[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009154062A1 - Scale‑like glass and covered scale‑like glass - Google Patents

Scale‑like glass and covered scale‑like glass Download PDF

Info

Publication number
WO2009154062A1
WO2009154062A1 PCT/JP2009/059764 JP2009059764W WO2009154062A1 WO 2009154062 A1 WO2009154062 A1 WO 2009154062A1 JP 2009059764 W JP2009059764 W JP 2009059764W WO 2009154062 A1 WO2009154062 A1 WO 2009154062A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mass
temperature
oxide
sio
Prior art date
Application number
PCT/JP2009/059764
Other languages
French (fr)
Japanese (ja)
Inventor
浩輔 藤原
昭浩 小山
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2010517829A priority Critical patent/JP5399385B2/en
Publication of WO2009154062A1 publication Critical patent/WO2009154062A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/26Aluminium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/005Manufacture of flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0018Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings uncoated and unlayered plate-like particles

Definitions

  • the present invention relates to scaly glass and coated scaly glass that can be used by blending, for example, in resin compositions, paints, inks (inks), cosmetics, etc., and exhibiting excellent color tone and gloss.
  • the strength and dimensional accuracy of the resin molded body obtained from the resin composition can be improved.
  • scale-like glass is mix
  • This scaly glass comes to exhibit a metallic color when its surface is coated with a metal, and the scaly glass exhibits an interference color due to interference of reflected light by coating the surface of the scaly glass with a metal oxide. It becomes like this. That is, the glass flakes coated with a metal film or metal oxide film are suitably used as a luster pigment. Bright pigments using such glass flakes are preferably used in applications where color tone and gloss are important, such as paints and cosmetics.
  • the glass flakes are produced by, for example, inflating a molten glass substrate into a balloon shape with a blow nozzle to form a hollow glass film, and pulverizing the hollow glass film with a pressure roller.
  • the glass flakes have excellent meltability and good moldability, have an appropriate temperature-viscosity characteristic, and have a devitrification temperature lower than the working temperature. Desired.
  • the working temperature is a temperature at which the viscosity of the glass is 100 Pa ⁇ s (1000 P).
  • the devitrification temperature is a temperature at which crystals start to grow in the molten glass substrate and begin to grow.
  • the working temperature is 1300 ° C. or lower because the glass flakes are difficult to be formed particularly when the working temperature is too high.
  • the thermal damage which the manufacturing apparatus of a melting kiln or scale-like glass receives becomes small, the lifetime of a melting kiln or a manufacturing apparatus can be extended.
  • the glass flakes may be subjected to a high temperature treatment.
  • the glass flakes or the coated glass flakes are blended in a paint, and may be used for applications such as baking painting and subjected to high temperature treatment. Therefore, sufficient heat resistance is also required for the glass flakes.
  • a soda lime glass generally used as a so-called plate glass composition contains a large amount of an alkali metal oxide and has insufficient heat resistance.
  • the coating film and coating film require acid resistance, alkali resistance, etc., and scaly glass requires high chemical durability.
  • the present applicant has already proposed the following glass flakes.
  • the content of silicon dioxide (SiO 2 ), the total content of silicon dioxide and aluminum oxide (Al 2 O 3 ), the total content of magnesium oxide (MgO) and calcium oxide (CaO) and it proposed the identified glass flakes a total content of sodium oxide and lithium oxide (Li 2 O) and (Na 2 O) and potassium oxide (K 2 O).
  • Patent Document 2 a scaly shape specifying the content of silicon dioxide, the total content of magnesium oxide and calcium oxide, the total content of lithium oxide, sodium oxide and potassium oxide, and the content of titanium dioxide (TiO 2 ). Suggested glass.
  • silicon dioxide and aluminum oxide are components that form a glass skeleton. If the content of silicon dioxide and aluminum oxide is not sufficiently high, the glass transition temperature does not increase, heat resistance is insufficient, water resistance, etc. Deteriorates chemical durability.
  • Diboron trioxide (B 2 O 3 ) is a component that forms a glass skeleton, adjusts the devitrification temperature and viscosity of the glass, and improves water resistance. Since silicon dioxide tends to improve acid resistance and diboron trioxide and aluminum oxide tend to deteriorate acid resistance, the balance of silicon dioxide, diboron trioxide and aluminum oxide is important.
  • Magnesium oxide and calcium oxide are components that adjust the devitrification temperature and viscosity of the glass.
  • alkali metal oxides such as lithium oxide, sodium oxide, and potassium oxide, are components which adjust the devitrification temperature and viscosity at the time of glass formation.
  • Patent Documents 1 and 2 describe that the content of aluminum oxide is preferably 5% or less.
  • the content of aluminum oxide is 3.20% by mass or less in Patent Document 1.
  • Patent Document 2 it is 4.84% by mass or less.
  • the content of silicon dioxide is set excessively compared with the content of aluminum oxide.
  • the total content of lithium oxide, sodium oxide, and potassium oxide is set to exceed 13% by mass. For this reason, there existed a problem that while the heat resistance of scale-like glass was insufficient, chemical durability, such as alkali resistance, also deteriorated.
  • the glass flakes described in Patent Documents 1 and 2 have the disadvantage that the glass transition temperature is low and the heat resistance is insufficient. Specifically, the glass transition temperatures were as low as 529 to 578 ° C. in Patent Document 1 and 467 to 576 ° C. in Patent Document 2, and sufficient heat resistance could not be expressed.
  • An object of the present invention is to provide glass flakes and coated glass flakes having improved heat resistance and chemical durability.
  • the present inventors have intensively studied on a suitable glass composition of scaly glass.
  • silicon dioxide (SiO 2 ), diboron trioxide (B 2 O 3 ) and aluminum oxide (Al 2 O 3 ) content silicon dioxide, diboron trioxide and aluminum oxide content difference (SiO 2 —B 2 O 3 —Al 2 O 3 ), by controlling the total content of alkali metal oxides (Li 2 O + Na 2 O + K 2 O), heat resistance and chemical durability (particularly acid resistance)
  • the present invention has been completed by finding that scaly glass having improved properties and easiness to mold can be obtained.
  • the scaly glass according to the first aspect of the present invention is expressed in mass%, 57 ⁇ SiO 2 ⁇ 65, 0.1 ⁇ B 2 O 3 ⁇ 2, 8 ⁇ Al 2 O 3 ⁇ 15, 45 ⁇ (SiO 2 —B 2 O 3 —Al 2 O 3 ) ⁇ 56, 1 ⁇ MgO ⁇ 5, 15 ⁇ CaO ⁇ 30, 0.1 ⁇ (Li 2 O + Na 2 O + K 2 O) ⁇ 4 It is formed from a glass substrate having a composition of
  • the glass substrate further contains 0.1 to 5% by mass of TiO 2 .
  • the glass substrate has a glass transition temperature of 600 to 800 ° C.
  • the temperature difference ⁇ T obtained by subtracting the devitrification temperature from the working temperature of the glass substrate is 0 to 100 ° C.
  • the coated flaky glass according to one aspect of the present invention includes the flaky glass according to the first aspect and a film mainly composed of a metal or a metal oxide that covers the surface of the flaky glass.
  • the glass substrate forming the glass flakes according to the first aspect of the present invention is set so as to satisfy 57 ⁇ SiO 2 ⁇ 65 and 8 ⁇ Al 2 O 3 ⁇ 15. That is, the content of silicon dioxide and aluminum oxide is sufficiently ensured, the function of forming a glass skeleton by silicon dioxide and aluminum oxide can be fully expressed, the glass transition temperature is high, the meltability is good, the acid resistance is high. Property and water resistance can be improved.
  • the content of diboron trioxide is set to 0.1 ⁇ B 2 O 3 ⁇ 2, and the difference between the content of silicon dioxide and the total content of diboron trioxide and aluminum oxide is 45 ⁇ ( SiO 2 —B 2 O 3 —Al 2 O 3 ) ⁇ 56.
  • the contents of magnesium oxide and calcium oxide are set to 1 ⁇ MgO ⁇ 5 and 15 ⁇ CaO ⁇ 30. For this reason, the devitrification temperature and viscosity at the time of glass formation can be made favorable.
  • the total content of lithium oxide, sodium oxide and potassium oxide is set to satisfy 0.1 ⁇ (Li 2 O + Na 2 O + K 2 O) ⁇ 4.
  • the content of the alkali metal oxide is sufficient, and the devitrification temperature and viscosity at the time of glass formation can be improved. Therefore, the heat resistance and chemical durability of the glass flakes can be improved.
  • the glass substrate further contains 0.1 to 5% by mass of TiO 2 , the melting property, chemical durability and ultraviolet absorption of the glass flakes can be improved due to the properties of titanium dioxide.
  • the heat resistance of the glass flakes can be improved.
  • the temperature difference ⁇ T obtained by subtracting the devitrification temperature from the working temperature of the glass substrate is set to 0 to 100 ° C., devitrification at the time of glass formation can be suppressed, and a more uniform scaly glass can be obtained. Can do.
  • coated glass flakes in which the surface of the glass flakes is coated with a film containing a metal or metal oxide as a main component can develop a metal color, an interference color or the like by the film.
  • (A) is a perspective view which shows typically the scale-like glass in embodiment
  • (b) is a top view which shows scale-like glass.
  • Sectional drawing which shows covering scale-like glass typically.
  • composition of the glass substrate that forms the scaly glass of the present embodiment is expressed as mass% and is set as follows.
  • SiO 2 is silicon dioxide (silicic acid)
  • Al 2 O 3 is aluminum oxide (alumina)
  • B 2 O 3 is diboron trioxide
  • MgO magnesium oxide
  • CaO calcium oxide
  • Li 2 O Means lithium oxide
  • Na 2 O means sodium oxide
  • K 2 O means potassium oxide.
  • FIG. 1A is a perspective view showing the scaly glass 10
  • FIG. 1B is a plan view showing the scaly glass 10.
  • the average thickness t of the glass flakes 10 of this embodiment is 0.1 to 15 ⁇ m.
  • the aspect ratio (average particle diameter a / average thickness t) of the glass flakes 10 is 2 to 1000. Therefore, the glass flakes 10 are flaky particles.
  • composition of the glass flake 10 the method for producing the glass flake 10
  • physical properties of the glass flake 10 the coated glass flakes and the uses (resin composition, paint, ink composition and cosmetic) will be described in this order.
  • composition of scale glass 10 The composition of the glass substrate forming the scale-like glass 10 will be described.
  • SiO 2 Silicon dioxide
  • the main component means a component having the largest content. Moreover, it is a component which adjusts the devitrification temperature and viscosity at the time of glass formation, and also is a component which improves acid resistance.
  • the content of SiO 2 is less than 57% by mass, the devitrification temperature is excessively increased, and it becomes difficult to form the glass flakes 10 and the acid resistance of the glass flakes 10 is also deteriorated.
  • it exceeds 65% by mass the melting point of the glass becomes too high, and it becomes difficult to uniformly melt the raw material.
  • the lower limit of SiO 2 is 57% by mass or more, preferably 58% by mass or more, more preferably 59% by mass or more, and most preferably greater than 60% by mass.
  • the upper limit of SiO 2 is 65 wt% or less, preferably 64 wt% or less. Therefore, the range of the content of SiO 2 is selected from any combination of these upper and lower limits.
  • the content of SiO 2 is preferably 57 to 64% by mass, more preferably 58 to 64% by mass.
  • Diboron trioxide (B 2 O 3 ) is a component that forms a glass skeleton, and is a component that adjusts the devitrification temperature and viscosity at the time of glass formation, and is also a component that improves water resistance.
  • the content of diboron trioxide is 0.1 ⁇ B 2 O 3 ⁇ 2.
  • B 2 O 3 which is likely to volatilize may be scattered when the glass is melted, and when the glass is melted, the furnace wall of the melting furnace or the regenerative kiln is eroded. The life of the kiln is significantly reduced.
  • the content of B 2 O 3 is less than 0.1% by mass, insufficient functional expression of B 2 O 3, with scaffolding glass it is insufficient, water resistance deteriorates.
  • the lower limit of B 2 O 3 is 0.1% by mass or more, and preferably 0.5% by mass or more.
  • the upper limit of B 2 O 3 is less than 2% by mass, and preferably 1.5% by mass or less. Therefore, any combination of these upper and lower limits is selected for the range of the content of B 2 O 3 .
  • the content of B 2 O 3 is preferably 0.1 to 1.5% by mass, and more preferably 0.5 to 1.5% by mass.
  • Aluminum oxide (Al 2 O 3 ) is a component that serves as a skeleton of the glass flake 10, and is also a component that adjusts the devitrification temperature and viscosity during glass formation.
  • Al 2 O 3 is a component that improves water resistance, while it is also a component that deteriorates acid resistance.
  • Al 2 O 3 is less than 8% by mass, the devitrification temperature and viscosity cannot be adjusted sufficiently, or the water resistance cannot be improved sufficiently.
  • the content of Al 2 O 3 exceeds 15% by mass, the melting point of the glass becomes too high, and it becomes difficult to melt the raw material uniformly, and the acid resistance is also deteriorated.
  • the lower limit of Al 2 O 3 is 8% by mass or more, and preferably 10% by mass or more.
  • the upper limit of Al 2 O 3 is 15% by mass or less, preferably 13% by mass or less, and more preferably less than 12% by mass. Therefore, the range of the content of Al 2 O 3 is selected from any combination of these upper and lower limits. For example, the content of Al 2 O 3 is preferably 10 to 15% by mass, and more preferably 10 to 13% by mass.
  • (B 2 O 3 + Al 2 O 3 ) The sum of B 2 O 3 and Al 2 O 3 (B 2 O 3 + Al 2 O 3 ), which is a component that adjusts the devitrification temperature and viscosity at the time of glass formation and improves the water resistance, is the moldability of scaly glass. Important for nirvana. When (B 2 O 3 + Al 2 O 3 ) is less than 9% by mass, the devitrification temperature rises too much, and it becomes difficult to form scale-like glass. On the other hand, if (B 2 O 3 + Al 2 O 3 ) is 17% by mass or more, the melting point of the glass becomes too high, and it becomes difficult to uniformly melt the raw material.
  • the lower limit of (B 2 O 3 + Al 2 O 3 ) is preferably 9% by mass or more, more preferably 10% by mass or more, and more preferably 11% by mass or more.
  • the upper limit of (B 2 O 3 + Al 2 O 3 ) is preferably less than 17% by mass, more preferably 16% by mass or less, further preferably 14% by mass or less, and most preferably 13% by mass or less.
  • the range of the amount of (B 2 O 3 + Al 2 O 3 ) is selected from any combination of these upper and lower limits.
  • the content of (B 2 O 3 + Al 2 O 3 ) is preferably 10 to 16% by mass, and more preferably 10 to 14% by mass.
  • SiO 2 —B 2 O 3 —Al 2 O 3 is a component for improving the acid resistance of the glass flake 10
  • the difference in the content of the B 2 O 3 and Al 2 O 3 is a component to deteriorate the acid resistance (SiO 2 -B 2 O 3 -Al 2 O 3 ) is an important factor for the acid resistance of the glass flakes 10.
  • (SiO 2 —B 2 O 3 —Al 2 O 3 ) is less than 45 mass%, the acid resistance of the glass flake 10 becomes insufficient.
  • (SiO 2 —B 2 O 3 —Al 2 O 3 ) exceeds 56 mass%, the devitrification temperature rises too much and it is difficult to form the glass flakes 10.
  • the lower limit of (SiO 2 —B 2 O 3 —Al 2 O 3 ) is 45 mass% or more, preferably 47 mass% or more, more preferably 48 mass% or more, and most preferably 49 mass% or more.
  • the upper limit of (SiO 2 —B 2 O 3 —Al 2 O 3 ) is 56 mass% or less, preferably 55 mass% or less, more preferably 54 mass% or less, and most preferably 53 mass% or less.
  • the range of the amount of (SiO 2 —B 2 O 3 —Al 2 O 3 ) is selected from any combination of these upper and lower limits.
  • the content of (SiO 2 —B 2 O 3 —Al 2 O 3 ) is preferably 45 to 55% by mass, and more preferably 46 to 53% by mass.
  • MgO, CaO Magnesium oxide (MgO) and calcium oxide (CaO) are components that adjust the devitrification temperature and viscosity during glass formation.
  • MgO Magnesium oxide
  • CaO calcium oxide
  • the lower limit of MgO is 1% by mass or more, and preferably 2% by mass or more.
  • the upper limit of MgO is 5% by mass or less, and preferably 4% by mass or less. Therefore, the content range of MgO is selected from any combination of these upper and lower limits.
  • the content of MgO is preferably 1 to 4% by mass, and more preferably 2 to 4% by mass.
  • the lower limit of CaO is 15% by mass or more, preferably 16% by mass or more, and more preferably 18% by mass or more.
  • the upper limit of CaO is 30% by mass or less, preferably 25% by mass or less, and more preferably 24% by mass or less. Therefore, the content range of CaO is determined by any combination of these upper and lower limits.
  • the CaO content is preferably 16 to 25% by mass, and more preferably 18 to 24% by mass.
  • SrO Strontium oxide
  • SrO Strontium oxide
  • the upper limit of SrO is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 2% by mass or less. Most preferably, SrO is not substantially contained.
  • BaO Barium oxide
  • BaO is a component that adjusts the devitrification temperature and viscosity during glass formation. This BaO is not an essential component, but may be used as a component for adjusting the devitrification temperature and viscosity during glass formation. BaO is also a component that deteriorates acid resistance. However, when the content of BaO exceeds 10% by mass, the acid resistance deteriorates. Therefore, the upper limit of BaO is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 2% by mass or less. Most preferably, BaO is not substantially contained.
  • Zinc oxide (ZnO) is a component that adjusts the devitrification temperature and viscosity during glass formation. This ZnO is not an essential component, but may be used as a component for adjusting the devitrification temperature and viscosity during glass formation. However, since ZnO is volatile, it may be scattered during melting. When the content of ZnO exceeds 10% by mass, it becomes difficult to manage the content in the glass due to volatilization. Therefore, the upper limit of ZnO is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 2% by mass or less. Most preferably, ZnO is not substantially contained.
  • Alkali metal oxides [lithium oxide (Li 2 O), sodium oxide (Na 2 O), potassium oxide (K 2 O)] are components that adjust the devitrification temperature and viscosity during glass formation.
  • the total content (Li 2 O + Na 2 O + K 2 O) of this alkali metal oxide is 0.1 ⁇ (Li 2 O + Na 2 O + K 2 O) ⁇ 4.
  • the total content of alkali metal oxides (Li 2 O + Na 2 O + K 2 O) is more than 4% by mass, the glass transition temperature is lowered and the heat resistance of the glass is deteriorated.
  • the total content of alkali metal oxides (Li 2 O + Na 2 O + K 2 O) is less than 0.1% by mass, the devitrification temperature and viscosity cannot be adjusted sufficiently.
  • the lower limit of (Li 2 O + Na 2 O + K 2 O) is 0.1% by mass or more, and preferably 0.5% by mass or more.
  • the upper limit of (Li 2 O + Na 2 O + K 2 O) is 4% by mass or less, preferably 3% by mass or less, and more preferably less than 2% by mass.
  • the range of the amount of (Li 2 O + Na 2 O + K 2 O) is selected from any combination of these upper and lower limits.
  • the content of (Li 2 O + Na 2 O + K 2 O) is preferably 0.1 to 3% by mass, and more preferably 0.5 to 3% by mass.
  • Titanium dioxide (TiO 2 ) is a component that improves the meltability of the glass, the chemical durability of the glass flake 10 and the ultraviolet absorption characteristics. Accordingly, TiO 2 is not an essential component but is preferably included as a component for adjusting the meltability of the glass and the chemical durability and optical properties of the glass flake 10. However, when the content of TiO 2 exceeds 5% by mass, the devitrification temperature of the glass is excessively increased, and it becomes difficult to form the scaly glass 10.
  • the lower limit of Ti 2 O is preferably 0% by mass or more, and more preferably 0.1% by mass or more.
  • the upper limit of the content of TiO 2 is preferably 5% by mass or less, more preferably 2% by mass or less, still more preferably 1.6% by mass or less, and most preferably less than 1% by mass. Therefore, the range of the content of TiO 2 is determined by any combination of these upper and lower limits. For example, the content of TiO 2 is preferably 0.1 to 2% by mass.
  • ZrO 2 Zirconium oxide
  • ZrO 2 Zirconium oxide
  • Such ZrO 2 is not an essential component, but may be used as a component for adjusting the devitrification temperature, viscosity, and chemical durability during glass formation.
  • the upper limit of ZrO 2 is preferably 5% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less. More preferably, ZrO 2 is not substantially contained.
  • iron (Fe) in glass exists in a state of Fe 2+ or Fe 3+ .
  • Fe 3+ is a component that enhances the ultraviolet absorption characteristics of the glass flake 10
  • Fe 2+ is a component that enhances the heat ray absorption characteristics. Therefore, iron (Fe) is not an essential component, but may be included as a component for adjusting the optical properties of the glass flake 10. Moreover, even if iron (Fe) is not intentionally included, it may be inevitably mixed with industrial raw materials. On the other hand, when the content of iron (Fe) increases, the scaly glass 10 is markedly colored. This coloring may not be preferable in applications where the color tone and gloss of the glass flake 10 are regarded as important.
  • the upper limit of iron (Fe) is preferably 5% by mass or less, more preferably 2% by mass or less, further preferably 0.5% by mass or less, and particularly preferably 0.1% by mass or less in terms of Fe 2 O 3.
  • Sulfur trioxide (SO 3 ) is not an essential component, but may be included as a fining agent. When a sulfate raw material is used, it may be contained at a content of 0.5% by mass or less.
  • fluorine (F) may erode the furnace wall of a melting kiln or a heat storage kiln when melting glass, the lifetime of the kiln may be significantly reduced.
  • substantially not containing a substance means that the substance is not intentionally included unless, for example, it is inevitably mixed with an industrial raw material.
  • the content is preferably less than 0.1% by mass, more preferably 0.05% by mass or less, and particularly preferably 0.03% by mass or less.
  • the composition of the glass substrate forming the glass flakes 10 in the present embodiment includes SiO 2 , B 2 O 3 , Al 2 O 3 , MgO and CaO as essential components, and further Li 2 O. , Na 2 O and K 2 O, and containing at least one selected from the group consisting of SrO, BaO, ZnO, TiO 2 , ZrO 2 , iron oxide (FeO or Fe 2 O 3 ), SO 3 etc. may be contained.
  • the scale-like glass 10 of this embodiment can be manufactured, for example using the manufacturing apparatus shown in FIG. As shown in FIG. 4, the glass substrate 21 having the glass composition melted in the refractory kiln 20 is swelled into a balloon shape by the gas 23 sent to the blow nozzle 22 to become a hollow glass film 24. . By pulverizing the obtained hollow glass film 24 with a pair of pressing rolls 25, 25, the scaly glass 10 is obtained.
  • the scale-like glass 10 of this embodiment can be manufactured also using the manufacturing apparatus shown, for example in FIG.
  • the glass substrate 21 having the molten glass composition poured into the rotating cup 26 flows out radially from the upper edge of the rotating cup 26 by centrifugal force, and is annularly arranged vertically. The air is sucked through the gap between the plates 27 and 27 and introduced into the annular cyclone collector 28. While passing through the gap between the annular plates 27, 27, the glass substrate 21 is cooled and solidified in the form of a thin film, and further crushed into small pieces, whereby the glass flake 10 is obtained.
  • the temperature when the viscosity of the molten glass is 100 Pa ⁇ s (1000 P) is called the working temperature and is the most suitable temperature for forming the glass flake 10.
  • the working temperature is 100 Pa ⁇ s (1000 P)
  • the average thickness of the hollow glass film 24, that is, the average thickness of the scaly glass 10 is 0.1 to 15 ⁇ m.
  • the temperature drop of the glass is remarkable. Due to this temperature decrease, the plasticity of the hollow glass film 24 is drastically decreased, making it difficult to stretch.
  • the working temperature is preferably 1100 ° C. or higher, more preferably 1150 ° C. or higher, and further preferably 1200 ° C. or higher.
  • the working temperature is preferably 1260 ° C. or less, more preferably 1250 ° C. or less, further preferably 1240 ° C. or less, and most preferably 1230 ° C. or less. Therefore, the working temperature is preferably 1100 to 1300 ° C, more preferably 1200 to 1250 ° C.
  • ⁇ T is preferably 0 ° C. or higher, more preferably 20 ° C. or higher, further preferably 30 ° C. or higher, and most preferably 40 ° C. or higher.
  • ⁇ T is 100 ° C.
  • ⁇ T is more preferably 80 ° C. or lower because the glass composition can be easily adjusted, and ⁇ T is more preferably 80 ° C. or lower. Therefore, ⁇ T is preferably 0 to 100 ° C., more preferably 20 to 80 ° C., and particularly preferably 40 to 80 ° C.
  • devitrification refers to generation of white turbidity due to crystals produced and grown in a molten glass substrate.
  • a crystallized lump may exist, which is not preferable as the scale-like glass 10.
  • the scale-like glass 10 has higher heat resistance as the glass transition temperature (glass transition point) of the glass substrate forming the scale-like glass 10 is higher, and is less likely to be deformed with respect to processing involving high-temperature heating. If the glass transition temperature is 600 ° C. or higher, there is little possibility that the shape of the scaly glass 10 changes in the step of forming a film mainly composed of a metal or a metal oxide on the surface of the scaly glass 10. Moreover, the glass flakes 10 or the coated glass flakes can be blended in a paint and suitably used for applications such as baking painting. If it is a glass composition prescribed
  • the glass transition temperature of the glass flakes 10 is preferably 600 ° C. or higher, more preferably 650 ° C. or higher, and further preferably 700 ° C. or higher.
  • the upper limit of the glass transition temperature is preferably about 800 ° C. Accordingly, the glass transition temperature is preferably 600 to 800 ° C., and more preferably 650 to 800 ° C.
  • the scale-like glass 10 has a higher elasticity as the Young's modulus of the glass substrate forming the scale-like glass 10 is higher, and effectively functions as a filler for a resin composition for obtaining a resin molded body.
  • the Young's modulus (GPa) is obtained from the density of the glass measured by the Archimedes method by measuring the longitudinal wave velocity and the transverse wave velocity of the elastic wave propagating in the glass by a normal ultrasonic method. it can.
  • the lower limit of this Young's modulus is preferably 85 GPa or more, more preferably 88 GPa or more, and even more preferably 89 GPa or more.
  • the upper limit of the Young's modulus is preferably 100 GPa or less, more preferably 95 GPa or less. Therefore, the Young's modulus is preferably 85 to 100 GPa, more preferably 88 to 95 GPa.
