming gas to form a thin film. The upper limit value of the power supplied to the second electrode is preferably 50 W / cm 2 , more preferably 20 W / cm 2 . The lower limit is preferably 1.2 W / cm 2 . In addition, discharge area (cm < 2 >) points out the area of the range which discharge occurs in an electrode.
また、第1電極(第1の高周波電界)にも、1W/cm2以上の電力(出力密度)を供給することにより、第2の高周波電界の均一性を維持したまま、出力密度を向上させることができる。これにより、更なる均一高密度プラズマを生成でき、更なる製膜速度の向上と膜質の向上が両立できる。好ましくは5W/cm2以上である。第1電極に供給する電力の上限値は、好ましくは50W/cm2である。
Further, by supplying power (output density) of 1 W / cm 2 or more to the first electrode (first high frequency electric field), the output density is improved while maintaining the uniformity of the second high frequency electric field. be able to. Thereby, the further uniform high-density plasma can be produced | generated, and the improvement of the film forming speed and the improvement of film quality can be made compatible. Preferably it is 5 W / cm 2 or more. The upper limit value of the power supplied to the first electrode is preferably 50 W / cm 2 .
図8は、図5に示した異なる直径のロール電極対を有し、ループ方式で連続搬送して薄膜形成を行うプラズマ放電処理装置に対し、印加電源として2周波方式を適用した構成を示したものであり、印加方法は上記図7で説明したのと同様に機構である。
FIG. 8 shows a configuration in which a dual frequency system is applied as an applied power source to the plasma discharge processing apparatus having the roll electrode pairs having different diameters shown in FIG. The application method is the same mechanism as described in FIG.
第1の電源2(高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
A1 神鋼電機 3kHz SPG3-4500
A2 神鋼電機 5kHz SPG5-4500
A3 春日電機 15kHz AGI-023
A4 神鋼電機 50kHz SPG50-4500
A5 ハイデン研究所 100kHz* PHF-6k
A6 パール工業 200kHz CF-2000-200k
等の市販のものを挙げることが出来、何れも使用することが出来る。 As the first power source 2 (high frequency power source),
Applied power symbol Manufacturer Frequency Product name A1 Shinko Electric 3kHz SPG3-4500
A2 Shinko Electric Co., Ltd. 5kHz SPG5-4500
A3 Kasuga Electric 15kHz AGI-023
A4 Shinko Electric 50kHz SPG50-4500
A5 HEIDEN Laboratory 100kHz * PHF-6k
A6 Pearl Industry 200kHz CF-2000-200k
And the like, and any of them can be used.
印加電源記号 メーカー 周波数 製品名
A1 神鋼電機 3kHz SPG3-4500
A2 神鋼電機 5kHz SPG5-4500
A3 春日電機 15kHz AGI-023
A4 神鋼電機 50kHz SPG50-4500
A5 ハイデン研究所 100kHz* PHF-6k
A6 パール工業 200kHz CF-2000-200k
等の市販のものを挙げることが出来、何れも使用することが出来る。 As the first power source 2 (high frequency power source),
Applied power symbol Manufacturer Frequency Product name A1 Shinko Electric 3kHz SPG3-4500
A2 Shinko Electric Co., Ltd. 5kHz SPG5-4500
A3 Kasuga Electric 15kHz AGI-023
A4 Shinko Electric 50kHz SPG50-4500
A5 HEIDEN Laboratory 100kHz * PHF-6k
A6 Pearl Industry 200kHz CF-2000-200k
And the like, and any of them can be used.
また、第2の電源(高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
B1 パール工業 800kHz CF-2000-800k
B2 パール工業 2MHz CF-2000-2M
B3 パール工業 13.56MHz CF-5000-13M
B4 パール工業 27MHz CF-2000-27M
B5 パール工業 150MHz CF-2000-150M
B6 パール工業 20~99.9MHz RP-2000-20/100M等の市販のものを挙げることが出来、何れも使用することが出来る。 As the second power source (high frequency power source),
Applied power symbol Manufacturer Frequency Product name B1 Pearl Industry 800kHz CF-2000-800k
B2 Pearl Industry 2MHz CF-2000-2M
B3 Pearl Industry 13.56MHz CF-5000-13M
B4 Pearl Industry 27MHz CF-2000-27M
B5 Pearl Industry 150MHz CF-2000-150M
B6 Pearl Industry 20-99.9 MHz RP-2000-20 / 100M and other commercially available products can be mentioned, and any of them can be used.
印加電源記号 メーカー 周波数 製品名
B1 パール工業 800kHz CF-2000-800k
B2 パール工業 2MHz CF-2000-2M
B3 パール工業 13.56MHz CF-5000-13M
B4 パール工業 27MHz CF-2000-27M
B5 パール工業 150MHz CF-2000-150M
B6 パール工業 20~99.9MHz RP-2000-20/100M等の市販のものを挙げることが出来、何れも使用することが出来る。 As the second power source (high frequency power source),
Applied power symbol Manufacturer Frequency Product name B1 Pearl Industry 800kHz CF-2000-800k
B2 Pearl Industry 2MHz CF-2000-2M
B3 Pearl Industry 13.56MHz CF-5000-13M
B4 Pearl Industry 27MHz CF-2000-27M
B5 Pearl Industry 150MHz CF-2000-150M
B6 Pearl Industry 20-99.9 MHz RP-2000-20 / 100M and other commercially available products can be mentioned, and any of them can be used.
なお、上記電源のうち、*印はハイデン研究所インパルス高周波電源(連続モードで100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。
Of the above power sources, * indicates a HEIDEN Laboratory impulse high-frequency power source (100 kHz in continuous mode). Other than that, it is a high-frequency power source that can apply only a continuous sine wave.
〔ガス供給手段〕
本発明のプラズマ放電処理装置においては、均質な機能性薄膜を安定して形成する観点から、下記に示す各種のガス供給手段を放電部に有していることが、より好ましい態様である。 [Gas supply means]
In the plasma discharge treatment apparatus of the present invention, from the viewpoint of stably forming a homogeneous functional thin film, it is a more preferable aspect to have various gas supply means shown below in the discharge part.
本発明のプラズマ放電処理装置においては、均質な機能性薄膜を安定して形成する観点から、下記に示す各種のガス供給手段を放電部に有していることが、より好ましい態様である。 [Gas supply means]
In the plasma discharge treatment apparatus of the present invention, from the viewpoint of stably forming a homogeneous functional thin film, it is a more preferable aspect to have various gas supply means shown below in the discharge part.
図9は、本発明のプラズマ放電処理装置に適用可能なガス供給手段の一例を示す模式図である。
FIG. 9 is a schematic view showing an example of gas supply means applicable to the plasma discharge treatment apparatus of the present invention.
図7において、処理ガスGはロール電極10A、10Cとの間隙の方向に向かって吹き出すが、その時ロール電極間の隙間が狭いと、必ずしも吹き出した処理ガス全量がその隙間を通過することができず、一部は処理ガス供給手段30とロール電極の隙間から漏れて外部に吹き出し、その分の処理ガスを余計に必要とし、さらに処理室内に充満することになる。また処理ガスの種類によっては人体に悪い影響を及ぼすことが危惧される。
In FIG. 7, the processing gas G is blown out in the direction of the gap between the roll electrodes 10A and 10C. However, if the gap between the roll electrodes is narrow at that time, the entire amount of the blown processing gas cannot always pass through the gap. A part of the gas leaks from the gap between the processing gas supply means 30 and the roll electrode and blows out to the outside, so that an extra processing gas is required and the processing chamber is filled. Also, depending on the type of processing gas, there is a concern that it may adversely affect the human body.
本発明のプラズマ放電処理装置の形態においては、上記問題を解決するために、図9に示すような漏れだした処理ガスを遮断する手段として、処理ガス供給手段30に補助ガスCGの吹き出し口を設けることが好ましい。
In the form of the plasma discharge processing apparatus of the present invention, in order to solve the above problem, as a means for shutting out the leaked processing gas as shown in FIG. 9, an auxiliary gas CG outlet is provided in the processing gas supply means 30. It is preferable to provide it.
本発明においては、処理ガスGは放電ガス及び薄膜形成ガスから構成され、該放電ガスが少なくとも窒素ガスを90体積%以上含有することを特徴とする。薄膜形成ガスは堆積する膜の原料となる原料となる原料ガス及び分解を促進する反応ガスからなっている。また補助ガスCGは希ガスまたは窒素などの不活性ガスからなり、処理ガスG中の放電ガスと同じ組成、または放電ガスと反応ガスと同組成が好ましい。
In the present invention, the processing gas G is composed of a discharge gas and a thin film forming gas, and the discharge gas contains at least 90% by volume of nitrogen gas. The thin film forming gas is composed of a raw material gas that is a raw material for a deposited film and a reactive gas that promotes decomposition. The auxiliary gas CG is made of an inert gas such as a rare gas or nitrogen, and preferably has the same composition as the discharge gas in the processing gas G or the same composition as the discharge gas and the reactive gas.
さらに補助ガスが吹き出す流速は、処理ガス供給手段30の供給口での処理ガスGが吹き出す流速と同等以上、5倍以下が好ましい。これ以下であると補助ガスの効果が小さく、5倍以上であると処理ガスGを放電空間100に供給することが難しくなるからである。
Further, the flow rate at which the auxiliary gas is blown out is preferably equal to or higher than the flow rate at which the processing gas G is blown at the supply port of the processing gas supply means 30 to 5 times or less. If it is less than this, the effect of the auxiliary gas is small, and if it is 5 times or more, it becomes difficult to supply the processing gas G to the discharge space 100.
補助ガスCGをロール電極10A、10Cに吹き付ける吹き出し口と処理ガスGの吹き出し方向とのなす角度θは、0≦θ<90°の間で設定し、補助ガスCGとしての効果とともに、同伴エアーが処理ガス供給手段30の側面とロール電極10A、10Cの間から混入することを防ぐことができる。そして好ましくは0≦θ<60°、さらに好ましくは0≦θ<30°が好ましい。90°以上になると放電空間100に向かう補助ガスCGの成分が減少し、効果が得られなくなるからである。ここでθとは処理ガスが吹き出す方向と、補助ガスが吹き出す方向とのなす角度である。処理ガスGおよび補助ガスCGを供給するガス供給部30の材質はアルミナなどのセラミック、樹脂など絶縁性材料がよく、特にPEEK(ポリエーテルエーテルケトン)などの耐熱性樹脂が好ましい。
The angle θ between the blowing port for blowing the auxiliary gas CG to the roll electrodes 10A and 10C and the blowing direction of the processing gas G is set between 0 ≦ θ <90 °, and the effect of the accompanying gas as well as the effect of the auxiliary gas CG. Mixing between the side surface of the processing gas supply means 30 and the roll electrodes 10A and 10C can be prevented. And preferably 0 ≦ θ <60 °, more preferably 0 ≦ θ <30 °. This is because when the angle is 90 ° or more, the component of the auxiliary gas CG toward the discharge space 100 decreases, and the effect cannot be obtained. Here, θ is an angle formed by the direction in which the processing gas blows out and the direction in which the auxiliary gas blows out. The material of the gas supply unit 30 for supplying the processing gas G and the auxiliary gas CG is preferably an insulating material such as ceramic such as alumina or resin, and particularly preferably a heat resistant resin such as PEEK (polyether ether ketone).
図10は、本発明のプラズマ放電処理装置に適用可能なガス供給手段の他の一例を示す模式図である。
FIG. 10 is a schematic view showing another example of the gas supply means applicable to the plasma discharge treatment apparatus of the present invention.
図10に示すプラズマ放電処理装置は、基本的な構成は上述の図3に示したプラズマ放電処理装置と略同等で、処理ガス供給手段30について、新たな構成を付与したものである。図10において、漏れ出した処理ガスGを遮断する手段として、処理ガス供給手段30と同等かそれ以上の幅寸法をもった一端がロール電極10A、10Cの外周面に当接し、他端が処理ガス供給手段30に取り付けられたブレード32がそれぞれのロール電極に設けている。
The basic configuration of the plasma discharge processing apparatus shown in FIG. 10 is substantially the same as that of the plasma discharge processing apparatus shown in FIG. 3 described above, and a new configuration is added to the processing gas supply means 30. In FIG. 10, as means for blocking the leaked processing gas G, one end having a width dimension equal to or larger than that of the processing gas supply means 30 contacts the outer peripheral surface of the roll electrodes 10A and 10C, and the other end is processed. A blade 32 attached to the gas supply means 30 is provided for each roll electrode.
ここで、本発明に適用可能なブレード32について、更に説明する。ブレード32は絶縁性の樹脂またはゴムであり、樹脂としては、エチレン、ポリプロピレン、ブテンなどの単独重合体または共重合体などのポリオレフィン(PO)樹脂、環状ポリオレフィンなどの非晶質ポリオレフィン樹脂(APO)、ポリエチレンテレフタレート(PET)、ポリエチレン2.6-ナフタレート(PEN)などのポリエステル樹脂、ナイロン6、ナイロン12、共重合ナイロンなどのポリアミド(PA)系樹脂、ポリビニルアルコール(PVA)樹脂、エチレンービニルアルコール共重合体(EVOH)などのポリビニルアルコール系樹脂、ポリイミド(PI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルフォン(PS)樹脂、ポリエーテルサルフォン(PES)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリカーボネート(PC)樹脂、ポリビニルブチラート(PVB)樹脂、ポリアリレート(PAR)樹脂、エチレン-四フッ化エチレン共重合体(ETFE)、三フッ化塩化エチレン(PFA)、四フッ化エチレンーパーフルオロアルキルビニルエーテル共重合体(FEP)、フッ化ビニリデン(PVDF)、フッ化ビニル(PVF)、パーフルオロエチレンーパーフルオロプロピレンーパーフルオロビニルエーテル共重合体(EPA)、などのフッ素系樹脂を使用することができる。特にポリカーボネート、ポリエーテルスルフォン、ポリエーテルエーテルケトン、ポリイミドなどの耐熱性の樹脂を用いることが好ましい。またブレードの絶縁性は体積抵抗で、1010Ωcm以上が好ましく、1012Ωcm以上が更に好ましい。
Here, the blade 32 applicable to the present invention will be further described. The blade 32 is an insulating resin or rubber. Examples of the resin include polyolefin (PO) resins such as homopolymers or copolymers such as ethylene, polypropylene, and butene, and amorphous polyolefin resins (APO) such as cyclic polyolefins. Polyester resin such as polyethylene terephthalate (PET) and polyethylene 2.6-naphthalate (PEN), polyamide (PA) resin such as nylon 6, nylon 12, copolymer nylon, polyvinyl alcohol (PVA) resin, ethylene-vinyl alcohol Polyvinyl alcohol resin such as copolymer (EVOH), polyimide (PI) resin, polyetherimide (PEI) resin, polysulfone (PS) resin, polyethersulfone (PES) resin, polyetheretherketone (PEEK) Resin, polycarbonate (PC) resin, polyvinyl butyrate (PVB) resin, polyarylate (PAR) resin, ethylene-tetrafluoroethylene copolymer (ETFE), ethylene trifluoride chloride (PFA), tetrafluoroethylene Use fluororesin such as perfluoroalkyl vinyl ether copolymer (FEP), vinylidene fluoride (PVDF), vinyl fluoride (PVF), perfluoroethylene-perfluoropropylene-perfluorovinyl ether copolymer (EPA) can do. In particular, it is preferable to use a heat-resistant resin such as polycarbonate, polyether sulfone, polyether ether ketone, or polyimide. The insulation of the blade is preferably a volume resistance of 10 10 Ωcm or more, more preferably 10 12 Ωcm or more.
また、ゴムの材料としては、対摩耗性、耐候性、耐熱老化性に優れた、クロロプレンゴム、フッ素ゴム、シリコンゴムが上げられる。特にガス浸透性が少ないフッ素ゴムが好ましく使われる。この時の硬度は、60~85度(JIS K 6253-1997規格)が良い。
Also, examples of rubber materials include chloroprene rubber, fluoro rubber, and silicon rubber, which are excellent in wear resistance, weather resistance, and heat aging resistance. In particular, fluororubber having a low gas permeability is preferably used. The hardness at this time is preferably 60 to 85 degrees (JIS K 6253-1997 standard).
