WO2009157273A1 - 撮像光学系及び撮像用レンズの製造方法 - Google Patents
撮像光学系及び撮像用レンズの製造方法 Download PDFInfo
- Publication number
- WO2009157273A1 WO2009157273A1 PCT/JP2009/059962 JP2009059962W WO2009157273A1 WO 2009157273 A1 WO2009157273 A1 WO 2009157273A1 JP 2009059962 W JP2009059962 W JP 2009059962W WO 2009157273 A1 WO2009157273 A1 WO 2009157273A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass substrate
- optical system
- cut coat
- imaging optical
- imaging
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 120
- 230000003287 optical effect Effects 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000011521 glass Substances 0.000 claims abstract description 111
- 239000000758 substrate Substances 0.000 claims abstract description 110
- 229920005989 resin Polymers 0.000 claims abstract description 74
- 239000011347 resin Substances 0.000 claims abstract description 74
- 239000000463 material Substances 0.000 claims description 15
- 230000002093 peripheral effect Effects 0.000 claims description 13
- 238000002834 transmittance Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 239000003822 epoxy resin Substances 0.000 claims description 9
- 229920000647 polyepoxide Polymers 0.000 claims description 9
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 229910000077 silane Inorganic materials 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 239000004925 Acrylic resin Substances 0.000 claims description 4
- 229920000178 Acrylic resin Polymers 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 36
- -1 allyl ester Chemical class 0.000 description 13
- 125000006850 spacer group Chemical group 0.000 description 11
- 230000035699 permeability Effects 0.000 description 7
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- 150000008065 acid anhydrides Chemical class 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- QXBYUPMEYVDXIQ-UHFFFAOYSA-N 4-methyl-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound CC1CCCC2C(=O)OC(=O)C12 QXBYUPMEYVDXIQ-UHFFFAOYSA-N 0.000 description 2
- FKBMTBAXDISZGN-UHFFFAOYSA-N 5-methyl-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1C(C)CCC2C(=O)OC(=O)C12 FKBMTBAXDISZGN-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical group C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- VKDWOLLHINQPJL-UHFFFAOYSA-N (2,2,3,4,4,5,6,6,7,8,8,9,9,10,10-pentadecafluoro-1-adamantyl) prop-2-enoate Chemical compound FC1(F)C(C2(F)F)(F)C(F)(F)C3(F)C(F)(F)C1(F)C(F)(F)C2(OC(=O)C=C)C3(F)F VKDWOLLHINQPJL-UHFFFAOYSA-N 0.000 description 1
- FDYDISGSYGFRJM-UHFFFAOYSA-N (2-methyl-2-adamantyl) 2-methylprop-2-enoate Chemical compound C1C(C2)CC3CC1C(OC(=O)C(=C)C)(C)C2C3 FDYDISGSYGFRJM-UHFFFAOYSA-N 0.000 description 1
- YGGARCQQBAOLGB-UHFFFAOYSA-N (3-prop-2-enoyloxy-1-adamantyl) prop-2-enoate Chemical compound C1C(C2)CC3CC1(OC(=O)C=C)CC2(OC(=O)C=C)C3 YGGARCQQBAOLGB-UHFFFAOYSA-N 0.000 description 1
- LTVUCOSIZFEASK-MPXCPUAZSA-N (3ar,4s,7r,7as)-3a-methyl-3a,4,7,7a-tetrahydro-4,7-methano-2-benzofuran-1,3-dione Chemical compound C([C@H]1C=C2)[C@H]2[C@H]2[C@]1(C)C(=O)OC2=O LTVUCOSIZFEASK-MPXCPUAZSA-N 0.000 description 1
- KNDQHSIWLOJIGP-UMRXKNAASA-N (3ar,4s,7r,7as)-rel-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1,3-dione Chemical compound O=C1OC(=O)[C@@H]2[C@H]1[C@]1([H])C=C[C@@]2([H])C1 KNDQHSIWLOJIGP-UMRXKNAASA-N 0.000 description 1
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 1
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- ZPNAPHJIYFPUPB-UHFFFAOYSA-N 2-[(4-propylcyclohexyl)oxymethyl]oxirane Chemical compound C1CC(CCC)CCC1OCC1OC1 ZPNAPHJIYFPUPB-UHFFFAOYSA-N 0.000 description 1
- XIPSMKGYCCJXBF-UHFFFAOYSA-N 2-[1-(2-hydroxyphenyl)-2-adamantyl]phenol Chemical class OC1=CC=CC=C1C1C(C=2C(=CC=CC=2)O)(C2)CC3CC2CC1C3 XIPSMKGYCCJXBF-UHFFFAOYSA-N 0.000 description 1
- ARQXRBBEQBIUBR-UHFFFAOYSA-N 2-[[2-[1-[2-(oxiran-2-ylmethoxy)phenyl]-2-adamantyl]phenoxy]methyl]oxirane Chemical compound C1OC1COC1=CC=CC=C1C1C(C2)CC(C3)CC2CC13C1=CC=CC=C1OCC1CO1 ARQXRBBEQBIUBR-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- WADSJYLPJPTMLN-UHFFFAOYSA-N 3-(cycloundecen-1-yl)-1,2-diazacycloundec-2-ene Chemical compound C1CCCCCCCCC=C1C1=NNCCCCCCCC1 WADSJYLPJPTMLN-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- OECTYKWYRCHAKR-UHFFFAOYSA-N 4-vinylcyclohexene dioxide Chemical compound C1OC1C1CC2OC2CC1 OECTYKWYRCHAKR-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- NHJIDZUQMHKGRE-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-yl 2-(7-oxabicyclo[4.1.0]heptan-4-yl)acetate Chemical compound C1CC2OC2CC1OC(=O)CC1CC2OC2CC1 NHJIDZUQMHKGRE-UHFFFAOYSA-N 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- ABWZSCQIKXOOIP-UHFFFAOYSA-N [3,5-di(prop-2-enoyloxy)-1-adamantyl] prop-2-enoate Chemical compound C1C(C2)CC3(OC(=O)C=C)CC1(OC(=O)C=C)CC2(OC(=O)C=C)C3 ABWZSCQIKXOOIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- PAVQGHWQOQZQEH-UHFFFAOYSA-N adamantane-1,3-dicarboxylic acid Chemical compound C1C(C2)CC3CC1(C(=O)O)CC2(C(O)=O)C3 PAVQGHWQOQZQEH-UHFFFAOYSA-N 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- AOJOEFVRHOZDFN-UHFFFAOYSA-N benzyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1=CC=CC=C1 AOJOEFVRHOZDFN-UHFFFAOYSA-N 0.000 description 1
- GCTPMLUUWLLESL-UHFFFAOYSA-N benzyl prop-2-enoate Chemical compound C=CC(=O)OCC1=CC=CC=C1 GCTPMLUUWLLESL-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- IDSLNGDJQFVDPQ-UHFFFAOYSA-N bis(7-oxabicyclo[4.1.0]heptan-4-yl) hexanedioate Chemical compound C1CC2OC2CC1OC(=O)CCCCC(=O)OC1CC2OC2CC1 IDSLNGDJQFVDPQ-UHFFFAOYSA-N 0.000 description 1
- DLTBOMSDLGUXHB-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclopropane-1,2-dicarboxylate Chemical compound C1C(C(=O)OCC2OC2)C1C(=O)OCC1CO1 DLTBOMSDLGUXHB-UHFFFAOYSA-N 0.000 description 1
- XUCHXOAWJMEFLF-UHFFFAOYSA-N bisphenol F diglycidyl ether Chemical compound C1OC1COC(C=C1)=CC=C1CC(C=C1)=CC=C1OCC1CO1 XUCHXOAWJMEFLF-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- ARUKYTASOALXFG-UHFFFAOYSA-N cycloheptylcycloheptane Chemical group C1CCCCCC1C1CCCCCC1 ARUKYTASOALXFG-UHFFFAOYSA-N 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- QIWKUEJZZCOPFV-UHFFFAOYSA-N phenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=CC=CC=C1 QIWKUEJZZCOPFV-UHFFFAOYSA-N 0.000 description 1
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- DGSJFPIRKXALJM-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate;tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C.CC(=C)C(=O)OC(C)(C)C DGSJFPIRKXALJM-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
- G02B13/006—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/281—Interference filters designed for the infrared light
Definitions
- the present invention relates to an imaging optical system and a method for manufacturing an imaging lens.
- a plurality of curable resin lens portions are provided on a wafer-shaped glass substrate (so-called “wafer lens” is manufactured), and the wafer-shaped glass substrate is cut into each lens portion.
- an IR (Infrared Rays) cut coat is formed on a glass substrate of an imaging lens.
- Patent Document 1 There is a description that an IR cut coat is formed on at least one surface.
- the IR cut coat is formed on both sides from the description that the IR cut coat is formed on at least one side. Since there is no mention of warping and intentional mention of no countermeasure, there is a possibility that the glass substrate is warped by the stress of the film.
- a problem to be solved by the present invention is to provide an imaging optical system and a method for manufacturing an imaging lens that can suppress warping of the glass substrate.
- An imaging optical system having an imaging lens in which a lens portion made of a curable resin is formed on a glass substrate, Having at least one group of the imaging lenses, An imaging optical system, wherein an IR cut coat is formed on each of the front and back surfaces of the glass substrate.
- the total film thickness ratio r of the total film thickness r1 of the IR cut coat formed on one surface of the glass substrate and the total film thickness r2 of the IR cut coat formed on the other surface of the glass substrate is expressed by the formula An imaging optical system characterized by satisfying the condition (1).
- the IR cut coat is an alternating multilayer film in which a plurality of low refractive index layers A made of a low refractive index material and high refractive index layers B made of a high refractive index material are alternately stacked.
- the total film thickness ratio r (A2) to the total film thickness r (A2) satisfies the condition of the formula (2), and the high refractive index layer of the IR cut coat formed on one surface of the glass substrate
- the total film thickness ratio r (B) between the total film thickness r (B1) of B1 and the total film thickness r (B2) of the high refractive index layer B2 of the IR cut coat formed on the other surface of the glass substrate is An imaging optical system characterized by satisfying the condition of Expression (3).
- the thickness of the peripheral portion formed on one surface of the glass substrate is t2
- the total film thickness of the IR cut coat formed on one surface of the glass substrate is r1
- the total film thickness of the IR cut coat formed on the other surface of the glass substrate is r2
- the imaging optical system according to any one of 1 to 4, Having two or more groups of imaging lenses; Of the imaging lenses, an imaging optical system in which the imaging lens in which the IR cut coat is not formed on a glass substrate is disposed on the image plane side.
- the curable resin is a photocurable resin
- the imaging optical system, wherein the IR cut coat has a transmittance of 50% or more with respect to light having a wavelength of 365 nm.
- a method for manufacturing an imaging lens comprising:
- the IR cut coat is formed on both the front and back surfaces of the glass substrate, the warp of the glass substrate during the IR cut coat film formation on one surface of the glass substrate is caused on the other surface. It is offset by the warp of the glass substrate during the IR cut coat film formation, and the warp of the glass substrate can be suppressed.
- FIG. 4 is a view for explaining a schematic manufacturing method of an imaging unit according to a preferred embodiment of the present invention, which is a drawing subsequent to FIG. 3.
- FIG. 4 is a schematic sectional drawing which shows the modification of the imaging optical system which concerns on preferable embodiment of this invention. It is drawing which shows the rough relationship between the wavelength of coat
- the imaging optical system of the present invention is an imaging optical system having an imaging lens in which a lens portion made of a curable resin is formed on a glass substrate, and has at least one group of the imaging lenses.
- An IR cut coat is formed on each of the front and back surfaces.
- the imaging unit 1 mainly includes a lens unit 2, a sensor device 4, and a casing 5, and the lens unit 2 and the sensor device 4 are covered with the casing 5. It has a configuration.
- the casing 5 includes a cylindrical cylindrical portion 51 and a rectangular parallelepiped base portion 53.
- the cylindrical portion 51 and the base portion 53 are integrally formed, and the cylindrical portion 51 is erected on the base portion 53.
- the lens unit 2 is arranged inside the cylindrical portion 51.
- a circular light transmission hole 51 a is formed in the top plate portion of the cylindrical portion 51.
- the sensor device 4 is disposed in the base portion 53 (bottom portion). For example, a CCD or CMOS is used as the sensor device 4.
- the lens unit 2 is mainly composed of a diaphragm 21, an imaging lens 23, and a spacer 25. These members are overlapped with each other in a state in which the imaging lens 23 is disposed between the diaphragm 21 and the spacer 25.
- the central portion of the imaging lens 23 has a convex shape on both the front and back surfaces, and this portion basically exhibits an optical function.
- the diaphragm 21 is a member that adjusts the amount of light incident on the imaging lens 23, and a circular opening 21a is formed at the center thereof.
- the spacer 25 is a member for adjusting the arrangement position (height position) of the lens unit 2 in the cylindrical portion 51 of the casing 5, and a circular opening 25 a (see the upper part of FIG. 1) is also formed at the center thereof. ing.
- the imaging lens 23 has a glass substrate 100.
- An IR cut coat 110 is formed on the front surface 102 of the glass substrate 100, and an IR cut coat 120 is also formed on the back surface 104 of the glass substrate 100.
- the IR cut coats 110 and 120 are films for shielding infrared rays, and have a transmittance of 50% or more for light having a wavelength of 365 nm.
- the IR cut coats 110 and 120 are formed by alternately laminating a plurality of low refractive index layers A1 and A2 made of a low refractive index material and high refractive index layers B1 and B2 made of a high refractive index material. It is an alternating multilayer film.
- the low refractive index layers A1 and A2 are preferably in direct contact with the glass substrate 100.
- the low refractive index material constituting the low refractive index layers A1 and A2 SiO 2 or the like is used.
- the high-refractive index material constituting the high refractive index layer B1 B2 TiO 2, Ta 2 O 5, Nb 2 O 3, ZrO 2 and the like are used.
- the low refractive index layers A1 and A2 may be made of different materials, and the high refractive index layers B1 and B2 may be made of different materials.
- the IR cut coats 110 and 120 are usually composed of about 10 to 40 layers, but the number of layers may be the same or different.
- the total film thickness r 1 of the IR cut coat 110 formed on the front surface 102 of the glass substrate 100 and the total film thickness r 2 of the IR cut coat 120 formed on the back surface 104 of the glass substrate 100 are preferable.
- the total film thickness ratio r satisfies the condition of the formula (1).
- the total film thickness ratio r (A) with the total film thickness r (A2) of the low refractive index layer A2 of the cut coat 120 satisfies the condition of the formula (2) and is formed on the surface 102 of the glass substrate 100.
- the total film thickness ratio r (B) satisfies the condition of Expression (3).
- a resin portion 130 is formed on the IR cut coat 110.
- the resin part 130 is composed of a curable resin 130A.
- the resin part 130 has a lens part 132 having a convex shape and a peripheral part 134 covering the periphery thereof, and the lens part 132 and the peripheral part 134 are integrally formed.
- the resin part 140 is also formed under the IR cut coat 120.
- the resin part 140 is composed of a curable resin 140A.
- the resin part 140 has a lens part 142 having a convex shape and a peripheral part 144 covering the periphery thereof, and the lens part 142 and the peripheral part 144 are integrally formed.
- IR In the imaging lens 23, when the thickness of the peripheral portion 134 formed on the front surface 102 side of the glass substrate 100 is t1, and the thickness of the peripheral portion 144 formed on the back surface 104 of the glass substrate 100 is t2, IR In the relationship between the total film thickness r1 of the cut coat 110 and the total film thickness r2 of the IR cut coat 120, the condition of formula (4) or formula (5) is satisfied.
- the resin parts 130 and 140 (lens parts 132 and 142) in any one side among the surface 102 and the back surface 104 of the glass substrate 100.
- the lens portion is provided only on one side of the glass substrate 100, and the IR cut coat on the side where the lens portion is not provided (for example, the IR cut coat 110) on the side where the lens portion is provided (for example, the IR cut coat 110).
- the IR cut coat 120 it is possible to suppress the stress bias of the entire imaging lens 23 and further suppress the warpage.
- a photocurable resin can be used, and preferably an acrylic resin, an allyl ester resin, an epoxy resin, or the like can be used.
- the usable resin will be described below.
- (1) Acrylic resin The (meth) acrylate used for the polymerization reaction is not particularly limited, and the following (meth) acrylate produced by a general production method can be used.
- (Meth) acrylate having an alicyclic structure is particularly preferable, and may be an alicyclic structure containing an oxygen atom or a nitrogen atom.
- 2-alkyl-2-adamantyl (meth) acrylate (refer to Japanese Patent Laid-Open No. 2002-193883), adamantyl di (meth) acrylate (Japanese Patent Laid-Open No. 57-5000785), diallyl adamantyl dicarboxylate (Japanese Patent Laid-Open No. 60-100537).
- Perfluoroadamantyl acrylate see JP 2004-123687
- a curable resin having an adamantane skeleton see JP 2001-322950 A), bis (hydroxyphenyl) adamantanes and bis (glycidyloxyphenyl) adamantane (JP 11-35522 A, JP 10-130371 A). For example).
- (meth) acrylate for example, methyl acrylate, methyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate Tert-butyl methacrylate, phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, and the like.
- polyfunctional (meth) acrylate examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) ) Acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, tripentaerythritol octa (meth) acrylate, tripentaerythritol septa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripenta Erythritol penta (meth) acrylate, tripentaerythritol tetra (meth) acrylate, tripent
- Bromine-containing (meth) allyl ester not containing an aromatic ring see JP-A-2003-66201
- allyl (meth) acrylate see JP-A-5-286896
- allyl ester resin JP-A-5-286896
- JP 2003-66201 A a copolymer of an acrylate ester and an epoxy group-containing unsaturated compound
- JP 2003-128725 A an acrylate compound
- an acrylic And ester compounds see JP 2005-2064 A.
- Epoxy resin is not particularly limited as long as it has an epoxy group and is polymerized and cured by light or heat, and an acid anhydride, a cation generator, or the like can be used as a curing initiator.
- Epoxy resin is preferable in that it has a low cure shrinkage and can be a lens with excellent molding accuracy.
- Examples of the epoxy include novolak phenol type epoxy resin, biphenyl type epoxy resin, and dicyclopentadiene type epoxy resin.
- Examples include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, vinyl Cyclohexene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2 -Cyclopropanedicarboxylic acid bisglycidyl ester and the like.
- the curing agent is used for constituting the curable resin material and is not particularly limited. Moreover, in this invention, when comparing the transmittance
- an acid anhydride curing agent, a phenol curing agent, or the like can be preferably used.
- acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride
- acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride
- examples thereof include an acid, a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, and methyl nadic anhydride.
- a hardening accelerator is contained as needed.
- the curing accelerator is not particularly limited as long as it has good curability, is not colored, and does not impair the transparency of the thermosetting resin.
- 2-ethyl-4-methylimidazole is not limited. Imidazoles such as (2E4MZ), tertiary amines, quaternary ammonium salts, bicyclic amidines such as diazabicycloundecene and their derivatives, phosphines, phosphonium salts, etc. can be used, Two or more kinds may be mixed and used.
- the imaging unit 1 described above external light enters the lens unit 2 through the light transmission hole 51 a, the amount of incident light is adjusted by the opening 21 a of the diaphragm 21, passes through the imaging lens 23, and opens the spacer 25. The light is emitted from the portion 25a. Thereafter, the emitted light is configured to enter the sensor device 4.
- a wafer-like glass substrate 100 is prepared, and IR cut coats 110 and 120 are formed on the front surface 102 and the back surface 104, respectively.
- a method for forming the IR cut coats 110 and 120 a known vacuum deposition method, sputtering, a CVD (Chemical Vapor Deposition) method, or the like is used.
- silane coupling treatment is performed on the IR cut coats 110 and 120 for the purpose of improving the adhesion of the resin portions 130 and 140 to the IR cut coats 110 and 120.
- a silane coupling agent SZ-6030 manufactured by Toray Dow Corning
- acetic acid is added to adjust the pH to 3 to 5.
- the solution is applied on the IR cut coat 110, 120 and dried.
- the IR cut coats 110 and 120 are formed with chemically bonded surfaces by silanol bonds.
- the surface has good adhesion to the curable resin (130A, 140A), and the adhesion to the resin portions 130, 140 formed on the IR cut coats 110, 120 is greatly improved.
- the cavity 202 of the mold 200 is filled with a curable resin 130A.
- the curable resin 130A is placed on the upper part of the mold 200, and the glass substrate 100 is moved downward while pressing it, and the cavity 202 is filled with the curable resin 130A.
- the curable resin 130A may be filled while evacuating. If the curable resin 130A is filled while evacuating, bubbles can be prevented from being mixed into the curable resin 130A.
- the light source 210 disposed above the mold 200 is turned on, and the curable resin 130A is irradiated with light to cure the curable resin 130A.
- a high pressure mercury lamp, a metal halide lamp, a xenon lamp, a halogen lamp, a fluorescent lamp, a black light, a G lamp, an F lamp, or the like can be used, and a linear light source or a point light source may be used. Good.
- a plurality of linear or point light sources 210 may be arranged in a lattice shape so that the light reaches the curable resin 130A at one time, or linear or dotted.
- the light source 210 may be scanned in parallel with the glass substrate 100 so that the light sequentially reaches the curable resin 130A.
- a luminance distribution and an illuminance (intensity) distribution during light irradiation are measured, and the number of irradiations, irradiation amount, irradiation time, and the like are controlled based on the measurement results.
- the IR cut coats 110 and 120 have a transmittance of 50% or more with respect to light having a wavelength of 365 nm. In other words, the IR cut coat 110, 120 is not a factor that hinders the curing of the curable resin 130A.
- the light source 210 disposed below the mold 200 is also turned on, and both sides of the glass substrate 100 side and the mold 200 side are turned on. May be irradiated with light.
- the resin portion 130 (lens portion 132) is formed on the surface 102 of the glass substrate 100.
- the glass substrate 100 is released from the mold 200.
- the glass substrate 100 is turned over and the curable resin 140 ⁇ / b> A is placed on the mold 200 in the same manner as the resin portion 130 is formed on the surface 102 of the glass substrate 100.
- the substrate 100 is pressed, and the curable resin 140 ⁇ / b> A is irradiated with light to form the resin portion 140 (lens portion 142) on the back surface 104 of the glass substrate 100.
- the lens array 27 in the upper part of FIG. 4 is manufactured by the above processing.
- the IR cut coats 110 and 120 are omitted for the sake of clarity.
- the aperture array 26 in which the same number of openings 21 a as the lens portions 132 are formed, and the same number as the lens portions 142.
- the spacer array 28 in which the openings 25a are formed is prepared.
- the aperture array 26 and the spacer array 28 are formed by mixing a curable resin with carbon and coloring it black, and molding the resin by an injection molding method.
- the aperture array 26 and the spacer array 28 are joined to the lens array 27 with an adhesive to manufacture the lens unit array 29.
- the lens unit array 29 is individually separated for each of the lens portions 132 and 142 by an end mill to produce a plurality of lens units 2, and each lens unit 2 is a cylinder of the casing 5.
- the imaging unit 1 is manufactured by being assembled (bonded) to the part 51.
- the IR cut coats 110 and 120 are formed on the front surface 102 and the back surface 104 of the glass substrate 100, respectively.
- the film stress when the IR cut coat 110 is formed can be relaxed by forming the IR cut coat 120 on the other surface (back surface 104).
- the warp of the glass substrate 100 when forming the IR cut coat 110 on one surface (front surface 102) of the glass substrate 100 is the glass substrate 100 when forming the IR cut coat 120 on the other surface (back surface 104).
- the warpage of the glass substrate 100 as a whole can be suppressed.
- the conditions of the above formulas (1) to (3) are satisfied (the total film thickness of the IR cut coats 110 and 120, the total film thickness of the low refractive index layers A1 and A2, the high refractive index layers B1 and B2, etc.) If the surface 102 and the back surface 104 of the glass substrate 100 are substantially the same), the warping and bending of the glass substrate 100 can be more accurately suppressed.
- the IR cut coats 110 and 120 are respectively formed on the front surface 102 and the back surface 104 of the glass substrate 100, so that the IR region that can be shielded by the IR cut coat 110 and the IR cut coat 120 are used. It is also possible to block infrared light in a wide infrared region over two infrared regions, which can be shielded from light outside the century.
- imaging optics is configured by a plurality of groups (two or more groups) of imaging lenses. A system may be configured.
- the imaging optical system shown in FIG. 5 includes three groups of imaging lenses 300, 400, and 500.
- the imaging lens 300 has a glass substrate 310, an IR cut coat 110 is formed on the front surface 312, and an IR cut coat 120 is formed on the back surface 314 thereof.
- a resin part 320 is formed on the IR cut coat 110, and a resin part 330 is formed on the IR cut coat 120.
- the imaging lens 400 has a glass substrate 410, and a resin portion 420 is formed on the front surface 412 and a resin portion 430 is formed on the back surface 414 thereof.
- the imaging lens 500 also has a glass substrate 510, and a resin portion 520 is formed on the front surface 512 and a resin portion 530 is formed on the back surface 514 thereof.
- the glass substrates 310, 410, and 510 correspond to the glass substrate 100 of the imaging lens 23, and the resin portions 320, 330, 420, 430, 520, and 530 correspond to the resin portions 130 and 140 of the imaging lens 23. Is.
- the IR cut coats 110 and 120 are formed in the imaging lens 300 arranged at the position farthest from the sensor device 4 (the IR cut coats 110 and 120 are formed on the glass substrate 410 of the imaging lens 400.
- the IR cut coats 110 and 120 are not formed in the imaging lens 500 disposed at the closest position facing the sensor device 4. That is, the imaging lens 500 on which the IR cut coats 110 and 120 are not formed is disposed on the image plane side.
- the IR cut coats 110 and 120 are alternately laminated films of a total of about 10 to 40 low-refractive index films, and in the middle of forming a multilayer film of this degree by vacuum deposition,
- dust of about several ⁇ m or the like is mixed as contamination in the film and becomes a problem as surface foreign matter. If this foreign matter forms an image on the surface of the sensor device 4, the foreign matter is reflected in the image, which causes a problem. In particular, the closer the sensor surface is, the more light is collected, and the allowable foreign matter size is severe. Become.
- a lens part made of a photocurable resin having a predetermined shape is formed on each front and back surfaces of each of three glass substrates (planar glass wafer, size 8 inches, thickness 3 mm), and imaging lens Formed.
- a UV lamp of 6000 mJ / cm 2 was irradiated.
- the imaging lenses were bonded to each other via a spacer to produce a plurality of imaging optical systems similar to those in FIG.
- Example 1 Among a plurality of imaging optical systems, the IR cut coat of “Coat Type I” in Table 1 is applied to the front surface (a surface) of the glass substrate of the first imaging lens, and “ The sample of “Example 1” was formed with an IR cut coat of “Coat Type Type II”.
- a glass substrate is placed in a vacuum vapor deposition apparatus, and the surface (a surface) on one side is low refractive by vacuum vapor deposition in the manner shown in “Coat Type I” in Table 1.
- An SiO 2 film as a refractive index layer and a TiO 2 film as a high refractive index layer were alternately laminated (18 layers in total) to form an IR cut coat.
- the vacuum deposition apparatus was once opened to the atmosphere, the glass substrate was inverted, and the IR cut coat was formed on the surface.
- the IR cut coat was formed in the mode shown in “II” (the IR cut coat forming method was the same in Examples 2 to 6 and Comparative Example 1 described later).
- the glass substrate is taken out from the vacuum deposition apparatus and subjected to a silane coupling treatment on the IR cut coat (a silane coupling agent (SZ-6030 manufactured by Toray Dow Corning Co., Ltd.) is added in 0.1% with ethanol. Dilute to ⁇ 2.0wt%, add acetic acid to adjust pH to 3 ⁇ 5, apply the solution on IR cut coat and dry) A lens portion made of a photocurable resin having a predetermined shape was formed.
- a silane coupling agent SZ-6030 manufactured by Toray Dow Corning Co., Ltd.
- Example 2 Among the plurality of imaging optical systems, the IR cut coat of “Coat Type I” in Table 1 is applied to the surface (c surface) of the glass substrate of the second imaging lens, and “ An IR cut coat of “Coat Type Type II” was formed, and the lens unit was used as a sample of “Example 2”.
- Example 3 Among a plurality of imaging optical systems, the IR cut coat of “Coat Type I” in Table 1 is applied to the surface (e surface) of the glass substrate of the third imaging lens, and “ An IR cut coat of “Coat Type Type II” was formed, and the lens unit was used as a sample of “Example 3”.
- Example 4 Among a plurality of imaging optical systems, the IR cut coat of “Coat Type III” in Table 2 is applied to the front surface (a surface) of the glass substrate of the first imaging lens, and “ The sample of “Example 4” was formed with an IR cut coat of “coat type IV”.
- Example 5 Among the plurality of imaging optical systems, the IR cut coat of “Coat Type V” in Table 3 is applied to the front surface (a surface) of the glass substrate of the first imaging lens, and “ The sample of Example 5 was formed with an IR cut coat of “Coat Type Type VI”.
- Example 6 when forming the IR cut coat TiO 2 film, the film formation rate was 8 ⁇ / sec, and the film formation rate of the TiO 2 film was larger than those of the coat type types I to IV. In this case, the transmittance of the IR cut coat with respect to light having a wavelength of 365 nm decreases (see Table 4). (1.7) Example 6 Among the plurality of imaging optical systems, the IR cut coat of “Coat Type I” in Table 3 is applied to the front surface (a surface) of the glass substrate of the first imaging lens, and “ The sample of Example 6 was formed with an IR cut coat of “Coat Type Type II”.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Lens Barrels (AREA)
- Lenses (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
前記撮像用レンズを少なくとも1群以上有し、
前記ガラス基板の表裏両面に対しIRカットコートがそれぞれ形成されていることを特徴とする撮像光学系。
前記ガラス基板の一方の面に形成されたIRカットコートの総膜厚r1と、前記ガラス基板の他方の面に形成されたIRカットコートの総膜厚r2との総膜厚比率rが、式(1)の条件を満たすことを特徴とする撮像光学系。
3.前記1又は2に記載の撮像光学系において、
前記IRカットコートが、低屈折率材料から構成された低屈折率層Aと、高屈折率材料から構成された高屈折率層Bとを交互に複数積層した交互多層膜であり、
前記ガラス基板の一方の面に形成されたIRカットコートの低屈折率層A1の総膜厚r(A1)と、前記ガラス基板の他方の面に形成されたIRカットコートの低屈折率層A2の総膜厚r(A2)との総膜厚比率r(A)が、式(2)の条件を満たし、かつ、前記ガラス基板の一方の面に形成されたIRカットコートの高屈折率層B1の総膜厚r(B1)と、前記ガラス基板の他方の面に形成されたIRカットコートの高屈折率層B2の総膜厚r(B2)との総膜厚比率r(B)が、式(3)の条件を満たすことを特徴とする撮像光学系。
0.9≦r(B)(=r(B1)/r(B2))≦1.1 … (3)
4.前記1~3のいずれか一項に記載の撮像光学系において、
前記撮像用レンズのガラス基板上には、前記レンズ部の周辺に設けられる硬化性樹脂製の周辺部が形成され、前記ガラス基板の一方の面に形成された前記周辺部の厚さをt1と、前記ガラス基板の一方の面に形成された前記周辺部の厚さをt2とし、
前記ガラス基板の一方の面に形成されたIRカットコートの総膜厚をr1と、前記ガラス基板の他方の面に形成されたIRカットコートの総膜厚をr2としたとき、
式(4)又は式(5)の条件を満たすことを特徴とする撮像光学系。
t1<t2,r1>r2 … (5)
5.前記1~4のいずれか一項に記載の撮像光学系において、
前記撮像用レンズを2群以上有し、
前記撮像用レンズのうち、ガラス基板に対し前記IRカットコートが形成されていない前記撮像用レンズが像面側に配置されることを特徴とする撮像光学系。
前記硬化性樹脂が光硬化性樹脂であり、
前記IRカットコートが、波長365nmの光に対し50%以上の透過率を有することを特徴とする撮像光学系。
前記光硬化性樹脂がアクリル樹脂又はエポキシ樹脂であることを特徴とする撮像光学系。
前記IRカットコート上にシランカップリング処理を実行する工程と、
前記シランカップリング処理後の前記IRカットコート上に複数の硬化性樹脂製のレンズ部を形成する工程と、
前記レンズ部ごとに前記ガラス基板を切断する工程と、
を備えることを特徴とする撮像用レンズの製造方法。
さらに、撮像用レンズ23では、好ましくはガラス基板100の表面102に形成されたIRカットコート110の低屈折率層A1の総膜厚r(A1)と、ガラス基板の裏面104に形成されたIRカットコート120の低屈折率層A2の総膜厚r(A2)との総膜厚比率r(A)が、式(2)の条件を満たし、かつ、ガラス基板100の表面102に形成されたIRカットコート110の高屈折率層B1の総膜厚r(B1)と、ガラス基板100の裏面104に形成されたIRカットコート120の高屈折率層B2の総膜厚r(B2)との総膜厚比率r(B)が、式(3)の条件を満たしている。
0.9≦r(B)(=r(B1)/r(B2))≦1.1 … (3)
また、図2に示す通り、IRカットコート110上には樹脂部130が形成されている。樹脂部130は硬化性樹脂130Aで構成されている。樹脂部130は凸状を呈したレンズ部132とその周辺を覆う周辺部134とを有しており、レンズ部132と周辺部134とが一体成形されている。これと同様に、IRカットコート120下にも樹脂部140が形成されている。樹脂部140は硬化性樹脂140Aで構成されている。樹脂部140は凸状を呈したレンズ部142とその周辺を覆う周辺部144とを有しており、レンズ部142と周辺部144とが一体成形されている。
t1<t2,r1>r2 … (5)
なお、ガラス基板100の表面102と裏面104とのうち、いずれか一方の側に樹脂部130,140(レンズ部132,142)を設けてもよい。この場合には、レンズ部がガラス基板100の片側にのみ設けられ、レンズ部が設けられた側のIRカットコート(例えばIRカットコート110)よりもレンズ部が設けられない側のIRカットコート(例えばIRカットコート120)の厚みを厚くすることで、撮像用レンズ23全体の応力の偏りを抑制し、更に反りを抑制することが可能となる。
(1)アクリル樹脂
重合反応に用いられる(メタ)アクリレートは特に制限はなく、一般的な製造方法により製造された下記(メタ)アクリレートを使用することができる。エステル(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、エーテル(メタ)アクリレート、アルキル(メタ)アクリレート、アルキレン(メタ)アクリレート、芳香環を有する(メタ)アクリレート、脂環式構造を有する(メタ)アクリレートが挙げられる。これらを1種類又は2種類以上を用いることができる。
(2)アリルエステル樹脂
アリル基を持ちラジカル重合による硬化する樹脂で、例えば次のものが挙げられるが、特に以下のものに限定されるわけではない。
(3)エポキシ樹脂
エポキシ樹脂としては、エポキシ基を持ち光又は熱により重合硬化するものであれば特に限定されず、硬化開始剤としても酸無水物やカチオン発生剤等を用いることができる。エポキシ樹脂は硬化収縮率が低いため、成形精度の優れたレンズとすることができる点で好ましい。
[変形例]
上記実施形態では、1群の撮像用レンズ23で撮像光学系を構成した例を示したが、これに代えて、図5に示すように複数群(2群以上)の撮像用レンズで撮像光学系を構成してもよい。
3枚のガラス基板(平面硝子ウエハ,大きさ8インチ,厚さ3mm)の各表裏両面に対し所定形状を有する光硬化性樹脂製のレンズ部を形成し、撮像用レンズを形成した。レンズ部の形成(光硬化性樹脂の硬化)に際しては6000mJ/cm2のUVランプを照射した。その後、各撮像用レンズ同士を、スペーサを介して張り合わせて図5と同様の撮像光学系を複数作製した。
(1.1)実施例1
複数の撮像光学系のうち、第1の撮像用レンズのガラス基板の表面(a面)に表1中「コート種タイプI」のIRカットコートを、その裏面(b面)に表1中「コート種タイプII」のIRカットコートを形成したものを「実施例1」のサンプルとした。
(1.2)実施例2
複数の撮像光学系のうち、第2の撮像用レンズのガラス基板の表面(c面)に表1中「コート種タイプI」のIRカットコートを、その裏面(d面)に表1中「コート種タイプII」のIRカットコートを形成し、当該レンズユニットを「実施例2」のサンプルとした。
(1.3)実施例3
複数の撮像光学系のうち、第3の撮像用レンズのガラス基板の表面(e面)に表1中「コート種タイプI」のIRカットコートを、その裏面(f面)に表1中「コート種タイプII」のIRカットコートを形成し、当該レンズユニットを「実施例3」のサンプルとした。
(1.4)比較例1
複数の撮像光学系のうち、第1の撮像用レンズのガラス基板の表面(a面)にのみ表1中「コート種タイプI」,「コート種タイプII」のIRカットコートを形成し、当該レンズユニットを「比較例1」のサンプルとした。
(1.5)実施例4
複数の撮像光学系のうち、第1の撮像用レンズのガラス基板の表面(a面)に表2中「コート種タイプIII」のIRカットコートを、その裏面(b面)に表2中「コート種タイプIV」のIRカットコートを形成したものを「実施例4」のサンプルとした。
(1.6)実施例5
複数の撮像光学系のうち、第1の撮像用レンズのガラス基板の表面(a面)に表3中「コート種タイプV」のIRカットコートを、その裏面(b面)に表3中「コート種タイプVI」のIRカットコートを形成したものを「実施例5」のサンプルとした。
(1.7)実施例6
複数の撮像光学系のうち、第1の撮像用レンズのガラス基板の表面(a面)に表3中「コート種タイプI」のIRカットコートを、その裏面(b面)に表3中「コート種タイプII」のIRカットコートを形成したものを「実施例6」のサンプルとした。
(2.1)ガラス基板の反り量の測定
各サンプルにおいて、ガラス基板にIRカットコートを形成した時の中心部と外周部との高さの差を測定し、ガラス基板の反り量(変形量)を算出した。その算出結果を表4に示す。表4中、「○」,「△」,「×」の基準は以下の通りとした。
△…1~2mmの変形
×…2mmを超える変形
なお、ガラス基板において2mmを超える変形があると、スペーサとの接着時において不具合があると考えられる。
(2.2)異物の許容大きさの測定
各サンプルにおいて、IRカットコートへの異物の混入がどの程度の大きさまで許容されるかを測定した。その測定結果を表4に示す。異物の長辺が20μm以下であると外観良品率が90%を割り込み不良品とされることから、表4では異物の長辺が20μmを越える場合には「○」と、その長辺が20μm以下である場合には「△」としている。
(2.3)レンズ部の硬化性評価
各サンプルをアセトン中に10分間浸漬させ、レンズ部(樹脂)の重量減%を測定し、その測定結果からレンズ部の硬化性を評価した。その評価結果を表4に示す。表4では、10%減に満たない場合には硬化が十分であるとして「○」と、10%減以上の溶出が認められたときに硬化不足と判断して「△」としている。
(2.4)ガラス基板とレンズ部との密着性評価
各サンプルおいてレンズ部にテープを貼り付け、そのテープを剥がしたときにレンズ部がガラス基板から剥離するか否かを試験し(テープ剥離試験をおこない)、その試験結果からガラス基板とレンズ部との密着性を評価した。その評価結果を表4に示す。表4では、レンズ部の剥離が認められない場合は密着性は十分であるとして「○」と、レンズ部の剥離が認められる場合には密着性が不足していると判断して「△」としている。
表4の結果から、ガラス基板の表裏両面に対しそれぞれIRカットコートを形成したサンプルでは、ガラス基板の反り量が小さく、ガラス基板の表裏両面に対しIRカットコートを形成することが、ガラス基板の反り曲がりを抑制する上で有用であることがわかる。
2 レンズユニット
21 絞り
21a 開口部
23 撮像用レンズ
25 スペーサ
25a 開口部
26 絞りアレイ
27 レンズアレイ
28 スペーサアレイ
4 センサデバイス
5 ケーシング
51 円筒部
51a 光透過孔
53 ベース部
100 ガラス基板
102 表面
104 裏面
110,120 IRカットコート
130,140 樹脂部
132,142 レンズ部
134,144 周辺部
200 金型
202 キャビティ
210 光源
300,400,500 撮像用レンズ
310,410,510 ガラス基板
320,330,420,430,520,530 樹脂部
Claims (8)
- ガラス基板上に硬化性樹脂製のレンズ部を形成した撮像用レンズを有する撮像光学系であって、
前記撮像用レンズを少なくとも1群以上有し、
前記ガラス基板の表裏両面に対しIRカットコートがそれぞれ形成されていることを特徴とする撮像光学系。 - 請求項1に記載の撮像光学系において、
前記ガラス基板の一方の面に形成されたIRカットコートの総膜厚r1と、前記ガラス基板の他方の面に形成されたIRカットコートの総膜厚r2との総膜厚比率rが、式(1)の条件を満たすことを特徴とする撮像光学系。
0.9≦r(=r1/r2)≦1.1 … (1) - 請求項1又は2に記載の撮像光学系において、
前記IRカットコートが、低屈折率材料から構成された低屈折率層Aと、高屈折率材料から構成された高屈折率層Bとを交互に複数積層した交互多層膜であり、
前記ガラス基板の一方の面に形成されたIRカットコートの低屈折率層A1の総膜厚r(A1)と、前記ガラス基板の他方の面に形成されたIRカットコートの低屈折率層A2の総膜厚r(A2)との総膜厚比率r(A)が、式(2)の条件を満たし、かつ、前記ガラス基板の一方の面に形成されたIRカットコートの高屈折率層B1の総膜厚r(B1)と、前記ガラス基板の他方の面に形成されたIRカットコートの高屈折率層B2の総膜厚r(B2)との総膜厚比率r(B)が、式(3)の条件を満たすことを特徴とする撮像光学系。
0.9≦r(A)(=r(A1)/r(A2))≦1.1 … (2)
0.9≦r(B)(=r(B1)/r(B2))≦1.1 … (3) - 請求項1~3のいずれか一項に記載の撮像光学系において、
前記撮像用レンズのガラス基板上には、前記レンズ部の周辺に設けられる硬化性樹脂製の周辺部が形成され、前記ガラス基板の一方の面に形成された前記周辺部の厚さをt1と、前記ガラス基板の一方の面に形成された前記周辺部の厚さをt2とし、
前記ガラス基板の一方の面に形成されたIRカットコートの総膜厚をr1と、前記ガラス基板の他方の面に形成されたIRカットコートの総膜厚をr2としたとき、
式(4)又は式(5)の条件を満たすことを特徴とする撮像光学系。
t1>t2,r1<r2 … (4)
t1<t2,r1>r2 … (5) - 請求項1~4のいずれか一項に記載の撮像光学系において、
前記撮像用レンズを2群以上有し、
前記撮像用レンズのうち、ガラス基板に対し前記IRカットコートが形成されていない前記撮像用レンズが像面側に配置されることを特徴とする撮像光学系。 - 請求項1~5のいずれか一項に記載の撮像光学系において、
前記硬化性樹脂が光硬化性樹脂であり、
前記IRカットコートが、波長365nmの光に対し50%以上の透過率を有することを特徴とする撮像光学系。 - 請求項6に記載の撮像光学系において、
前記光硬化性樹脂がアクリル樹脂又はエポキシ樹脂であることを特徴とする撮像光学系。 - ガラス基板の表裏両面に対しIRカットコートを形成する工程と、
前記IRカットコート上にシランカップリング処理を実行する工程と、
前記シランカップリング処理後の前記IRカットコート上に複数の硬化性樹脂製のレンズ部を形成する工程と、
前記レンズ部ごとに前記ガラス基板を切断する工程と、
を備えることを特徴とする撮像用レンズの製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010517835A JPWO2009157273A1 (ja) | 2008-06-25 | 2009-06-01 | 撮像光学系及び撮像用レンズの製造方法 |
CN200980115664XA CN102016654A (zh) | 2008-06-25 | 2009-06-01 | 成像光学系统及成像用透镜的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008165424 | 2008-06-25 | ||
JP2008-165424 | 2008-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009157273A1 true WO2009157273A1 (ja) | 2009-12-30 |
Family
ID=41444343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/059962 WO2009157273A1 (ja) | 2008-06-25 | 2009-06-01 | 撮像光学系及び撮像用レンズの製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2009157273A1 (ja) |
CN (1) | CN102016654A (ja) |
WO (1) | WO2009157273A1 (ja) |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102472839A (zh) * | 2010-04-27 | 2012-05-23 | 柯尼卡美能达精密光学株式会社 | 摄像用透镜、晶片透镜、晶片透镜层叠体、摄像用透镜的制造方法、摄像用透镜的中间物、摄像用透镜的中间物的制造方法 |
JP2012123239A (ja) * | 2010-12-09 | 2012-06-28 | Konica Minolta Advanced Layers Inc | 撮像用レンズ、スペーサー付ウエハレンズ及びウエハレンズ積層体 |
JP2014521117A (ja) * | 2011-06-28 | 2014-08-25 | ペリカン イメージング コーポレイション | アレイカメラで使用するための光学配列 |
US9497429B2 (en) | 2013-03-15 | 2016-11-15 | Pelican Imaging Corporation | Extended color processing on pelican array cameras |
US9521319B2 (en) | 2014-06-18 | 2016-12-13 | Pelican Imaging Corporation | Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor |
US9578237B2 (en) | 2011-06-28 | 2017-02-21 | Fotonation Cayman Limited | Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing |
US9706132B2 (en) | 2012-05-01 | 2017-07-11 | Fotonation Cayman Limited | Camera modules patterned with pi filter groups |
US9712759B2 (en) | 2008-05-20 | 2017-07-18 | Fotonation Cayman Limited | Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras |
US9733486B2 (en) | 2013-03-13 | 2017-08-15 | Fotonation Cayman Limited | Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing |
US9743051B2 (en) | 2013-02-24 | 2017-08-22 | Fotonation Cayman Limited | Thin form factor computational array cameras and modular array cameras |
US9749568B2 (en) | 2012-11-13 | 2017-08-29 | Fotonation Cayman Limited | Systems and methods for array camera focal plane control |
US9749547B2 (en) | 2008-05-20 | 2017-08-29 | Fotonation Cayman Limited | Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view |
US9754422B2 (en) | 2012-02-21 | 2017-09-05 | Fotonation Cayman Limited | Systems and method for performing depth based image editing |
US9774789B2 (en) | 2013-03-08 | 2017-09-26 | Fotonation Cayman Limited | Systems and methods for high dynamic range imaging using array cameras |
US9794476B2 (en) | 2011-09-19 | 2017-10-17 | Fotonation Cayman Limited | Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures |
US9800859B2 (en) | 2013-03-15 | 2017-10-24 | Fotonation Cayman Limited | Systems and methods for estimating depth using stereo array cameras |
US9800856B2 (en) | 2013-03-13 | 2017-10-24 | Fotonation Cayman Limited | Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies |
US9807382B2 (en) | 2012-06-28 | 2017-10-31 | Fotonation Cayman Limited | Systems and methods for detecting defective camera arrays and optic arrays |
US9813616B2 (en) | 2012-08-23 | 2017-11-07 | Fotonation Cayman Limited | Feature based high resolution motion estimation from low resolution images captured using an array source |
US9813617B2 (en) | 2013-11-26 | 2017-11-07 | Fotonation Cayman Limited | Array camera configurations incorporating constituent array cameras and constituent cameras |
US9811753B2 (en) | 2011-09-28 | 2017-11-07 | Fotonation Cayman Limited | Systems and methods for encoding light field image files |
US9858673B2 (en) | 2012-08-21 | 2018-01-02 | Fotonation Cayman Limited | Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints |
US9888194B2 (en) | 2013-03-13 | 2018-02-06 | Fotonation Cayman Limited | Array camera architecture implementing quantum film image sensors |
US9898856B2 (en) | 2013-09-27 | 2018-02-20 | Fotonation Cayman Limited | Systems and methods for depth-assisted perspective distortion correction |
US9924092B2 (en) | 2013-11-07 | 2018-03-20 | Fotonation Cayman Limited | Array cameras incorporating independently aligned lens stacks |
US9942474B2 (en) | 2015-04-17 | 2018-04-10 | Fotonation Cayman Limited | Systems and methods for performing high speed video capture and depth estimation using array cameras |
US9955070B2 (en) | 2013-03-15 | 2018-04-24 | Fotonation Cayman Limited | Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information |
US9986224B2 (en) | 2013-03-10 | 2018-05-29 | Fotonation Cayman Limited | System and methods for calibration of an array camera |
US10009538B2 (en) | 2013-02-21 | 2018-06-26 | Fotonation Cayman Limited | Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information |
US10089740B2 (en) | 2014-03-07 | 2018-10-02 | Fotonation Limited | System and methods for depth regularization and semiautomatic interactive matting using RGB-D images |
US10091405B2 (en) | 2013-03-14 | 2018-10-02 | Fotonation Cayman Limited | Systems and methods for reducing motion blur in images or video in ultra low light with array cameras |
US10122993B2 (en) | 2013-03-15 | 2018-11-06 | Fotonation Limited | Autofocus system for a conventional camera that uses depth information from an array camera |
US10119808B2 (en) | 2013-11-18 | 2018-11-06 | Fotonation Limited | Systems and methods for estimating depth from projected texture using camera arrays |
US10127682B2 (en) | 2013-03-13 | 2018-11-13 | Fotonation Limited | System and methods for calibration of an array camera |
US10218889B2 (en) | 2011-05-11 | 2019-02-26 | Fotonation Limited | Systems and methods for transmitting and receiving array camera image data |
US10250871B2 (en) | 2014-09-29 | 2019-04-02 | Fotonation Limited | Systems and methods for dynamic calibration of array cameras |
US10261219B2 (en) | 2012-06-30 | 2019-04-16 | Fotonation Limited | Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors |
US10306120B2 (en) | 2009-11-20 | 2019-05-28 | Fotonation Limited | Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps |
US10366472B2 (en) | 2010-12-14 | 2019-07-30 | Fotonation Limited | Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers |
US10390005B2 (en) | 2012-09-28 | 2019-08-20 | Fotonation Limited | Generating images from light fields utilizing virtual viewpoints |
US10412314B2 (en) | 2013-03-14 | 2019-09-10 | Fotonation Limited | Systems and methods for photometric normalization in array cameras |
