[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009102166A2 - Method and apparatus for transmitting data by using prioritized bit rate in mobile communication system - Google Patents

Method and apparatus for transmitting data by using prioritized bit rate in mobile communication system Download PDF

Info

Publication number
WO2009102166A2
WO2009102166A2 PCT/KR2009/000711 KR2009000711W WO2009102166A2 WO 2009102166 A2 WO2009102166 A2 WO 2009102166A2 KR 2009000711 W KR2009000711 W KR 2009000711W WO 2009102166 A2 WO2009102166 A2 WO 2009102166A2
Authority
WO
WIPO (PCT)
Prior art keywords
control data
temporary
pbr
token
pbr token
Prior art date
Application number
PCT/KR2009/000711
Other languages
French (fr)
Korean (ko)
Other versions
WO2009102166A3 (en
Inventor
Soeng-Hun Kim
Gert Jan Van Lieshout
Original Assignee
Samsung Electronics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co., Ltd. filed Critical Samsung Electronics Co., Ltd.
Publication of WO2009102166A2 publication Critical patent/WO2009102166A2/en
Publication of WO2009102166A3 publication Critical patent/WO2009102166A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/39Credit based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to a method and apparatus for transmitting control data in a mobile communication system, and more particularly, to a method and apparatus for rapidly transmitting two-layer control data.
  • the Universal Mobile Telecommunication Service (IMS) system is based on the European System for Mobile Communications (GSM) Global System for Mobile Communications (Genera I Packet Radio Services) GPRS *, and is a wideband code division multiple access (Code Division).
  • 3GPP (3rd Generation Partnership Project) which is in charge of UMTS standardization, is the next generation mobile communication system of L TS system.
  • Term Evolution (LTE) is a technology that implements high-speed packet-based communication with a transmission rate of up to 100 Mbps and aims to commercialize it in 2010. It is discussed, for example, by simplifying the structure of the network to reduce the number of nodes ⁇ on the communication path, There is a debate on how to get as close to the wireless channel as possible, etc.
  • Fig. 1 illustrates one of the structures of the next generation mobile communication system as described above, and shows a system structure based on the UMTS system.
  • a next-generation radio access network (hereinafter referred to as E-RAN) 110 and 112 may be referred to as a next-generation base station (evolved Node B, ENB or Node B) 120 122, 124, 126, 128, and the upper node (referred to as Access Gateway) 130, 132 is simplified to a two node structure.
  • UE User Equipment
  • IP Internet Protocol
  • the ENBs 120 to 128 correspond to existing Node Bs of the UMTS system and are connected to the UE 01 through a radio channel. However, the ENBs 120 to 128 play a more complicated role than the existing Node B.
  • all user traffic including real-time services such as V () IP (Voice over IP) over the Internet protocol is serviced through a shared channel, so a device for collecting and scheduling situation information of UEs is required.
  • the ENB 120 to 128 is in charge of this.
  • LTE uses orthogonal frequency division multiplexing (OFDM) as a radio access technology in a bandwidth of up to 20 MHz.
  • OFDM orthogonal frequency division multiplexing
  • RTI ID 0.0 &gt
  • coding &lt / RTI &gt
  • FIG. 2 is a diagram illustrating a radio protocol structure of the LTE system as described above.
  • the wireless protocol of the LTE system is PDCP (Packet Data Convergence Protocol 205, 240), RLC (Radio Link Control 210, 235), MAC (Medium Access Control 215,230), PHY (PHYSICAL 220, 225). Is done.
  • PDCP Packet Data Convergence Protocol 205, 240
  • RLC Radio Link Control 210, 235
  • MAC Medium Access Control 215,230
  • PHY PHY
  • the Packet Data Convergence Protocol (PDCP) 205 and 240 is responsible for operations such as IP header compression / restore, non-password / decryption, and lossless handover support.
  • the lossless handover means that after the UE completes the handover between ENBs, a PDCP STATUS REPORT containing the serial number of the PDCP SDU that the PDCP layer has not received is transmitted to the other PDCP layer. This is accomplished by retransmitting the unreceived PDCP SDU.
  • the radio link control (hereinafter referred to as RLC) (210, 235) reconfigures a PDCP PDU (Packet Data Unit (hereinafter referred to as PDU of the protocol) as an appropriate size) by reconfiguring it to an appropriate size. ARQ operation and so on.
  • RLC Radio Link control
  • the MACs 215 and 230 are connected to several RLC devices configured in one terminal, and multiplex RLC PDUs to MAC PDUs, and demultiplex RLC PDUs from MAC PDUs.
  • the physical layer (PHYSICAL, hereinafter referred to as PHY) layer 220 and 225 channel-codes and modulates upper layer data, and then forms a 0FDM symbol to a wireless channel. It transmits or demodulates, decodes, and channel-decodes an OFDM symbol received through a wireless channel.
  • PHY physical layer
  • the terminal and the base station prevents data loss through the exchange of PDCP status reports. For this, refer to FIG. This will be described.
  • the source ENB 315 commands a handover to the terminal 305 in step 320, and then delivers PDCP SDUs that have not been successfully transmitted to the destination ENB 310 in step 325. do.
  • the terminal 305 that performed the handover from the source ENB 315 to the destination ENB 310 transmits a HANDOVER COMPLETE message in step 330 to indicate that the handover is successful to the destination ENB 310. Notify me. Accordingly, the target ENB 310 allocates the uplink transmission resource to the terminal 305 in step 335. Then, the terminal 305 transmits the PDCP status report containing the forward PDCP SDU reception status to the destination ENB 310 in step 340.
  • the target ENB 310 detects unreceived PDCP SDUs by referring to the received PDCP status report, first transmits retransmission forward data of the detected PDCP SDU, and then transmits data of an initial transmission. Done.
  • PDCP status report serves as an initiation of forward data transmission, it is desirable to transmit as soon as possible.
  • the destination ENB can resume forward data transmission without receiving a PDCP STATUS REPORT, but in this case it must retransmit the PDCP SDUs already sent by the source ENB without knowing whether the reception was successful. do.
  • the retransmitted PDCP SDUs there may be PDCP SDUs already successfully received by the UE. Retransmitting the successfully received PDCP SDU is unnecessary in terms of efficiency since unnecessary redundant transmission is required.
  • the PDCP status report is generated for each logical channel and processed according to the priority of the logical channel.
  • the transmission time of PDCP STATUS REPORT generated in the low priority logical channel is after all the data E ⁇ of the high priority logical channel are transmitted. Accordingly, there is a problem in that forward data transmission may be delayed or redundantly transmitted in the low priority logical channel.
  • an object of the present invention for solving the above problems is that the terminal does not delay transmission due to the low priority of important control data.
  • Another object of the present invention is to provide a method and apparatus for a terminal to more quickly transmit a PDCP status report after handover.
  • control data generation of logical channels to which a temporary prioritized bit rate (hereinafter referred to as PBR) is applied And generating a temporary PBR token of a size corresponding to the control data and injecting the temporary PBR token into a PBR token bucket of a corresponding logical channel, and the logic that the temporary PBR token can use.
  • PBR temporary prioritized bit rate
  • the present invention provides an apparatus for transmitting control data in a mobile communication system, comprising: a control unit for generating control data of logical channels to which a temporary prioritized bit rate (PBR) is to be applied; and a temporary PBR token having a size corresponding to the generated control data.
  • PBR prioritized bit rate
  • Token is created and injected into the PBR token bucket of the logical channel, and after the control data is transmitted, the temporary PBR token remaining in the PBR token bucket is transferred.
  • a temporary PBR token management unit to remove, a logical channel prioritization unit to determine an amount of control data to be transmitted through an allocated resource according to a predetermined priority of the logical channels available for the temporary PBR token OI; And a transmitter for transmitting the determined amount of control data through a wireless channel.
  • the present invention has the advantage that it is possible to preferentially transmit important data such as PDCP STATUS REPORT to be transmitted quickly using the PBR token.
  • FIG. 1 is a diagram illustrating the structure of an LTE mobile communication system.
  • FIG. 2 is a diagram illustrating a radio protocol architecture of an LTE mobile communication system.
  • 3 illustrates an example of lossless handover.
  • FIG. 5 is a diagram illustrating an operation of a terminal processing a PDCP status report using a temporary PBR token.
  • FIG. 6 shows an example of PDCP STATUS REPORT.
  • FIG. 7 is a diagram illustrating an operation of a terminal for processing second layer control data using a temporary PBR token.
  • FIG. 8 shows a device of the invention.
  • the present invention can be applied to all mobile communication systems to which signal scheduling is applied without any significant addition or subtraction.
  • the mobile communication system the PDCP status report (PDCP) generated to prevent the delay of important control data, such as PDCP STATUS REPORT corresponding to a low-priority logical channel
  • PDCP STATUS REPORT corresponding to a low-priority logical channel
  • PBR Por itized Bit Rate
  • the PBR is a right to be preferentially transmitted regardless of the general priority of the logical channel in order to prevent continuous transmission of data of the lower priority logical channel.
  • the PBR is assigned to a logical channel connected to a service that needs to periodically transmit data among logical channels of low priority.
  • the PBR operates in the form of a token bucket, by creating FIG. Let's explain.
  • a PBR-allowed logical channel includes a bucket 405 of a predetermined size, and a PBR token of a predetermined size is injected into the PBR bucket at predetermined cycles (410).
  • the rate at which the size of the PBR token increases is set at the logical channel configuration.
  • Data equal to the size of the PBR token transmitted on a PBR capable logical channel is transmitted at a higher priority than a general priority.
  • PBR is not allowed for all logical channels, and PBR tokens are set to increase by a predetermined amount at predetermined intervals.