さらに形成された薄膜がブレード32の端部と接触することによって傷つかないように、ブレードの端部は丸み形状をした切断面になっている。また図10に示すようにブレード32がロール電極10Aの外周面と接触する形状と、ロール電極10Bの外周面と接触する形状はそれぞれ、ロール電極の回転方向につられた形状となっている。
Further, the end portion of the blade has a round cut surface so that the formed thin film is not damaged by coming into contact with the end portion of the blade 32. Further, as shown in FIG. 10, the shape in which the blade 32 is in contact with the outer peripheral surface of the roll electrode 10A and the shape in contact with the outer peripheral surface of the roll electrode 10B are shapes that are in the rotation direction of the roll electrode.
図11は、本発明のプラズマ放電処理装置に適用可能なガス供給手段の他の一例を示す模式図である。
FIG. 11 is a schematic diagram showing another example of gas supply means applicable to the plasma discharge treatment apparatus of the present invention.
図1に示すプラズマ放電処理装置は、基本的な構成は上述の図3に示したプラズマ放電処理装置と略同等で、処理ガス供給手段30について、新たな構成を付与したものである。漏れ出した処理ガスGを遮断する手段として、処理ガス供給手段30と同等かそれ以上の幅寸法をもったニップローラ31が、ロール電極10A、10Bに当接するように配置され、基材の搬送に伴って従動回転するようになっている。これは基材Fがニップローラ31に当接するとき基材表面に傷を付けないようにするためである。
The basic configuration of the plasma discharge processing apparatus shown in FIG. 1 is substantially the same as that of the plasma discharge processing apparatus shown in FIG. 3 described above, and a new configuration is added to the processing gas supply means 30. As means for blocking the leaked processing gas G, a nip roller 31 having a width dimension equal to or larger than that of the processing gas supply means 30 is disposed so as to contact the roll electrodes 10A and 10B, and is used for conveying the substrate. Along with this, it is driven to rotate. This is to prevent the substrate surface from being scratched when the substrate F abuts against the nip roller 31.
また、一対のロール電極のそれぞれに、一端がニップローラに当接し、他端は処理ガス供給手段に取り付けられたブレードと、を有している。
Also, each of the pair of roll electrodes has a blade that is in contact with the nip roller at one end and a blade that is attached to the processing gas supply means.
ニップローラ31は基材上に製膜された機能性薄膜表面を傷つけにくいものが好ましく、硬質のゴム、プラスチックなどが好ましく、より具体的には、JIS K 6253-1997規格によるゴム硬度で60~80のプラスチック、ゴム製のロールが好ましい。
The nip roller 31 is preferably one that does not easily damage the surface of the functional thin film formed on the substrate, and is preferably hard rubber, plastic, or the like. More specifically, the nip roller 31 has a rubber hardness of 60 to 80 according to JIS K 6253-1997 standard. Plastic and rubber rolls are preferred.
ブレード32は、図10において説明したブレード32と同様の材質、形状を有するものを適用することができる。
The blade 32 having the same material and shape as the blade 32 described in FIG. 10 can be applied.
次いで、本発明のプラズマ放電処理装置の主要構成要素の詳細について説明する。
Next, details of main components of the plasma discharge treatment apparatus of the present invention will be described.
〔ロール電極〕
図12は、本発明に適用可能なロール電極の一例を示す斜視図である。 [Roll electrode]
FIG. 12 is a perspective view showing an example of a roll electrode applicable to the present invention.
図12は、本発明に適用可能なロール電極の一例を示す斜視図である。 [Roll electrode]
FIG. 12 is a perspective view showing an example of a roll electrode applicable to the present invention.
ロール電極10の構成について説明すると、図12の(a)において、ロール電極10は、金属等の導電性母材200a(以下、「電極母材」ともいう。)に対しセラミックスを溶射後、無機材料を用いて封孔処理したセラミック被覆処理誘電体200b(以下、単に「誘電体」ともいう。)を被覆した組み合わせで構成されている。また、溶射に用いるセラミックス材としては、アルミナ・窒化ケイ素等が好ましく用いられるが、この中でもアルミナが加工し易いので、更に好ましく用いられる。
The configuration of the roll electrode 10 will be described. In FIG. 12A, the roll electrode 10 is inorganic after a ceramic is sprayed on a conductive base material 200a (hereinafter also referred to as “electrode base material”) such as metal. It is composed of a combination in which a ceramic-coated dielectric 200b (hereinafter also simply referred to as “dielectric”) coated with a material is covered. As the ceramic material used for thermal spraying, alumina, silicon nitride, or the like is preferably used. Among these, alumina is more preferably used because it is easily processed.
また、図12の(b)に示すように、金属等の導電性母材200Aにライニングにより無機材料を設けたライニング処理誘電体200Bを被覆した組み合わせでロール電極10′を構成してもよい。ライニング材としては、ケイ酸塩系ガラス、ホウ酸塩系ガラス、リン酸塩系ガラス、ゲルマン酸塩系ガラス、亜テルル酸塩ガラス、アルミン酸塩ガラス、バナジン酸塩ガラス等が好ましく用いられるが、この中でもホウ酸塩系ガラスが加工し易いので、更に好ましく用いられる。
Further, as shown in FIG. 12B, the roll electrode 10 ′ may be configured by a combination of a conductive base material 200A such as metal covered with a lining dielectric 200B provided with an inorganic material by lining. As the lining material, silicate glass, borate glass, phosphate glass, germanate glass, tellurite glass, aluminate glass, vanadate glass and the like are preferably used. Of these, borate glass is more preferred because it is easy to process.
金属等の導電性母材200a、200Aとしては、銀、白金、ステンレス、アルミニウム、鉄等の金属等が挙げられるが、加工の観点からステンレスが好ましい。
Examples of the conductive base materials 200a and 200A such as metal include metals such as silver, platinum, stainless steel, aluminum, and iron. Stainless steel is preferable from the viewpoint of processing.
本発明に係る各ロール電極10は、必要に応じて加熱あるいは冷却等の温度調整することが望ましい。例えば、ロール電極内部に液体を供給して、電極表面の温度及び基材の温度を制御する。温度を与える液体としては、蒸留水、油等の絶縁性材料が好ましい。基材の温度は処理条件によって異なるが、通常、室温~200℃とすることが好ましく、より好ましくは室温~120℃とすることである。
It is desirable to adjust the temperature of each roll electrode 10 according to the present invention as necessary, such as heating or cooling. For example, a liquid is supplied into the roll electrode to control the temperature of the electrode surface and the temperature of the substrate. As the liquid that gives temperature, an insulating material such as distilled water or oil is preferable. Although the temperature of the substrate varies depending on the treatment conditions, it is usually preferably room temperature to 200 ° C., more preferably room temperature to 120 ° C.
ロール電極の表面は、基材が密着して基材と電極とが同期して移送及び回転するので高い平滑性が求められる。平滑性はJIS B 0601で規定される表面粗さの最大高さ(Rmax)及び中心線平均表面粗さ(Ra)として表される。本発明に係るロール電極の表面粗さのRmaxは10μm以下であることが好ましく、より好ましくは8μm以下であり、特に好ましくは7μm以下である。またRaは0.5μm以下が好ましく、より好ましくは0.1μm以下である。
The surface of the roll electrode is required to have high smoothness because the base material is in close contact and the base material and the electrode are transferred and rotated synchronously. The smoothness is expressed as the maximum surface roughness height (Rmax) and centerline average surface roughness (Ra) specified in JIS B 0601. Rmax of the surface roughness of the roll electrode according to the present invention is preferably 10 μm or less, more preferably 8 μm or less, and particularly preferably 7 μm or less. Further, Ra is preferably 0.5 μm or less, and more preferably 0.1 μm or less.
本発明において、ロール電極間の間隙は、固体誘電体の厚さ、印加電圧の大きさ、プラズマを利用する目的、電極の形状等を考慮して決定される。電極表面同士の距離は、プラズマ放電を均一に発生させるという観点から0.5~20mmが好ましく、より好ましくは0.5~5mmであり、特に好ましくは1mm±0.5mmである。本発明でいうロール電極間の間隙とは対向する電極表面が互いに最も接近している間隔をいう。ロール電極の直径は10~1000mmが好ましく、20~500mmがより好ましい。またロール電極の周速は1~100m/mimであり、さらに好ましくは5~50m/mimである。
In the present invention, the gap between the roll electrodes is determined in consideration of the thickness of the solid dielectric, the magnitude of the applied voltage, the purpose of using plasma, the shape of the electrode, and the like. The distance between the electrode surfaces is preferably 0.5 to 20 mm, more preferably 0.5 to 5 mm, and particularly preferably 1 mm ± 0.5 mm from the viewpoint of uniformly generating plasma discharge. In the present invention, the gap between the roll electrodes refers to a distance at which the opposing electrode surfaces are closest to each other. The diameter of the roll electrode is preferably 10 to 1000 mm, more preferably 20 to 500 mm. The peripheral speed of the roll electrode is 1 to 100 m / mim, more preferably 5 to 50 m / mim.
〔処理ガス〕
本発明のプラズマ放電処理装置に使用する処理ガスについて説明する。 [Process gas]
The processing gas used in the plasma discharge processing apparatus of the present invention will be described.
本発明のプラズマ放電処理装置に使用する処理ガスについて説明する。 [Process gas]
The processing gas used in the plasma discharge processing apparatus of the present invention will be described.
本発明において、処理ガスとしては、放電ガスと薄膜形成ガス(反応性ガスともいう)の混合ガスを用い、放電ガスが少なくとも窒素ガスを90体積%以上含有することを特徴とする。
In the present invention, a mixed gas of a discharge gas and a thin film forming gas (also called a reactive gas) is used as the processing gas, and the discharge gas contains at least 90% by volume of nitrogen gas.
(放電ガス)
一般的に用いられている放電ガス(希ガスともいう)の元素としては、窒素及び周期表の第18属元素、具体的には、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が知られているが、本発明においては、放電ガスが少なくとも窒素ガスを90体積%以上含有することを特徴とする。希ガスと比較して、処理ガス中の窒素ガスの濃度が90体積%以上であれば、本発明の効果が顕著に発現し、安定したプラズマを発生させることができる。特に90~99.99体積%が好ましい。窒素ガスはプラズマ放電を発生するために必要であり、該プラズマ放電中の反応性ガスをイオン化またはラジカル化し、表面処理に寄与する。 (Discharge gas)
Commonly used discharge gas (also referred to as rare gas) elements include nitrogen and Group 18 elements of the periodic table, specifically nitrogen, helium, neon, argon, krypton, xenon, radon, and the like. As is known, the present invention is characterized in that the discharge gas contains at least 90% by volume of nitrogen gas. If the concentration of the nitrogen gas in the processing gas is 90% by volume or more compared to the rare gas, the effect of the present invention is remarkably exhibited and stable plasma can be generated. 90 to 99.99% by volume is particularly preferable. Nitrogen gas is necessary for generating a plasma discharge, and the reactive gas in the plasma discharge is ionized or radicalized to contribute to the surface treatment.
一般的に用いられている放電ガス(希ガスともいう)の元素としては、窒素及び周期表の第18属元素、具体的には、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が知られているが、本発明においては、放電ガスが少なくとも窒素ガスを90体積%以上含有することを特徴とする。希ガスと比較して、処理ガス中の窒素ガスの濃度が90体積%以上であれば、本発明の効果が顕著に発現し、安定したプラズマを発生させることができる。特に90~99.99体積%が好ましい。窒素ガスはプラズマ放電を発生するために必要であり、該プラズマ放電中の反応性ガスをイオン化またはラジカル化し、表面処理に寄与する。 (Discharge gas)
Commonly used discharge gas (also referred to as rare gas) elements include nitrogen and Group 18 elements of the periodic table, specifically nitrogen, helium, neon, argon, krypton, xenon, radon, and the like. As is known, the present invention is characterized in that the discharge gas contains at least 90% by volume of nitrogen gas. If the concentration of the nitrogen gas in the processing gas is 90% by volume or more compared to the rare gas, the effect of the present invention is remarkably exhibited and stable plasma can be generated. 90 to 99.99% by volume is particularly preferable. Nitrogen gas is necessary for generating a plasma discharge, and the reactive gas in the plasma discharge is ionized or radicalized to contribute to the surface treatment.
(薄膜形成ガス)
本発明において、薄膜形成ガスは基材上に形成される機能性薄膜の種類によって様々な物質が用いられる。例えば、薄膜形成ガスとして、有機フッ素化合物を用いることにより反射防止層等に有用な低屈折率層や防汚層を形成することができ、珪素化合物を用いることにより、反射防止層等に有用な低屈折率層やガスバリア層を形成することもできる。また、Ti、Zr、Sn、SiあるいはZnのような金属を含有する有機金属化合物を用いることにより、金属酸化物層または金属窒化物層等を形成することができ、これらは反射防止層等に有用な中屈折率層や高屈折率層を形成することができ、更には導電層や帯電防止層を形成することもできる。 (Thin film forming gas)
In the present invention, as the thin film forming gas, various substances are used depending on the type of the functional thin film formed on the substrate. For example, a low refractive index layer and an antifouling layer useful for an antireflection layer can be formed by using an organic fluorine compound as a thin film forming gas, and useful for an antireflection layer by using a silicon compound. A low refractive index layer or a gas barrier layer can also be formed. Further, by using an organometallic compound containing a metal such as Ti, Zr, Sn, Si, or Zn, a metal oxide layer or a metal nitride layer can be formed. A useful medium refractive index layer or high refractive index layer can be formed, and a conductive layer or an antistatic layer can also be formed.
本発明において、薄膜形成ガスは基材上に形成される機能性薄膜の種類によって様々な物質が用いられる。例えば、薄膜形成ガスとして、有機フッ素化合物を用いることにより反射防止層等に有用な低屈折率層や防汚層を形成することができ、珪素化合物を用いることにより、反射防止層等に有用な低屈折率層やガスバリア層を形成することもできる。また、Ti、Zr、Sn、SiあるいはZnのような金属を含有する有機金属化合物を用いることにより、金属酸化物層または金属窒化物層等を形成することができ、これらは反射防止層等に有用な中屈折率層や高屈折率層を形成することができ、更には導電層や帯電防止層を形成することもできる。 (Thin film forming gas)
In the present invention, as the thin film forming gas, various substances are used depending on the type of the functional thin film formed on the substrate. For example, a low refractive index layer and an antifouling layer useful for an antireflection layer can be formed by using an organic fluorine compound as a thin film forming gas, and useful for an antireflection layer by using a silicon compound. A low refractive index layer or a gas barrier layer can also be formed. Further, by using an organometallic compound containing a metal such as Ti, Zr, Sn, Si, or Zn, a metal oxide layer or a metal nitride layer can be formed. A useful medium refractive index layer or high refractive index layer can be formed, and a conductive layer or an antistatic layer can also be formed.
このように、本発明に有用な反応性ガスの物質として、有機フッ素化合物及び金属化合物を好ましく挙げることができる。
Thus, preferred examples of the reactive gas substance useful in the present invention include organic fluorine compounds and metal compounds.
本発明に好ましく使用する反応性ガスの有機フッ素化合物としては、フッ化炭素やフッ化炭化水素等のガスが好ましく、例えば、テトラフルオロメタン、ヘキサフルオロエタン、1,1,2,2-テトラフルオロエチレン、1,1,1,2,3,3-ヘキサフルオロプロパン、ヘキサフルオロプロペン等のフッ化炭素化合物等を挙げることができるが、これらに限定されない。有機フッ素化合物がプラズマ放電処理によって、腐食性ガスあるいは有害ガスが発生しないような化合物を選ぶのが好ましいが、それらが発生しない条件を選ぶこともできる。有機フッ素化合物を本発明に有用な反応性ガスとして使用する場合、常温常圧で有機フッ素化合物が気体であることが目的を遂行するのに最も適切な反応性ガス成分としてそのまま使用でき好ましい。これに対して常温常圧で液体または固体の有機フッ素化合物の場合には、加熱や減圧等の気化装置などの手段により気化して使用すればよく、また適切な有機溶媒に溶解して噴霧あるいは蒸発させて用いてもよい。
The reactive fluorine-containing organic fluorine compound preferably used in the present invention is preferably a gas such as fluorocarbon or fluorohydrocarbon, such as tetrafluoromethane, hexafluoroethane, 1,1,2,2-tetrafluoro. Examples thereof include, but are not limited to, fluorocarbon compounds such as ethylene, 1,1,1,2,3,3-hexafluoropropane and hexafluoropropene. It is preferable to select a compound that does not generate corrosive gas or harmful gas by plasma discharge treatment as the organic fluorine compound, but it is also possible to select a condition in which they are not generated. When an organic fluorine compound is used as a reactive gas useful in the present invention, it is preferable that the organic fluorine compound is a gas at room temperature and normal pressure as it can be used as it is as the most suitable reactive gas component for accomplishing the purpose. On the other hand, in the case of a liquid or solid organic fluorine compound at room temperature and normal pressure, it may be used after being vaporized by means of a vaporizer such as heating or decompression, or dissolved or sprayed in an appropriate organic solvent. You may evaporate and use.