  • the glass flake 10 of this embodiment is excellent in chemical durability such as acid resistance, water resistance, and alkali resistance. Therefore, the scale-like glass 10 of this embodiment can be used suitably for uses, such as a resin molding, a coating material, cosmetics, and ink.
  • the acid resistance index is such that the glass substrate forming the glass flake 10 is crushed and passes through the auxiliary mesh sieve 710 ⁇ m and the standard mesh sieve 590 ⁇ m specified in JIS Z 8801, but not through the standard mesh sieve 420 ⁇ m.
  • the weight reduction rate ⁇ W when glass powder is taken in the same gram quantity as the specific gravity of glass and immersed in 100 mL of an aqueous 10 mass% sulfuric acid solution at 80 ° C. for 72 hours is used. It shows that acid resistance is so high that this mass reduction rate (DELTA) W is low.
  • This measuring method is based on “Optical Glass Chemical Durability Measuring Method (Powder Method) 06-1975” of Japan Optical Glass Industry Association Standard (JOGIS).
  • the glass substrate forming the scale-like glass 10 is a glass sample produced by melting a normal glass raw material.
  • the index (mass reduction rate ⁇ W) indicating the acid resistance of the glass be a small value.
  • the weight reduction rate ⁇ W shows a large value, the anticorrosion property of the anticorrosion lining material in an acidic environment is lowered. Therefore, the weight reduction rate ⁇ W is preferably 1.2% by mass or less, more preferably 0.9% by mass or less, further preferably 0.7% by mass or less, and 0.5% by mass. % Is most preferred.
  • the lower limit of the mass reduction rate ⁇ W is usually about 0.05% by mass. Therefore, the mass reduction rate ⁇ W is preferably 0.05 to 1.2% by mass, and more preferably 0.05 to 0.9% by mass.
  • the above-described scaly glass 10 is used as a base material, and a coating 11 containing a metal or a metal oxide as a main component is formed on the surface (outer peripheral surface) thereof, thereby covering the scaly glass. 12 can be manufactured.
  • the coating 11 is preferably formed substantially from at least one of a metal and a metal oxide.
  • the form of the film 11 may be any of a single layer, a mixed layer, or a multilayer.
  • the coating 11 is formed of at least one metal selected from the group consisting of silver, gold, platinum, palladium, and nickel.
  • the coating 11 is formed of at least one metal oxide selected from the group consisting of titanium oxide, aluminum oxide, iron oxide, cobalt oxide, zirconium oxide, zinc oxide, tin oxide, and silicon dioxide.
  • titanium dioxide having high refractive index and transparency and good interference color development and iron oxide capable of developing characteristic interference colors are preferable.
  • the film 11 may be a laminated film including a first film mainly containing metal and a second film mainly containing metal oxide.
  • the film 11 may be formed on the entire surface of the glass flake 10 serving as the core, or the film 11 may be formed on a part of the surface of the glass flake 10.
  • the thickness of the coating 11 can be appropriately set depending on the application.
  • a method for forming the coating 11 on the surface of the glass flake 10 any method such as a generally known method can be employed.
  • a known method such as a sputtering method, a sol-gel method, a CVD method (chemical vapor deposition method), an LPD method, or a liquid phase deposition method in which an oxide is deposited on the surface from a metal salt can be employed.
  • the LPD method Liquid Phase Deposition Method
  • FIG. 3 is a schematic cross-sectional view for explaining an example in which the glass flake 10 is blended with a paint and applied to the surface of the substrate 13. As shown in FIG. 3, the glass flakes 10 or the coated glass flakes 12 are dispersed in the resin matrix 15 of the coating film 14.
  • Resin compositions, paints, ink compositions and cosmetics can be appropriately selected and used depending on the application as long as they are generally known.
  • the mixing ratio of the scaly glass 10 and these materials can also be set as appropriate.
  • the method of mixing the scaly glass 10 and these materials can be applied as long as it is a generally known method. For example, when the glass flakes 10 or the coated glass flakes 12 are blended in the paint, a thermosetting resin, a thermoplastic resin, or a curing agent can be appropriately selected and blended with the base material resin.
  • thermosetting resin is not particularly limited, and is an acrylic resin, polyester resin, epoxy resin, phenol resin, urea resin, fluorine resin, polyester-urethane curing resin, epoxy-polyester curing resin, acrylic-polyester resin, acrylic -Urethane curable resin, acrylic-melamine curable resin, polyester-melamine curable resin, and the like.
  • thermoplastic resin is not particularly limited, for example, polyvinyl chloride, polypropylene, polyethylene, polystyrene, polyester, polyamide, polycarbonate, polybutylene, polybutylene terephthalate or a copolymer obtained by copolymerizing monomers forming these, Examples thereof include polyphenylene sulfide, polyphenylene ether, polyether ether ketone, liquid crystal polymer (I type, II type or III type), thermoplastic fluororesin and the like.
  • the curing agent is not particularly limited, and examples thereof include polyisocyanate, amine, polyamide, polybasic acid, acid anhydride, polysulfide, trifluoroboric acid, acid dihydrazide, and imidazole.
  • the above-mentioned various thermosetting resins or thermoplastic resins can be used as a base material resin.
  • the ink composition include writing instrument inks such as various ballpoint pens and felt pens, and printing inks such as gravure inks and offset inks, and can be applied to any ink composition.
  • the vehicle constituting the ink composition serves to disperse the pigment and fix the ink to the paper.
  • the vehicle is composed of resins, oil and solvent.
  • Vehicles for writing instrument inks include acrylic resins, styrene-acrylic copolymers, polyvinyl alcohol, polyacrylic acid salts, acrylic monomer-vinyl acetate copolymers, polysaccharides produced by microorganisms such as xanthan gum, and guar gum. Examples include water-soluble plant polysaccharides. Further, examples of the solvent include water, alcohol, hydrocarbon, ester and the like.
  • Vehicles for gravure inks are resins such as gum rosin, wood rosin, tall oil rosin, lime rosin, rosin sell, maleic acid resin, polyamide resin, vinyl resin, nitrocellulose, cellulose acetate, ethyl cellulose, chlorinated rubber, cyclized rubber, ethylene-acetic acid
  • resins such as gum rosin, wood rosin, tall oil rosin, lime rosin, rosin sell, maleic acid resin, polyamide resin, vinyl resin, nitrocellulose, cellulose acetate, ethyl cellulose, chlorinated rubber, cyclized rubber, ethylene-acetic acid
  • examples thereof include a vinyl copolymer resin, a urethane resin, a polyester resin, an alkyd resin, a mixture of resins such as gilsonite, dammar, and shellac, and a water-soluble resin or an aqueous emulsion resin obtained by water-solubilizing the resin.
  • the solvent include hydrocarbon
  • the vehicle for offset ink includes rosin-modified phenolic resin, petroleum resin, alkyd resin, or these dry-modified resins as the resin, and examples of the oil include vegetable oils such as linseed oil, tung oil, and soybean oil. Further, examples of the solvent include n-paraffin, isoparaffin, aromatech, naphthene, ⁇ -olefin, water and the like. Conventional additives such as dyes, pigments, surfactants, lubricants, antifoaming agents, and leveling agents may be appropriately selected and blended with the various vehicle components described above.
  • Cosmetics include a wide range of cosmetics such as facial cosmetics, makeup cosmetics, and hair cosmetics. Among these, it is suitably applied to makeup cosmetics such as foundations, white powder, eye shadows, blushers, makeup bases, nail enamels, eye liners, mascaras, lipsticks, and fancy powders.
  • the glass flake 10 can be appropriately subjected to a hydrophobic treatment.
  • the following five methods can be mentioned as the method of hydrophobizing treatment.
  • Nylon polymethyl methacrylate, polyethylene, various fluororesins [polytetrafluoroethylene resin (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (PFA), tetrafluoroethylene-hexafluoropropylene copolymer resin ( FEP), tetrafluoroethylene-ethylene copolymer resin (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), etc.], a treatment method with a polymer compound such as polyamino acid.
  • PTFE polytetrafluoroethylene resin
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer resin
  • ETFE tetrafluoroethylene-ethylene copolymer resin
  • PVDF polyvinylidene
  • any method other than those described above can be used as long as it is generally applicable to powder hydrophobization treatment.
  • other materials usually used in cosmetics can be appropriately blended with the cosmetic as needed.
  • inorganic powders include talc, kaolin, sericite, muscovite, phlogopite, saucite, biotite, lithia mica, vermiculite, magnesium carbonate, calcium carbonate, diatomaceous earth, magnesium silicate, calcium silicate, aluminum silicate, Examples thereof include barium sulfate, metal tungstate, silica, hydroxyapatite, zeolite, boron nitride, and ceramic powder.
  • organic powder examples include nylon powder, polyethylene powder, polystyrene powder, benzoguanamine powder, polytetrafluoroethylene powder, epoxy resin powder, acrylic resin powder, and microcrystalline cellulose.
  • Pigments are roughly classified into inorganic pigments and organic pigments.
  • Inorganic white pigment Titanium oxide, zinc oxide, etc.
  • Inorganic red pigment Iron oxide (Bengara), iron titanate, etc.
  • Inorganic brown pigment ⁇ iron oxide, etc.
  • Inorganic yellow pigment Yellow iron oxide, ocher, etc.
  • inorganic Black pigments black iron oxide, carbon black, etc.
  • inorganic purple pigments mango violet, cobalt violet, etc.
  • inorganic green pigments cobalt titanate, etc.
  • inorganic blue pigments ultramarine blue, bitumen, etc.
  • examples of the pearl pigment include titanium oxide coated mica, titanium oxide coated bismuth oxychloride, bismuth oxychloride, titanium oxide coated talc, fish scale foil, and colored titanium oxide coated mica.
  • examples of the metal powder pigment include aluminum powder and copper powder.
  • red 201, red 202, red 204, red 205, red 220, red 226, red 228, red 405, orange 203, orange 204, yellow 205, yellow 401 and Blue 404 etc. are mentioned.
  • organic pigments obtained by rakeizing the following dyes are used as extender pigments such as talc, calcium carbonate, barium sulfate, zirconium oxide, and aluminum white. That is, as the dye, Red No. 3, Red No. 104, Red No. 106, Red No. 227, Red No. 230, Red No. 401, Red No. 505, Orange No. 205, Yellow No. 4, Yellow No. 5, Yellow No. 202, Yellow 203, green 3 and blue 1 are listed. Furthermore, examples of the pigment include natural pigments such as chlorophyll and ⁇ -carotene.
  • hydrocarbons As hydrocarbons, squalane, liquid paraffin, petrolatum, microcrystalline wax, okezolite, ceresin, myristic acid, palmitic acid, stearic acid, oleic acid, isostearic acid, cetyl alcohol, hexadecyl alcohol, oleyl alcohol, 2-ethyl Cetyl hexanoate, 2-ethylhexyl palmitate, 2-octyldodecyl myristate, neopentyl glycol di-2-ethylhexanoate, glycerol tri-2-ethylhexanoate, 2-octyldodecyl oleate, isopropyl myristate, tris
  • Examples include glycerol isostearate, tricoconut oil fatty acid glycerol, olive oil, avocado oil, beeswax, myristyl myristate, mink oil,
  • esters such as silicone oil, higher fatty acids and oils, and oily components such as higher alcohols and waxes.
  • organic solvents such as acetone, toluene, butyl acetate, and acetate, resins such as alkyd resin and urea resin, and plasticizers such as camphor and acetyltributyl citrate can be used.
  • ultraviolet absorbers, antioxidants, preservatives, surfactants, humectants, fragrances, water, alcohols, thickeners and the like can be mentioned.
  • this cosmetic is not particularly limited, and examples thereof include powder, cake, pencil, stick, ointment, liquid, emulsion, and cream. The effect exhibited by the above embodiment is described collectively below.
  • 57 ⁇ SiO 2 ⁇ 65 and 8 ⁇ Al 2 O 3 ⁇ 15 are set as the composition of the glass substrate that forms the flaky glass 10.
  • the silicon dioxide and aluminum oxide contents are sufficiently secured, and silicon dioxide and aluminum oxide, which are components that form a glass skeleton, can fully express their functions, have a high glass transition temperature, and melt It has good properties and can improve acid resistance and water resistance.
  • the content of diboron trioxide is set to 0.1 ⁇ B 2 O 3 ⁇ 2, and the difference between the content of silicon dioxide and the total content of diboron trioxide and aluminum oxide is 45 ⁇ ( SiO 2 —B 2 O 3 —Al 2 O 3 ) ⁇ 56.
  • the composition of the three components of silicon dioxide, aluminum oxide, and diboron trioxide can combine to exhibit excellent physical properties such as heat resistance, acid resistance, and water resistance of the glass flake 10.
  • the contents of magnesium oxide and calcium oxide are set to 1 ⁇ MgO ⁇ 5 and 15 ⁇ CaO ⁇ 30.
  • the devitrification temperature and viscosity at the time of glass formation can be made favorable.
  • the devitrification temperature and viscosity at the time of glass formation are adjusted favorably by the total content of lithium oxide, sodium oxide and potassium oxide being 0.1 ⁇ (Li 2 O + Na 2 O + K 2 O) ⁇ 4. Can do.
  • the heat resistance and chemical durability of the glass flake 10 can be improved.
  • By being excellent in heat resistance deformation when the glass flakes 10 are heated to a high temperature can be suppressed.
  • it is excellent in acid resistance while being able to apply the scaly glass 10 to the anticorrosion lining material in an acidic environment, for example, as a base material of the film formed by the liquid phase method using an acidic solution Useful.
  • the working temperature can be controlled to a relatively low temperature, the glass flake 10 can be easily formed.
  • the flaky glass 10 contains 0.1 to 5% by mass of TiO 2 as a composition of the glass substrate that forms the flaky glass 10, so that the flaky glass 10 has a composition based on the properties of titanium dioxide.
  • the meltability, chemical durability, and ultraviolet absorption can be improved.
  • the heat resistance of the glass flake 10 can be further improved than before.
  • the temperature difference ⁇ T obtained by subtracting the devitrification temperature from the working temperature of the glass substrate forming the glass flake 10 is 0 to 100 ° C., devitrification during glass formation can be suppressed and more uniform A scaly glass 10 can be prepared.
  • the surface of the glass flake 10 is covered with the coating 11, and the coating 11 is formed of a metal or a metal oxide, whereby a metal color, an interference color, or the like can be developed based on the coating 11. Accordingly, the coated scale-like glass 12 can be suitably used as a bright pigment.
  • the acid resistance of the glass flakes 10 can be improved when the mass reduction rate ⁇ W of the glass substrate forming the glass flakes 10 is 0.1 to 1.2% by mass. -Since the Young's modulus of the glass substrate forming the scale-like glass 10 is 85 to 100 GPa, the scale-like glass 10 can exhibit good elasticity, and is preferably used as a filler for a resin molded body. Can do.
  • Examples 1 to 27 and Comparative Examples 1 to 8 Batches of glass bodies were prepared for each of Examples and Comparative Examples by blending ordinary glass raw materials such as silica sand so as to have the compositions shown in Tables 1 to 4. Each batch was heated to 1400-1600 ° C. using an electric furnace and melted, and maintained for about 4 hours until the composition became uniform. Thereafter, the molten glass substrate was poured out on an iron plate and gradually cooled to room temperature in an electric furnace to obtain a glass sample.
  • the platinum ball pulling method is a method of measuring the relationship between the load (resistance) and the gravity and buoyancy acting on the platinum ball when the platinum ball is immersed in molten glass and pulling the platinum ball at a constant speed.
  • This is a method of measuring the viscosity by applying the Stokes law, which shows the relationship between the viscosity and the falling speed when the particles of particles settle in the fluid.
  • a glass sample is pulverized and passed through a standard mesh sieve 1.0 mm defined in JIS Z 8801.
  • a glass sample having a size not passing through a standard mesh sieve 2.8 mm is placed in a platinum boat, and a temperature gradient (900 to 1400 ° C.
  • the glass was heated for 2 hours in an electric furnace with a), and the devitrification temperature was determined from the maximum temperature of the electric furnace corresponding to the crystal appearance position.
  • the temperature behavior at a predetermined location in the electric furnace was measured in advance.
  • a glass sample was placed in the predetermined place, and the devitrification temperature was measured.
  • Tables 1 to 4 The glass compositions in Tables 1 to 4 are all values expressed in mass%.
  • ⁇ T is a temperature difference obtained by subtracting the devitrification temperature from the working temperature as described above.
  • ⁇ W is an index of acid resistance as described above.
  • the glass of Comparative Example 1 has a conventional plate glass composition, SiO 2 , B 2 O 3 , Al 2 O 3 , (SiO 2 —B 2 O 3 —Al 2 O 3 ), CaO content and alkali
  • the total content of metal oxides (Li 2 O + Na 2 O + K 2 O) is outside the scope of the present invention.
  • the glass of Comparative Example 2 is a conventional C glass, SiO 2 , B 2 O 3 , Al 2 O 3 , (SiO 2 —B 2 O 3 —Al 2 O 3 ), CaO content and alkali metal oxide.
  • the total content Li 2 O + Na 2 O + K 2 O is outside the scope of the present invention.
  • the glass of Comparative Example 3 is a conventional E glass, and the content of SiO 2 , B 2 O 3 , (SiO 2 —B 2 O 3 —Al 2 O 3 ) and MgO is outside the scope of the present invention. Show. In the glass of Comparative Example 4, the contents of SiO 2 , B 2 O 3 and (SiO 2 —B 2 O 3 —Al 2 O 3 ) are outside the scope of the present invention.
  • the Young's modulus of the glass in Examples 1 to 27 was 89 to 92 GPa. This has shown that the scale-like glass 10 functions effectively as fillers, such as a resin molding.
  • the glass transition temperature of the glass was 619 to 711 ° C. This indicates that the scaly glass 10 can exhibit excellent heat resistance.
  • the working temperature of these glasses was 1210-1230 ° C. This indicates that the temperature is suitable for producing the scaly glass 10.
  • ⁇ T (working temperature ⁇ devitrification temperature) of these glasses was 29 to 69 ° C. This is a temperature difference that does not cause devitrification in the manufacturing process of the glass flakes 10.
  • the mass reduction rate ⁇ W which is an index of acid resistance in these glasses, was 0.12 to 0.97% by mass. This indicates that the scaly glass 10 has good acid resistance.
  • the conventional plate glass composition shown in Comparative Example 1 has a small Young's modulus of 74 GPa and is inferior in elasticity. Furthermore, the glass transition temperature of this glass is as low as 553 ° C., which is inferior in heat resistance performance.
  • the conventional C glass shown in Comparative Example 2 has a small Young's modulus of 78 GPa and is inferior in elasticity. Furthermore, the glass transition temperature of this glass is as low as 549 ° C. and is inferior in heat resistance.
  • the conventional E glass shown in Comparative Example 3 has a large mass reduction rate ⁇ W of 7.40% by mass and is inferior in acid resistance.
  • the ⁇ T (working temperature ⁇ devitrification temperature) of the glass shown in Comparative Example 4 was ⁇ 9 ° C., which was considerably smaller than the ⁇ T of the glasses shown in Examples 1 to 27, and caused devitrification. Further, the ⁇ W of this glass is 5.24% by mass, which is larger than the ⁇ W of the glasses shown in Examples 1 to 27 and is inferior in acid resistance.
  • the ⁇ T of the glass shown in Comparative Example 6 was ⁇ 16 ° C., which was smaller than the ⁇ T of the glasses shown in Examples 1 to 27 and caused devitrification. Furthermore, the mass reduction rate ⁇ W of this glass is 2.85% by mass, which is larger than the mass reduction rate ⁇ W of Examples 1 to 27 and inferior in acid resistance.
  • the ⁇ T of the glass shown in Comparative Example 7 was ⁇ 59 ° C., which was smaller than the ⁇ T of the glasses shown in Examples 1 to 27 and caused devitrification. Further, the mass reduction rate ⁇ W of this glass is 1.63 mass%, which is larger than the mass reduction rates ⁇ W of Examples 1 to 27 and inferior in acid resistance.
  • the ⁇ T of the glass shown in Comparative Example 8 was ⁇ 11 ° C., which was smaller than the ⁇ T of the glasses shown in Examples 1 to 27, and caused devitrification.
  • the content of SiO 2 , B 2 O 3 , Al 2 O 3 , (SiO 2 —B 2 O 3 —Al 2 O 3 ), MgO, CaO, and alkali metal oxides The glass whose total content (Li 2 O + Na 2 O + K 2 O) is within the range of the present invention had excellent heat resistance and chemical durability (acid resistance).
  • a glass flake 10 and a coated glass flake 12 were produced using the glasses of Examples 1 to 27 and Comparative Example 8. That is, after remelting the glass of each composition with an electric furnace, it was formed into pellets while being cooled. This pellet was put into the production apparatus shown in FIG. 4 to produce a glass flake 10 having an average thickness of 0.5 to 1 ⁇ m. The average thickness of the glass flakes was measured by measuring the thickness of the glass flakes from the cross section of 100 glass flakes using an electron microscope (Keyence Corporation, Real Surface View Microscope, VE-7800). Obtained on average.
  • Examples 28 to 54 The glass flakes 10 having the compositions of Examples 1 to 27 thus prepared were pulverized to a predetermined particle size, and then the surface of the glass flakes 10 was coated with titanium dioxide by a liquid phase method.
  • This liquid phase method is a method in which titanium dioxide is deposited on the surface of the glass flake 10 from a metal salt. That is, stannous chloride dihydrate as a metal salt was dissolved in ion-exchanged water, and diluted hydrochloric acid was added to adjust the pH to 2.0 to 2.5. To this solution, the glass flakes 10 were added with stirring, and filtered after 10 minutes.
  • hexachloroplatinic acid hexahydrate was dissolved in ion-exchanged water, and the filtered glass flake 10 was added thereto while stirring, followed by filtration after 10 minutes.
  • a hydrochloric acid solution (35% by mass) was added to ion-exchanged water to obtain a hydrochloric acid acidic solution having a pH of 0.7.
  • the glass flakes 10 were added to this acidic solution while stirring, and the solution temperature was raised to 75 ° C.
  • TiCl 4 titanium tetrachloride
  • sodium hydroxide was added simultaneously so that the pH did not change
  • titanium dioxide TiO 2
  • the glass flakes 10 having the film 11 formed on the surface was filtered and dried at 180 ° C. for 2 hours.
  • the coated scaly glass 12 produced in this way was observed with an electron microscope, and it was confirmed that a titanium oxide film 11 was formed on the surface of the scaly glass 10.
  • Examples 55 to 81 The flaky glass 10 having the composition of Examples 1 to 27 was pulverized to a predetermined particle size, and then the surface of the flaky glass 10 was coated with silver by an ordinary electroless plating method. This normal electroless plating method will be described. First, the scaly glass 10 was pretreated with stannous chloride and hexachloroplatinic acid hexahydrate in the same manner as in Examples 28 to 54. Subsequently, 200 g of silver nitrate and an appropriate amount of aqueous ammonia were added to 10 L of ion-exchanged water to produce a silver solution.
  • the coated scaly glass 12 thus prepared was observed with an electron microscope, and it was confirmed that the silver coating 11 was formed on the surface of the scaly glass 10.
  • Examples 82 to 108 and Comparative Example 9 The glass flakes 10 having the compositions of Examples 1 to 27 were pulverized to a predetermined particle size, and then mixed with a polyester resin to obtain a polyester resin composition containing the glass flakes 10. This polyester resin composition had good dispersibility of the scaly glass 10 and good appearance.
  • Comparative Example 9 the flaky glass 10 having the composition of Comparative Example 8 was pulverized to a predetermined particle size and then mixed with a polyester resin, so that the flaky glass 10 of Comparative Example 8 was devitrified.
  • the appearance of the polyester resin composition was not preferable.
  • Example 109 to 135 The coated flaky glass 12 of Examples 28 to 54 was mixed with epoxy acrylate to obtain a vinyl ester paint containing the coated flaky glass 12. This vinyl ester paint had good dispersibility of the coated scale-like glass 12 and good appearance.
  • Examples 136 to 162 The coated flaky glass 12 of Examples 28 to 54 was mixed with a foundation which is a facial cosmetic, and a cosmetic containing the coated flaky glass 12 was obtained. This cosmetic was good as a cosmetic because the dispersibility of the coated scale-like glass 12 was good.
  • Examples 163 to 189 The coated flaky glass 12 of Examples 28 to 54 was mixed with an ink composition containing a predetermined amount of a colorant, a resin, and an organic solvent, and an ink composition containing the coated flaky glass 12 was obtained.
  • This ink composition had good dispersibility of the coated scale-like glass 12, and was good as an ink composition.
  • the composition of the glass substrate the range of the content of SiO 2 + B 2 O 3 or Al 2 O 3 + B 2 O 3 is specified, the range of the components forming the glass skeleton is clarified, and the glass formation
  • the devitrification temperature and viscosity can be improved.
  • the range of MgO + CaO can be prescribed
  • the cross-sectional shape in the thickness direction of the glass flake 10 may be a shape in which two main surfaces are parallel to each other, or another shape such as a shape in which the two main surfaces are inclined (tapered). It's okay.
  • a mass reduction rate ⁇ W indicating acid resistance of the glass substrate forming the scaly glass is 0.1 to 1.2% by mass. When comprised in this way, the acid resistance of scale-like glass can be improved.
  • the working temperature of the glass substrate forming the scale-like glass is 1100-1300 ° C.
  • operativity at the time of forming a scale-like glass can be improved.
  • the Young's modulus of the glass substrate forming the glass flakes is 85 to 100 GPa.
  • scale-like glass can exhibit favorable elasticity and can be used suitably as a filler of a resin molding.
  • the metal as the main component of the coated glass flake is at least one selected from the group consisting of nickel, gold, silver, platinum and palladium.
  • the metal oxide as the main component of the coated glass flake is at least one selected from the group consisting of titanium oxide, iron oxide, cobalt oxide, zirconium oxide, zinc oxide, tin oxide and silicon oxide. .
  • a paint characterized by containing the glass flakes or the coated glass flakes. When comprised in this way, a metallic color and gloss can be provided to the coating film formed from a coating material.
  • An ink composition comprising the glass flakes or the coated glass flakes.
  • a metal color and gloss can be provided to the character, figure, etc. which are formed with an ink composition.
  • a cosmetic comprising the glass flakes or the coated glass flakes.
  • the glass flakes or the coated glass flakes When comprised in this way, after applying cosmetics to a face etc., favorable color tone and glossiness can be provided.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Glass Compositions (AREA)
  • Cosmetics (AREA)
  • Surface Treatment Of Glass (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