  • a temporary PBR token is allocated to a logical channel in which reception success status information (PDCP status report) is generated so that reception success status information (PDCP status report) can be transmitted using the PBR. It is increased only by a predetermined size without increasing the temporary PBR token to the token, unlike the general periodic, when the reception success eu ⁇ control information such as information indicating whether eu (PDCP STATUS REPORT) is generated. Therefore, when a predetermined event is detected, the temporary PBR token is generated and injected into the PBR bucket.
  • the temporary PBR token is used for the transmission of data requiring a low priority but rapid transmission, such as PDCP STATUS REPORT in the future.
  • Fig. 5 is a flowchart for explaining the operation of the terminal 0 in accordance with the embodiment of the present invention as described above.
  • the UE recognizes one or more logical channels to which the temporary PBR is to be applied and recognizes the size of the temporary PBR of each of the recognized logical channels.
  • the temporary PBR may be used in a logical channel in which PDCP STATUS REPORT is likely to be generated, ie in a logical channel operating in RLC AM (Acknowledge Mode).
  • step 505 may be performed in a call setup process, and the terminal performs forward data reception and reverse data transmission according to a conventional procedure when the call setup step is completed.
  • the terminal performs the handover according to a conventional procedure.
  • the handover is completed by the terminal transmitting a predetermined control message to the new target base station, and the terminal performs an operation necessary for resuming data transmission and reception at the new base station after completing the handover, for example, lossless handover in step 515.
  • FIG. 6 An example of the generated PDCP STATUS REPORT is shown in FIG. 6.
  • the PDCP STATUS REPORT 605 includes a conventional PDCP header 610, a reference PDCP SN 615, and a bitmap 620.
  • the reference PDCP SN 615 is a reference value for the PDCP SN to which each bit of the bitmap 620 corresponds. '0' of the bitmap 620 indicates that retransmission is not necessary and ⁇ indicates that retransmission is necessary.
  • the size of the bitmap 620 is variable according to the distance between PDCP SDUs that require retransmission.
  • the PDCP status report 605 may be generated immediately after the UE is instructed to handover or may be generated after completing the handover. Prior to transmission over the wireless channel, the PDCP STATUS REPORT 605 is attached with a header 625 of a lower layer, such as an RLC header.
  • step 520 the UE generates a temporary PBR token of a size corresponding to the size of the generated PDCP status report and injects it into the PBR token bucket of the corresponding logical channel.
  • the size of the temporary PBR token of any logical channel X is calculated as in Equation 1 below.
  • Size of temporary PBR token in logical channel X (size of PDCP status report in logical channel X) + RLC header size + n
  • Equation 1 n indicates that the unexpected lower layer header is PDCP
  • N may be preset in the call setup process.
  • the terminal after performing step 520, the terminal performs reverse data transmission fixation.
  • step 525 the UE requests and allocates the uplink transmission resource to the base station.
  • the terminal allocated with the uplink transmission resource proceeds to step 530 and performs logical channel prioritization.
  • the logical channel prioritization channel (logical channel priority it) is determined in the data to be transmitted by using the allocated transmission resources, considering the priority of each logical channel and the amount of stored data E ⁇ , This process ensures that the data of the high logical channel is transmitted as soon as possible.
  • the terminal first determines the amount of data to be transmitted based on the priority of logical channels for which the temporary PBR token is available.
  • the amount of data to be transmitted is the smaller of the amount of temporary PBR token, the amount of stored data and the amount of remaining space of the transmission resource.
  • the remaining space of the transmission resource means a space excluding a space already occupied by the data in the size of data to be transmitted through the allocated transmission resource. If the remaining space of the transmission resource remains even after processing all the data corresponding to the temporary PBR, the terminal according to the priority of the logical channel in which the data to be transmitted, the amount of remaining space and the amount of data to be transmitted The process of selecting the data of the small amount of only comb is repeated until the remaining space of the transmission resource becomes 0 bytes.
  • the UE transmits backward data using the uplink transmission resource according to the determined logical channel priority result in step 535.
  • step 540 the UE checks whether the transmission of the PDCP status report is completed in the logical channel into which the temporary PBR token is injected.
  • step 540 if the transmission of the PDCP status report is completed, the terminal proceeds to step 545 and removes all the remaining temporary PBR tokens from the PBR token bucket of the corresponding logical channel.
  • step 525 the terminal waits until a reverse transmission resource is allocated. However, if there is no logical channel in which the transmission of the PDCP status report in step 540 is completed, the terminal immediately proceeds to step 525. The terminal repeats the process from step 525 to step 545 until PDCP status reports of all logical channels are transmitted.
  • the forward data transmission of the handover-completed terminal has been described as an example, but it can be applied to the method of using the PBR token of the present invention in all cases of transmitting important data generated in a low-priority logical channel.
  • the method may be applied to general two-layer control data processing.
  • the two-layer control data is control data generated in a two-layer protocol device such as PDCP and RLC, and typical examples thereof include PDCP STATUS REPORT and RLC STATUS REPORT.
  • the UE recognizes the type of control data to which the temporary PBR token is applied. For example, it may be set to apply a temporary PBR token to all two-layer control data, or it may be a specific two-layer control. The data may be set not to apply the temporary PBR token.
  • the UE injects a predetermined temporary PBR token into a PBR token bucket of a logical channel in which the control data has occurred in step 715.
  • the size of the temporary PBR token may be a predetermined value added to the size of the generated control data, or may be a predetermined value at the call setup.
  • step 730 the terminal checks whether the transmission of the control data that caused the generation of the temporary PBR token is completed. If the transmission of the control data, which resulted in the generation of the test result ⁇ temporary PBR token of step 730, is not completed, the terminal returns to step 720. However, if the inspection result of step 730 and transmission of the control data that caused the generation of the temporary PBR token are completed, the terminal proceeds to step 735 to remove all the temporary PBR tokens remaining in the corresponding logical channel, and proceeds to step 720. Go back. The terminal repeats the process from step 720 to step 735 until all transmission of control data is completed.
  • FIG. 8 illustrates a structure of a terminal device according to an embodiment of the present invention.
  • a terminal device for transmitting control data which is PDCP STATUS REPORT or RLC STATUS REPORT, will be described as an example. However, it will be understood that other device configurations for transmitting important control data using a temporary PBR token are also possible.
  • the terminal apparatus may include a PDCP transmission process 805, a PDCP control unit 820, a PDCP reception process 835, an RLC transmission process 810, an RLC control unit 825, an RLC reception process 830, and a logical channel prioritization unit 815. ), A multiplexing and demultiplexing apparatus 840, a temporary PBR token management unit 845, and a transmission / reception apparatus 850.
  • the PDCP transmission process 805 is responsible for compressing and secreting headers of higher layer packets, and the PDCP receiving process 835 reverses the RLC SDUs delivered by the RLC receiving process 830 and restores the headers. Is in charge of the operation.
  • PDCP receiving process 835 is also responsible for storing PDCP SDUs out of order due to unreceived PDCP SDUs during handover.
  • the PDCP control unit 820 generates a PDCP STATUS REPORT by checking the serial numbers of PDCP SDUs stored in the reception packet of the PDCP reception process 835 after the handover is completed and the black handover is completed.
  • the RLC transmission process 810 performs framing on the PDCP PDUs, that is, concatenates or divides the PDCP PDUs, configures them into appropriately sized RLC PDUs, and retransmits the transmitted RLC PDUs until an RLC ACK is received. Save it.
  • the RLC receiving process 830 stores the RLC PDUs received from the demultiplexing device 840 in a receiving packet, assembles the assembleable RLC PDUs into PDCP PDUs, and delivers them to the PDCP receiving process 835. .
  • the RLC control unit 825 examines the serial numbers of the RLC PDUs stored in the receiving bay I 'of the RLC receiving process 830, and generates an RLC STATUS REPORT requesting retransmission of unreceived RLC PDUs at an appropriate time.
  • One PDCP process, one RLC process, one PDCP control unit, and one RLC control unit are provided per logical channel.
  • the logical channel prioritizer 815 determines the size of data to be transmitted in each logical channel according to a predetermined method in consideration of the PBR token status, priority of the logical channel, the amount of stored data, and the remaining space of the data to be transmitted. Do this.
  • the temporary PBR token manager 845 injects or removes the temporary PBR token into the PBR token bucket of each logical channel when necessary.
  • the multiplexing and demultiplexing apparatus 840 is an apparatus for multiplexing RLC PDUs generated in multiple logical channels into one MAC PDU or demultiplexing RLC PDUs from a MAC PDU.
  • the transceiver 850 is a device that transmits or receives a MAC PDU through a wireless channel because it is a predetermined procedure i CC '.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This invention relates to a method for transmitting control data in a mobile communication system. The invention is characterized by including the steps of: generating, according to the generation of control data for logical channels to which a temporary prioritized bit rate (PBR) is applied, a temporary PBR token which has the size corresponding to the control data and inserting the PBR token into a PBR token bucket of a correspondent logical channel; and determining the amount of the control data, which is supposed to be transmitted through allocated resources, according to the priorities of the logical channels that the temporary PBR token is able to use. The invention is characterized by further including the step of removing the temporary PBR token, which remains in the PBR token bucket, after transmitting the determined amount of the control data.