処理ガス中に上記の有機フッ素化合物を用いる場合、プラズマ放電処理により基材上に均一な薄膜を形成する観点から、処理ガス中の有機フッ素化合物の含有率は、0.01~10体積%であることが好ましいが、更に好ましくは、0.1~5体積%である。これらは単独でも混合して用いてもよい。
When the above organic fluorine compound is used in the treatment gas, the content of the organic fluorine compound in the treatment gas is 0.01 to 10% by volume from the viewpoint of forming a uniform thin film on the substrate by plasma discharge treatment. Preferably, it is 0.1 to 5% by volume. These may be used alone or in combination.
また、本発明に好ましく用いられる反応性ガスの金属化合物としては、Al、As、Au、B、Bi、Ca、Cd、Cr、Co、Cu、Fe、Ga、Ge、Hg、In、Li、Mg、Mn、Mo、Na、Ni、Pb、Pt、Rh、Sb、Se、Si、Sn、V、W、Y、ZnまたはZr等の金属化合物または有機金属化合物を挙げることができ、Al、Ge、In、Sb、Si、Sn、Ti、W、ZnまたはZrが有機金属化合物として好ましく用いられる。
The reactive gas metal compounds preferably used in the present invention include Al, As, Au, B, Bi, Ca, Cd, Cr, Co, Cu, Fe, Ga, Ge, Hg, In, Li, and Mg. , Mn, Mo, Na, Ni, Pb, Pt, Rh, Sb, Se, Si, Sn, V, W, Y, Zn, Zr, and other metal compounds or organometallic compounds, Al, Ge, In, Sb, Si, Sn, Ti, W, Zn, or Zr is preferably used as the organometallic compound.
これらのうち珪素化合物としては、例えば、ジメチルシラン、テトラメチルシラン等のアルキルシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、ジメチルジエトキシシラン、メチルトリメトキシシラン、エチルトリエトキシシラン等の珪素アルコキシド等の有機珪素化合物;モノシラン、ジシラン等の珪素水素化合物、ジクロルシラン、トリクロロシラン、テトラクロロシラン等のハロゲン化珪素化合物、その他オルガノシラン等を挙げることができ、何れも好ましく用いることができる。本発明においては、これらに限定されない。また、これらは適宜組み合わせて用いることができる。上記の有機珪素化合物は、取り扱い上の観点から珪素アルコキシド、アルキルシラン、有機珪素水素化合物が好ましく、腐食性、有害ガスの発生がなく、工程上の汚れなども少ないことから、特に有機珪素化合物として珪素アルコキシドが好ましい。
Among these, examples of silicon compounds include silicon such as alkyl silanes such as dimethylsilane and tetramethylsilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, dimethyldiethoxysilane, methyltrimethoxysilane, and ethyltriethoxysilane. Examples include organosilicon compounds such as alkoxides; silicon hydrogen compounds such as monosilane and disilane, halogenated silicon compounds such as dichlorosilane, trichlorosilane, and tetrachlorosilane, and other organosilanes, all of which can be preferably used. The present invention is not limited to these. Moreover, these can be used in combination as appropriate. From the viewpoint of handling, the above organosilicon compounds are preferably silicon alkoxides, alkylsilanes, and organosilicon hydrogen compounds. They are not corrosive, do not generate harmful gases, and have little contamination in the process. Silicon alkoxide is preferred.
本発明に有用な反応性ガスとしての珪素以外の金属化合物としては、特に限定されないが、有機金属化合物、ハロゲン化金属化合物、金属水素化合物等を挙げることができる。有機金属化合物の有機成分としてはアルキル基、アルコキシド基、アミノ基が好ましく、テトラエトキシチタン、テトライソプロポキシチタン、テトラブトキシチタン、テトラジメチルアミノチタン等を好ましく挙げることができる。またハロゲン化金属化合物としては、二塩化チタン、三塩化チタン、四塩化チタン等を挙げることができ、更に金属水素化合物としては、モノチタン、ジチタン等を挙げることができる。本発明においては、チタン系の有機金属化合物を好ましく用いることができる。
The metal compound other than silicon as the reactive gas useful in the present invention is not particularly limited, and examples thereof include an organometallic compound, a metal halide compound, and a metal hydrogen compound. The organic component of the organometallic compound is preferably an alkyl group, an alkoxide group, or an amino group, and preferred examples include tetraethoxy titanium, tetraisopropoxy titanium, tetrabutoxy titanium, and tetradimethylamino titanium. Examples of the metal halide compound include titanium dichloride, titanium trichloride, and titanium tetrachloride. Further, examples of the metal hydrogen compound include monotitanium and dititanium. In the present invention, a titanium-based organometallic compound can be preferably used.
上記有機金属化合物を放電部に導入するには、何れも、常温常圧で、気体、液体または固体の何れの状態のものであっても構わないが、それが液体または固体の場合は、加熱、減圧または超音波照射等の気化装置などの手段により気化させて使用すればよい。本発明においては、気化し、蒸発させてガス状として使用することが好ましい。常温常圧で液体の有機金属化合物の沸点が200℃以下のものであれば気化を容易にできるので、本発明の薄膜の製造に好適である。また有機金属化合物が金属アルコキシド、例えばテトラエトキシシランやテトライソプロポキシチタンのような場合、有機溶媒に易溶であるため有機溶媒、例えばメタノール、エタノール、n-ヘキサン等に希釈して使用してもよい。有機溶媒は、混合溶媒として使用してもよい。
In order to introduce the organometallic compound into the discharge part, any of gas, liquid or solid may be used at normal temperature and pressure, but if it is liquid or solid, heating It may be used after being vaporized by means of a vaporizer such as reduced pressure or ultrasonic irradiation. In the present invention, it is preferably vaporized and evaporated to be used as a gas. If the boiling point of the liquid organometallic compound at room temperature and normal pressure is 200 ° C. or less, vaporization can be facilitated, which is suitable for the production of the thin film of the present invention. Further, when the organometallic compound is a metal alkoxide such as tetraethoxysilane or tetraisopropoxytitanium, it is easily dissolved in an organic solvent, so that it can be diluted with an organic solvent such as methanol, ethanol, n-hexane or the like. Good. An organic solvent may be used as a mixed solvent.
本発明において、有機金属化合物を反応性ガスとして処理ガスに使用する場合、処理ガス中の含有率は、0.01~10体積%であることが好ましいが、更に好ましくは、0.1~5体積%である。上記金属化合物は同種あるいは異種の金属化合物を数種類混合して使用してもよい。
In the present invention, when an organometallic compound is used as a reactive gas in a processing gas, the content in the processing gas is preferably 0.01 to 10% by volume, more preferably 0.1 to 5%. % By volume. The above metal compounds may be used by mixing several kinds of the same or different metal compounds.
なお、上記のような有機フッ素化合物及び有機金属化合物あるいは何れかの化合物の反応性ガスに水素、酸素、窒素、一酸化窒素、二酸化窒素、二酸化炭素、オゾン、過酸化水素を希ガスに対して0.1~10体積%混合させて使用してもよく、このように補助的に使用することにより薄膜の硬度を著しく向上させることができる。
In addition, hydrogen, oxygen, nitrogen, nitrogen monoxide, nitrogen dioxide, carbon dioxide, ozone, hydrogen peroxide are used as reactive gases of the above organic fluorine compounds and organometallic compounds or any of the above compounds with respect to rare gases. The mixture may be used in an amount of 0.1 to 10% by volume, and by using such an auxiliary, the hardness of the thin film can be remarkably improved.
本発明に適用する基体が、反射防止層を有するフィルムの場合、例えば、有機珪素化合物は低屈折率層を形成するのに適しており、また、チタン系有機金属化合物は高屈折率層を形成するのに適しており、何れも好ましく用いられる。また、これらを混合したガスを用いて、その混合比率を調整することにより屈折率を制御して中屈折率層とすることもできる。
When the substrate applied to the present invention is a film having an antireflection layer, for example, an organosilicon compound is suitable for forming a low refractive index layer, and a titanium-based organometallic compound forms a high refractive index layer. Any of them is preferably used. Moreover, the refractive index can be controlled by adjusting the mixing ratio using a gas in which these are mixed, so that a medium refractive index layer can be obtained.
上記処理ガスを用いてプラズマ放電処理で形成された低屈折率層や高屈折率層は、全てではないが主に金属の酸化物からなっていると考えられている。例えば、有機珪素化合物による低屈折率層と有機チタン化合物による高屈折率層の積層体には、低屈折率層が酸化珪素、また高屈折率層が酸化チタンをそれぞれ主成分として有していることが好ましい。この際、酸化チタンを主成分とする高屈折率層に微量の酸化珪素が混入してもよいし、また反対に酸化珪素を主成分とする低屈折率層に微量の酸化チタンが混入してもよい。このような混合が起こることにより、各層の密着性(接着性)を改善することもできる。もちろん、合目的の屈折率に調整するために、あるいは、その他の目的で処理ガス中に主成分以外の有機金属化合物あるいはフッ素含有化合物を混合添加することもでき、処理ガスを処理ガス供給部から供給する前の段階で適宜混合しておくことが好ましい。前述のように、放電部には処理ガスで満たされており、例え同伴空気が若干処理室に入り込んだとしても実際には、微量の空気(酸素や窒素)あるいは水分の影響は無視できる。なお、処理条件によっては、意図的に処理ガスに空気(酸素あるいは窒素)や水分を添加して処理する場合もある。
The low-refractive index layer and the high-refractive index layer formed by plasma discharge treatment using the above processing gas are thought to be mainly composed of metal oxides, if not all. For example, in a laminate of a low refractive index layer made of an organic silicon compound and a high refractive index layer made of an organic titanium compound, the low refractive index layer has silicon oxide and the high refractive index layer has titanium oxide as a main component. It is preferable. At this time, a small amount of silicon oxide may be mixed in the high refractive index layer mainly composed of titanium oxide, and conversely, a small amount of titanium oxide may be mixed in the low refractive index layer mainly composed of silicon oxide. Also good. By such mixing, the adhesion (adhesiveness) of each layer can be improved. Of course, an organic metal compound or fluorine-containing compound other than the main component can be mixed and added to the processing gas for adjusting the refractive index to the desired purpose or for other purposes, and the processing gas is supplied from the processing gas supply unit. It is preferable to mix appropriately at the stage before supply. As described above, the discharge portion is filled with the processing gas, and even if the entrained air slightly enters the processing chamber, the influence of a minute amount of air (oxygen or nitrogen) or moisture can be ignored in practice. Depending on the processing conditions, there may be a case where processing is performed by intentionally adding air (oxygen or nitrogen) or moisture to the processing gas.
〔基材〕
次に、本発明に係る基材について説明する。 〔Base material〕
Next, the base material according to the present invention will be described.
次に、本発明に係る基材について説明する。 〔Base material〕
Next, the base material according to the present invention will be described.
本発明に係わる基材としては、セルロースエステルフィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスチレンフィルム、ポリオレフィンフィルム、ポリビニルアルコール系フィルム、セルロース系フィルム、その他の樹脂フィルム等を挙げることができ、例えば、セルロースエステルフィルムとしてはセルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートフタレートフィルム、セルローストリアセテート、セルロースナイトレート;ポリエステルフィルムとしては、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンフタレートフィルム、1,4-ジメチレンシクロヘキシレンテレフタレート、あるいはこれら構成単位のコポリエステルフィルム;ポリカーボネートフィルムとしてはビスフェノールAのポリカーボネートフィルム;ポリスチレンフィルムとしては、シンジオタクティックポリスチレンフィルム;ポリオレフィンフィルムとしてはポリエチレンフィルム、ポリプロピレンフィルム;ポリビニルアルコール系フィルムとしてはポリビニルアルコールフィルム、エチレンビニルアルコールフィルム;セルロース系フィルムとしてはセロファン;その他の樹脂フィルムとしては、ノルボルネン樹脂系フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリイミドフィルム、ポリエーテルスルホンフィルム、ポリスルフォン系フィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルムあるいはポリアリレートフィルム、ポリ塩化ビニリデンフィルム等を挙げることができる。
Examples of the substrate according to the present invention include a cellulose ester film, a polyester film, a polycarbonate film, a polystyrene film, a polyolefin film, a polyvinyl alcohol film, a cellulose film, and other resin films. For example, a cellulose ester film As cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film, cellulose acetate phthalate film, cellulose triacetate, cellulose nitrate; as polyester film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene phthalate film 1,4-dimethylenecyclohexylene tele Tallate or copolyester film of these structural units; polycarbonate film of bisphenol A; polystyrene film: syndiotactic polystyrene film; polyolefin film: polyethylene film, polypropylene film; polyvinyl alcohol film as polyvinyl alcohol Film, ethylene vinyl alcohol film; cellophane as cellulose film; norbornene resin film, polymethylpentene film, polyetherketone film, polyimide film, polyethersulfone film, polysulfone film, poly Ether ketone imide film, polyamide fill It can fluororesin film, nylon film, polymethyl methacrylate film, an acrylic film or polyarylate film, be mentioned polyvinylidene chloride film or the like.
これらのフィルムの素材を適宜混合して得られたフィルムも好ましく用いることができる。例えば、ゼオネックス(日本ゼオン(株)製)、ARTON(日本合成ゴム(株)製)などの市販品の樹脂を混合したフィルムを用いることもできる。また、ポリカーボネート、ポリアリレート、ポリスルフォンあるいはポリエーテルスルフォン等の固有の複屈折率が高い素材であっても、溶液流延あるいは溶融押し出し等の条件、更には縦、横方向に延伸する条件等を適宜設定することにより、本発明に適した基材を得ることができる。本発明においては、上記の記載のフィルムに限定されない。
A film obtained by appropriately mixing these film materials can also be preferably used. For example, a film obtained by mixing a commercially available resin such as ZEONEX (manufactured by Nippon Zeon Co., Ltd.) or ARTON (manufactured by Nippon Synthetic Rubber Co., Ltd.) can also be used. In addition, even for materials having a high intrinsic birefringence such as polycarbonate, polyarylate, polysulfone or polyether sulfone, the conditions such as solution casting or melt extrusion, and further the conditions for stretching in the vertical and horizontal directions, etc. By appropriately setting, a base material suitable for the present invention can be obtained. In the present invention, the film is not limited to the above-described film.
本発明のプラズマ放電処理装置に適した基材の厚さとしては、10~1000μm程度のフィルムを好ましく用いることができ、より好ましくは10~200μmであり、特に10~60μmの薄手の基材を好ましく用いることができる。
As the thickness of the substrate suitable for the plasma discharge treatment apparatus of the present invention, a film of about 10 to 1000 μm can be preferably used, more preferably 10 to 200 μm, and particularly a thin substrate of 10 to 60 μm. It can be preferably used.
〔薄膜、積層体及びフィルム〕
本発明において、薄膜の形成は、対向電極の間隙の放電部で、基材を大気圧もしくはその近傍の圧力下で上記処理ガスによりプラズマ放電処理することによって行われる。本発明における大気圧もしくはその近傍の圧力下でのプラズマ放電処理は、基材の幅が、例えば2000mmもの非常に幅広いものを行うことができ、また、処理速度を100m/分の速度で行うこともできる。本発明において、プラズマ放電を開始する際、まず処理室の空気を真空ポンプで引きながら、処理ガスまたは希ガスを処理室に導入して、空気と置換してから放電部に処理ガスを供給し、放電部を満たすのが好ましい。その後基材を移送させて処理を行う。 [Thin films, laminates and films]
In the present invention, the thin film is formed by subjecting the base material to plasma discharge treatment with the above treatment gas at atmospheric pressure or a pressure in the vicinity thereof at the discharge portion in the gap between the counter electrodes. In the present invention, the plasma discharge treatment under atmospheric pressure or a pressure in the vicinity thereof can be performed with a substrate having a very wide width of, for example, 2000 mm, and a treatment speed of 100 m / min. You can also. In the present invention, when plasma discharge is started, first, a processing gas or a rare gas is introduced into the processing chamber while drawing the air in the processing chamber with a vacuum pump, and the processing gas is supplied to the discharge section after replacing the air. The discharge part is preferably filled. Thereafter, the substrate is transferred to carry out processing.