Scale‑like glass (10) with improved heat resistance and chemical durability is formed from a glass base material wherein 57 ≤ SiO2 ≤ 65, 0.1 ≤ B2O3 < 2, 8 ≤ Al2O3 ≤ 15, 45 ≤ (SiO2‑B2O3‑Al2O3) ≤ 56, 1 ≤ MgO ≤ 5, 15 ≤ CaO ≤ 30, and 0.1 ≤ (Li2O + Na2O + K2O) ≤ 4, represented in wt%. It is preferable that the glass base material also contain 0.1‑5 wt% TiO2. The glass transition temperature of the glass base material is preferably in the range of 600‑800°C. The temperature difference ΔT calculated by subtracting the devitrification temperature from the operating temperature of the glass base material is preferably in the range of 0‑100°C.

Description

鱗片状ガラス及び被覆鱗片状ガラスScale glass and coated scale glass
 本発明は、例えば樹脂組成物、塗料、インキ(インク)、化粧料等に配合されて使用され、優れた色調や光沢を発揮することができる鱗片状ガラス及び被覆鱗片状ガラスに関するものである。 The present invention relates to scaly glass and coated scaly glass that can be used by blending, for example, in resin compositions, paints, inks (inks), cosmetics, etc., and exhibiting excellent color tone and gloss.
 係る鱗片状ガラスは、例えば樹脂組成物(樹脂マトリックス)中に分散させると、該樹脂組成物から得られる樹脂成形体の強度や寸法精度を向上させることができる。また、鱗片状ガラスは、ライニング材として、塗料に配合されて金属やコンクリート表面に塗布される。この鱗片状ガラスは、その表面を金属で被覆することにより金属色を呈するようになり、鱗片状ガラスの表面を金属酸化物で被覆することにより鱗片状ガラスは反射光の干渉による干渉色を呈するようになる。つまり、金属被膜又は金属酸化物被膜で被覆された鱗片状ガラスは、光輝性顔料として好適に利用される。このような鱗片状ガラスを用いた光輝性顔料は、塗料や化粧料等の色調や光沢が重要視される用途において好んで使用されている。 For example, when the scaly glass is dispersed in a resin composition (resin matrix), the strength and dimensional accuracy of the resin molded body obtained from the resin composition can be improved. Moreover, scale-like glass is mix | blended with a coating material as a lining material, and is apply | coated to a metal or concrete surface. This scaly glass comes to exhibit a metallic color when its surface is coated with a metal, and the scaly glass exhibits an interference color due to interference of reflected light by coating the surface of the scaly glass with a metal oxide. It becomes like this. That is, the glass flakes coated with a metal film or metal oxide film are suitably used as a luster pigment. Bright pigments using such glass flakes are preferably used in applications where color tone and gloss are important, such as paints and cosmetics.
 ところで、鱗片状ガラスは、例えば溶融ガラス素地をブローノズルで風船状に膨らませて中空状ガラス膜とし、この中空状ガラス膜を押圧ローラで粉砕することにより製造される。このような製造工程を勘案すると、鱗片状ガラスは、溶融性に優れていて成形性が良好であること、適正な温度-粘度特性を持つこと、及び作業温度よりも失透温度が低いことが求められる。作業温度は、ガラスの粘度が100Pa・s(1000P)であるときの温度である。また、失透温度は、溶融ガラス素地中に結晶が生成し、成長しはじめるときの温度である。 By the way, the glass flakes are produced by, for example, inflating a molten glass substrate into a balloon shape with a blow nozzle to form a hollow glass film, and pulverizing the hollow glass film with a pressure roller. Considering such a manufacturing process, the glass flakes have excellent meltability and good moldability, have an appropriate temperature-viscosity characteristic, and have a devitrification temperature lower than the working temperature. Desired. The working temperature is a temperature at which the viscosity of the glass is 100 Pa · s (1000 P). The devitrification temperature is a temperature at which crystals start to grow in the molten glass substrate and begin to grow.
 温度-粘度特性としては、特に作業温度が高くなり過ぎると鱗片状ガラスが成形し難くなるため、作業温度が1300℃以下であることが好ましい。ガラスの作業温度が低いほど、ガラス原料を溶融する際の燃料費を節約することができる。また、溶融窯や鱗片状ガラスの製造装置が受ける熱損傷が小さくなるので、溶融窯や製造装置の寿命を延ばすことができる。 As the temperature-viscosity characteristics, it is preferable that the working temperature is 1300 ° C. or lower because the glass flakes are difficult to be formed particularly when the working temperature is too high. The lower the glass working temperature is, the more fuel costs can be saved when melting the glass raw material. Moreover, since the thermal damage which the manufacturing apparatus of a melting kiln or scale-like glass receives becomes small, the lifetime of a melting kiln or a manufacturing apparatus can be extended.
 さらに、金属被膜又は金属酸化物被膜を鱗片状ガラスの表面に形成する際に、鱗片状ガラスを高温処理する場合がある。また、鱗片状ガラス又は被覆鱗片状ガラスは塗料に配合され、焼き付け塗装等の用途に用いられ高温処理される場合がある。従って、鱗片状ガラスには十分な耐熱性も要求される。いわゆる板ガラス組成として一般的に用いられているソーダライムガラスは、アルカリ金属酸化物を多量に含有し、耐熱性が十分ではなかった。塗料や化粧料に配合されるという鱗片状ガラスの用途を考慮すると、塗膜や被膜には耐酸性、耐アルカリ性等が必要とされ、鱗片状ガラスには高い化学的耐久性が要求される。 Furthermore, when the metal film or the metal oxide film is formed on the surface of the glass flakes, the glass flakes may be subjected to a high temperature treatment. In addition, the glass flakes or the coated glass flakes are blended in a paint, and may be used for applications such as baking painting and subjected to high temperature treatment. Therefore, sufficient heat resistance is also required for the glass flakes. A soda lime glass generally used as a so-called plate glass composition contains a large amount of an alkali metal oxide and has insufficient heat resistance. In consideration of the use of scaly glass that is blended in paints and cosmetics, the coating film and coating film require acid resistance, alkali resistance, etc., and scaly glass requires high chemical durability.
 これらの要求に対し、本願出願人は既に次のような鱗片状ガラスを提案した。例えば、特許文献1では、二酸化ケイ素(SiO)の含有量、二酸化ケイ素と酸化アルミニウム(Al)との合計含有量、酸化マグネシウム(MgO)と酸化カルシウム(CaO)との合計含有量及び酸化リチウム(LiO)と酸化ナトリウム(NaO)と酸化カリウム(KO)との合計含有量を特定した鱗片状ガラスを提案した。 In response to these requirements, the present applicant has already proposed the following glass flakes. For example, in Patent Document 1, the content of silicon dioxide (SiO 2 ), the total content of silicon dioxide and aluminum oxide (Al 2 O 3 ), the total content of magnesium oxide (MgO) and calcium oxide (CaO) and it proposed the identified glass flakes a total content of sodium oxide and lithium oxide (Li 2 O) and (Na 2 O) and potassium oxide (K 2 O).
 特許文献2では、二酸化ケイ素の含有量、酸化マグネシウムと酸化カルシウムとの合計含有量、酸化リチウムと酸化ナトリウムと酸化カリウムとの合計含有量及び二酸化チタン(TiO)の含有量を特定した鱗片状ガラスを提案した。 In Patent Document 2, a scaly shape specifying the content of silicon dioxide, the total content of magnesium oxide and calcium oxide, the total content of lithium oxide, sodium oxide and potassium oxide, and the content of titanium dioxide (TiO 2 ). Suggested glass.
特開2007-145699号公報JP 2007-145699 A 特開2007-145700号公報JP 2007-145700 A
 ところで、二酸化ケイ素及び酸化アルミニウムはガラスの骨格を形成する成分であり、二酸化ケイ素及び酸化アルミニウムの含有量が十分に高くないとガラス転移温度が高くならず、耐熱性が不足し、耐水性などの化学的耐久性を悪化させる。三酸化二ホウ素(B)はガラスの骨格を形成し、ガラスの失透温度及び粘度を調整し、かつ耐水性を向上させる成分である。二酸化ケイ素は耐酸性を向上させる傾向を示し、三酸化二ホウ素及び酸化アルミニウムは耐酸性を悪化させる傾向を示すことから、二酸化ケイ素、三酸化二ホウ素及び酸化アルミニウムのバランスが重要である。酸化マグネシウム及び酸化カルシウムは、ガラスの失透温度及び粘度を調整する成分である。そして、酸化リチウム、酸化ナトリウム及び酸化カリウムなどのアルカリ金属酸化物は、ガラス形成時の失透温度及び粘度を調整する成分である。 By the way, silicon dioxide and aluminum oxide are components that form a glass skeleton. If the content of silicon dioxide and aluminum oxide is not sufficiently high, the glass transition temperature does not increase, heat resistance is insufficient, water resistance, etc. Deteriorates chemical durability. Diboron trioxide (B 2 O 3 ) is a component that forms a glass skeleton, adjusts the devitrification temperature and viscosity of the glass, and improves water resistance. Since silicon dioxide tends to improve acid resistance and diboron trioxide and aluminum oxide tend to deteriorate acid resistance, the balance of silicon dioxide, diboron trioxide and aluminum oxide is important. Magnesium oxide and calcium oxide are components that adjust the devitrification temperature and viscosity of the glass. And alkali metal oxides, such as lithium oxide, sodium oxide, and potassium oxide, are components which adjust the devitrification temperature and viscosity at the time of glass formation.
 しかしながら、特許文献1及び2には、酸化アルミニウムの含有量が5%以下であることが好ましいと記載されており、実施例では酸化アルミニウムの含有量が特許文献1では3.20質量%以下であり、特許文献2では4.84質量%以下である。特許文献1及び2では、二酸化ケイ素の含有量が酸化アルミニウムの含有量に比べて過剰に設定されている。また、酸化リチウムと酸化ナトリウムと酸化カリウムとの合計含有量が13質量%を超えて設定されている。このため、鱗片状ガラスの耐熱性が不足すると共に、耐アルカリ性などの化学的耐久性も悪化するという問題があった。 However, Patent Documents 1 and 2 describe that the content of aluminum oxide is preferably 5% or less. In Examples, the content of aluminum oxide is 3.20% by mass or less in Patent Document 1. In Patent Document 2, it is 4.84% by mass or less. In patent documents 1 and 2, the content of silicon dioxide is set excessively compared with the content of aluminum oxide. Moreover, the total content of lithium oxide, sodium oxide, and potassium oxide is set to exceed 13% by mass. For this reason, there existed a problem that while the heat resistance of scale-like glass was insufficient, chemical durability, such as alkali resistance, also deteriorated.
 また、特許文献1及び2に記載の鱗片状ガラスはいずれもガラス転移温度が低く、耐熱性が不足するという欠点があった。具体的には、ガラス転移温度が特許文献1では529~578℃、特許文献2では467~576℃という低い温度であり、十分な耐熱性を発現することができなかった。 In addition, the glass flakes described in Patent Documents 1 and 2 have the disadvantage that the glass transition temperature is low and the heat resistance is insufficient. Specifically, the glass transition temperatures were as low as 529 to 578 ° C. in Patent Document 1 and 467 to 576 ° C. in Patent Document 2, and sufficient heat resistance could not be expressed.
 その上、特許文献1及び2の鱗片状ガラスには三酸化二ホウ素が含まれていないことから、ガラスの骨格形成が不十分で耐熱性に影響を及ぼすと共に、ガラスの耐水性が不足して化学的耐久性に劣るという問題があった。 In addition, since the scaly glass of Patent Documents 1 and 2 does not contain diboron trioxide, the skeleton formation of the glass is insufficient, affecting the heat resistance, and the water resistance of the glass is insufficient. There was a problem of poor chemical durability.
 本発明の目的は、耐熱性及び化学的耐久性の向上した鱗片状ガラス及び被覆鱗片状ガラスを提供することにある。 An object of the present invention is to provide glass flakes and coated glass flakes having improved heat resistance and chemical durability.
 本発明者らは、上記の目的を達成するために、鱗片状ガラスの好適なガラス組成について鋭意検討を重ねた。その結果、二酸化ケイ素(SiO)、三酸化二ホウ素(B)及び酸化アルミニウム(Al)の含有量、二酸化ケイ素と三酸化二ホウ素と酸化アルミニウムの関連として含有量の差を表す(SiO-B-Al)、アルカリ金属酸化物の合計含有量(LiO+NaO+KO)を制御することにより、耐熱性、化学的耐久性(特に耐酸性)及び成形し易さを向上させた鱗片状ガラスが得られることを見出し、本発明を完成した。 In order to achieve the above-mentioned object, the present inventors have intensively studied on a suitable glass composition of scaly glass. As a result, silicon dioxide (SiO 2 ), diboron trioxide (B 2 O 3 ) and aluminum oxide (Al 2 O 3 ) content, silicon dioxide, diboron trioxide and aluminum oxide content difference (SiO 2 —B 2 O 3 —Al 2 O 3 ), by controlling the total content of alkali metal oxides (Li 2 O + Na 2 O + K 2 O), heat resistance and chemical durability (particularly acid resistance) The present invention has been completed by finding that scaly glass having improved properties and easiness to mold can be obtained.
 すなわち、本発明の第1の側面に係る鱗片状ガラスは、質量%で表して、
  57≦SiO≦65、
 0.1≦B<2、
   8≦Al≦15、
  45≦(SiO-B-Al)≦56、
   1≦MgO≦5、
  15≦CaO≦30、
 0.1≦(LiO+NaO+KO)≦4
の組成であるガラス素地から形成される。
That is, the scaly glass according to the first aspect of the present invention is expressed in mass%,
57 ≦ SiO 2 ≦ 65,
0.1 ≦ B 2 O 3 <2,
8 ≦ Al 2 O 3 ≦ 15,
45 ≦ (SiO 2 —B 2 O 3 —Al 2 O 3 ) ≦ 56,
1 ≦ MgO ≦ 5,
15 ≦ CaO ≦ 30,
0.1 ≦ (Li 2 O + Na 2 O + K 2 O) ≦ 4
It is formed from a glass substrate having a composition of
 一例では、ガラス素地がさらにTiOを0.1~5質量%含有する。
 一例では、前記ガラス素地のガラス転移温度が600~800℃である。
 一例では、前記ガラス素地の作業温度から失透温度を差し引いた温度差ΔTが0~100℃である。
In one example, the glass substrate further contains 0.1 to 5% by mass of TiO 2 .
In one example, the glass substrate has a glass transition temperature of 600 to 800 ° C.
In one example, the temperature difference ΔT obtained by subtracting the devitrification temperature from the working temperature of the glass substrate is 0 to 100 ° C.
 本発明の一側面に係る被覆鱗片状ガラスは、第1の側面に係る鱗片状ガラスと前記鱗片状ガラスの表面を被覆する、金属又は金属酸化物を主成分とする被膜とを備える。
 本発明の第1の側面に係る発明の鱗片状ガラスを形成するガラス素地が、57≦SiO≦65及び8≦Al≦15を満たすように設定されている。すなわち、二酸化ケイ素及び酸化アルミニウムの含有量が十分に確保され、二酸化ケイ素と酸化アルミニウムによるガラスの骨格を形成する機能を十分に発現することができ、ガラス転移温度が高く、溶融性が良く、耐酸性や耐水性を高めることができる。さらに、三酸化二ホウ素の含有量が0.1≦B<2に設定されると共に、二酸化ケイ素の含有量と三酸化二ホウ素及び酸化アルミニウムの合計含有量との差が45≦(SiO-B-Al)≦56に設定されている。このため、鱗片状ガラスの特に耐酸性を高めることができる。また、酸化マグネシウム及び酸化カルシウムの含有量が1≦MgO≦5及び15≦CaO≦30に設定されている。このため、ガラス形成時における失透温度及び粘度を良好にすることができる。その上、酸化リチウム、酸化ナトリウム及び酸化カリウムの合計含有量が0.1≦(LiO+NaO+KO)≦4を満足するように設定されている。このようにアルカリ金属酸化物の含有量が十分であり、ガラス形成時における失透温度及び粘度を良好にすることができる。従って、鱗片状ガラスの耐熱性及び化学的耐久性を向上させることができる。
The coated flaky glass according to one aspect of the present invention includes the flaky glass according to the first aspect and a film mainly composed of a metal or a metal oxide that covers the surface of the flaky glass.
The glass substrate forming the glass flakes according to the first aspect of the present invention is set so as to satisfy 57 ≦ SiO 2 ≦ 65 and 8 ≦ Al 2 O 3 ≦ 15. That is, the content of silicon dioxide and aluminum oxide is sufficiently ensured, the function of forming a glass skeleton by silicon dioxide and aluminum oxide can be fully expressed, the glass transition temperature is high, the meltability is good, the acid resistance is high. Property and water resistance can be improved. Furthermore, the content of diboron trioxide is set to 0.1 ≦ B 2 O 3 <2, and the difference between the content of silicon dioxide and the total content of diboron trioxide and aluminum oxide is 45 ≦ ( SiO 2 —B 2 O 3 —Al 2 O 3 ) ≦ 56. For this reason, especially acid resistance of scale-like glass can be improved. The contents of magnesium oxide and calcium oxide are set to 1 ≦ MgO ≦ 5 and 15 ≦ CaO ≦ 30. For this reason, the devitrification temperature and viscosity at the time of glass formation can be made favorable. Moreover, the total content of lithium oxide, sodium oxide and potassium oxide is set to satisfy 0.1 ≦ (Li 2 O + Na 2 O + K 2 O) ≦ 4. Thus, the content of the alkali metal oxide is sufficient, and the devitrification temperature and viscosity at the time of glass formation can be improved. Therefore, the heat resistance and chemical durability of the glass flakes can be improved.
 ガラス素地がさらにTiOを0.1~5質量%含有する場合、二酸化チタンのもつ性質により鱗片状ガラスの溶融性、化学的耐久性及び紫外線吸収性を向上させることができる。 When the glass substrate further contains 0.1 to 5% by mass of TiO 2 , the melting property, chemical durability and ultraviolet absorption of the glass flakes can be improved due to the properties of titanium dioxide.
 ガラス素地のガラス転移温度が600~800℃に設定されている場合、鱗片状ガラスの耐熱性を向上させることができる。
 ガラス素地の作業温度から失透温度を差し引いた温度差ΔTが0~100℃に設定されている場合、ガラス形成時における失透を抑制することができると共に、より均質な鱗片状ガラスを得ることができる。
When the glass transition temperature of the glass substrate is set to 600 to 800 ° C., the heat resistance of the glass flakes can be improved.
When the temperature difference ΔT obtained by subtracting the devitrification temperature from the working temperature of the glass substrate is set to 0 to 100 ° C., devitrification at the time of glass formation can be suppressed, and a more uniform scaly glass can be obtained. Can do.
 鱗片状ガラスの表面が金属又は金属酸化物を主成分とする被膜により被覆されている被覆鱗片状ガラスは、被膜により金属色、干渉色などを発色することができる。 The coated glass flakes in which the surface of the glass flakes is coated with a film containing a metal or metal oxide as a main component can develop a metal color, an interference color or the like by the film.
(a)は実施形態における鱗片状ガラスを模式的に示す斜視図、(b)は鱗片状ガラスを示す平面図。(A) is a perspective view which shows typically the scale-like glass in embodiment, (b) is a top view which shows scale-like glass. 被覆鱗片状ガラスを模式的に示す断面図。Sectional drawing which shows covering scale-like glass typically. 基材の表面に鱗片状ガラス又は被覆鱗片状ガラスを含む塗膜を形成した状態を示す断面図。Sectional drawing which shows the state which formed the coating film containing scale-like glass or covering scale-like glass on the surface of a base material. 鱗片状ガラスを製造する装置を示す断面図。Sectional drawing which shows the apparatus which manufactures scale-like glass. 鱗片状ガラスを製造する別の装置を示す断面図。Sectional drawing which shows another apparatus which manufactures scale-like glass.
 以下、本実施形態の実施形態を図面に基づいて詳細に説明する。
 本明細書において、組成を示す数値は質量%を表す。本実施形態の鱗片状ガラスを形成するガラス素地の組成は質量%で表して次のように設定される。
Hereinafter, embodiments of the present embodiment will be described in detail with reference to the drawings.
In this specification, the numerical value indicating the composition represents mass%. The composition of the glass substrate that forms the scaly glass of the present embodiment is expressed as mass% and is set as follows.
  57≦SiO≦65、
 0.1≦B<2、
   8≦Al≦15、
  45≦(SiO-B-Al)≦56、
   1≦MgO≦5、
  15≦CaO≦30、
 0.1≦(LiO+NaO+KO)≦4。
57 ≦ SiO 2 ≦ 65,
0.1 ≦ B 2 O 3 <2,
8 ≦ Al 2 O 3 ≦ 15,
45 ≦ (SiO 2 —B 2 O 3 —Al 2 O 3 ) ≦ 56,
1 ≦ MgO ≦ 5,
15 ≦ CaO ≦ 30,
0.1 ≦ (Li 2 O + Na 2 O + K 2 O) ≦ 4.
 本明細書において、上記SiOは二酸化ケイ素(ケイ酸)、Alは酸化アルミニウム(アルミナ)、Bは三酸化二ホウ素、MgOは酸化マグネシウム、CaOは酸化カルシウム、LiOは酸化リチウム、NaOは酸化ナトリウム及びKOは酸化カリウムを意味する。 In the present specification, SiO 2 is silicon dioxide (silicic acid), Al 2 O 3 is aluminum oxide (alumina), B 2 O 3 is diboron trioxide, MgO is magnesium oxide, CaO is calcium oxide, Li 2 O. Means lithium oxide, Na 2 O means sodium oxide and K 2 O means potassium oxide.
 図1(a)は鱗片状ガラス10を示す斜視図及び図1(b)は鱗片状ガラス10を示す平面図である。図1(a)に示すように、本実施形態の鱗片状ガラス10の平均厚さtは、0.1~15μmである。また、鱗片状ガラス10のアスペクト比(平均粒子径a/平均厚さt)は、2~1000である。従って、鱗片状ガラス10は、薄片状粒子である。鱗片状ガラス10の平面形状は図1(b)に示す六角形状のほか、五角形状、八角形状等いずれの形状であってもよい。本明細書において、平均粒子径aは、鱗片状ガラス10を図1(b)に示すように平面視したときの面積Sの平方根によって定義される(a=S1/2)。 FIG. 1A is a perspective view showing the scaly glass 10, and FIG. 1B is a plan view showing the scaly glass 10. As shown in FIG. 1A, the average thickness t of the glass flakes 10 of this embodiment is 0.1 to 15 μm. The aspect ratio (average particle diameter a / average thickness t) of the glass flakes 10 is 2 to 1000. Therefore, the glass flakes 10 are flaky particles. The planar shape of the scaly glass 10 may be any shape such as a pentagonal shape and an octagonal shape in addition to the hexagonal shape shown in FIG. In this specification, the average particle diameter a is defined by the square root of the area S when the glass flake 10 is viewed in plan as shown in FIG. 1B (a = S 1/2 ).
 次に、鱗片状ガラス10の組成、鱗片状ガラス10の製造方法、鱗片状ガラス10の物性、被覆鱗片状ガラス及び用途(樹脂組成物、塗料、インキ組成物及び化粧料)について順に説明する。 Next, the composition of the glass flake 10, the method for producing the glass flake 10, the physical properties of the glass flake 10, the coated glass flakes and the uses (resin composition, paint, ink composition and cosmetic) will be described in this order.
   〔鱗片状ガラス10の組成〕
 鱗片状ガラス10を形成するガラス素地の組成について説明する。
   (SiO
 二酸化ケイ素(SiO)は、鱗片状ガラス10の骨格となる主成分である。本明細書において、主成分とは、含有量が最も多い成分であることを意味する。また、ガラス形成時の失透温度及び粘度を調整する成分であり、さらに耐酸性を向上させる成分でもある。このSiOの含有量が57質量%未満の場合には、失透温度が上昇し過ぎて、鱗片状ガラス10を形成することが難しくなると共に、鱗片状ガラス10の耐酸性も悪化する。その一方、65質量%を超える場合には、ガラスの融点が高くなり過ぎて、原料を均一に溶融することが困難になる。
[Composition of scale glass 10]
The composition of the glass substrate forming the scale-like glass 10 will be described.
(SiO 2 )
Silicon dioxide (SiO 2 ) is a main component that becomes the skeleton of the glass flake 10. In the present specification, the main component means a component having the largest content. Moreover, it is a component which adjusts the devitrification temperature and viscosity at the time of glass formation, and also is a component which improves acid resistance. When the content of SiO 2 is less than 57% by mass, the devitrification temperature is excessively increased, and it becomes difficult to form the glass flakes 10 and the acid resistance of the glass flakes 10 is also deteriorated. On the other hand, if it exceeds 65% by mass, the melting point of the glass becomes too high, and it becomes difficult to uniformly melt the raw material.
 従って、SiOの下限は、57質量%以上であり、58質量%以上が好ましく、59質量%以上がより好ましく、60質量%より大きいことが最も好ましい。SiOの上限は、65質量%以下であり、64質量%以下が好ましい。よって、SiOの含有量の範囲は、これら上限と下限の任意の組み合わせから選ばれる。例えば、SiOの含有量は、57~64質量%が好ましく、58~64質量%がより好ましい。 Therefore, the lower limit of SiO 2 is 57% by mass or more, preferably 58% by mass or more, more preferably 59% by mass or more, and most preferably greater than 60% by mass. The upper limit of SiO 2 is 65 wt% or less, preferably 64 wt% or less. Therefore, the range of the content of SiO 2 is selected from any combination of these upper and lower limits. For example, the content of SiO 2 is preferably 57 to 64% by mass, more preferably 58 to 64% by mass.
   (B
 三酸化二ホウ素(B)は、ガラスの骨格を形成する成分であり、ガラス形成時の失透温度及び粘度を調整する成分でもあると共に、耐水性を向上させる成分でもある。この三酸化二ホウ素の含有量は、0.1≦B<2である。Bの含有量が2質量%以上では、揮発しやすいBがガラスの溶融時に飛散するおそれがあり、ガラスを溶融する際に溶融窯や蓄熱窯の炉壁を浸食して窯の寿命を著しく低下させる。その一方、Bの含有量が0.1質量%より少ない場合には、Bの機能発現が不足し、ガラスの骨格形成が不十分であると共に、耐水性も悪化する。
(B 2 O 3 )
Diboron trioxide (B 2 O 3 ) is a component that forms a glass skeleton, and is a component that adjusts the devitrification temperature and viscosity at the time of glass formation, and is also a component that improves water resistance. The content of diboron trioxide is 0.1 ≦ B 2 O 3 <2. When the content of B 2 O 3 is 2% by mass or more, B 2 O 3 which is likely to volatilize may be scattered when the glass is melted, and when the glass is melted, the furnace wall of the melting furnace or the regenerative kiln is eroded. The life of the kiln is significantly reduced. On the other hand, when the content of B 2 O 3 is less than 0.1% by mass, insufficient functional expression of B 2 O 3, with scaffolding glass it is insufficient, water resistance deteriorates.
 従って、Bの下限は、0.1質量%以上であり、0.5質量%以上が好ましい。Bの上限は、2質量%未満であり、1.5質量%以下が好ましい。よって、Bの含有量の範囲は、これらの上限と下限の任意の組み合わせが選択される。例えば、Bの含有量は、0.1~1.5質量%が好ましく、0.5~1.5質量%がより好ましい。 Therefore, the lower limit of B 2 O 3 is 0.1% by mass or more, and preferably 0.5% by mass or more. The upper limit of B 2 O 3 is less than 2% by mass, and preferably 1.5% by mass or less. Therefore, any combination of these upper and lower limits is selected for the range of the content of B 2 O 3 . For example, the content of B 2 O 3 is preferably 0.1 to 1.5% by mass, and more preferably 0.5 to 1.5% by mass.
   (Al
 酸化アルミニウム(Al)は、鱗片状ガラス10の骨格となる成分であり、ガラス形成時の失透温度及び粘度を調整する成分でもある。また、Alは、耐水性を向上させる成分である一方で、耐酸性を悪化させる成分でもある。Alが8質量%未満の場合には、失透温度及び粘性の調整を十分に行うことができず、或いは耐水性を十分に改善することができない。一方、Alの含有量が15質量%を超える場合、ガラスの融点が高くなり過ぎて、原料を均一に溶融することが困難になり、耐酸性も悪化する。
(Al 2 O 3 )
Aluminum oxide (Al 2 O 3 ) is a component that serves as a skeleton of the glass flake 10, and is also a component that adjusts the devitrification temperature and viscosity during glass formation. In addition, Al 2 O 3 is a component that improves water resistance, while it is also a component that deteriorates acid resistance. When Al 2 O 3 is less than 8% by mass, the devitrification temperature and viscosity cannot be adjusted sufficiently, or the water resistance cannot be improved sufficiently. On the other hand, when the content of Al 2 O 3 exceeds 15% by mass, the melting point of the glass becomes too high, and it becomes difficult to melt the raw material uniformly, and the acid resistance is also deteriorated.
 従って、Alの下限は、8質量%以上であり、10質量%以上が好ましい。Alの上限は、15質量%以下であり、13質量%以下が好ましく、12質量%未満がより好ましい。よって、Alの含有量の範囲は、これら上限と下限の任意の組み合わせから選ばれる。例えば、Alの含有量は、10~15質量%が好ましく、10~13質量%がより好ましい。 Therefore, the lower limit of Al 2 O 3 is 8% by mass or more, and preferably 10% by mass or more. The upper limit of Al 2 O 3 is 15% by mass or less, preferably 13% by mass or less, and more preferably less than 12% by mass. Therefore, the range of the content of Al 2 O 3 is selected from any combination of these upper and lower limits. For example, the content of Al 2 O 3 is preferably 10 to 15% by mass, and more preferably 10 to 13% by mass.
   (B+Al
 ガラス形成時の失透温度及び粘度を調整し、耐水性を向上させる成分であるB及びAlの和(B+Al)が、鱗片状ガラスの成形性にとり重要である。(B+Al)が9質量%未満であると、失透温度が上昇しすぎて、鱗片状ガラスを形成することが難しくなる。他方、(B+Al)が17質量%以上では、ガラスの融点が高くなりすぎて、原料を均一に溶融することが困難になる。
(B 2 O 3 + Al 2 O 3 )
The sum of B 2 O 3 and Al 2 O 3 (B 2 O 3 + Al 2 O 3 ), which is a component that adjusts the devitrification temperature and viscosity at the time of glass formation and improves the water resistance, is the moldability of scaly glass. Important for nirvana. When (B 2 O 3 + Al 2 O 3 ) is less than 9% by mass, the devitrification temperature rises too much, and it becomes difficult to form scale-like glass. On the other hand, if (B 2 O 3 + Al 2 O 3 ) is 17% by mass or more, the melting point of the glass becomes too high, and it becomes difficult to uniformly melt the raw material.
 従って、(B+Al)の下限は、9質量%以上が好ましく、10質量%以上がより好ましく、11質量%以上がより好ましい。(B+Al)の上限は、17質量%未満が好ましく、16質量%以下がより好ましく、14質量%以下がさらに好ましく、13質量%以下が最も好ましい。(B+Al)の量の範囲は、これら上限と下限の任意の組み合わせから選ばれる。例えば、(B+Al)の含有量は、10~16質量%が好ましく、10~14質量%がより好ましい。 Therefore, the lower limit of (B 2 O 3 + Al 2 O 3 ) is preferably 9% by mass or more, more preferably 10% by mass or more, and more preferably 11% by mass or more. The upper limit of (B 2 O 3 + Al 2 O 3 ) is preferably less than 17% by mass, more preferably 16% by mass or less, further preferably 14% by mass or less, and most preferably 13% by mass or less. The range of the amount of (B 2 O 3 + Al 2 O 3 ) is selected from any combination of these upper and lower limits. For example, the content of (B 2 O 3 + Al 2 O 3 ) is preferably 10 to 16% by mass, and more preferably 10 to 14% by mass.
   (SiO-B-Al
 鱗片状ガラス10の耐酸性を向上させる成分であるSiOと、耐酸性を悪化させる成分であるB及びAlとの含有量の差(SiO-B-Al)が、鱗片状ガラス10の耐酸性にとって重要な因子である。(SiO-B-Al)が45質量%未満の場合、鱗片状ガラス10の耐酸性が不十分となる。その一方、(SiO-B-Al)が56質量%を超える場合、失透温度が上昇し過ぎて、鱗片状ガラス10を形成することが困難になる。
(SiO 2 —B 2 O 3 —Al 2 O 3 )
And SiO 2 is a component for improving the acid resistance of the glass flake 10, the difference in the content of the B 2 O 3 and Al 2 O 3 is a component to deteriorate the acid resistance (SiO 2 -B 2 O 3 -Al 2 O 3 ) is an important factor for the acid resistance of the glass flakes 10. When (SiO 2 —B 2 O 3 —Al 2 O 3 ) is less than 45 mass%, the acid resistance of the glass flake 10 becomes insufficient. On the other hand, when (SiO 2 —B 2 O 3 —Al 2 O 3 ) exceeds 56 mass%, the devitrification temperature rises too much and it is difficult to form the glass flakes 10.
 従って、(SiO-B-Al)の下限は、45質量%以上であり、47質量%以上が好ましく、48質量%以上がより好ましく、49質量%以上が最も好ましい。(SiO-B-Al)の上限は、56質量%以下であり、55質量%以下が好ましく、54質量%以下がより好ましく、53質量%以下が最も好ましい。(SiO-B-Al)の量の範囲は、これら上限と下限の任意の組み合わせから選ばれる。例えば、(SiO-B-Al)の含有量は、45~55質量%が好ましく、46~53質量%がより好ましい。 Therefore, the lower limit of (SiO 2 —B 2 O 3 —Al 2 O 3 ) is 45 mass% or more, preferably 47 mass% or more, more preferably 48 mass% or more, and most preferably 49 mass% or more. The upper limit of (SiO 2 —B 2 O 3 —Al 2 O 3 ) is 56 mass% or less, preferably 55 mass% or less, more preferably 54 mass% or less, and most preferably 53 mass% or less. The range of the amount of (SiO 2 —B 2 O 3 —Al 2 O 3 ) is selected from any combination of these upper and lower limits. For example, the content of (SiO 2 —B 2 O 3 —Al 2 O 3 ) is preferably 45 to 55% by mass, and more preferably 46 to 53% by mass.
   (MgO、CaO)
 酸化マグネシウム(MgO)と酸化カルシウム(CaO)は、ガラス形成時の失透温度及び粘度を調整する成分である。MgOの含有量が1質量%未満の場合には、失透温度及び粘度を調整するのに十分な効果を得ることができない。一方、5質量%を超える場合には、失透温度が上昇し過ぎて、鱗片状ガラス10を形成することが難しくなる。従って、MgOの下限は、1質量%以上であり、2質量%以上であることが好ましい。MgOの上限は、5質量%以下であり、4質量%以下であることが好ましい。よって、MgOの含有量の範囲は、これら上限と下限の任意の組み合わせから選ばれる。例えば、MgOの含有量は、1~4質量%が好ましく、2~4質量%がより好ましい。
(MgO, CaO)
Magnesium oxide (MgO) and calcium oxide (CaO) are components that adjust the devitrification temperature and viscosity during glass formation. When the content of MgO is less than 1% by mass, a sufficient effect for adjusting the devitrification temperature and the viscosity cannot be obtained. On the other hand, when it exceeds 5 mass%, devitrification temperature will rise too much and it will become difficult to form the glass flake 10. Therefore, the lower limit of MgO is 1% by mass or more, and preferably 2% by mass or more. The upper limit of MgO is 5% by mass or less, and preferably 4% by mass or less. Therefore, the content range of MgO is selected from any combination of these upper and lower limits. For example, the content of MgO is preferably 1 to 4% by mass, and more preferably 2 to 4% by mass.
 CaOの含有量が15質量%未満である場合、失透温度及び粘度を十分に調整することができなくなる。一方、30質量%を超える場合、失透温度が上昇し過ぎて、鱗片状ガラス10を形成することが難しくなる。従って、CaOの下限は、15質量%以上であり、16質量%以上が好ましく、18質量%以上がより好ましい。CaOの上限は、30質量%以下であり、25質量%以下が好ましく、24質量%以下がより好ましい。よって、CaOの含有量の範囲は、これら上限と下限の任意の組み合わせにより決定される。例えば、CaOの含有量は、16~25質量%が好ましく、18~24質量%がより好ましい。 When the content of CaO is less than 15% by mass, the devitrification temperature and viscosity cannot be adjusted sufficiently. On the other hand, when it exceeds 30 mass%, devitrification temperature will rise too much and it will become difficult to form the glass flake 10. Therefore, the lower limit of CaO is 15% by mass or more, preferably 16% by mass or more, and more preferably 18% by mass or more. The upper limit of CaO is 30% by mass or less, preferably 25% by mass or less, and more preferably 24% by mass or less. Therefore, the content range of CaO is determined by any combination of these upper and lower limits. For example, the CaO content is preferably 16 to 25% by mass, and more preferably 18 to 24% by mass.
   (SrO)
 酸化ストロンチウム(SrO)は、ガラス形成時の失透温度及び粘度を調整する成分である。このSrOは必須成分ではないが、ガラス形成時の失透温度及び粘度を調整するための成分として使用してもよい。しかし、SrOの含有量が10質量%を超えると、耐酸性が悪化する。従って、SrOの上限は、10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下がさらに好ましい。SrOは実質的に含有しないことが最も好ましい。
(SrO)
Strontium oxide (SrO) is a component that adjusts the devitrification temperature and viscosity during glass formation. Although this SrO is not an essential component, you may use it as a component for adjusting the devitrification temperature and viscosity at the time of glass formation. However, when the SrO content exceeds 10% by mass, the acid resistance deteriorates. Therefore, the upper limit of SrO is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 2% by mass or less. Most preferably, SrO is not substantially contained.
   (BaO)
 酸化バリウム(BaO)は、ガラス形成時の失透温度及び粘度を調整する成分である。このBaOは必須成分ではないが、ガラス形成時の失透温度及び粘度を調整するための成分として使用してもよい。また、BaOは、耐酸性を悪化させる成分でもある。しかし、BaOの含有量が10質量%を超えると、耐酸性が悪化する。従って、BaOの上限は10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下がさらに好ましい。BaOは実質的に含有しないことが最も好ましい。
(BaO)
Barium oxide (BaO) is a component that adjusts the devitrification temperature and viscosity during glass formation. This BaO is not an essential component, but may be used as a component for adjusting the devitrification temperature and viscosity during glass formation. BaO is also a component that deteriorates acid resistance. However, when the content of BaO exceeds 10% by mass, the acid resistance deteriorates. Therefore, the upper limit of BaO is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 2% by mass or less. Most preferably, BaO is not substantially contained.
   (ZnO)
 酸化亜鉛(ZnO)は、ガラス形成時の失透温度及び粘度を調整する成分である。このZnOは必須成分ではないが、ガラス形成時の失透温度及び粘度を調整するための成分として使用してもよい。しかし、ZnOは揮発し易いため、溶融時に飛散する可能性がある。ZnOの含有量が10質量%を超えると、揮発のため、ガラス中の含有量を管理し難くなる。従って、ZnOの上限は、10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下がさらに好ましい。ZnOは実質的に含有しないことが最も好ましい。
(ZnO)
Zinc oxide (ZnO) is a component that adjusts the devitrification temperature and viscosity during glass formation. This ZnO is not an essential component, but may be used as a component for adjusting the devitrification temperature and viscosity during glass formation. However, since ZnO is volatile, it may be scattered during melting. When the content of ZnO exceeds 10% by mass, it becomes difficult to manage the content in the glass due to volatilization. Therefore, the upper limit of ZnO is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 2% by mass or less. Most preferably, ZnO is not substantially contained.
   (LiO、NaO、KO)
 アルカリ金属酸化物〔酸化リチウム(LiO)、酸化ナトリウム(NaO)、酸化カリウム(KO)〕は、ガラス形成時の失透温度及び粘度を調整する成分である。このアルカリ金属酸化物の合計含有量(LiO+NaO+KO)は、0.1≦(LiO+NaO+KO)≦4である。アルカリ金属酸化物の合計含有量(LiO+NaO+KO)が4質量%より多い場合には、ガラス転移温度が低くなり、ガラスの耐熱性が悪くなる。その一方、アルカリ金属酸化物の合計含有量(LiO+NaO+KO)が0.1質量%より少ない場合には、失透温度及び粘性の調整を十分に行うことができない。
(Li 2 O, Na 2 O, K 2 O)
Alkali metal oxides [lithium oxide (Li 2 O), sodium oxide (Na 2 O), potassium oxide (K 2 O)] are components that adjust the devitrification temperature and viscosity during glass formation. The total content (Li 2 O + Na 2 O + K 2 O) of this alkali metal oxide is 0.1 ≦ (Li 2 O + Na 2 O + K 2 O) ≦ 4. When the total content of alkali metal oxides (Li 2 O + Na 2 O + K 2 O) is more than 4% by mass, the glass transition temperature is lowered and the heat resistance of the glass is deteriorated. On the other hand, when the total content of alkali metal oxides (Li 2 O + Na 2 O + K 2 O) is less than 0.1% by mass, the devitrification temperature and viscosity cannot be adjusted sufficiently.
 従って、(LiO+NaO+KO)の下限は、0.1質量%以上であり、0.5質量%以上が好ましい。(LiO+NaO+KO)の上限は、4質量%以下であり、3質量%以下が好ましく、2質量%未満がより好ましい。(LiO+NaO+KO)の量の範囲は、これら上限と下限の任意の組み合わせから選ばれる。例えば、(LiO+NaO+KO)の含有量は、0.1~3質量%が好ましく、0.5~3質量%がより好ましい。 Therefore, the lower limit of (Li 2 O + Na 2 O + K 2 O) is 0.1% by mass or more, and preferably 0.5% by mass or more. The upper limit of (Li 2 O + Na 2 O + K 2 O) is 4% by mass or less, preferably 3% by mass or less, and more preferably less than 2% by mass. The range of the amount of (Li 2 O + Na 2 O + K 2 O) is selected from any combination of these upper and lower limits. For example, the content of (Li 2 O + Na 2 O + K 2 O) is preferably 0.1 to 3% by mass, and more preferably 0.5 to 3% by mass.
   (TiO
 二酸化チタン(TiO)は、ガラスの溶融性及び鱗片状ガラス10の化学的耐久性及び紫外線吸収特性を向上させる成分である。従って、TiOは、必須成分ではないが、ガラスの溶融性及び鱗片状ガラス10の化学的耐久性及び光学特性を調整するための成分として含むことが好ましい。しかし、TiOの含有量が5質量%を超えると、ガラスの失透温度が上昇し過ぎて、鱗片状ガラス10を形成することが難しくなる。
(TiO 2 )
Titanium dioxide (TiO 2 ) is a component that improves the meltability of the glass, the chemical durability of the glass flake 10 and the ultraviolet absorption characteristics. Accordingly, TiO 2 is not an essential component but is preferably included as a component for adjusting the meltability of the glass and the chemical durability and optical properties of the glass flake 10. However, when the content of TiO 2 exceeds 5% by mass, the devitrification temperature of the glass is excessively increased, and it becomes difficult to form the scaly glass 10.
 従って、TiOの下限は、0質量%以上が好ましく、0.1質量%以上がより好ましい。TiOの含有量の上限は、5質量%以下が好ましく、2質量%以下がより好ましく、1.6質量%以下がさらに好ましく、1質量%未満が最も好ましい。よって、TiOの含有量の範囲は、これら上限と下限の任意の組み合わせにより決定される。例えば、TiOの含有量は、0.1~2質量%が好ましい。 Therefore, the lower limit of Ti 2 O is preferably 0% by mass or more, and more preferably 0.1% by mass or more. The upper limit of the content of TiO 2 is preferably 5% by mass or less, more preferably 2% by mass or less, still more preferably 1.6% by mass or less, and most preferably less than 1% by mass. Therefore, the range of the content of TiO 2 is determined by any combination of these upper and lower limits. For example, the content of TiO 2 is preferably 0.1 to 2% by mass.
   (ZrO
 酸化ジルコニウム(ZrO)は、ガラス形成時の失透温度、粘度及び化学的耐久性を調整する成分である。係るZrOは必須成分ではないが、ガラス形成時の失透温度、粘度及び化学的耐久性を調整するための成分として使用してもよい。しかし、ZrOの含有量が5質量%を超えると、ガラスの失透成長を速めるため、しばしば鱗片状ガラス10を安定して作製することを難しくなる。従って、ZrOの上限は、5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下がさらに好ましい。ZrOは実質的に含有しないことがさらに好ましい。
(ZrO 2 )
Zirconium oxide (ZrO 2 ) is a component that adjusts the devitrification temperature, viscosity, and chemical durability during glass formation. Such ZrO 2 is not an essential component, but may be used as a component for adjusting the devitrification temperature, viscosity, and chemical durability during glass formation. However, if the content of ZrO 2 exceeds 5% by mass, devitrification growth of the glass is accelerated, so that it is often difficult to stably produce the glass flake 10. Therefore, the upper limit of ZrO 2 is preferably 5% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less. More preferably, ZrO 2 is not substantially contained.
   (Fe)
 通常、ガラス中の鉄(Fe)は、Fe2+又はFe3+の状態で存在する。Fe3+は鱗片状ガラス10の紫外線吸収特性を高める成分であり、Fe2+は熱線吸収特性を高める成分である。従って、鉄(Fe)は、必須成分ではないが、鱗片状ガラス10の光学特性を調整するための成分として含まれていてもよい。また、鉄(Fe)は、意図的に含ませなくとも、工業用原料により不可避的に混入する場合がある。他方、鉄(Fe)の含有量が多くなると、鱗片状ガラス10の着色が顕著になる。この着色は鱗片状ガラス10の色調や光沢が重要視される用途においては、好ましくないことがある。従って、鉄(Fe)の上限は、Fe換算にて5質量%以下が好ましく、2質量%以下がより好ましく、0.5質量%以下がさらに好ましく、0.1質量%以下が特に好ましく、実質的に含有しないことが最も好ましい。
(Fe)
Usually, iron (Fe) in glass exists in a state of Fe 2+ or Fe 3+ . Fe 3+ is a component that enhances the ultraviolet absorption characteristics of the glass flake 10, and Fe 2+ is a component that enhances the heat ray absorption characteristics. Therefore, iron (Fe) is not an essential component, but may be included as a component for adjusting the optical properties of the glass flake 10. Moreover, even if iron (Fe) is not intentionally included, it may be inevitably mixed with industrial raw materials. On the other hand, when the content of iron (Fe) increases, the scaly glass 10 is markedly colored. This coloring may not be preferable in applications where the color tone and gloss of the glass flake 10 are regarded as important. Therefore, the upper limit of iron (Fe) is preferably 5% by mass or less, more preferably 2% by mass or less, further preferably 0.5% by mass or less, and particularly preferably 0.1% by mass or less in terms of Fe 2 O 3. Preferably, it is most preferable not to contain substantially.
   (SO
 三酸化硫黄(SO)は、必須成分ではないが、清澄剤として含まれていてもよい。硫酸塩の原料を使用すると、0.5質量%以下の含有量で含まれることがある。
(SO 3 )
Sulfur trioxide (SO 3 ) is not an essential component, but may be included as a fining agent. When a sulfate raw material is used, it may be contained at a content of 0.5% by mass or less.
   (F)
 フッ素(F)は、ガラスを溶融する際に溶融窯や蓄熱窯の炉壁を浸食して窯の寿命を著しく低下させるおそれがあるため、実質的に含有させないことが好ましい。
(F)
Since fluorine (F) may erode the furnace wall of a melting kiln or a heat storage kiln when melting glass, the lifetime of the kiln may be significantly reduced.
 本実施形態において、物質を実質的に含有させないとは、例えば工業用原料により不可避的に混入される場合を除き、意図的に含ませないことを意味する。具体的には、好ましくは0.1質量%未満、より好ましくは0.05質量%以下、特に好ましくは0.03質量%以下の含有量を意味する。 In the present embodiment, “substantially not containing a substance” means that the substance is not intentionally included unless, for example, it is inevitably mixed with an industrial raw material. Specifically, the content is preferably less than 0.1% by mass, more preferably 0.05% by mass or less, and particularly preferably 0.03% by mass or less.
