WO2009104460A1 - Fatigue analysis device and computer program - Google Patents
Fatigue analysis device and computer program Download PDFInfo
- Publication number
- WO2009104460A1 WO2009104460A1 PCT/JP2009/051366 JP2009051366W WO2009104460A1 WO 2009104460 A1 WO2009104460 A1 WO 2009104460A1 JP 2009051366 W JP2009051366 W JP 2009051366W WO 2009104460 A1 WO2009104460 A1 WO 2009104460A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fatigue
- power value
- value
- slope
- calculating means
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 46
- 238000004590 computer program Methods 0.000 title claims description 20
- 238000004364 calculation method Methods 0.000 claims abstract description 133
- 230000002889 sympathetic effect Effects 0.000 claims abstract description 28
- 230000008035 nerve activity Effects 0.000 claims abstract description 21
- 230000037007 arousal Effects 0.000 claims description 116
- 230000001186 cumulative effect Effects 0.000 claims description 107
- 238000012937 correction Methods 0.000 claims description 65
- 238000012545 processing Methods 0.000 claims description 26
- 230000010354 integration Effects 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 238000001228 spectrum Methods 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 7
- 210000005036 nerve Anatomy 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 abstract description 24
- 238000013459 approach Methods 0.000 abstract description 2
- 206010016256 fatigue Diseases 0.000 description 303
- 238000012360 testing method Methods 0.000 description 80
- 238000010586 diagram Methods 0.000 description 40
- 230000003068 static effect Effects 0.000 description 18
- 208000019914 Mental Fatigue Diseases 0.000 description 17
- 230000001953 sensory effect Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 13
- 210000004556 brain Anatomy 0.000 description 7
- 210000003403 autonomic nervous system Anatomy 0.000 description 6
- 210000003205 muscle Anatomy 0.000 description 5
- 230000004118 muscle contraction Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 206010049565 Muscle fatigue Diseases 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000002612 cardiopulmonary effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000006996 mental state Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/388—Nerve conduction study, e.g. detecting action potential of peripheral nerves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/0245—Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02416—Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4029—Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
- A61B5/4035—Evaluating the autonomic nervous system
Definitions
- the present invention relates to a fatigue analysis apparatus for obtaining a degree of fatigue as a degree of human fatigue and a computer program used therefor.
- Patent Document 1 describes the degree of fatigue of a person by comparing the amount of energy by the work of muscles used for maintaining the homeostasis taken by a person with fatigue by the amount of metabolism of the product by the work. The technique calculated
- This technology collects human biological signals, calculates the difference between the peak value on the upper limit side and the peak value on the lower limit side for each predetermined time range from the peak value of each cycle of the original waveform of the biological signal data, Power value calculating means for calculating the difference as a power value, power value inclination calculating means for calculating the inclination of the power value with respect to the time axis in a predetermined time range by slide calculation a predetermined number of times, and the inclination of the obtained power value And a means for calculating an integral value by processing an absolute value of the time series signal, and the obtained integral value is obtained as a fatigue level.
- Patent Document 1 is based on the premise of seeking fatigue that occurs in a mentally relaxed state, and if the fatigue is covered (compensated) by the sympathetic nerve function and does not appear as muscle contraction, the sympathetic nerve activity Even if the blood flow changes due to, it is not considered as fatigue level.
- sympathetic nerve activity caused mental fatigue and accompanying changes in blood flow, and this was considered to be the main cause of the case where a deviation from the sensory evaluation value occurred.
- the present invention has been made in view of the above, and it is an object of the present invention to provide a fatigue analysis apparatus and a computer program capable of obtaining a fatigue level closer to a sensory evaluation value in consideration of a metabolic amount of compensation due to sympathetic activity. To do.
- a fatigue analysis apparatus is a fatigue analysis apparatus that performs fatigue analysis using pulse wave biosignal data collected by a biosignal measuring device, and is an original waveform of the biosignal data
- the difference between the peak value on the upper limit side and the peak value on the lower limit side is calculated for each predetermined time range from the peak value of each cycle, and this difference is used as the power value.
- the standard fatigue is calculated. Obtained by correcting the time series data of the power value used in the first fatigue degree calculating means using the first fatigue degree calculating means for obtaining the degree and the maximum Lyapunov exponent obtained from the biological signal data.
- a second fatigue degree calculating means for obtaining a corrected fatigue level based on the corrected power value time-series data, a determination means for determining whether or not there is a compensation effect of fatigue due to the sympathetic nerve activity, and a sympathetic nerve activity by the determination means Fatigue due to In a time zone in which it is determined that no compensation has been made, a cumulative sum of the reference fatigue levels obtained by the first fatigue level calculation means is obtained and output, and a state in which compensation for fatigue due to sympathetic nerve activity is being made
- the determined time zone includes a cumulative fatigue level output unit that calculates and outputs a cumulative sum of the corrected fatigue levels obtained by the second fatigue level calculation unit.
- the determination means obtains a maximum Lyapunov exponent from the vital sign data, and calculates a degree of arousal based on time series data of the maximum Lyapunov exponent, and arousal degree obtained by the arousal degree calculation means , And a timing determination unit that determines a timing at which the corrected fatigue level of the second fatigue level calculation unit is adopted, and the cumulative fatigue level output unit includes the second fatigue level calculation unit by the timing determination unit.
- a cumulative sum of the reference fatigue levels obtained by the first fatigue level calculation unit is obtained and output, and the corrected fatigue level of the second fatigue level calculation unit is calculated.
- the cumulative fatigue correction degree obtained by the second fatigue degree calculating means is calculated and output.
- Door is preferable.
- the first fatigue level calculating means calculates a difference between the peak value on the upper limit side and the peak value on the lower limit side for each predetermined time range from the peak value of each cycle of the original waveform of the biological signal data,
- a power value calculating means for calculating a time series data of the power value using the difference as the power value;
- a power value inclination calculating means for obtaining a slope of the power value with respect to a time axis in a predetermined time range by performing slide calculation a predetermined number of times;
- a power value slope integrating means for performing absolute value processing on a time series signal of the power value slope obtained by the slide calculation by the power value slope calculating means, and calculating an integral value for each predetermined time range as the reference fatigue level; It is preferable to comprise.
- LF / HF time series data calculating means for obtaining time series data of the power spectrum of LF / HF obtained by frequency analysis of time series data of heart rate or pulse rate collected by the biological signal measuring instrument
- the power value calculation means multiplies the value of the time series data of the power spectrum of the LF / HF and the value of the time series data of the power value by the values corresponding to each other and LF / HF It is preferably set to calculate the time series data of the LF / HF included power value as the calculated power value.
- the second fatigue level calculating means includes the value of the time series data of the maximum Lyapunov exponent used in the arousal level calculating means and the value of the time series data of the power value used in the first fatigue level calculating means.
- a correction power value calculating means for calculating the time series data of the correction power value by multiplying the values corresponding to each other at the corresponding time, and the inclination of the correction power value with respect to the time axis in a predetermined time range
- Correction power value inclination calculation means obtained by sliding calculation a predetermined number of times, and time-series signals of the correction power value inclination obtained by slide calculation by the correction power value calculation means are subjected to absolute value processing for each predetermined time range.
- the correction power value gradient integration means for calculating the integrated value as the corrected fatigue degree can be provided.
- the second fatigue level calculating means includes the time series data value of the maximum Lyapunov exponent used in the arousal level calculating means and the time series data of the LF / HF included power value used in the first fatigue level calculating means.
- a correction power value calculation means for calculating time series data of the correction power value by multiplying the values of the correction values by values at times corresponding to each other, and a correction power value in a predetermined time range of the correction power value
- a correction power value inclination calculating means for obtaining the inclination with respect to the time axis by slide calculation a predetermined number of times, and a time series signal of the inclination of the correction power value obtained by the slide calculation by the correction power value calculation means are subjected to absolute value processing,
- a correction power value gradient integration means for calculating an integrated value for each predetermined time range as the corrected fatigue level may be provided.
- the arousal degree calculating means calculates a maximum Lyapunov exponent from the vital sign data and calculates time series data of the maximum Lyapunov exponent, and a slope of the maximum Lyapunov exponent with respect to a time axis in a predetermined time range.
- the maximum Lyapunov exponent slope calculating means obtained by sliding calculation a predetermined number of times, and the time series signal of the slope of the maximum Lyapunov exponent slope obtained by the slide calculation by the maximum Lyapunov exponent slope calculating means is subjected to absolute value processing, and a predetermined time range.
- a maximum Lyapunov exponent slope integration means for calculating the integral value for each arousal level, and a cumulative arousal level for obtaining and outputting a cumulative sum of the arousal levels obtained by the maximum Lyapunov exponent slope integration means Output means.
- the timing determination unit is configured to determine the sudden conversion point of the slope of the cumulative arousal level output from the cumulative arousal level output unit as a timing to employ the corrected fatigue level of the second fatigue level calculation unit. It is preferable.
- the timing determination means obtains the slope of the cumulative arousal degree in a predetermined time range from the start of measurement as a reference slope, and the slope of the cumulative arousal degree in the predetermined time range in the time zone after obtaining the reference slope is a reference It is preferable that the abrupt conversion point is determined when a change of at least 10% occurs with respect to the inclination.
- the computer program of the present invention is a computer program introduced into a fatigue analysis apparatus that performs fatigue analysis using pulse wave biosignal data collected by a biosignal measuring device, and the original waveform of the biosignal data
- the difference between the peak value on the upper limit side and the peak value on the lower limit side is calculated for each predetermined time range from the peak value of each cycle, and this difference is used as the power value.
- the standard fatigue is calculated. Obtained by correcting the time series data of the power value used in the first fatigue degree calculating means using the first fatigue degree calculating means for obtaining the degree and the maximum Lyapunov exponent obtained from the biological signal data.
- a second fatigue level calculating means for obtaining a corrected fatigue level based on the corrected power value time-series data, a determination means for determining the presence or absence of a compensation effect of fatigue due to sympathetic nerve activity, and the determination means In a time zone in which it is determined that the fatigue due to the sympathetic nerve activity is not compensated, the cumulative sum of the reference fatigue levels obtained by the first fatigue level calculating means is obtained and output, and the fatigue level due to the sympathetic nerve activity is calculated. And a cumulative fatigue level output means for obtaining and outputting a cumulative sum of the corrected fatigue levels obtained by the second fatigue level calculation means in a time zone determined to be in a state of being compensated. .
- the determination means obtains a maximum Lyapunov exponent from the vital sign data, and calculates a degree of arousal based on time series data of the maximum Lyapunov exponent, and arousal degree obtained by the arousal degree calculation means , And a timing determination unit that determines a timing at which the corrected fatigue level of the second fatigue level calculation unit is adopted, and the cumulative fatigue level output unit includes the second fatigue level calculation unit by the timing determination unit.
- a cumulative sum of the reference fatigue levels obtained by the first fatigue level calculation unit is obtained and output, and the corrected fatigue level of the second fatigue level calculation unit is calculated.
- the cumulative fatigue correction degree obtained by the second fatigue degree calculating means is calculated and output.
- Door is preferable.
- the first fatigue level calculating means calculates a difference between the peak value on the upper limit side and the peak value on the lower limit side for each predetermined time range from the peak value of each cycle of the original waveform of the biological signal data,
- a power value calculating means for calculating a time series data of the power value using the difference as the power value;
- a power value inclination calculating means for obtaining a slope of the power value with respect to a time axis in a predetermined time range by performing slide calculation a predetermined number of times;
- a power value slope integrating means for performing absolute value processing on a time series signal of the power value slope obtained by the slide calculation by the power value slope calculating means, and calculating an integral value for each predetermined time range as the reference fatigue level; It is preferable to comprise.
- LF / HF time series data calculating means for obtaining time series data of the power spectrum of LF / HF obtained by frequency analysis of time series data of heart rate or pulse rate collected by the biological signal measuring instrument
- the power value calculation means multiplies the value of the time series data of the power spectrum of the LF / HF and the value of the time series data of the power value by the values corresponding to each other and LF / HF It is preferably set to calculate the time series data of the LF / HF included power value as the calculated power value.
- the second fatigue level calculating means calculates the value of the time series data of the maximum Lyapunov exponent used by the arousal level calculating means and the value of the time series data of the power value used by the first fatigue level calculating means.
- a correction power value calculating means for calculating the time series data of the correction power value by multiplying the values corresponding to each other at the corresponding time, and the inclination of the correction power value with respect to the time axis in a predetermined time range
- Correction power value inclination calculation means obtained by sliding calculation a predetermined number of times, and time-series signals of the correction power value inclination obtained by slide calculation by the correction power value calculation means are subjected to absolute value processing for each predetermined time range.
- the correction power value gradient integration means for calculating the integrated value as the corrected fatigue degree can be provided.
- the second fatigue level calculating means includes the time series data value of the maximum Lyapunov exponent used in the arousal level calculating means and the time series data of the LF / HF included power value used in the first fatigue level calculating means.
- a correction power value calculation means for calculating time series data of the correction power value by multiplying the values of the correction values by values at times corresponding to each other, and a correction power value in a predetermined time range of the correction power value
- a correction power value inclination calculating means for obtaining the inclination with respect to the time axis by slide calculation a predetermined number of times, and a time series signal of the inclination of the correction power value obtained by the slide calculation by the correction power value calculation means are subjected to absolute value processing,
- a correction power value gradient integration means for calculating an integrated value for each predetermined time range as the corrected fatigue level may be provided.
- the arousal degree calculating means calculates a maximum Lyapunov exponent from the vital sign data and calculates time series data of the maximum Lyapunov exponent, and a slope of the maximum Lyapunov exponent with respect to a time axis in a predetermined time range.
- the maximum Lyapunov exponent slope calculating means obtained by sliding calculation a predetermined number of times, and the time series signal of the slope of the maximum Lyapunov exponent slope obtained by the slide calculation by the maximum Lyapunov exponent slope calculating means is subjected to absolute value processing, and a predetermined time range.
- a maximum Lyapunov exponent slope integration means for calculating the integral value for each arousal level, and a cumulative arousal level for obtaining and outputting a cumulative sum of the arousal levels obtained by the maximum Lyapunov exponent slope integration means Output means.
- the timing determination unit is configured to determine the sudden conversion point of the slope of the cumulative arousal level output from the cumulative arousal level output unit as a timing to employ the corrected fatigue level of the second fatigue level calculation unit. It is preferable.
- the timing determination means obtains the slope of the cumulative arousal degree in a predetermined time range from the start of measurement as a reference slope, and the slope of the cumulative arousal degree in the predetermined time range in the time zone after obtaining the reference slope is a reference It is preferable that the abrupt conversion point is determined when a change of at least 10% occurs with respect to the inclination.
- the present invention based on time-series data of power values, or based on values (LF / HF included power values) in consideration of time-series data of LF / HF power spectrum in time-series data of power values.
- a second fatigue level calculating means for correcting the data value and obtaining a corrected fatigue level based on the obtained time series data of the corrected power value; a determining means for determining the presence or absence of a compensation effect of fatigue due to sympathetic nerve activity;
- the cumulative fatigue level output means calculates and outputs the cumulative sum of the standard fatigue levels obtained by the first fatigue level calculation means in a time zone when it is determined that the fatigue due to sympathetic nerve activity is not compensated.
- the fatigue level based on only the power value or only the LF / HF power value (reference fatigue level) or the fatigue level considering the maximum Lyapunov exponent (correction) Therefore, the change in the cumulative fatigue level is closer to the sensory evaluation value, that is, closer to the actual fatigue feeling.
- the determination means obtains the maximum Lyapunov exponent from the biological signal data, calculates the degree of arousal based on the time series data of the maximum Lyapunov exponent, and the second degree from the arousal degree obtained by the arousal degree calculator. It is preferable that the apparatus includes a timing determination unit that determines a timing at which the corrected fatigue level of the fatigue level calculation unit is adopted. The higher the maximum Lyapunov exponent, the higher the adaptability, tension and concentration to things, and the lower the maximum Lyapunov exponent, the more mentally relaxed.
- the “arousal degree” obtained by the determination means employed in the present invention is set so that the slope of the maximum Lyapunov exponent is obtained from the time series data of the maximum Lyapunov exponent, and the slope is obtained by absolute value processing and integration. is doing.
- the “degree of arousal” captures a global trend of how the maximum Lyapunov exponent, which indicates the degree of stimulation received mentally, fluctuates.
- “arousal level” is an index that captures fatigue that cannot be captured as muscle contraction, that is, mental fatigue of the brain that cannot be captured as muscle fatigue, because it is compensated for by sympathetic nerve tension.
- mental fatigue includes the mental fatigue of the autonomic nervous system and the mental fatigue of the brain, but the mental fatigue of the autonomic nervous system is similar to the mental fatigue of the brain. It becomes the object of compensation by the activity. For example, when a fatigue analysis is performed after lying down and taking a sufficient rest or sleep, there is almost no physical fatigue of antigravity muscles at the start of the analysis, and the autonomic nervous system and brain mental fatigue None of this has occurred so much. For this reason, when determining the fatigue level from this state, first determine the standard fatigue level by peripheral physical fatigue, and then determine the fatigue level considering the mental fatigue of the brain based on the arousal level, It approaches human sensory evaluation values.
- the peak value of each cycle of the original waveform of the biological signal data which is an index of peripheral physical fatigue
- the LF / HF obtained from the heart rate or pulse rate which is an index of mental fatigue of the autonomic nervous system, is calculated as the difference between the peak value on the upper limit side and the peak value on the lower limit side for each predetermined time range. It is preferable to adopt a configuration in which a value considering the time series data of the power spectrum (LF / HF included power value) is employed, thereby obtaining the reference fatigue level.
- the obtained fatigue level can be used for various applications. For example, it is possible to more accurately determine the seat and bedding that are suitable for a person based on the degree of fatigue when the person is seated on the seat or the degree of fatigue when the person is lying on the bedding. This is because whether the seat is good or bad is determined by the feeling of sitting fatigue, and whether the bedding is good or bad is also determined by the feeling of fatigue when lying down.
- FIG. 1 is a block diagram showing a configuration of a fatigue analysis apparatus according to an embodiment of the present invention.
- FIG. 2 is a diagram for explaining the configuration of the first fatigue level calculation means, the second fatigue level calculation means, and the cumulative fatigue level output means introduced into the fatigue analysis apparatus.
- FIG. 3 is a diagram for explaining a configuration of a determination unit introduced into the fatigue analysis apparatus.
- FIG. 4 is data showing an example of heart rate fluctuations collected from an electrocardiograph for calculating LF / HF time-series data.
- FIG. 5 is a diagram showing the power spectra of the HF component and the LF component obtained by continuous wavelet analysis of the time-series data of the heart rate shown in FIG.
- FIG. 6 shows LF / HF time-series data obtained from FIG.
- FIG. 1 is a block diagram showing a configuration of a fatigue analysis apparatus according to an embodiment of the present invention.
- FIG. 2 is a diagram for explaining the configuration of the first fatigue level calculation means, the second fatigue level calculation means,
- FIG. 7 shows time-series data of average values calculated every 5 seconds from the LF / HF time-series data of FIG.
- FIG. 8 is a diagram for explaining the LF / HF inclusion means, in which FIG. 8A is a diagram obtained by multiplying the time series data of FIG. 7 by 1/5, and FIG. FIG. 8C shows time series data of average values of power values every 5 seconds obtained by processing time series data of pulse waves obtained by the volume pulse wave meter.
- FIG. This is time series data of LF / HF power values obtained by multiplying the series data and the time series data of FIG. 8B by corresponding time values.
- FIG. 8A is a diagram obtained by multiplying the time series data of FIG. 7 by 1/5
- FIG. 8C shows time series data of average values of power values every 5 seconds obtained by processing time series data of pulse waves obtained by the volume pulse wave meter.
- FIG. This is time series data of LF / HF power values obtained by multiplying the series data and the time series data of FIG. 8
- FIG. 9 is a diagram illustrating an example of time-series data of the average value of the maximum Lyapunov exponent used for calculation of the corrected power value every 5 seconds.
- FIG. 10 is a diagram for explaining the process of calculating the maximum Lyapunov exponent.
- FIG. 10A is an example of time-series data of the average value of the maximum Lyapunov exponent every 5 seconds (measurement time 1800 seconds).
- FIG. 10B shows the average value of the power values every 5 seconds obtained by processing the time-series data of the pulse wave obtained by the fingertip plethysmograph by the power value calculating means.
- FIG. 10C is an example of time-series data, and FIG. 10C is a correction obtained by multiplying the time-series data of FIG.
- FIG. 10A and the time-series data of FIG. 10B by corresponding time values It is an example of the time series data of a power value.
- FIG. 11 is a diagram showing test results when test subject A sits on a urethane sheet under static conditions in Test Example 1, (a) shows a time-series change in the degree of subjective fatigue, and (b) shows FIG. 4 is a diagram showing fatigue curves (A) to (D) together.
- FIG. 12 is a diagram showing test results when test subject A is seated on a wooden chair under static conditions in Test Example 1, (a) shows a time-series change in the degree of subjective fatigue, and (b) shows FIG. 4 is a diagram showing fatigue curves (A) to (D) together.
- FIG. 11 is a diagram showing test results when test subject A sits on a urethane sheet under static conditions in Test Example 1, (a) shows a time-series change in the degree of subjective fatigue, and (b) shows FIG. 4 is a diagram showing fatigue curves (
- FIG. 13 is a diagram showing test results when test subject A is seated on a urethane sheet in a vibration condition in Test Example 1, (a) shows a time-series change in the degree of subjective fatigue, and (b) FIG. 3 is a diagram showing fatigue curves (A) to (D) together.
- FIG. 14 is a diagram showing test results when subject A sits on a wooden chair under vibration conditions in Test Example 1, (a) shows time-series changes in the degree of subjective fatigue, and (b) FIG. 3 is a diagram showing fatigue curves (A) to (D) together.
- FIG. 14 is a diagram showing test results when subject A sits on a wooden chair under vibration conditions in Test Example 1, (a) shows time-series changes in the degree of subjective fatigue, and (b) FIG. 3 is a diagram showing fatigue curves (A) to (D) together.
- FIG. 15 is a diagram showing test results when test subject B sits on a wooden chair under static conditions in Test Example 1, (a) shows the time-series change in the degree of subjective fatigue, and (b) shows FIG. 4 is a diagram showing fatigue curves (A) to (D) together.