本発明において、薄膜の形成は、対向電極の間隙の放電部で、基材を大気圧もしくはその近傍の圧力下で上記処理ガスによりプラズマ放電処理することによって行われる。本発明における大気圧もしくはその近傍の圧力下でのプラズマ放電処理は、基材の幅が、例えば2000mmもの非常に幅広いものを行うことができ、また、処理速度を100m/分の速度で行うこともできる。本発明において、プラズマ放電を開始する際、まず処理室の空気を真空ポンプで引きながら、処理ガスまたは希ガスを処理室に導入して、空気と置換してから放電部に処理ガスを供給し、放電部を満たすのが好ましい。その後基材を移送させて処理を行う。 [Thin films, laminates and films]
In the present invention, the thin film is formed by subjecting the base material to plasma discharge treatment with the above treatment gas at atmospheric pressure or a pressure in the vicinity thereof at the discharge portion in the gap between the counter electrodes. In the present invention, the plasma discharge treatment under atmospheric pressure or a pressure in the vicinity thereof can be performed with a substrate having a very wide width of, for example, 2000 mm, and a treatment speed of 100 m / min. You can also. In the present invention, when plasma discharge is started, first, a processing gas or a rare gas is introduced into the processing chamber while drawing the air in the processing chamber with a vacuum pump, and the processing gas is supplied to the discharge section after replacing the air. The discharge part is preferably filled. Thereafter, the substrate is transferred to carry out processing.
膜厚は放電部や処理ガス濃度、基材の搬送速度によって適宜調整することができる。
The film thickness can be appropriately adjusted according to the discharge part, the processing gas concentration, and the conveyance speed of the substrate.
本発明のプラズマ放電処理装置により、基材上に形成した薄膜は片面のみにあるが、巻き取り後、その反対側をプラズマ放電処理するために装置内に通してもよい。帯電防止層を金属酸化物で形成する場合に、帯電防止層または導電性層は、金属酸化物微粒子や架橋カチオンポリマー粒子等の塗布液を膜厚0.1~2μm程度の層に基材に塗布して形成することができるが、本発明のプラズマ放電処理装置によっても薄膜の導電性層を形成することができる。例えば、酸化スズ、酸化インジウムあるいは酸化亜鉛等の金属酸化物の導電性層を形成してもよい。また、特開2002-82223号公報記載の易接着加工、特願2000-80043記載の帯電防止加工等も本発明のプラズマ放電処理装置を用いて実施することができる。
The thin film formed on the substrate by the plasma discharge treatment apparatus of the present invention is only on one side, but after winding up, the opposite side may be passed through the apparatus for plasma discharge treatment. When the antistatic layer is formed of a metal oxide, the antistatic layer or the conductive layer is formed by applying a coating liquid such as metal oxide fine particles or crosslinked cationic polymer particles into a layer having a thickness of about 0.1 to 2 μm. Although it can be formed by coating, a thin conductive layer can also be formed by the plasma discharge treatment apparatus of the present invention. For example, a conductive layer of metal oxide such as tin oxide, indium oxide, or zinc oxide may be formed. In addition, easy adhesion processing described in JP-A-2002-82223, antistatic processing described in Japanese Patent Application No. 2000-80043, and the like can be performed using the plasma discharge processing apparatus of the present invention.
本発明のプラズマ放電処理装置による薄膜形成条件は前述プラズマ放電処理装置のところで述べたが、更に、処理するためのその他の条件等について述べる。
The conditions for forming a thin film by the plasma discharge processing apparatus of the present invention have been described in the above-mentioned plasma discharge processing apparatus, but other conditions for processing are also described.
本発明の薄膜を形成する際、あらかじめ基材を50~120℃に熱処理してからプラズマ放電処理することにより均一な薄膜を形成し易く、予加熱するのは好ましい方法である。熱処理することにより、吸湿していた基材を乾燥させることができ、低湿度に維持したままプラズマ放電処理することが好ましい。60%RH未満、より好ましくは40%RHで調湿した基材を吸湿させることなくプラズマ放電処理することが好ましい。含水率は3%以下であることが好ましく、2%以下であることがより好ましく、1%以下であることが更に好ましい。
When forming the thin film of the present invention, it is easy to form a uniform thin film by subjecting the substrate to heat treatment at 50 to 120 ° C. and then plasma discharge treatment, and preheating is a preferable method. By performing the heat treatment, the substrate that has absorbed moisture can be dried, and it is preferable to perform a plasma discharge treatment while maintaining a low humidity. It is preferable to perform plasma discharge treatment without absorbing moisture on a substrate conditioned at less than 60% RH, more preferably 40% RH. The moisture content is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less.
また、プラズマ放電処理後の基材を50~130℃の熱処理ゾーンで1~30分熱処理することにより薄膜を安定化させることができ、有効な手段である。
Further, the thin film can be stabilized by heat-treating the substrate after the plasma discharge treatment in a heat treatment zone at 50 to 130 ° C. for 1 to 30 minutes, which is an effective means.
更に、本発明の多段のプラズマ放電処理により積層体を作製する際、それぞれのプラズマ放電処理前後に処理面に紫外線を照射してもよく、形成した薄膜の基材への密着性(接着性)や安定性を改善することができる。紫外線照射光量としては50~2000mJ/cm2であることが好ましく、50mJ/cm2未満では効果が十分ではなく、2000mJ/cm2を越えると基材の変形等が生じる恐れがある。
Furthermore, when a laminate is produced by the multistage plasma discharge treatment of the present invention, the treatment surface may be irradiated with ultraviolet rays before and after each plasma discharge treatment, and the adhesion (adhesion) of the formed thin film to the substrate And stability can be improved. The amount of ultraviolet irradiation is preferably 50 to 2000 mJ / cm 2 , and if it is less than 50 mJ / cm 2 , the effect is not sufficient, and if it exceeds 2000 mJ / cm 2 , the substrate may be deformed.
本発明で形成される薄膜の膜厚としては、1~1000nmの範囲が好ましい。
The film thickness of the thin film formed in the present invention is preferably in the range of 1 to 1000 nm.
本発明のプラズマ放電処理装置により形成する薄膜の平均膜厚に対する膜厚偏差は小さく、均一な薄膜を形成することができ、優れた薄膜形成方法である。薄膜の膜厚偏差は±10%のものを容易に得ることができ、好ましくは±5%以内、特に±1%以内の均一な薄膜を得ることができる。
The film thickness deviation with respect to the average film thickness of the thin film formed by the plasma discharge treatment apparatus of the present invention is small, and a uniform thin film can be formed, which is an excellent thin film forming method. A film thickness deviation of ± 10% can be easily obtained, and a uniform thin film preferably within ± 5%, particularly within ± 1% can be obtained.
上述の、無機または有機微粒子を含有する組成物塗布液を基材に塗布乾燥し、表面をRaが0.1~0.5μm程度凹凸表面を有する機能層、例えば防眩層の上に、プラズマ放電処理により均一な膜厚の薄膜を形成することもできる。例えば、その薄膜が低屈折率層あるいは高屈折率層等の場合、光学干渉層として設けることができる。
The composition coating liquid containing inorganic or organic fine particles described above is coated on a substrate and dried, and the surface is formed on a functional layer having an uneven surface such as Ra of about 0.1 to 0.5 μm, such as an antiglare layer. A thin film having a uniform thickness can also be formed by the discharge treatment. For example, when the thin film is a low refractive index layer or a high refractive index layer, it can be provided as an optical interference layer.
本発明のフィルムは本発明のプラズマ放電処理装置により形成する薄膜及びその積層体により構成される。
The film of the present invention is composed of a thin film formed by the plasma discharge treatment apparatus of the present invention and a laminate thereof.
本発明のフィルムとしては、反射防止フィルム、防眩性反射防止フィルム、電磁波遮蔽フィルム、導電性フィルム、帯電防止フィルム、位相差フィルム、光学補償フィルム、視野角拡大フィルム、輝度向上フィルム等があるが、これらに限定されない。
Examples of the film of the present invention include an antireflection film, an antiglare antireflection film, an electromagnetic wave shielding film, a conductive film, an antistatic film, a retardation film, an optical compensation film, a viewing angle widening film, and a brightness enhancement film. However, it is not limited to these.
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
実施例1
《薄層積層体の作製》
〔薄層積層体1の作製:比較例〕
基材として、厚さ100μmのロール状のポリエチレンテレフタレートフィルム上に、図6に記載の異なる基材上に同時に薄膜形成を行うことができる大気圧プラズマ放電処理装置(単一の電源のみを使用して印加する印加方式A)を用い、ロール電極として直径が何れも300mmで、図2に記載の放電距離Lパターンを有するロール電極10A、10Bに変更し、下記の放電条件で、反射防止膜の膜厚が100nmとなるように形成して、薄膜積層体1を作製した。なお、薄層積層体1の作製に用いた同一直径のロール電極を用いた大気圧プラズマ放電処理装置を、便宜上図6′と称す。 Example 1
<< Preparation of thin layer laminate >>
[Preparation of thin-layer laminate 1: comparative example]
As a base material, an atmospheric pressure plasma discharge treatment apparatus (using only a single power source) that can simultaneously form a thin film on a different base material shown in FIG. 6 on a roll-shaped polyethylene terephthalate film having a thickness of 100 μm. Application method A), the diameter of each roll electrode is 300 mm and the roll electrodes 10A and 10B having the discharge distance L pattern shown in FIG. 2 are changed to the antireflection film under the following discharge conditions. The thin film stack 1 was manufactured by forming the film thickness to be 100 nm. In addition, the atmospheric pressure plasma discharge processing apparatus using the roll electrode of the same diameter used for production of the thin layered product 1 is referred to as FIG. 6 ′ for convenience.
《薄層積層体の作製》
〔薄層積層体1の作製:比較例〕
基材として、厚さ100μmのロール状のポリエチレンテレフタレートフィルム上に、図6に記載の異なる基材上に同時に薄膜形成を行うことができる大気圧プラズマ放電処理装置(単一の電源のみを使用して印加する印加方式A)を用い、ロール電極として直径が何れも300mmで、図2に記載の放電距離Lパターンを有するロール電極10A、10Bに変更し、下記の放電条件で、反射防止膜の膜厚が100nmとなるように形成して、薄膜積層体1を作製した。なお、薄層積層体1の作製に用いた同一直径のロール電極を用いた大気圧プラズマ放電処理装置を、便宜上図6′と称す。 Example 1
<< Preparation of thin layer laminate >>
[Preparation of thin-layer laminate 1: comparative example]
As a base material, an atmospheric pressure plasma discharge treatment apparatus (using only a single power source) that can simultaneously form a thin film on a different base material shown in FIG. 6 on a roll-shaped polyethylene terephthalate film having a thickness of 100 μm. Application method A), the diameter of each roll electrode is 300 mm and the
なお、使用した各ロール電極は、誘電体にアルミナ溶融誘電体を片肉で1mm被覆して製作し、ロール電極上に電極間ギャップを1mmとして、設置した。更にロール電極は、冷却水による冷却機能を有するステンレス製ジャケットロール母材を使用した。プラズマ放電中、ロール回転電極が80℃になるように調節保温した。
Each roll electrode used was manufactured by covering a dielectric with 1 mm of an alumina molten dielectric on one side and setting the gap between the roll electrodes to 1 mm. Furthermore, the roll electrode used the stainless steel jacket roll base material which has the cooling function by a cooling water. During the plasma discharge, the temperature of the roll rotating electrode was adjusted and kept at 80 ° C.
(成膜条件)
〈放電ガス〉アルゴンガス 94.9体積%
〈薄膜形成ガス〉
原料ガス:テトラエトキシシラン(リンテック社製気化器にてアルゴンガスに混合して気化) 0.1体積%
反応ガス:酸素ガス 5.0体積%
(電源条件)
電源:パール工業社製高周波電源
周波数 27MHz
出力密度 10W/cm2
〔薄層積層体2の作製:比較例〕
基材として、厚さ100μmのロール状のポリエチレンテレフタレートフィルム上に、図7に記載の折り返し搬送方式で、ロール電極として直径が何れも300mmで、図2に記載の放電距離Lパターンを有するロール電極10A、10Bを有する大気圧プラズマ放電処理装置(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)を用い、下記の放電条件で、反射防止膜の膜厚が100nmとなるように形成して、薄膜積層体2を作製した。ロール電極は、薄膜積層体1の作製で用いたのと同様のものを使用した。なお、薄層積層体2の作製に用いた同一直径のロール電極を用いた大気圧プラズマ放電処理装置を、便宜上図7′と称す。 (Deposition conditions)
<Discharge gas> Argon gas 94.9% by volume
<Thin film forming gas>
Source gas: Tetraethoxysilane (mixed with argon gas by a vaporizer manufactured by Lintec Corporation and vaporized) 0.1% by volume
Reaction gas: Oxygen gas 5.0% by volume
(Power requirements)
Power supply: High frequency power supply made by Pearl Industrial Co., Ltd. Frequency 27MHz
Output density 10W / cm 2
[Preparation of thin-layer laminate 2: comparative example]
As a base material, a roll electrode having a discharge distance L pattern as shown in FIG. 2 on a roll-shaped polyethylene terephthalate film having a thickness of 100 μm and having a diameter of 300 mm as a roll electrode according to the folded conveying method shown in FIG. Using an atmospheric pressure plasma discharge treatment apparatus having 10A and 10B (application method B in which the first high-frequency electric field and the second high-frequency electric field are superimposed), the film thickness of the antireflection film becomes 100 nm under the following discharge conditions. Thus, a thin film laminate 2 was produced. The roll electrode was the same as that used in the production of thethin film laminate 1. In addition, the atmospheric pressure plasma discharge processing apparatus using the roll electrode of the same diameter used for production of the thin layered product 2 is referred to as FIG. 7 ′ for convenience.
〈放電ガス〉アルゴンガス 94.9体積%
〈薄膜形成ガス〉
原料ガス:テトラエトキシシラン(リンテック社製気化器にてアルゴンガスに混合して気化) 0.1体積%
反応ガス:酸素ガス 5.0体積%
(電源条件)
電源:パール工業社製高周波電源
周波数 27MHz
出力密度 10W/cm2
〔薄層積層体2の作製:比較例〕
基材として、厚さ100μmのロール状のポリエチレンテレフタレートフィルム上に、図7に記載の折り返し搬送方式で、ロール電極として直径が何れも300mmで、図2に記載の放電距離Lパターンを有するロール電極10A、10Bを有する大気圧プラズマ放電処理装置(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)を用い、下記の放電条件で、反射防止膜の膜厚が100nmとなるように形成して、薄膜積層体2を作製した。ロール電極は、薄膜積層体1の作製で用いたのと同様のものを使用した。なお、薄層積層体2の作製に用いた同一直径のロール電極を用いた大気圧プラズマ放電処理装置を、便宜上図7′と称す。 (Deposition conditions)
<Discharge gas> Argon gas 94.9% by volume
<Thin film forming gas>
Source gas: Tetraethoxysilane (mixed with argon gas by a vaporizer manufactured by Lintec Corporation and vaporized) 0.1% by volume
Reaction gas: Oxygen gas 5.0% by volume
(Power requirements)
Power supply: High frequency power supply made by Pearl Industrial Co., Ltd. Frequency 27MHz
Output density 10W / cm 2
[Preparation of thin-layer laminate 2: comparative example]
As a base material, a roll electrode having a discharge distance L pattern as shown in FIG. 2 on a roll-shaped polyethylene terephthalate film having a thickness of 100 μm and having a diameter of 300 mm as a roll electrode according to the folded conveying method shown in FIG. Using an atmospheric pressure plasma discharge treatment apparatus having 10A and 10B (application method B in which the first high-frequency electric field and the second high-frequency electric field are superimposed), the film thickness of the antireflection film becomes 100 nm under the following discharge conditions. Thus, a thin film laminate 2 was produced. The roll electrode was the same as that used in the production of the
(成膜条件)
〈放電ガス〉窒素ガス 94.9体積%
〈薄膜形成ガス〉
原料ガス:テトラエトキシシラン(リンテック社製気化器にて窒素ガスに混合して気化) 0.1体積%
反応ガス:酸素ガ 5.0体積%
(電源条件)
第1電源側:
周波数 80kHz
出力密度 5W/cm2
第2電源側:
周波数 13.56MkHz
出力密度 5W/cm2
〔薄層積層体3の作製:比較例〕
基材として、厚さ100μmのロール状のポリエチレンテレフタレートフィルム上に、図5に記載のループ搬送方式で、ロール電極として直径が何れも300mmで、図2に記載の放電距離Lパターンを有するロール電極10A、10Bを有する大気圧プラズマ放電処理装置(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)を用いた以外は同様にして、薄膜積層体3を作製した。なお、薄層積層体3の作製に用いた同一直径のロール電極を用いた大気圧プラズマ放電処理装置を、便宜上図5′と称す。 (Deposition conditions)
<Discharge gas> Nitrogen gas 94.9% by volume
<Thin film forming gas>
Source gas: Tetraethoxysilane (mixed with nitrogen gas and vaporized by a Lintec vaporizer) 0.1% by volume
Reaction gas: Oxygen gas 5.0% by volume
(Power requirements)
First power supply side:
Frequency 80kHz
Output density 5W / cm 2
Second power supply side:
Frequency 13.56MkHz
Output density 5W / cm 2
[Preparation of Thin Layer Laminate 3: Comparative Example]
As a base material, a roll electrode having a discharge distance L pattern as shown in FIG. 2 on a roll-shaped polyethylene terephthalate film having a thickness of 100 μm and having a diameter of 300 mm as a roll electrode in a loop conveyance system as shown in FIG. A thin film laminate 3 was produced in the same manner except that an atmospheric pressure plasma discharge treatment apparatus having 10A and 10B (application method B in which the first high-frequency electric field and the second high-frequency electric field were superimposed) was used. In addition, the atmospheric pressure plasma discharge processing apparatus using the roll electrode of the same diameter used for production of the thin layered product 3 is referred to as FIG. 5 ′ for convenience.