 以上詳述したように、本実施形態における鱗片状ガラス10を形成するガラス素地の組成としては、SiO、B、Al、MgO及びCaOを必須成分とし、さらにLiO、NaO及びKOからなる群より選ばれた少なくとも1種を含有し、必要に応じてSrO、BaO、ZnO、TiO、ZrO、酸化鉄(FeO又はFe)、SO等を含有していてもよい。 As described in detail above, the composition of the glass substrate forming the glass flakes 10 in the present embodiment includes SiO 2 , B 2 O 3 , Al 2 O 3 , MgO and CaO as essential components, and further Li 2 O. , Na 2 O and K 2 O, and containing at least one selected from the group consisting of SrO, BaO, ZnO, TiO 2 , ZrO 2 , iron oxide (FeO or Fe 2 O 3 ), SO 3 etc. may be contained.
   〔鱗片状ガラス10の製造方法〕
 本実施形態の鱗片状ガラス10は、例えば図4に示した製造装置を用いて製造することができる。この図4に示すように、耐火窯槽20内で溶融された前記ガラス組成を有するガラス素地21は、ブローノズル22に送り込まれたガス23によって、風船状に膨らみ、中空状ガラス膜24となる。得られた中空状ガラス膜24を一対の押圧ロール25,25によって粉砕することにより、鱗片状ガラス10が得られる。
[Method for producing scale-like glass 10]
The scale-like glass 10 of this embodiment can be manufactured, for example using the manufacturing apparatus shown in FIG. As shown in FIG. 4, the glass substrate 21 having the glass composition melted in the refractory kiln 20 is swelled into a balloon shape by the gas 23 sent to the blow nozzle 22 to become a hollow glass film 24. . By pulverizing the obtained hollow glass film 24 with a pair of pressing rolls 25, 25, the scaly glass 10 is obtained.
 また、本実施形態の鱗片状ガラス10は、例えば図5に示した製造装置を用いても製造することができる。この図5に示すように、回転カップ26に流し込まれた溶融状態の前記ガラス組成を有するガラス素地21は、遠心力によって回転カップ26の上縁部から放射状に流出し、上下に配置された環状プレート27,27間の隙間を通って空気流で吸引され、環状サイクロン型捕集機28に導入される。環状プレート27,27間の隙間を通過する間に、ガラス素地21が薄膜の形で冷却、固化し、さらには微小片に破砕されることにより、鱗片状ガラス10が得られる。 Moreover, the scale-like glass 10 of this embodiment can be manufactured also using the manufacturing apparatus shown, for example in FIG. As shown in FIG. 5, the glass substrate 21 having the molten glass composition poured into the rotating cup 26 flows out radially from the upper edge of the rotating cup 26 by centrifugal force, and is annularly arranged vertically. The air is sucked through the gap between the plates 27 and 27 and introduced into the annular cyclone collector 28. While passing through the gap between the annular plates 27, 27, the glass substrate 21 is cooled and solidified in the form of a thin film, and further crushed into small pieces, whereby the glass flake 10 is obtained.
   〔鱗片状ガラス10の物性〕
 本実施形態の鱗片状ガラス10の各物性について、以下詳細に説明する。
   (温度特性)
 溶融ガラスの粘度が100Pa・s(1000P)のときの温度は、作業温度と呼ばれ、鱗片状ガラス10の成形に最も適した温度とされている。例えば、図4の製造装置によると、中空状ガラス膜24の平均厚さすなわち鱗片状ガラス10の平均厚さは、0.1~15μmである。このような薄肉の中空状ガラス膜24を形成する場合、ガラスの温度低下が著しい。この温度低下のため、中空状ガラス膜24の可塑性が急激に低下し、引き延ばし難くなる。可塑性の低下により、中空状ガラス膜24が均一に成長し難くなり、ガラス膜厚にばらつきが発生することがある。そこで、作業温度は、1100℃以上が好ましく、1150℃以上がより好ましく、1200℃以上がさらに好ましい。
[Physical properties of scale-like glass 10]
Each physical property of the scale-like glass 10 of the present embodiment will be described in detail below.
(Temperature characteristics)
The temperature when the viscosity of the molten glass is 100 Pa · s (1000 P) is called the working temperature and is the most suitable temperature for forming the glass flake 10. For example, according to the manufacturing apparatus of FIG. 4, the average thickness of the hollow glass film 24, that is, the average thickness of the scaly glass 10 is 0.1 to 15 μm. When such a thin hollow glass film 24 is formed, the temperature drop of the glass is remarkable. Due to this temperature decrease, the plasticity of the hollow glass film 24 is drastically decreased, making it difficult to stretch. Due to the decrease in plasticity, the hollow glass film 24 is difficult to grow uniformly, and the glass film thickness may vary. Therefore, the working temperature is preferably 1100 ° C. or higher, more preferably 1150 ° C. or higher, and further preferably 1200 ° C. or higher.
 作業温度が1300℃を超えると、ガラスの製造装置が、熱による腐食を受け易くなり、装置寿命が短くなることがある。また、作業温度が低いほど、ガラス原料を溶融する際の燃料費を軽減することができる。そこで、作業温度は、1260℃以下が好ましく、1250℃以下がより好ましく、1240℃以下がさらに好ましく、1230℃以下であることが最も好ましい。よって、作業温度としては、1100~1300℃が好ましく、1200~1250℃がより好ましい。 When the working temperature exceeds 1300 ° C., the glass manufacturing apparatus is likely to be corroded by heat, and the life of the apparatus may be shortened. Moreover, the fuel cost at the time of melting a glass raw material can be reduced, so that working temperature is low. Therefore, the working temperature is preferably 1260 ° C. or less, more preferably 1250 ° C. or less, further preferably 1240 ° C. or less, and most preferably 1230 ° C. or less. Therefore, the working temperature is preferably 1100 to 1300 ° C, more preferably 1200 to 1250 ° C.
 作業温度から失透温度を差し引いた温度差ΔTが大きいほど、ガラス成形時に失透が生じ難くなり、より均質な鱗片状ガラス10が高い歩留まりで製造できるようになる。ΔTが0℃以上のガラスであれば、例えば、図4又は図5の製造装置を用いて、鱗片状ガラス10を高い歩留まりで製造することができる。従って、ΔTは0℃以上が好ましく、20℃以上がより好ましく、30℃以上がさらに好ましく、40℃以上が最も好ましい。但し、ΔTが100℃以下であれば、ガラス組成の調整が容易となるため好ましく、ΔTが80℃以下であればさらに好ましい。よって、ΔTは、0~100℃が好ましく、20~80℃がより好ましく、40~80℃が特に好ましい。 As the temperature difference ΔT obtained by subtracting the devitrification temperature from the working temperature is larger, devitrification is less likely to occur at the time of glass forming, and a more uniform scaly glass 10 can be manufactured with a higher yield. If ΔT is 0 ° C. or higher, for example, the glass flakes 10 can be manufactured with a high yield using the manufacturing apparatus of FIG. 4 or FIG. Therefore, ΔT is preferably 0 ° C. or higher, more preferably 20 ° C. or higher, further preferably 30 ° C. or higher, and most preferably 40 ° C. or higher. However, it is preferable that ΔT is 100 ° C. or lower because the glass composition can be easily adjusted, and ΔT is more preferably 80 ° C. or lower. Therefore, ΔT is preferably 0 to 100 ° C., more preferably 20 to 80 ° C., and particularly preferably 40 to 80 ° C.
 本明細書において、失透とは、溶融されたガラス素地中に生成され、成長した結晶により白濁を生じることをいう。このような溶融されたガラス素地から作製されたガラス中には、結晶化した塊が存在することがあるので、鱗片状ガラス10として好ましくない。 In this specification, devitrification refers to generation of white turbidity due to crystals produced and grown in a molten glass substrate. In the glass produced from such a melted glass substrate, a crystallized lump may exist, which is not preferable as the scale-like glass 10.
   (ガラス転移温度)
 鱗片状ガラス10は、該鱗片状ガラス10を形成するガラス素地のガラス転移温度(ガラス転移点)が高いほど耐熱性が高く、高温加熱を伴う加工に対して変形し難くなる。ガラス転移温度が600℃以上であれば、鱗片状ガラス10の表面に金属又は金属酸化物を主成分とする被膜を形成する工程において、鱗片状ガラス10の形状が変化するおそれが小さい。また、鱗片状ガラス10又は被覆鱗片状ガラスを塗料に配合し、焼き付け塗装等の用途に好適に用いることができる。本実施形態で規定したガラス組成であれば、600℃以上のガラス転移温度を有するガラスを容易に得ることができる。鱗片状ガラス10のガラス転移温度は、600℃以上であることが好ましく、650℃以上であることがより好ましく、700℃以上であることがさらに好ましい。このガラス転移温度の上限は、800℃程度であることが好ましい。従って、ガラス転移温度は、600~800℃であることが好ましく、650~800℃であることがより好ましい。
(Glass-transition temperature)
The scale-like glass 10 has higher heat resistance as the glass transition temperature (glass transition point) of the glass substrate forming the scale-like glass 10 is higher, and is less likely to be deformed with respect to processing involving high-temperature heating. If the glass transition temperature is 600 ° C. or higher, there is little possibility that the shape of the scaly glass 10 changes in the step of forming a film mainly composed of a metal or a metal oxide on the surface of the scaly glass 10. Moreover, the glass flakes 10 or the coated glass flakes can be blended in a paint and suitably used for applications such as baking painting. If it is a glass composition prescribed | regulated by this embodiment, the glass which has a glass transition temperature of 600 degreeC or more can be obtained easily. The glass transition temperature of the glass flakes 10 is preferably 600 ° C. or higher, more preferably 650 ° C. or higher, and further preferably 700 ° C. or higher. The upper limit of the glass transition temperature is preferably about 800 ° C. Accordingly, the glass transition temperature is preferably 600 to 800 ° C., and more preferably 650 to 800 ° C.
   (ヤング率)
 鱗片状ガラス10は、該鱗片状ガラス10を形成するガラス素地のヤング率が高いほど弾力性が良く、樹脂成形体を得る樹脂組成物用の充填材として有効に機能する。ここで、ヤング率(GPa)は、通常の超音波法により、ガラス中を伝播する弾性波の縦波速度と横波速度とを測定し、別にアルキメデス法により測定したガラスの密度とから求めることができる。このヤング率の下限は好ましくは85GPa以上であり、より好ましくは88GPa以上であり、さらに好ましくは89GPa以上である。ヤング率の上限は好ましくは100GPa以下であり、さらに好ましくは95GPa以下である。従って、ヤング率は85~100GPaが好ましく、88~95GPaがより好ましい。
(Young's modulus)
The scale-like glass 10 has a higher elasticity as the Young's modulus of the glass substrate forming the scale-like glass 10 is higher, and effectively functions as a filler for a resin composition for obtaining a resin molded body. Here, the Young's modulus (GPa) is obtained from the density of the glass measured by the Archimedes method by measuring the longitudinal wave velocity and the transverse wave velocity of the elastic wave propagating in the glass by a normal ultrasonic method. it can. The lower limit of this Young's modulus is preferably 85 GPa or more, more preferably 88 GPa or more, and even more preferably 89 GPa or more. The upper limit of the Young's modulus is preferably 100 GPa or less, more preferably 95 GPa or less. Therefore, the Young's modulus is preferably 85 to 100 GPa, more preferably 88 to 95 GPa.
   (化学的耐久性)
 本実施形態の鱗片状ガラス10は、耐酸性、耐水性、耐アルカリ性等の化学的耐久性に優れるものである。そのため、本実施形態の鱗片状ガラス10は、樹脂成形体、塗料、化粧料、インキ等の用途に好適に使用することができる。
(Chemical durability)
The glass flake 10 of this embodiment is excellent in chemical durability such as acid resistance, water resistance, and alkali resistance. Therefore, the scale-like glass 10 of this embodiment can be used suitably for uses, such as a resin molding, a coating material, cosmetics, and ink.
 耐酸性の指標には、鱗片状ガラス10を形成するガラス素地を粉砕し、JIS Z 8801に規定される補助網ふるい710μm及び標準網ふるい590μmを通過し、標準網ふるい420μmを通過しない大きさのガラス粉末をガラスの比重と同じグラム数量り取り、80℃、10質量%の硫酸水溶液100mLに72時間浸漬した場合の質量減少率ΔWが用いられる。この質量減少率ΔWが低いほど耐酸性が高いことを示す。この測定方法は、日本光学硝子工業会規格(JOGIS)の「光学ガラスの化学的耐久性の測定方法(粉末法)06-1975」に準拠している。但し、後述する実施例では、JOGISの測定方法で用いられる0.01N(mol/L)硝酸水溶液の代わりに、10質量%の硫酸水溶液を用いている。また、硫酸水溶液の温度は80℃とし、液量はJOGISの測定方法における60分間の代わりに、100mLとしている。さらに、処理時間はJOGISの測定方法における60分間の代わりに、72時間としている。鱗片状ガラス10を形成するガラス素地とは、通常のガラス原料を溶融して作製したガラスサンプルである。 The acid resistance index is such that the glass substrate forming the glass flake 10 is crushed and passes through the auxiliary mesh sieve 710 μm and the standard mesh sieve 590 μm specified in JIS Z 8801, but not through the standard mesh sieve 420 μm. The weight reduction rate ΔW when glass powder is taken in the same gram quantity as the specific gravity of glass and immersed in 100 mL of an aqueous 10 mass% sulfuric acid solution at 80 ° C. for 72 hours is used. It shows that acid resistance is so high that this mass reduction rate (DELTA) W is low. This measuring method is based on “Optical Glass Chemical Durability Measuring Method (Powder Method) 06-1975” of Japan Optical Glass Industry Association Standard (JOGIS). However, in the Example mentioned later, 10 mass% sulfuric acid aqueous solution is used instead of the 0.01N (mol / L) nitric acid aqueous solution used with the measuring method of JOGIS. Moreover, the temperature of sulfuric acid aqueous solution shall be 80 degreeC, and the liquid quantity is 100 mL instead of 60 minutes in the measuring method of JOGIS. Further, the processing time is set to 72 hours instead of 60 minutes in the measuring method of JOGIS. The glass substrate forming the scale-like glass 10 is a glass sample produced by melting a normal glass raw material.
 鱗片状ガラス10を含有する塗料等を、酸性環境下における防食ライニング材として用いる場合、ガラスの耐酸性を示す上記指標(質量減少率ΔW)は、小さい値であることが望ましい。重量減少率ΔWが大きな値を示す場合には、酸性環境下における防食ライニング材の防食性が低くなる。従って、重量減少率ΔWは、1.2質量%以下であることが好ましく、0.9質量%以下であることがより好ましく、0.7質量%以下であることがさらに好ましく、0.5質量%以下であることが最も好ましい。質量減少率ΔWの下限は、通常0.05質量%程度である。従って、質量減少率ΔWは、0.05~1.2質量%が好ましく、0.05~0.9質量%がより好ましい。 When the paint containing scale glass 10 is used as an anticorrosion lining material in an acidic environment, it is desirable that the index (mass reduction rate ΔW) indicating the acid resistance of the glass be a small value. When the weight reduction rate ΔW shows a large value, the anticorrosion property of the anticorrosion lining material in an acidic environment is lowered. Therefore, the weight reduction rate ΔW is preferably 1.2% by mass or less, more preferably 0.9% by mass or less, further preferably 0.7% by mass or less, and 0.5% by mass. % Is most preferred. The lower limit of the mass reduction rate ΔW is usually about 0.05% by mass. Therefore, the mass reduction rate ΔW is preferably 0.05 to 1.2% by mass, and more preferably 0.05 to 0.9% by mass.
   〔被覆鱗片状ガラス〕
 図2に模式的に示すように、前述した鱗片状ガラス10を基材として、その表面(外周面)に金属又は金属酸化物を主成分とする被膜11を形成することにより、被覆鱗片状ガラス12を製造することができる。この被膜11は、実質的に、金属及び金属酸化物の少なくとも1種から形成されることが好ましい。被膜11の形態は、単層、混合層又は複層のいずれであってもよい。
[Coated scale glass]
As schematically shown in FIG. 2, the above-described scaly glass 10 is used as a base material, and a coating 11 containing a metal or a metal oxide as a main component is formed on the surface (outer peripheral surface) thereof, thereby covering the scaly glass. 12 can be manufactured. The coating 11 is preferably formed substantially from at least one of a metal and a metal oxide. The form of the film 11 may be any of a single layer, a mixed layer, or a multilayer.
 被膜11は、具体的には銀、金、白金、パラジウム及びニッケルからなる群より選ばれる少なくとも1種の金属により形成される。被膜11は、酸化チタン、酸化アルミニウム、酸化鉄、酸化コバルト、酸化ジルコニウム、酸化亜鉛、酸化スズ及び二酸化ケイ素からなる群より選ばれる少なくとも1種の金属酸化物により形成される。これらの中でも、屈折率及び透明性が高く、干渉色の発色がよい二酸化チタン及び特徴のある干渉色を発色できる酸化鉄が好ましい。 Specifically, the coating 11 is formed of at least one metal selected from the group consisting of silver, gold, platinum, palladium, and nickel. The coating 11 is formed of at least one metal oxide selected from the group consisting of titanium oxide, aluminum oxide, iron oxide, cobalt oxide, zirconium oxide, zinc oxide, tin oxide, and silicon dioxide. Among these, titanium dioxide having high refractive index and transparency and good interference color development and iron oxide capable of developing characteristic interference colors are preferable.
 被膜11は、金属を主成分とする第1膜と、金属酸化物を主成分とする第2膜とを含む積層膜であってもよい。
 コアとなる鱗片状ガラス10の表面全体に被膜11を形成してもよく、鱗片状ガラス10の表面の一部に被膜11を形成してもよい。
The film 11 may be a laminated film including a first film mainly containing metal and a second film mainly containing metal oxide.
The film 11 may be formed on the entire surface of the glass flake 10 serving as the core, or the film 11 may be formed on a part of the surface of the glass flake 10.
 被膜11の厚さは、用途によって適宜設定することができる。また、被膜11を鱗片状ガラス10の表面に形成する方法としては、一般的に知られている方法等のどのような方法も採用することができる。例えば、スパッタリング法、ゾルゲル法、CVD法(化学蒸着法)、LPD法又は金属塩から酸化物をその表面に析出させる液相析出法等、公知の方法を採用することができる。LPD法(液相析出法、Liquid Phase Deposition Method)とは、反応溶液から基板などに金属酸化物の薄膜を析出させる方法である。 The thickness of the coating 11 can be appropriately set depending on the application. As a method for forming the coating 11 on the surface of the glass flake 10, any method such as a generally known method can be employed. For example, a known method such as a sputtering method, a sol-gel method, a CVD method (chemical vapor deposition method), an LPD method, or a liquid phase deposition method in which an oxide is deposited on the surface from a metal salt can be employed. The LPD method (Liquid Phase Deposition Method) is a method for depositing a metal oxide thin film from a reaction solution onto a substrate or the like.
   〔用途(樹脂組成物、塗料、インキ組成物及び化粧料)〕
 鱗片状ガラス10や被覆鱗片状ガラス12は、公知の手段により、顔料として又は補強用充填材として、樹脂組成物、塗料、インキ組成物及び化粧料等に配合される。その結果、これらの色調や光沢を高めることができると共に、樹脂組成物、塗料及びインキ組成物においては、寸法精度及び強度等を改善することができる。図3は、この鱗片状ガラス10を塗料に配合して、基材13の表面に塗布した例を説明するための模式的な断面図である。この図3に示すように、鱗片状ガラス10又は被覆鱗片状ガラス12は、塗膜14の樹脂マトリックス15中に分散されている。
[Uses (resin compositions, paints, ink compositions and cosmetics)]
The flaky glass 10 and the covered flaky glass 12 are blended into a resin composition, a paint, an ink composition, a cosmetic, and the like as a pigment or a reinforcing filler by a known means. As a result, the color tone and gloss can be increased, and the dimensional accuracy and strength can be improved in the resin composition, paint and ink composition. FIG. 3 is a schematic cross-sectional view for explaining an example in which the glass flake 10 is blended with a paint and applied to the surface of the substrate 13. As shown in FIG. 3, the glass flakes 10 or the coated glass flakes 12 are dispersed in the resin matrix 15 of the coating film 14.
 樹脂組成物、塗料、インキ組成物及び化粧料は、一般的に知られているものであれば、用途に応じて適宜選択して用いることができる。また、鱗片状ガラス10とこれらの材料との混合比も、適宜設定することができる。さらに、鱗片状ガラス10とこれらの材料との混合方法も、一般的に知られている方法であれば適用することができる。例えば、鱗片状ガラス10又は被覆鱗片状ガラス12を塗料中に配合する場合には、母材樹脂に、熱硬化性樹脂、熱可塑性樹脂或いは硬化剤を適宜選択して配合することができる。 Resin compositions, paints, ink compositions and cosmetics can be appropriately selected and used depending on the application as long as they are generally known. Moreover, the mixing ratio of the scaly glass 10 and these materials can also be set as appropriate. Furthermore, the method of mixing the scaly glass 10 and these materials can be applied as long as it is a generally known method. For example, when the glass flakes 10 or the coated glass flakes 12 are blended in the paint, a thermosetting resin, a thermoplastic resin, or a curing agent can be appropriately selected and blended with the base material resin.
 熱硬化性樹脂としては特に限定されず、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、フッ素樹脂、ポリエステル-ウレタン硬化系樹脂、エポキシ-ポリエステル硬化系樹脂、アクリル-ポリエステル系樹脂、アクリル-ウレタン硬化系樹脂、アクリル-メラミン硬化系樹脂、ポリエステル-メラミン硬化系樹脂等が挙げられる。 The thermosetting resin is not particularly limited, and is an acrylic resin, polyester resin, epoxy resin, phenol resin, urea resin, fluorine resin, polyester-urethane curing resin, epoxy-polyester curing resin, acrylic-polyester resin, acrylic -Urethane curable resin, acrylic-melamine curable resin, polyester-melamine curable resin, and the like.
 熱可塑性樹脂としては特に限定されず、例えばポリ塩化ビニル、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエステル、ポリアミド、ポリカーボネート、ポリブチレン、ポリブチレンテレフタレート又はこれらを形成する単量体を共重合してなる共重合体、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリエーテルエーテルケトン、液晶ポリマー(I型、II型又はIII型)、熱可塑性フッ素樹脂等が挙げられる。 The thermoplastic resin is not particularly limited, for example, polyvinyl chloride, polypropylene, polyethylene, polystyrene, polyester, polyamide, polycarbonate, polybutylene, polybutylene terephthalate or a copolymer obtained by copolymerizing monomers forming these, Examples thereof include polyphenylene sulfide, polyphenylene ether, polyether ether ketone, liquid crystal polymer (I type, II type or III type), thermoplastic fluororesin and the like.
 硬化剤としては特に限定されず、ポリイソシアネート、アミン、ポリアミド、多塩基酸、酸無水物、ポリスルフィド、三フッ化ホウ素酸、酸ジヒドラジド、イミダゾール等が挙げられる。 The curing agent is not particularly limited, and examples thereof include polyisocyanate, amine, polyamide, polybasic acid, acid anhydride, polysulfide, trifluoroboric acid, acid dihydrazide, and imidazole.
 また、鱗片状ガラス10又は被覆鱗片状ガラス12を樹脂組成物中に配合する場合には、母材樹脂として前述の各種熱硬化性樹脂又は熱可塑性樹脂を使用することができる。
 インキ組成物としては、各種ボールペン、フェルトペン等の筆記具用インキ及びグラビアインキ、オフセットインキ等の印刷インキがあるが、いずれのインキ組成物にも適用することができる。インキ組成物を構成するビヒクルは、顔料を分散させ、紙にインキを固着させる働きをする。ビヒクルは、樹脂類、油分と溶剤等から構成される。