Description

【명세서】  【Specification】
【발명의 명청】  [Name blue of invention]
이동 통신 시스템에서 우선 순위호ᅡ 비트 레이트를 이용하여 데이 9를 전송하는 방법 및 장치  Method and apparatus for transmitting day 9 using priority call bit rate in mobile communication system
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술분야】  Technical Field
본 발명은 이동 통신 시스렘에서 제어 데이터를 전송하는 방법 및 장치에 관한 것으로, 특히 2 계층 제어 데이터를 신속하게 전송하는 방법 및 장치에 관한 것이다.  The present invention relates to a method and apparatus for transmitting control data in a mobile communication system, and more particularly, to a method and apparatus for rapidly transmitting two-layer control data.
【배경기술】 Background Art
IMS (Universal Mobile Telecommunication Service) 시스렘은 유럽식 이동통신 시스렘인 GSM(Global System for Mobile Commun i cat ions GPRS (Genera I Packet Radio Services)* 기반으로 하고, 광대역 (Wideband) 부호분할 다중접속 (Code Division Multiple Access, 이하 CDMA라 한다)을 사용하는 제 3세대 비동기 이동통신 시스 '이다. 현재 UMTS 표준화를 담당하고 있는 3GPP(3rd Generation Partnership Project)에서는 L TS 시스렘의 차세대 이동통신 시스렘으로서 LTE(Long Term Evolution)에 대한 논의가 진행 중이다. 상기 LTE는 최대 100 Mbps 정도의 전송 속도를 가지는 고속 패킷 기반 통신을 구현하는 기술로서, 2010년 정도에 상용화하는 것을 목표로 하고 있다. 이를 위해 여러 가지 방안이 논의되고 있는데, 에를 들어 네트워크의 구조를 간단히 해서 통신로 상에 위치하는 노드의 수 β 줄이는 방안이나, 무선 프로토콜들을 최대한 무선 채널에 근접시키는 방안 등이 논의 증에 있다. 도 1은 상술한 바와 같은 차세대 이동통신 시스렘 구조의 일 에를 도시한 것이다. 여기에서는 UMTS 시스템을 기반으로 하는 시스템 구조를 도시하였다.  The Universal Mobile Telecommunication Service (IMS) system is based on the European System for Mobile Communications (GSM) Global System for Mobile Communications (Genera I Packet Radio Services) GPRS *, and is a wideband code division multiple access (Code Division). 3GPP (3rd Generation Partnership Project), which is in charge of UMTS standardization, is the next generation mobile communication system of L TS system. Term Evolution (LTE) is a technology that implements high-speed packet-based communication with a transmission rate of up to 100 Mbps and aims to commercialize it in 2010. It is discussed, for example, by simplifying the structure of the network to reduce the number of nodes β on the communication path, There is a debate on how to get as close to the wireless channel as possible, etc. Fig. 1 illustrates one of the structures of the next generation mobile communication system as described above, and shows a system structure based on the UMTS system.
도 1을 참조하면, 도시한 바와 같이 차세대 무선 액세스 네트워크 (Evolved Radio Access Network, 이하 E-RAN라 한다) (110, 112)는 차세대 기지국 (Evolved Node B, 이하 ENB 또는 Node B라 한다) (120, 122, 124, 126, 128)과, 상위 노드 (Access Gateway라 한다) (130, 132)의 2 노드 구조로 단순화된다. - 사용자 단말 (User Equipment, 이하 UE라 한다) (101)은 E-RAN(110,  Referring to FIG. 1, as illustrated, a next-generation radio access network (hereinafter referred to as E-RAN) 110 and 112 may be referred to as a next-generation base station (evolved Node B, ENB or Node B) 120 122, 124, 126, 128, and the upper node (referred to as Access Gateway) 130, 132 is simplified to a two node structure. User Equipment (hereinafter referred to as UE) 101 is E-RAN (110,
대체응지 (규칙 제 26조) 112)에 의해 인터넷 프로토콜 (Internet Protocol , 이하 IP라 한다) 네트워크 (114)로 접속한다. ENB(120 내지 128)는 UMTS 시스렘의 기존 노드 B에 대응되며, UE 01)와 무선 채널로 연결된다. 그런데, 상기 ENB(120 내지 128)는 기존 노드 B보다 복잡한 역할을 수행한다. LTE에서는 인터넷 프로토콜을 통한 V()IP( Voice over IP)와 같은 실시간 서비스를 비룻한 모든 사용자 트래픽이 공용 채널 (shared channel)을 통해 서비스되므로, UE들의 상황 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 ENB(120 내지 128)가 담당한다. 최대 100 Mbps의 전송속도를 구현하기 위해서 LTE는 최대 20 MHz 대역폭에서 직교 주파수 분할 다중 방식 (Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 사용한다. 또한 단말의 채널 상태에 맞춰 변조 방식 (modulat ion scheme)과 채널 코딩를 (channel coding rate)을 결정하는 적응 변조 코딩 (Adaptive Modulation & Coding, 이하 A IC라 한다) 방식을 적용한다. Alternative Response (Article 26) 112 connects to the Internet Protocol (IP) network 114. The ENBs 120 to 128 correspond to existing Node Bs of the UMTS system and are connected to the UE 01 through a radio channel. However, the ENBs 120 to 128 play a more complicated role than the existing Node B. In LTE, all user traffic including real-time services such as V () IP (Voice over IP) over the Internet protocol is serviced through a shared channel, so a device for collecting and scheduling situation information of UEs is required. The ENB 120 to 128 is in charge of this. In order to realize a transmission rate of up to 100 Mbps, LTE uses orthogonal frequency division multiplexing (OFDM) as a radio access technology in a bandwidth of up to 20 MHz. In addition, a modulation ion scheme and an adaptive modulation < RTI ID = 0.0 > coding < / RTI >
도 2는 상술한 바와 같은 LTE 시스렘의 무선 프로토콜 구조를 도시한 도면이다.  2 is a diagram illustrating a radio protocol structure of the LTE system as described above.
도 2를 참조하면, LTE 시스렘의 무선 프로토콜은 PDCP(Packet Data Convergence Protocol 205, 240), RLC (Radio Link Control 210, 235), MAC(Medium Access Control 215,230), PHY (PHYSICAL 220, 225)으로 이루어진다.  Referring to FIG. 2, the wireless protocol of the LTE system is PDCP (Packet Data Convergence Protocol 205, 240), RLC (Radio Link Control 210, 235), MAC (Medium Access Control 215,230), PHY (PHYSICAL 220, 225). Is done.
상기 PDCP(Packet Data Convergence Protocol )(205, 240)는 IP 해더 압축 /복원, 비호ᅡ /역비호ᅡ, 무손실 핸드오버 지원 등의 동작을 담당한다. 상기 무손실 핸드 오버란 UE가 ENB 간의 핸드오버를 완료한 후, PDCP 계층이 수신하지 못한 PDCP SDU의 일련 번호를 수납한 PDCP 상태 보고 (PDCP STATUS REPORT)를 상대편 PDCP 계층으로 전송하고, 상대편 PDCP 계층이 상기 미수신 PDCP SDU를 재전송함으로써 성취된다.  The Packet Data Convergence Protocol (PDCP) 205 and 240 is responsible for operations such as IP header compression / restore, non-password / decryption, and lossless handover support. The lossless handover means that after the UE completes the handover between ENBs, a PDCP STATUS REPORT containing the serial number of the PDCP SDU that the PDCP layer has not received is transmitted to the other PDCP layer. This is accomplished by retransmitting the unreceived PDCP SDU.
상기 무선 링크 제어 (Radio Link Control , 이하 RLC라고 한다) (210, 235)는 PDCP PDU( Packet Data Unit, 이하 특정 프로토콜 계층 장치에서 출력되는 패킷을 상기 프로토콜의 PDU라고 청한다)를 적절한 크기로 재구성해서 ARQ 동작 등을 수행한다.  The radio link control (hereinafter referred to as RLC) (210, 235) reconfigures a PDCP PDU (Packet Data Unit (hereinafter referred to as PDU of the protocol) as an appropriate size) by reconfiguring it to an appropriate size. ARQ operation and so on.
상기 MAC(215,230)은 한 단말에 구성된 여러 RLC 장치들과 연결되며 RLC PDU들을 MAC PDU에 다중화하고, MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행한다.  The MACs 215 and 230 are connected to several RLC devices configured in one terminal, and multiplex RLC PDUs to MAC PDUs, and demultiplex RLC PDUs from MAC PDUs.
물리 (PHYSICAL, 이하 PHY라 한다)계층 (220, 225)은 상위 계층 데이터를 채널 코딩 및 변조한 후, 0FDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 한다. The physical layer (PHYSICAL, hereinafter referred to as PHY) layer 220 and 225 channel-codes and modulates upper layer data, and then forms a 0FDM symbol to a wireless channel. It transmits or demodulates, decodes, and channel-decodes an OFDM symbol received through a wireless channel.
그런데, 상술한 바와 같이 ENB간의 핸드오버가 완료된 후, 단말과 기지국은 PDCP 상태 보고 (PDCP STATUS REPORT)의 교환을 통해 데이터의 손실을 방지하는데, 이에 대해 순방향 전송을 일 에로 도시한 도 3을 참조하여 설명하기로 한다.  However, as described above, after the handover between the ENBs is completed, the terminal and the base station prevents data loss through the exchange of PDCP status reports. For this, refer to FIG. This will be described.
도 3을 참조하면, 소스 ENB(315)는 320 단계에서 단말 (305)에게 핸드 오버 (HANDOVER)를 명령한 후, 325 단계에서 성공적으로 전송되었는지 확인되지 않은 PDCP SDU들을 목적 ENB(310)로 전달한다. 소스 ENB(315)에서 목적 ENB(310)로의 핸드 오버를 수행한 단말 (305)은 330 단계에서 핸드 오버 완료 (HANDOVER COMPLETE) 머 I시지를 전송해서 목적 ENB(310)에게 핸드 오버가 성공하였음을 통보한다. 이에 따¾, 목적 ENB(310)는 335 단계에서 단말 (305)에게 역방향 전송 자원을 할당한다. 그러면, 단말 (305)은 340 단계에서 순방향 PDCP SDU 수신 상황을 수납한 PDCP 상태 보고를 목적 ENB(310)로 전송한다.  Referring to FIG. 3, the source ENB 315 commands a handover to the terminal 305 in step 320, and then delivers PDCP SDUs that have not been successfully transmitted to the destination ENB 310 in step 325. do. The terminal 305 that performed the handover from the source ENB 315 to the destination ENB 310 transmits a HANDOVER COMPLETE message in step 330 to indicate that the handover is successful to the destination ENB 310. Notify me. Accordingly, the target ENB 310 allocates the uplink transmission resource to the terminal 305 in step 335. Then, the terminal 305 transmits the PDCP status report containing the forward PDCP SDU reception status to the destination ENB 310 in step 340.
목적 ENB(310)는 345 단계에人 H 상기 수신된 PDCP 상태 보고를 참조해서 미수신된 PDCP SDU들을 검출해내고, 상기 검출된 PDCP SDU의 재전송 순방향 데이터를 우선 전송한 후, 초기 전송의 데이터를 전송하게 된다.  In step 345, the target ENB 310 detects unreceived PDCP SDUs by referring to the received PDCP status report, first transmits retransmission forward data of the detected PDCP SDU, and then transmits data of an initial transmission. Done.
상술한 바와 같이 PDCP 상태 보고 (PDCP STATUS REPORT)는 순방향 데이터 전송의 개시 역할을 하기 때문에, 가능한 빠른 시점에 전송하는 것이 바랑직하다.  As described above, since PDCP status report serves as an initiation of forward data transmission, it is desirable to transmit as soon as possible.
물론, 목적 ENB는 PDCP 상태 보고 (PDCP STATUS REPORT)를 수신하지 않은 상태에서도 순방향 데이터 전송을 재개할 수는 있지만, 이럴 경우 수신 성공 여부를 알지 못하는 상태에서 소스 ENB가 이미 전송한 PDCP SDU를 재전송해야 한다. 그런데, 상기 재전송하는 PDCP SDU 중에는 이미 단말이 성공적으로 수신한 PDCP SDU도 있을 수 있다. 상기 성공적으로 수신된 PDCP SDU를 재전송하는 것은 불필요한 중복 전송이 되므로 효을성 측면에서 바람직하지 않다.  Of course, the destination ENB can resume forward data transmission without receiving a PDCP STATUS REPORT, but in this case it must retransmit the PDCP SDUs already sent by the source ENB without knowing whether the reception was successful. do. However, among the retransmitted PDCP SDUs, there may be PDCP SDUs already successfully received by the UE. Retransmitting the successfully received PDCP SDU is unnecessary in terms of efficiency since unnecessary redundant transmission is required.
한편, 상기 PDCP 상태 보고 (PDCP STATUS REPORT)는 논리 채널별로 생성되며, 논리 채널 고유의 우선 순위에 따라 처리된다. 다시 말해서, 우선 순위가 낮은 논리 채널에서 생성된 PDCP 상태 보고 (PDCP STATUS REPORT)의 전송 시점은 우선 순위가 높은 논리 채널의 데이 Eᅥ들이 모두 전송된 이후가 된다. 따라서, 상기 우선 순위가 낮은 논리 채널에서는 순방향 데이터 전송이 지연되거나, 중복 전송될 수 있다는 문제점이 있다. 【발명의 내용】 Meanwhile, the PDCP status report is generated for each logical channel and processed according to the priority of the logical channel. In other words, the transmission time of PDCP STATUS REPORT generated in the low priority logical channel is after all the data E 의 of the high priority logical channel are transmitted. Accordingly, there is a problem in that forward data transmission may be delayed or redundantly transmitted in the low priority logical channel. [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
따라서, 상기한 문제점을 해결하기 위한 본 발명의 목적은 단말이 중요한 제어 데이터가 우선 순위가 낮음으로 인해 전송이 지연되지 않도록 함에 있다ᅳ  Accordingly, an object of the present invention for solving the above problems is that the terminal does not delay transmission due to the low priority of important control data.
본 발명의 또 하나의 목적은 단말이 핸드 오버에 후의 PDCP STATUS REPORT를 보다 신속하게 전송하는 방법 및 장치를 제공함에 있다.  Another object of the present invention is to provide a method and apparatus for a terminal to more quickly transmit a PDCP status report after handover.
【과제 해결 수단】 [Task solution]
상술한 바와 같은 본 발명의 일 실시 에는 이동 통신 시스렘에서 제어 데이터를 전송하는 방법에 있어서, 임시 우선 순위화 비트 레이트 (Prior tized Bit Rate, 이하 PBR이라 한다)을 적용할 논리 채널들의 제어 데이터 생성에 따라, 상기 제어 데이터에 상응하는 크기의 임시 PBR 토큰 (Token) 을 생성해서 해당 논리 채널의 PBR 토큰 (Token) 버킷 (bucket)에 주입하는 과정과, 상기 임시 PBR 토큰 (Token) 이 사용 가능한 논리 채널들의 소정 우선 순위에 따라, 할당된 자원을 통해 전송할 제어 데이터의 양을 결정하는 과정고ᅡ, 상기 결정된 양의 제어 데이터를 전송한 후, 상기 PBR 토큰 (Token) 버킷 (bucket)에 남아있는 임시 PBR 토큰 (Token)을 제거하는 과정을 포함한다.  According to one embodiment of the present invention as described above, in a method of transmitting control data in a mobile communication system, control data generation of logical channels to which a temporary prioritized bit rate (hereinafter referred to as PBR) is applied And generating a temporary PBR token of a size corresponding to the control data and injecting the temporary PBR token into a PBR token bucket of a corresponding logical channel, and the logic that the temporary PBR token can use. Determining the amount of control data to be transmitted through the allocated resource according to a predetermined priority of the channels; and, after transmitting the determined amount of control data, the temporary data remaining in the PBR token bucket. This includes removing the PBR token.
본 발명은 이동 통신 시스템에서 제어 데이터를 전송하는 장치에 있어서, 임시 PBR( Prioritized Bit Rate)을 적용할 논리 채널들의 제어 데이터를 생성하는 제어부와, 상기 생성된 제어 데이터에 상응하는 크기의 임시 PBR 토큰 (Token)을 생성해서 해당 논리 채널의 PBR 토큰 (Token) 버킷 (bucket)에 주입하고, 제어 데이터가 전송된 후에는 상기 PBR 토큰 (Token) 버킷 (bucket)에 남아있는 임시 PBR 토큰 (Token)을 제거하는 임시 PBR 토큰 (Token) 관리부와, 상기 임시 PBR 토큰 (Token)OI 사용 가능한 논리 채널들의 소정 우선 순위에 따라, 할당된 자원을 통해 전송할 제어 데이터의 양을 결정하는 논리 채널 우선 순위화부와, 상기 결정된 양의 제어 데이터를 무선 채널을 통해 전송하는 송신부를 포함한다.  The present invention provides an apparatus for transmitting control data in a mobile communication system, comprising: a control unit for generating control data of logical channels to which a temporary prioritized bit rate (PBR) is to be applied; and a temporary PBR token having a size corresponding to the generated control data. (Token) is created and injected into the PBR token bucket of the logical channel, and after the control data is transmitted, the temporary PBR token remaining in the PBR token bucket is transferred. A temporary PBR token management unit to remove, a logical channel prioritization unit to determine an amount of control data to be transmitted through an allocated resource according to a predetermined priority of the logical channels available for the temporary PBR token OI; And a transmitter for transmitting the determined amount of control data through a wireless channel.
【효과】 【effect】
본 발명은 PBR 토큰을 이용하여 신속히 전송해야 할 PDCP 상태 보고 (PDCP STATUS REPORT)와 같은 중요한 데이터를 우선적으로 전송할 수 있다는 이점이 있다. 【도면의 간단한 설명】 The present invention has the advantage that it is possible to preferentially transmit important data such as PDCP STATUS REPORT to be transmitted quickly using the PBR token. [Brief Description of Drawings]
도 1은 LTE 이동 통신 시스렘의 구조를 도시한 도면.  1 is a diagram illustrating the structure of an LTE mobile communication system.
도 2는 LTE 이동 통신 시스템의 무선 프로토콜 구조를 도시한 도면. 도 3은 무손실 핸드 오버의 일 예를 도시한 도면.  2 is a diagram illustrating a radio protocol architecture of an LTE mobile communication system. 3 illustrates an example of lossless handover.
도 4은 PBR 토큰 버킷 동작의 일 에를 도시한 도면.  4 illustrates an example of a PBR token bucket operation.
도 5는 임시 PBR 토큰을 이용해서 PDCP STATUS REPORT를 처리하는 단말의 동작을 도시한 도면.  5 is a diagram illustrating an operation of a terminal processing a PDCP status report using a temporary PBR token.
도 6 은 PDCP STATUS REPORT의 일 에를 도시한 도면.  6 shows an example of PDCP STATUS REPORT.
도 7은 임시 PBR 토큰을 이용해서 제 2 계층 제어 데이터를 처리하는 단말의 동작을 도시한 도면.  7 is a diagram illustrating an operation of a terminal for processing second layer control data using a temporary PBR token.
도 8 은 본 발명의 장치를 도시한 도면.  8 shows a device of the invention.
【발명의 실시를 위한 구체적인 내용】 [Specific contents for implementation of the invention]
이하 청부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐를 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러 °로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.  Hereinafter, the operation principle of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, if it is determined that a detailed description of a known function or configuration may unnecessarily flow the gist of the present invention, the detailed description thereof will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the present invention, and may be changed according to intention or custom of a user or an operator. Therefore, the definition should be made based on the contents throughout the specification.
또한, 본 발명을 설명함에 있어서 LTE 시스렘을 예로 사용하지만, 본 발명은 신호 스케줄링이 적용되는 모든 이동통신 시스템에 별다른 가감없이 적용 가능하다.  In addition, although the LTE system is used as an example in describing the present invention, the present invention can be applied to all mobile communication systems to which signal scheduling is applied without any significant addition or subtraction.
본 발명의 일실시 예에 따른 이동통신 시스템은, 우선 순위가 낮은 논리 채널에 해당하는 PDCP 상태 보고 (PDCP STATUS REPORT)와 같은 중요한 제어 데이터가 지연되는 것을 방지하기 위해, 생성된 PDCP 상태 보고 (PDCP STATUS REPORT)에 상응하는 크기를 가지는 PBR(PNor i t ized Bit Rate) 토큰을 해당 논리 채널의 PBR 토큰 (Token) 버킷 (bucket)에 주입하여 전송하는 방법 및 장치를 제시한다.  The mobile communication system according to an embodiment of the present invention, the PDCP status report (PDCP) generated to prevent the delay of important control data, such as PDCP STATUS REPORT corresponding to a low-priority logical channel A method and apparatus for injecting a PBR (PNor itized Bit Rate) token having a size corresponding to a STATUS REPORT into a PBR token bucket of a corresponding logical channel and transmitting the same are provided.
상기 PBR은 우선 순위가 낮은 논리 채널의 데이터의 전송이 지속적으로 지연되는 것을 막기 위해, 논리 채널의 일반적인 우선 순위에 관계없이 우선적으로 전송할 수 있는 권리이다. 상기 PBR은 우선 순위가 낮은 논리 채널들 중, 정기적으로 데이터를 전송해야 할 필요가 있는 서비스와 연결된 논리 채널에 부여된다. 상기 PBR은 토큰 (Token) 버킷 (bucket) 형식으로 동작하는데, 이에 대해 도 4를 창조하여 설명하기로 한다. The PBR is a right to be preferentially transmitted regardless of the general priority of the logical channel in order to prevent continuous transmission of data of the lower priority logical channel. The PBR is assigned to a logical channel connected to a service that needs to periodically transmit data among logical channels of low priority. The PBR operates in the form of a token bucket, by creating FIG. Let's explain.
도 4를 참조하면, PBR이 허용된 논리 채널은 소정 크기의 버킷 (405)을 구비하고, 상기 PBR 버킷에는 소정 주기마다 소정 크기의 PBR 토큰이 주입된다 (410). 상기 PBR 토큰의 크기가 증가하는 비을은 논리 채널 구성 시 설정된다. PBR이 가능한 논리 채널에서 전송되는 상기 PBR 토큰 크기만큼의 데이터는 일반적인 우선 순위보다 높은 우선 순위로 전송한다. PBR은 모든 논리 채널에 허용되는 것은 아니며, PBR 토큰은 소정의 주기마다 소정의 크기만큼 증가되도록 설정된다. 본 발명에서는 상기 PBR을 이용해서 수신 성공 여부 정보 (PDCP STATUS REPORT)를 전송할 수 있도록, 수신 성공 여부 정보 (PDCP STATUS REPORT)가 생성되는 논리 채널에 대해서는 임시 PBR 토큰을 할당한다. 상기 임시 PBR 토큰은 일반적인 토큰과 달리 주기적으로 증가하지 않고, 수신 성공ᅳᅳ 여부 정보 (PDCP STATUS REPORT)와 같은 제어 정보가 생성될 때에만 소정의 크기만큼 증가한다. 따라서, 소정의 이벤트가 발생됩이 감지되면, 상기 임시 PBR 토큰이 생성되어 PBR 버킷에 주입된다. 상기 임시 PBR 토큰은 향후 수신 성공 여부 정보 (PDCP STATUS REPORT)와 같이 우선 순위는 낮지만 신속한 전송을 요하는 데이터의 전송에 사용된다. 도 5는 상술한 바와 같은 본 발명의 실시 에에 0:ᅡ른 단말의 동작을 설명하기 위한 순서도이다. Referring to FIG. 4, a PBR-allowed logical channel includes a bucket 405 of a predetermined size, and a PBR token of a predetermined size is injected into the PBR bucket at predetermined cycles (410). The rate at which the size of the PBR token increases is set at the logical channel configuration. Data equal to the size of the PBR token transmitted on a PBR capable logical channel is transmitted at a higher priority than a general priority. PBR is not allowed for all logical channels, and PBR tokens are set to increase by a predetermined amount at predetermined intervals. In the present invention, a temporary PBR token is allocated to a logical channel in which reception success status information (PDCP status report) is generated so that reception success status information (PDCP status report) can be transmitted using the PBR. It is increased only by a predetermined size without increasing the temporary PBR token to the token, unlike the general periodic, when the reception success eu control information such as information indicating whether eu (PDCP STATUS REPORT) is generated. Therefore, when a predetermined event is detected, the temporary PBR token is generated and injected into the PBR bucket. The temporary PBR token is used for the transmission of data requiring a low priority but rapid transmission, such as PDCP STATUS REPORT in the future. Fig. 5 is a flowchart for explaining the operation of the terminal 0 in accordance with the embodiment of the present invention as described above.
도 5를 참조하면, 505 단계에서 단말은 임시 PBR을 적용할 하나 이상의 논리 채널들을 인지하고, 상기 인지된 논리 채널들 각각의 임시 PBR의 크기를 인지한다. 상기 임시 PBR은 PDCP 상태 보고 (PDCP STATUS REPORT)가 생성될 가능성이 있는 논리 채널, 다시 말해서 RLC AM (Acknowledge Mode)로 동작하는 논리 채널에서 사용될 수 있다. 상기 임시 PBR의 크기는 PDCP 상태 보고 (PDCP STATUS REPORT)의 크기에 맞춰 결정되는 것이 바람직하므로, 기지국이 상기 임시 PBR의 크기를 따로 설정하지 않고, 단말이 상기 PDCP 상태 보고 (PDCP STATUS REPORT) 발생시 미리 정해진 를에 따라 결정할 수도 있다. 또한, 상기 505 단계는 호 설정 과정에서 진행될 수 있으며, 단말은 호 설정 단계가 완료되면 통상적인 절차에 따라서 순방향 데이터 수신 및 역방향 데이터 전송을 수행한다.  Referring to FIG. 5, in step 505, the UE recognizes one or more logical channels to which the temporary PBR is to be applied and recognizes the size of the temporary PBR of each of the recognized logical channels. The temporary PBR may be used in a logical channel in which PDCP STATUS REPORT is likely to be generated, ie in a logical channel operating in RLC AM (Acknowledge Mode). Since the size of the temporary PBR is preferably determined according to the size of PDCP status report, the base station does not set the size of the temporary PBR separately, and when the terminal generates the PDCP status report in advance, The decision may be made according to In addition, step 505 may be performed in a call setup process, and the terminal performs forward data reception and reverse data transmission according to a conventional procedure when the call setup step is completed.
510 단계에서 핸드 오버가 시작되면, 단말은 통상적인 절차에 따라서 핸드 오버를 수행한다. 상기 핸드 오버는 단말이 새로운 목적 기지국으로 소정의 제어 메시지를 전송함으로써 완료되며, 단말은 핸드 오버를 완료한 후 상기 새로운 기지국에서 데이터 송수신을 재개하기 위해서 필요한 동작, 에를 들어 515 단계에서 무손실 핸드 오버가 요구되는 논리 채널들의 PDCP 상태 보고 (PDCP STATUS REPORT)를 생성하는 동작을 수행한다. If the handover is started in step 510, the terminal performs the handover according to a conventional procedure. The handover is completed by the terminal transmitting a predetermined control message to the new target base station, and the terminal performs an operation necessary for resuming data transmission and reception at the new base station after completing the handover, for example, lossless handover in step 515. Generates PDCP STATUS REPORT of the required logical channels.
상기 생성되는 PDCP 상태 보고 (PDCP STATUS REPORT)의 일 에가 도 6에 도시되어 있다.  An example of the generated PDCP STATUS REPORT is shown in FIG. 6.
도 6을 참조하면, 상기 PDCP 상태 보고 (PDCP STATUS REPORT) (605)에는 통상적인 PDCP 해더 (610), 기준 PDCP SN(615), 그리고 비트맵 (620)이 수남된다. 기준 PDCP SN(615)은 비트맵 (620)의 각 비트가 대응되는 PDCP SN에 대한 기준값이다. 상기 비트맵 (620)의 '0'은 재전송이 필요 없음을 지시하고 Ί'은 재전송이 필요함을 지시한다. 그리고, 상기 비트맵 (620)의 크기는 재전송이 필요한 PDCP SDU들 간의 거리 등에 따라서 가변적이다. 상기 PDCP 상태 보고 (PDCP STATUS REPORT) (605)는 단말이 핸드 오버를 지시 받은 직후 생성될 수도 있고, 핸드 오버를 완료한 후 생성될 수도 있다. 무선 채널을 통해 전송되기에 앞서 상기 PDCP 상태 보고 (PDCP STATUS REPORT) (605)에는 RLC 해더와 같은 하위 계층의 해더 (625)가 부착된다.  Referring to FIG. 6, the PDCP STATUS REPORT 605 includes a conventional PDCP header 610, a reference PDCP SN 615, and a bitmap 620. The reference PDCP SN 615 is a reference value for the PDCP SN to which each bit of the bitmap 620 corresponds. '0' of the bitmap 620 indicates that retransmission is not necessary and Ί indicates that retransmission is necessary. The size of the bitmap 620 is variable according to the distance between PDCP SDUs that require retransmission. The PDCP status report 605 may be generated immediately after the UE is instructed to handover or may be generated after completing the handover. Prior to transmission over the wireless channel, the PDCP STATUS REPORT 605 is attached with a header 625 of a lower layer, such as an RLC header.
다시 도 5를 참조하면, 520 단계에서 단말은 상기 생성된 PDCP 상태 보고 (PDCP STATUS REPORT)의 크기에 상응하는 크기의 임시 PBR 토큰을 생성해서 해당 논리 채널의 PBR 토큰 버킷에 주입한다. 임의의 논리 채널 X의 임시 PBR 토큰의 크기는 하기의 <수학식 1〉과 같이 계산된다.  Referring back to FIG. 5, in step 520, the UE generates a temporary PBR token of a size corresponding to the size of the generated PDCP status report and injects it into the PBR token bucket of the corresponding logical channel. The size of the temporary PBR token of any logical channel X is calculated as in Equation 1 below.
【수학식 1】  [Equation 1]
논리 채널 X의 임시 PBR 토큰의 크기 = (논리 채널 X의 PDCP STATUS REPORT의 크기) + RLC 해더 크기 + n  Size of temporary PBR token in logical channel X = (size of PDCP status report in logical channel X) + RLC header size + n
상기 〈수학식 1〉에서 n은 예상치 못한 하위 계층 해더가 PDCPIn Equation 1, n indicates that the unexpected lower layer header is PDCP
STATUS REPORT에 부가되는 경우에 대비하여 충분한 PBR 토큰을 제공하기 위한 것으로, 2 바이트 정도의 작은 값을 가질 수 있다. 상기 n은 호 설정 과정에서 미리 설정 될 수 있다. To provide sufficient PBR token in case of addition to STATUS REPORT, it can have a small value of about 2 bytes. N may be preset in the call setup process.
다시 도 5를 참조하면, 520 단계를 수행한 후, 단말은 역방향 데이터 전송 고ᅡ정을 수행한다.  Referring back to FIG. 5, after performing step 520, the terminal performs reverse data transmission fixation.
525 단계에서 단말은 기지국에게 역방향 전송 자원 할당을 요청하여 할당 받는다. 역방향 전송 자원을 할당 받은 단말은 530 단계로 진행해서 논리 채널 우선 순위화 (logical channel prior i t izat ion)을 수행한다. 상기 논리 채널 우선 순위호ᅡ( logical channel pr ior i t izat ion)은 할당된 전송 자원을 사용해서 전송할 데이터를 결정함에 있어서, 논리 채널별 우선 순위와 저장된 데이 Eᅥ의 양을 고려해서, 우선 순위가 높은 논리 채널의 데이터가 최대한 않이 전송되도록 하는 과정이다. 단말은 우선 임시 PBR 토큰이 사용 가능한 논리 채널들의 우선 순위에 Iᅡ라 전송할 데이터의 양을 결정한다. 상기 전송할 데이터의 양은 임시 PBR 토큰의 양과 저장된 데이터의 양 및 전송 자원의 잔여 공간의 양 중 작은 값이다. 상기 전송 자원의 잔여 공간은 할당 받은 전송 자원을 통해 전송할 데이터의 크기에서 이미 데이터가 점유하고 있는 공간을 제외한 공간을 의미한다. 상기 임시 PBR에 해당하는 데이터를 모두 처리하고도 전송 자원의 잔여 공간이 남는다면, 단말은 전송할 데이터가 존재하는 논리 채널의 우선 순위에 따라, 전송할 수 있는 전송 자원의 잔여 공간의 양과 전송할 데이터의 양 중 작은 값의 양만콤의 데이터를 선택하는 과정을 전송 자원의 잔여 공간이 0 바이트가 될 때까지 반복한다. 상술한 바와 같은 논리 채널 우선 순위화 (logical channel prioritization) 과정이 완료되면, 단말은 535 단계에서 상기 결정된 논리 채널 우선 순위 결과에 따라, 역방향 전송 자원을 이용해서 역방향 데이터를 전송한다. In step 525, the UE requests and allocates the uplink transmission resource to the base station. The terminal allocated with the uplink transmission resource proceeds to step 530 and performs logical channel prioritization. The logical channel prioritization channel (logical channel priority it) is determined in the data to be transmitted by using the allocated transmission resources, considering the priority of each logical channel and the amount of stored data E 저장된, This process ensures that the data of the high logical channel is transmitted as soon as possible. The terminal first determines the amount of data to be transmitted based on the priority of logical channels for which the temporary PBR token is available. The amount of data to be transmitted is the smaller of the amount of temporary PBR token, the amount of stored data and the amount of remaining space of the transmission resource. The remaining space of the transmission resource means a space excluding a space already occupied by the data in the size of data to be transmitted through the allocated transmission resource. If the remaining space of the transmission resource remains even after processing all the data corresponding to the temporary PBR, the terminal according to the priority of the logical channel in which the data to be transmitted, the amount of remaining space and the amount of data to be transmitted The process of selecting the data of the small amount of only comb is repeated until the remaining space of the transmission resource becomes 0 bytes. When the logical channel prioritization process as described above is completed, the UE transmits backward data using the uplink transmission resource according to the determined logical channel priority result in step 535.
540 단계에서 단말은 임시 PBR 토큰이 주입된 논리 채널에서 PDCP STATUS REPORT의 전송이 완료되었는지 검사한다. 상기 540 단계의 검사 결과, PDCP STATUS REPORT의 전송이 완료되었다면, 단말은 545 단계로 진행해서 해당 논리 채널의 PBR 토큰 버킷에서 남아있는 임시 PBR 토큰을 모두 제거한다. 그리고, 단말은 525 단계로 진행하여 역방향 전송 자원이 할당될 때까지 대기한다. 그런데, 상기 540 단계의 PDCP STATUS REPORT의 전송이 완료된 논리 채널이 없다면, 단말은 곧 바로 525 단계로 진행한다. 단말은 상기 525 단계에서 545 단계의 과정을 모든 논리 채널들의 PDCP STATUS REPORT들이 전송 완료될 때까지 반복한다. 상기에는 핸드 오버 완료한 단말의 순방향 데이터 전송을 일 에로 들어 설명하였으나, 우선 순위가 낮은 논리 채널에서 발생한 중요한 데이터를 전송하는 모든 경우에 본 발명의 PBR 토큰을 사용하는 방법에 적용될 수 있다.  In step 540, the UE checks whether the transmission of the PDCP status report is completed in the logical channel into which the temporary PBR token is injected. In step 540, if the transmission of the PDCP status report is completed, the terminal proceeds to step 545 and removes all the remaining temporary PBR tokens from the PBR token bucket of the corresponding logical channel. In step 525, the terminal waits until a reverse transmission resource is allocated. However, if there is no logical channel in which the transmission of the PDCP status report in step 540 is completed, the terminal immediately proceeds to step 525. The terminal repeats the process from step 525 to step 545 until PDCP status reports of all logical channels are transmitted. In the above description, the forward data transmission of the handover-completed terminal has been described as an example, but it can be applied to the method of using the PBR token of the present invention in all cases of transmitting important data generated in a low-priority logical channel.
특히, 본 방법은 일반적인 2 계층 제어 데이터 처리에도 적용될 수 있는데, 2 계층 제어 데이터란 PDCP나 RLC와 같은 2 계층 프로토콜 장치에서 발생하는 제어 데이터로, PDCP STATUS REPORT나 RLC STATUS REPORT 등이 대표적이다.  In particular, the method may be applied to general two-layer control data processing. The two-layer control data is control data generated in a two-layer protocol device such as PDCP and RLC, and typical examples thereof include PDCP STATUS REPORT and RLC STATUS REPORT.
그러면, 도 7을 참조하여, 임시 PBR을 사용해서 2 계층 제어 데이터를 신속하게 전송하는 단말의 동작을 설명하기로 한다.  Next, referring to FIG. 7, an operation of a terminal for quickly transmitting layer 2 control data using a temporary PBR will be described.
도 7을 참조하면, 705 단계에서 단말은 임시 PBR 토큰을 적용할 제어 데이터의 종류를 인지한다. 에를 들어, 모든 2 계층 제어 데이터에 대해서 임시 PBR 토큰을 적용하도록 설정되거나, 특정 2 계층 제어 데이터에 대해서는 임시 PBR 토큰을 적용하지 않도록 설정될 수도 있다.Referring to FIG. 7, in step 705, the UE recognizes the type of control data to which the temporary PBR token is applied. For example, it may be set to apply a temporary PBR token to all two-layer control data, or it may be a specific two-layer control. The data may be set not to apply the temporary PBR token.
710 단계에서 임시 PBR 토큰을 주입하도록 설정된 소정의 제어 데이터가 생성되면, 단말은 715 단계에서 상기 제어 데이터가 발생한 논리 채널의 PBR 토큰 버킷에 소정의 임시 PBR 토큰을 주입한다. 상기 임시 PBR 토큰의 크기는 발생한 제어 데이터의 크기에 소정의 값을 더한 것이 되거나, 호 설정 고ᅡ정에서 미리 정해진 값이 될 수 있다. If predetermined control data configured to inject a temporary PBR token is generated in step 710, the UE injects a predetermined temporary PBR token into a PBR token bucket of a logical channel in which the control data has occurred in step 715. The size of the temporary PBR token may be a predetermined value added to the size of the generated control data, or may be a predetermined value at the call setup.
720 단계에서 역방향 전송 자원을 할당 받으면 단말은 725 단계에人 H 논리 채널 우선 순위화 (logical channel prior i t izat ion)을 수행하고 역방향 데이터를 전송한다. 730 단계에서 단말은 임시 PBR 토큰의 생성을 초래했던 제어 데이터의 전송이 완료되었는지 검사한다. 상기 730 단계의 검사결고ᅡ 임시 PBR 토큰의 생성을 초래했던 제어 데이터의 전송이 완료되지 않았다면, 단말은 720 단계로 돌아간다. 그런데, 상기 730 단계의 검사결고ᅡ, 임시 PBR 토큰의 생성을 초래했던 제어 데이터의 전송이 완료되었다면, 단말은 735 단계로 진행해서 해당 논리 채널에서 남아있는 임시 PBR 토큰을 모두 제거하고, 720 단계로 돌아간다. 단말은 상기 720 단계에서 735 단계의 과정을 제어 데이터의 전송이 모두 완료될 때까지 반복한다.  If the backward transmission resource is allocated in step 720, the UE performs logical channel prioritization (H channel) prior to step 725 and transmits backward data. In step 730, the terminal checks whether the transmission of the control data that caused the generation of the temporary PBR token is completed. If the transmission of the control data, which resulted in the generation of the test result ᅡ temporary PBR token of step 730, is not completed, the terminal returns to step 720. However, if the inspection result of step 730 and transmission of the control data that caused the generation of the temporary PBR token are completed, the terminal proceeds to step 735 to remove all the temporary PBR tokens remaining in the corresponding logical channel, and proceeds to step 720. Go back. The terminal repeats the process from step 720 to step 735 until all transmission of control data is completed.
도 8은 본 발명의 실시 에에 따른 단말 장치의 구조를 도시하였다. 하기에서는 이해를 돕기 위해 PDCP STATUS REPORT 또는 RLC STATUS REPORT인 제어 데이터를 전송하는 단말 장치를 일 에로 들어 설명하나, 임시 PBR 토큰을 사용하여 중요한 제어 데이터를 전송하도록 하는 다른 장치 구성도 가능함을 밝혀둔다.  8 illustrates a structure of a terminal device according to an embodiment of the present invention. In the following description, a terminal device for transmitting control data, which is PDCP STATUS REPORT or RLC STATUS REPORT, will be described as an example. However, it will be understood that other device configurations for transmitting important control data using a temporary PBR token are also possible.
단말 장치는 PDCP 송신 프로세스 (805), PDCP 제어부 (820), PDCP 수신 프로세스 (835), RLC 송신 프로세스 (810), RLC 제어부 (825), RLC 수신 프로세스 (830), 논리 채널 우선 순위화부 (815), 다중화 및 역다중화 장치 (840), 임시 PBR 토큰 관리부 (845), 송수신 장치 (850)로 구성된다.  The terminal apparatus may include a PDCP transmission process 805, a PDCP control unit 820, a PDCP reception process 835, an RLC transmission process 810, an RLC control unit 825, an RLC reception process 830, and a logical channel prioritization unit 815. ), A multiplexing and demultiplexing apparatus 840, a temporary PBR token management unit 845, and a transmission / reception apparatus 850.
PDCP 송신 프로세스 (805)는 상위 계층 패킷의 해더를 압축하고 비화하는 등의 동작을 담당하고, PDCP 수신 프로세스 (835)는 RLC 수신 프로세스 (830)가 전달한 RLC SDU를 역비화하고 해더를 복원하는 등의 동작을 담당한다. PDCP 수신 프로세스 (835)는 또한 핸드 오버 중 미수신 PDCP SDU 때문에 순서가 정렬되지 않은 PDCP SDU들을 저장하는 역할을 담당한다.  The PDCP transmission process 805 is responsible for compressing and secreting headers of higher layer packets, and the PDCP receiving process 835 reverses the RLC SDUs delivered by the RLC receiving process 830 and restores the headers. Is in charge of the operation. PDCP receiving process 835 is also responsible for storing PDCP SDUs out of order due to unreceived PDCP SDUs during handover.
PDCP 제어부 (820)는 핸드 오버 중, 흑은 핸드 오버가 완료된 후 PDCP 수신 프로세스 (835)의 수신 베ᅥ에 저장된 PDCP SDU들의 일련 번호를 검사해서 PDCP STATUS REPORT를 생성한다. RLC 송신 프로세스 (810)는 PDCP PDU에 대해서 프레이밍을 수행하고, 즉 PDCP PDU를 연접하거나 분할해서 적절한 크기의 RLC PDU로 구성하고, RLC ACK을 수신할 때까지 전송한 RLC PDU를 재전송 베!ᅥ에 저장한다. RLC 수신 프로세스 (830)는 역다중화 장치 (840)로부터 수신한 RLC PDU를 수신 베!ᅥ에 저장하고, 조립 가능한 RLC PDU들을 PDCP PDU로 조립해서 PDCP 수신 프로세스 (835)로 전달하는 동작을 수행한다. RLC 제어부 (825)는 RLC 수신 프로세스 (830)의 수신 베 Iᅥ에 저장된 RLC PDU들의 일련 번호를 검사해서, 적절한 시점에 미수신 RLC PDU들의 재전송을 요구하는 RLC STATUS REPORT를 생성한다. The PDCP control unit 820 generates a PDCP STATUS REPORT by checking the serial numbers of PDCP SDUs stored in the reception packet of the PDCP reception process 835 after the handover is completed and the black handover is completed. The RLC transmission process 810 performs framing on the PDCP PDUs, that is, concatenates or divides the PDCP PDUs, configures them into appropriately sized RLC PDUs, and retransmits the transmitted RLC PDUs until an RLC ACK is received. Save it. The RLC receiving process 830 stores the RLC PDUs received from the demultiplexing device 840 in a receiving packet, assembles the assembleable RLC PDUs into PDCP PDUs, and delivers them to the PDCP receiving process 835. . The RLC control unit 825 examines the serial numbers of the RLC PDUs stored in the receiving bay I 'of the RLC receiving process 830, and generates an RLC STATUS REPORT requesting retransmission of unreceived RLC PDUs at an appropriate time.
상기 PDCP 프로세스, RLC 프로세스, PDCP 제어부, RLC 제어부는 논리 채널 당 하나씩 구비된다.  One PDCP process, one RLC process, one PDCP control unit, and one RLC control unit are provided per logical channel.
논리 채널 우선 순위화부 (815)는 논리 채널의 PBR 토큰 상태, 우선 순위, 저장된 데이터의 양, 전송할 데이터의 잔여 공간을 고려해서, 소정의 방식에 따라 각 논리 채널에서 전송할 데이터의 크기를 결정하는 동작을 수행한다. 임시 PBR 토큰 관리부 (845)는 필요시 각 논리 채널의 PBR 토큰 버킷에 임시 PBR 토큰을 주입하거나 제거하는 동작을 수행한다. 다중화 및 역다중화 장치 (840)는 다수의 논리 채널들에서 생성된 RLC PDU들을 하나의 MAC PDU로 다중화하거나, MAC PDU로부터 RLC PDU들을 역다중화하는 장치이다. 송수신 장치 (850)는 소정의 절차어 i CCᅡ라서 MAC PDU를 무선 채널을 통해 송신하거나 수신하는 장치이다.  The logical channel prioritizer 815 determines the size of data to be transmitted in each logical channel according to a predetermined method in consideration of the PBR token status, priority of the logical channel, the amount of stored data, and the remaining space of the data to be transmitted. Do this. The temporary PBR token manager 845 injects or removes the temporary PBR token into the PBR token bucket of each logical channel when necessary. The multiplexing and demultiplexing apparatus 840 is an apparatus for multiplexing RLC PDUs generated in multiple logical channels into one MAC PDU or demultiplexing RLC PDUs from a MAC PDU. The transceiver 850 is a device that transmits or receives a MAC PDU through a wireless channel because it is a predetermined procedure i CC '.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
이동 통신 시스렘에서 제어 데이터를 전송하는 방법에 있어서, 임시 PBR(PNoritized Bit Rate)을 적용할 논리 채널들의 제어 데이터 생성에 CEᅡ라, 상기 제어 데이터에 상응하는 크기의 임시 PBR 토큰을 생성해서 해당 논리 채널의 PBR 토큰 버킷에 주입하는 과정고ᄂ  In a method of transmitting control data in a mobile communication system, the control data generation of logical channels to which a temporary PBR (PNoritized Bit Rate) is to be applied is generated, and a temporary PBR token having a size corresponding to the control data is generated to generate a corresponding logic. Injecting into the channel's PBR token bucket
상기 임시 PBR 토큰이 사용 가능한 논리 채널들의 소정 우선 순위에 따라, 할당된 자원을 통해 전송할 제어 데이 Eᅥ의 양을 결정하는 고ᅡ정과, 상기 결정된 양의 제어 데이터의 전송이 완료된 후, 상기 PBR 토큰 버킷에 남아있는 임시 PBR 토큰을 제거하는 고ᅡ정을 포함함을 특징으로 하는 제어 데이터 전송 방법.  A fixed value for determining an amount of control data E 'to be transmitted through an allocated resource according to a predetermined priority of logical channels for which the temporary PBR token is available; and after the transmission of the determined amount of control data is completed, the PBR token A method of transmitting control data, characterized in that it includes a fixation that removes the temporary PBR token remaining in the bucket.
【청구항 2】 [Claim 2]
제 1항에 있어서, 상기 제어 데이터는  The method of claim 1, wherein the control data is
PDCP STATUS REPORT 또는 RLC STATUS REPORT임을 특징으로 하는 제어 데이터 전송 방법.  PDCP STATUS REPORT or RLC STATUS REPORT, characterized in that the control data transmission method.
【청구항 3] [Claim 3]
제 2항에 있어서, 임의의 논리 채널의 임시 PBR 토큰의 크기는 하기의 <수학식 2>에 의해 산출됨을 특정으로 하는 제어 데이터 전송 방법.  The method of claim 2, wherein the size of the temporary PBR token of any logical channel is calculated by Equation 2 below.
【수학식 2】  [Equation 2]
논리 채널 X의 임시 PBR 토큰의 크기 二 (논리 채널 X의 PDCP STATUS REPORT의 크기) + RLC 해더 크기 + n  Size of temporary PBR token of logical channel X 二 (size of PDCP STATUS REPORT of logical channel X) + RLC header size + n
상기 <수학식 2>에서 n은 임의의 크기의 비트 수.  In Equation 2, n is the number of bits of arbitrary size.
【청구항 4】 [Claim 4]
제 1항에 있어서, 상기 전송할 제어 데이터의 양은  The method of claim 1, wherein the amount of control data to be transmitted is
상기 전송할 데이터의 양은 상기 임시 PBR 토큰의 양과 저장된 제어 데이터의 양 및 할당된 자원의 잔여 공간 중 작은 값임을 특징으로 하는 제어 데이터 전송 방법.  The amount of data to be transmitted is a control data transmission method, characterized in that the smaller of the amount of the temporary PBR token, the amount of stored control data and the remaining space of the allocated resources.
【청구항 5】 [Claim 5]
이동 통신 시스렘에서 제어 데이터를 전송하는 장치에 있어서, 임시 PBR(Prioritized Bit Rate)을 적용할 논리 채널들의 제어 데이터를 생성하는 제어부와, A device for transmitting control data in a mobile communication system, the control of logical channels to apply a temporary PBR (Prioritized Bit Rate) A control unit for generating data;
상기 생성된 제어 데이터에 상응하는 크기의 임시 PBR 토큰을 생성해서 해당 논리 채널의 PBR 토큰 버킷에 주입하고, 제어 데이터의 전송이 완료된 후에는 상기 PBR 토큰 버킷에 남아있는 임시 PBR 토큰을 제거하는 임시 PBR 토큰 관리부와,  Create a temporary PBR token of a size corresponding to the generated control data and inject it into the PBR token bucket of the logical channel, and after the transmission of the control data is completed, remove the temporary PBR token remaining in the PBR token bucket Token management department,
상기 임시 PBR 토큰이 사용 가능한 논리 채널들의 소정 우선 순위에 따라, 할당된 자원을 통해 전송할 제어 데이터의 양을 결정하는 논리 채널 우선 순위화부와,  A logical channel prioritization unit for determining an amount of control data to be transmitted through allocated resources according to predetermined priorities of logical channels available for the temporary PBR token;
상기 결정된 양의 제어 데이터를 무선 채널을 통해 전송하는 송신부를 포함함을 특징으로 하는 제어 데이터 전송 장치.  And a transmitter for transmitting the determined amount of control data through a wireless channel.
【청구항 6】 [Claim 6]
제 5항에 있어서, 상기 제어 데이터는  The method of claim 5, wherein the control data
PDCP STATUS REPORT 또는 RLC STATUS REPORT임을 특징으로 하는 제어 데이터 전송 장치.  PDCP STATUS REPORT or RLC STATUS REPORT, characterized in that the control data transmission device.
【청구항 7】 [Claim 7]
제 6항에 있어서, 상기 임시 PBR 토큰 관리부는  The method of claim 6, wherein the temporary PBR token management unit
논리 채널의 임시 PBR 토큰의 크기를 하기의 〈수학식 3>에 의해 산출함을 특징으로 하는 제어 데이터 전송 장치.  A control data transmission device characterized in that the size of the temporary PBR token of the logical channel is calculated by the following equation (3).
【수학식 3]  [Equation 3]
논리 채널 X의 임시 PBR 토큰의 크기 = (논리 채널 X의 PDCP STATUS REPORT의 크기) + RLC 해더 크기 + n  Size of temporary PBR token in logical channel X = (size of PDCP status report in logical channel X) + RLC header size + n
상기 <수학식 2>에서 n은 임의의 크기의 비트 수.  In Equation 2, n is the number of bits of arbitrary size.
【청구항 8】 [Claim 8]
제 5항에 있어서, 상기 논리 채널 우선 순위화부는  The method of claim 5, wherein the logical channel prioritization unit
전송할 제어 데이터의 양을 상기 임시 PBR 토큰의 양과 저장된 제어 데이터의 양 및 할당된 자원의 잔여 공간 중 작은 값임을 특징으로 하는 제어 데이터 전송 방법.  The amount of control data to be transmitted is a smaller value of the amount of the temporary PBR token, the amount of stored control data and the remaining space of the allocated resources.
PCT/KR2009/000711 2008-02-13 2009-02-13 Method and apparatus for transmitting data by using prioritized bit rate in mobile communication system WO2009102166A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080013228A KR20090087779A (en) 2008-02-13 2008-02-13 Method and apparatus for transmitting data using pbr in mobile communication system
KR10-2008-0013228 2008-02-13

Publications (2)

Publication Number Publication Date
WO2009102166A2 true WO2009102166A2 (en) 2009-08-20
WO2009102166A3 WO2009102166A3 (en) 2009-11-05

Family

ID=40957390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000711 WO2009102166A2 (en) 2008-02-13 2009-02-13 Method and apparatus for transmitting data by using prioritized bit rate in mobile communication system

Country Status (2)

Country Link
KR (1) KR20090087779A (en)
WO (1) WO2009102166A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3598797A4 (en) * 2017-03-13 2020-11-18 ZTE Corporation Method and device for data transmission, and computer storage medium
WO2023206588A1 (en) * 2022-04-30 2023-11-02 Qualcomm Incorporated Control information prioritization techniques for multiple logical channels

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050053070A1 (en) * 2002-04-09 2005-03-10 Jarkko Jouppi Transfer of packet data to wireless terminal
US20070030819A1 (en) * 2003-10-10 2007-02-08 Thomson Licensing Prioritizing udp over tcp traffic by slowing down the tcp transmission rate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050053070A1 (en) * 2002-04-09 2005-03-10 Jarkko Jouppi Transfer of packet data to wireless terminal
US20070030819A1 (en) * 2003-10-10 2007-02-08 Thomson Licensing Prioritizing udp over tcp traffic by slowing down the tcp transmission rate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3598797A4 (en) * 2017-03-13 2020-11-18 ZTE Corporation Method and device for data transmission, and computer storage medium
US11533775B2 (en) 2017-03-13 2022-12-20 Zte Corporation Method and device for data transmission, and computer storage medium
US11864275B2 (en) 2017-03-13 2024-01-02 Zte Corporation System for data transmission
WO2023206588A1 (en) * 2022-04-30 2023-11-02 Qualcomm Incorporated Control information prioritization techniques for multiple logical channels

Also Published As

Publication number Publication date
KR20090087779A (en) 2009-08-18
WO2009102166A3 (en) 2009-11-05

Similar Documents

Publication Publication Date Title
AU2006229508B2 (en) Method of generating lower layer data block in wireless mobile communication system
AU2005253495B2 (en) Transmitting and receiving control protocol data unit having processing time information
JP5281700B2 (en) Wireless communication method for transmission of a sequence of data units between a wireless device and a network
RU2461147C2 (en) Method of processing radio protocol in mobile communication system and mobile communication transmitter
EP2811681B1 (en) Method for moving a receive window in a radio access network
KR101635433B1 (en) A method and apparatus for processing control message which requests retransmitting data
KR20110066468A (en) Device and method for contention based access in wireless communication system
KR20070102166A (en) Method and apparatus for inferencing status report generation time in a mobile communication system
KR20060090191A (en) Method for requesting and transmitting status report of a mobile communication system and therefor apparatus
KR20090062758A (en) Method and apparatus for handover in mobile telecommunication system
KR20090099485A (en) Method for transmitting pdcp status report
US20110019568A1 (en) Method and apparatus for transmitting and receiving data in mobile communication system
KR101551147B1 (en) Method and apparatus for layer 2 arq for packets
KR20090116614A (en) Apparatus and method for processiing radio link control data in mobile telecommunication system
WO2009102166A2 (en) Method and apparatus for transmitting data by using prioritized bit rate in mobile communication system
KR100856244B1 (en) apparatus and method transmitting/receiving ARQ packet in mobile telecommunication system
KR101368499B1 (en) Apparatus and method for transmitting status report message in mobile communication system
KR101486580B1 (en) Method and appratus for downlink data in a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709564

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09709564

Country of ref document: EP

Kind code of ref document: A2