〈放電ガス〉窒素ガス 94.9体積%
〈薄膜形成ガス〉
原料ガス:テトラエトキシシラン(リンテック社製気化器にて窒素ガスに混合して気化) 0.1体積%
反応ガス:酸素ガ 5.0体積%
(電源条件)
第1電源側:
周波数 80kHz
出力密度 5W/cm2
第2電源側:
周波数 13.56MkHz
出力密度 5W/cm2
〔薄層積層体3の作製:比較例〕
基材として、厚さ100μmのロール状のポリエチレンテレフタレートフィルム上に、図5に記載のループ搬送方式で、ロール電極として直径が何れも300mmで、図2に記載の放電距離Lパターンを有するロール電極10A、10Bを有する大気圧プラズマ放電処理装置(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)を用いた以外は同様にして、薄膜積層体3を作製した。なお、薄層積層体3の作製に用いた同一直径のロール電極を用いた大気圧プラズマ放電処理装置を、便宜上図5′と称す。 (Deposition conditions)
<Discharge gas> Nitrogen gas 94.9% by volume
<Thin film forming gas>
Source gas: Tetraethoxysilane (mixed with nitrogen gas and vaporized by a Lintec vaporizer) 0.1% by volume
Reaction gas: Oxygen gas 5.0% by volume
(Power requirements)
First power supply side:
Frequency 80kHz
Output density 5W / cm 2
Second power supply side:
Frequency 13.56MkHz
Output density 5W / cm 2
[Preparation of Thin Layer Laminate 3: Comparative Example]
As a base material, a roll electrode having a discharge distance L pattern as shown in FIG. 2 on a roll-shaped polyethylene terephthalate film having a thickness of 100 μm and having a diameter of 300 mm as a roll electrode in a loop conveyance system as shown in FIG. A thin film laminate 3 was produced in the same manner except that an atmospheric pressure plasma discharge treatment apparatus having 10A and 10B (application method B in which the first high-frequency electric field and the second high-frequency electric field were superimposed) was used. In addition, the atmospheric pressure plasma discharge processing apparatus using the roll electrode of the same diameter used for production of the thin layered product 3 is referred to as FIG. 5 ′ for convenience.
〔薄層積層体4の作製:本発明〕
図6に記載のロール電極構成からなる真空蒸着装置の真空槽内に、基材として厚さ100μmのポリエチレンテレフタレートフィルムをセットし、10-4Paまで真空脱気した後、テトラエトキシシラン(TEOS)、水素ガス及びヘリウムガスを用い、印加電圧(RFパワー)100W、基材温度180℃の条件で原料の供給量を適宜調製しながら、厚さ100nmの反射防止膜を形成して、薄膜積層体4を作製した。 [Preparation of Thin Layer Laminate 4: Present Invention]
A polyethylene terephthalate film having a thickness of 100 μm is set as a base material in a vacuum chamber of a vacuum vapor deposition apparatus having the roll electrode configuration shown in FIG. 6, and after vacuum degassing to 10 −4 Pa, tetraethoxysilane (TEOS) A thin film laminate is formed by forming an antireflection film having a thickness of 100 nm while appropriately adjusting the supply amount of raw materials using hydrogen gas and helium gas under conditions of an applied voltage (RF power) of 100 W and a substrate temperature of 180 ° C. 4 was produced.
図6に記載のロール電極構成からなる真空蒸着装置の真空槽内に、基材として厚さ100μmのポリエチレンテレフタレートフィルムをセットし、10-4Paまで真空脱気した後、テトラエトキシシラン(TEOS)、水素ガス及びヘリウムガスを用い、印加電圧(RFパワー)100W、基材温度180℃の条件で原料の供給量を適宜調製しながら、厚さ100nmの反射防止膜を形成して、薄膜積層体4を作製した。 [Preparation of Thin Layer Laminate 4: Present Invention]
A polyethylene terephthalate film having a thickness of 100 μm is set as a base material in a vacuum chamber of a vacuum vapor deposition apparatus having the roll electrode configuration shown in FIG. 6, and after vacuum degassing to 10 −4 Pa, tetraethoxysilane (TEOS) A thin film laminate is formed by forming an antireflection film having a thickness of 100 nm while appropriately adjusting the supply amount of raw materials using hydrogen gas and helium gas under conditions of an applied voltage (RF power) of 100 W and a substrate temperature of 180 ° C. 4 was produced.
なお、使用した各ロール電極は、誘電体にアルミナ溶融誘電体を片肉で1mm被覆して製作し、ロール電極上に電極間ギャップを1mmとして設置し、ロール電極10Aの直径は100mmで、ロール電極10Cの直径は85mmで、直径比は1.0:0.85である。また、各ロール電極の放電距離Lパターンは、図4に記載のパターンとした。
Each roll electrode used was manufactured by coating a dielectric with 1 mm of alumina molten dielectric on a dielectric, and the gap between the electrodes was set to 1 mm on the roll electrode, and the roll electrode 10A had a diameter of 100 mm. The diameter of the electrode 10C is 85 mm, and the diameter ratio is 1.0: 0.85. Moreover, the discharge distance L pattern of each roll electrode was the pattern shown in FIG.
〔薄層積層体5の作製:本発明〕
基材として、厚さ100μmのロール状のポリエチレンテレフタレートフィルム上に、図6に記載の異なる基材上に同時に薄膜形成を行うことができる大気圧プラズマ放電処理装置(単一の電源のみを使用して印加する印加方式A)を用い、ロール電極として、図4に記載の放電距離Lパターンを有する直径が300mmのロール電極10Aと、直径が255mmのロール電極10C(ロール電極10Aと10Cの直径比は1.0:0.85)を使用し、下記の放電条件で、反射防止膜の膜厚が100nmとなるように形成して、薄膜積層体5を作製した。 [Preparation of Thin Layered Laminate 5: Present Invention]
As a base material, an atmospheric pressure plasma discharge treatment apparatus (using only a single power source) that can simultaneously form a thin film on a different base material shown in FIG. 6 on a roll-shaped polyethylene terephthalate film having a thickness of 100 μm. 4 is used, and theroll electrode 10A having the discharge distance L pattern shown in FIG. 4 and a roll electrode 10C having a diameter of 255 mm (diameter ratio of the roll electrodes 10A and 10C) is used as the roll electrode. 1.0: 0.85), and the antireflection film was formed to a thickness of 100 nm under the following discharge conditions to produce a thin film laminate 5.
基材として、厚さ100μmのロール状のポリエチレンテレフタレートフィルム上に、図6に記載の異なる基材上に同時に薄膜形成を行うことができる大気圧プラズマ放電処理装置(単一の電源のみを使用して印加する印加方式A)を用い、ロール電極として、図4に記載の放電距離Lパターンを有する直径が300mmのロール電極10Aと、直径が255mmのロール電極10C(ロール電極10Aと10Cの直径比は1.0:0.85)を使用し、下記の放電条件で、反射防止膜の膜厚が100nmとなるように形成して、薄膜積層体5を作製した。 [Preparation of Thin Layered Laminate 5: Present Invention]
As a base material, an atmospheric pressure plasma discharge treatment apparatus (using only a single power source) that can simultaneously form a thin film on a different base material shown in FIG. 6 on a roll-shaped polyethylene terephthalate film having a thickness of 100 μm. 4 is used, and the
なお、使用した各ロール電極10A、10Cは、誘電体にアルミナ溶融誘電体を片肉で1mm被覆して製作し、ロール電極上に電極間ギャップを1mmとして、設置した。更にロール電極は、冷却水による冷却機能を有するステンレス製ジャケットロール母材を使用した。プラズマ放電中、ロール回転電極が80℃になるように調節保温した。
In addition, each used roll electrode 10A, 10C was manufactured by covering a dielectric with an alumina molten dielectric with a thickness of 1 mm and setting the gap between the roll electrodes to 1 mm. Furthermore, the roll electrode used the stainless steel jacket roll base material which has the cooling function by a cooling water. During the plasma discharge, the temperature of the roll rotating electrode was adjusted and kept at 80 ° C.
(成膜条件)
〈放電ガス〉アルゴンガス 94.9体積%
〈薄膜形成ガス〉
原料ガス:テトラエトキシシラン(リンテック社製気化器にてアルゴンガスに混合して気化) 0.1体積%
反応ガス:酸素ガス 5.0体積%
(電源条件)
電源:パール工業社製高周波電源
周波数 27MHz
出力密度 10W/cm2
〔薄層積層体6の作製:本発明〕
上記薄層積層体5の作製において、放電ガス及び原料の気化用ガスをアルゴンガスから窒素ガスに変更した以外は同様にして、薄層積層体6を作製した。 (Deposition conditions)
<Discharge gas> Argon gas 94.9% by volume
<Thin film forming gas>
Source gas: Tetraethoxysilane (mixed with argon gas by a vaporizer manufactured by Lintec Corporation and vaporized) 0.1% by volume
Reaction gas: Oxygen gas 5.0% by volume
(Power requirements)
Power supply: High frequency power supply made by Pearl Industrial Co., Ltd. Frequency 27MHz
Output density 10W / cm 2
[Preparation of Thin Layer Laminate 6: Present Invention]
In the production of the thin layered product 5, a thin layered product 6 was produced in the same manner except that the discharge gas and the raw material vaporizing gas were changed from argon gas to nitrogen gas.
〈放電ガス〉アルゴンガス 94.9体積%
〈薄膜形成ガス〉
原料ガス:テトラエトキシシラン(リンテック社製気化器にてアルゴンガスに混合して気化) 0.1体積%
反応ガス:酸素ガス 5.0体積%
(電源条件)
電源:パール工業社製高周波電源
周波数 27MHz
出力密度 10W/cm2
〔薄層積層体6の作製:本発明〕
上記薄層積層体5の作製において、放電ガス及び原料の気化用ガスをアルゴンガスから窒素ガスに変更した以外は同様にして、薄層積層体6を作製した。 (Deposition conditions)
<Discharge gas> Argon gas 94.9% by volume
<Thin film forming gas>
Source gas: Tetraethoxysilane (mixed with argon gas by a vaporizer manufactured by Lintec Corporation and vaporized) 0.1% by volume
Reaction gas: Oxygen gas 5.0% by volume
(Power requirements)
Power supply: High frequency power supply made by Pearl Industrial Co., Ltd. Frequency 27MHz
Output density 10W / cm 2
[Preparation of Thin Layer Laminate 6: Present Invention]
In the production of the thin layered product 5, a thin layered product 6 was produced in the same manner except that the discharge gas and the raw material vaporizing gas were changed from argon gas to nitrogen gas.
〔薄層積層体7の作製:本発明〕
基材として、厚さ100μmのロール状のポリエチレンテレフタレートフィルム上に、図6に記載の異なる基材上に同時に薄膜形成を行うことができる大気圧プラズマ放電処理装置において、電源条件として下記に示す2周波方式に変更し、ロール電極として直径が300mmのロール電極10Aと、直径が255mmのロール電極10C(ロール電極10Aと10Cの直径比は1.0:0.85)を使用し、図4に記載の放電距離Lパターンを有する大気圧プラズマ放電処理装置(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)を用い、下記の放電条件で、反射防止膜の膜厚が100nmとなるように形成して、薄膜積層体7を作製した。なお、ロール電極は、薄膜積層体1の作製で用いたのと同様のものを使用した。 [Preparation of Thin Layer Laminate 7: Present Invention]
In an atmospheric pressure plasma discharge treatment apparatus capable of simultaneously forming a thin film on a different polyethylene substrate as shown in FIG. 6 on a roll-shaped polyethylene terephthalate film having a thickness of 100 μm as a substrate, the following 2 are shown as power supply conditions. Changed to the frequency system, theroll electrode 10A having a diameter of 300 mm and the roll electrode 10C having a diameter of 255 mm (the diameter ratio of the roll electrodes 10A and 10C is 1.0: 0.85) are used as the roll electrodes. Using the atmospheric pressure plasma discharge treatment apparatus (application method B in which the first high-frequency electric field and the second high-frequency electric field are superimposed) having the discharge distance L pattern described above, the film thickness of the antireflection film is as follows. A thin film stack 7 was produced by forming the film so as to have a thickness of 100 nm. The roll electrode was the same as that used in the production of the thin film laminate 1.
基材として、厚さ100μmのロール状のポリエチレンテレフタレートフィルム上に、図6に記載の異なる基材上に同時に薄膜形成を行うことができる大気圧プラズマ放電処理装置において、電源条件として下記に示す2周波方式に変更し、ロール電極として直径が300mmのロール電極10Aと、直径が255mmのロール電極10C(ロール電極10Aと10Cの直径比は1.0:0.85)を使用し、図4に記載の放電距離Lパターンを有する大気圧プラズマ放電処理装置(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)を用い、下記の放電条件で、反射防止膜の膜厚が100nmとなるように形成して、薄膜積層体7を作製した。なお、ロール電極は、薄膜積層体1の作製で用いたのと同様のものを使用した。 [Preparation of Thin Layer Laminate 7: Present Invention]
In an atmospheric pressure plasma discharge treatment apparatus capable of simultaneously forming a thin film on a different polyethylene substrate as shown in FIG. 6 on a roll-shaped polyethylene terephthalate film having a thickness of 100 μm as a substrate, the following 2 are shown as power supply conditions. Changed to the frequency system, the
(成膜条件)
〈放電ガス〉窒素ガス 94.9体積%
〈薄膜形成ガス〉
原料ガス:テトラエトキシシラン(リンテック社製気化器にて窒素ガスに混合して気化) 0.1体積%
反応ガス:酸素ガス 5.0体積%
(電源条件)
第1電源側:
周波数 80kHz
出力密度 5W/cm2
第2電源側:
周波数 13.56MkHz
出力密度 5W/cm2
〔薄層積層体8の作製:本発明〕
基材として、厚さ100μmのロール状のポリエチレンテレフタレートフィルム上に、図7に記載の折り返し搬送機構からなり、図4に記載の放電距離Lパターンを有する2周波方式の大気圧プラズマ放電処理装置を用い、下記に示す電源条件で、ロール電極として直径が300mmのロール電極10Aと、直径が255mmのロール電極10C(ロール電極10Aと10Cの直径比は1.0:0.85)を使用し、大気圧プラズマ放電処理装置(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)を用い、反射防止膜の膜厚が100nmとなるように形成して、薄膜積層体8を作製した。なお、ロール電極は、薄膜積層体1の作製で用いたのと同様のものを使用した。 (Deposition conditions)
<Discharge gas> Nitrogen gas 94.9% by volume
<Thin film forming gas>
Source gas: Tetraethoxysilane (mixed with nitrogen gas and vaporized by a Lintec vaporizer) 0.1% by volume
Reaction gas: Oxygen gas 5.0% by volume
(Power requirements)
First power supply side:
Frequency 80kHz
Output density 5W / cm 2
Second power supply side:
Frequency 13.56MkHz
Output density 5W / cm 2
[Preparation of Thin Layer Laminate 8: Present Invention]
As a base material, a two-frequency atmospheric pressure plasma discharge treatment apparatus having a folding distance L pattern shown in FIG. 4 having a folding transport mechanism shown in FIG. 7 on a roll-shaped polyethylene terephthalate film having a thickness of 100 μm. Using aroll electrode 10A having a diameter of 300 mm and a roll electrode 10C having a diameter of 255 mm (the diameter ratio of the roll electrodes 10A and 10C is 1.0: 0.85) under the power supply conditions shown below. Using an atmospheric pressure plasma discharge processing apparatus (application method B in which the first high-frequency electric field and the second high-frequency electric field are superimposed), the antireflection film is formed to a thickness of 100 nm, and the thin film stack 8 is formed. Produced. The roll electrode was the same as that used in the production of the thin film laminate 1.