Moreover, when mix | blending the glass flakes 10 or the covering glass flakes 12 in a resin composition, the above-mentioned various thermosetting resins or thermoplastic resins can be used as a base material resin.
Examples of the ink composition include writing instrument inks such as various ballpoint pens and felt pens, and printing inks such as gravure inks and offset inks, and can be applied to any ink composition. The vehicle constituting the ink composition serves to disperse the pigment and fix the ink to the paper. The vehicle is composed of resins, oil and solvent.
 筆記具用インキのビヒクルは、樹脂として、アクリル樹脂、スチレン-アクリル共重合体、ポリビニルアルコール、ポリアクリル酸塩、アクリル単量体-酢酸ビニル共重合体、ザンサンガム等の微生物産生多糖類、グアーガム等の水溶性植物性多糖類等が挙げられる。さらに、溶剤としては、水、アルコール、炭化水素、エステル等が挙げられる。 Vehicles for writing instrument inks include acrylic resins, styrene-acrylic copolymers, polyvinyl alcohol, polyacrylic acid salts, acrylic monomer-vinyl acetate copolymers, polysaccharides produced by microorganisms such as xanthan gum, and guar gum. Examples include water-soluble plant polysaccharides. Further, examples of the solvent include water, alcohol, hydrocarbon, ester and the like.
 グラビアインキ用ビヒクルは、樹脂として、ガムロジン、ウッドロジン、トール油ロジン、ライムロジン、ロジンエスエル、マレイン酸樹脂、ポリアミド樹脂、ビニル樹脂、ニトロセルロース、酢酸セルロース、エチルセルロース、塩化ゴム、環化ゴム、エチレン-酢酸ビニル共重合樹脂、ウレタン樹脂、ポリエステル樹脂、アルキド樹脂、ギルソナイト、ダンマル、セラック等の樹脂の混合物、前記樹脂を水溶化した水溶性樹脂又は水性エマルション樹脂が挙げられる。さらに、溶剤として、炭化水素、アルコール、エーテル、エステル、水等が挙げられる。 Vehicles for gravure inks are resins such as gum rosin, wood rosin, tall oil rosin, lime rosin, rosin sell, maleic acid resin, polyamide resin, vinyl resin, nitrocellulose, cellulose acetate, ethyl cellulose, chlorinated rubber, cyclized rubber, ethylene-acetic acid Examples thereof include a vinyl copolymer resin, a urethane resin, a polyester resin, an alkyd resin, a mixture of resins such as gilsonite, dammar, and shellac, and a water-soluble resin or an aqueous emulsion resin obtained by water-solubilizing the resin. Further, examples of the solvent include hydrocarbons, alcohols, ethers, esters and water.
 オフセットインキ用ビヒクルは、樹脂として、ロジン変性フェノール樹脂、石油樹脂、アルキド樹脂、又はこれらの乾性変性樹脂等が挙げられ、油分として、アマニ油、桐油、大豆油等の植物油が挙げられる。さらに、溶剤として、n-パラフィン、イソパラフィン、アロマテック、ナフテン、α-オレフィン、水等が挙げられる。前述の各種ビヒクル成分には、染料、顔料、界面活性剤、潤滑剤、消泡剤、レベリング剤等の慣用の添加剤を適宜選択して配合してもよい。 The vehicle for offset ink includes rosin-modified phenolic resin, petroleum resin, alkyd resin, or these dry-modified resins as the resin, and examples of the oil include vegetable oils such as linseed oil, tung oil, and soybean oil. Further, examples of the solvent include n-paraffin, isoparaffin, aromatech, naphthene, α-olefin, water and the like. Conventional additives such as dyes, pigments, surfactants, lubricants, antifoaming agents, and leveling agents may be appropriately selected and blended with the various vehicle components described above.
 化粧料としては、フェーシャル化粧料、メーキャップ化粧料、ヘア化粧料等幅広い範囲の化粧料が挙げられる。これらの中でも、特にファンデーション、粉白粉、アイシャドー、ブラッシャー、化粧下地、ネイルエナメル、アイライナー、マスカラ、口紅、ファンシーパウダー等のメーキャップ化粧料に好適に適用される。 Cosmetics include a wide range of cosmetics such as facial cosmetics, makeup cosmetics, and hair cosmetics. Among these, it is suitably applied to makeup cosmetics such as foundations, white powder, eye shadows, blushers, makeup bases, nail enamels, eye liners, mascaras, lipsticks, and fancy powders.
 化粧料の用途に応じて、鱗片状ガラス10に疎水化処理を適宜施することができる。疎水化処理の方法としては、以下の5つの方法を挙げることができる。
(1)メチルハイドロジェンポリシロキサン、高粘度シリコーンオイル及びシリコーン樹脂等のシリコーン化合物による処理方法。
(2)アニオン界面活性剤、カチオン界面活性剤等の界面活性剤による処理方法。
(3)ナイロン、ポリメチルメタクリレート、ポリエチレン、各種フッ素樹脂〔ポリテトラフルオロエチレン樹脂(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合樹脂(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合樹脂(FEP)、テトラフルオロエチレン-エチレン共重合樹脂(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)等〕、ポリアミノ酸等の高分子化合物による処理方法。
(4)パーフルオロ基含有化合物、レシチン、コラーゲン、金属石鹸、親油性ワックス、多価アルコール部分エステル又は完全エステル等による処理方法。
(5)これらを複合した処理方法。
Depending on the application of the cosmetic, the glass flake 10 can be appropriately subjected to a hydrophobic treatment. The following five methods can be mentioned as the method of hydrophobizing treatment.
(1) A treatment method using a silicone compound such as methyl hydrogen polysiloxane, high viscosity silicone oil, and silicone resin.
(2) A treatment method using a surfactant such as an anionic surfactant or a cationic surfactant.
(3) Nylon, polymethyl methacrylate, polyethylene, various fluororesins [polytetrafluoroethylene resin (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (PFA), tetrafluoroethylene-hexafluoropropylene copolymer resin ( FEP), tetrafluoroethylene-ethylene copolymer resin (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), etc.], a treatment method with a polymer compound such as polyamino acid.
(4) A treatment method using a perfluoro group-containing compound, lecithin, collagen, metal soap, lipophilic wax, polyhydric alcohol partial ester or complete ester.
(5) A processing method combining these.
 但し、一般に粉末の疎水化処理に適用できる方法であれば、前述の方法以外でも利用することができる。
 また、この化粧料には、通常化粧料に用いられる他の材料を必要に応じて適宜配合することができる。例えば、無機粉末、有機粉末、顔料や色素、炭化水素、エステル類、油性成分、有機溶媒、樹脂、可塑剤、紫外線吸収剤、酸化防止剤、防腐剤、界面活性剤、保湿剤、香料、水、アルコール、増粘剤等が挙げられる。
However, any method other than those described above can be used as long as it is generally applicable to powder hydrophobization treatment.
In addition, other materials usually used in cosmetics can be appropriately blended with the cosmetic as needed. For example, inorganic powder, organic powder, pigment and pigment, hydrocarbon, ester, oil component, organic solvent, resin, plasticizer, ultraviolet absorber, antioxidant, preservative, surfactant, moisturizer, fragrance, water , Alcohol, thickener and the like.
 無機粉末としては、タルク、カオリン、セリサイト、白雲母、金雲母、紅雲母、黒雲母、リチア雲母、バーミキュライト、炭酸マグネシウム、炭酸カルシウム、ケイソウ土、ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸アルミニウム、硫酸バリウム、タングステン酸金属塩、シリカ、ヒドロキシアパタイト、ゼオライト、窒化ホウ素、セラミックスパウダー等が挙げられる。 Examples of inorganic powders include talc, kaolin, sericite, muscovite, phlogopite, saucite, biotite, lithia mica, vermiculite, magnesium carbonate, calcium carbonate, diatomaceous earth, magnesium silicate, calcium silicate, aluminum silicate, Examples thereof include barium sulfate, metal tungstate, silica, hydroxyapatite, zeolite, boron nitride, and ceramic powder.
 有機粉末としては、ナイロンパウダー、ポリエチレンパウダー、ポリスチレンパウダー、ベンゾグアナミンパウダー、ポリ四フッ化エチレンパウダー、エポキシ樹脂パウダー、アクリル樹脂パウダー、微結晶性セルロース等が挙げられる。 Examples of the organic powder include nylon powder, polyethylene powder, polystyrene powder, benzoguanamine powder, polytetrafluoroethylene powder, epoxy resin powder, acrylic resin powder, and microcrystalline cellulose.
 顔料は、無機顔料と有機顔料に大別される。
 無機顔料としては、各種色別に以下のものが挙げられる。無機白色顔料:酸化チタン、酸化亜鉛等、無機赤色系顔料:酸化鉄(ベンガラ)、チタン酸鉄等、無機褐色系顔料:γ酸化鉄等、無機黄色系顔料:黄酸化鉄、黄土等、無機黒色系顔料:黒酸化鉄、カーボンブラック等、無機紫色系顔料:マンゴバイオレット、コバルトバイオレット等、無機緑色系顔料:チタン酸コバルト等、無機青色系顔料:群青、紺青等。
Pigments are roughly classified into inorganic pigments and organic pigments.
As an inorganic pigment, the following are mentioned according to various colors. Inorganic white pigment: Titanium oxide, zinc oxide, etc. Inorganic red pigment: Iron oxide (Bengara), iron titanate, etc. Inorganic brown pigment: γ iron oxide, etc. Inorganic yellow pigment: Yellow iron oxide, ocher, etc., inorganic Black pigments: black iron oxide, carbon black, etc., inorganic purple pigments: mango violet, cobalt violet, etc., inorganic green pigments: cobalt titanate, etc., inorganic blue pigments: ultramarine blue, bitumen, etc.
 また、パール調顔料として、酸化チタン被膜雲母、酸化チタン被膜オキシ塩化ビスマス、オキシ塩化ビスマス、酸化チタン被膜タルク、魚鱗箔、着色酸化チタン被膜雲母等が挙げられる。さらに、金属粉末顔料として、アルミニウムパウダー、カッパーパウダー等が挙げられる。 Further, examples of the pearl pigment include titanium oxide coated mica, titanium oxide coated bismuth oxychloride, bismuth oxychloride, titanium oxide coated talc, fish scale foil, and colored titanium oxide coated mica. Furthermore, examples of the metal powder pigment include aluminum powder and copper powder.
 有機顔料としては、以下のものが用いられる。すなわち、赤色201号、赤色202号、赤色204号、赤色205号、赤色220号、赤色226号、赤色228号、赤色405号、橙色203号、橙色204号、黄色205号、黄色401号及び青色404号等が挙げられる。 The following are used as organic pigments. That is, red 201, red 202, red 204, red 205, red 220, red 226, red 228, red 405, orange 203, orange 204, yellow 205, yellow 401 and Blue 404 etc. are mentioned.
 また、タルク、炭酸カルシウム、硫酸バリウム、酸化ジルコニウム、アルミニウムホワイト等の体質顔料に、以下に挙げる染料をレーキ化した有機顔料が用いられる。すなわち、染料としては、赤色3号、赤色104号、赤色106号、赤色227号、赤色230号、赤色401号、赤色505号、橙色205号、黄色4号、黄色5号、黄色202号、黄色203号、緑色3号及び青色1号等が挙げられる。さらに、色素としては、クロロフィル、β-カロテン等の天然色素が挙げられる。 In addition, organic pigments obtained by rakeizing the following dyes are used as extender pigments such as talc, calcium carbonate, barium sulfate, zirconium oxide, and aluminum white. That is, as the dye, Red No. 3, Red No. 104, Red No. 106, Red No. 227, Red No. 230, Red No. 401, Red No. 505, Orange No. 205, Yellow No. 4, Yellow No. 5, Yellow No. 202, Yellow 203, green 3 and blue 1 are listed. Furthermore, examples of the pigment include natural pigments such as chlorophyll and β-carotene.
 また、炭化水素としては、スクワラン、流動パラフィン、ワセリン、マイクロクリスタリンワックス、オケゾライト、セレシン、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、イソステアリン酸、セチルアルコール、ヘキサデシルアルコール、オレイルアルコール、2-エチルヘキサン酸セチル、パルミチン酸2-エチルヘキシル、ミリスチン酸2-オクチルドデシル、ジ-2-エチルヘキサン酸ネオペンチルグリコール、トリ-2-エチルヘキサン酸グリセロール、オレイン酸-2-オクチルドデシル、ミリスチン酸イソプロピル、トリイソステアリン酸グリセロール、トリヤシ油脂肪酸グリセロール、オリーブ油、アボガド油、ミツロウ、ミリスチン酸ミリスチル、ミンク油、ラノリン等が挙げられる。 As hydrocarbons, squalane, liquid paraffin, petrolatum, microcrystalline wax, okezolite, ceresin, myristic acid, palmitic acid, stearic acid, oleic acid, isostearic acid, cetyl alcohol, hexadecyl alcohol, oleyl alcohol, 2-ethyl Cetyl hexanoate, 2-ethylhexyl palmitate, 2-octyldodecyl myristate, neopentyl glycol di-2-ethylhexanoate, glycerol tri-2-ethylhexanoate, 2-octyldodecyl oleate, isopropyl myristate, tris Examples include glycerol isostearate, tricoconut oil fatty acid glycerol, olive oil, avocado oil, beeswax, myristyl myristate, mink oil, lanolin and the like.
 さらに、シリコーン油、高級脂肪酸、油脂類等のエステル類や、高級アルコール、ロウ等の油性成分が挙げられる。また、アセトン、トルエン、酢酸ブチル、酢酸エステル等の有機溶剤や、アルキド樹脂、尿素樹脂等の樹脂、カンファ、クエン酸アセチルトリブチル等の可塑剤が挙げられる。加えて、紫外線吸収剤、酸化防止剤、防腐剤、界面活性剤、保湿剤、香料、水、アルコール、増粘剤等が挙げられる。 Further examples include esters such as silicone oil, higher fatty acids and oils, and oily components such as higher alcohols and waxes. Further, organic solvents such as acetone, toluene, butyl acetate, and acetate, resins such as alkyd resin and urea resin, and plasticizers such as camphor and acetyltributyl citrate can be used. In addition, ultraviolet absorbers, antioxidants, preservatives, surfactants, humectants, fragrances, water, alcohols, thickeners and the like can be mentioned.
 この化粧料の形態は特に制限されるものではなく、粉末状、ケーキ状、ペンシル状、スティック状、軟膏状、液状、乳液状、クリーム状等が例示される。
 以上の実施形態によって発揮される効果を以下にまとめて記載する。
The form of this cosmetic is not particularly limited, and examples thereof include powder, cake, pencil, stick, ointment, liquid, emulsion, and cream.
The effect exhibited by the above embodiment is described collectively below.
 ・ 本実施形態の鱗片状ガラス10では、該鱗片状ガラス10を形成するガラス素地の組成として、57≦SiO≦65及び8≦Al≦15に設定されている。すなわち、二酸化ケイ素及び酸化アルミニウムの含有量が十分に確保され、ガラスの骨格を形成する成分である二酸化ケイ素と酸化アルミニウムとがその機能を十分に発現することができ、ガラス転移温度が高く、溶融性が良く、耐酸性や耐水性を高めることができる。さらに、三酸化二ホウ素の含有量が0.1≦B<2に設定されると共に、二酸化ケイ素の含有量と三酸化二ホウ素及び酸化アルミニウムの合計含有量との差が45≦(SiO-B-Al)≦56に設定されている。そのため、鱗片状ガラス10の特に耐酸性を高めることができる。このように、二酸化ケイ素、酸化アルミニウム及び三酸化二ホウ素の3成分の組成が相俟って鱗片状ガラス10の耐熱性、耐酸性、耐水性などの優れた物性を発現することができる。また、酸化マグネシウム及び酸化カルシウムの含有量が1≦MgO≦5、15≦CaO≦30に設定されている。このため、ガラス形成時における失透温度及び粘度を良好にすることができる。さらに、酸化リチウム、酸化ナトリウム及び酸化カリウムの合計含有量が0.1≦(LiO+NaO+KO)≦4であることにより、ガラス形成時の失透温度及び粘度を良好に調整することができる。 In the flaky glass 10 of the present embodiment, 57 ≦ SiO 2 ≦ 65 and 8 ≦ Al 2 O 3 ≦ 15 are set as the composition of the glass substrate that forms the flaky glass 10. In other words, the silicon dioxide and aluminum oxide contents are sufficiently secured, and silicon dioxide and aluminum oxide, which are components that form a glass skeleton, can fully express their functions, have a high glass transition temperature, and melt It has good properties and can improve acid resistance and water resistance. Furthermore, the content of diboron trioxide is set to 0.1 ≦ B 2 O 3 <2, and the difference between the content of silicon dioxide and the total content of diboron trioxide and aluminum oxide is 45 ≦ ( SiO 2 —B 2 O 3 —Al 2 O 3 ) ≦ 56. Therefore, particularly acid resistance of the scale-like glass 10 can be increased. As described above, the composition of the three components of silicon dioxide, aluminum oxide, and diboron trioxide can combine to exhibit excellent physical properties such as heat resistance, acid resistance, and water resistance of the glass flake 10. The contents of magnesium oxide and calcium oxide are set to 1 ≦ MgO ≦ 5 and 15 ≦ CaO ≦ 30. For this reason, the devitrification temperature and viscosity at the time of glass formation can be made favorable. Furthermore, the devitrification temperature and viscosity at the time of glass formation are adjusted favorably by the total content of lithium oxide, sodium oxide and potassium oxide being 0.1 ≦ (Li 2 O + Na 2 O + K 2 O) ≦ 4. Can do.
 従って、鱗片状ガラス10の耐熱性及び化学的耐久性を向上させることができる。耐熱性に優れることにより、鱗片状ガラス10が高温に加熱されたときの変形を抑えることができる。また、耐酸性に優れていることにより、鱗片状ガラス10を例えば酸性環境下における防食ライニング材に適用することができると共に、酸性溶液を用いた液相法により形成される被膜の基材としても有用である。さらに、作業温度を比較的低温に制御することができるため、鱗片状ガラス10の形成が容易である。 Therefore, the heat resistance and chemical durability of the glass flake 10 can be improved. By being excellent in heat resistance, deformation when the glass flakes 10 are heated to a high temperature can be suppressed. Moreover, since it is excellent in acid resistance, while being able to apply the scaly glass 10 to the anticorrosion lining material in an acidic environment, for example, as a base material of the film formed by the liquid phase method using an acidic solution Useful. Furthermore, since the working temperature can be controlled to a relatively low temperature, the glass flake 10 can be easily formed.
 ・ 鱗片状ガラス10が、該鱗片状ガラス10を形成するガラス素地の組成として、さらにTiOを0.1~5質量%含有することにより、二酸化チタンのもつ性質に基づいて鱗片状ガラス10の溶融性、化学的耐久性及び紫外線吸収性を向上させることができる。 The flaky glass 10 contains 0.1 to 5% by mass of TiO 2 as a composition of the glass substrate that forms the flaky glass 10, so that the flaky glass 10 has a composition based on the properties of titanium dioxide. The meltability, chemical durability, and ultraviolet absorption can be improved.
 ・ 鱗片状ガラス10を形成するガラス素地のガラス転移温度が600~800℃であることにより、鱗片状ガラス10の耐熱性を従来より一層向上させることができる。
 ・ 鱗片状ガラス10を形成するガラス素地の作業温度から失透温度を差し引いた温度差ΔTが0~100℃であることにより、ガラス形成時における失透を抑制することができると共に、より均質な鱗片状ガラス10を調製することができる。
-When the glass transition temperature of the glass substrate forming the glass flake 10 is 600 to 800 ° C, the heat resistance of the glass flake 10 can be further improved than before.
-Since the temperature difference ΔT obtained by subtracting the devitrification temperature from the working temperature of the glass substrate forming the glass flake 10 is 0 to 100 ° C., devitrification during glass formation can be suppressed and more uniform A scaly glass 10 can be prepared.
 ・ 鱗片状ガラス10の表面が被膜11で被覆され、該被膜11が金属又は金属酸化物により形成されていることにより、被膜11に基づいて金属色、干渉色などを発色することができる。従って、この被覆鱗片状ガラス12は、光輝性顔料として好適に利用することができる。 · The surface of the glass flake 10 is covered with the coating 11, and the coating 11 is formed of a metal or a metal oxide, whereby a metal color, an interference color, or the like can be developed based on the coating 11. Accordingly, the coated scale-like glass 12 can be suitably used as a bright pigment.
 ・ 鱗片状ガラス10を形成するガラス素地の質量減少率ΔWが0.1~1.2質量%であることにより、鱗片状ガラス10の耐酸性を向上させることができる。
 ・ 鱗片状ガラス10を形成するガラス素地のヤング率が85~100GPaであることにより、鱗片状ガラス10が良好な弾力性を発揮することができ、樹脂成形体の充填材として好適に使用することができる。
The acid resistance of the glass flakes 10 can be improved when the mass reduction rate ΔW of the glass substrate forming the glass flakes 10 is 0.1 to 1.2% by mass.
-Since the Young's modulus of the glass substrate forming the scale-like glass 10 is 85 to 100 GPa, the scale-like glass 10 can exhibit good elasticity, and is preferably used as a filler for a resin molded body. Can do.
 以下、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明するが、本発明は実施例に制限されるものではない。
   (実施例1~27及び比較例1~8)
 表1~表4に示した組成となるように、珪砂等の通常のガラス原料を調合して、実施例及び比較例毎にガラス素地のバッチを作製した。各バッチについて、電気炉を用いて1400~1600℃まで加熱して溶融させ、組成が均一になるまで約4時間そのまま維持した。その後、溶融したガラス素地を鉄板上に流し出して、電気炉中で常温まで徐冷し、ガラスサンプルを得た。
Hereinafter, although the embodiment will be described more specifically with reference to examples and comparative examples, the present invention is not limited to the examples.
(Examples 1 to 27 and Comparative Examples 1 to 8)
Batches of glass bodies were prepared for each of Examples and Comparative Examples by blending ordinary glass raw materials such as silica sand so as to have the compositions shown in Tables 1 to 4. Each batch was heated to 1400-1600 ° C. using an electric furnace and melted, and maintained for about 4 hours until the composition became uniform. Thereafter, the molten glass substrate was poured out on an iron plate and gradually cooled to room temperature in an electric furnace to obtain a glass sample.
 このように作製したガラスサンプルについて、市販の膨張計〔(株)リガク、熱機械分析装置、TMA8510〕を用いて熱膨張係数を測定し、熱膨張曲線からガラス転移温度を求めた。また、通常の超音波法により、ガラス中を伝播する弾性波の縦波速度vと横波速度vを測定し、別にアルキメデス法により測定したガラスの密度ρから、E=ρ・v ・(v -4/3・v )/(v -v )の式により、ガラスのヤング率Eを求めた。さらに、通常の白金球引き上げ法により粘度と温度の関係を調べて、その結果から作業温度を求めた。ここで、白金球引き上げ法とは、溶融ガラス中に白金球を浸し、その白金球を等速運動で引き上げる際の負荷荷重(抵抗)と、白金球に働く重力や浮力などの関係を、微小の粒子が流体中を沈降する際の粘度と落下速度の関係を示したストークス(Stokes)の法則に当てはめて粘度を測定する方法である。 About the glass sample produced in this way, a thermal expansion coefficient was measured using the commercially available dilatometer [Rigaku Corporation, a thermomechanical analyzer, TMA8510], and the glass transition temperature was calculated | required from the thermal expansion curve. Further, the longitudinal wave velocity v l and the transverse wave velocity v t of the elastic wave propagating in the glass are measured by a normal ultrasonic method, and E = ρ · v t 2 from the density ρ of the glass measured by the Archimedes method. The Young's modulus E of the glass was determined by the formula (v l 2 −4 / 3 · v t 2 ) / (v l 2 −v t 2 ). Furthermore, the relationship between the viscosity and the temperature was examined by a normal platinum ball pulling method, and the working temperature was obtained from the result. Here, the platinum ball pulling method is a method of measuring the relationship between the load (resistance) and the gravity and buoyancy acting on the platinum ball when the platinum ball is immersed in molten glass and pulling the platinum ball at a constant speed. This is a method of measuring the viscosity by applying the Stokes law, which shows the relationship between the viscosity and the falling speed when the particles of particles settle in the fluid.
 ガラスサンプルを粉砕し、JIS Z 8801に規定される標準網ふるい1.0mmを通過し、標準網ふるい2.8mmを通過しない大きさのガラスサンプルを白金ボートに入れ、温度勾配(900~1400℃)のついた電気炉にて2時間加熱し、結晶の出現位置に対応する電気炉の最高温度から失透温度を求めた。電気炉内の場所による温度挙動のバラツキを補償すべく、電気炉内の所定の場所における温度挙動を予め測定した。その所定の場所にガラスサンプルを置いて、失透温度を測定した。 A glass sample is pulverized and passed through a standard mesh sieve 1.0 mm defined in JIS Z 8801. A glass sample having a size not passing through a standard mesh sieve 2.8 mm is placed in a platinum boat, and a temperature gradient (900 to 1400 ° C. The glass was heated for 2 hours in an electric furnace with a), and the devitrification temperature was determined from the maximum temperature of the electric furnace corresponding to the crystal appearance position. In order to compensate for variations in temperature behavior depending on the location in the electric furnace, the temperature behavior at a predetermined location in the electric furnace was measured in advance. A glass sample was placed in the predetermined place, and the devitrification temperature was measured.
 これらの測定結果を、表1~表4に示す。表1~表4中のガラス組成は、全て質量%で表示した値である。ΔTは、前述したように作業温度から失透温度を差し引いた温度差である。ΔWは、前述したように耐酸性の指標である。 These measurement results are shown in Tables 1 to 4. The glass compositions in Tables 1 to 4 are all values expressed in mass%. ΔT is a temperature difference obtained by subtracting the devitrification temperature from the working temperature as described above. ΔW is an index of acid resistance as described above.
 ここで、比較例1のガラスは従来の板ガラス組成であり、SiO、B、Al、(SiO-B-Al)、CaOの含有量及びアルカリ金属酸化物の合計含有量(LiO+NaO+KO)が本発明の範囲外である。 Here, the glass of Comparative Example 1 has a conventional plate glass composition, SiO 2 , B 2 O 3 , Al 2 O 3 , (SiO 2 —B 2 O 3 —Al 2 O 3 ), CaO content and alkali The total content of metal oxides (Li 2 O + Na 2 O + K 2 O) is outside the scope of the present invention.
 比較例2のガラスは従来のCガラスであり、SiO、B、Al、(SiO-B-Al)、CaOの含有量及びアルカリ金属酸化物の合計含有量(LiO+NaO+KO)が本発明の範囲外である。 The glass of Comparative Example 2 is a conventional C glass, SiO 2 , B 2 O 3 , Al 2 O 3 , (SiO 2 —B 2 O 3 —Al 2 O 3 ), CaO content and alkali metal oxide. The total content (Li 2 O + Na 2 O + K 2 O) is outside the scope of the present invention.
 比較例3のガラスは従来のEガラスであり、SiO、B、(SiO-B-Al)及びMgOの含有量が本発明の範囲外である例を示す。比較例4のガラスは、SiO、B及び(SiO-B-Al)の含有量が本発明の範囲外である。 The glass of Comparative Example 3 is a conventional E glass, and the content of SiO 2 , B 2 O 3 , (SiO 2 —B 2 O 3 —Al 2 O 3 ) and MgO is outside the scope of the present invention. Show. In the glass of Comparative Example 4, the contents of SiO 2 , B 2 O 3 and (SiO 2 —B 2 O 3 —Al 2 O 3 ) are outside the scope of the present invention.
 比較例5のガラスは、Al、及び(SiO-B-Al)の含有量が本発明の範囲外である。比較例6のガラスは、SiO、Al及び(SiO-B-Al)の含有量が本発明の範囲外である。比較例7及び比較例8のガラスは、MgOの含有量が本発明の範囲外である。 In the glass of Comparative Example 5, the contents of Al 2 O 3 and (SiO 2 —B 2 O 3 —Al 2 O 3 ) are outside the scope of the present invention. In the glass of Comparative Example 6, the contents of SiO 2 , Al 2 O 3 and (SiO 2 —B 2 O 3 —Al 2 O 3 ) are outside the scope of the present invention. In the glasses of Comparative Examples 7 and 8, the content of MgO is outside the scope of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示したように、実施例1~27におけるガラスのヤング率は、89~92GPaであった。これは、鱗片状ガラス10が樹脂成形体などの充填材として有効に機能することを示している。また、ガラスのガラス転移温度は、619~711℃であった。これは、鱗片状ガラス10が優れた耐熱性を発揮できることを示している。これらのガラスの作業温度は、1210~1230℃であった。これは、鱗片状ガラス10を作製するのに好適な温度であることを示している。これらのガラスのΔT(作業温度-失透温度)は、29~69℃であった。これは、鱗片状ガラス10の製造工程において、失透を生じさせない温度差である。さらに、これらのガラスにおける耐酸性の指標である質量減少率ΔWは、0.12~0.97質量%であった。これは、鱗片状ガラス10が、良好な耐酸性を持つことを示している。 As shown in Table 1, the Young's modulus of the glass in Examples 1 to 27 was 89 to 92 GPa. This has shown that the scale-like glass 10 functions effectively as fillers, such as a resin molding. The glass transition temperature of the glass was 619 to 711 ° C. This indicates that the scaly glass 10 can exhibit excellent heat resistance. The working temperature of these glasses was 1210-1230 ° C. This indicates that the temperature is suitable for producing the scaly glass 10. ΔT (working temperature−devitrification temperature) of these glasses was 29 to 69 ° C. This is a temperature difference that does not cause devitrification in the manufacturing process of the glass flakes 10. Further, the mass reduction rate ΔW, which is an index of acid resistance in these glasses, was 0.12 to 0.97% by mass. This indicates that the scaly glass 10 has good acid resistance.
 その一方、比較例1に示す従来の板ガラス組成は、そのヤング率が74GPaと小さく、弾力性に劣る。さらに、このガラスのガラス転移温度は、553℃と低く、耐熱性能に劣る。 On the other hand, the conventional plate glass composition shown in Comparative Example 1 has a small Young's modulus of 74 GPa and is inferior in elasticity. Furthermore, the glass transition temperature of this glass is as low as 553 ° C., which is inferior in heat resistance performance.
 比較例2に示す従来のCガラスは、そのヤング率が78GPaと小さく、弾力性に劣る。さらに、このガラスのガラス転移温度は、549℃と低く、耐熱性に劣る。
 比較例3に示す従来のEガラスは、その質量減少率ΔWが7.40質量%と大きく、耐酸性に劣る。
The conventional C glass shown in Comparative Example 2 has a small Young's modulus of 78 GPa and is inferior in elasticity. Furthermore, the glass transition temperature of this glass is as low as 549 ° C. and is inferior in heat resistance.
The conventional E glass shown in Comparative Example 3 has a large mass reduction rate ΔW of 7.40% by mass and is inferior in acid resistance.
 比較例4に示すガラスのΔT(作業温度-失透温度)は-9℃であり、実施例1~27に示すガラスのΔTより相当に小さく、失透を生じさせた。さらに、このガラスのΔWは、5.24質量%であり、実施例1~27に示すガラスのΔWより大きく、耐酸性に劣る。 The ΔT (working temperature−devitrification temperature) of the glass shown in Comparative Example 4 was −9 ° C., which was considerably smaller than the ΔT of the glasses shown in Examples 1 to 27, and caused devitrification. Further, the ΔW of this glass is 5.24% by mass, which is larger than the ΔW of the glasses shown in Examples 1 to 27 and is inferior in acid resistance.
 比較例5に示すガラスは失透のため均質なガラスが得られなかった。
 比較例6に示すガラスのΔTは-16℃であり、実施例1~27に示すガラスのΔTより小さく、失透を生じさせた。さらに、このガラスの質量減少率ΔWは、2.85質量%であり、実施例1~27の質量減少率ΔWより大きく、耐酸性に劣る。
Since the glass shown in Comparative Example 5 was devitrified, a homogeneous glass could not be obtained.
The ΔT of the glass shown in Comparative Example 6 was −16 ° C., which was smaller than the ΔT of the glasses shown in Examples 1 to 27 and caused devitrification. Furthermore, the mass reduction rate ΔW of this glass is 2.85% by mass, which is larger than the mass reduction rate ΔW of Examples 1 to 27 and inferior in acid resistance.
 比較例7に示すガラスのΔTは-59℃であり、実施例1~27に示すガラスのΔTより小さく、失透を生じさせた。さらに、このガラスの質量減少率ΔWは、1.63質量%であり、実施例1~27の質量減少率ΔWに比べて大きく、耐酸性に劣る。比較例8に示すガラスのΔTは-11℃であり、実施例1~27に示すガラスのΔTより小さく、失透を生じさせた。 The ΔT of the glass shown in Comparative Example 7 was −59 ° C., which was smaller than the ΔT of the glasses shown in Examples 1 to 27 and caused devitrification. Further, the mass reduction rate ΔW of this glass is 1.63 mass%, which is larger than the mass reduction rates ΔW of Examples 1 to 27 and inferior in acid resistance. The ΔT of the glass shown in Comparative Example 8 was −11 ° C., which was smaller than the ΔT of the glasses shown in Examples 1 to 27, and caused devitrification.
 以上の結果から、ガラスの組成において、SiO、B、Al、(SiO-B-Al)、MgO、CaOの含有量及びアルカリ金属酸化物の合計含有量(LiO+NaO+KO)が本発明の範囲内であるガラスは、優れた耐熱性及び化学的耐久性(耐酸性)を有していた。 From the above results, in the glass composition, the content of SiO 2 , B 2 O 3 , Al 2 O 3 , (SiO 2 —B 2 O 3 —Al 2 O 3 ), MgO, CaO, and alkali metal oxides The glass whose total content (Li 2 O + Na 2 O + K 2 O) is within the range of the present invention had excellent heat resistance and chemical durability (acid resistance).
 続いて、実施例1~27及び比較例8のガラスを用い、鱗片状ガラス10及び被覆鱗片状ガラス12を作製した。すなわち、各組成のガラスを電気炉で再溶融した後、冷却しつつペレットに成形した。このペレットを図4に示す製造装置に投入して、平均厚さが0.5~1μmの鱗片状ガラス10を作製した。鱗片状ガラスの平均厚さは、電子顕微鏡((株)キーエンス、リアルサーフェスビュー顕微鏡、VE-7800)を用い、100粒の鱗片状ガラスの断面から鱗片状ガラスの厚さを測定し、それらを平均して求めた。 Subsequently, a glass flake 10 and a coated glass flake 12 were produced using the glasses of Examples 1 to 27 and Comparative Example 8. That is, after remelting the glass of each composition with an electric furnace, it was formed into pellets while being cooled. This pellet was put into the production apparatus shown in FIG. 4 to produce a glass flake 10 having an average thickness of 0.5 to 1 μm. The average thickness of the glass flakes was measured by measuring the thickness of the glass flakes from the cross section of 100 glass flakes using an electron microscope (Keyence Corporation, Real Surface View Microscope, VE-7800). Obtained on average.
   (実施例28~54)
 このようにして作製した実施例1~27の組成をもつ鱗片状ガラス10を粉砕して所定の粒子径とした後、液相法により鱗片状ガラス10表面を二酸化チタンで被覆した。この液相法は、金属塩から二酸化チタンを鱗片状ガラス10の表面に析出させる方法である。すなわち、イオン交換水に金属塩として塩化第一スズ・二水和物を溶かし、それに希塩酸を加えてpH2.0~2.5に調整した。この溶液に、鱗片状ガラス10を撹拌しながら加え、10分後に濾過した。続いて、イオン交換水にヘキサクロロ白金酸・六水和物を溶かし、そこへ前記濾過した鱗片状ガラス10を撹拌しつつ投入し10分後に濾過した。次いで、イオン交換水に塩酸溶液(35質量%)を加え、pH0.7の塩酸酸性溶液を得た。この酸性溶液に鱗片状ガラス10を撹拌しつつ投入し、溶液温度を75℃まで昇温した。
(Examples 28 to 54)
The glass flakes 10 having the compositions of Examples 1 to 27 thus prepared were pulverized to a predetermined particle size, and then the surface of the glass flakes 10 was coated with titanium dioxide by a liquid phase method. This liquid phase method is a method in which titanium dioxide is deposited on the surface of the glass flake 10 from a metal salt. That is, stannous chloride dihydrate as a metal salt was dissolved in ion-exchanged water, and diluted hydrochloric acid was added to adjust the pH to 2.0 to 2.5. To this solution, the glass flakes 10 were added with stirring, and filtered after 10 minutes. Subsequently, hexachloroplatinic acid hexahydrate was dissolved in ion-exchanged water, and the filtered glass flake 10 was added thereto while stirring, followed by filtration after 10 minutes. Next, a hydrochloric acid solution (35% by mass) was added to ion-exchanged water to obtain a hydrochloric acid acidic solution having a pH of 0.7. The glass flakes 10 were added to this acidic solution while stirring, and the solution temperature was raised to 75 ° C.
 さらに、四塩化チタン(TiCl)溶液をチタン換算で0.2g/分の割合で前記溶液中に添加し、pHが変化しないように水酸化ナトリウムを同時に加え、中和反応により二酸化チタン(TiO)又はその水和物を鱗片状ガラス10表面に析出させる方法で2時間処理を行った。その後、表面に被膜11が形成された鱗片状ガラス10を濾過し、180℃で2時間乾燥させた。このようにして作製された被覆鱗片状ガラス12を電子顕微鏡で観察し、鱗片状ガラス10の表面上に酸化チタンの被膜11が形成されていることを確認した。 Further, a titanium tetrachloride (TiCl 4 ) solution was added to the solution at a rate of 0.2 g / min in terms of titanium, sodium hydroxide was added simultaneously so that the pH did not change, and titanium dioxide (TiO 2) was obtained by a neutralization reaction. 2 ) or a method of precipitating the hydrate on the surface of the glass flake 10 for 2 hours. Thereafter, the glass flakes 10 having the film 11 formed on the surface was filtered and dried at 180 ° C. for 2 hours. The coated scaly glass 12 produced in this way was observed with an electron microscope, and it was confirmed that a titanium oxide film 11 was formed on the surface of the scaly glass 10.
   (実施例55~81)
 実施例1~27の組成を有する鱗片状ガラス10を粉砕して所定の粒子径とした後、通常の無電解めっき法により鱗片状ガラス10表面を銀で被覆した。この通常の無電解めっき法について説明する。まず、鱗片状ガラス10について塩化第一スズとヘキサクロロ白金酸・六水和物による前処理を前記実施例28~54と同様に行った。続いて、イオン交換水10Lに硝酸銀200gとアンモニア水を適当量加え、銀液を製造した。この銀液に、前処理を施した鱗片状ガラス1kgを撹拌しつつ投入し、さらに14質量%の酒石酸ナトリウムカリウム溶液を還元液として添加し、銀を鱗片状ガラス10表面に被覆した。その後、この鱗片状ガラス10を濾過し、400℃で2時間乾燥させ、表面に銀の被膜11を有する鱗片状ガラス10を得た。
(Examples 55 to 81)
The flaky glass 10 having the composition of Examples 1 to 27 was pulverized to a predetermined particle size, and then the surface of the flaky glass 10 was coated with silver by an ordinary electroless plating method. This normal electroless plating method will be described. First, the scaly glass 10 was pretreated with stannous chloride and hexachloroplatinic acid hexahydrate in the same manner as in Examples 28 to 54. Subsequently, 200 g of silver nitrate and an appropriate amount of aqueous ammonia were added to 10 L of ion-exchanged water to produce a silver solution. Into this silver solution, 1 kg of pretreated scaly glass was added while stirring, and 14% by mass of sodium potassium tartrate solution was added as a reducing solution to coat the surface of the scaly glass 10 with silver. Then, this scaly glass 10 was filtered and dried at 400 ° C. for 2 hours to obtain a scaly glass 10 having a silver coating 11 on the surface.
 このようにして作製された被覆鱗片状ガラス12を電子顕微鏡で観察し、鱗片状ガラス10の表面に銀の被膜11が形成されていることを確認した。
   (実施例82~108及び比較例9)
 実施例1~27の組成を有する鱗片状ガラス10を粉砕して所定の粒子径とした後、ポリエステル樹脂と混合し、鱗片状ガラス10を含有するポリエステル樹脂組成物を得た。このポリエステル樹脂組成物は、鱗片状ガラス10の分散性が良く、外観が良好であった。
The coated scaly glass 12 thus prepared was observed with an electron microscope, and it was confirmed that the silver coating 11 was formed on the surface of the scaly glass 10.
(Examples 82 to 108 and Comparative Example 9)
The glass flakes 10 having the compositions of Examples 1 to 27 were pulverized to a predetermined particle size, and then mixed with a polyester resin to obtain a polyester resin composition containing the glass flakes 10. This polyester resin composition had good dispersibility of the scaly glass 10 and good appearance.
 一方、比較例9では比較例8の組成の鱗片状ガラス10を粉砕して所定の粒子径とした後、ポリエステル樹脂と混合したところ、比較例8の鱗片状ガラス10が失透しているため、ポリエステル樹脂組成物の外観は好ましくなかった。 On the other hand, in Comparative Example 9, the flaky glass 10 having the composition of Comparative Example 8 was pulverized to a predetermined particle size and then mixed with a polyester resin, so that the flaky glass 10 of Comparative Example 8 was devitrified. The appearance of the polyester resin composition was not preferable.
   (実施例109~135)
 実施例28~54の被覆鱗片状ガラス12を、エポキシアクリレートと混合し、被覆鱗片状ガラス12を含有するビニルエステル系塗料を得た。このビニルエステル系塗料は、被覆鱗片状ガラス12の分散性が良く、外観も良好であった。
(Examples 109 to 135)
The coated flaky glass 12 of Examples 28 to 54 was mixed with epoxy acrylate to obtain a vinyl ester paint containing the coated flaky glass 12. This vinyl ester paint had good dispersibility of the coated scale-like glass 12 and good appearance.
   (実施例136~162)
 実施例28~54の被覆鱗片状ガラス12を、フェーシャル化粧料であるファンデーションと混合し、被覆鱗片状ガラス12を含有する化粧料を得た。この化粧料は、被覆鱗片状ガラス12の分散性が良く、化粧料として良好であった。
(Examples 136 to 162)
The coated flaky glass 12 of Examples 28 to 54 was mixed with a foundation which is a facial cosmetic, and a cosmetic containing the coated flaky glass 12 was obtained. This cosmetic was good as a cosmetic because the dispersibility of the coated scale-like glass 12 was good.
   (実施例163~189)
 実施例28~54の被覆鱗片状ガラス12を、着色剤、樹脂及び有機溶剤を所定量配合したインキ組成物と混合し、被覆鱗片状ガラス12を含有するインキ組成物を得た。このインキ組成物は、被覆鱗片状ガラス12の分散性が良く、インキ組成物として良好であった。
(Examples 163 to 189)
The coated flaky glass 12 of Examples 28 to 54 was mixed with an ink composition containing a predetermined amount of a colorant, a resin, and an organic solvent, and an ink composition containing the coated flaky glass 12 was obtained. This ink composition had good dispersibility of the coated scale-like glass 12, and was good as an ink composition.
 前記各実施形態を次のように変更して具体化することも可能である。
 ・ 前記ガラス素地の組成として、SiO+B+Alの範囲を規定し、ガラスの骨格を形成する成分の範囲を明らかにすることもできる。
The embodiments described above can be modified and embodied as follows.
- the composition of the glass base material, to define the scope of SiO 2 + B 2 O 3 + Al 2 O 3, it is also possible to clarify the scope of the component that forms the skeleton of glass.
 ・ 前記ガラス素地の組成として、SiO+B又はAl+Bの含有量の範囲を規定し、ガラスの骨格を形成する成分の範囲を明らかにし、さらにガラス形成時の失透温度及び粘度を良好にすることができる。 -As the composition of the glass substrate, the range of the content of SiO 2 + B 2 O 3 or Al 2 O 3 + B 2 O 3 is specified, the range of the components forming the glass skeleton is clarified, and the glass formation The devitrification temperature and viscosity can be improved.
 ・ 前記ガラス素地の組成として、MgO+CaOの範囲を規定し、ガラス形成時の失透温度及び粘度を良好にすることもできる。
 ・ 前記鱗片状ガラス10の厚さ方向の断面形状としては、2つの主面が互いに平行な形状であってもよく、2つの主面が傾斜した形状(テーパ状)等の他の形状であってよい。
-As a composition of the said glass substrate, the range of MgO + CaO can be prescribed | regulated and the devitrification temperature and viscosity at the time of glass formation can also be made favorable.
The cross-sectional shape in the thickness direction of the glass flake 10 may be a shape in which two main surfaces are parallel to each other, or another shape such as a shape in which the two main surfaces are inclined (tapered). It's okay.
 次に、前記実施形態より把握できる技術的思想について以下に記載する。
 〇 鱗片状ガラスを形成するガラス素地の耐酸性を示す質量減少率ΔWが0.1~1.2質量%である。このように構成した場合、鱗片状ガラスの耐酸性を向上させることができる。
Next, the technical idea that can be grasped from the embodiment will be described below.
A mass reduction rate ΔW indicating acid resistance of the glass substrate forming the scaly glass is 0.1 to 1.2% by mass. When comprised in this way, the acid resistance of scale-like glass can be improved.
 〇 前記鱗片状ガラスを形成するガラス素地の作業温度は、1100~1300℃である。このように構成した場合、鱗片状ガラスを形成する際の作業性を向上させることができる。 O The working temperature of the glass substrate forming the scale-like glass is 1100-1300 ° C. When comprised in this way, the workability | operativity at the time of forming a scale-like glass can be improved.
 〇 前記鱗片状ガラスを形成するガラス素地のヤング率は、85~100GPaである。このように構成した場合、鱗片状ガラスが良好な弾力性を発揮することができ、樹脂成形体の充填材として好適に用いることができる。 O The Young's modulus of the glass substrate forming the glass flakes is 85 to 100 GPa. When comprised in this way, scale-like glass can exhibit favorable elasticity and can be used suitably as a filler of a resin molding.
 〇 被覆鱗片状ガラスの被膜の主成分としての前記金属は、ニッケル、金、銀、白金及びパラジウムからなる群より選ばれた少なくとも1種である。
 〇 被覆鱗片状ガラスの被膜の主成分としての前記金属酸化物は、酸化チタン、酸化鉄、酸化コバルト、酸化ジルコニウム、酸化亜鉛、酸化スズ及び酸化ケイ素からなる群より選ばれた少なくとも1種である。
The metal as the main component of the coated glass flake is at least one selected from the group consisting of nickel, gold, silver, platinum and palladium.
The metal oxide as the main component of the coated glass flake is at least one selected from the group consisting of titanium oxide, iron oxide, cobalt oxide, zirconium oxide, zinc oxide, tin oxide and silicon oxide. .
 〇 前記鱗片状ガラス又は前記被覆鱗片状ガラスを含有することを特徴とする樹脂組成物。このような樹脂組成物によれば、強度、寸法精度等の物性の向上した樹脂成形体を得ることができる。 A resin composition characterized by containing the glass flakes or the coated glass flakes. According to such a resin composition, a resin molded body having improved physical properties such as strength and dimensional accuracy can be obtained.
 〇 前記鱗片状ガラス又は前記被覆鱗片状ガラスを含有することを特徴とする塗料。このように構成した場合、塗料より形成される塗膜に金属色や光沢を付与することができる。 A paint characterized by containing the glass flakes or the coated glass flakes. When comprised in this way, a metallic color and gloss can be provided to the coating film formed from a coating material.
 〇 前記鱗片状ガラス又は前記被覆鱗片状ガラスを含有することを特徴とするインキ組成物。このように構成した場合、インキ組成物により形成される文字、図形等に金属色や光沢を付与することができる。 O An ink composition comprising the glass flakes or the coated glass flakes. When comprised in this way, a metal color and gloss can be provided to the character, figure, etc. which are formed with an ink composition.
 〇 前記鱗片状ガラス又は前記被覆鱗片状ガラスを含有することを特徴とする化粧料。このように構成した場合、化粧料を顔面等に施した後に良好な色調や光沢を付与することができる。 A cosmetic comprising the glass flakes or the coated glass flakes. When comprised in this way, after applying cosmetics to a face etc., favorable color tone and glossiness can be provided.

Claims (7)

  1. 組成が質量%で表して、
      57≦SiO≦65、
     0.1≦B<2、
       8≦Al≦15、
      45≦(SiO-B-Al)≦56、
       1≦MgO≦5、
      15≦CaO≦30、
     0.1≦(LiO+NaO+KO)≦4
    の組成であるガラス素地から形成されることを特徴とする鱗片状ガラス。
    The composition is expressed in mass%,
    57 ≦ SiO 2 ≦ 65,
    0.1 ≦ B 2 O 3 <2,
    8 ≦ Al 2 O 3 ≦ 15,
    45 ≦ (SiO 2 —B 2 O 3 —Al 2 O 3 ) ≦ 56,
    1 ≦ MgO ≦ 5,
    15 ≦ CaO ≦ 30,
    0.1 ≦ (Li 2 O + Na 2 O + K 2 O) ≦ 4
    It is formed from the glass substrate which is the composition of the scale-like glass characterized by the above-mentioned.
  2. 前記ガラス素地がさらにTiOを0.1~5質量%含有することを特徴とする請求項1に記載の鱗片状ガラス。 The glass flake according to claim 1, wherein the glass substrate further contains 0.1 to 5% by mass of TiO 2 .
  3. 前記ガラス素地のガラス転移温度が600~800℃であることを特徴とする請求項1又は請求項2に記載の鱗片状ガラス。 The glass flake according to claim 1 or 2, wherein the glass substrate has a glass transition temperature of 600 to 800 ° C.
  4. 前記ガラス素地の作業温度から失透温度を差し引いた温度差ΔTが0~100℃であることを特徴とする請求項1から請求項3のいずれか1項に記載の鱗片状ガラス。 The scaly glass according to any one of claims 1 to 3, wherein a temperature difference ΔT obtained by subtracting a devitrification temperature from a working temperature of the glass substrate is 0 to 100 ° C.
  5. 請求項1から請求項4のいずれか1項に記載の鱗片状ガラスと、前記鱗片状ガラスの表面を被覆する、金属又は金属酸化物を主成分とする被膜とを備えることを特徴とする被覆鱗片状ガラス。 5. A coating comprising the glass flake according to claim 1, and a coating mainly comprising a metal or a metal oxide that covers the surface of the glass flake. Scale glass.
  6. 質量%で表して、
      57≦SiO≦65、
     0.1≦B<2、
       8≦Al≦15、
      45≦(SiO-B-Al)≦56、
       1≦MgO≦5、
      15≦CaO≦30、
     0.1≦(LiO+NaO+KO)≦4
    の組成であるガラス素地を溶融した後、ガラス素地を粉砕することを備える、請求項1に記載の鱗片状ガラスを製造する方法。
    Expressed in mass%,
    57 ≦ SiO 2 ≦ 65,
    0.1 ≦ B 2 O 3 <2,
    8 ≦ Al 2 O 3 ≦ 15,
    45 ≦ (SiO 2 —B 2 O 3 —Al 2 O 3 ) ≦ 56,
    1 ≦ MgO ≦ 5,
    15 ≦ CaO ≦ 30,
    0.1 ≦ (Li 2 O + Na 2 O + K 2 O) ≦ 4
    The method for producing the glass flakes according to claim 1, comprising melting the glass substrate having the composition of 1 and then crushing the glass substrate.
  7. 請求項1に記載の鱗片状ガラスを形成するためのガラス素地であって、
    質量%で表して、
      57≦SiO≦65、
     0.1≦B<2、
       8≦Al≦15、
      45≦(SiO-B-Al)≦56、
       1≦MgO≦5、
      15≦CaO≦30、
     0.1≦(LiO+NaO+KO)≦4
    の組成であるガラス素地。
    A glass substrate for forming the glass flakes according to claim 1,
    Expressed in mass%,
    57 ≦ SiO 2 ≦ 65,
    0.1 ≦ B 2 O 3 <2,
    8 ≦ Al 2 O 3 ≦ 15,
    45 ≦ (SiO 2 —B 2 O 3 —Al 2 O 3 ) ≦ 56,
    1 ≦ MgO ≦ 5,
    15 ≦ CaO ≦ 30,
    0.1 ≦ (Li 2 O + Na 2 O + K 2 O) ≦ 4
    A glass substrate that is a composition of
PCT/JP2009/059764 2008-06-18 2009-05-28 Scale‑like glass and covered scale‑like glass WO2009154062A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010517829A JP5399385B2 (en) 2008-06-18 2009-05-28 Scale glass and coated scale glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008159193 2008-06-18
JP2008-159193 2008-06-18

Publications (1)

Publication Number Publication Date
WO2009154062A1 true WO2009154062A1 (en) 2009-12-23

Family

ID=41433978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059764 WO2009154062A1 (en) 2008-06-18 2009-05-28 Scale‑like glass and covered scale‑like glass

Country Status (2)

Country Link
JP (1) JP5399385B2 (en)
WO (1) WO2009154062A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538852A (en) * 2014-11-24 2017-12-28 エヌジーエフ ヨーロッパ リミテッドNgf Europe Limited Printed goods and feedstock

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231142A (en) * 1997-02-18 1998-09-02 Nippon Electric Glass Co Ltd Corrosion-resistant glass fiber
JP2000247683A (en) * 1999-03-04 2000-09-12 Nitto Boseki Co Ltd Corrosion resistant glass fiber
JP2003054993A (en) * 1997-07-04 2003-02-26 Nitto Boseki Co Ltd Glass composition for fiber
JP2004508265A (en) * 2000-09-06 2004-03-18 ピーピージー インダストリーズ オハイオ, インコーポレイテッド Glass fiber forming composition
WO2006068255A1 (en) * 2004-12-24 2006-06-29 Nippon Sheet Glass Company, Limited Scaly glass

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217192A (en) * 2004-01-30 2007-08-30 Nippon Sheet Glass Co Ltd Glass article and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231142A (en) * 1997-02-18 1998-09-02 Nippon Electric Glass Co Ltd Corrosion-resistant glass fiber
JP2003054993A (en) * 1997-07-04 2003-02-26 Nitto Boseki Co Ltd Glass composition for fiber
JP2000247683A (en) * 1999-03-04 2000-09-12 Nitto Boseki Co Ltd Corrosion resistant glass fiber
JP2004508265A (en) * 2000-09-06 2004-03-18 ピーピージー インダストリーズ オハイオ, インコーポレイテッド Glass fiber forming composition
WO2006068255A1 (en) * 2004-12-24 2006-06-29 Nippon Sheet Glass Company, Limited Scaly glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538852A (en) * 2014-11-24 2017-12-28 エヌジーエフ ヨーロッパ リミテッドNgf Europe Limited Printed goods and feedstock

Also Published As

Publication number Publication date
JPWO2009154062A1 (en) 2011-11-24
JP5399385B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5399387B2 (en) Scale glass and coated scale glass
JP5629579B2 (en) Scale glass and coated scale glass
JP5307541B2 (en) Scaly glass
JP4842839B2 (en) Scaly glass
US7285508B2 (en) Glass flake
JP5399386B2 (en) Scale glass and coated scale glass
JP2007145700A (en) Scaly glass
JP2007145699A (en) Scaly glass
JP2005097080A (en) Scaly glass
JP5331110B2 (en) Scale glass and coated scale glass
JP5399385B2 (en) Scale glass and coated scale glass
JP2011132109A (en) Scaly glass and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010517829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09766510

Country of ref document: EP

Kind code of ref document: A1