US10455168B2 (en) | 2010-05-12 | 2019-10-22 | Fotonation Limited | Imager array interfaces |
US10482618B2 (en) | 2017-08-21 | 2019-11-19 | Fotonation Limited | Systems and methods for hybrid depth regularization |
US11270110B2 (en) | 2019-09-17 | 2022-03-08 | Boston Polarimetrics, Inc. | Systems and methods for surface modeling using polarization cues |
US11290658B1 (en) | 2021-04-15 | 2022-03-29 | Boston Polarimetrics, Inc. | Systems and methods for camera exposure control |
US11302012B2 (en) | 2019-11-30 | 2022-04-12 | Boston Polarimetrics, Inc. | Systems and methods for transparent object segmentation using polarization cues |
US11525906B2 (en) | 2019-10-07 | 2022-12-13 | Intrinsic Innovation Llc | Systems and methods for augmentation of sensor systems and imaging systems with polarization |
US11580667B2 (en) | 2020-01-29 | 2023-02-14 | Intrinsic Innovation Llc | Systems and methods for characterizing object pose detection and measurement systems |
US11689813B2 (en) | 2021-07-01 | 2023-06-27 | Intrinsic Innovation Llc | Systems and methods for high dynamic range imaging using crossed polarizers |
US11792538B2 (en) | 2008-05-20 | 2023-10-17 | Adeia Imaging Llc | Capturing and processing of images including occlusions focused on an image sensor by a lens stack array |
US11797863B2 (en) | 2020-01-30 | 2023-10-24 | Intrinsic Innovation Llc | Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images |
US11954886B2 (en) | 2021-04-15 | 2024-04-09 | Intrinsic Innovation Llc | Systems and methods for six-degree of freedom pose estimation of deformable objects |
US11953700B2 (en) | 2020-05-27 | 2024-04-09 | Intrinsic Innovation Llc | Multi-aperture polarization optical systems using beam splitters |
US12020455B2 (en) | 2021-03-10 | 2024-06-25 | Intrinsic Innovation Llc | Systems and methods for high dynamic range image reconstruction |
US12067746B2 (en) | 2021-05-07 | 2024-08-20 | Intrinsic Innovation Llc | Systems and methods for using computer vision to pick up small objects |
US12069227B2 (en) | 2021-03-10 | 2024-08-20 | Intrinsic Innovation Llc | Multi-modal and multi-spectral stereo camera arrays |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112019002909B4 (de) * | 2018-06-08 | 2024-05-23 | Sony Semiconductor Solutions Corporation | Bildgebungsvorrichtung |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61296306A (ja) * | 1985-06-25 | 1986-12-27 | Horiba Ltd | 赤外線多層膜干渉フイルタ |
JPH05100104A (ja) * | 1991-10-04 | 1993-04-23 | Olympus Optical Co Ltd | 複合型光学部品 |
JPH05127018A (ja) * | 1991-11-02 | 1993-05-25 | Koshin Kogaku:Kk | 被蒸着基板の歪み除去方法及びフイルター |
JPH0933719A (ja) * | 1995-07-21 | 1997-02-07 | Koshin Kogaku:Kk | 誘電体多層膜フィルタの製造方法とその製造装置 |
JPH11202126A (ja) * | 1998-01-12 | 1999-07-30 | Japan Aviation Electron Ind Ltd | 誘電体多層膜フィルタ |
JP2006323365A (ja) * | 2005-05-18 | 2006-11-30 | Samsung Electro-Mechanics Co Ltd | ウェーハスケールレンズ及びこれを具備する光学系 |
US20070024958A1 (en) * | 2005-08-01 | 2007-02-01 | Samsung Electro-Mechanics Co., Ltd. | Lens system for ultra-small camera module and image forming lens with infrared ray filtering function used therefor |
JP3976780B1 (ja) * | 2007-05-17 | 2007-09-19 | マイルストーン株式会社 | 撮像レンズ |
JP2007248728A (ja) * | 2006-03-15 | 2007-09-27 | Nitto Denko Corp | 光学部材成形用樹脂シート及び光学部材 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100394214C (zh) * | 2002-11-21 | 2008-06-11 | 台达电子工业股份有限公司 | 膜应力平衡镀膜方法以及应用该方法制造的光学组件 |
-
2009
- 2009-06-01 JP JP2010517835A patent/JPWO2009157273A1/ja active Pending
- 2009-06-01 CN CN200980115664XA patent/CN102016654A/zh active Pending
- 2009-06-01 WO PCT/JP2009/059962 patent/WO2009157273A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61296306A (ja) * | 1985-06-25 | 1986-12-27 | Horiba Ltd | 赤外線多層膜干渉フイルタ |
JPH05100104A (ja) * | 1991-10-04 | 1993-04-23 | Olympus Optical Co Ltd | 複合型光学部品 |
JPH05127018A (ja) * | 1991-11-02 | 1993-05-25 | Koshin Kogaku:Kk | 被蒸着基板の歪み除去方法及びフイルター |
JPH0933719A (ja) * | 1995-07-21 | 1997-02-07 | Koshin Kogaku:Kk | 誘電体多層膜フィルタの製造方法とその製造装置 |
JPH11202126A (ja) * | 1998-01-12 | 1999-07-30 | Japan Aviation Electron Ind Ltd | 誘電体多層膜フィルタ |
JP2006323365A (ja) * | 2005-05-18 | 2006-11-30 | Samsung Electro-Mechanics Co Ltd | ウェーハスケールレンズ及びこれを具備する光学系 |
US20070024958A1 (en) * | 2005-08-01 | 2007-02-01 | Samsung Electro-Mechanics Co., Ltd. | Lens system for ultra-small camera module and image forming lens with infrared ray filtering function used therefor |
JP2007248728A (ja) * | 2006-03-15 | 2007-09-27 | Nitto Denko Corp | 光学部材成形用樹脂シート及び光学部材 |
JP3976780B1 (ja) * | 2007-05-17 | 2007-09-19 | マイルストーン株式会社 | 撮像レンズ |
Cited By (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12022207B2 (en) | 2008-05-20 | 2024-06-25 | Adeia Imaging Llc | Capturing and processing of images including occlusions focused on an image sensor by a lens stack array |
US10027901B2 (en) | 2008-05-20 | 2018-07-17 | Fotonation Cayman Limited | Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras |
US12041360B2 (en) | 2008-05-20 | 2024-07-16 | Adeia Imaging Llc | Capturing and processing of images including occlusions focused on an image sensor by a lens stack array |
US10142560B2 (en) | 2008-05-20 | 2018-11-27 | Fotonation Limited | Capturing and processing of images including occlusions focused on an image sensor by a lens stack array |
US9712759B2 (en) | 2008-05-20 | 2017-07-18 | Fotonation Cayman Limited | Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras |
US11412158B2 (en) | 2008-05-20 | 2022-08-09 | Fotonation Limited | Capturing and processing of images including occlusions focused on an image sensor by a lens stack array |
US11792538B2 (en) | 2008-05-20 | 2023-10-17 | Adeia Imaging Llc | Capturing and processing of images including occlusions focused on an image sensor by a lens stack array |
US9749547B2 (en) | 2008-05-20 | 2017-08-29 | Fotonation Cayman Limited | Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view |
US10306120B2 (en) | 2009-11-20 | 2019-05-28 | Fotonation Limited | Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps |
CN102472839B (zh) * | 2010-04-27 | 2015-05-13 | 柯尼卡美能达精密光学株式会社 | 摄像用透镜、晶片透镜、晶片透镜层叠体、摄像用透镜的制造方法、摄像用透镜的中间物、摄像用透镜的中间物的制造方法 |
CN102472839A (zh) * | 2010-04-27 | 2012-05-23 | 柯尼卡美能达精密光学株式会社 | 摄像用透镜、晶片透镜、晶片透镜层叠体、摄像用透镜的制造方法、摄像用透镜的中间物、摄像用透镜的中间物的制造方法 |
US10455168B2 (en) | 2010-05-12 | 2019-10-22 | Fotonation Limited | Imager array interfaces |
JP2012123239A (ja) * | 2010-12-09 | 2012-06-28 | Konica Minolta Advanced Layers Inc | 撮像用レンズ、スペーサー付ウエハレンズ及びウエハレンズ積層体 |
US10366472B2 (en) | 2010-12-14 | 2019-07-30 | Fotonation Limited | Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers |
US11423513B2 (en) | 2010-12-14 | 2022-08-23 | Fotonation Limited | Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers |
US11875475B2 (en) | 2010-12-14 | 2024-01-16 | Adeia Imaging Llc | Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers |
US10742861B2 (en) | 2011-05-11 | 2020-08-11 | Fotonation Limited | Systems and methods for transmitting and receiving array camera image data |
US10218889B2 (en) | 2011-05-11 | 2019-02-26 | Fotonation Limited | Systems and methods for transmitting and receiving array camera image data |
US9578237B2 (en) | 2011-06-28 | 2017-02-21 | Fotonation Cayman Limited | Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing |
JP2014521117A (ja) * | 2011-06-28 | 2014-08-25 | ペリカン イメージング コーポレイション | アレイカメラで使用するための光学配列 |
US10375302B2 (en) | 2011-09-19 | 2019-08-06 | Fotonation Limited | Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures |
US9794476B2 (en) | 2011-09-19 | 2017-10-17 | Fotonation Cayman Limited | Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures |
US10984276B2 (en) | 2011-09-28 | 2021-04-20 | Fotonation Limited | Systems and methods for encoding image files containing depth maps stored as metadata |
US9811753B2 (en) | 2011-09-28 | 2017-11-07 | Fotonation Cayman Limited | Systems and methods for encoding light field image files |
US20180197035A1 (en) | 2011-09-28 | 2018-07-12 | Fotonation Cayman Limited | Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata |
US10430682B2 (en) | 2011-09-28 | 2019-10-01 | Fotonation Limited | Systems and methods for decoding image files containing depth maps stored as metadata |
US10019816B2 (en) | 2011-09-28 | 2018-07-10 | Fotonation Cayman Limited | Systems and methods for decoding image files containing depth maps stored as metadata |
US12052409B2 (en) | 2011-09-28 | 2024-07-30 | Adela Imaging LLC | Systems and methods for encoding image files containing depth maps stored as metadata |
US10275676B2 (en) | 2011-09-28 | 2019-04-30 | Fotonation Limited | Systems and methods for encoding image files containing depth maps stored as metadata |
US11729365B2 (en) | 2011-09-28 | 2023-08-15 | Adela Imaging LLC | Systems and methods for encoding image files containing depth maps stored as metadata |
US10311649B2 (en) | 2012-02-21 | 2019-06-04 | Fotonation Limited | Systems and method for performing depth based image editing |
US9754422B2 (en) | 2012-02-21 | 2017-09-05 | Fotonation Cayman Limited | Systems and method for performing depth based image editing |
US9706132B2 (en) | 2012-05-01 | 2017-07-11 | Fotonation Cayman Limited | Camera modules patterned with pi filter groups |
US10334241B2 (en) | 2012-06-28 | 2019-06-25 | Fotonation Limited | Systems and methods for detecting defective camera arrays and optic arrays |
US9807382B2 (en) | 2012-06-28 | 2017-10-31 | Fotonation Cayman Limited | Systems and methods for detecting defective camera arrays and optic arrays |
US11022725B2 (en) | 2012-06-30 | 2021-06-01 | Fotonation Limited | Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors |
US10261219B2 (en) | 2012-06-30 | 2019-04-16 | Fotonation Limited | Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors |
US10380752B2 (en) | 2012-08-21 | 2019-08-13 | Fotonation Limited | Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints |
US12002233B2 (en) | 2012-08-21 | 2024-06-04 | Adeia Imaging Llc | Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints |
US9858673B2 (en) | 2012-08-21 | 2018-01-02 | Fotonation Cayman Limited | Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints |
US9813616B2 (en) | 2012-08-23 | 2017-11-07 | Fotonation Cayman Limited | Feature based high resolution motion estimation from low resolution images captured using an array source |
US10462362B2 (en) | 2012-08-23 | 2019-10-29 | Fotonation Limited | Feature based high resolution motion estimation from low resolution images captured using an array source |
US10390005B2 (en) | 2012-09-28 | 2019-08-20 | Fotonation Limited | Generating images from light fields utilizing virtual viewpoints |
US9749568B2 (en) | 2012-11-13 | 2017-08-29 | Fotonation Cayman Limited | Systems and methods for array camera focal plane control |
US10009538B2 (en) | 2013-02-21 | 2018-06-26 | Fotonation Cayman Limited | Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information |
US9743051B2 (en) | 2013-02-24 | 2017-08-22 | Fotonation Cayman Limited | Thin form factor computational array cameras and modular array cameras |
US9774831B2 (en) | 2013-02-24 | 2017-09-26 | Fotonation Cayman Limited | Thin form factor computational array cameras and modular array cameras |
US9917998B2 (en) | 2013-03-08 | 2018-03-13 | Fotonation Cayman Limited | Systems and methods for measuring scene information while capturing images using array cameras |
US9774789B2 (en) | 2013-03-08 | 2017-09-26 | Fotonation Cayman Limited | Systems and methods for high dynamic range imaging using array cameras |
US11272161B2 (en) | 2013-03-10 | 2022-03-08 | Fotonation Limited | System and methods for calibration of an array camera |
US11985293B2 (en) | 2013-03-10 | 2024-05-14 | Adeia Imaging Llc | System and methods for calibration of an array camera |
US9986224B2 (en) | 2013-03-10 | 2018-05-29 | Fotonation Cayman Limited | System and methods for calibration of an array camera |
US11570423B2 (en) | 2013-03-10 | 2023-01-31 | Adeia Imaging Llc | System and methods for calibration of an array camera |
US10225543B2 (en) | 2013-03-10 | 2019-03-05 | Fotonation Limited | System and methods for calibration of an array camera |
US10958892B2 (en) | 2013-03-10 | 2021-03-23 | Fotonation Limited | System and methods for calibration of an array camera |
US9733486B2 (en) | 2013-03-13 | 2017-08-15 | Fotonation Cayman Limited | Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing |
US10127682B2 (en) | 2013-03-13 | 2018-11-13 | Fotonation Limited | System and methods for calibration of an array camera |
US9888194B2 (en) | 2013-03-13 | 2018-02-06 | Fotonation Cayman Limited | Array camera architecture implementing quantum film image sensors |
US9800856B2 (en) | 2013-03-13 | 2017-10-24 | Fotonation Cayman Limited | Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies |
US10547772B2 (en) | 2013-03-14 | 2020-01-28 | Fotonation Limited | Systems and methods for reducing motion blur in images or video in ultra low light with array cameras |
US10412314B2 (en) | 2013-03-14 | 2019-09-10 | Fotonation Limited | Systems and methods for photometric normalization in array cameras |
US10091405B2 (en) | 2013-03-14 | 2018-10-02 | Fotonation Cayman Limited | Systems and methods for reducing motion blur in images or video in ultra low light with array cameras |
US9800859B2 (en) | 2013-03-15 | 2017-10-24 | Fotonation Cayman Limited | Systems and methods for estimating depth using stereo array cameras |
US10542208B2 (en) | 2013-03-15 | 2020-01-21 | Fotonation Limited | Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information |
US10638099B2 (en) | 2013-03-15 | 2020-04-28 | Fotonation Limited | Extended color processing on pelican array cameras |
US10674138B2 (en) | 2013-03-15 | 2020-06-02 | Fotonation Limited | Autofocus system for a conventional camera that uses depth information from an array camera |
US10455218B2 (en) | 2013-03-15 | 2019-10-22 | Fotonation Limited | Systems and methods for estimating depth using stereo array cameras |
US10182216B2 (en) | 2013-03-15 | 2019-01-15 | Fotonation Limited | Extended color processing on pelican array cameras |
US10122993B2 (en) | 2013-03-15 | 2018-11-06 | Fotonation Limited | Autofocus system for a conventional camera that uses depth information from an array camera |
US9497429B2 (en) | 2013-03-15 | 2016-11-15 | Pelican Imaging Corporation | Extended color processing on pelican array cameras |
US9955070B2 (en) | 2013-03-15 | 2018-04-24 | Fotonation Cayman Limited | Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information |
US9898856B2 (en) | 2013-09-27 | 2018-02-20 | Fotonation Cayman Limited | Systems and methods for depth-assisted perspective distortion correction |
US10540806B2 (en) | 2013-09-27 | 2020-01-21 | Fotonation Limited | Systems and methods for depth-assisted perspective distortion correction |
US9924092B2 (en) | 2013-11-07 | 2018-03-20 | Fotonation Cayman Limited | Array cameras incorporating independently aligned lens stacks |
US11486698B2 (en) | 2013-11-18 | 2022-11-01 | Fotonation Limited | Systems and methods for estimating depth from projected texture using camera arrays |
US10119808B2 (en) | 2013-11-18 | 2018-11-06 | Fotonation Limited | Systems and methods for estimating depth from projected texture using camera arrays |
US10767981B2 (en) | 2013-11-18 | 2020-09-08 | Fotonation Limited | Systems and methods for estimating depth from projected texture using camera arrays |
US9813617B2 (en) | 2013-11-26 | 2017-11-07 | Fotonation Cayman Limited | Array camera configurations incorporating constituent array cameras and constituent cameras |
US10708492B2 (en) | 2013-11-26 | 2020-07-07 | Fotonation Limited | Array camera configurations incorporating constituent array cameras and constituent cameras |
US10089740B2 (en) | 2014-03-07 | 2018-10-02 | Fotonation Limited | System and methods for depth regularization and semiautomatic interactive matting using RGB-D images |
US10574905B2 (en) | 2014-03-07 | 2020-02-25 | Fotonation Limited | System and methods for depth regularization and semiautomatic interactive matting using RGB-D images |
US9521319B2 (en) | 2014-06-18 | 2016-12-13 | Pelican Imaging Corporation | Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor |
US11546576B2 (en) | 2014-09-29 | 2023-01-03 | Adeia Imaging Llc | Systems and methods for dynamic calibration of array cameras |
US10250871B2 (en) | 2014-09-29 | 2019-04-02 | Fotonation Limited | Systems and methods for dynamic calibration of array cameras |
US9942474B2 (en) | 2015-04-17 | 2018-04-10 | Fotonation Cayman Limited | Systems and methods for performing high speed video capture and depth estimation using array cameras |
US10818026B2 (en) | 2017-08-21 | 2020-10-27 | Fotonation Limited | Systems and methods for hybrid depth regularization |
US11562498B2 (en) | 2017-08-21 | 2023-01-24 | Adela Imaging LLC | Systems and methods for hybrid depth regularization |
US10482618B2 (en) | 2017-08-21 | 2019-11-19 | Fotonation Limited | Systems and methods for hybrid depth regularization |
US11983893B2 (en) | 2017-08-21 | 2024-05-14 | Adeia Imaging Llc | Systems and methods for hybrid depth regularization |
US11699273B2 (en) | 2019-09-17 | 2023-07-11 | Intrinsic Innovation Llc | Systems and methods for surface modeling using polarization cues |
US11270110B2 (en) | 2019-09-17 | 2022-03-08 | Boston Polarimetrics, Inc. | Systems and methods for surface modeling using polarization cues |
US12099148B2 (en) | 2019-10-07 | 2024-09-24 | Intrinsic Innovation Llc | Systems and methods for surface normals sensing with polarization |
US11525906B2 (en) | 2019-10-07 | 2022-12-13 | Intrinsic Innovation Llc | Systems and methods for augmentation of sensor systems and imaging systems with polarization |
US11982775B2 (en) | 2019-10-07 | 2024-05-14 | Intrinsic Innovation Llc | Systems and methods for augmentation of sensor systems and imaging systems with polarization |
US11842495B2 (en) | 2019-11-30 | 2023-12-12 | Intrinsic Innovation Llc | Systems and methods for transparent object segmentation using polarization cues |
US11302012B2 (en) | 2019-11-30 | 2022-04-12 | Boston Polarimetrics, Inc. | Systems and methods for transparent object segmentation using polarization cues |
US11580667B2 (en) | 2020-01-29 | 2023-02-14 | Intrinsic Innovation Llc | Systems and methods for characterizing object pose detection and measurement systems |
US11797863B2 (en) | 2020-01-30 | 2023-10-24 | Intrinsic Innovation Llc | Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images |
US11953700B2 (en) | 2020-05-27 | 2024-04-09 | Intrinsic Innovation Llc | Multi-aperture polarization optical systems using beam splitters |
US12069227B2 (en) | 2021-03-10 | 2024-08-20 | Intrinsic Innovation Llc | Multi-modal and multi-spectral stereo camera arrays |
US12020455B2 (en) | 2021-03-10 | 2024-06-25 | Intrinsic Innovation Llc | Systems and methods for high dynamic range image reconstruction |
US11290658B1 (en) | 2021-04-15 | 2022-03-29 | Boston Polarimetrics, Inc. | Systems and methods for camera exposure control |
US11954886B2 (en) | 2021-04-15 | 2024-04-09 | Intrinsic Innovation Llc | Systems and methods for six-degree of freedom pose estimation of deformable objects |
US11683594B2 (en) | 2021-04-15 | 2023-06-20 | Intrinsic Innovation Llc | Systems and methods for camera exposure control |
US12067746B2 (en) | 2021-05-07 | 2024-08-20 | Intrinsic Innovation Llc | Systems and methods for using computer vision to pick up small objects |
US11689813B2 (en) | 2021-07-01 | 2023-06-27 | Intrinsic Innovation Llc | Systems and methods for high dynamic range imaging using crossed polarizers |
Also Published As
Publication number | Publication date |
---|---|
CN102016654A (zh) | 2011-04-13 |
JPWO2009157273A1 (ja) | 2011-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009157273A1 (ja) | 撮像光学系及び撮像用レンズの製造方法 | |
JP4924777B2 (ja) | 撮像用レンズ、ウエハレンズ、ウエハレンズ積層体、撮像用レンズの製造方法、撮像用レンズの中間物、撮像用レンズの中間物の製造方法 | |
WO2011055655A1 (ja) | 撮像装置、光学ユニット、ウエハレンズ積層体及びウエハレンズ積層体の製造方法 | |
US20070225466A1 (en) | Curable organometallic composition, organometallic polymer material and optical component | |
US20110286094A1 (en) | Wire-grid polarizer and process for producing the same | |
WO2013161767A1 (ja) | 光学素子 | |
KR102068138B1 (ko) | 회절 도광판 및 회절 도광판의 제조 방법 | |
JP2008266578A (ja) | 光学ポリマー材料及び光学部品 | |
KR20170028083A (ko) | 커버 윈도우 기판 및 이의 제조 방법 | |
KR20240095346A (ko) | 화상 표시용 도광판 | |
US20130118685A1 (en) | Wafer lens member producing method, image pickup lens producing method, image pickup module producing method, and image pickup module-installed electronic device producing method | |
US20080233417A1 (en) | Optical polymer material and optical component | |
JP2010105357A (ja) | 成形装置、成形型部材、ウエハレンズ及びウエハレンズ用成形型の製造方法 | |
JP2011237472A (ja) | 撮像用レンズ | |
KR20150029921A (ko) | 디스플레이 장치의 전면 차광층 형성용 착색 감광성 수지 조성물 | |
US20090244729A1 (en) | Method for manufacturing optical element, optical element unit, and imaging unit | |
JP2004013081A (ja) | 複合型光学素子、複合型光学素子の製造方法、及び光学装置 | |
WO2009157310A1 (ja) | 撮像光学系 | |
JP2007191687A (ja) | 有機無機複合体形成用材料、有機無機複合体、その製造方法及び光学素子 | |
WO2011055623A1 (ja) | 撮像用レンズ、撮像装置及び電子機器の製造方法 | |
JP5668446B2 (ja) | 撮像用レンズ、スペーサー付ウエハレンズ及びウエハレンズ積層体 | |
JP2021162728A (ja) | 光学体、光学体の製造方法及び光学デバイス | |
US12135440B2 (en) | Optical element manufacturing method, optical element, optical apparatus, and image capturing apparatus | |
US20230176249A1 (en) | Hybrid Lens and Method for Manufacturing Hybrid Lens | |
KR102728623B1 (ko) | 투명 전극 구조체 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980115664.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09769983 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010517835 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09769983 Country of ref document: EP Kind code of ref document: A1 |