〈放電ガス〉窒素ガス 94.9体積%
〈薄膜形成ガス〉
原料ガス:テトラエトキシシラン(リンテック社製気化器にて窒素ガスに混合して気化) 0.1体積%
反応ガス:酸素ガス 5.0体積%
(電源条件)
第1電源側:
周波数 80kHz
出力密度 5W/cm2
第2電源側:
周波数 13.56MkHz
出力密度 5W/cm2
〔薄層積層体8の作製:本発明〕
基材として、厚さ100μmのロール状のポリエチレンテレフタレートフィルム上に、図7に記載の折り返し搬送機構からなり、図4に記載の放電距離Lパターンを有する2周波方式の大気圧プラズマ放電処理装置を用い、下記に示す電源条件で、ロール電極として直径が300mmのロール電極10Aと、直径が255mmのロール電極10C(ロール電極10Aと10Cの直径比は1.0:0.85)を使用し、大気圧プラズマ放電処理装置(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)を用い、反射防止膜の膜厚が100nmとなるように形成して、薄膜積層体8を作製した。なお、ロール電極は、薄膜積層体1の作製で用いたのと同様のものを使用した。 (Deposition conditions)
<Discharge gas> Nitrogen gas 94.9% by volume
<Thin film forming gas>
Source gas: Tetraethoxysilane (mixed with nitrogen gas and vaporized by a Lintec vaporizer) 0.1% by volume
Reaction gas: Oxygen gas 5.0% by volume
(Power requirements)
First power supply side:
Frequency 80kHz
Output density 5W / cm 2
Second power supply side:
Frequency 13.56MkHz
Output density 5W / cm 2
[Preparation of Thin Layer Laminate 8: Present Invention]
As a base material, a two-frequency atmospheric pressure plasma discharge treatment apparatus having a folding distance L pattern shown in FIG. 4 having a folding transport mechanism shown in FIG. 7 on a roll-shaped polyethylene terephthalate film having a thickness of 100 μm. Using a
(成膜条件)
〈放電ガス〉窒素ガス 94.9体積%
〈薄膜形成ガス〉
原料ガス:テトラエトキシシラン(リンテック社製気化器にて窒素ガスに混合して気化) 0.1体積%
反応ガス:酸素ガス 5.0体積%
(電源条件)
第1電源側:
周波数 80kHz
出力密度 5W/cm2
第2電源側:
周波数 13.56MkHz
出力密度 5W/cm2
〔薄層積層体9の作製:本発明〕
上記薄層積層体8の作製において、図7に記載の折り返し搬送機構を有する大気圧プラズマ放電処理装置に代えて、図8に記載のループ搬送機構を有する大気圧プラズマ放電処理装置に変更した以外は同様にして、薄膜積層体9を作製した。 (Deposition conditions)
<Discharge gas> Nitrogen gas 94.9% by volume
<Thin film forming gas>
Source gas: Tetraethoxysilane (mixed with nitrogen gas and vaporized by a Lintec vaporizer) 0.1% by volume
Reaction gas: Oxygen gas 5.0% by volume
(Power requirements)
First power supply side:
Frequency 80kHz
Output density 5W / cm 2
Second power supply side:
Frequency 13.56MkHz
Output density 5W / cm 2
[Preparation of Thin Layer Laminate 9: Present Invention]
In the production of the thin layered laminate 8, the atmospheric pressure plasma discharge treatment apparatus having the loop conveyance mechanism shown in FIG. 8 is replaced with the atmospheric pressure plasma discharge treatment apparatus having the loop conveyance mechanism shown in FIG. Similarly, a thin film laminate 9 was produced.
〈放電ガス〉窒素ガス 94.9体積%
〈薄膜形成ガス〉
原料ガス:テトラエトキシシラン(リンテック社製気化器にて窒素ガスに混合して気化) 0.1体積%
反応ガス:酸素ガス 5.0体積%
(電源条件)
第1電源側:
周波数 80kHz
出力密度 5W/cm2
第2電源側:
周波数 13.56MkHz
出力密度 5W/cm2
〔薄層積層体9の作製:本発明〕
上記薄層積層体8の作製において、図7に記載の折り返し搬送機構を有する大気圧プラズマ放電処理装置に代えて、図8に記載のループ搬送機構を有する大気圧プラズマ放電処理装置に変更した以外は同様にして、薄膜積層体9を作製した。 (Deposition conditions)
<Discharge gas> Nitrogen gas 94.9% by volume
<Thin film forming gas>
Source gas: Tetraethoxysilane (mixed with nitrogen gas and vaporized by a Lintec vaporizer) 0.1% by volume
Reaction gas: Oxygen gas 5.0% by volume
(Power requirements)
First power supply side:
Frequency 80kHz
Output density 5W / cm 2
Second power supply side:
Frequency 13.56MkHz
Output density 5W / cm 2
[Preparation of Thin Layer Laminate 9: Present Invention]
In the production of the thin layered laminate 8, the atmospheric pressure plasma discharge treatment apparatus having the loop conveyance mechanism shown in FIG. 8 is replaced with the atmospheric pressure plasma discharge treatment apparatus having the loop conveyance mechanism shown in FIG. Similarly, a thin film laminate 9 was produced.
〔薄層積層体10の作製:本発明〕
上記薄層積層体8の作製において、放電空間を形成するロール電極として、直径が300mmのロール電極10Aと、直径が285mmのロール電極10C(ロール電極10Aと10Cの直径比は1.0:0.95)を使用した以外は同様にして、薄層積層体10を作製した。 [Preparation of Thin Layer Laminate 10: Present Invention]
In the production of the thin layered product 8, theroll electrode 10A having a diameter of 300 mm and the roll electrode 10C having a diameter of 285 mm (the diameter ratio of the roll electrodes 10A and 10C is 1.0: 0) as the roll electrode forming the discharge space. .95) was used in the same manner to produce a thin layer laminate 10.
上記薄層積層体8の作製において、放電空間を形成するロール電極として、直径が300mmのロール電極10Aと、直径が285mmのロール電極10C(ロール電極10Aと10Cの直径比は1.0:0.95)を使用した以外は同様にして、薄層積層体10を作製した。 [Preparation of Thin Layer Laminate 10: Present Invention]
In the production of the thin layered product 8, the
〔薄層積層体11の作製:本発明〕
上記薄層積層体8の作製において、放電空間を形成するロール電極として、直径が300mmのロール電極10Aと、直径が195mmのロール電極10C(ロール電極10Aと10Cの直径比は1.0:0.65)を使用した以外は同様にして、薄層積層体11を作製した。 [Preparation of Thin Layered Laminate 11: Present Invention]
In the production of the thin layered product 8, theroll electrode 10A having a diameter of 300 mm and the roll electrode 10C having a diameter of 195 mm (the diameter ratio of the roll electrodes 10A and 10C is 1.0: 0) as the roll electrode forming the discharge space. The thin layer laminate 11 was produced in the same manner except that.
上記薄層積層体8の作製において、放電空間を形成するロール電極として、直径が300mmのロール電極10Aと、直径が195mmのロール電極10C(ロール電極10Aと10Cの直径比は1.0:0.65)を使用した以外は同様にして、薄層積層体11を作製した。 [Preparation of Thin Layered Laminate 11: Present Invention]
In the production of the thin layered product 8, the
〔薄層積層体12の作製:本発明〕
上記薄層積層体8の作製において、放電空間を形成するロール電極として、直径が300mmのロール電極10Aと、直径が150mmのロール電極10C(ロール電極10Aと10Cの直径比は1.0:0.50)を使用した以外は同様にして、薄層積層体12を作製した。 [Preparation of Thin Layered Laminate 12: Present Invention]
In the production of the thin layered product 8, theroll electrode 10A having a diameter of 300 mm and the roll electrode 10C having a diameter of 150 mm (the diameter ratio of the roll electrodes 10A and 10C is 1.0: 0) as the roll electrode forming the discharge space. .50) was used in the same manner to produce a thin laminate 12.
上記薄層積層体8の作製において、放電空間を形成するロール電極として、直径が300mmのロール電極10Aと、直径が150mmのロール電極10C(ロール電極10Aと10Cの直径比は1.0:0.50)を使用した以外は同様にして、薄層積層体12を作製した。 [Preparation of Thin Layered Laminate 12: Present Invention]
In the production of the thin layered product 8, the
〔薄層積層体13の作製:本発明〕
基材として、厚さ100μmのロール状のポリエチレンテレフタレートフィルム上に、図3に記載の折り返し搬送機構からなり、図4に記載の放電距離Lパターンを有し、更に図9に示すガス供給手段を備えた単周波方式の大気圧プラズマ放電処理装置を用い、下記に示す電源条件で、ロール電極として直径が300mmのロール電極10Aと、直径が255mmのロール電極10C(ロール電極10Aと10Cの直径比は1.0:0.85)を使用して、反射防止膜の膜厚が100nmとなるように形成して、薄膜積層体13を作製した。なお、ロール電極は、薄膜積層体1の作製で用いたのと同様のものを使用した。 [Preparation of Thin Layer Laminate 13: Present Invention]
As a base material, a roll-like polyethylene terephthalate film having a thickness of 100 μm is composed of a folding conveyance mechanism shown in FIG. 3, and has a discharge distance L pattern shown in FIG. Using the single-frequency atmospheric pressure plasma discharge treatment apparatus provided, theroll electrode 10A having a diameter of 300 mm and the roll electrode 10C having a diameter of 255 mm (diameter ratio of the roll electrodes 10A and 10C) as a roll electrode under the following power supply conditions 1.0: 0.85), the antireflection film was formed to a thickness of 100 nm, and the thin film laminate 13 was produced. The roll electrode was the same as that used in the production of the thin film laminate 1.
基材として、厚さ100μmのロール状のポリエチレンテレフタレートフィルム上に、図3に記載の折り返し搬送機構からなり、図4に記載の放電距離Lパターンを有し、更に図9に示すガス供給手段を備えた単周波方式の大気圧プラズマ放電処理装置を用い、下記に示す電源条件で、ロール電極として直径が300mmのロール電極10Aと、直径が255mmのロール電極10C(ロール電極10Aと10Cの直径比は1.0:0.85)を使用して、反射防止膜の膜厚が100nmとなるように形成して、薄膜積層体13を作製した。なお、ロール電極は、薄膜積層体1の作製で用いたのと同様のものを使用した。 [Preparation of Thin Layer Laminate 13: Present Invention]
As a base material, a roll-like polyethylene terephthalate film having a thickness of 100 μm is composed of a folding conveyance mechanism shown in FIG. 3, and has a discharge distance L pattern shown in FIG. Using the single-frequency atmospheric pressure plasma discharge treatment apparatus provided, the
(成膜条件)
〈放電ガス〉窒素ガス 94.9体積%
〈薄膜形成ガス〉
原料ガス:テトラエトキシシラン(リンテック社製気化器にて窒素ガスに混合して気化) 0.1体積%
反応ガス:酸素ガス 5.0体積%
(電源条件)
電源:パール工業社製高周波電源
周波数 27MHz
出力密度 10W/cm2
〔薄層積層体14の作製:本発明〕
薄層積層体13の作製において、図3及び図9に示す構成からなる大気圧プラズマ放電処理装置に代えて、図10に記載のガス供給手段を有する大気圧プラズマ放電処理装置に変更した以外は同様にして、薄層積層体14を作製した。 (Deposition conditions)
<Discharge gas> Nitrogen gas 94.9% by volume
<Thin film forming gas>
Source gas: Tetraethoxysilane (mixed with nitrogen gas and vaporized by a Lintec vaporizer) 0.1% by volume
Reaction gas: Oxygen gas 5.0% by volume
(Power requirements)
Power supply: High frequency power supply made by Pearl Industrial Co., Ltd. Frequency 27MHz
Output density 10W / cm 2
[Preparation of thin-layer laminate 14: the present invention]
In the production of the thin layered product 13, the atmospheric pressure plasma discharge treatment apparatus having the gas supply means shown in FIG. 10 is used instead of the atmospheric pressure plasma discharge treatment apparatus having the configuration shown in FIGS. Similarly, the thin layered product 14 was produced.
〈放電ガス〉窒素ガス 94.9体積%
〈薄膜形成ガス〉
原料ガス:テトラエトキシシラン(リンテック社製気化器にて窒素ガスに混合して気化) 0.1体積%
反応ガス:酸素ガス 5.0体積%
(電源条件)
電源:パール工業社製高周波電源
周波数 27MHz
出力密度 10W/cm2
〔薄層積層体14の作製:本発明〕
薄層積層体13の作製において、図3及び図9に示す構成からなる大気圧プラズマ放電処理装置に代えて、図10に記載のガス供給手段を有する大気圧プラズマ放電処理装置に変更した以外は同様にして、薄層積層体14を作製した。 (Deposition conditions)
<Discharge gas> Nitrogen gas 94.9% by volume
<Thin film forming gas>
Source gas: Tetraethoxysilane (mixed with nitrogen gas and vaporized by a Lintec vaporizer) 0.1% by volume
Reaction gas: Oxygen gas 5.0% by volume
(Power requirements)
Power supply: High frequency power supply made by Pearl Industrial Co., Ltd. Frequency 27MHz
Output density 10W / cm 2
[Preparation of thin-layer laminate 14: the present invention]
In the production of the thin layered product 13, the atmospheric pressure plasma discharge treatment apparatus having the gas supply means shown in FIG. 10 is used instead of the atmospheric pressure plasma discharge treatment apparatus having the configuration shown in FIGS. Similarly, the thin layered product 14 was produced.
〔薄層積層体15の作製:本発明〕
薄層積層体13の作製において、図3及び図9に示す構成からなる大気圧プラズマ放電処理装置に代えて、図11に記載のガス供給手段を有する大気圧プラズマ放電処理装置に変更した以外は同様にして、薄層積層体15を作製した。 [Preparation of Thin Layered Laminate 15: Present Invention]
In the production of the thin layered product 13, the atmospheric pressure plasma discharge treatment apparatus having the gas supply means shown in FIG. 11 is used instead of the atmospheric pressure plasma discharge treatment apparatus having the configuration shown in FIGS. Similarly, a thin layered laminate 15 was produced.
薄層積層体13の作製において、図3及び図9に示す構成からなる大気圧プラズマ放電処理装置に代えて、図11に記載のガス供給手段を有する大気圧プラズマ放電処理装置に変更した以外は同様にして、薄層積層体15を作製した。 [Preparation of Thin Layered Laminate 15: Present Invention]
In the production of the thin layered product 13, the atmospheric pressure plasma discharge treatment apparatus having the gas supply means shown in FIG. 11 is used instead of the atmospheric pressure plasma discharge treatment apparatus having the configuration shown in FIGS. Similarly, a thin layered laminate 15 was produced.
〔薄層積層体16の作製:本発明〕
薄層積層体13の作製において、図9に示すガス供給手段を外し、図3に示す構成からなる大気圧プラズマ放電処理装置のみを用いた以外は同様にして、薄層積層体16を作製した。 [Preparation of Thin Layer Laminate 16: Present Invention]
In the production of the thin layer laminate 13, the thin layer laminate 16 was produced in the same manner except that the gas supply means shown in FIG. 9 was removed and only the atmospheric pressure plasma discharge treatment apparatus having the configuration shown in FIG. 3 was used. .
薄層積層体13の作製において、図9に示すガス供給手段を外し、図3に示す構成からなる大気圧プラズマ放電処理装置のみを用いた以外は同様にして、薄層積層体16を作製した。 [Preparation of Thin Layer Laminate 16: Present Invention]
In the production of the thin layer laminate 13, the thin layer laminate 16 was produced in the same manner except that the gas supply means shown in FIG. 9 was removed and only the atmospheric pressure plasma discharge treatment apparatus having the configuration shown in FIG. 3 was used. .
《薄膜積層体の評価》
上記作製した各薄膜形成体について、下記の各評価を行った。 << Evaluation of thin film laminate >>
The following evaluations were performed on each of the prepared thin film formed bodies.
上記作製した各薄膜形成体について、下記の各評価を行った。 << Evaluation of thin film laminate >>
The following evaluations were performed on each of the prepared thin film formed bodies.