- FIG. 16 is a diagram showing test results when test subject A is seated on a urethane sheet in a static condition in Test Example 2, (a) shows a time-series change in the degree of subjective fatigue, and (b) shows A time series change of the arousal level / time and the cumulative arousal level is shown, and (c) is a diagram showing the fatigue curves (A) to (D) together.
- FIG. 16 is a diagram showing test results when test subject A is seated on a urethane sheet in a static condition in Test Example 2, (a) shows a time-series change in the degree of subjective fatigue, and (b) shows A time series change of the arousal level / time and the cumulative a
- FIG. 17 is a diagram showing test results when subject A sits on a wooden chair under static conditions in Test Example 2, (a) shows time-series changes in the degree of subjective fatigue, and (b) A time series change of the arousal level / time and the cumulative arousal level is shown, and (c) is a diagram showing the fatigue curves (A) to (D) together.
- FIG. 18 is a diagram showing test results when test subject A is seated on a urethane sheet in a vibration condition in Test Example 2, (a) shows a time series change in the degree of subjective fatigue, and (b) shows arousal. A time series change of degree / time and cumulative arousal degree is shown, and (c) is a diagram showing fatigue curves (A) to (D) together.
- FIG. 19 is a diagram showing test results when test subject A is seated on a wooden chair under vibration conditions in Test Example 2, (a) shows time-series changes in subjective fatigue level, and (b) shows arousal. A time series change of degree / time and cumulative arousal degree is shown, and (c) is a diagram showing fatigue curves (A) to (D) together.
- FIG. 20 is a diagram showing test results when subject B sits on a wooden chair under static conditions in Test Example 2, (a) shows the time-series change in the degree of subjective fatigue, and (b) shows A time series change of the arousal level / time and the cumulative arousal level is shown, and (c) is a diagram showing the fatigue curves (A) to (D) together.
- FIG. 20 is a diagram showing test results when subject B sits on a wooden chair under static conditions in Test Example 2, (a) shows the time-series change in the degree of subjective fatigue, and (b) shows A time series change of the arousal level
- FIG. 21 is a diagram showing test results when test subject A is seated on a urethane sheet in a static condition in Test Example 3, (a) shows a time-series change in the degree of subjective fatigue, and (b) shows It is the figure which showed each fatigue curve (A)-(D) together, (c) shows the time series change of the arousal degree / time and the cumulative arousal degree, and (d) is the time of the arousal degree / time. It is the figure which set the threshold value to the series change.
- FIG. 22 is a diagram showing test results when subject A sits on a wooden chair under static conditions in Test Example 3, (a) shows the time-series change in the degree of subjective fatigue, and (b) shows It is the figure which showed each fatigue curve (A)-(D) together, (c) shows the time series change of the arousal degree / time and the cumulative arousal degree, and (d) is the time of the arousal degree / time. It is the figure which set the threshold value to the series change.
- FIG. 23 is a diagram showing test results when test subject A is seated on a urethane sheet in a vibration condition in Test Example 3; (a) shows a time-series change in the degree of subjective fatigue; and (b) It is the figure which showed fatigue curves (A)-(D) together, (c) shows the time series change of the arousal degree / time and the cumulative arousal degree, and (d) is the time series of the arousal degree / time. It is the figure which set the threshold value to the change.
- FIG. 24 is a diagram showing test results when test subject A is seated on a wooden chair under vibration conditions in Test Example 3, (a) shows the time-series change in the degree of subjective fatigue, and (b) It is the figure which showed fatigue curves (A)-(D) together, (c) shows the time series change of the arousal degree / time and the cumulative arousal degree, and (d) is the time series of the arousal degree / time. It is the figure which set the threshold value to the change.
- 25 is a diagram showing test results when subject B sits on a wooden chair under static conditions in Test Example 3, (a) shows a time-series change in the degree of subjective fatigue, and (b) It is the figure which showed each fatigue curve (A)-(D) together, (c) shows the time series change of the arousal degree / time and the cumulative arousal degree, and (d) is the time of the arousal degree / time. It is the figure which set the threshold value to the series change.
- FIG. 1 is a diagram illustrating a configuration of a fatigue analysis apparatus 1 according to the present embodiment.
- the fatigue analysis apparatus 1 is composed of a computer or the like, and includes data receiving means 10 for receiving data of a fingertip plethysmograph 20 as a biological signal measuring instrument, and also receives data.
- First fatigue level calculation means 11, second fatigue level calculation means 12, determination means 13, and cumulative fatigue level output, which are computer programs for processing time series data of fingertip volume pulse waves as biological signal data received by means 10 Means 14 is set.
- the first fatigue level calculating means 11 includes a power value calculating means 111, a power value slope calculating means 112, and a power value slope integrating means 113, as shown in FIG.
- the power value calculation unit 111 includes the following processing steps. First, for the time series data of the fingertip plethysmogram collected by the fingertip plethysmograph 20 and received by the data receiving means 11, the maximum value and the minimum value are obtained by the smoothing differential method by Savitzky and Golay, respectively. . Next, the local maximum value and the local minimum value are divided every predetermined time range set in advance, in this embodiment, every 5 seconds, and the average value (maximum peak value) of the local maximum value and the local minimum value in the time range.
- the average value (peak value on the lower limit side) of the values is obtained, and the difference between them is obtained as the power value.
- the difference between the average value of the maximum value and the average value of the minimum value in the predetermined time range is squared to obtain the power value.
- the power value inclination calculation means 112 obtains the inclination with respect to the time axis by the least square method for a predetermined time width Tw (180 seconds in the present embodiment) from the time series data of the power values obtained by the power value calculation means 111. Next, the next time width Tw (180 seconds) is similarly calculated with the overlap time Tl (162 seconds), and the result is plotted. This calculation (slide calculation) is repeated sequentially. Thereby, in this example, the inclination of the power value is plotted every 18 seconds, and the time series data is obtained.
- the power value slope integration means 113 first performs absolute value processing on the time series signal of the power value slope obtained by the slide calculation by the power value slope calculation means 112. That is, the power values obtained every 18 seconds in the above example are all made positive. Next, an integral value of a time (in this example, 18 seconds) from a time point at which a slope of a certain power value is plotted to a time point at which the slope of the next power value is plotted is obtained every predetermined time range. Then, the obtained integral value (obtained every 18 seconds in this example) is set as the reference fatigue level.
- the power value gradient calculating unit 112 calculates the power value gradient using the power value obtained from the power value calculating unit 111 to obtain the reference fatigue level. As described above, it is preferable to obtain the above in consideration of mental fatigue of the autonomic nervous system.
- LF / HF time-series data calculation for obtaining time-series data of LF / HF power spectrum obtained by frequency analysis of time-series data of heart rate or pulse rate measured by an electrocardiograph or fingertip plethysmograph Means 111a is provided, and the power value calculation means 111 adds the value of the time series data of the LF / HF power spectrum obtained by the LF / HF time series data calculation means 111a to the value of the time series data of the power value. It is preferable to obtain the LF / HF power value.
- the method of adding the value of the time series data of the power spectrum of LF / HF to the power value is as follows.
- a frequency analysis method it is preferable to use continuous wavelet transform.
- the LF component is 0.04 to 0.15 Hz and the HF component is 0.15 to 0.4 Hz.
- the continuous wavelet transform has a high resolution, Waves can be taken well and is suitable for frequency analysis of heart rate or pulse rate variation.
- time-series data of heart rate or pulse rate per minute obtained from RR interval data is obtained.
- continuous wavelet analysis is performed to calculate the total value of the power spectrum of the HF component and the LF component per unit time (RR interval) to obtain LF / HF time series data (FIGS. 4 to 5). 6).
- an average value is obtained every 5 seconds for the LF / HF time-series data (see FIG. 7). Since LF / HF is obtained every RR interval, the average value every 5 seconds includes the sum of the LF / HF values for each RR interval included in 5 seconds. Calculated by dividing by the number of RR intervals. Then, the time-series data of the average value every 5 seconds is multiplied by the time-series data of the power value calculated every 5 seconds similarly (see FIG. 8). Thereby, time series data of the LF / HF inclusion power value is obtained.
- the average value of LF / HF may be used as it is, but it may be multiplied by the power value after being multiplied by several times (for example, 1/5 times) for easy processing. Moreover, although the average value of LF / HF and said power value are calculated
- the second fatigue level calculating means 12 includes a corrected power value calculating means 121, a corrected power value slope calculating means 122, and a corrected power value slope integrating means 123.
- the corrected power value calculating means 121 obtains the time series data of the maximum Lyapunov exponent from the time series data of the fingertip volume pulse wave, the value of the time series data of the maximum Lyapunov exponent, and the power of the first fatigue level calculating means 11
- the power value time-series data values used by the value calculating means 111 are multiplied by the values corresponding to each other in time to obtain a corrected power value, and the corrected power value time-series data is calculated.
- the value of the maximum Lyapunov exponent is obtained every second from the time series data of the fingertip volume pulse wave. Further, in this embodiment, the average value every 5 seconds is calculated from the time series data of this maximum Lyapunov exponent. Is calculated (FIGS. 9 and 10A). Then, the average value every 5 seconds is multiplied by the power value obtained every 5 seconds (FIG. 10B), and the time series data of the corrected power value including the maximum Lyapunov exponent (FIG. 10 ( c)).
- the second fatigue degree calculation means 12 Since the maximum Lyapunov exponent is obtained by the arousal degree calculation means 131 described later, the second fatigue degree calculation means 12 does not obtain the maximum Lyapunov exponent again, but calculates the corrected power value of the maximum Lyapunov exponent obtained by the arousal degree calculation means 131. It is preferable to use it. However, when the first fatigue level calculating unit 11 calculates the reference fatigue level from the LF / HF included power value, when the second fatigue level calculating unit 12 starts operating, the corrected power value calculating unit 121 Instead of the time series data of / HF, the value of the time series data of the maximum Lyapunov exponent is multiplied by the value of the time series data of the power value.
- the corrected power value calculation means 121 multiplies the power value time series data multiplied by the LF / HF time series data and the time series data value of the maximum Lyapunov exponent as it is. It can also be used as a correction power value.
- the corrected power value slope calculating means 122 has the same configuration as that of the power value slope calculating means 112 described above except that the corrected power value is used as data serving as a basis for calculation. Find the tilt with respect to the axis.
- the correction power value slope integration means 123 is the same as that of the power value slope integration means 113 except that the slope of the correction power value is used as the basis data for the calculation. These time series signals are subjected to absolute value processing, and an integral value for each predetermined time range is calculated. This integrated value is used as the corrected fatigue level.
- the determination unit 13 includes an arousal degree calculation unit 131, a cumulative arousal level output unit 132, and a timing determination unit 133.
- the arousal degree calculation means 131 further includes a maximum Lyapunov exponent calculation means 131a, a maximum Lyapunov exponent slope calculation means 131b, and a maximum Lyapunov exponent slope integration means 131c.
- the maximum Lyapunov exponent calculation means 131a calculates the maximum Lyapunov exponent from the time series data of the fingertip plethysmogram received by the data receiving means 11, and calculates the time series data of the maximum Lyapunov exponent.
- the time series data of the fingertip volume pulse wave is first reconstructed into a state space by a time delay method.
- the time-series delay time of the fingertip plethysmogram is 50 ms, and when the FNN (False Near Neighbors) method is used as the embedding dimension, the FNN becomes almost zero in the dimension 3 and completely zero in the dimension 4 Therefore, the optimum embedding dimension is set to 4 dimensions.
- the attractor is reconfigured with a time width of 30 seconds, and the value of the maximum Lyapunov exponent is plotted every second by sliding the time width by 1 second, Find time series data of the maximum Lyapunov exponent.
- the maximum Lyapunov exponent slope calculating means 131b obtains the slope of the maximum Lyapunov exponent with respect to the time axis in a predetermined time range by performing slide calculation a predetermined number of times. Specifically, the maximum Lyapunov exponent determined as described above is smoothed by a smoothing differential method using Savitzky and Golay to obtain a maximum value and a minimum value, and then plots the time series data of the maximum value and the minimum value. The inclination with respect to the time axis in a predetermined time range is obtained. The method of obtaining the inclination is the same as that of the power value inclination calculating means 112 described above.
- the inclination with respect to the time axis is obtained by the least square method for the predetermined time width Tw (180 seconds in the present embodiment).
- the next time width Tw (180 seconds) is similarly calculated with the overlap time Tl (162 seconds), and the result is plotted. This calculation (slide calculation) is repeated sequentially.
- the slope of the maximum Lyapunov exponent is plotted every 18 seconds, and the time series data is obtained.
- the maximum Lyapunov exponent slope integration means 131c first performs absolute value processing on the time series signal of the slope of the maximum Lyapunov exponent slope obtained by the slide calculation by the maximum Lyapunov exponent slope calculation means 131b. That is, the maximum Lyapunov exponent slope obtained every 18 seconds in the above example is set to a positive value. Next, an integral value of a time (in this example, 18 seconds) from a time point when a slope of a certain maximum Lyapunov exponent is plotted to a time point when a slope of the next maximum Lyapunov exponent is plotted is obtained every predetermined time range. Then, the obtained integral value (obtained every 18 seconds in this example) is used as an arousal level (Ergonomics Vol.
- the cumulative arousal output means 132 calculates and outputs a cumulative sum of each integral value (arousal degree) obtained by the maximum Lyapunov exponent slope integral means 131b. Thereby, the fluctuation tendency of arousal level can be grasped.
- the timing determination unit 133 uses the sudden conversion point of the slope of the cumulative evoke level output by the cumulative evoke level output unit 132 and uses the corrected fatigue level of the second fatigue level calculation unit 12 in the cumulative fatigue level output unit 14. It is a means to determine.
- the “sudden conversion point” is obtained by using the slope of the cumulative arousal level in the predetermined time range from the start of measurement as the reference slope, and the slope of the cumulative arousal level in the predetermined time range in the time zone after obtaining this reference slope is the reference slope
- the reference inclination is preferably a time zone before mental fatigue is greatly affected, and when analyzing fatigue when seated, such as a car seat or office chair, 3 to 15 minutes after the start of measurement. It is preferable to adopt an average slope of 3 minutes to 12 minutes in the range.
- the slope of the cumulative arousal level compared with the reference slope is preferably an average slope for 2 minutes to 5 minutes.
- the cumulative fatigue level output means 14 is a power value gradient of the first fatigue level calculation means 11 in a time zone before the timing determination means 133 determines that the corrected fatigue level of the second fatigue level calculation means 12 is adopted.
- the cumulative sum of the standard fatigue levels obtained by the integrating means 113 is obtained and output.
- the cumulative sum of the corrected fatigue levels obtained by the corrected power value slope integrating unit 123 of the second fatigue level calculating unit 12 is obtained. Output.
- the accumulation of fatigue that occurs in the relaxed state is obtained as the cumulative sum of the standard fatigue levels, and the accumulation of fatigue in the state where the mental fatigue compensated by the exchange nerve activity is taken into account is the cumulative sum of the corrected fatigue levels.
- the change in the cumulative fatigue level becomes closer to the sensory evaluation value as compared with the case based on the fatigue level calculated only by the conventional power value.
- the determination of the sudden conversion point of the inclination by the timing determination unit 133 compares the average inclinations of 2 minutes to 5 minutes, so that the occurrence of the sudden conversion point is 2 minutes from the actual generation time of the sudden conversion point. After 5 minutes.
- the cumulative fatigue level output means 14 outputs the cumulative sum of the corrected fatigue levels of the second fatigue level calculation means 12.
- the timing determination unit 133 As for the calculation of the corrected fatigue level, it is preferable to automatically determine the timing at which the corrected fatigue level is adopted using the timing determination unit 133 as in the fatigue analysis apparatus 1 of the present embodiment, but from 3 minutes to 15 minutes after the start of measurement.
- a predetermined threshold value is set from the “degree of arousal / time” (every 18 seconds in this embodiment) obtained by the maximum Lyapunov exponent slope integration means 131c in the range, and when the predetermined threshold value is exceeded, the second fatigue level is calculated. It can also be set so that the cumulative sum of the corrected fatigue levels of the means 12 is output.
- the excitation suppression coexistence period (ergonomics Vol.
- a computer program including the first fatigue level calculation unit 11, the second fatigue level calculation unit 12, the determination unit 13, the cumulative fatigue level output unit 14, and the like is provided by being stored in a recording medium.
- a “recording medium” is a medium that can carry a program that cannot occupy space by itself, such as a flexible disk, hard disk, CD-ROM, MO (magneto-optical disk), DVD-ROM, etc. is there. It is also possible to transmit from a computer installed with the program according to the present invention to another computer through a communication line. Moreover, it is also possible to form the fatigue analysis apparatus of the present invention by preinstalling or downloading the above program to a general-purpose terminal apparatus.
- Test example 1 (Verification test of whether the use of the maximum Lyapunov index is effective) Used by two Japanese adult subjects (subject A: male, 32 years old, height 178 cm, weight 69.2 kg, subject B: male, 34 years old, height 167 cm, weight 68 kg) in the driver's seat of a wooden chair or passenger car Fatigue in a state of sitting on a urethane sheet for 30 minutes was analyzed. In addition, the experiment was also performed when the robot was seated statically without being shaken, or when it was placed on a shaker and shaken. The excitation condition was a reproduction of the vibration of the floor during actual vehicle running with an average acceleration of 0.1G.
- a fingertip plethysmograph 20 was attached to each subject and a fingertip vessel pulse wave was collected, and a power value, LF / HF, and maximum Lyapunov index were determined, and a standard fatigue level, a corrected fatigue level, and an arousal level were determined.
- the standard fatigue level was calculated using an LF / HF inclusion power value in consideration of LF / HF time-series data of pulse rate.
- the slope of the power value, the slope of the corrected power value, and the slope of the maximum Lyapunov exponent were obtained with an overlap time of 162 seconds for 180 seconds.
- the results are shown in FIGS.
- FIGS. 11 to 15 (a) also shows the sensory evaluation value of each subject.
- the sensory evaluation value uses the Borg scale.
- FIG. 11 shows the test results when the subject A is seated on the urethane sheet under static conditions
- FIG. 12 shows the test results when the subject A is seated on the wooden chair under static conditions
- FIG. FIG. 14 shows the test results when subject A sits on the urethane sheet under vibration conditions
- FIG. 14 shows the test results when subject A sits on the wooden chair under vibration conditions
- FIG. 15 shows static results when subject B sits on the wooden chair. The test results when seated under conditions are shown.
- the “awareness fatigue” shown in each of FIGS. 11 to 15 is the output result of Test Example 1.
- This “subject fatigue level” is calculated by adding LF / L to the power value output by the power value slope integrating means 113 in the time zone before the time indicated by the alternate long and short dash line in each of FIGS.
- the cumulative fatigue level which is the cumulative sum of the standard fatigue levels calculated from the LF / HF calculated power value including HF is adopted, and in the time zone after the time indicated by the one-dot chain line, the second fatigue level calculating means 12
- the correction power value calculation means 121 obtains a correction power value by multiplying the time series data value of the maximum Lyapunov exponent by the value of the time series data of the power value instead of the time series data of LF / HF, and calculates the correction power value.
- the corrected fatigue level is obtained from the value, and the cumulative fatigue level is adopted.
- the time indicated by the alternate long and short dash line when the corrected fatigue level is adopted is based on the point when the tendency of sensory evaluation changes relatively, but the subjective fatigue level obtained in Test Example 1 is the sensory evaluation value. It can be seen that the curve is close to.
- FIGS. 11 to 15 (b) shows the fatigue curve (A) of the subjective fatigue degree shown in the figure of (a), and the cumulative sum of the standard fatigue degree calculated from only the power value in all time zones.
- Fatigue curve that combines the standard fatigue level obtained from the LF / HF power value in the time zone and the corrected fatigue level that is multiplied by the maximum Lyapunov exponent slope while adding LF / HF in the subsequent time zone ( D) is also shown.
- the fatigue curves (B) and (C) show different changes from the fatigue curve (A) of the subjective fatigue degree after the one-dot chain line time zone, and tend to deviate from the sensory evaluation value. It can be seen that the fatigue level closer to the sensory evaluation value can be obtained by adopting the corrected fatigue level including the maximum Lyapunov exponent at the time point.
- the fatigue curve (D) when compared with the fatigue curves (B) and (C), the sensory evaluation value is approached, but the time series data of LF / HF is included as the standard fatigue level
- the fatigue curve (A) shown as the subjective fatigue level of Test Example 1 the time series data of the LF / HF is removed at the time when the time series change of the maximum Lyapunov slope is included. It turned out that it becomes a tendency close to evaluation.
- Test example 2 (A test that automatically determines the maximum Lyapunov index inclusion timing)
- Test Example 2 As in Test Example 1, as the standard fatigue level, an LF / HF included power value obtained by adding LF / HF time-series data of the pulse rate to the power value was used. Further, in Test Example 2, the corrected fatigue that includes the maximum Lyapunov exponent using the determination means 13 including the arousal degree calculation means 131, the cumulative arousal degree output means 132, and the timing determination means 133 of the above embodiment. The timing to adopt the degree was automatically judged.
- the timing determination unit 133 determines the sudden conversion point of the cumulative arousal level obtained by the cumulative arousal level output unit 132, and after that time, the corrected power value calculation unit 121 of the second fatigue level calculation unit 12 performs LF / Instead of the time series data of HF, the value of the time series data of the maximum Lyapunov exponent is multiplied by the value of the time series data of the power value to obtain the corrected power value, the corrected fatigue value is obtained from the corrected power value, and further accumulated The fatigue level was output. As in Test Example 1, the combination of the cumulative sum of the standard fatigue levels and the cumulative sum of the corrected fatigue levels was defined as the subjective fatigue level.
- FIGS. 16 to 20 The “subject's subjective fatigue” shown in the diagrams (a) of FIGS. 16 to 20 is the output result of Test Example 2.
- FIGS. 16 to 20 (b) is a diagram showing time-series changes in the “arousal level / time” and the “cumulative arousal level”.
- “Rounding degree / time” is an integral value every 18 seconds output by the maximum Lyapunov exponent slope integrating means 131c
- “cumulative arousing degree” is a cumulative sum of the integral values.