(薄膜ムラ耐性の評価)
上記作製した各薄膜形成体について、反射防止膜形成面に斜めより光を当てて、薄膜ムラの有無を目視観察し、下記の基準に従って薄膜ムラ耐性の評価を行った。 (Evaluation of thin film unevenness resistance)
About each produced said thin film formation body, the antireflection film formation surface was irradiated with light diagonally, the presence or absence of thin film unevenness was visually observed, and thin film unevenness tolerance was evaluated according to the following criteria.
上記作製した各薄膜形成体について、反射防止膜形成面に斜めより光を当てて、薄膜ムラの有無を目視観察し、下記の基準に従って薄膜ムラ耐性の評価を行った。 (Evaluation of thin film unevenness resistance)
About each produced said thin film formation body, the antireflection film formation surface was irradiated with light diagonally, the presence or absence of thin film unevenness was visually observed, and thin film unevenness tolerance was evaluated according to the following criteria.
◎:形成した薄膜のムラが、まったく認められない
○:極弱い薄膜ムラが見つめられるが、ほぼ良好な膜面状態である
△:弱い薄膜ムラの周期的な発生が認められるが、実用上は許容される品質である
×:強い薄膜ムラが周期的に発生し、実用問題となる品質である
××:極めて強い薄膜ムラが周期的に発生し、実用に絶えない品質である
(薄膜均一性1の評価)
上記作製した各薄膜形成体について、ランダムに100箇所の膜厚を、FILMETRICS社製の薄膜測定装置F20-UVを用いて測定し、膜厚の標準偏差を算出し、下記基準で評価した。 A: Unevenness of the formed thin film is not recognized at all. O: An extremely weak thin film unevenness is observed, but the film surface is almost in good condition. Δ: Periodic generation of the weak thin film unevenness is observed. Acceptable quality ×: Strong thin film irregularities occur periodically and become a practical problem. XX: Extremely thin thin film irregularities occur periodically, and the quality is constant for practical use (Thin film uniformity) 1 rating)
About each produced said thin film forming body, the film thickness of 100 places was measured at random using the thin film measuring apparatus F20-UV made from FILMETRICS, the standard deviation of the film thickness was computed, and the following reference | standard evaluated.
○:極弱い薄膜ムラが見つめられるが、ほぼ良好な膜面状態である
△:弱い薄膜ムラの周期的な発生が認められるが、実用上は許容される品質である
×:強い薄膜ムラが周期的に発生し、実用問題となる品質である
××:極めて強い薄膜ムラが周期的に発生し、実用に絶えない品質である
(薄膜均一性1の評価)
上記作製した各薄膜形成体について、ランダムに100箇所の膜厚を、FILMETRICS社製の薄膜測定装置F20-UVを用いて測定し、膜厚の標準偏差を算出し、下記基準で評価した。 A: Unevenness of the formed thin film is not recognized at all. O: An extremely weak thin film unevenness is observed, but the film surface is almost in good condition. Δ: Periodic generation of the weak thin film unevenness is observed. Acceptable quality ×: Strong thin film irregularities occur periodically and become a practical problem. XX: Extremely thin thin film irregularities occur periodically, and the quality is constant for practical use (Thin film uniformity) 1 rating)
About each produced said thin film forming body, the film thickness of 100 places was measured at random using the thin film measuring apparatus F20-UV made from FILMETRICS, the standard deviation of the film thickness was computed, and the following reference | standard evaluated.
◎:膜厚の標準偏差が0~1nm未満
○:膜厚の標準偏差が1~2nm未満
△:膜厚の標準偏差が2~5nm未満
×:膜厚の標準偏差が5nm以上
(薄膜均一性2の評価:収率の測定)
上記作製した各薄膜形成体の任意の位置より250cm2の試料を切り出し、明らかに薄膜ムラが発生している面積を測定し、下式より収率を測定し、下記の基準に従って、薄膜均一性2の評価を行った。 ◎: Standard deviation of film thickness is 0 to less than 1 nm ○: Standard deviation of film thickness is less than 1 to 2 nm △: Standard deviation of film thickness is less than 2 to 5 nm ×: Standard deviation of film thickness is 5 nm or more (thin film uniformity Evaluation of 2: measurement of yield)
A sample of 250 cm 2 is cut out from an arbitrary position of each of the thin film formed bodies described above, the area where the thin film unevenness is clearly measured is measured, the yield is measured from the following formula, and the thin film uniformity is determined according to the following criteria. Evaluation of 2 was performed.
○:膜厚の標準偏差が1~2nm未満
△:膜厚の標準偏差が2~5nm未満
×:膜厚の標準偏差が5nm以上
(薄膜均一性2の評価:収率の測定)
上記作製した各薄膜形成体の任意の位置より250cm2の試料を切り出し、明らかに薄膜ムラが発生している面積を測定し、下式より収率を測定し、下記の基準に従って、薄膜均一性2の評価を行った。 ◎: Standard deviation of film thickness is 0 to less than 1 nm ○: Standard deviation of film thickness is less than 1 to 2 nm △: Standard deviation of film thickness is less than 2 to 5 nm ×: Standard deviation of film thickness is 5 nm or more (thin film uniformity Evaluation of 2: measurement of yield)
A sample of 250 cm 2 is cut out from an arbitrary position of each of the thin film formed bodies described above, the area where the thin film unevenness is clearly measured is measured, the yield is measured from the following formula, and the thin film uniformity is determined according to the following criteria. Evaluation of 2 was performed.
収率(%)={(250cm2-薄膜ムラ発生面積)/250cm2}×100
◎:収率が95%以上である
○:収率が90%以上、95%未満である
△:収率が85%以上、90%未満である
×:収率が75%以上、85%未満である
××:収率が75%未満である
(薄膜硬度の評価)
上記作製した各薄膜形成体の反射防止膜形成面について、JIS K 5400に準拠した鉛筆引っかき試験法により、各反射防止膜の硬度を測定した。 Yield (%) = {(250 cm 2 −thin film unevenness occurrence area) / 250 cm 2 } × 100
◎: Yield is 95% or more ○: Yield is 90% or more and less than 95% △: Yield is 85% or more and less than 90% ×: Yield is 75% or more and less than 85% Xx: Yield is less than 75% (Evaluation of thin film hardness)
About the antireflection film formation surface of each of the produced thin film formed bodies, the hardness of each antireflection film was measured by a pencil scratch test method based on JIS K 5400.
◎:収率が95%以上である
○:収率が90%以上、95%未満である
△:収率が85%以上、90%未満である
×:収率が75%以上、85%未満である
××:収率が75%未満である
(薄膜硬度の評価)
上記作製した各薄膜形成体の反射防止膜形成面について、JIS K 5400に準拠した鉛筆引っかき試験法により、各反射防止膜の硬度を測定した。 Yield (%) = {(250 cm 2 −thin film unevenness occurrence area) / 250 cm 2 } × 100
◎: Yield is 95% or more ○: Yield is 90% or more and less than 95% △: Yield is 85% or more and less than 90% ×: Yield is 75% or more and less than 85% Xx: Yield is less than 75% (Evaluation of thin film hardness)
About the antireflection film formation surface of each of the produced thin film formed bodies, the hardness of each antireflection film was measured by a pencil scratch test method based on JIS K 5400.
硬度のランクは(軟)6B~B、HB、F、H~9H(硬)の順に6Bが最も柔らかく、9Hが最も硬い。
The hardness rank is (soft) 6B to B, HB, F, H to 9H (hard) in the order 6B is the softest, and 9H is the hardest.
以上により得られた結果を、表1に示す。
Table 1 shows the results obtained as described above.
表1に記載の結果より明らかな様に、ロール電極の直径比が1.00:0.55~1.00:0.95の範囲であるロール電極から構成され、放電ガスとして窒素ガスを90体積%以上用いた本発明のプラズマ放電処理装置により作製した薄膜積層体は、比較例である同一直径のロール電極から構成されるプラズマ放電処理装置により作製した薄膜積層体に対し、形成した薄膜(反射防止膜)の均一性、薄膜ムラ耐性に優れ、かつ硬度に優れていることが分かる。
As is apparent from the results shown in Table 1, the roll electrode has a diameter ratio in the range of 1.00: 0.55 to 1.00: 0.95. The thin film laminate produced by the plasma discharge treatment apparatus of the present invention used by volume% or more was formed with respect to the thin film laminate produced by the plasma discharge treatment apparatus comprised of roll electrodes having the same diameter as a comparative example ( It can be seen that the anti-reflection film is excellent in uniformity, thin film unevenness resistance, and hardness.
本発明の薄膜積層体においては、薄膜形成装置として大気圧プラズマ放電処理装置を用いること、高周波電源として2周波方式を用いること、放電空間に図9~11に示すガス供給手段を用いることにより、上記効果がより一層発揮されていることが分かる。
In the thin film laminate of the present invention, an atmospheric pressure plasma discharge processing apparatus is used as a thin film forming apparatus, a two-frequency system is used as a high-frequency power source, and gas supply means shown in FIGS. It turns out that the said effect is exhibited further.
実施例2
実施例に記載の薄膜積層体1~15の作製において、薄膜形成原料として、テトラエトキシシランに代えて、テトライソプロポキシチタン(酸化チタン膜)、エチレン、メタン(炭素膜)、GE東芝シリコン社製ヘプタデカフルオロデシルトリイソプロポキシシラン(防汚層)を用いた以外は同様にして各薄膜積層体を作製し、実施例1に記載の方法と同様の各評価を行った結果、実施例1の表1と同様の結果を得ることができた。 Example 2
In the production of thethin film laminates 1 to 15 described in the examples, instead of tetraethoxysilane, tetraisopropoxy titanium (titanium oxide film), ethylene, methane (carbon film), manufactured by GE Toshiba Silicon Co. Each thin film laminate was prepared in the same manner except that heptadecafluorodecyltriisopropoxysilane (antifouling layer) was used, and each evaluation similar to the method described in Example 1 was performed. The same results as in Table 1 were obtained.
実施例に記載の薄膜積層体1~15の作製において、薄膜形成原料として、テトラエトキシシランに代えて、テトライソプロポキシチタン(酸化チタン膜)、エチレン、メタン(炭素膜)、GE東芝シリコン社製ヘプタデカフルオロデシルトリイソプロポキシシラン(防汚層)を用いた以外は同様にして各薄膜積層体を作製し、実施例1に記載の方法と同様の各評価を行った結果、実施例1の表1と同様の結果を得ることができた。 Example 2
In the production of the
実施例3
実施例1で作製した薄膜積層体2について、表2に記載の各プラズマ放電処理装置を用いて、下記の条件で機能性薄膜に酸化処理を施す後処理を行って、薄膜積層体17~20を作製した。 Example 3
The thin film laminate 2 produced in Example 1 was subjected to post-treatment for oxidizing the functional thin film under the following conditions using each plasma discharge treatment apparatus described in Table 2, and the thin film laminates 17 to 20 Was made.
実施例1で作製した薄膜積層体2について、表2に記載の各プラズマ放電処理装置を用いて、下記の条件で機能性薄膜に酸化処理を施す後処理を行って、薄膜積層体17~20を作製した。 Example 3
The thin film laminate 2 produced in Example 1 was subjected to post-treatment for oxidizing the functional thin film under the following conditions using each plasma discharge treatment apparatus described in Table 2, and the thin film laminates 17 to 20 Was made.
《薄層積層体の作製》
〔薄膜積層体17の作製〕
図7に記載の折り返し搬送方式で、ロール電極として直径が何れも300mmで、図2に記載の放電距離Lパターンを有するロール電極10A、10Bを有する大気圧プラズマ放電処理装置(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)を用い、下記の放電条件で、薄膜積層体2に後処理(酸化処理)を行って、薄膜積層体17を作製した。なお、ロール電極は、薄膜積層体1の作製で用いたのと同様のものを使用した。 << Preparation of thin layer laminate >>
[Preparation of thin film laminate 17]
The atmospheric pressure plasma discharge treatment apparatus (first high frequency electric field) having the roll electrodes 10A and 10B having the discharge distance L pattern shown in FIG. And the second high-frequency electric field were superimposed on each other under the following discharge conditions to perform post-treatment (oxidation treatment) on the thin-film stack 2 to produce a thin-film stack 17. The roll electrode was the same as that used in the production of the thin film laminate 1.
〔薄膜積層体17の作製〕
図7に記載の折り返し搬送方式で、ロール電極として直径が何れも300mmで、図2に記載の放電距離Lパターンを有するロール電極10A、10Bを有する大気圧プラズマ放電処理装置(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)を用い、下記の放電条件で、薄膜積層体2に後処理(酸化処理)を行って、薄膜積層体17を作製した。なお、ロール電極は、薄膜積層体1の作製で用いたのと同様のものを使用した。 << Preparation of thin layer laminate >>
[Preparation of thin film laminate 17]
The atmospheric pressure plasma discharge treatment apparatus (first high frequency electric field) having the
(後処理条件)
〈ガス条件〉
放電ガス:窒素ガス 96.0体積%
後処理ガス:酸素ガス 4.0体積%
〈電源条件〉
第1電極側 電源種類 応用電機社製高周波電源
周波数 80kHz
出力密度 5W/cm2
第2電極側 電源種類 パール工業社製高周波電源
周波数 13.56MHz
出力密度 5W/cm
〔薄膜積層体18の作製〕
プラズマ放電処理装置として、実施例1に記載の薄膜形成体7の作製に用いたのと同様の異なる直径のロール電極から構成される独立搬送方式(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)のプラズマ放電処理装置を用いた以外は上記薄膜積層体17の作製と同様にして、上記後処理を施して、薄膜積層体18を作製した。 (Post-processing conditions)
<Gas conditions>
Discharge gas: Nitrogen gas 96.0% by volume
Post-treatment gas: Oxygen gas 4.0% by volume
<Power supply conditions>
1st electrode side Power supply type High frequency power supply made by Applied Electric Company Frequency 80kHz
Output density 5W / cm 2
2nd electrode side Power supply type High frequency power supply made by Pearl Industry Co., Ltd. Frequency 13.56MHz
Output density 5W / cm
[Preparation of thin film laminate 18]
As a plasma discharge processing apparatus, an independent conveyance system (first high frequency electric field and second high frequency electric field) composed of roll electrodes having different diameters similar to those used in the production of the thin film formed body 7 described in Example 1 is used. A thin film laminate 18 was produced by performing the above-described post-treatment in the same manner as the thin film laminate 17 except that the plasma discharge treatment apparatus of the application method B) in which was applied was used.
〈ガス条件〉
放電ガス:窒素ガス 96.0体積%
後処理ガス:酸素ガス 4.0体積%
〈電源条件〉
第1電極側 電源種類 応用電機社製高周波電源
周波数 80kHz
出力密度 5W/cm2
第2電極側 電源種類 パール工業社製高周波電源
周波数 13.56MHz
出力密度 5W/cm
〔薄膜積層体18の作製〕
プラズマ放電処理装置として、実施例1に記載の薄膜形成体7の作製に用いたのと同様の異なる直径のロール電極から構成される独立搬送方式(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)のプラズマ放電処理装置を用いた以外は上記薄膜積層体17の作製と同様にして、上記後処理を施して、薄膜積層体18を作製した。 (Post-processing conditions)
<Gas conditions>
Discharge gas: Nitrogen gas 96.0% by volume
Post-treatment gas: Oxygen gas 4.0% by volume
<Power supply conditions>
1st electrode side Power supply type High frequency power supply made by Applied Electric Company Frequency 80kHz
Output density 5W / cm 2
2nd electrode side Power supply type High frequency power supply made by Pearl Industry Co., Ltd. Frequency 13.56MHz
Output density 5W / cm
[Preparation of thin film laminate 18]
As a plasma discharge processing apparatus, an independent conveyance system (first high frequency electric field and second high frequency electric field) composed of roll electrodes having different diameters similar to those used in the production of the thin film formed body 7 described in Example 1 is used. A thin film laminate 18 was produced by performing the above-described post-treatment in the same manner as the thin film laminate 17 except that the plasma discharge treatment apparatus of the application method B) in which was applied was used.
〔薄膜積層体19の作製〕
プラズマ放電処理装置として、実施例1に記載の薄膜形成体8の作製に用いたのと同様の図7に示す異なる直径のロール電極から構成される折り返し搬送方式(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)のプラズマ放電処理装置を用いた以外は上記薄膜積層体17の作製と同様にして、上記後処理を施して、薄膜積層体19を作製した。 [Preparation of thin film laminate 19]
As a plasma discharge processing apparatus, a folded conveyance system (first high frequency electric field and second frequency) composed of roll electrodes having different diameters shown in FIG. 7 similar to those used in the production of the thin film formed body 8 described in Example 1 is used. A thin film laminate 19 was produced by performing the above-described post-treatment in the same manner as the thin film laminate 17 except that the plasma discharge treatment apparatus of the application method B) in which the high frequency electric field was superimposed was used.