- the time indicated by the alternate long and short dash line is the time point when the timing determination means 133 determines that the corrected fatigue level is to be adopted.
- the timing determination unit 133 obtains the average inclination of the cumulative arousal level as the reference inclination for 4.45 minutes after the start of measurement for 4.45 minutes (the horizontal scale on the horizontal axis of each (b)), and thereafter The average inclination every 2.225 minutes (one scale on the horizontal axis in the figure of each (b)) was compared with the reference inclination, and the time when a change of 10% or more occurred was determined as the sudden conversion point.
- the time point indicated by the symbol “X” is the sudden conversion point of the slope
- the time point indicated by the symbol “Y” (the diagram of FIG. 16 to FIG. 20 (a)).
- the adoption timing of the corrected fatigue that is, the maximum Lyapunov exponent.
- the next 2.225 minutes with respect to this reference inclination that is, 7. Compare the average slope from 75 minutes to 9.975 minutes. At this time, it can be judged when 9.975 minutes have elapsed that the average slope from 7.75 minutes to 9.975 minutes has changed by 10% or more with respect to the reference slope from 3.3 minutes to 7.75 minutes. . Therefore, the sudden conversion point X is set to a time point of 7.75 minutes, and the inclusion timing is when 9.975 minutes have elapsed.
- FIG. 16 shows the test results when subject A sits on the urethane sheet under static conditions
- FIG. 17 shows the test results when subject A sits on the wooden chair under static conditions
- FIG. FIG. 19 shows the test results when subject A sits on the urethane sheet under vibration conditions
- FIG. 19 shows the test results when subject A sits on the wooden chair under vibration conditions
- FIG. 20 shows static results when subject B sits on the wooden chair. The test results when seated under conditions are shown.
- each graph of (c) in FIGS. 16 to 20 shows the fatigue curve (A) of the subjective fatigue level shown in the graph of (a), and the reference fatigue level calculated from only the power value in all time zones.
- the curve (D) is also shown, the time series data of the LF / HF at the time when the time series change of the maximum Lyapunov slope is included as in the fatigue curve (A) shown as the subjective fatigue level of Test Example 2 It ’s better to remove It was found to be in close trend in performance evaluation.
- Test example 3 (A test in which the maximum Lyapunov index was counted from the “degree of arousal / time”)
- Test Example 3 As in Test Examples 1 and 2, as the standard fatigue level, an LF / HF included power value obtained by adding time-series data of LF / HF of the pulse rate to the power value was used.
- a predetermined threshold value is set for the “degree of arousal / time”, which is an integral value every 18 seconds output by the maximum Lyapunov exponent slope integration means 131c, and the LF / Instead of the time series data of HF, the corrected fatigue degree including the maximum Lyapunov exponent was adopted.
- the combination of the standard fatigue level and the corrected fatigue level is shown as the subjective fatigue level in FIGS. 21 to 25 (a).
- each broken line shown in parallel with the horizontal axis is the threshold value.
- the threshold value refers to the change in “degree of arousal / time” from 4. 3 minutes after the start of measurement to 4.45 minutes (2 scales on the horizontal axis in each figure (b)).
- the measurer set a value slightly higher than the fluctuation range of the “arousal level / time” of the belt. 21 shows the test results when subject A sits on the urethane sheet under static conditions, FIG. 22 shows the test results when subject A sits on the wooden chair under static conditions, and FIG. FIG. 24 shows the test results when subject A sits on a urethane sheet under vibration conditions, FIG. 24 shows the test results when subject A sits on a wooden chair under vibration conditions, and FIG.
- FIGS. 21 to 25 shows static results when subject B sits on a wooden chair. The test results when seated under conditions are shown.
- FIGS. 21 to 25 (b) shows the fatigue curve (A) of the subjective fatigue degree shown in the figure (a), and the reference fatigue degree calculated from only the power value in all time zones.
- FIG. 21 to FIG. 25 (c) is a diagram showing time-series changes in “degree of arousal / time” and “cumulative degree of arousal”.
- a predetermined time zone after the start of measurement preferably a time zone of 3 to 12 minutes (4.45 minutes in this test example) in the range of 3 to 15 minutes after the start of measurement. It can be seen that a fatigue curve with a subjective fatigue level close to sensory evaluation can be obtained even if the threshold value is set with reference to the change in “arousal level / time”.
- the configuration in which the maximum Lyapunov exponent is automatically calculated from the change in the slope of the cumulative arousal level is more computationally intensive than the manual setting of the threshold value based on the change in “Rounding level / time” in Test Example 3.
- Test Example 3 In view of the fact that the value is large, depending on the computing ability of the fatigue analysis device, it is also possible to obtain the degree of subjective fatigue by the method of Test Example 3. However, as long as you set a ratio (10%, 20%, etc.) to be judged as a sudden conversion point of the slope of the cumulative arousal level, it automatically determines the timing of inclusion of the maximum Lyapunov index and outputs a subjective fatigue level close to sensory evaluation The technique of Test Example 2 is more preferable.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Child & Adolescent Psychology (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Psychology (AREA)
- Social Psychology (AREA)
- Developmental Disabilities (AREA)
- Educational Technology (AREA)
- Signal Processing (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
A fatigue degree is obtained by a sense evaluation value considering compensation by a sympathetic nerve activity. Provided is a fatigue analysis device including: first fatigue degree calculation means (11) which obtains a reference fatigue degree; second fatigue degree calculation means (12) which obtains a corrected fatigue degree by using the maximum Lyapunov exponent; and judgment means (13) which judges whether a fatigue compensation by the sympathetic nerve activity is present. In the time band when it is judged that no fatigue compensation is performed by the sympathetic nerve activity, accumulated fatigue degree output means (14) outputs an accumulated sum of the reference fatigue degrees obtained by the first fatigue degree calculation means (11). In the time band when it is judged that a fatigue compensation is performed by the sympathetic nerve activity, accumulated fatigue degree output means (14) outputs an accumulated sum of the corrected fatigue degrees obtained by the second fatigue degree calculation means (12). Since the reference fatigue degree or the corrected fatigue degree is outputted in accordance with the presence/absence of the fatigue compensation by the sympathetic nerve activity, the accumulated fatigue degree approaches the sense evaluation value.
Description
本発明は、人の疲労の度合いとしての疲労度を求めるための疲労解析装置及びそれに用いられるコンピュータプログラムに関する。
The present invention relates to a fatigue analysis apparatus for obtaining a degree of fatigue as a degree of human fatigue and a computer program used therefor.
特許文献1には、人が疲労に対してとる恒常性維持のために使用される筋肉の仕事によるエネルギー量を、その仕事による産物の代謝量で比較することにより、それを人の疲労の度合いとなる疲労度として求める技術が開示されている。この技術は、人の生体信号を採取し、その生体信号データの原波形の各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差をパワー値として算出するパワー値算出手段と、このパワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求めるパワー値傾き算出手段と、得られたパワー値の傾きの時系列信号を絶対値処理して積分値を算出する手段とを有し、得られた積分値を疲労度として求めている。
WO2005/039415A1号公報
Patent Document 1 describes the degree of fatigue of a person by comparing the amount of energy by the work of muscles used for maintaining the homeostasis taken by a person with fatigue by the amount of metabolism of the product by the work. The technique calculated | required as the fatigue degree used as is disclosed. This technology collects human biological signals, calculates the difference between the peak value on the upper limit side and the peak value on the lower limit side for each predetermined time range from the peak value of each cycle of the original waveform of the biological signal data, Power value calculating means for calculating the difference as a power value, power value inclination calculating means for calculating the inclination of the power value with respect to the time axis in a predetermined time range by slide calculation a predetermined number of times, and the inclination of the obtained power value And a means for calculating an integral value by processing an absolute value of the time series signal, and the obtained integral value is obtained as a fatigue level.
WO2005 / 039415A1 publication
しかし、例えば、人が座席に着座した状態を継続した際の、特許文献1に開示された技術により求めた疲労度と、同時に計測したボルグスケールによる筋疲労の官能評価値とを比較した場合、両者が類似傾向を示さないことがあることがわかった。本発明者らはこの点について検討したところ、特許文献1により求められる疲労度が、着座姿勢を維持・継続するという状態に対し、着座姿勢を維持するために使われる抗重力筋(姿勢筋)のエネルギー使用量と、着座姿勢の継続に伴う痛みの発生による急激な筋収縮によるエネルギー使用量といった筋収縮に伴う代謝を見ているだけであるのに対し、官能評価値には、肉体的な疲労だけでなく、精神的な疲労も考慮されていると考えた。つまり、特許文献1の技術は、精神的リラックス状態において生じる疲労を求めることが前提となっており、交感神経機能によって疲労がカバー(代償)されて筋収縮として表れない場合には、交感神経活動によって血流量が変化しても、疲労度として考慮されていない。しかし、実際には、交感神経活動によって精神的疲労及びそれに伴う血流量の変化が生じており、このことが、官能評価値との乖離を生じるケースの主な原因であると考えた。
However, for example, when comparing the degree of fatigue obtained by the technique disclosed in Patent Document 1 and the sensory evaluation value of muscle fatigue by the Borg scale measured at the same time when the person continues to sit on the seat, It turned out that both may not show a similar tendency. When the present inventors examined this point, anti-gravity muscles (posture muscles) used for maintaining the sitting posture with respect to the state in which the fatigue level required by Patent Document 1 maintains and continues the sitting posture. While only looking at metabolism associated with muscle contraction, such as energy consumption of the body and energy consumption due to sudden muscle contraction due to the occurrence of pain associated with continued sitting posture, I thought that not only fatigue but also mental fatigue was considered. In other words, the technique of Patent Document 1 is based on the premise of seeking fatigue that occurs in a mentally relaxed state, and if the fatigue is covered (compensated) by the sympathetic nerve function and does not appear as muscle contraction, the sympathetic nerve activity Even if the blood flow changes due to, it is not considered as fatigue level. However, in reality, sympathetic nerve activity caused mental fatigue and accompanying changes in blood flow, and this was considered to be the main cause of the case where a deviation from the sensory evaluation value occurred.
本発明は上記に鑑みなされたものであり、交感神経活動による代償分の代謝量を考慮し、官能評価値により近い疲労度を求めることができる疲労解析装置及びコンピュータプログラムを提供することを課題とする。
The present invention has been made in view of the above, and it is an object of the present invention to provide a fatigue analysis apparatus and a computer program capable of obtaining a fatigue level closer to a sensory evaluation value in consideration of a metabolic amount of compensation due to sympathetic activity. To do.
上記課題を解決するため、本発明の疲労解析装置は、生体信号測定器により採取された脈波の生体信号データを用いて疲労解析を行う疲労解析装置であって、前記生体信号データの原波形の各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差をパワー値とし、パワー値の時系列データを基にして基準疲労度を求める第1疲労度算出手段と、前記生体信号データから求めた最大リアプノフ指数を利用して、前記第1疲労度算出手段で用いたパワー値の時系列データの値を補正し、得られた補正パワー値の時系列データを基にして補正疲労度を求める第2疲労度算出手段と、交感神経活動による疲労の代償作用の有無を判定する判定手段と、前記判定手段により、交感神経活動による疲労の代償がなされていない状態と判定された時間帯では、前記第1疲労度算出手段により得られた基準疲労度の累積和を求めて出力し、交感神経活動による疲労の代償がなされている状態と判定された時間帯では、前記第2疲労度算出手段により得られた補正疲労度の累積和を求めて出力する累積疲労度出力手段とを具備することを特徴とする。
In order to solve the above-described problems, a fatigue analysis apparatus according to the present invention is a fatigue analysis apparatus that performs fatigue analysis using pulse wave biosignal data collected by a biosignal measuring device, and is an original waveform of the biosignal data The difference between the peak value on the upper limit side and the peak value on the lower limit side is calculated for each predetermined time range from the peak value of each cycle, and this difference is used as the power value. Based on the time series data of the power value, the standard fatigue is calculated. Obtained by correcting the time series data of the power value used in the first fatigue degree calculating means using the first fatigue degree calculating means for obtaining the degree and the maximum Lyapunov exponent obtained from the biological signal data. A second fatigue degree calculating means for obtaining a corrected fatigue level based on the corrected power value time-series data, a determination means for determining whether or not there is a compensation effect of fatigue due to the sympathetic nerve activity, and a sympathetic nerve activity by the determination means Fatigue due to In a time zone in which it is determined that no compensation has been made, a cumulative sum of the reference fatigue levels obtained by the first fatigue level calculation means is obtained and output, and a state in which compensation for fatigue due to sympathetic nerve activity is being made The determined time zone includes a cumulative fatigue level output unit that calculates and outputs a cumulative sum of the corrected fatigue levels obtained by the second fatigue level calculation unit.
前記判定手段は、前記生体信号データから最大リアプノフ指数を求め、この最大リアプノフ指数の時系列データを基にして喚起度を求める喚起度算出手段と、前記喚起度算出手段により得られた喚起度から、前記第2疲労度算出手段の補正疲労度を採用するタイミングを判定するタイミング判定手段とを備えてなり、前記累積疲労度出力手段は、前記タイミング判定手段により、前記第2疲労度算出手段の補正疲労度を採用するタイミングと判定される前の時間帯では、前記第1疲労度算出手段により得られた基準疲労度の累積和を求めて出力し、前記第2疲労度算出手段の補正疲労度を採用するタイミングと判定された後の時間帯では、前記第2疲労度算出手段により得られた補正疲労度の累積和を求めて出力するように設定されていることが好ましい。
The determination means obtains a maximum Lyapunov exponent from the vital sign data, and calculates a degree of arousal based on time series data of the maximum Lyapunov exponent, and arousal degree obtained by the arousal degree calculation means , And a timing determination unit that determines a timing at which the corrected fatigue level of the second fatigue level calculation unit is adopted, and the cumulative fatigue level output unit includes the second fatigue level calculation unit by the timing determination unit. In a time zone before it is determined that the corrected fatigue level is adopted, a cumulative sum of the reference fatigue levels obtained by the first fatigue level calculation unit is obtained and output, and the corrected fatigue level of the second fatigue level calculation unit is calculated. In the time zone after it is determined that the degree is adopted, the cumulative fatigue correction degree obtained by the second fatigue degree calculating means is calculated and output. Door is preferable.
また、前記第1疲労度算出手段は、前記生体信号データの原波形の各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差を前記パワー値とし、該パワー値の時系列データを算出するパワー値算出手段と、前記パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求めるパワー値傾き算出手段と、前記パワー値傾き算出手段によりスライド計算して得られたパワー値の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記基準疲労度として算出するパワー値傾き積分手段とを備えてなることが好ましい。
Further, the first fatigue level calculating means calculates a difference between the peak value on the upper limit side and the peak value on the lower limit side for each predetermined time range from the peak value of each cycle of the original waveform of the biological signal data, A power value calculating means for calculating a time series data of the power value using the difference as the power value; a power value inclination calculating means for obtaining a slope of the power value with respect to a time axis in a predetermined time range by performing slide calculation a predetermined number of times; A power value slope integrating means for performing absolute value processing on a time series signal of the power value slope obtained by the slide calculation by the power value slope calculating means, and calculating an integral value for each predetermined time range as the reference fatigue level; It is preferable to comprise.
さらに、生体信号測定器により採取された心拍数又は脈拍数の時系列データを周波数解析して得られるLF/HFのパワースペクトルの時系列データを求めるLF/HF時系列データ算出手段を備え、前記パワー値算出手段は、前記LF/HFのパワースペクトルの時系列データの値と、前記パワー値の時系列データの値とを、相互に対応する時間における値同士で掛け合わせ、それをLF/HF算入パワー値とし、該LF/HF算入パワー値の時系列データを算出するように設定されていることが好ましい。
Furthermore, it comprises LF / HF time series data calculating means for obtaining time series data of the power spectrum of LF / HF obtained by frequency analysis of time series data of heart rate or pulse rate collected by the biological signal measuring instrument, The power value calculation means multiplies the value of the time series data of the power spectrum of the LF / HF and the value of the time series data of the power value by the values corresponding to each other and LF / HF It is preferably set to calculate the time series data of the LF / HF included power value as the calculated power value.
また、前記第2疲労度算出手段は、前記喚起度算出手段で用いた最大リアプノフ指数の時系列データの値と、前記第1疲労度算出手段で用いたパワー値の時系列データの値とを、相互に対応する時間における値同士で掛け合わせ、それを補正パワー値とし、補正パワー値の時系列データを算出する補正パワー値算出手段と、前記補正パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める補正パワー値傾き算出手段と、前記補正パワー値算出手段によりスライド計算して得られた補正パワー値の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記補正疲労度として算出する補正パワー値傾き積分手段とを備えてなる構成とすることができる。
Further, the second fatigue level calculating means includes the value of the time series data of the maximum Lyapunov exponent used in the arousal level calculating means and the value of the time series data of the power value used in the first fatigue level calculating means. A correction power value calculating means for calculating the time series data of the correction power value by multiplying the values corresponding to each other at the corresponding time, and the inclination of the correction power value with respect to the time axis in a predetermined time range Correction power value inclination calculation means obtained by sliding calculation a predetermined number of times, and time-series signals of the correction power value inclination obtained by slide calculation by the correction power value calculation means are subjected to absolute value processing for each predetermined time range. The correction power value gradient integration means for calculating the integrated value as the corrected fatigue degree can be provided.
また、前記第2疲労度算出手段は、前記喚起度算出手段で用いた最大リアプノフ指数の時系列データの値と、前記第1疲労度算出手段で用いたLF/HF算入パワー値の時系列データの値とを、相互に対応する時間における値同士で掛け合わせ、それを補正パワー値とし、補正パワー値の時系列データを算出する補正パワー値算出手段と、前記補正パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める補正パワー値傾き算出手段と、前記補正パワー値算出手段によりスライド計算して得られた補正パワー値の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記補正疲労度として算出する補正パワー値傾き積分手段とを備えてなる構成とすることができる。
Further, the second fatigue level calculating means includes the time series data value of the maximum Lyapunov exponent used in the arousal level calculating means and the time series data of the LF / HF included power value used in the first fatigue level calculating means. And a correction power value calculation means for calculating time series data of the correction power value by multiplying the values of the correction values by values at times corresponding to each other, and a correction power value in a predetermined time range of the correction power value A correction power value inclination calculating means for obtaining the inclination with respect to the time axis by slide calculation a predetermined number of times, and a time series signal of the inclination of the correction power value obtained by the slide calculation by the correction power value calculation means are subjected to absolute value processing, A correction power value gradient integration means for calculating an integrated value for each predetermined time range as the corrected fatigue level may be provided.
また、前記喚起度算出手段は、前記生体信号データから最大リアプノフ指数を求め、最大リアプノフ指数の時系列データを算出する最大リアプノフ指数算出手段と、前記最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める最大リアプノフ指数傾き算出手段と、前記最大リアプノフ指数傾き算出手段によりスライド計算して得られた最大リアプノフ指数の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記喚起度として算出する最大リアプノフ指数傾き積分手段とを備えてなり、さらに、前記最大リアプノフ指数傾き積分手段により得られた前記喚起度の累積和を求めて出力する累積喚起度出力手段とを備えてなることが好ましい。
The arousal degree calculating means calculates a maximum Lyapunov exponent from the vital sign data and calculates time series data of the maximum Lyapunov exponent, and a slope of the maximum Lyapunov exponent with respect to a time axis in a predetermined time range. The maximum Lyapunov exponent slope calculating means obtained by sliding calculation a predetermined number of times, and the time series signal of the slope of the maximum Lyapunov exponent slope obtained by the slide calculation by the maximum Lyapunov exponent slope calculating means is subjected to absolute value processing, and a predetermined time range. A maximum Lyapunov exponent slope integration means for calculating the integral value for each arousal level, and a cumulative arousal level for obtaining and outputting a cumulative sum of the arousal levels obtained by the maximum Lyapunov exponent slope integration means Output means.
また、前記タイミング判定手段は、前記累積喚起度出力手段により出力される累積喚起度の傾きの急変換点を、前記第2疲労度算出手段の補正疲労度を採用するタイミングと判定する構成であることが好ましい。
In addition, the timing determination unit is configured to determine the sudden conversion point of the slope of the cumulative arousal level output from the cumulative arousal level output unit as a timing to employ the corrected fatigue level of the second fatigue level calculation unit. It is preferable.
また、前記タイミング判定手段は、測定開始から所定時間範囲における前記累積喚起度の傾きを基準傾きとして求め、この基準傾きを求めた後の時間帯における所定時間範囲における累積喚起度の傾きが、基準傾きに対して少なくとも10%の変化が生じた場合に前記急変換点と判定する構成であることが好ましい。
Further, the timing determination means obtains the slope of the cumulative arousal degree in a predetermined time range from the start of measurement as a reference slope, and the slope of the cumulative arousal degree in the predetermined time range in the time zone after obtaining the reference slope is a reference It is preferable that the abrupt conversion point is determined when a change of at least 10% occurs with respect to the inclination.
また、本発明のコンピュータプログラムは、生体信号測定器により採取された脈波の生体信号データを用いて疲労解析を行う疲労解析装置に導入されるコンピュータプログラムであって、前記生体信号データの原波形の各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差をパワー値とし、パワー値の時系列データを基にして基準疲労度を求める第1疲労度算出手段と、前記生体信号データから求めた最大リアプノフ指数を利用して、前記第1疲労度算出手段で用いたパワー値の時系列データの値を補正し、得られた補正パワー値の時系列データを基にして補正疲労度を求める第2疲労度算出手段と、交感神経活動による疲労の代償作用の有無を判定する判定手段と、前記判定手段により、交感神経活動による疲労の代償がなされていない状態と判定された時間帯では、前記第1疲労度算出手段により得られた基準疲労度の累積和を求めて出力し、交感神経活動による疲労の代償がなされている状態と判定された時間帯では、前記第2疲労度算出手段により得られた補正疲労度の累積和を求めて出力する累積疲労度出力手段とを具備することを特徴とする。
The computer program of the present invention is a computer program introduced into a fatigue analysis apparatus that performs fatigue analysis using pulse wave biosignal data collected by a biosignal measuring device, and the original waveform of the biosignal data The difference between the peak value on the upper limit side and the peak value on the lower limit side is calculated for each predetermined time range from the peak value of each cycle, and this difference is used as the power value. Based on the time series data of the power value, the standard fatigue is calculated. Obtained by correcting the time series data of the power value used in the first fatigue degree calculating means using the first fatigue degree calculating means for obtaining the degree and the maximum Lyapunov exponent obtained from the biological signal data. A second fatigue level calculating means for obtaining a corrected fatigue level based on the corrected power value time-series data, a determination means for determining the presence or absence of a compensation effect of fatigue due to sympathetic nerve activity, and the determination means In a time zone in which it is determined that the fatigue due to the sympathetic nerve activity is not compensated, the cumulative sum of the reference fatigue levels obtained by the first fatigue level calculating means is obtained and output, and the fatigue level due to the sympathetic nerve activity is calculated. And a cumulative fatigue level output means for obtaining and outputting a cumulative sum of the corrected fatigue levels obtained by the second fatigue level calculation means in a time zone determined to be in a state of being compensated. .
前記判定手段は、前記生体信号データから最大リアプノフ指数を求め、この最大リアプノフ指数の時系列データを基にして喚起度を求める喚起度算出手段と、前記喚起度算出手段により得られた喚起度から、前記第2疲労度算出手段の補正疲労度を採用するタイミングを判定するタイミング判定手段とを備えてなり、前記累積疲労度出力手段は、前記タイミング判定手段により、前記第2疲労度算出手段の補正疲労度を採用するタイミングと判定される前の時間帯では、前記第1疲労度算出手段により得られた基準疲労度の累積和を求めて出力し、前記第2疲労度算出手段の補正疲労度を採用するタイミングと判定された後の時間帯では、前記第2疲労度算出手段により得られた補正疲労度の累積和を求めて出力するように設定されていることが好ましい。
The determination means obtains a maximum Lyapunov exponent from the vital sign data, and calculates a degree of arousal based on time series data of the maximum Lyapunov exponent, and arousal degree obtained by the arousal degree calculation means , And a timing determination unit that determines a timing at which the corrected fatigue level of the second fatigue level calculation unit is adopted, and the cumulative fatigue level output unit includes the second fatigue level calculation unit by the timing determination unit. In a time zone before it is determined that the corrected fatigue level is adopted, a cumulative sum of the reference fatigue levels obtained by the first fatigue level calculation unit is obtained and output, and the corrected fatigue level of the second fatigue level calculation unit is calculated. In the time zone after it is determined that the degree is adopted, the cumulative fatigue correction degree obtained by the second fatigue degree calculating means is calculated and output. Door is preferable.
また、前記第1疲労度算出手段は、前記生体信号データの原波形の各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差を前記パワー値とし、該パワー値の時系列データを算出するパワー値算出手段と、前記パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求めるパワー値傾き算出手段と、前記パワー値傾き算出手段によりスライド計算して得られたパワー値の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記基準疲労度として算出するパワー値傾き積分手段とを備えてなることが好ましい。
Further, the first fatigue level calculating means calculates a difference between the peak value on the upper limit side and the peak value on the lower limit side for each predetermined time range from the peak value of each cycle of the original waveform of the biological signal data, A power value calculating means for calculating a time series data of the power value using the difference as the power value; a power value inclination calculating means for obtaining a slope of the power value with respect to a time axis in a predetermined time range by performing slide calculation a predetermined number of times; A power value slope integrating means for performing absolute value processing on a time series signal of the power value slope obtained by the slide calculation by the power value slope calculating means, and calculating an integral value for each predetermined time range as the reference fatigue level; It is preferable to comprise.
さらに、生体信号測定器により採取された心拍数又は脈拍数の時系列データを周波数解析して得られるLF/HFのパワースペクトルの時系列データを求めるLF/HF時系列データ算出手段を備え、前記パワー値算出手段は、前記LF/HFのパワースペクトルの時系列データの値と、前記パワー値の時系列データの値とを、相互に対応する時間における値同士で掛け合わせ、それをLF/HF算入パワー値とし、該LF/HF算入パワー値の時系列データを算出するように設定されていることが好ましい。
Furthermore, it comprises LF / HF time series data calculating means for obtaining time series data of the power spectrum of LF / HF obtained by frequency analysis of time series data of heart rate or pulse rate collected by the biological signal measuring instrument, The power value calculation means multiplies the value of the time series data of the power spectrum of the LF / HF and the value of the time series data of the power value by the values corresponding to each other and LF / HF It is preferably set to calculate the time series data of the LF / HF included power value as the calculated power value.
また、前記第2疲労度算出手段が、前記喚起度算出手段で用いた最大リアプノフ指数の時系列データの値と、前記第1疲労度算出手段で用いたパワー値の時系列データの値とを、相互に対応する時間における値同士で掛け合わせ、それを補正パワー値とし、補正パワー値の時系列データを算出する補正パワー値算出手段と、前記補正パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める補正パワー値傾き算出手段と、前記補正パワー値算出手段によりスライド計算して得られた補正パワー値の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記補正疲労度として算出する補正パワー値傾き積分手段とを備えてなる構成とすることができる。
Further, the second fatigue level calculating means calculates the value of the time series data of the maximum Lyapunov exponent used by the arousal level calculating means and the value of the time series data of the power value used by the first fatigue level calculating means. A correction power value calculating means for calculating the time series data of the correction power value by multiplying the values corresponding to each other at the corresponding time, and the inclination of the correction power value with respect to the time axis in a predetermined time range Correction power value inclination calculation means obtained by sliding calculation a predetermined number of times, and time-series signals of the correction power value inclination obtained by slide calculation by the correction power value calculation means are subjected to absolute value processing for each predetermined time range. The correction power value gradient integration means for calculating the integrated value as the corrected fatigue degree can be provided.
また、前記第2疲労度算出手段は、前記喚起度算出手段で用いた最大リアプノフ指数の時系列データの値と、前記第1疲労度算出手段で用いたLF/HF算入パワー値の時系列データの値とを、相互に対応する時間における値同士で掛け合わせ、それを補正パワー値とし、補正パワー値の時系列データを算出する補正パワー値算出手段と、前記補正パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める補正パワー値傾き算出手段と、前記補正パワー値算出手段によりスライド計算して得られた補正パワー値の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記補正疲労度として算出する補正パワー値傾き積分手段とを備えてなる構成とすることができる。
Further, the second fatigue level calculating means includes the time series data value of the maximum Lyapunov exponent used in the arousal level calculating means and the time series data of the LF / HF included power value used in the first fatigue level calculating means. And a correction power value calculation means for calculating time series data of the correction power value by multiplying the values of the correction values by values at times corresponding to each other, and a correction power value in a predetermined time range of the correction power value A correction power value inclination calculating means for obtaining the inclination with respect to the time axis by slide calculation a predetermined number of times, and a time series signal of the inclination of the correction power value obtained by the slide calculation by the correction power value calculation means are subjected to absolute value processing, A correction power value gradient integration means for calculating an integrated value for each predetermined time range as the corrected fatigue level may be provided.
また、前記喚起度算出手段は、前記生体信号データから最大リアプノフ指数を求め、最大リアプノフ指数の時系列データを算出する最大リアプノフ指数算出手段と、前記最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める最大リアプノフ指数傾き算出手段と、前記最大リアプノフ指数傾き算出手段によりスライド計算して得られた最大リアプノフ指数の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記喚起度として算出する最大リアプノフ指数傾き積分手段とを備えてなり、さらに、前記最大リアプノフ指数傾き積分手段により得られた前記喚起度の累積和を求めて出力する累積喚起度出力手段とを備えてなることが好ましい。
The arousal degree calculating means calculates a maximum Lyapunov exponent from the vital sign data and calculates time series data of the maximum Lyapunov exponent, and a slope of the maximum Lyapunov exponent with respect to a time axis in a predetermined time range. The maximum Lyapunov exponent slope calculating means obtained by sliding calculation a predetermined number of times, and the time series signal of the slope of the maximum Lyapunov exponent slope obtained by the slide calculation by the maximum Lyapunov exponent slope calculating means is subjected to absolute value processing, and a predetermined time range. A maximum Lyapunov exponent slope integration means for calculating the integral value for each arousal level, and a cumulative arousal level for obtaining and outputting a cumulative sum of the arousal levels obtained by the maximum Lyapunov exponent slope integration means Output means.
また、前記タイミング判定手段は、前記累積喚起度出力手段により出力される累積喚起度の傾きの急変換点を、前記第2疲労度算出手段の補正疲労度を採用するタイミングと判定する構成であることが好ましい。
In addition, the timing determination unit is configured to determine the sudden conversion point of the slope of the cumulative arousal level output from the cumulative arousal level output unit as a timing to employ the corrected fatigue level of the second fatigue level calculation unit. It is preferable.
また、前記タイミング判定手段は、測定開始から所定時間範囲における前記累積喚起度の傾きを基準傾きとして求め、この基準傾きを求めた後の時間帯における所定時間範囲における累積喚起度の傾きが、基準傾きに対して少なくとも10%の変化が生じた場合に前記急変換点と判定する構成であることが好ましい。
Further, the timing determination means obtains the slope of the cumulative arousal degree in a predetermined time range from the start of measurement as a reference slope, and the slope of the cumulative arousal degree in the predetermined time range in the time zone after obtaining the reference slope is a reference It is preferable that the abrupt conversion point is determined when a change of at least 10% occurs with respect to the inclination.
本発明によれば、パワー値の時系列データを基にして、又は、パワー値の時系列データにLF/HFのパワースペクトルの時系列データを考慮した値(LF/HF算入パワー値)を基にして基準疲労度を求める第1疲労度算出手段と、生体信号データから求めた最大リアプノフ指数を利用して、第1疲労度算出手段で用いたパワー値又はLF/HF算入パワー値の時系列データの値を補正し、得られた補正パワー値の時系列データを基にして補正疲労度を求める第2疲労度算出手段と、交感神経活動による疲労の代償作用の有無を判定する判定手段とを備え、累積疲労度出力手段が、交感神経活動による疲労の代償がなされていない状態と判定された時間帯では、第1疲労度算出手段により得られた基準疲労度の累積和を求めて出力し、交感神経活動による疲労の代償がなされている状態と判定された時間帯では、第2疲労度算出手段により得られた補正疲労度の累積和を求めて出力する構成である。すなわち、交感神経活動による疲労の代償の有無に応じて、パワー値のみ又はLF/HF算入パワー値のみに基づいた疲労度(基準疲労度)か、あるいは、最大リアプノフ指数を考慮した疲労度(補正疲労度)かのいずれかが出力される構成であるため、累積疲労度の変化が、官能評価値により近い、すなわち、実際の疲労感により近いものとなる。
According to the present invention, based on time-series data of power values, or based on values (LF / HF included power values) in consideration of time-series data of LF / HF power spectrum in time-series data of power values. A time series of the power value used in the first fatigue degree calculating means or the LF / HF power value using the first fatigue degree calculating means for obtaining the reference fatigue degree and the maximum Lyapunov exponent obtained from the biological signal data A second fatigue level calculating means for correcting the data value and obtaining a corrected fatigue level based on the obtained time series data of the corrected power value; a determining means for determining the presence or absence of a compensation effect of fatigue due to sympathetic nerve activity; The cumulative fatigue level output means calculates and outputs the cumulative sum of the standard fatigue levels obtained by the first fatigue level calculation means in a time zone when it is determined that the fatigue due to sympathetic nerve activity is not compensated. And In the time zone in which the price of fatigue is determined to state that made by neural activity, a structure that obtains and outputs the cumulative sum of the corrected fatigue obtained by the second fatigue degree calculating unit. That is, depending on whether or not there is compensation for fatigue due to sympathetic nerve activity, the fatigue level based on only the power value or only the LF / HF power value (reference fatigue level) or the fatigue level considering the maximum Lyapunov exponent (correction) Therefore, the change in the cumulative fatigue level is closer to the sensory evaluation value, that is, closer to the actual fatigue feeling.
判定手段としては、生体信号データから最大リアプノフ指数を求め、最大リアプノフ指数の時系列データを基にして喚起度を求める喚起度算出手段と、喚起度算出手段により得られた喚起度から、第2疲労度算出手段の補正疲労度を採用するタイミングを判定するタイミング判定手段とを備えてなる構成とすることが好ましい。最大リアプノフ指数が高いほど、物事への適応力、緊張、集中力が高い状態であり、最大リアプノフ指数が低いほど、精神的にリラックスしている状態である。本発明で採用した判定手段において求める「喚起度」とは、この最大リアプノフ指数の時系列データから、最大リアプノフ指数の傾きを求め、その傾きを絶対値処理して積分して得られるように設定している。この結果、「喚起度」は、精神的に受けている刺激の程度を示す最大リアプノフ指数がどのように変動しているかの大域的な傾向を捉えていることになる。すなわち、「喚起度」は、交感神経が緊張することによって代償しているがために、筋収縮として捉えることができない疲労、つまり、筋疲労として捉えることができない脳の精神的疲労を捉える指標となる(人間工学 Vol. 40, No.5 (2004) 「指尖容積脈波情報を用いた長時間着座疲労の簡易評価法の開発」(藤田悦則等)参照)。従って、交感神経活動による疲労の代償が行われるまでの間は、喚起度を考慮せずに疲労度(基準疲労度)を求める一方で、喚起度の値から、交感神経活動による疲労の代償が行われていると判定されたならば、最大リアプノフ指数を組み込んだ補正パワー値を求め、補正パワー値を用いて改めて疲労度(補正疲労度)を求めることにより、累積疲労度の変化が、官能評価値により近いものとなる。
The determination means obtains the maximum Lyapunov exponent from the biological signal data, calculates the degree of arousal based on the time series data of the maximum Lyapunov exponent, and the second degree from the arousal degree obtained by the arousal degree calculator. It is preferable that the apparatus includes a timing determination unit that determines a timing at which the corrected fatigue level of the fatigue level calculation unit is adopted. The higher the maximum Lyapunov exponent, the higher the adaptability, tension and concentration to things, and the lower the maximum Lyapunov exponent, the more mentally relaxed. The “arousal degree” obtained by the determination means employed in the present invention is set so that the slope of the maximum Lyapunov exponent is obtained from the time series data of the maximum Lyapunov exponent, and the slope is obtained by absolute value processing and integration. is doing. As a result, the “degree of arousal” captures a global trend of how the maximum Lyapunov exponent, which indicates the degree of stimulation received mentally, fluctuates. In other words, “arousal level” is an index that captures fatigue that cannot be captured as muscle contraction, that is, mental fatigue of the brain that cannot be captured as muscle fatigue, because it is compensated for by sympathetic nerve tension. (Ergonomics Vol. 40, No. 5 (2004), “Development of a simple evaluation method for long-term sitting fatigue using fingertip plethysmogram information” (Yasunori Fujita, etc.)). Therefore, while the compensation for fatigue due to sympathetic activity is performed, the fatigue level (reference fatigue level) is calculated without considering the arousal level, while the compensation for fatigue due to sympathetic activity is calculated from the value of the arousal level. If it is determined that it has been carried out, a corrected power value incorporating the maximum Lyapunov exponent is obtained, and the fatigue level (corrected fatigue level) is obtained again using the corrected power value. It becomes closer to the evaluation value.
また、より厳密には、精神的疲労には、自律神経系の精神的疲労と脳の精神的疲労があるが、自律神経系の精神的疲労も、脳の精神的疲労と同様に、交感神経活動による代償作用の対象となる。例えば、横臥して十分な休憩や睡眠をとった後に疲労解析を行う場合、解析開始時においては、抗重力筋の肉体疲労がほとんど生じておらず、また、自律神経系並びに脳の精神的疲労のいずれもがあまり生じていない。このため、この状態から疲労度を求める場合には、まず、末梢系の肉体的疲労により基準疲労度を求め、その後、喚起度を目安に脳の精神的疲労を考慮した疲労度を求めれば、人の官能評価値に近づく。しかし、例えば、日常活動を行っている中で座席に着座した状態の疲労度を測定する場合には、脳の精神的疲労が大きく影響する前の段階において、末梢系の肉体的疲労と共に生じている自律神経系の精神的疲労も生じている。そこで、脳の精神的疲労を考慮し始める前の疲労度、つまり、基準疲労度の算出に当たっては、末梢系の肉体的疲労の指標である、生体信号データの原波形の各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差として算出したパワー値に、自律神経系の精神的疲労の指標である心拍数又は脈拍数から得られるLF/HFのパワースペクトルの時系列データを考慮した値(LF/HF算入パワー値)を採用し、それにより、基準疲労度を求める構成とすることが好ましい。
Strictly speaking, mental fatigue includes the mental fatigue of the autonomic nervous system and the mental fatigue of the brain, but the mental fatigue of the autonomic nervous system is similar to the mental fatigue of the brain. It becomes the object of compensation by the activity. For example, when a fatigue analysis is performed after lying down and taking a sufficient rest or sleep, there is almost no physical fatigue of antigravity muscles at the start of the analysis, and the autonomic nervous system and brain mental fatigue None of this has occurred so much. For this reason, when determining the fatigue level from this state, first determine the standard fatigue level by peripheral physical fatigue, and then determine the fatigue level considering the mental fatigue of the brain based on the arousal level, It approaches human sensory evaluation values. However, for example, when measuring the degree of fatigue while sitting in a seat during daily activities, it occurs with physical fatigue of the peripheral system at a stage before the mental fatigue of the brain is greatly affected. There is also mental fatigue of the autonomic nervous system. Therefore, in calculating the fatigue level before starting to consider mental fatigue of the brain, that is, the standard fatigue level, the peak value of each cycle of the original waveform of the biological signal data, which is an index of peripheral physical fatigue, is used. The LF / HF obtained from the heart rate or pulse rate, which is an index of mental fatigue of the autonomic nervous system, is calculated as the difference between the peak value on the upper limit side and the peak value on the lower limit side for each predetermined time range. It is preferable to adopt a configuration in which a value considering the time series data of the power spectrum (LF / HF included power value) is employed, thereby obtaining the reference fatigue level.
本発明によれば、実際の疲労感に近い疲労度を求めることができるため、得られた疲労度を種々の用途に利用できる。例えば、人がシートに着座したときの疲労度、あるいは、寝具に横たわったときの疲労度から、その人に適合するシートや寝具の判定を従来よりも正確に行うことができる。シートの良し悪しは、着座疲労感で判断され、また、寝具の良し悪しも、横たわった際の疲労感で判断されるからである。
According to the present invention, since the fatigue level close to the actual fatigue feeling can be obtained, the obtained fatigue level can be used for various applications. For example, it is possible to more accurately determine the seat and bedding that are suitable for a person based on the degree of fatigue when the person is seated on the seat or the degree of fatigue when the person is lying on the bedding. This is because whether the seat is good or bad is determined by the feeling of sitting fatigue, and whether the bedding is good or bad is also determined by the feeling of fatigue when lying down.
以下、図面に示した実施形態に基づき本発明をさらに詳細に説明する。図1は、本実施形態に係る疲労解析装置1の構成を示す図である。この図に示したように、疲労解析装置1は、コンピュータ等から構成され、生体信号測定器としての指尖容積脈波計20のデータを受信するデータ受信手段10を備えていると共に、データ受信手段10により受信した生体信号データである指尖容積脈波の時系列データを加工するコンピュータプログラムである第1疲労度算出手段11、第2疲労度算出手段12、判定手段13、累積疲労度出力手段14が設定されている。
Hereinafter, the present invention will be described in more detail based on the embodiments shown in the drawings. FIG. 1 is a diagram illustrating a configuration of a fatigue analysis apparatus 1 according to the present embodiment. As shown in this figure, the fatigue analysis apparatus 1 is composed of a computer or the like, and includes data receiving means 10 for receiving data of a fingertip plethysmograph 20 as a biological signal measuring instrument, and also receives data. First fatigue level calculation means 11, second fatigue level calculation means 12, determination means 13, and cumulative fatigue level output, which are computer programs for processing time series data of fingertip volume pulse waves as biological signal data received by means 10 Means 14 is set.
第1疲労度算出手段11は、図2に示したように、パワー値算出手段111と、パワー値傾き算出手段112と、パワー値傾き積分手段113とを有している。パワー値算出手段111は、次のような処理工程を備えている。まず、指尖容積脈波計20により採取し、データ受信手段11により受信した指尖容積脈波の時系列データについて、それぞれ、SavitzkyとGolayによる平滑化微分法により、極大値と極小値を求める。次にこの極大値と極小値を、予め設定した所定の時間範囲ごと、本実施形態では、5秒毎に切り分け、その時間範囲の中で極大値の平均値(上限側のピーク値)及び極小値の平均値(下限側のピーク値)を求め、それらの差をパワー値として求める。但し、変化量を強調するために、本実施形態では、上記の所定時間範囲における極大値の平均値と極小値の平均値との差を二乗してパワー値としている。
The first fatigue level calculating means 11 includes a power value calculating means 111, a power value slope calculating means 112, and a power value slope integrating means 113, as shown in FIG. The power value calculation unit 111 includes the following processing steps. First, for the time series data of the fingertip plethysmogram collected by the fingertip plethysmograph 20 and received by the data receiving means 11, the maximum value and the minimum value are obtained by the smoothing differential method by Savitzky and Golay, respectively. . Next, the local maximum value and the local minimum value are divided every predetermined time range set in advance, in this embodiment, every 5 seconds, and the average value (maximum peak value) of the local maximum value and the local minimum value in the time range. The average value (peak value on the lower limit side) of the values is obtained, and the difference between them is obtained as the power value. However, in order to emphasize the amount of change, in this embodiment, the difference between the average value of the maximum value and the average value of the minimum value in the predetermined time range is squared to obtain the power value.
パワー値傾き算出手段112は、パワー値算出手段111により得られたパワー値の時系列データから、所定時間幅Tw(本実施形態では180秒)について最小二乗法により時間軸に対する傾きを求める。次に、オーバーラップ時間Tl(162秒)で次の時間幅Tw(180秒)を同様に計算して結果をプロットする。この計算(スライド計算)を順次繰り返す。これにより、この例では、18秒ごとにパワー値の傾きがプロットされ、その時系列データが得られる。
The power value inclination calculation means 112 obtains the inclination with respect to the time axis by the least square method for a predetermined time width Tw (180 seconds in the present embodiment) from the time series data of the power values obtained by the power value calculation means 111. Next, the next time width Tw (180 seconds) is similarly calculated with the overlap time Tl (162 seconds), and the result is plotted. This calculation (slide calculation) is repeated sequentially. Thereby, in this example, the inclination of the power value is plotted every 18 seconds, and the time series data is obtained.
例えば、T秒(s)間における傾きを、オーバーラップ率90%で求める場合には、まず、0(s)~T(s)間におけるパワー値の時間軸に対する傾きを、最小二乗近似により求める。次いで、
スライド計算(1):T/10(s)~T+T/10(s)間、
スライド計算(2):2×T/10(s)~T+2×T/10(s)間、
スライド計算(n):n×T/10(s)~T+n×T/10(s)間
における各傾きを最小二乗近似により求めていく。 For example, when obtaining the slope during T seconds (s) with an overlap rate of 90%, first, the slope of the power value between 0 (s) and T (s) with respect to the time axis is obtained by least square approximation. . Then
Slide calculation (1): Between T / 10 (s) and T + T / 10 (s),
Slide calculation (2): Between 2 × T / 10 (s) and T + 2 × T / 10 (s),
Slide calculation (n): Each slope between n × T / 10 (s) and T + n × T / 10 (s) is obtained by least square approximation.
スライド計算(1):T/10(s)~T+T/10(s)間、
スライド計算(2):2×T/10(s)~T+2×T/10(s)間、
スライド計算(n):n×T/10(s)~T+n×T/10(s)間
における各傾きを最小二乗近似により求めていく。 For example, when obtaining the slope during T seconds (s) with an overlap rate of 90%, first, the slope of the power value between 0 (s) and T (s) with respect to the time axis is obtained by least square approximation. . Then
Slide calculation (1): Between T / 10 (s) and T + T / 10 (s),
Slide calculation (2): Between 2 × T / 10 (s) and T + 2 × T / 10 (s),
Slide calculation (n): Each slope between n × T / 10 (s) and T + n × T / 10 (s) is obtained by least square approximation.
パワー値傾き積分手段113は、まず、パワー値傾き算出手段112によりスライド計算して得られたパワー値の傾きの時系列信号を絶対値処理する。すなわち、上記の例で18秒ごとに得られるパワー値の傾きを全て正の値にする。次いで、所定時間範囲ごと、すなわち、ある一つのパワー値の傾きをプロットした時点から次のパワー値の傾きをプロットした時点までの時間(この例では、18秒間)の積分値を求める。そして、得られた積分値(この例では18秒ごとに得られる)を基準疲労度とする。
The power value slope integration means 113 first performs absolute value processing on the time series signal of the power value slope obtained by the slide calculation by the power value slope calculation means 112. That is, the power values obtained every 18 seconds in the above example are all made positive. Next, an integral value of a time (in this example, 18 seconds) from a time point at which a slope of a certain power value is plotted to a time point at which the slope of the next power value is plotted is obtained every predetermined time range. Then, the obtained integral value (obtained every 18 seconds in this example) is set as the reference fatigue level.
ここで、上記した説明では、パワー値傾き算出手段112において、パワー値算出手段111から得られたパワー値を用いてパワー値傾きを算出し、基準疲労度を求めているが、基準疲労度としては、上記のように、自律神経系の精神的疲労も加味して求めることが好ましい。そこで、心電図計又は指尖容積脈波計によって測定された心拍数又は脈拍数の時系列データを周波数解析して得られるLF/HFのパワースペクトルの時系列データを求めるLF/HF時系列データ算出手段111aを設け、パワー値算出手段111は、LF/HF時系列データ算出手段111aにより求めたLF/HFのパワースペクトルの時系列データの値を、上記のパワー値の時系列データの値に加味し、LF/HF算入パワー値を求める構成とすることが好ましい。
Here, in the above description, the power value gradient calculating unit 112 calculates the power value gradient using the power value obtained from the power value calculating unit 111 to obtain the reference fatigue level. As described above, it is preferable to obtain the above in consideration of mental fatigue of the autonomic nervous system. Therefore, LF / HF time-series data calculation for obtaining time-series data of LF / HF power spectrum obtained by frequency analysis of time-series data of heart rate or pulse rate measured by an electrocardiograph or fingertip plethysmograph Means 111a is provided, and the power value calculation means 111 adds the value of the time series data of the LF / HF power spectrum obtained by the LF / HF time series data calculation means 111a to the value of the time series data of the power value. It is preferable to obtain the LF / HF power value.
LF/HFのパワースペクトルの時系列データの値を、パワー値へ加味する手法は次の通りである。なお、周波数解析手法としては、連続ウエーブレット変換を用いることが好ましい。心拍数又は脈拍数を周波数解析した際のLF成分は0.04~0.15Hzであり、HF成分は0.15~0.4Hzであるが、連続ウエーブレット変換は解像度が高いため、これらの波をよくとられることができ、心拍数又は脈拍数変動の周波数解析に適している。
The method of adding the value of the time series data of the power spectrum of LF / HF to the power value is as follows. As a frequency analysis method, it is preferable to use continuous wavelet transform. When the frequency analysis of the heart rate or pulse rate is performed, the LF component is 0.04 to 0.15 Hz and the HF component is 0.15 to 0.4 Hz. However, since the continuous wavelet transform has a high resolution, Waves can be taken well and is suitable for frequency analysis of heart rate or pulse rate variation.
具体的には、まず、心電図計又は指尖容積脈波計によって測定される心拍数又は脈拍数として、R-R間隔データから得られた1分間あたりの心拍数又は脈拍数の時系列データを用い、これを連続ウエーブレット解析して、単位時間(R-R間隔)毎のHF成分、LF成分のパワースペクトルの合計値を算出し、LF/HFの時系列データを求める(図4~図6参照)。次に、このLF/HFの時系列データについて、5秒毎に平均値を求める(図7参照)。LF/HFは、R-R間隔毎に求められるため、5秒毎の平均値は、5秒間に含まれる各R-R間隔毎のLF/HFの値の合計を、その5秒間に含まれるR-R間隔の個数で割って算出する。そして、この5秒毎の平均値の時系列データを、同じく5秒毎に算出したパワー値の時系列データに対して、対応する時間の値同士を掛け合わせる(図8参照)。これにより、LF/HF算入パワー値の時系列データが求められる。
Specifically, first, as heart rate or pulse rate measured by an electrocardiograph or fingertip plethysmograph, time-series data of heart rate or pulse rate per minute obtained from RR interval data is obtained. Using this, continuous wavelet analysis is performed to calculate the total value of the power spectrum of the HF component and the LF component per unit time (RR interval) to obtain LF / HF time series data (FIGS. 4 to 5). 6). Next, an average value is obtained every 5 seconds for the LF / HF time-series data (see FIG. 7). Since LF / HF is obtained every RR interval, the average value every 5 seconds includes the sum of the LF / HF values for each RR interval included in 5 seconds. Calculated by dividing by the number of RR intervals. Then, the time-series data of the average value every 5 seconds is multiplied by the time-series data of the power value calculated every 5 seconds similarly (see FIG. 8). Thereby, time series data of the LF / HF inclusion power value is obtained.
なお、LF/HFの平均値は、そのまま使用してもよいが、処理しやすくするため、何倍(例えば、1/5倍)かしてからパワー値に掛けていってもよい。また、LF/HFの平均値並びに上記のパワー値を5秒毎に求めているが、この平均値を求める時間間隔はあくまで一例である。両者の時系列で出力される値同士を掛け合わせてLF/HF算入パワー値を求めるため、両者における値の算出時間が一致するように、同じ時間間隔で平均値を求めていればよく、5秒間に限られるものではない。
The average value of LF / HF may be used as it is, but it may be multiplied by the power value after being multiplied by several times (for example, 1/5 times) for easy processing. Moreover, although the average value of LF / HF and said power value are calculated | required every 5 second, the time interval which calculates | requires this average value is an example to the last. In order to obtain the LF / HF inclusion power value by multiplying the values output in both time series, the average value may be obtained at the same time interval so that the calculation time of the values in both coincides. It is not limited to seconds.
第2疲労度算出手段12は、図2に示したように、補正パワー値算出手段121と、補正パワー値傾き算出手段122と、補正パワー値傾き積分手段123とを備えている。補正パワー値算出手段121は、指尖容積脈波の時系列データから最大リアプノフ指数の時系列データを求め、該最大リアプノフ指数の時系列データの値と、上記第1疲労度算出手段11のパワー値算出手段111で用いたパワー値の時系列データの値とを、相互に対応する時間における値同士で掛け合わせ、それを補正パワー値として求め、該補正パワー値の時系列データを算出する。
As shown in FIG. 2, the second fatigue level calculating means 12 includes a corrected power value calculating means 121, a corrected power value slope calculating means 122, and a corrected power value slope integrating means 123. The corrected power value calculating means 121 obtains the time series data of the maximum Lyapunov exponent from the time series data of the fingertip volume pulse wave, the value of the time series data of the maximum Lyapunov exponent, and the power of the first fatigue level calculating means 11 The power value time-series data values used by the value calculating means 111 are multiplied by the values corresponding to each other in time to obtain a corrected power value, and the corrected power value time-series data is calculated.
具体的には、指尖容積脈波の時系列データから最大リアプノフ指数の値を1秒毎に求め、さらに、本実施形態では、この最大リアプノフ指数の時系列データから、5秒毎の平均値を算出する(図9及び図10(a))。そして、この5秒毎の平均値を、上記した5秒毎に求められたパワー値(図10(b))に掛け合わせ、最大リアプノフ指数を算入した補正パワー値の時系列データ(図10(c))を求めていく。なお、最大リアプノフ指数は、後述する喚起度算出手段131において求めることから、第2疲労度算出手段12では、改めて求めずに、喚起度算出手段131で求めた最大リアプノフ指数を補正パワー値の算出に利用することが好ましい。但し、第1疲労度算出手段11において、LF/HF算入パワー値から基準疲労度を求めた場合には、第2疲労度算出手段12が稼働し始めると、補正パワー値算出手段121は、LF/HFの時系列データに代えて、該最大リアプノフ指数の時系列データの値をパワー値の時系列データの値に掛け合わせることになる。この場合、補正パワー値算出手段121は、パワー値の時系列データにLF/HFの時系列データを掛け合わせたLF/HF算入パワー値に、そのまま最大リアプノフ指数の時系列データの値を掛け合わせ、それを補正パワー値として用いることもできる。
Specifically, the value of the maximum Lyapunov exponent is obtained every second from the time series data of the fingertip volume pulse wave. Further, in this embodiment, the average value every 5 seconds is calculated from the time series data of this maximum Lyapunov exponent. Is calculated (FIGS. 9 and 10A). Then, the average value every 5 seconds is multiplied by the power value obtained every 5 seconds (FIG. 10B), and the time series data of the corrected power value including the maximum Lyapunov exponent (FIG. 10 ( c)). Since the maximum Lyapunov exponent is obtained by the arousal degree calculation means 131 described later, the second fatigue degree calculation means 12 does not obtain the maximum Lyapunov exponent again, but calculates the corrected power value of the maximum Lyapunov exponent obtained by the arousal degree calculation means 131. It is preferable to use it. However, when the first fatigue level calculating unit 11 calculates the reference fatigue level from the LF / HF included power value, when the second fatigue level calculating unit 12 starts operating, the corrected power value calculating unit 121 Instead of the time series data of / HF, the value of the time series data of the maximum Lyapunov exponent is multiplied by the value of the time series data of the power value. In this case, the corrected power value calculation means 121 multiplies the power value time series data multiplied by the LF / HF time series data and the time series data value of the maximum Lyapunov exponent as it is. It can also be used as a correction power value.
補正パワー値傾き算出手段122は、計算の基礎となるデータとして補正パワー値を用いるほかは、上記のパワー値傾き算出手段112の構成と全く同様の構成により、補正パワー値の所定時間範囲における時間軸に対する傾きを求める。
The corrected power value slope calculating means 122 has the same configuration as that of the power value slope calculating means 112 described above except that the corrected power value is used as data serving as a basis for calculation. Find the tilt with respect to the axis.
補正パワー値傾き積分手段123も同様であり、計算の基礎となるデータとして補正パワー値の傾きを用いるほかは、上記のパワー値傾き積分手段113の構成と全く同様であり、補正パワー値の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を算出していく。そして、この積分値を補正疲労度とする。
The correction power value slope integration means 123 is the same as that of the power value slope integration means 113 except that the slope of the correction power value is used as the basis data for the calculation. These time series signals are subjected to absolute value processing, and an integral value for each predetermined time range is calculated. This integrated value is used as the corrected fatigue level.
判定手段13は、図3に示したように、喚起度算出手段131、累積喚起度出力手段132、タイミング判定手段133を備えて構成される。喚起度算出手段131は、さらに、最大リアプノフ指数算出手段131a、最大リアプノフ指数傾き算出手段131b、最大リアプノフ指数傾き積分手段131cを備えて構成される。最大リアプノフ指数算出手段131aは、データ受信手段11により受信した指尖容積脈波の時系列データから最大リアプノフ指数を求め、最大リアプノフ指数の時系列データを算出する。具体的には、指尖容積脈波の時系列データを、まず、時間遅れ法によって状態空間に再構成する。指尖容積脈波の時系列の遅延時間は、50msで、埋め込み次元はFNN(False Near Neighbors)法を用いると、次元3のときFNNはほぼ零になり、次元4で完全に零になったことから、最適な埋め込み次元を4次元とした。ここで、得られた連続的なデータ計算値に対し、30秒の時間幅でアトラクタを再構成し、時間幅を1秒ずつスライドさせることによって最大リアプノフ指数の値を1秒ごとにプロットし、最大リアプノフ指数の時系列データを求める。
As shown in FIG. 3, the determination unit 13 includes an arousal degree calculation unit 131, a cumulative arousal level output unit 132, and a timing determination unit 133. The arousal degree calculation means 131 further includes a maximum Lyapunov exponent calculation means 131a, a maximum Lyapunov exponent slope calculation means 131b, and a maximum Lyapunov exponent slope integration means 131c. The maximum Lyapunov exponent calculation means 131a calculates the maximum Lyapunov exponent from the time series data of the fingertip plethysmogram received by the data receiving means 11, and calculates the time series data of the maximum Lyapunov exponent. Specifically, the time series data of the fingertip volume pulse wave is first reconstructed into a state space by a time delay method. The time-series delay time of the fingertip plethysmogram is 50 ms, and when the FNN (False Near Neighbors) method is used as the embedding dimension, the FNN becomes almost zero in the dimension 3 and completely zero in the dimension 4 Therefore, the optimum embedding dimension is set to 4 dimensions. Here, with respect to the obtained continuous data calculation value, the attractor is reconfigured with a time width of 30 seconds, and the value of the maximum Lyapunov exponent is plotted every second by sliding the time width by 1 second, Find time series data of the maximum Lyapunov exponent.
最大リアプノフ指数傾き算出手段131bは、最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める。具体的には、上記により求めた最大リアプノフ指数を、SavitzkyとGolayによる平滑化微分法により平滑化して極大値と極小値を求めてプロットし、次いで、この極大値と極小値の時系列データについて、所定時間範囲における時間軸に対する傾きを求める。この傾きの求め方は、上記のパワー値傾き算出手段112と同様であり、まず、所定時間幅Tw(本実施形態では180秒)について最小二乗法により時間軸に対する傾きを求める。次に、オーバーラップ時間Tl(162秒)で次の時間幅Tw(180秒)を同様に計算して結果をプロットする。この計算(スライド計算)を順次繰り返す。これにより、この例では、18秒ごとに最大リアプノフ指数の傾きがプロットされ、その時系列データが得られる。
The maximum Lyapunov exponent slope calculating means 131b obtains the slope of the maximum Lyapunov exponent with respect to the time axis in a predetermined time range by performing slide calculation a predetermined number of times. Specifically, the maximum Lyapunov exponent determined as described above is smoothed by a smoothing differential method using Savitzky and Golay to obtain a maximum value and a minimum value, and then plots the time series data of the maximum value and the minimum value. The inclination with respect to the time axis in a predetermined time range is obtained. The method of obtaining the inclination is the same as that of the power value inclination calculating means 112 described above. First, the inclination with respect to the time axis is obtained by the least square method for the predetermined time width Tw (180 seconds in the present embodiment). Next, the next time width Tw (180 seconds) is similarly calculated with the overlap time Tl (162 seconds), and the result is plotted. This calculation (slide calculation) is repeated sequentially. Thus, in this example, the slope of the maximum Lyapunov exponent is plotted every 18 seconds, and the time series data is obtained.
最大リアプノフ指数傾き積分手段131cは、まず、最大リアプノフ指数傾き算出手段131bによりスライド計算して得られた最大リアプノフ指数の傾きの時系列信号を絶対値処理する。すなわち、上記の例で18秒ごとに得られる最大リアプノフ指数の傾きを全て正の値にする。次いで、所定時間範囲ごと、すなわち、ある一つの最大リアプノフ指数の傾きをプロットした時点から次の最大リアプノフ指数の傾きをプロットした時点までの時間(この例では、18秒間)の積分値を求める。そして、得られた積分値(この例では18秒ごとに得られる)を喚起度とする(人間工学 Vol. 40, No.5 (2004) 「指尖容積脈波情報を用いた長時間着座疲労の簡易評価法の開発」(藤田悦則等)参照)。この喚起度は、上記したように、精神状態を示す最大リアプノフ指数の変動傾向を示すことになることから、交感神経の緊張によって代償された分の疲労の程度を示す指標となる。
The maximum Lyapunov exponent slope integration means 131c first performs absolute value processing on the time series signal of the slope of the maximum Lyapunov exponent slope obtained by the slide calculation by the maximum Lyapunov exponent slope calculation means 131b. That is, the maximum Lyapunov exponent slope obtained every 18 seconds in the above example is set to a positive value. Next, an integral value of a time (in this example, 18 seconds) from a time point when a slope of a certain maximum Lyapunov exponent is plotted to a time point when a slope of the next maximum Lyapunov exponent is plotted is obtained every predetermined time range. Then, the obtained integral value (obtained every 18 seconds in this example) is used as an arousal level (Ergonomics Vol. 40, No. 5 (2004), “Long-term sitting fatigue using fingertip volume pulse wave information” Development of a simple evaluation method "(Fujita, Akinori, etc.)). As described above, the degree of arousal indicates a tendency of fluctuation of the maximum Lyapunov exponent indicating the mental state, and thus becomes an index indicating the degree of fatigue compensated by the sympathetic nerve tension.
累積喚起度出力手段132は、上記の最大リアプノフ指数傾き積分手段131bにより求めた各積分値(喚起度)の累積和を求めて出力する。これにより、喚起度の変動傾向を把握することができる。
The cumulative arousal output means 132 calculates and outputs a cumulative sum of each integral value (arousal degree) obtained by the maximum Lyapunov exponent slope integral means 131b. Thereby, the fluctuation tendency of arousal level can be grasped.
タイミング判定手段133は、累積喚起度出力手段132により出力される累積喚起度の傾きの急変換点をもって、累積疲労度出力手段14において、第2疲労度算出手段12の補正疲労度を採用するタイミングを判定する手段である。「急変換点」は、測定開始から所定時間範囲における累積喚起度の傾きを基準傾きとして求め、この基準傾きを求めた後の時間帯における所定時間範囲における累積喚起度の傾きが、基準傾きに対して少なくとも10%以上、人によっては20%以上から30%以上の変化が生じた場合とすることが好ましい。これは、疲労に対する人の調節能力には個人差があり、先天的に±10%程度の許容範囲があると共に、後天的に備わる調節能力を加味すると±20%~±30%程度の許容範囲があることに基づくものである。例えば、着座姿勢の維持に関しては、抗重力筋の鍛え方、あるいは呼吸法や心肺機能によって調節能力は変動する。基準傾きとしては、精神的な疲労が大きく影響する前の時間帯であることが好ましく、自動車のシートや事務用椅子などの着席時の疲労を解析する場合には、測定開始後3分から15分の範囲における3分間~12分間の平均傾きを採用することが好ましい。基準傾きと比較する累積喚起度の傾きは、2分間~5分間における平均傾きとすることが好ましい。
The timing determination unit 133 uses the sudden conversion point of the slope of the cumulative evoke level output by the cumulative evoke level output unit 132 and uses the corrected fatigue level of the second fatigue level calculation unit 12 in the cumulative fatigue level output unit 14. It is a means to determine. The “sudden conversion point” is obtained by using the slope of the cumulative arousal level in the predetermined time range from the start of measurement as the reference slope, and the slope of the cumulative arousal level in the predetermined time range in the time zone after obtaining this reference slope is the reference slope On the other hand, it is preferable that the change occurs at least 10% or more, depending on the person, 20% or more to 30% or more. This is because there are individual differences in the ability of people to adjust to fatigue, and there is an acceptable range of about ± 10% innately, and an acceptable range of about ± 20% to ± 30% when considering the acquired ability of adjustment. It is based on being. For example, regarding the maintenance of the sitting posture, the adjustment ability varies depending on how to train the antigravity muscle, the breathing method, and the cardiopulmonary function. The reference inclination is preferably a time zone before mental fatigue is greatly affected, and when analyzing fatigue when seated, such as a car seat or office chair, 3 to 15 minutes after the start of measurement. It is preferable to adopt an average slope of 3 minutes to 12 minutes in the range. The slope of the cumulative arousal level compared with the reference slope is preferably an average slope for 2 minutes to 5 minutes.
累積疲労度出力手段14は、タイミング判定手段133により、第2疲労度算出手段12の補正疲労度を採用するタイミングと判定される前の時間帯では、第1疲労度算出手段11のパワー値傾き積分手段113により得られた基準疲労度の累積和を求めて出力する。一方、第2疲労度算出手段12を採用するタイミングと判定された後の時間帯では、第2疲労度算出手段12の補正パワー値傾き積分手段123により得られた補正疲労度の累積和を求めて出力する。これにより、リラックス状態において生じる疲労の蓄積は、基準疲労度の累積和として求められ、交換神経活動によって代償された精神的疲労が加味された状態での疲労の蓄積は、補正疲労度の累積和として求められる。この結果、累積疲労度の変化は、従来のパワー値のみにより算出した疲労度に基づいた場合と比較して、官能評価値により近いものとなる。但し、タイミング判定手段133による傾きの急変換点の判定は、2分間~5分間の平均傾き同士を比較するため、急変換点が発生したことは、急変換点の実際の発生時刻から2分後~5分後ということになる。そして、その判定のあった後に累積疲労度出力手段14により、第2疲労度算出手段12の補正疲労度の累積和が出力されることになる。
The cumulative fatigue level output means 14 is a power value gradient of the first fatigue level calculation means 11 in a time zone before the timing determination means 133 determines that the corrected fatigue level of the second fatigue level calculation means 12 is adopted. The cumulative sum of the standard fatigue levels obtained by the integrating means 113 is obtained and output. On the other hand, in the time zone after it is determined that the second fatigue level calculating unit 12 is adopted, the cumulative sum of the corrected fatigue levels obtained by the corrected power value slope integrating unit 123 of the second fatigue level calculating unit 12 is obtained. Output. As a result, the accumulation of fatigue that occurs in the relaxed state is obtained as the cumulative sum of the standard fatigue levels, and the accumulation of fatigue in the state where the mental fatigue compensated by the exchange nerve activity is taken into account is the cumulative sum of the corrected fatigue levels. As required. As a result, the change in the cumulative fatigue level becomes closer to the sensory evaluation value as compared with the case based on the fatigue level calculated only by the conventional power value. However, the determination of the sudden conversion point of the inclination by the timing determination unit 133 compares the average inclinations of 2 minutes to 5 minutes, so that the occurrence of the sudden conversion point is 2 minutes from the actual generation time of the sudden conversion point. After 5 minutes. After the determination, the cumulative fatigue level output means 14 outputs the cumulative sum of the corrected fatigue levels of the second fatigue level calculation means 12.
補正疲労度の算入は、本実施形態の疲労解析装置1のように、タイミング判定手段133を用いて補正疲労度を採用するタイミングを自動判定することが好ましいが、測定開始後3分から15分の範囲における最大リアプノフ指数傾き積分手段131cにより得られる「喚起度/時間」(本実施形態では18秒毎)から、所定の閾値を設定し、所定の閾値を超えた時点で、第2疲労度算出手段12の補正疲労度の累積和が出力されるように設定することもできる。また、パワー値傾きの時系列データと最大リアプノフ指数傾きの時系列データとを重ねて表示させた時に逆位相で表れる興奮抑制共存期(人間工学 Vol. 40, No.5 (2004) 「指尖容積脈波情報を用いた長時間着座疲労の簡易評価法の開発」(藤田悦則等)参照)を補正疲労度を出力するタイミングと判定することもできる。
As for the calculation of the corrected fatigue level, it is preferable to automatically determine the timing at which the corrected fatigue level is adopted using the timing determination unit 133 as in the fatigue analysis apparatus 1 of the present embodiment, but from 3 minutes to 15 minutes after the start of measurement. A predetermined threshold value is set from the “degree of arousal / time” (every 18 seconds in this embodiment) obtained by the maximum Lyapunov exponent slope integration means 131c in the range, and when the predetermined threshold value is exceeded, the second fatigue level is calculated. It can also be set so that the cumulative sum of the corrected fatigue levels of the means 12 is output. In addition, the excitation suppression coexistence period (ergonomics Vol. 40, No.5 (2004) “fingertips) appearing in opposite phase when time series data of power value slope and time series data of maximum Lyapunov exponent slope are overlaid and displayed. "Development of a simple evaluation method for long-term sitting fatigue using volume pulse wave information" (see Yasunori Fujita, etc.) can also be determined as the timing for outputting the corrected fatigue level.
なお、上記した第1疲労度算出手段11、第2疲労度算出手段12、判定手段13、累積疲労度出力手段14等を含んで構成されるコンピュータプログラムは、記録媒体へ記憶させて提供される。「記録媒体」とは、それ自身では空間を占有し得ないプログラムを担持することができる媒体であり、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO(光磁気ディスク)、DVD-ROMなどである。また、本発明に係るプログラムをインストールしたコンピュータから、通信回線を通じて他のコンピュータへ伝送することも可能である。また、汎用的な端末装置に対して、上記のプログラムをプリインストール、あるいはダウンロードすることで、本発明の疲労解析装置を形成することも可能である。
Note that a computer program including the first fatigue level calculation unit 11, the second fatigue level calculation unit 12, the determination unit 13, the cumulative fatigue level output unit 14, and the like is provided by being stored in a recording medium. . A “recording medium” is a medium that can carry a program that cannot occupy space by itself, such as a flexible disk, hard disk, CD-ROM, MO (magneto-optical disk), DVD-ROM, etc. is there. It is also possible to transmit from a computer installed with the program according to the present invention to another computer through a communication line. Moreover, it is also possible to form the fatigue analysis apparatus of the present invention by preinstalling or downloading the above program to a general-purpose terminal apparatus.
試験例1
(最大リアプノフ指数の利用が有効であるか否かの検証試験)
日本人成人の被験者2人(被験者A:男性、32才、身長178cm、体重69.2kg、被験者B:男性、34才、身長167cm、体重68kg)により、木製椅子又は乗用車の運転席に用いられているウレタンシートに30分間着座した状態での疲労を解析した。また、加振せずに静的に着座した場合、加振機に設置して加振した場合についても実験を行った。なお、加振条件は、平均0.1Gの加速度をもつ、実車走行時のフロアの振動を再現したものであった。各被験者に指尖容積脈波計20を装着して指尖容器脈波を採取し、パワー値、LF/HF、最大リアプノフ指数を求め、基準疲労度、補正疲労度、喚起度を求めた。試験例1では、基準疲労度は、脈拍数のLF/HFの時系列データを加味したLF/HF算入パワー値を用いて算出した。なお、パワー値の傾き、補正パワー値の傾き、最大リアプノフ指数の傾きは、180秒間について、オーバーラップ時間162秒として求めた。結果を図11~図15に示す。また、図11~図15の各(a)の図は、各被験者の官能評価値も併せて示している。なお、官能評価値にはボルグスケールを利用している。また、図11は、被験者Aがウレタンシートに静的条件で着座した際の試験結果を、図12は、被験者Aが木製椅子に静的条件で着座した際の試験結果を、図13は、被験者Aがウレタンシートに振動条件で着座した際の試験結果を、図14は、被験者Aが木製椅子に振動条件で着座した際の試験結果を、図15は、被験者Bが木製椅子に静的条件で着座した際の試験結果を、それぞれ示す。 Test example 1
(Verification test of whether the use of the maximum Lyapunov index is effective)
Used by two Japanese adult subjects (subject A: male, 32 years old, height 178 cm, weight 69.2 kg, subject B: male, 34 years old, height 167 cm, weight 68 kg) in the driver's seat of a wooden chair or passenger car Fatigue in a state of sitting on a urethane sheet for 30 minutes was analyzed. In addition, the experiment was also performed when the robot was seated statically without being shaken, or when it was placed on a shaker and shaken. The excitation condition was a reproduction of the vibration of the floor during actual vehicle running with an average acceleration of 0.1G. Afingertip plethysmograph 20 was attached to each subject and a fingertip vessel pulse wave was collected, and a power value, LF / HF, and maximum Lyapunov index were determined, and a standard fatigue level, a corrected fatigue level, and an arousal level were determined. In Test Example 1, the standard fatigue level was calculated using an LF / HF inclusion power value in consideration of LF / HF time-series data of pulse rate. The slope of the power value, the slope of the corrected power value, and the slope of the maximum Lyapunov exponent were obtained with an overlap time of 162 seconds for 180 seconds. The results are shown in FIGS. Each of FIGS. 11 to 15 (a) also shows the sensory evaluation value of each subject. The sensory evaluation value uses the Borg scale. FIG. 11 shows the test results when the subject A is seated on the urethane sheet under static conditions, FIG. 12 shows the test results when the subject A is seated on the wooden chair under static conditions, and FIG. FIG. 14 shows the test results when subject A sits on the urethane sheet under vibration conditions, FIG. 14 shows the test results when subject A sits on the wooden chair under vibration conditions, and FIG. 15 shows static results when subject B sits on the wooden chair. The test results when seated under conditions are shown.
(最大リアプノフ指数の利用が有効であるか否かの検証試験)
日本人成人の被験者2人(被験者A:男性、32才、身長178cm、体重69.2kg、被験者B:男性、34才、身長167cm、体重68kg)により、木製椅子又は乗用車の運転席に用いられているウレタンシートに30分間着座した状態での疲労を解析した。また、加振せずに静的に着座した場合、加振機に設置して加振した場合についても実験を行った。なお、加振条件は、平均0.1Gの加速度をもつ、実車走行時のフロアの振動を再現したものであった。各被験者に指尖容積脈波計20を装着して指尖容器脈波を採取し、パワー値、LF/HF、最大リアプノフ指数を求め、基準疲労度、補正疲労度、喚起度を求めた。試験例1では、基準疲労度は、脈拍数のLF/HFの時系列データを加味したLF/HF算入パワー値を用いて算出した。なお、パワー値の傾き、補正パワー値の傾き、最大リアプノフ指数の傾きは、180秒間について、オーバーラップ時間162秒として求めた。結果を図11~図15に示す。また、図11~図15の各(a)の図は、各被験者の官能評価値も併せて示している。なお、官能評価値にはボルグスケールを利用している。また、図11は、被験者Aがウレタンシートに静的条件で着座した際の試験結果を、図12は、被験者Aが木製椅子に静的条件で着座した際の試験結果を、図13は、被験者Aがウレタンシートに振動条件で着座した際の試験結果を、図14は、被験者Aが木製椅子に振動条件で着座した際の試験結果を、図15は、被験者Bが木製椅子に静的条件で着座した際の試験結果を、それぞれ示す。 Test example 1
(Verification test of whether the use of the maximum Lyapunov index is effective)
Used by two Japanese adult subjects (subject A: male, 32 years old, height 178 cm, weight 69.2 kg, subject B: male, 34 years old, height 167 cm, weight 68 kg) in the driver's seat of a wooden chair or passenger car Fatigue in a state of sitting on a urethane sheet for 30 minutes was analyzed. In addition, the experiment was also performed when the robot was seated statically without being shaken, or when it was placed on a shaker and shaken. The excitation condition was a reproduction of the vibration of the floor during actual vehicle running with an average acceleration of 0.1G. A
図11~図15の各(a)の図に示した「自覚疲労度」が試験例1の出力結果である。この「自覚疲労度」は、図11~図15の各(a)の図の一点鎖線で示した時間より前の時間帯においては、パワー値傾き積分手段113により出力されるパワー値にLF/HFを算入したLF/HF算入パワー値から求めた基準疲労度の累積和である累積疲労度を採用し、一点鎖線で示した時間より後の時間帯においては、第2疲労度算出手段12の補正パワー値算出手段121が、LF/HFの時系列データに代えて、最大リアプノフ指数の時系列データの値をパワー値の時系列データの値に掛け合わせて補正パワー値を求め、該補正パワー値から補正疲労度を求め、その累積疲労度を採用したものである。
The “awareness fatigue” shown in each of FIGS. 11 to 15 is the output result of Test Example 1. This “subject fatigue level” is calculated by adding LF / L to the power value output by the power value slope integrating means 113 in the time zone before the time indicated by the alternate long and short dash line in each of FIGS. The cumulative fatigue level which is the cumulative sum of the standard fatigue levels calculated from the LF / HF calculated power value including HF is adopted, and in the time zone after the time indicated by the one-dot chain line, the second fatigue level calculating means 12 The correction power value calculation means 121 obtains a correction power value by multiplying the time series data value of the maximum Lyapunov exponent by the value of the time series data of the power value instead of the time series data of LF / HF, and calculates the correction power value. The corrected fatigue level is obtained from the value, and the cumulative fatigue level is adopted.
補正疲労度の採用時点である一点鎖線で示した時間は、官能評価の傾向が比較的大きく変わる時点を目安としたものであるが、試験例1により得られた自覚疲労度は、官能評価値に近い曲線を描いていることがわかる。
The time indicated by the alternate long and short dash line when the corrected fatigue level is adopted is based on the point when the tendency of sensory evaluation changes relatively, but the subjective fatigue level obtained in Test Example 1 is the sensory evaluation value. It can be seen that the curve is close to.
図11~図15の各(b)の図に、それぞれ(a)の図に示した自覚疲労度の疲労曲線(A)、全時間帯において、パワー値のみから算出した基準疲労度の累積和の疲労曲線(B)、全時間帯において、LF/HF算入パワー値のみから算出した基準疲労度の累積和の疲労曲線(C)、(a)の図の一点鎖線で示した時間より前の時間帯においてLF/HF算入パワー値から求めた基準疲労度と、その後の時間帯において、LF/HFを算入したまま、さらに最大リアプノフ指数傾きを掛け合わせた補正疲労度とを組み合わせた疲労曲線(D)を併せて示した。その結果、疲労曲線(B),(C)は、自覚疲労度の疲労曲線(A)とは、一点鎖線の時間帯以降、異なる変化を示し、官能評価値とも乖離する傾向にあり、所定の時点を境に、最大リアプノフ指数を算入した補正疲労度を採用することにより、官能評価値により近い疲労度を求めることができることがわかる。また、疲労曲線(D)の場合には、疲労曲線(B),(C)と比較すれば、官能評価値に近づくが、基準疲労度としてLF/HFの時系列データを算入していた場合には、試験例1の自覚疲労度として示した疲労曲線(A)のように、最大リアプノフ傾きの時系列変化を算入する時点において該LF/HFの時系列データを外した方が、より官能評価に近い傾向になることがわかった。
Each of FIGS. 11 to 15 (b) shows the fatigue curve (A) of the subjective fatigue degree shown in the figure of (a), and the cumulative sum of the standard fatigue degree calculated from only the power value in all time zones. Fatigue curve (B), the fatigue curve (C) of the cumulative sum of reference fatigue calculated from only the LF / HF power value in all time zones, the time before the time indicated by the one-dot chain line in FIG. Fatigue curve that combines the standard fatigue level obtained from the LF / HF power value in the time zone and the corrected fatigue level that is multiplied by the maximum Lyapunov exponent slope while adding LF / HF in the subsequent time zone ( D) is also shown. As a result, the fatigue curves (B) and (C) show different changes from the fatigue curve (A) of the subjective fatigue degree after the one-dot chain line time zone, and tend to deviate from the sensory evaluation value. It can be seen that the fatigue level closer to the sensory evaluation value can be obtained by adopting the corrected fatigue level including the maximum Lyapunov exponent at the time point. In the case of the fatigue curve (D), when compared with the fatigue curves (B) and (C), the sensory evaluation value is approached, but the time series data of LF / HF is included as the standard fatigue level For example, as shown in the fatigue curve (A) shown as the subjective fatigue level of Test Example 1, the time series data of the LF / HF is removed at the time when the time series change of the maximum Lyapunov slope is included. It turned out that it becomes a tendency close to evaluation.
試験例2
(最大リアプノフ指数の算入タイミングを自動判定した試験)
試験例2では、試験例1と同様に、基準疲労度としては、パワー値に、脈拍数のLF/HFの時系列データを加味したLF/HF算入パワー値を用いた。また、試験例2においては、上記実施形態の喚起度算出手段131、累積喚起度出力手段132、タイミング判定手段133を備えて構成される判定手段13を用いて、最大リアプノフ指数を算入した補正疲労度を採用するタイミングを自動判定した。すなわち、累積喚起度出力手段132により得られた累積喚起度の急変換点をタイミング判定手段133により判定し、その時点以降、第2疲労度算出手段12の補正パワー値算出手段121が、LF/HFの時系列データに代えて、最大リアプノフ指数の時系列データの値をパワー値の時系列データの値に掛け合わせて補正パワー値を求め、該補正パワー値から補正疲労度を求め、さらに累積疲労度を出力した。そして、試験例1と同様に、基準疲労度の累積和と補正疲労度の累積和との組み合わせを自覚疲労度とした。 Test example 2
(A test that automatically determines the maximum Lyapunov index inclusion timing)
In Test Example 2, as in Test Example 1, as the standard fatigue level, an LF / HF included power value obtained by adding LF / HF time-series data of the pulse rate to the power value was used. Further, in Test Example 2, the corrected fatigue that includes the maximum Lyapunov exponent using the determination means 13 including the arousal degree calculation means 131, the cumulative arousal degree output means 132, and the timing determination means 133 of the above embodiment. The timing to adopt the degree was automatically judged. That is, the timing determination unit 133 determines the sudden conversion point of the cumulative arousal level obtained by the cumulative arousal level output unit 132, and after that time, the corrected powervalue calculation unit 121 of the second fatigue level calculation unit 12 performs LF / Instead of the time series data of HF, the value of the time series data of the maximum Lyapunov exponent is multiplied by the value of the time series data of the power value to obtain the corrected power value, the corrected fatigue value is obtained from the corrected power value, and further accumulated The fatigue level was output. As in Test Example 1, the combination of the cumulative sum of the standard fatigue levels and the cumulative sum of the corrected fatigue levels was defined as the subjective fatigue level.
(最大リアプノフ指数の算入タイミングを自動判定した試験)
試験例2では、試験例1と同様に、基準疲労度としては、パワー値に、脈拍数のLF/HFの時系列データを加味したLF/HF算入パワー値を用いた。また、試験例2においては、上記実施形態の喚起度算出手段131、累積喚起度出力手段132、タイミング判定手段133を備えて構成される判定手段13を用いて、最大リアプノフ指数を算入した補正疲労度を採用するタイミングを自動判定した。すなわち、累積喚起度出力手段132により得られた累積喚起度の急変換点をタイミング判定手段133により判定し、その時点以降、第2疲労度算出手段12の補正パワー値算出手段121が、LF/HFの時系列データに代えて、最大リアプノフ指数の時系列データの値をパワー値の時系列データの値に掛け合わせて補正パワー値を求め、該補正パワー値から補正疲労度を求め、さらに累積疲労度を出力した。そして、試験例1と同様に、基準疲労度の累積和と補正疲労度の累積和との組み合わせを自覚疲労度とした。 Test example 2
(A test that automatically determines the maximum Lyapunov index inclusion timing)
In Test Example 2, as in Test Example 1, as the standard fatigue level, an LF / HF included power value obtained by adding LF / HF time-series data of the pulse rate to the power value was used. Further, in Test Example 2, the corrected fatigue that includes the maximum Lyapunov exponent using the determination means 13 including the arousal degree calculation means 131, the cumulative arousal degree output means 132, and the timing determination means 133 of the above embodiment. The timing to adopt the degree was automatically judged. That is, the timing determination unit 133 determines the sudden conversion point of the cumulative arousal level obtained by the cumulative arousal level output unit 132, and after that time, the corrected power
図16~図20の各(a)の図に示した「自覚疲労度」が試験例2の出力結果である。図16~図20の各(b)の図は、「喚起度/時間」及び「累積喚起度」の時系列変化を示す図である。「喚起度/時間」は、最大リアプノフ指数傾き積分手段131cにより出力される18秒ごとの積分値であり、「累積喚起度」は該積分値の累積和である。図16~図20の(a)の図において、一点鎖線で示した時間が、タイミング判定手段133により補正疲労度を採用するタイミングと判定された時点である。なお、タイミング判定手段133においては、測定開始後3.3分後から4.45分間(各(b)の図の横軸2目盛り分)における累積喚起度の平均傾きを基準傾きとして求め、その後、2.225分間(各(b)の図の横軸1目盛り分)ごとの平均傾きを基準傾きと比較して10%以上の変化が生じた時点を急変換点として判定した。図16~図20の各(b)図において、符号「X」で示した時点が傾きの急変換点であり、符号「Y」で示した時点(図16~図20の(a)の図において、一点鎖線で示した時点と同じ)が補正疲労度の採用タイミング、すなわち、最大リアプノフ指数の算入タイミングである。例えば、図16(b)を参照すると、3.3分から7.75分(横軸の2目盛りまで)を基準傾きとして、この基準傾きに対して、次の2.225分間、すなわち、7.75分から9.975分までの平均傾きを比較する。このとき、3.3分から7.75分までの基準傾きに対して、7.75分から9.975分までの平均傾きが10%以上変化していることが、9.975分経過時に判断できる。そこで、急変換点Xは、7.75分の時点とし、算入タイミングは9.975分経過時となる。
The “subject's subjective fatigue” shown in the diagrams (a) of FIGS. 16 to 20 is the output result of Test Example 2. Each of FIGS. 16 to 20 (b) is a diagram showing time-series changes in the “arousal level / time” and the “cumulative arousal level”. “Rounding degree / time” is an integral value every 18 seconds output by the maximum Lyapunov exponent slope integrating means 131c, and “cumulative arousing degree” is a cumulative sum of the integral values. In FIGS. 16 to 20A, the time indicated by the alternate long and short dash line is the time point when the timing determination means 133 determines that the corrected fatigue level is to be adopted. The timing determination unit 133 obtains the average inclination of the cumulative arousal level as the reference inclination for 4.45 minutes after the start of measurement for 4.45 minutes (the horizontal scale on the horizontal axis of each (b)), and thereafter The average inclination every 2.225 minutes (one scale on the horizontal axis in the figure of each (b)) was compared with the reference inclination, and the time when a change of 10% or more occurred was determined as the sudden conversion point. In each of FIGS. 16 to 20 (b), the time point indicated by the symbol “X” is the sudden conversion point of the slope, and the time point indicated by the symbol “Y” (the diagram of FIG. 16 to FIG. 20 (a)). Is the same as the point in time indicated by the alternate long and short dash line), the adoption timing of the corrected fatigue, that is, the maximum Lyapunov exponent. For example, referring to FIG. 16 (b), with 3.3 to 7.75 minutes (up to the second scale on the horizontal axis) as the reference inclination, the next 2.225 minutes with respect to this reference inclination, that is, 7. Compare the average slope from 75 minutes to 9.975 minutes. At this time, it can be judged when 9.975 minutes have elapsed that the average slope from 7.75 minutes to 9.975 minutes has changed by 10% or more with respect to the reference slope from 3.3 minutes to 7.75 minutes. . Therefore, the sudden conversion point X is set to a time point of 7.75 minutes, and the inclusion timing is when 9.975 minutes have elapsed.
また、図16は、被験者Aがウレタンシートに静的条件で着座した際の試験結果を、図17は、被験者Aが木製椅子に静的条件で着座した際の試験結果を、図18は、被験者Aがウレタンシートに振動条件で着座した際の試験結果を、図19は、被験者Aが木製椅子に振動条件で着座した際の試験結果を、図20は、被験者Bが木製椅子に静的条件で着座した際の試験結果を、それぞれ示す。
FIG. 16 shows the test results when subject A sits on the urethane sheet under static conditions, FIG. 17 shows the test results when subject A sits on the wooden chair under static conditions, and FIG. FIG. 19 shows the test results when subject A sits on the urethane sheet under vibration conditions, FIG. 19 shows the test results when subject A sits on the wooden chair under vibration conditions, and FIG. 20 shows static results when subject B sits on the wooden chair. The test results when seated under conditions are shown.
この図から明らかなように、累積喚起度の傾きからタイミング判定手段133によって補正疲労度の算入タイミングを自動判定した場合にも、官能評価に近い自覚疲労度の疲労曲線が得られることがわかる。従って、試験例2の構成を採用した場合には、例えば、座席に着座している被験者の疲労度合いを、自動的にかつ正確に出力できる。
As is apparent from this figure, it can be seen that a fatigue curve with a subjective fatigue level close to sensory evaluation can be obtained even when the timing of the corrected fatigue level is automatically determined by the timing determination means 133 from the slope of the cumulative arousal level. Therefore, when the configuration of Test Example 2 is adopted, for example, the degree of fatigue of the subject sitting on the seat can be automatically and accurately output.
また、図16~図20の各(c)の図に、それぞれ(a)の図に示した自覚疲労度の疲労曲線(A)、全時間帯において、パワー値のみから算出した基準疲労度の累積和の疲労曲線(B)、全時間帯において、LF/HF算入パワー値のみから算出した基準疲労度の累積和の疲労曲線(C)、(a)の図の一点鎖線で示した時間より前の時間帯においてLF/HF算入パワー値から求めた基準疲労度と、その後の時間帯において、LF/HFを算入したまま、さらに最大リアプノフ指数傾きを掛け合わせた補正疲労度とを組み合わせた疲労曲線(D)を併せて示したが、試験例2の自覚疲労度として示した疲労曲線(A)のように、最大リアプノフ傾きの時系列変化を算入する時点において該LF/HFの時系列データを外した方が、より官能評価に近い傾向になることがわかった。
In addition, each graph of (c) in FIGS. 16 to 20 shows the fatigue curve (A) of the subjective fatigue level shown in the graph of (a), and the reference fatigue level calculated from only the power value in all time zones. Cumulative sum fatigue curve (B), the fatigue curve (C) of the cumulative sum of reference fatigue calculated from only the LF / HF power value in all time zones, from the time indicated by the one-dot chain line in the diagram of (a) Fatigue combining the standard fatigue level obtained from the LF / HF power value in the previous time zone and the corrected fatigue level multiplied by the maximum Lyapunov exponent slope while adding LF / HF in the subsequent time zone Although the curve (D) is also shown, the time series data of the LF / HF at the time when the time series change of the maximum Lyapunov slope is included as in the fatigue curve (A) shown as the subjective fatigue level of Test Example 2 It ’s better to remove It was found to be in close trend in performance evaluation.
試験例3
(最大リアプノフ指数の算入タイミングを「喚起度/時間」から判定した試験)
試験例3では、試験例1,2と同様に、基準疲労度としては、パワー値に、脈拍数のLF/HFの時系列データを加味したLF/HF算入パワー値を用いた。また、試験例3は、最大リアプノフ指数傾き積分手段131cにより出力される18秒ごとの積分値である「喚起度/時間」に所定の閾値を設定し、その閾値を超えた時点から、LF/HFの時系列データに代えて、最大リアプノフ指数を算入した補正疲労度を採用した。そして、基準疲労度と補正疲労度との組み合わせを自覚疲労度として図21~図25の各(a)の図に示した。 Test example 3
(A test in which the maximum Lyapunov index was counted from the “degree of arousal / time”)
In Test Example 3, as in Test Examples 1 and 2, as the standard fatigue level, an LF / HF included power value obtained by adding time-series data of LF / HF of the pulse rate to the power value was used. In Test Example 3, a predetermined threshold value is set for the “degree of arousal / time”, which is an integral value every 18 seconds output by the maximum Lyapunov exponent slope integration means 131c, and the LF / Instead of the time series data of HF, the corrected fatigue degree including the maximum Lyapunov exponent was adopted. The combination of the standard fatigue level and the corrected fatigue level is shown as the subjective fatigue level in FIGS. 21 to 25 (a).
(最大リアプノフ指数の算入タイミングを「喚起度/時間」から判定した試験)
試験例3では、試験例1,2と同様に、基準疲労度としては、パワー値に、脈拍数のLF/HFの時系列データを加味したLF/HF算入パワー値を用いた。また、試験例3は、最大リアプノフ指数傾き積分手段131cにより出力される18秒ごとの積分値である「喚起度/時間」に所定の閾値を設定し、その閾値を超えた時点から、LF/HFの時系列データに代えて、最大リアプノフ指数を算入した補正疲労度を採用した。そして、基準疲労度と補正疲労度との組み合わせを自覚疲労度として図21~図25の各(a)の図に示した。 Test example 3
(A test in which the maximum Lyapunov index was counted from the “degree of arousal / time”)
In Test Example 3, as in Test Examples 1 and 2, as the standard fatigue level, an LF / HF included power value obtained by adding time-series data of LF / HF of the pulse rate to the power value was used. In Test Example 3, a predetermined threshold value is set for the “degree of arousal / time”, which is an integral value every 18 seconds output by the maximum Lyapunov exponent slope integration means 131c, and the LF / Instead of the time series data of HF, the corrected fatigue degree including the maximum Lyapunov exponent was adopted. The combination of the standard fatigue level and the corrected fatigue level is shown as the subjective fatigue level in FIGS. 21 to 25 (a).
図21~図25の各(d)の図において、横軸に平行に示した破線が閾値である。閾値は、測定開始後3.3分後から4.45分間(各(b)の図の横軸2目盛り分)における「喚起度/時間」の変化を参照し、基本的には、その時間帯の「喚起度/時間」の変動幅よりも若干高い値を目安に測定者が設定した。なお、図21は、被験者Aがウレタンシートに静的条件で着座した際の試験結果を、図22は、被験者Aが木製椅子に静的条件で着座した際の試験結果を、図23は、被験者Aがウレタンシートに振動条件で着座した際の試験結果を、図24は、被験者Aが木製椅子に振動条件で着座した際の試験結果を、図25は、被験者Bが木製椅子に静的条件で着座した際の試験結果を、それぞれ示す。また、図21~図25の各(b)の図は、それぞれ(a)の図に示した自覚疲労度の疲労曲線(A)、全時間帯において、パワー値のみから算出した基準疲労度の累積和の疲労曲線(B)、全時間帯において、LF/HF算入パワー値のみから算出した基準疲労度の累積和の疲労曲線(C)、(a)の図の一点鎖線で示した時間より前の時間帯においてLF/HF算入パワー値から求めた基準疲労度と、その後の時間帯において、LF/HFを算入したまま、さらに最大リアプノフ指数傾きを掛け合わせた補正疲労度とを組み合わせた疲労曲線(D)を併せて示したものである。図21~図25の各(c)の図は、「喚起度/時間」及び「累積喚起度」の時系列変化を示す図である。
21 to 25, each broken line shown in parallel with the horizontal axis is the threshold value. The threshold value refers to the change in “degree of arousal / time” from 4. 3 minutes after the start of measurement to 4.45 minutes (2 scales on the horizontal axis in each figure (b)). The measurer set a value slightly higher than the fluctuation range of the “arousal level / time” of the belt. 21 shows the test results when subject A sits on the urethane sheet under static conditions, FIG. 22 shows the test results when subject A sits on the wooden chair under static conditions, and FIG. FIG. 24 shows the test results when subject A sits on a urethane sheet under vibration conditions, FIG. 24 shows the test results when subject A sits on a wooden chair under vibration conditions, and FIG. 25 shows static results when subject B sits on a wooden chair. The test results when seated under conditions are shown. Each of FIGS. 21 to 25 (b) shows the fatigue curve (A) of the subjective fatigue degree shown in the figure (a), and the reference fatigue degree calculated from only the power value in all time zones. Cumulative sum fatigue curve (B), the fatigue curve (C) of the cumulative sum of reference fatigue calculated from only the LF / HF power value in all time zones, from the time indicated by the one-dot chain line in the diagram of (a) Fatigue combining the standard fatigue level obtained from the LF / HF power value in the previous time zone and the corrected fatigue level multiplied by the maximum Lyapunov exponent slope while adding LF / HF in the subsequent time zone The curve (D) is also shown. Each of FIG. 21 to FIG. 25 (c) is a diagram showing time-series changes in “degree of arousal / time” and “cumulative degree of arousal”.
これらの図から明らかなように、測定開始後、所定の時間帯、好ましくは、測定開始後3分から15分の範囲における3分間~12分間(本試験例では、4.45分間)の時間帯の「喚起度/時間」の変化を参照して閾値を設定しても、官能評価に近い自覚疲労度の疲労曲線が得られることがわかる。試験例2のように、累積喚起度の傾き変化から最大リアプノフ指数を自動算入する構成の方が、試験例3の「喚起度/時間」の変化で閾値を手動で設定する場合よりも演算負担が大きいことを考慮すると、疲労解析装置の演算能力によっては、試験例3の手法により自覚疲労度を求めることも可能である。但し、累積喚起度の傾きの急変換点と判定する割合(10%、20%等)を設定しさえすれば、最大リアプノフ指数の算入タイミングを自動判定し、官能評価に近い自覚疲労度を出力できる試験例2の手法がより好ましい。
As is clear from these figures, a predetermined time zone after the start of measurement, preferably a time zone of 3 to 12 minutes (4.45 minutes in this test example) in the range of 3 to 15 minutes after the start of measurement. It can be seen that a fatigue curve with a subjective fatigue level close to sensory evaluation can be obtained even if the threshold value is set with reference to the change in “arousal level / time”. As in Test Example 2, the configuration in which the maximum Lyapunov exponent is automatically calculated from the change in the slope of the cumulative arousal level is more computationally intensive than the manual setting of the threshold value based on the change in “Rounding level / time” in Test Example 3. In view of the fact that the value is large, depending on the computing ability of the fatigue analysis device, it is also possible to obtain the degree of subjective fatigue by the method of Test Example 3. However, as long as you set a ratio (10%, 20%, etc.) to be judged as a sudden conversion point of the slope of the cumulative arousal level, it automatically determines the timing of inclusion of the maximum Lyapunov index and outputs a subjective fatigue level close to sensory evaluation The technique of Test Example 2 is more preferable.
1 疲労解析装置
10 データ受信手段
11 第1疲労度算出手段
111 パワー値算出手段
111a LF/HF時系列データ算出手段
112 パワー値傾き算出手段
113 パワー値傾き積分手段
12 第2疲労度算出手段
121 補正パワー値算出手段
122 補正パワー値傾き算出手段
123 補正パワー値傾き積分手段
13 判定手段
131 喚起度算出手段
131a 最大リアプノフ指数算出手段
131b 最大リアプノフ指数傾き算出手段
131c 最大リアプノフ指数傾き積分手段
132 累積喚起度出力手段
133 タイミング判定手段
14 累積疲労度算出手段
20 指尖容積脈波計 DESCRIPTION OFSYMBOLS 1 Fatigue analysis apparatus 10 Data receiving means 11 First fatigue degree calculating means 111 Power value calculating means 111a LF / HF time series data calculating means 112 Power value inclination calculating means 113 Power value inclination integrating means 12 Second fatigue degree calculating means 121 Correction Power value calculation means 122 Correction power value inclination calculation means 123 Correction power value inclination integration means 13 Determination means 131 Arousal degree calculation means 131a Maximum Lyapunov exponent calculation means 131b Maximum Lyapunov exponent inclination calculation means 131c Maximum Lyapunov exponent inclination integration means 132 Cumulative arousal degree Output means 133 Timing determination means 14 Cumulative fatigue degree calculation means 20 Fingertip plethysmograph
10 データ受信手段
11 第1疲労度算出手段
111 パワー値算出手段
111a LF/HF時系列データ算出手段
112 パワー値傾き算出手段
113 パワー値傾き積分手段
12 第2疲労度算出手段
121 補正パワー値算出手段
122 補正パワー値傾き算出手段
123 補正パワー値傾き積分手段
13 判定手段
131 喚起度算出手段
131a 最大リアプノフ指数算出手段
131b 最大リアプノフ指数傾き算出手段
131c 最大リアプノフ指数傾き積分手段
132 累積喚起度出力手段
133 タイミング判定手段
14 累積疲労度算出手段
20 指尖容積脈波計 DESCRIPTION OF
Claims (18)
- 生体信号測定器により採取された脈波の生体信号データを用いて疲労解析を行う疲労解析装置であって、
前記生体信号データの原波形の各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差をパワー値とし、パワー値の時系列データを基にして基準疲労度を求める第1疲労度算出手段と、
前記生体信号データから求めた最大リアプノフ指数を利用して、前記第1疲労度算出手段で用いたパワー値の時系列データの値を補正し、得られた補正パワー値の時系列データを基にして補正疲労度を求める第2疲労度算出手段と、
交感神経活動による疲労の代償作用の有無を判定する判定手段と、
前記判定手段により、交感神経活動による疲労の代償がなされていない状態と判定された時間帯では、前記第1疲労度算出手段により得られた基準疲労度の累積和を求めて出力し、交感神経活動による疲労の代償がなされている状態と判定された時間帯では、前記第2疲労度算出手段により得られた補正疲労度の累積和を求めて出力する累積疲労度出力手段と
を具備することを特徴とする疲労解析装置。 A fatigue analysis device that performs fatigue analysis using biosignal data of pulse waves collected by a biosignal measuring device,
The difference between the peak value on the upper limit side and the peak value on the lower limit side is calculated for each predetermined time range from the peak value of each cycle of the original waveform of the biological signal data, and this difference is used as the power value, and the time series of the power values is calculated. A first fatigue level calculating means for obtaining a standard fatigue level based on the data;
Using the maximum Lyapunov exponent determined from the biological signal data, the time-series data value of the power value used in the first fatigue level calculating means is corrected, and based on the obtained time-series data of the corrected power value. A second fatigue level calculating means for obtaining a corrected fatigue level,
A determination means for determining the presence or absence of compensation for fatigue due to sympathetic nerve activity;
In a time zone in which it is determined by the determination means that the fatigue due to sympathetic nerve activity has not been compensated, a cumulative sum of the reference fatigue levels obtained by the first fatigue level calculation means is obtained and output, and the sympathetic nerves are output. A cumulative fatigue level output means for obtaining and outputting a cumulative sum of corrected fatigue levels obtained by the second fatigue level calculation means in a time zone in which it is determined that the fatigue due to the activity is being compensated; Fatigue analysis device characterized by - 前記判定手段は、前記生体信号データから最大リアプノフ指数を求め、この最大リアプノフ指数の時系列データを基にして喚起度を求める喚起度算出手段と、前記喚起度算出手段により得られた喚起度から、前記第2疲労度算出手段の補正疲労度を採用するタイミングを判定するタイミング判定手段とを備えてなり、
前記累積疲労度出力手段は、前記タイミング判定手段により、前記第2疲労度算出手段の補正疲労度を採用するタイミングと判定される前の時間帯では、前記第1疲労度算出手段により得られた基準疲労度の累積和を求めて出力し、前記第2疲労度算出手段の補正疲労度を採用するタイミングと判定された後の時間帯では、前記第2疲労度算出手段により得られた補正疲労度の累積和を求めて出力するように設定されていることを特徴とする請求項1記載の疲労解析装置。 The determination means obtains a maximum Lyapunov exponent from the vital sign data, and calculates a degree of arousal based on time series data of the maximum Lyapunov exponent, and arousal degree obtained by the arousal degree calculation means And a timing determination means for determining the timing of adopting the corrected fatigue level of the second fatigue level calculation means,
The cumulative fatigue level output unit is obtained by the first fatigue level calculation unit in a time zone before the timing determination unit determines that the corrected fatigue level of the second fatigue level calculation unit is adopted. The corrected fatigue obtained by the second fatigue degree calculating means is obtained in the time zone after obtaining and outputting the cumulative sum of the reference fatigue degrees and determining that the corrected fatigue degree of the second fatigue degree calculating means is adopted. The fatigue analysis apparatus according to claim 1, wherein the fatigue analysis apparatus is set to obtain and output a cumulative sum of degrees. - 前記第1疲労度算出手段が、前記生体信号データの原波形の各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差を前記パワー値とし、該パワー値の時系列データを算出するパワー値算出手段と、
前記パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求めるパワー値傾き算出手段と、
前記パワー値傾き算出手段によりスライド計算して得られたパワー値の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記基準疲労度として算出するパワー値傾き積分手段と
を備えてなることを特徴とする請求項2記載の疲労解析装置。 The first fatigue level calculating means calculates a difference between the peak value on the upper limit side and the peak value on the lower limit side for each predetermined time range from the peak value of each cycle of the original waveform of the biological signal data, and calculates the difference. A power value calculating means for calculating time series data of the power value as the power value;
A power value inclination calculating means for obtaining an inclination of the power value with respect to a time axis in a predetermined time range by performing slide calculation a predetermined number of times;
A power value slope integrating means for performing absolute value processing on a time series signal of power value slopes obtained by slide calculation by the power value slope calculating means, and calculating an integral value for each predetermined time range as the reference fatigue level; The fatigue analysis apparatus according to claim 2, wherein the fatigue analysis apparatus is provided. - さらに、生体信号測定器により採取された心拍数又は脈拍数の時系列データを周波数解析して得られるLF/HFのパワースペクトルの時系列データを求めるLF/HF時系列データ算出手段を備え、
前記パワー値算出手段は、前記LF/HFのパワースペクトルの時系列データの値と、前記パワー値の時系列データの値とを、相互に対応する時間における値同士で掛け合わせ、それをLF/HF算入パワー値とし、該LF/HF算入パワー値の時系列データを算出するように設定されていることを特徴とする請求項3記載の疲労解析装置。 Furthermore, it comprises LF / HF time series data calculating means for obtaining time series data of the power spectrum of LF / HF obtained by frequency analysis of time series data of heart rate or pulse rate collected by the biological signal measuring device,
The power value calculating means multiplies the value of the time series data of the power spectrum of the LF / HF and the value of the time series data of the power value by values at times corresponding to each other, and LF / HF 4. The fatigue analysis apparatus according to claim 3, wherein the fatigue analysis apparatus is set to calculate a time series data of the LF / HF inclusion power value as an HF inclusion power value. - 前記第2疲労度算出手段が、前記喚起度算出手段で用いた最大リアプノフ指数の時系列データの値と、前記第1疲労度算出手段で用いたパワー値の時系列データの値とを、相互に対応する時間における値同士で掛け合わせ、それを補正パワー値とし、補正パワー値の時系列データを算出する補正パワー値算出手段と、
前記補正パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める補正パワー値傾き算出手段と、
前記補正パワー値算出手段によりスライド計算して得られた補正パワー値の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記補正疲労度として算出する補正パワー値傾き積分手段と
を備えてなることを特徴とする請求項1記載の疲労解析装置。 The second fatigue level calculating means uses the value of the time series data of the maximum Lyapunov exponent used in the arousal level calculating means and the value of the time series data of the power value used in the first fatigue level calculating means. Correction power value calculating means for multiplying the values at the time corresponding to, and making it a correction power value, and calculating time series data of the correction power value;
Correction power value inclination calculating means for obtaining the inclination of the correction power value with respect to the time axis in a predetermined time range by performing slide calculation a predetermined number of times;
Corrected power value slope integrating means for performing absolute value processing on the time series signal of the slope of the corrected power value obtained by the slide calculation by the corrected power value calculating means, and calculating an integral value for each predetermined time range as the corrected fatigue level The fatigue analysis apparatus according to claim 1, comprising: - 前記第2疲労度算出手段が、前記喚起度算出手段で用いた最大リアプノフ指数の時系列データの値と、前記第1疲労度算出手段で用いたLF/HF算入パワー値の時系列データの値とを、相互に対応する時間における値同士で掛け合わせ、それを補正パワー値とし、補正パワー値の時系列データを算出する補正パワー値算出手段と、
前記補正パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める補正パワー値傾き算出手段と、
前記補正パワー値算出手段によりスライド計算して得られた補正パワー値の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記補正疲労度として算出する補正パワー値傾き積分手段と
を備えてなることを特徴とする請求項4記載の疲労解析装置。 The second fatigue degree calculating means uses the value of the time series data of the maximum Lyapunov exponent used in the arousal degree calculating means and the value of the time series data of the LF / HF included power value used in the first fatigue degree calculating means. And a correction power value calculation means for calculating the time series data of the correction power value by multiplying the values at the time corresponding to each other as a correction power value,
Correction power value inclination calculating means for obtaining the inclination of the correction power value with respect to the time axis in a predetermined time range by performing slide calculation a predetermined number of times;
Corrected power value slope integrating means for performing absolute value processing on the time series signal of the slope of the corrected power value obtained by the slide calculation by the corrected power value calculating means, and calculating an integral value for each predetermined time range as the corrected fatigue level The fatigue analysis apparatus according to claim 4, comprising: - 前記喚起度算出手段が、前記生体信号データから最大リアプノフ指数を求め、最大リアプノフ指数の時系列データを算出する最大リアプノフ指数算出手段と、
前記最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める最大リアプノフ指数傾き算出手段と、
前記最大リアプノフ指数傾き算出手段によりスライド計算して得られた最大リアプノフ指数の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記喚起度として算出する最大リアプノフ指数傾き積分手段とを備えてなり、
さらに、前記最大リアプノフ指数傾き積分手段により得られた前記喚起度の累積和を求めて出力する累積喚起度出力手段と
を備えてなることを特徴とする請求項2記載の疲労解析装置。 The arousal degree calculating means obtains the maximum Lyapunov exponent from the biological signal data, and calculates the maximum Lyapunov exponent time series data of the maximum Lyapunov exponent;
A maximum Lyapunov exponent slope calculating means for obtaining a slope of the maximum Lyapunov exponent with respect to a time axis in a predetermined time range by sliding a predetermined number of times;
Maximum Lyapunov exponent slope integration means for processing the absolute value of the time series signal of the slope of the maximum Lyapunov exponent obtained by the slide calculation by the maximum Lyapunov exponent slope calculation means and calculating the integral value for each predetermined time range as the arousal level And
3. The fatigue analysis apparatus according to claim 2, further comprising cumulative arousal output means for obtaining and outputting a cumulative sum of the arousal levels obtained by the maximum Lyapunov exponent slope integration means. - 前記タイミング判定手段は、前記累積喚起度出力手段により出力される累積喚起度の傾きの急変換点を、前記第2疲労度算出手段の補正疲労度を採用するタイミングと判定することを特徴とする請求項2記載の疲労解析装置。 The timing determination unit determines that the sudden conversion point of the slope of the cumulative evoke degree output by the cumulative eviction level output unit is a timing at which the corrected fatigue level of the second fatigue level calculation unit is adopted. The fatigue analysis apparatus according to claim 2.
- 前記タイミング判定手段は、測定開始から所定時間範囲における前記累積喚起度の傾きを基準傾きとして求め、この基準傾きを求めた後の時間帯における所定時間範囲における累積喚起度の傾きが、基準傾きに対して少なくとも10%の変化が生じた場合に前記急変換点と判定することを特徴とする請求項7記載の疲労解析装置。 The timing determination means obtains the slope of the cumulative arousal degree in a predetermined time range from the start of measurement as a reference slope, and the slope of the cumulative arousal degree in a predetermined time range in the time zone after obtaining the reference slope is a reference slope. The fatigue analysis apparatus according to claim 7, wherein the sudden conversion point is determined when a change of at least 10% occurs.
- 生体信号測定器により採取された脈波の生体信号データを用いて疲労解析を行う疲労解析装置に導入されるコンピュータプログラムであって、
前記生体信号データの原波形の各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差をパワー値とし、パワー値の時系列データを基にして基準疲労度を求める第1疲労度算出手段と、
前記生体信号データから求めた最大リアプノフ指数を利用して、前記第1疲労度算出手段で用いたパワー値の時系列データの値を補正し、得られた補正パワー値の時系列データを基にして補正疲労度を求める第2疲労度算出手段と、
交感神経活動による疲労の代償作用の有無を判定する判定手段と、
前記判定手段により、交感神経活動による疲労の代償がなされていない状態と判定された時間帯では、前記第1疲労度算出手段により得られた基準疲労度の累積和を求めて出力し、交感神経活動による疲労の代償がなされている状態と判定された時間帯では、前記第2疲労度算出手段により得られた補正疲労度の累積和を求めて出力する累積疲労度出力手段と
を具備することを特徴とするコンピュータプログラム。 A computer program installed in a fatigue analysis apparatus that performs fatigue analysis using biosignal data of a pulse wave collected by a biosignal measuring device,
The difference between the peak value on the upper limit side and the peak value on the lower limit side is calculated for each predetermined time range from the peak value of each cycle of the original waveform of the biological signal data. A first fatigue level calculating means for obtaining a standard fatigue level based on the data;
Using the maximum Lyapunov exponent determined from the biological signal data, the time-series data value of the power value used in the first fatigue level calculating means is corrected, and based on the obtained time-series data of the corrected power value. A second fatigue level calculating means for obtaining a corrected fatigue level,
A determination means for determining the presence or absence of compensation for fatigue due to sympathetic nerve activity;
In the time zone in which it is determined by the determination means that the fatigue due to sympathetic nerve activity has not been compensated, the cumulative sum of the reference fatigue levels obtained by the first fatigue level calculation means is obtained and output, and the sympathetic nerves are output. A cumulative fatigue level output means for obtaining and outputting a cumulative sum of corrected fatigue levels obtained by the second fatigue level calculation means in a time zone in which it is determined that the compensation for fatigue due to activity has been made; A computer program characterized by the above. - 前記判定手段は、前記生体信号データから最大リアプノフ指数を求め、この最大リアプノフ指数の時系列データを基にして喚起度を求める喚起度算出手段と、前記喚起度算出手段により得られた喚起度から、前記第2疲労度算出手段の補正疲労度を採用するタイミングを判定するタイミング判定手段とを備えてなり、
前記累積疲労度出力手段は、前記タイミング判定手段により、前記第2疲労度算出手段の補正疲労度を採用するタイミングと判定される前の時間帯では、前記第1疲労度算出手段により得られた基準疲労度の累積和を求めて出力し、前記第2疲労度算出手段の補正疲労度を採用するタイミングと判定された後の時間帯では、前記第2疲労度算出手段により得られた補正疲労度の累積和を求めて出力するように設定されていることを特徴とする請求項10記載のコンピュータプログラム。 The determination means obtains a maximum Lyapunov exponent from the vital sign data, and calculates a degree of arousal based on time series data of the maximum Lyapunov exponent, and arousal degree obtained by the arousal degree calculation means And a timing determination means for determining the timing of adopting the corrected fatigue level of the second fatigue level calculation means,
The cumulative fatigue level output unit is obtained by the first fatigue level calculation unit in a time zone before the timing determination unit determines that the corrected fatigue level of the second fatigue level calculation unit is adopted. The corrected fatigue obtained by the second fatigue degree calculating means is obtained in the time zone after obtaining and outputting the cumulative sum of the reference fatigue degrees and determining that the corrected fatigue degree of the second fatigue degree calculating means is adopted. 11. The computer program according to claim 10, wherein the computer program is set so as to obtain and output a cumulative sum of degrees. - 前記第1疲労度算出手段が、前記生体信号データの原波形の各周期のピーク値から、所定時間範囲ごとに上限側のピーク値と下限側のピーク値との差を算出し、この差を前記パワー値とし、該パワー値の時系列データを算出するパワー値算出手段と、
前記パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求めるパワー値傾き算出手段と、
前記パワー値傾き算出手段によりスライド計算して得られたパワー値の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記基準疲労度として算出するパワー値傾き積分手段と
を備えてなることを特徴とする請求項11記載のコンピュータプログラム。 The first fatigue level calculating means calculates a difference between the peak value on the upper limit side and the peak value on the lower limit side for each predetermined time range from the peak value of each cycle of the original waveform of the biological signal data, and calculates the difference. A power value calculating means for calculating time series data of the power value as the power value;
A power value inclination calculating means for obtaining an inclination of the power value with respect to a time axis in a predetermined time range by performing slide calculation a predetermined number of times;
A power value slope integrating means for performing absolute value processing on a time series signal of power value slopes obtained by slide calculation by the power value slope calculating means, and calculating an integral value for each predetermined time range as the reference fatigue level; The computer program according to claim 11, comprising the computer program. - さらに、生体信号測定器により採取された心拍数又は脈拍数の時系列データを周波数解析して得られるLF/HFのパワースペクトルの時系列データを求めるLF/HF時系列データ算出手段を備え、
前記パワー値算出手段は、前記LF/HFのパワースペクトルの時系列データの値と、前記パワー値の時系列データの値とを、相互に対応する時間における値同士で掛け合わせ、それをLF/HF算入パワー値とし、該LF/HF算入パワー値の時系列データを算出するように設定されていることを特徴とする請求項12記載のコンピュータプログラム。 Furthermore, it comprises LF / HF time series data calculating means for obtaining time series data of the power spectrum of LF / HF obtained by frequency analysis of time series data of heart rate or pulse rate collected by the biological signal measuring device,
The power value calculating means multiplies the value of the time series data of the power spectrum of the LF / HF and the value of the time series data of the power value by values at times corresponding to each other, and LF / HF 13. The computer program according to claim 12, wherein the computer program is set so as to calculate time series data of the LF / HF included power value as an HF included power value. - 前記第2疲労度算出手段が、前記喚起度算出手段で用いた最大リアプノフ指数の時系列データの値と、前記第1疲労度算出手段で用いたパワー値の時系列データの値とを、相互に対応する時間における値同士で掛け合わせ、それを補正パワー値とし、補正パワー値の時系列データを算出する補正パワー値算出手段と、
前記補正パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める補正パワー値傾き算出手段と、
前記補正パワー値算出手段によりスライド計算して得られた補正パワー値の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記補正疲労度として算出する補正パワー値傾き積分手段と
を備えてなることを特徴とする請求項10記載のコンピュータプログラム。 The second fatigue level calculating means uses the value of the time series data of the maximum Lyapunov exponent used in the arousal level calculating means and the value of the time series data of the power value used in the first fatigue level calculating means. Correction power value calculating means for multiplying the values at the time corresponding to, and making it a correction power value, and calculating time series data of the correction power value;
Correction power value inclination calculating means for obtaining the inclination of the correction power value with respect to the time axis in a predetermined time range by performing slide calculation a predetermined number of times;
Corrected power value slope integrating means for performing absolute value processing on the time series signal of the slope of the corrected power value obtained by the slide calculation by the corrected power value calculating means, and calculating an integral value for each predetermined time range as the corrected fatigue level The computer program according to claim 10, comprising: - 前記第2疲労度算出手段が、前記喚起度算出手段で用いた最大リアプノフ指数の時系列データの値と、前記第1疲労度算出手段で用いたLF/HF算入パワー値の時系列データの値とを、相互に対応する時間における値同士で掛け合わせ、それを補正パワー値とし、補正パワー値の時系列データを算出する補正パワー値算出手段と、
前記補正パワー値の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める補正パワー値傾き算出手段と、
前記補正パワー値算出手段によりスライド計算して得られた補正パワー値の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記補正疲労度として算出する補正パワー値傾き積分手段と
を備えてなることを特徴とする請求項13記載のコンピュータプログラム。 The second fatigue degree calculating means uses the value of the time series data of the maximum Lyapunov exponent used in the arousal degree calculating means and the value of the time series data of the LF / HF included power value used in the first fatigue degree calculating means. And a correction power value calculation means for calculating the time series data of the correction power value by multiplying the values at the time corresponding to each other as a correction power value,
Correction power value inclination calculating means for obtaining the inclination of the correction power value with respect to the time axis in a predetermined time range by performing slide calculation a predetermined number of times;
Corrected power value slope integrating means for performing absolute value processing on the time series signal of the slope of the corrected power value obtained by the slide calculation by the corrected power value calculating means, and calculating an integral value for each predetermined time range as the corrected fatigue level The computer program according to claim 13, comprising: - 前記喚起度算出手段が、前記生体信号データから最大リアプノフ指数を求め、最大リアプノフ指数の時系列データを算出する最大リアプノフ指数算出手段と、
前記最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定回数スライド計算して求める最大リアプノフ指数傾き算出手段と、
前記最大リアプノフ指数傾き算出手段によりスライド計算して得られた最大リアプノフ指数の傾きの時系列信号を絶対値処理し、所定時間範囲ごとの積分値を前記喚起度として算出する最大リアプノフ指数傾き積分手段とを備えてなり、
さらに、前記最大リアプノフ指数傾き積分手段により得られた前記喚起度の累積和を求めて出力する累積喚起度出力手段と
を備えてなることを特徴とする請求項11記載のコンピュータプログラム。 The arousal degree calculating means obtains the maximum Lyapunov exponent from the biological signal data, and calculates the maximum Lyapunov exponent time series data of the maximum Lyapunov exponent;
A maximum Lyapunov exponent slope calculating means for obtaining a slope of the maximum Lyapunov exponent with respect to a time axis in a predetermined time range by sliding a predetermined number of times;
Maximum Lyapunov exponent slope integration means for processing the absolute value of the time series signal of the slope of the maximum Lyapunov exponent obtained by the slide calculation by the maximum Lyapunov exponent slope calculation means and calculating the integral value for each predetermined time range as the arousal level And
12. The computer program according to claim 11, further comprising cumulative arousal level output means for obtaining and outputting the cumulative sum of the arousal levels obtained by the maximum Lyapunov exponent slope integrating means. - 前記タイミング判定手段は、前記累積喚起度出力手段により出力される累積喚起度の傾きの急変換点を、前記第2疲労度算出手段の補正疲労度を採用するタイミングと判定することを特徴とする請求項11記載のコンピュータプログラム。 The timing determination unit determines that the sudden conversion point of the slope of the cumulative evoke degree output by the cumulative eviction level output unit is a timing at which the corrected fatigue level of the second fatigue level calculation unit is adopted. The computer program according to claim 11.
- 前記タイミング判定手段は、測定開始から所定時間範囲における前記累積喚起度の傾きを基準傾きとして求め、この基準傾きを求めた後の時間帯における所定時間範囲における累積喚起度の傾きが、基準傾きに対して少なくとも10%の変化が生じた場合に前記急変換点と判定することを特徴とする請求項16記載のコンピュータプログラム。 The timing determination means obtains the slope of the cumulative arousal degree in a predetermined time range from the start of measurement as a reference slope, and the slope of the cumulative arousal degree in a predetermined time range in the time zone after obtaining the reference slope is a reference slope. The computer program according to claim 16, wherein the sudden conversion point is determined when a change of at least 10% occurs.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-038767 | 2008-02-20 | ||
JP2008038767A JP5086834B2 (en) | 2008-02-20 | 2008-02-20 | Fatigue analysis apparatus and computer program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009104460A1 true WO2009104460A1 (en) | 2009-08-27 |
Family
ID=40985346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/051366 WO2009104460A1 (en) | 2008-02-20 | 2009-01-28 | Fatigue analysis device and computer program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5086834B2 (en) |
WO (1) | WO2009104460A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011046178A1 (en) * | 2009-10-14 | 2011-04-21 | 株式会社デルタツーリング | Biological state estimation device, biological state estimation system, and computer program |
US9398875B2 (en) | 2013-11-07 | 2016-07-26 | Honda Motor Co., Ltd. | Method and system for biological signal analysis |
US9440646B2 (en) | 2011-02-18 | 2016-09-13 | Honda Motor Co., Ltd. | System and method for responding to driver behavior |
US9475502B2 (en) | 2011-02-18 | 2016-10-25 | Honda Motor Co., Ltd. | Coordinated vehicle response system and method for driver behavior |
US9751534B2 (en) | 2013-03-15 | 2017-09-05 | Honda Motor Co., Ltd. | System and method for responding to driver state |
US10499856B2 (en) | 2013-04-06 | 2019-12-10 | Honda Motor Co., Ltd. | System and method for biological signal processing with highly auto-correlated carrier sequences |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6130273B2 (en) * | 2013-08-30 | 2017-05-17 | フクダ電子株式会社 | Walking test system and communication terminal |
JP6654904B2 (en) * | 2016-01-13 | 2020-02-26 | エコナビスタ株式会社 | Information processing apparatus, program and information processing method |
KR101706508B1 (en) * | 2016-07-12 | 2017-02-16 | 한국에너지기술연구원 | Data Analysis System of Mechanical Load Measurement Data for Wind Turbine |
CN110477897B (en) * | 2019-08-15 | 2022-04-01 | 中国体育国际经济技术合作有限公司 | Physical ability testing method and system |
JPWO2024034072A1 (en) * | 2022-08-10 | 2024-02-15 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005039415A1 (en) * | 2003-10-23 | 2005-05-06 | Delta Tooling Co., Ltd. | Fatigue degree measuring device, fatigue detection device, and computer program |
JP2007209453A (en) * | 2006-02-08 | 2007-08-23 | Delta Tooling Co Ltd | Muscle fatigue evaluation system |
JP2009022610A (en) * | 2007-07-20 | 2009-02-05 | Delta Tooling Co Ltd | Degree of fatigue computing device and computer program |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009026610A1 (en) * | 2007-08-24 | 2009-03-05 | Eamon Bergin | Gas buoyancy powered generator or motor |
-
2008
- 2008-02-20 JP JP2008038767A patent/JP5086834B2/en not_active Expired - Fee Related
-
2009
- 2009-01-28 WO PCT/JP2009/051366 patent/WO2009104460A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005039415A1 (en) * | 2003-10-23 | 2005-05-06 | Delta Tooling Co., Ltd. | Fatigue degree measuring device, fatigue detection device, and computer program |
JP2007209453A (en) * | 2006-02-08 | 2007-08-23 | Delta Tooling Co Ltd | Muscle fatigue evaluation system |
JP2009022610A (en) * | 2007-07-20 | 2009-02-05 | Delta Tooling Co Ltd | Degree of fatigue computing device and computer program |
Non-Patent Citations (3)
Title |
---|
"Preprints of Meeting on Automotive Engineers, No.11-05", 18 May 2005, article NAOTERU OCHIAI ET AL.: "Shisen Yoseki Myakuha no Yuragi o Mochiita Hirodo Hyokaho no Kaihatsu", pages: 15 - 18 * |
ETSUNORI FUJITA ET AL.: "Kaiteki Seat Gijutsu", JIDOSHA GIJUTSU, vol. 62, no. 2, 1 February 2008 (2008-02-01), pages 33 - 41 * |
ETSUNORI FUJITA ET AL.: "Shisen Yoseki Myakuha Joho o Mochiita Chojikan Sa Za Hiro no Kan'i Hyokaho no Kaihatsu", THE JAPANESE JOURNAL OF ERGONOMICS, vol. 40, no. 5, 15 October 2004 (2004-10-15), pages 254 - 263 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011046178A1 (en) * | 2009-10-14 | 2011-04-21 | 株式会社デルタツーリング | Biological state estimation device, biological state estimation system, and computer program |
JP5704651B2 (en) * | 2009-10-14 | 2015-04-22 | 株式会社デルタツーリング | Biological state estimation device, biological state estimation system, and computer program |
US10136850B2 (en) | 2009-10-14 | 2018-11-27 | Delta Tooling Co., Ltd. | Biological state estimation device, biological state estimation system, and computer program |
US11377094B2 (en) | 2011-02-18 | 2022-07-05 | Honda Motor Co., Ltd. | System and method for responding to driver behavior |
US9440646B2 (en) | 2011-02-18 | 2016-09-13 | Honda Motor Co., Ltd. | System and method for responding to driver behavior |
US9475502B2 (en) | 2011-02-18 | 2016-10-25 | Honda Motor Co., Ltd. | Coordinated vehicle response system and method for driver behavior |
US9505402B2 (en) | 2011-02-18 | 2016-11-29 | Honda Motor Co., Ltd. | System and method for responding to driver behavior |
US10875536B2 (en) | 2011-02-18 | 2020-12-29 | Honda Motor Co., Ltd. | Coordinated vehicle response system and method for driver behavior |
US9855945B2 (en) | 2011-02-18 | 2018-01-02 | Honda Motor Co., Ltd. | System and method for responding to driver behavior |
US9873437B2 (en) | 2011-02-18 | 2018-01-23 | Honda Motor Co., Ltd. | Coordinated vehicle response system and method for driver behavior |
US10246098B2 (en) | 2013-03-15 | 2019-04-02 | Honda Motor Co., Ltd. | System and method for responding to driver state |
US10308258B2 (en) | 2013-03-15 | 2019-06-04 | Honda Motor Co., Ltd. | System and method for responding to driver state |
US10752252B2 (en) | 2013-03-15 | 2020-08-25 | Honda Motor Co., Ltd. | System and method for responding to driver state |
US10759437B2 (en) | 2013-03-15 | 2020-09-01 | Honda Motor Co., Ltd. | System and method for responding to driver state |
US10759438B2 (en) | 2013-03-15 | 2020-09-01 | Honda Motor Co., Ltd. | System and method for responding to driver state |
US10759436B2 (en) | 2013-03-15 | 2020-09-01 | Honda Motor Co., Ltd. | System and method for responding to driver state |
US10780891B2 (en) | 2013-03-15 | 2020-09-22 | Honda Motor Co., Ltd. | System and method for responding to driver state |
US9751534B2 (en) | 2013-03-15 | 2017-09-05 | Honda Motor Co., Ltd. | System and method for responding to driver state |
US11383721B2 (en) | 2013-03-15 | 2022-07-12 | Honda Motor Co., Ltd. | System and method for responding to driver state |
US10499856B2 (en) | 2013-04-06 | 2019-12-10 | Honda Motor Co., Ltd. | System and method for biological signal processing with highly auto-correlated carrier sequences |
US9398875B2 (en) | 2013-11-07 | 2016-07-26 | Honda Motor Co., Ltd. | Method and system for biological signal analysis |
Also Published As
Publication number | Publication date |
---|---|
JP2009195384A (en) | 2009-09-03 |
JP5086834B2 (en) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5086834B2 (en) | Fatigue analysis apparatus and computer program | |
JP5022530B2 (en) | Fatigue degree calculation device and computer program | |
Sekine et al. | Discrimination of walking patterns using wavelet-based fractal analysis | |
US7470231B2 (en) | Fatigue degree measurement device, fatigue detection device and computer program to be used therein | |
FI126600B (en) | Detection of sleep phenomenon using ballistocardiography | |
JP6757532B2 (en) | Sleep stage determination device, sleep stage determination method, sleep stage determination program | |
EP3187116B1 (en) | Method for assessing depressive state and device for assessing depressive state | |
US9192333B1 (en) | System and method for early detection of mild traumatic brain injury | |
CN108888271B (en) | Physiological parameter measuring system and intelligent seat with same | |
JP5857609B2 (en) | Sleep state discrimination device | |
Bonde et al. | VVRRM: Vehicular vibration-based heart RR-interval monitoring system | |
JP2008264138A (en) | Sleep state judgement apparatus, sleep state judgement method and computer program | |
JP4636861B2 (en) | Comfort evaluation device | |
JP2011083564A (en) | Instrument and method for estimating autonomic nerve component index | |
WO2004107978A1 (en) | Sleep stage judgment method and judgment device | |
EP3387994A1 (en) | Biological state estimation device, biological state estimation method, computer program, and recording medium | |
JP2001204714A (en) | Mental stress judging device | |
US20180146915A1 (en) | Sleep stage determination apparatus and sleep stage determination method | |
JP2002209862A (en) | Physical condition judging device and body state judging device | |
JP3831918B2 (en) | Salivary stage determination device | |
WO2014132722A1 (en) | Living-body state estimation device, computer program, and recording medium | |
WO2017057022A1 (en) | Biological state estimation device, biological state estimation method, and computer program | |
Yuda et al. | Detection of daily emotions by wearable biometric sensors | |
JP4636860B2 (en) | Evaluation system for human body support structure | |
Skoric et al. | A Wavelet-Based Approach for Motion Artifact Reduction in Ambulatory Seismocardiography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09712905 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09712905 Country of ref document: EP Kind code of ref document: A1 |