プラズマ放電処理装置として、実施例1に記載の薄膜形成体8の作製に用いたのと同様の図7に示す異なる直径のロール電極から構成される折り返し搬送方式(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)のプラズマ放電処理装置を用いた以外は上記薄膜積層体17の作製と同様にして、上記後処理を施して、薄膜積層体19を作製した。 [Preparation of thin film laminate 19]
As a plasma discharge processing apparatus, a folded conveyance system (first high frequency electric field and second frequency) composed of roll electrodes having different diameters shown in FIG. 7 similar to those used in the production of the thin film formed body 8 described in Example 1 is used. A thin film laminate 19 was produced by performing the above-described post-treatment in the same manner as the thin film laminate 17 except that the plasma discharge treatment apparatus of the application method B) in which the high frequency electric field was superimposed was used.
〔薄膜積層体20の作製〕
プラズマ放電処理装置として、実施例1に記載の薄膜形成体8の作製に用いたのと同様の図8に示す異なる直径のロール電極から構成されるループ搬送方式(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)のプラズマ放電処理装置を用いた以外は上記薄膜積層体17の作製と同様にして、上記後処理を施して、薄膜積層体20を作製した。 [Production of Thin Film Laminate 20]
As a plasma discharge processing apparatus, a loop conveyance system (first high-frequency electric field and second second) composed of roll electrodes having different diameters shown in FIG. 8 similar to those used for the production of the thin film-formed body 8 described in Example 1 is used. Athin film laminate 20 was produced by performing the above-mentioned post-treatment in the same manner as the thin film laminate 17 except that the plasma discharge treatment apparatus of the application method B) in which the high frequency electric field was superimposed was used.
プラズマ放電処理装置として、実施例1に記載の薄膜形成体8の作製に用いたのと同様の図8に示す異なる直径のロール電極から構成されるループ搬送方式(第1の高周波電界と第2の高周波電界とを重畳した印加方式B)のプラズマ放電処理装置を用いた以外は上記薄膜積層体17の作製と同様にして、上記後処理を施して、薄膜積層体20を作製した。 [Production of Thin Film Laminate 20]
As a plasma discharge processing apparatus, a loop conveyance system (first high-frequency electric field and second second) composed of roll electrodes having different diameters shown in FIG. 8 similar to those used for the production of the thin film-formed body 8 described in Example 1 is used. A
《薄層積層体の評価》
上記作製した各薄膜積層体と実施例1で作製した薄膜積層体2について、実施例1に記載の方法と同様にして薄膜硬度の評価と、下記の方法に従って酸素含有量の測定を行った。 << Evaluation of thin layer laminate >>
About each produced thin film laminated body and the thin film laminated body 2 produced in Example 1, it evaluated the thin film hardness similarly to the method of Example 1, and measured the oxygen content according to the following method.
上記作製した各薄膜積層体と実施例1で作製した薄膜積層体2について、実施例1に記載の方法と同様にして薄膜硬度の評価と、下記の方法に従って酸素含有量の測定を行った。 << Evaluation of thin layer laminate >>
About each produced thin film laminated body and the thin film laminated body 2 produced in Example 1, it evaluated the thin film hardness similarly to the method of Example 1, and measured the oxygen content according to the following method.
〔酸素含有量の測定〕
各薄膜積層体中の酸素含有量を、下記に記載のXPS法により算出し、以下に定義される酸素の原子数濃度(atomic concentration:at%)を求めた。 [Measurement of oxygen content]
The oxygen content in each thin film laminate was calculated by the XPS method described below, and the atomic concentration (atomic concentration) defined below was determined.
各薄膜積層体中の酸素含有量を、下記に記載のXPS法により算出し、以下に定義される酸素の原子数濃度(atomic concentration:at%)を求めた。 [Measurement of oxygen content]
The oxygen content in each thin film laminate was calculated by the XPS method described below, and the atomic concentration (atomic concentration) defined below was determined.
酸素の原子数濃度=酸素原子の個数/全原子の個数×100
各薄膜積層体は、酸化珪素膜であり、酸素の理論原子数濃度は67%である。 Concentration of oxygen atoms = number of oxygen atoms / number of all atoms × 100
Each thin film stack is a silicon oxide film, and the theoretical atomic number concentration of oxygen is 67%.
各薄膜積層体は、酸化珪素膜であり、酸素の理論原子数濃度は67%である。 Concentration of oxygen atoms = number of oxygen atoms / number of all atoms × 100
Each thin film stack is a silicon oxide film, and the theoretical atomic number concentration of oxygen is 67%.
XPS表面分析装置としては、本発明では、VGサイエンティフィックス社製ESCALAB-200Rを用いた。具体的には、X線アノードにはMgを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定した。エネルギー分解能は、清浄なAg3d5/2ピークの半値幅で規定したとき、1.5eV~1.7eVとなるように設定した。
As the XPS surface analyzer, ESCALAB-200R manufactured by VG Scientific, Inc. was used in the present invention. Specifically, Mg was used for the X-ray anode, and measurement was performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA). The energy resolution was set to be 1.5 eV to 1.7 eV when defined by the half width of a clean Ag3d5 / 2 peak.
測定としては、先ず、結合エネルギー0eV~1100eVの範囲を、データ取り込み間隔1.0eVで測定し、いかなる元素が検出されるかを求めた。
As a measurement, first, the range of binding energy from 0 eV to 1100 eV was measured at a data acquisition interval of 1.0 eV to determine what elements were detected.
次に、検出された、エッチングイオン種を除く全ての元素について、データの取り込み間隔を0.2eVとして、その最大強度を与える光電子ピークについてナロースキャンを行い、各元素のスペクトルを測定した(この場合、珪素、酸素、炭素、窒素等)。
Next, with respect to all the detected elements except for the etching ion species, the data acquisition interval was set to 0.2 eV, and the photoelectron peak giving the maximum intensity was subjected to narrow scan, and the spectrum of each element was measured (in this case) , Silicon, oxygen, carbon, nitrogen, etc.).
得られたスペクトルは、測定装置、あるいは、コンピュータの違いによる含有率算出結果の違いを生じせしめなくするために、VAMAS-SCA-JAPAN製のCOMMON DATA PROCESSING SYSTEM (Ver.2.3以降が好ましい)上に転送した後、同ソフトで処理を行う、分析ターゲットの元素である酸素の含有率の値を求めた。
The obtained spectrum is COMMON DATA PROCESSING SYSTEM manufactured by VAMAS-SCA-JAPAN (Ver. 2.3 or later is preferable) in order not to cause a difference in the content calculation result due to a difference in measuring apparatus or computer. After being transferred to the top, the content value of oxygen, which is an element of the analysis target, processed with the same software was obtained.
以上により得られた結果を、表2に示す。
Table 2 shows the results obtained as described above.
表2に記載の結果より明らかなように、本発明で規定するプラズマ処理装置を用いて後処理を施すことにより、より優れた均質性の高い機能性薄膜が得られることが分かる。
As is clear from the results shown in Table 2, it can be seen that an excellent functional thin film with higher homogeneity can be obtained by performing post-treatment using the plasma processing apparatus defined in the present invention.
また、上記各薄膜積層体について、幅手方向で任意の位置100点について酸素含有量を測定し、そのバラツキ巾(標準偏差)を測定した結果、本発明の薄膜積層体は、比較例に対し酸素含有量のバラツキ巾が小さいことを確認することができた。
Moreover, about each said thin film laminated body, as a result of measuring oxygen content about 100 arbitrary positions in the width direction, and measuring the variation width (standard deviation), the thin film laminated body of this invention is compared with a comparative example. It was confirmed that the variation width of the oxygen content was small.
Claims (8)
- 一対の回転するロール電極からなる対向電極と、対向電極間に電圧を印加してプラズマ放電を発生させるプラズマ放電空間と、該ロール電極からなる対向電極に保持されながらプラズマ放電空間を通過する基材と、該プラズマ放電空間に処理ガスを供給する処理ガス供給手段を有するプラズマ放電処理装置において、該処理ガスは、放電ガス及び薄膜形成ガスから構成され、該放電ガスが少なくとも窒素ガスを90体積%以上含有し、かつ該対向電極を構成する1対のロール電極の直径比が1.00:0.55から1.00:0.95であることを特徴とするプラズマ放電処理装置。 A counter electrode composed of a pair of rotating roll electrodes, a plasma discharge space that generates a plasma discharge by applying a voltage between the counter electrodes, and a base material that passes through the plasma discharge space while being held by the counter electrode composed of the roll electrode And a processing gas supply means for supplying a processing gas to the plasma discharge space, wherein the processing gas includes a discharge gas and a thin film forming gas, and the discharge gas contains at least 90% by volume of nitrogen gas. A plasma discharge treatment apparatus characterized in that the diameter ratio of a pair of roll electrodes that are contained above and constitute the counter electrode is 1.00: 0.55 to 1.00: 0.95.
- 前記基材上に、機能性薄膜を形成することを特徴とする請求の範囲第1項に記載のプラズマ放電処理装置。 The plasma discharge treatment apparatus according to claim 1, wherein a functional thin film is formed on the substrate.
- 前記処理ガス供給手段が、対向電極間に大気圧またはその近傍の圧力の処理ガスを供給することを特徴とする請求の範囲第1項または第2項に記載のプラズマ放電処理装置。 The plasma discharge processing apparatus according to claim 1 or 2, wherein the processing gas supply means supplies a processing gas having an atmospheric pressure or a pressure in the vicinity thereof between the counter electrodes.
- 前記プラズマ放電は、第1の高周波電界と第2の高周波電界とを重畳し、プラズマ放電させる方法であることを特徴とする請求の範囲第1項から第3項のいずれか1項に記載のプラズマ放電処理装置。 4. The plasma discharge according to claim 1, wherein the plasma discharge is a method in which a first high-frequency electric field and a second high-frequency electric field are superimposed to cause plasma discharge. 5. Plasma discharge treatment equipment.
- 前記基材を折り返し搬送して、該基材上に機能性薄膜を形成することを特徴とする請求の範囲第1項から第4項のいずれか1項に記載のプラズマ放電処理装置。 The plasma discharge treatment apparatus according to any one of claims 1 to 4, wherein the substrate is folded and conveyed to form a functional thin film on the substrate.
- 前記基材をループ搬送方式で連続搬送して、該基材上に機能性薄膜を形成することを特徴とする請求の範囲第1項から第5項のいずれか1項に記載のプラズマ放電処理装置。 The plasma discharge treatment according to any one of claims 1 to 5, wherein the substrate is continuously conveyed by a loop conveyance method to form a functional thin film on the substrate. apparatus.
- 請求の範囲第1項から第6項のいずれか1項に記載のプラズマ放電処理装置を用いて、基材表面に機能性薄膜が形成されたことを特徴とする薄膜積層体。 A thin film laminate in which a functional thin film is formed on the surface of a base material using the plasma discharge treatment apparatus according to any one of claims 1 to 6.
- 前記機能性薄膜が、反射防止膜であることを特徴とする請求の範囲第7項に記載の薄膜積層体。 The thin film laminate according to claim 7, wherein the functional thin film is an antireflection film.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-041359 | 2008-02-22 | ||
JP2008041359 | 2008-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009104579A1 true WO2009104579A1 (en) | 2009-08-27 |
Family
ID=40985459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/052644 WO2009104579A1 (en) | 2008-02-22 | 2009-02-17 | Plasma discharge device and thin film laminate |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009104579A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012004175A1 (en) | 2010-07-09 | 2012-01-12 | Vito Nv | Method and device for atmospheric pressure plasma treatment |
WO2020208152A1 (en) * | 2019-04-10 | 2020-10-15 | Fixed Phage Limited | Continuous treatment with plasma |
CN118326379A (en) * | 2024-04-15 | 2024-07-12 | 江苏晟驰微电子有限公司 | Vapor deposition method for improving SCR product voltage |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001279457A (en) * | 2000-01-24 | 2001-10-10 | Sekisui Chem Co Ltd | Continuous surface treating method of continuous film deposition method and continuous surface treating system or continuous film deposition system using atmospheric pressure plasma |
JP2005200710A (en) * | 2004-01-16 | 2005-07-28 | Konica Minolta Holdings Inc | Method of depositing thin film, thin film produced thereby and transparent plastic film |
JP2007073333A (en) * | 2005-09-07 | 2007-03-22 | Konica Minolta Holdings Inc | Plasma discharge treatment apparatus, and method for plasma discharge treatment |
JP2007332426A (en) * | 2006-06-15 | 2007-12-27 | Kobe Steel Ltd | Film deposition method and apparatus |
-
2009
- 2009-02-17 WO PCT/JP2009/052644 patent/WO2009104579A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001279457A (en) * | 2000-01-24 | 2001-10-10 | Sekisui Chem Co Ltd | Continuous surface treating method of continuous film deposition method and continuous surface treating system or continuous film deposition system using atmospheric pressure plasma |
JP2005200710A (en) * | 2004-01-16 | 2005-07-28 | Konica Minolta Holdings Inc | Method of depositing thin film, thin film produced thereby and transparent plastic film |
JP2007073333A (en) * | 2005-09-07 | 2007-03-22 | Konica Minolta Holdings Inc | Plasma discharge treatment apparatus, and method for plasma discharge treatment |
JP2007332426A (en) * | 2006-06-15 | 2007-12-27 | Kobe Steel Ltd | Film deposition method and apparatus |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012004175A1 (en) | 2010-07-09 | 2012-01-12 | Vito Nv | Method and device for atmospheric pressure plasma treatment |
US9255330B2 (en) | 2010-07-09 | 2016-02-09 | Vito Nv | Method and device for atmospheric pressure plasma treatment |
WO2020208152A1 (en) * | 2019-04-10 | 2020-10-15 | Fixed Phage Limited | Continuous treatment with plasma |
CN113710358A (en) * | 2019-04-10 | 2021-11-26 | 固定噬菌体有限公司 | Continuous treatment with plasma |
CN113710358B (en) * | 2019-04-10 | 2023-06-23 | 固定噬菌体有限公司 | Continuous treatment with plasma |
CN118326379A (en) * | 2024-04-15 | 2024-07-12 | 江苏晟驰微电子有限公司 | Vapor deposition method for improving SCR product voltage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009104443A1 (en) | Thin film forming method and thin film stack | |
KR100815038B1 (en) | Method for Forming Thin Film, Article Having Thin Film, Optical Film, Dielectric Coated Electrode, and Plasma Discharge Processor | |
JP4710216B2 (en) | Thin film formation method | |
JP5136114B2 (en) | Method and apparatus for producing gas barrier film | |
JP2010185144A (en) | Dielectric substance-coated electrode and plasma discharge treatment apparatus using the same | |
US6903512B2 (en) | Half mirror film producing method and optical element comprising a half mirror film | |
JP5780154B2 (en) | Method for producing substrate having thin film | |
JP4883085B2 (en) | Thin film forming apparatus and thin film forming method | |
WO2009104579A1 (en) | Plasma discharge device and thin film laminate | |
JP2005272957A (en) | Surface treatment method and base material surface-treated by the surface treatment method | |
JP5719106B2 (en) | Transparent gas barrier film and method for producing transparent gas barrier film | |
JP2007017668A (en) | Optical film | |
JP4356278B2 (en) | Surface treatment method, method for forming antiglare layer, antiglare layer film and antiglare low reflection film | |
JP2004022441A (en) | Transparent conductive substrate and its manufacturing method | |
JP4899863B2 (en) | Thin film forming apparatus and thin film forming method | |
JP2004107690A (en) | Method for depositing optical thin film, method for producing antireflection film and antireflection film | |
JP2003003268A (en) | Atmospheric pressure plasma treatment equipment, atmosphere pressure plasma treatment method, base material, optical film and image display element | |
JP2008075099A (en) | Thin film deposition device, thin film deposition method, thin film, and thin film stacked body | |
JP2004162136A (en) | Plasma discharge treatment method | |
JP2009299130A (en) | Method for manufacturing sio2 film | |
JP2003201568A (en) | Apparatus and method for plasma discharge | |
JP5206411B2 (en) | Thin film forming apparatus and thin film forming method | |
WO2012029541A1 (en) | Thin film laminate | |
JP4193476B2 (en) | Thin film deposition equipment | |
JP2006175633A (en) | Gas barrier thin film laminate, gas barrier resin base material and organic el device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09712934 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09712934 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |