WO2009151251A2 - Solar battery module - Google Patents
Solar battery module Download PDFInfo
- Publication number
- WO2009151251A2 WO2009151251A2 PCT/KR2009/003075 KR2009003075W WO2009151251A2 WO 2009151251 A2 WO2009151251 A2 WO 2009151251A2 KR 2009003075 W KR2009003075 W KR 2009003075W WO 2009151251 A2 WO2009151251 A2 WO 2009151251A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- cell module
- cold air
- cell array
- pipe
- Prior art date
Links
- 238000001816 cooling Methods 0.000 claims abstract description 25
- 239000011810 insulating material Substances 0.000 claims abstract description 12
- 230000001012 protector Effects 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 10
- 230000001681 protective effect Effects 0.000 claims description 6
- 230000007613 environmental effect Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 2
- 238000010248 power generation Methods 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000004964 aerogel Substances 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/052—Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/052—Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
- H01L31/0521—Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a solar cell module, and more particularly, to a technology for improving power generation of a solar cell.
- Patent registration No. 285821 proposes a technique for cooling a solar cell by water cooling.
- a technology of cooling a solar cell by water cooling there is a risk of difficulty in insulation of electrical components constituting the solar cell and equipment damage due to a short circuit, resulting in a complicated structure resulting in high manufacturing and maintenance costs. There was a problem.
- An object of the present invention is to provide a solar cell module that can improve and increase the power generated by the solar cell.
- the solar cell module according to the present invention is implemented so that the solar cell array is sealed and housed by an outer protective material of a transparent insulating material so that the solar cell array is isolated from the sun's radiant heat and high temperature environment outside Operating at a low temperature is characterized in that to improve and increase the power generation efficiency of the solar cell.
- the solar cell module according to the present invention is implemented to cool the solar cell array by air-cooling using a very low temperature gas to improve and increase the power generation efficiency of the solar cell It is characterized by one.
- the solar cell array is enclosed and sealed by an outer protective member made of a transparent heat insulating material, the solar cell array is isolated from an external high temperature environment and has a useful effect of improving and increasing the power generation of the solar cell.
- the present invention facilitates the insulation of the electrical components constituting the solar cell by cooling the solar cell array by air cooling using very low temperature gas, thereby simplifying the structure, reducing manufacturing cost and maintenance cost and safely. It has the effect to operate.
- FIG. 1 is a cross-sectional view according to a first embodiment of a solar cell module according to the present invention
- FIG. 2 is a cross-sectional view according to a second embodiment of a solar cell module according to the present invention.
- FIG 3 is a cross-sectional view according to a third embodiment of a solar cell module according to the present invention.
- FIG. 4 is a cross-sectional view according to a fourth embodiment of a solar cell module according to the present invention.
- FIG. 5 is a bottom view according to an embodiment of the outer protector
- FIG. 6 is a cross-sectional view showing an example of a solar cell structure
- solar cell module 110 solar cell array
- first pipe 132 second pipe
- the present invention relates to a solar cell array in which a plurality of solar cells are arranged;
- An outer protective body sealingly storing the solar cell array and including a front plate made of a transparent heat insulating material, and a back plate made of one or more separate parts from the front plate and made of the same material as the front plate; It is characterized by comprising.
- FIG. 1 is a cross-sectional view according to a first embodiment of a solar cell module according to the present invention
- FIG. 2 is a cross-sectional view according to a second embodiment of a solar cell module according to the present invention
- FIG. 3 is a cross-sectional view of the solar cell module according to the present invention.
- 3 is a cross-sectional view according to a fourth embodiment of the solar cell module according to the present invention
- FIG. 5 is a bottom view according to an embodiment of the outer protector.
- the solar cell module 100 according to the present invention comprises a solar cell array 110 and an external protector 120.
- the solar cell array 110 has a plurality of solar cells 111 are arranged, and is covered by a light-transmissive filler adhesive 112 and adhered to the outer protector 120. According to the power generation capacity of the solar cell module 100, the number of solar cell 111 is determined, each solar cell 111 is connected by a neighboring solar cell and the lead wire 113, EVA (Ethylene) Solar cells are protected from the outside by being filled and coated with a light-transmitting filler 112 such as Vinyl Acetate.
- a light-transmitting filler 112 such as Vinyl Acetate.
- the photovoltaic cell 111 basically has a pn junction structure, and has an anti-reflection layer (Anti reflection layer) to allow light to be well absorbed into the interior, and the electricity generated from the photovoltaic cell. It is configured to include an upper electrode and a lower electrode for pulling out. 6 is a cross-sectional view illustrating an example of a solar cell structure.
- the outer protector 120 seals and accommodates the solar cell array 110, the front plate 121 of the transparent heat insulating material, and integrally or separately from the front plate, the same or different material as the front plate. It includes a back plate 122.
- the front plate 121 and the rear plate 122 are related to a fastening structure of two plates in a case where they are configured separately, and thus, related drawings are omitted.
- the outer protector 120 is configured to protect the solar cell array 110 by isolating the solar cell array 110 from the external environment, so that the maximum amount of light reaches the solar cell array. It is made of a transparent material with high transmittance and at the same time made of a heat insulating material to seal the solar cell array to minimize the effect of the temperature rise of the solar cell array due to solar heat and high temperature environment.
- Aerogel may be used as the front plate 121 and the back plate 122 of the transparent heat insulating material constituting the outer protector 120.
- Aerogel is a material composed of non-woven fabric of silicon dioxide (SiO 2 ) yarn, which is one thousandth the thickness of hair, and the air molecules between the silicon dioxide (SiO 2 ) yarn and the yarn occupy about 98% of the total volume of the airgel. It is a transparent material with high light transmission and low thermal conductivity.
- the outer protector 120 made of a high strength transparent heat insulating material such as the airgel, it is possible to replace the conventional metal frame, lighter than conventional, resistant to corrosion, and excellent thermal insulation effect.
- the fixing structure is a use case part that can be selected in various ways, a detailed description thereof will be omitted.
- the present invention is implemented so that the solar cell array 110 is sealed and received by the outer protective body 120 of the transparent heat insulating material so that the solar cell array is isolated from the external high temperature environment of the solar cell Since the power generation efficiency can be improved and increased, the object of the present invention as described above can be achieved.
- the outer protector 120 may include a cold air chamber 123 accommodating cold air for cooling the solar cell array 110 therein. That is, this embodiment is an embodiment in which the cold air is stored in the outer protector 120 to cool and the solar cell array 110 is cooled by air cooling to improve and increase power generation efficiency.
- the outer protector 120 is a transparent heat insulating material, once the cold air in the cold chamber 123 is cooled once, the temperature in the cold chamber 123 is maintained at a low temperature for a long time, and thus, the solar cell array 110 is provided. Can be cooled continuously.
- the cold air chamber 123 may be a space formed inside the outer protector 120 having a single internal structure having a single internal space. As described above, it may be a space formed inside the outer protector 120 of the composite structure having two or more internal spaces.
- the solar cell module may further include a cooling unit 130.
- the cooling unit 130 is configured to lower the temperature of the cold air in the cold chamber 123, and lowers the temperature of the cold air in the cold chamber 123 to convex a solar cell array inside the outer protector 120.
- the embodiment of the present invention is to reduce the temperature of 110 to improve and increase power generation efficiency.
- the cooling unit 130 may include a first pipe 131 for injecting cold air into the cold air chamber 123 and a second pipe for discharging cold air from the cold air chamber 123.
- 132 may include.
- the first pipe 131 and the second pipe 132 may be implemented in the form of a check valve so as not to back flow during the stop of cold air injection.
- a motor and a pump configuration for injecting cold air through the first pipe 131 and discharging cold air through the second pipe 132 will be omitted.
- the solar cell inside the outer protector 120 is formed by convection of cold air.
- the cooling unit 130 may include a heat dissipation plate 133 that takes heat from cold air of the cold air chamber 123 and radiates heat to the outside.
- the heat sink 133 takes heat away from the cold air heated by the solar cell array 110 inside the outer protector 120 by implementing the heat sink 133 to have a one-way thermal conductivity. As a result, the heat radiation of the solar cell array 110 inside the outer protector 120 is lowered, thereby improving and increasing power generation efficiency.
- the outer protector 120 is configured in a complex structure to have two inner spaces, and the heat sinks are installed such that both ends of the heat sink 133 are respectively positioned in the two inner spaces, and the solar cell array 110 is provided. Lower the temperature of the heated cold air in one of the inner space through the heat sink, and implement the cold air is injected and discharged in the other inner space to circulate the cold air to cool the heat sink by cooling the heat sink external protective body 120 It is possible to lower the temperature of the solar cell array 110 inside it is possible to improve and increase the power generation efficiency.
- the cooling unit 130 may include a thermoelectric element 134 for lowering the cold air temperature of the cold air chamber.
- the Thermo Electronic Module 134 is a device that generates heat on one side and endothermic occurs on the other side. When the current is connected by connecting both ends of different types of metal, endothermic occurs on one side of the metal according to the current direction.
- the other metal is a device using the Peltier Effect, a phenomenon in which heat is generated.
- thermoelectric element 134 absorbs heat from cold air whose temperature is increased by the array 110, thereby lowering the temperature of the solar cell array 110 inside the outer protector 120, thereby improving and increasing power generation efficiency. do.
- thermoelectric element 134 is formed between the heat sinks 133 to form a solar cell inside the outer protector 120.
- the thermoelectric element 134 absorbs the temperature of the cold air, the temperature of which is increased by the cell array 110, through the heat sink 133 of the cold chamber, so that the temperature of the solar cell array 110 inside the outer protector 120 is obtained. It can be effectively lowered to improve and increase the power generation efficiency.
- the first pipe 131 and the second pipe 132 is made of a conductive material, respectively, the external lead-out of the solar cell array 110 It may be implemented to be used as an electrode.
- the heat sink 133 may be implemented in plural, and each of the two heat sinks 133 may be used as an external lead-out electrode of the solar cell array 110. .
- the cooling unit 130 such as the first pipe 131 and the second pipe 132 or the two heat sinks 133 is used for cooling the cold air and at the same time the external lead-out electrode of the solar cell array 110.
- the cooling unit 130 such as the first pipe 131 and the second pipe 132 or the two heat sinks 133 is used for cooling the cold air and at the same time the external lead-out electrode of the solar cell array 110.
- the solar cell module 100 may further include a wireless communication unit 140.
- the wireless communication unit 140 wirelessly transmits environmental information such as temperature of the cold air chamber 123 by the solar cell array 110 using short-range low power communication.
- the wireless communication unit 140 may be implemented using Zigbee or RFID technology.
- the wireless communication unit 140 may be implemented to wirelessly transmit to the outside in a short-range low-power communication method. Then, by analyzing the wirelessly transmitted temperature, it is possible to perform various controls such as injecting cold air or operating a thermoelectric element according to the set temperature of the cold air chamber.
- the wireless communication unit 140 may be implemented in the form of a single IC chip to be installed inside the outer protector 120 of the solar cell module 100.
- the wireless communication unit 140 may be implemented in the form of a single IC chip to be installed inside the outer protector 120 of the solar cell module 100.
- the solar cell module 100 according to the present invention may further include a wireless power transmitter 150.
- the wireless power transmitter 150 may transmit wireless power generated by the solar cell array 110 to the outside.
- no external drawing electrode is required to draw power to the outside.
- the present invention can be used industrially in the field of cooling technology of the solar cell and its application field.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
The present invention relates to a solar battery module in which a solar battery cell array is sealingly accommodated in an external protecting body made of a transparent, heat-insulating material in order to separate the solar battery cell array from an external high-temperature environment, and further to cool the solar battery cell array in an air-cooling manner, thereby improving and increasing the generating efficiency of a solar battery.
Description
본 발명은 태양전지모듈에 관한 것으로, 특히 태양전지의 발전 전력을 향상시키는 기술에 관련한 것이다.The present invention relates to a solar cell module, and more particularly, to a technology for improving power generation of a solar cell.
태양전지의 경우, 태양전지셀의 온도가 올라갈 수록 태양전지의 발전 전력이 감소하는 특성을 가진다. 따라서, 태양전지의 발전 전력 감소를 방지하기 위해서는 태양전지를 냉각시켜야만 한다.In the case of a solar cell, as the temperature of the solar cell increases, power generation power of the solar cell decreases. Therefore, in order to prevent a decrease in power generation of the solar cell, the solar cell must be cooled.
특허등록 제285821호(2001.01.08)에서는 수냉식으로 태양전지를 냉각하는 기술을 제안하고 있다. 그러나, 수냉식으로 태양전지를 냉각하는 기술의 경우, 태양전지를 구성하는 전기 부품의 절연에 어려움 및 누전으로 인한 설비 파손 등의 위험이 있었고, 이로 인해 구조가 복잡해져 제작 비용 및 유지 비용이 많이 소모되는 문제가 있었다.Patent registration No. 285821 (2001.01.08) proposes a technique for cooling a solar cell by water cooling. However, in the case of a technology of cooling a solar cell by water cooling, there is a risk of difficulty in insulation of electrical components constituting the solar cell and equipment damage due to a short circuit, resulting in a complicated structure resulting in high manufacturing and maintenance costs. There was a problem.
본 발명은 태양전지의 발전 전력을 향상 및 증대시킬 수 있는 태양전지모듈을 제공함을 그 목적으로 한다.An object of the present invention is to provide a solar cell module that can improve and increase the power generated by the solar cell.
본 발명의 일 양상에 따르면, 본 발명에 따른 태양전지모듈은 태양전지셀 배열이 투명 단열성 재질의 외부 보호체로 밀봉 수납되도록 구현되어 태양전지셀 배열이 태양의 복사열과 외부의 높은 온도 환경에 격리됨으로써 낮은 온도로 동작하게 되어 태양전지의 발전 효율을 향상 및 증대시킬 수 있도록 한 것을 특징으로 한다.According to an aspect of the present invention, the solar cell module according to the present invention is implemented so that the solar cell array is sealed and housed by an outer protective material of a transparent insulating material so that the solar cell array is isolated from the sun's radiant heat and high temperature environment outside Operating at a low temperature is characterized in that to improve and increase the power generation efficiency of the solar cell.
한편, 본 발명의 부가적인 양상에 따르면, 본 발명에 따른 태양전지모듈은 매우 낮은 온도의 가스를 사용해 공냉식으로 태양전지셀 배열을 냉각시키도록 구현되어 태양전지의 발전 효율을 향상 및 증대시킬 수 있도록 한 것을 특징으로 한다.On the other hand, according to an additional aspect of the present invention, the solar cell module according to the present invention is implemented to cool the solar cell array by air-cooling using a very low temperature gas to improve and increase the power generation efficiency of the solar cell It is characterized by one.
본 발명은 태양전지셀 배열이 투명 단열성 재질의 외부 보호체로 밀봉 수납되므로, 태양전지셀 배열이 외부의 높은 온도 환경과 격리됨으로써 태양전지의 발전 전력을 향상 및 증대시킬 수 있는 유용한 효과를 가진다.According to the present invention, since the solar cell array is enclosed and sealed by an outer protective member made of a transparent heat insulating material, the solar cell array is isolated from an external high temperature environment and has a useful effect of improving and increasing the power generation of the solar cell.
더 나아가, 본 발명은 매우 낮은 온도의 가스를 사용해 공냉식으로 태양전지셀 배열을 냉각시킴으로써 태양전지를 구성하는 전기 부품의 절연이 용이하고, 이에 따라 구조가 간단해져 제작 비용 및 유지 비용이 감소되고 안전하게 동작시킬 수 있는 효과를 가진다.Furthermore, the present invention facilitates the insulation of the electrical components constituting the solar cell by cooling the solar cell array by air cooling using very low temperature gas, thereby simplifying the structure, reducing manufacturing cost and maintenance cost and safely. It has the effect to operate.
도 1 은 본 발명에 따른 태양전지모듈의 제1실시예에 따른 단면도1 is a cross-sectional view according to a first embodiment of a solar cell module according to the present invention
도 2 는 본 발명에 따른 태양전지모듈의 제2실시예에 따른 단면도2 is a cross-sectional view according to a second embodiment of a solar cell module according to the present invention;
도 3 은 본 발명에 따른 태양전지모듈의 제3실시예에 따른 단면도3 is a cross-sectional view according to a third embodiment of a solar cell module according to the present invention.
도 4 는 본 발명에 따른 태양전지모듈의 제4실시예에 따른 단면도4 is a cross-sectional view according to a fourth embodiment of a solar cell module according to the present invention.
도 5 는 외부 보호체의 일 실시예에 따른 저면도5 is a bottom view according to an embodiment of the outer protector;
도 6 은 태양전지 셀 구조의 일 예를 도시한 단면도6 is a cross-sectional view showing an example of a solar cell structure
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
100 : 태양전지모듈 110 : 태양전지셀 배열100: solar cell module 110: solar cell array
111 : 태양전지 셀 112 : 광 투과성 충진접착제111 solar cell 112 light transmitting filler adhesive
113 : 리드선 120 : 외부 보호체113: lead wire 120: external protector
121 : 전면판 122 : 후면판121: front panel 122: rear panel
123 : 냉기실 130 : 냉각부123: cold chamber 130: cooling unit
131 : 제1배관 132 : 제2배관131: first pipe 132: second pipe
133 : 방열판 134 : 열전소자133: heat sink 134: thermoelectric element
140 : 무선통신부 150 : 무선전력 전송부140: wireless communication unit 150: wireless power transmission unit
본 발명은 다수의 태양전지 셀(Solar cell)이 배열되는 태양전지셀 배열과; 상기 태양전지셀 배열을 밀봉 수납하되, 투명 단열성 재질의 전면판과, 상기 전면판과 일체 또는 별개로 구성되고 상기 전면판과 동일한 재질의 후면판을 포함하는 외부 보호체를; 포함하여 이루어지는 것을 특징으로 한다.The present invention relates to a solar cell array in which a plurality of solar cells are arranged; An outer protective body sealingly storing the solar cell array and including a front plate made of a transparent heat insulating material, and a back plate made of one or more separate parts from the front plate and made of the same material as the front plate; It is characterized by comprising.
이하, 첨부된 도면을 참조하여 기술되는 바람직한 실시예를 통하여 본 발명을 당업자가 용이하게 이해하고 재현할 수 있도록 상세히 기술하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily understand and reproduce the present invention.
도 1 은 본 발명에 따른 태양전지모듈의 제1실시예에 따른 단면도, 도 2 는 본 발명에 따른 태양전지모듈의 제2실시예에 따른 단면도, 도 3 은 본 발명에 따른 태양전지모듈의 제3실시예에 따른 단면도, 도 4 는 본 발명에 따른 태양전지모듈의 제4실시예에 따른 단면도, 도 5 는 외부 보호체의 일 실시예에 따른 저면도이다. 도면에 도시한 바와 같이, 본 발명에 따른 태양전지모듈(100)은 태양전지셀 배열(110)과, 외부 보호체(120)를 포함하여 이루어진다.1 is a cross-sectional view according to a first embodiment of a solar cell module according to the present invention, FIG. 2 is a cross-sectional view according to a second embodiment of a solar cell module according to the present invention, and FIG. 3 is a cross-sectional view of the solar cell module according to the present invention. 3 is a cross-sectional view according to a fourth embodiment of the solar cell module according to the present invention, and FIG. 5 is a bottom view according to an embodiment of the outer protector. As shown in the figure, the solar cell module 100 according to the present invention comprises a solar cell array 110 and an external protector 120.
상기 태양전지셀 배열(110)은 다수의 태양전지 셀(Solar cell)(111)이 배열되되, 광 투과성 충진접착제(112)에 의해 피복되고 상기 외부 보호체(120) 내부에 접착된다. 태양전지모듈(100)의 발전 용량에 따라, 태양전지 셀(111)의 갯수가 결정되며, 각 태양전지 셀(111)은 이웃하는 태양전지 셀과 리드선(113)에 의해 연결되며, EVA(Ethylene Vinyl Acetate) 등의 광 투과성 충진접착제(112)에 의해 충진되어 피복됨으로써 태양전지 셀들이 외부로부터 보호된다.The solar cell array 110 has a plurality of solar cells 111 are arranged, and is covered by a light-transmissive filler adhesive 112 and adhered to the outer protector 120. According to the power generation capacity of the solar cell module 100, the number of solar cell 111 is determined, each solar cell 111 is connected by a neighboring solar cell and the lead wire 113, EVA (Ethylene) Solar cells are protected from the outside by being filled and coated with a light-transmitting filler 112 such as Vinyl Acetate.
태양전지 셀(111)은 도 6 에 도시한 바와 같이 기본적으로 p-n 접합 구조로 이루어져 있으며, 빛이 내부로 흡수가 잘되도록 하기 위한 반사방지막(Anti reflection layer)과, 태양전지 셀에서 생성된 전기를 외부로 끌어내기 위한 상부전극 및 하부전극을 포함하여 구성된다. 도 6 은 태양전지 셀 구조의 일 예를 도시한 단면도이다.As shown in FIG. 6, the photovoltaic cell 111 basically has a pn junction structure, and has an anti-reflection layer (Anti reflection layer) to allow light to be well absorbed into the interior, and the electricity generated from the photovoltaic cell. It is configured to include an upper electrode and a lower electrode for pulling out. 6 is a cross-sectional view illustrating an example of a solar cell structure.
광이 태양전지 셀(111)에 흡수되면, 하나의 광자로부터 전자와 정공 한쌍이 생성되게 되고, p-n 접합에 의한 전위차로 인해 전자와 정공이 분리되어, 전자는 n형 반도체 측으로. 정공은 p형 반도체 쪽으로 각각 이동하여 상부전극 및 하부전극으로 수집되고, 하부전극이 양극이 되고 상부전극이 음극이 되어 외부의 부하에 전기를 공급하게 된다.When light is absorbed into the solar cell 111, a pair of electrons and holes are generated from one photon, and the electrons and holes are separated by the potential difference due to the p-n junction, and the electrons move to the n-type semiconductor side. The holes move toward the p-type semiconductor, respectively, and are collected by the upper electrode and the lower electrode. The lower electrode becomes the anode and the upper electrode becomes the cathode to supply electricity to an external load.
상기 외부 보호체(120)는 상기 태양전지셀 배열(110)을 밀봉 수납하되, 투명 단열성 재질의 전면판(121)과, 상기 전면판과 일체 또는 별개로 구성되고 상기 전면판과 동일 또는 상이한 재질의 후면판(122)을 포함한다. 상기 전면판(121)과, 후면판(122)이 별개로 구성될 경우의 두 판의 체결구조에 관련해서는 통상적인 결합 구조에 관련된 것이므로, 도면 도시를 생략하고자 한다.The outer protector 120 seals and accommodates the solar cell array 110, the front plate 121 of the transparent heat insulating material, and integrally or separately from the front plate, the same or different material as the front plate. It includes a back plate 122. The front plate 121 and the rear plate 122 are related to a fastening structure of two plates in a case where they are configured separately, and thus, related drawings are omitted.
즉, 상기 외부 보호체(120)는 상기 태양전지셀 배열(110)을 외부 환경으로부터 격리시켜 태양전지셀 배열(110)을 보호하기 위한 구성으로, 태양전지셀 배열에 최대한의 광이 도달하도록 광 투과율이 높은 투명 재질로 이루어지며, 동시에 단열성 재질로 이루어져 태양전지셀 배열을 밀봉함으로써 태양열과 외부의 높은 온도 환경에 의한 태양전지셀 배열의 온도 상승에 따른 영향을 최소화한다.That is, the outer protector 120 is configured to protect the solar cell array 110 by isolating the solar cell array 110 from the external environment, so that the maximum amount of light reaches the solar cell array. It is made of a transparent material with high transmittance and at the same time made of a heat insulating material to seal the solar cell array to minimize the effect of the temperature rise of the solar cell array due to solar heat and high temperature environment.
예컨대, 상기 외부 보호체(120)를 이루는 투명 단열성 재질의 전면판(121) 및 후면판(122)으로 에어로겔(Aerogel)을 사용할 수 있다. 에어로겔(Aerogel)은 머리카락 1만분의 1 굵기인 이산화규소(SiO2) 실이 부직포처럼 얽혀 이루어진 구조의 소재로, 이산화규소(SiO2) 실과 실 사이에 공기 분자가 에어로겔 전체 부피의 98% 정도 차지하는 높은 투광성, 낮은 열전도의 투명 단열재이다.For example, an aerogel may be used as the front plate 121 and the back plate 122 of the transparent heat insulating material constituting the outer protector 120. Aerogel is a material composed of non-woven fabric of silicon dioxide (SiO 2 ) yarn, which is one thousandth the thickness of hair, and the air molecules between the silicon dioxide (SiO 2 ) yarn and the yarn occupy about 98% of the total volume of the airgel. It is a transparent material with high light transmission and low thermal conductivity.
상기 에어로겔 등과 같은 고강도 투명 단열성 재질의 외부 보호체(120)를 사용할 경우, 종래의 금속 프레임을 대체할 수 있어 종래에 비해 가볍고, 부식에 강하고, 단열 효과가 우수하다.When using the outer protector 120 made of a high strength transparent heat insulating material such as the airgel, it is possible to replace the conventional metal frame, lighter than conventional, resistant to corrosion, and excellent thermal insulation effect.
한편, 외부 보호체(120)내에 태양전지셀 배열(110)을 고정하는 구성은 외부 보호체(120)내에 광 투과성 충진접착제(112)를 사용하여 태양전지셀 배열(110)을 접착하고, 충진접착제(112)를 경화시키면 된다. 그러나, 이러한 고정 구조는 이외에도 다양한 방법으로 선택할 수 있는 사용례 부분이므로, 이에 대한 자세한 설명은 생략하기로 한다.On the other hand, the configuration for fixing the solar cell array 110 in the outer protector 120, using the light-transmitting filler 112 in the outer protector 120 to adhere the solar cell array 110, the filling What is necessary is just to harden the adhesive agent 112. However, since the fixing structure is a use case part that can be selected in various ways, a detailed description thereof will be omitted.
따라서, 위와 같이함에 의해, 본 발명은 태양전지셀 배열(110)이 투명 단열성 재질의 외부 보호체(120)로 밀봉 수납되도록 구현되어 태양전지셀 배열이 외부의 높은 온도 환경과 격리됨으로써 태양전지의 발전 효율을 향상 및 증대시킬 수 있게 되므로, 상기에서 제시한 본 발명의 목적을 달성할 수 있게 된다.Therefore, by the above, the present invention is implemented so that the solar cell array 110 is sealed and received by the outer protective body 120 of the transparent heat insulating material so that the solar cell array is isolated from the external high temperature environment of the solar cell Since the power generation efficiency can be improved and increased, the object of the present invention as described above can be achieved.
한편, 본 발명의 부가적인 양상에 따르면, 상기 외부 보호체(120)가 그 내부에 상기 태양전지셀 배열(110)을 냉각시키기 위한 냉기를 수납하는 냉기실(123)을 구비할 수 있다. 즉, 이 실시예는 외부 보호체(120)에 냉기를 수납하여 공냉식으로 태양전지셀 배열(110)을 냉각시킴으로써 발전 효율을 향상 및 증대시킬 수 있도록 한 실시예이다.Meanwhile, according to an additional aspect of the present invention, the outer protector 120 may include a cold air chamber 123 accommodating cold air for cooling the solar cell array 110 therein. That is, this embodiment is an embodiment in which the cold air is stored in the outer protector 120 to cool and the solar cell array 110 is cooled by air cooling to improve and increase power generation efficiency.
상기 외부 보호체(120)가 투명 단열성 재질이므로, 냉기실(123)의 냉기가 한번 냉각되면, 냉기실(123)내의 온도는 오랫동안 저온 상태가 유지되게 되고, 이로인해 태양전지셀 배열(110)을 지속적으로 냉각시킬 수 있게 된다.Since the outer protector 120 is a transparent heat insulating material, once the cold air in the cold chamber 123 is cooled once, the temperature in the cold chamber 123 is maintained at a low temperature for a long time, and thus, the solar cell array 110 is provided. Can be cooled continuously.
예컨대, 상기 냉기실(123)은 도 1, 도 3 및 도 4 에 도시한 바와 같이, 내부 공간이 하나인 단일 구조의 외부 보호체(120) 내부에 형성한 공간일 수도 있으며, 도 2 에 도시한 바와 같이, 내부 공간이 2개 이상인 복합 구조의 외부 보호체(120) 내부에 형성한 공간일 수도 있다.For example, as illustrated in FIGS. 1, 3, and 4, the cold air chamber 123 may be a space formed inside the outer protector 120 having a single internal structure having a single internal space. As described above, it may be a space formed inside the outer protector 120 of the composite structure having two or more internal spaces.
한편, 본 발명의 부가적인 양상에 따르면, 상기 태양전지모듈이 냉각부(130)를 더 포함할 수 있다. 상기 냉각부(130)는 상기 냉기실(123)의 냉기 온도를 낮추기 위한 구성으로, 냉기실(123) 내부의 냉기의 온도를 낮추어 대류 현상에 의해 외부 보호체(120) 내부의 태양전지셀 배열(110)의 온도를 낮추어 발전 효율을 향상 및 증대시킬 수 있도록 한 실시예이다.Meanwhile, according to an additional aspect of the present invention, the solar cell module may further include a cooling unit 130. The cooling unit 130 is configured to lower the temperature of the cold air in the cold chamber 123, and lowers the temperature of the cold air in the cold chamber 123 to convex a solar cell array inside the outer protector 120. The embodiment of the present invention is to reduce the temperature of 110 to improve and increase power generation efficiency.
예컨대, 상기 냉각부(130)가 도 1 에 도시한 바와 같이 상기 냉기실(123)로 냉기를 주입하기 위한 제1배관(131)과, 냉기실(123)로부터 냉기를 배출하기 위한 제2배관(132)을 포함할 수 있다. 이 때, 상기 제1배관(131)과 제2배관(132)은 냉기 주입의 정지시 역류하지 하지 않도록 체크밸브 형태로 구현할 수 있다. 편의상 제1배관(131)을 통해 냉기를 주입하고 제2배관(132)을 통해 냉기를 배출하는 모터 및 펌프 구성은 도면 도시를 생략한다.For example, as illustrated in FIG. 1, the cooling unit 130 may include a first pipe 131 for injecting cold air into the cold air chamber 123 and a second pipe for discharging cold air from the cold air chamber 123. 132 may include. At this time, the first pipe 131 and the second pipe 132 may be implemented in the form of a check valve so as not to back flow during the stop of cold air injection. For convenience, a motor and a pump configuration for injecting cold air through the first pipe 131 and discharging cold air through the second pipe 132 will be omitted.
따라서, 제1배관(131)을 통해 냉기를 주입하고, 제2배관(132)을 통해 냉기를 배출하여 냉기를 순환시키는 과정 동안 냉기의 대류 현상에 의해 외부 보호체(120) 내부의 태양전지셀 배열(110)의 온도를 낮추어 발전 효율을 향상 및 증대시킬 수 있게 된다.Therefore, during the process of injecting cold air through the first pipe 131 and discharging the cold air through the second pipe 132 to circulate the cold air, the solar cell inside the outer protector 120 is formed by convection of cold air. By lowering the temperature of the array 110 it is possible to improve and increase the power generation efficiency.
이와는 달리, 상기 냉각부(130)가 도 2 에 도시한 바와 같이, 상기 냉기실(123)의 냉기로부터 열을 빼앗아 외부로 방열하는 방열판(133)을 포함할 수 있다. 이 때, 상기 방열판(133)을 일방향 열전도성 특성을 가지도록 구현함에 의해 상기 외부 보호체(120) 내부의 태양전지셀 배열(110)에 의해 더워진 냉기로부터 방열판(133)이 열을 빼앗아 외부로 방열하게 되고, 이로 인해 외부 보호체(120) 내부의 태양전지셀 배열(110)의 온도가 낮아지게 되어 발전 효율을 향상 및 증대시킬 수 있게 된다.Alternatively, as shown in FIG. 2, the cooling unit 130 may include a heat dissipation plate 133 that takes heat from cold air of the cold air chamber 123 and radiates heat to the outside. At this time, the heat sink 133 takes heat away from the cold air heated by the solar cell array 110 inside the outer protector 120 by implementing the heat sink 133 to have a one-way thermal conductivity. As a result, the heat radiation of the solar cell array 110 inside the outer protector 120 is lowered, thereby improving and increasing power generation efficiency.
도 2 의 경우, 내부 공간을 2개 구비하도록 복합 구조로 외부 보호체(120)를 구성하고, 두 내부 공간에 방열판(133) 양단이 각각 위치하도록 방열판을 설치하고, 태양전지셀 배열(110)이 위치한 하나의 내부 공간의 더워진 냉기의 온도를 방열판을 통해 낮추고, 다른 하나의 내부 공간에 냉기가 주입 및 배출되도록 구현하여 냉기가 순환되도록 함으로써 방열판을 공냉식으로 식히도록 하여 외부 보호체(120) 내부의 태양전지셀 배열(110)의 온도를 낮출 수 있게 되어 발전 효율을 향상 및 증대시킬 수 있게 된다.In the case of FIG. 2, the outer protector 120 is configured in a complex structure to have two inner spaces, and the heat sinks are installed such that both ends of the heat sink 133 are respectively positioned in the two inner spaces, and the solar cell array 110 is provided. Lower the temperature of the heated cold air in one of the inner space through the heat sink, and implement the cold air is injected and discharged in the other inner space to circulate the cold air to cool the heat sink by cooling the heat sink external protective body 120 It is possible to lower the temperature of the solar cell array 110 inside it is possible to improve and increase the power generation efficiency.
이와는 달리, 상기 냉각부(130)가 도 3 및 도 4 에 도시한 바와 같이, 상기 냉기실의 냉기 온도를 낮추는 열전소자(134)를 포함할 수 있다. 상기 열전소자(Thermo Electronic Module)(134)는 한쪽에서는 발열이 다른 한쪽에서는 흡열이 일어나도록 하는 소자로, 서로 다른 종류의 금속 양끝을 접속하여 전류를 흘리면 전류방향에 따라 한쪽 금속에서는 흡열이 일어나고, 다른쪽 금속에서는 발열이 일어나는 현상인 펠티어 효과(Peltier Effect)를 이용한 소자이다.Alternatively, as shown in FIGS. 3 and 4, the cooling unit 130 may include a thermoelectric element 134 for lowering the cold air temperature of the cold air chamber. The Thermo Electronic Module 134 is a device that generates heat on one side and endothermic occurs on the other side. When the current is connected by connecting both ends of different types of metal, endothermic occurs on one side of the metal according to the current direction. The other metal is a device using the Peltier Effect, a phenomenon in which heat is generated.
따라서, 열전소자(134)의 흡열이 일어나는 쪽을 외부 보호체(120)의 냉기실(123)측에, 발열이 일어나는 쪽을 외부 측에 연결시키면, 외부 보호체(120) 내부의 태양전지셀 배열(110)에 의해 온도가 상승한 냉기로부터 열전소자(134)가 흡열함으로써 외부 보호체(120) 내부의 태양전지셀 배열(110)의 온도를 낮출 수 있게 되어 발전 효율을 향상 및 증대시킬 수 있게 된다.Therefore, when the endotherm of the thermoelectric element 134 is connected to the cold air chamber 123 side of the outer protector 120 and the side where the heat is generated to the outer side, the solar cell inside the outer protector 120 The thermoelectric element 134 absorbs heat from cold air whose temperature is increased by the array 110, thereby lowering the temperature of the solar cell array 110 inside the outer protector 120, thereby improving and increasing power generation efficiency. do.
이 때, 상기 외부 보호체(120)가 투명 단열성 재질로 이루어지므로, 도 3 에 도시한 바와같이 방열판(133) 사이에 열전소자(134)를 구성함에 의해 외부 보호체(120) 내부의 태양전지셀 배열(110)에 의해 온도가 상승한 냉기의 온도를 냉기실의 방열판(133)을 통해 열전소자(134)가 흡열함으로써 외부 보호체(120) 내부의 태양전지셀 배열(110)의 온도를 보다 효율적으로 낮출 수 있게 되어 발전 효율을 향상 및 증대시킬 수 있게 된다.In this case, since the outer protector 120 is made of a transparent heat insulating material, as shown in FIG. 3, the thermoelectric element 134 is formed between the heat sinks 133 to form a solar cell inside the outer protector 120. The thermoelectric element 134 absorbs the temperature of the cold air, the temperature of which is increased by the cell array 110, through the heat sink 133 of the cold chamber, so that the temperature of the solar cell array 110 inside the outer protector 120 is obtained. It can be effectively lowered to improve and increase the power generation efficiency.
한편, 본 발명의 부가적인 양상에 따르면, 도 1 에 도시한 바와 같이 상기 제1배관(131)과, 제2배관(132)이 도전성 재질로 이루어져 각각 상기 태양전지셀 배열(110)의 외부 인출 전극으로 사용되도록 구현할 수도 있다.On the other hand, according to an additional aspect of the present invention, as shown in Figure 1, the first pipe 131 and the second pipe 132 is made of a conductive material, respectively, the external lead-out of the solar cell array 110 It may be implemented to be used as an electrode.
이와는 달리, 도 2 및 도 3 에 도시한 바와 같이, 상기 방열판(133)을 복수로 구현하고, 두 방열판(133) 각각을 상기 태양전지셀 배열(110)의 외부 인출 전극으로 사용되도록 구현할 수도 있다.Alternatively, as illustrated in FIGS. 2 and 3, the heat sink 133 may be implemented in plural, and each of the two heat sinks 133 may be used as an external lead-out electrode of the solar cell array 110. .
따라서, 제1배관(131)과 제2배관(132), 또는 두 방열판(133) 등의 냉각부(130)를 냉기를 냉각하는 목적으로 이용함과 동시에 태양전지셀 배열(110)의 외부 인출 전극으로 사용함으로써 본 발명에 따른 태양전지모듈의 구조를 보다 단순화할 수 있다.Accordingly, the cooling unit 130 such as the first pipe 131 and the second pipe 132 or the two heat sinks 133 is used for cooling the cold air and at the same time the external lead-out electrode of the solar cell array 110. By using as can simplify the structure of the solar cell module according to the invention.
한편, 본 발명의 부가적인 양상에 따르면, 도 1 내지 도 3 에 도시한 바와 같이 본 발명에 따른 태양전지모듈(100)이 무선통신부(140)를 더 포함할 수 있다. 상기 무선통신부(140)는 상기 태양전지셀 배열(110)에 의한 냉기실(123) 온도 등의 환경정보를 근거리 저전력 통신 등을 이용해 무선 전송한다. 예컨대, 상기 무선통신부(140)를 지그비(Zigbee) 또는 RFID 기술을 이용해 구현할 수 있다.On the other hand, according to an additional aspect of the present invention, as shown in Figures 1 to 3, the solar cell module 100 according to the present invention may further include a wireless communication unit 140. The wireless communication unit 140 wirelessly transmits environmental information such as temperature of the cold air chamber 123 by the solar cell array 110 using short-range low power communication. For example, the wireless communication unit 140 may be implemented using Zigbee or RFID technology.
예를 들어, 상기 무선통신부(140)를 통해 냉기실(123)내의 온도를 측정하여 근거리 저전력 통신 방식으로 외부로 무선 전송하도록 구현할 수 있다. 그러면 무선 전송된 온도를 분석하여 예컨대, 냉기실의 설정된 온도에 따라 냉기를 주입한다거나, 열전소자를 동작시킨다거나 하는 등의 각종 제어를 수행할 수 있게 된다.For example, by measuring the temperature in the cold air chamber 123 through the wireless communication unit 140 may be implemented to wirelessly transmit to the outside in a short-range low-power communication method. Then, by analyzing the wirelessly transmitted temperature, it is possible to perform various controls such as injecting cold air or operating a thermoelectric element according to the set temperature of the cold air chamber.
이 때, 상기 무선통신부(140)는 하나의 IC칩 형태로 구현하여 태양전지모듈(100)의 외부 보호체(120) 내부에 설치할 수 있다. 따라서, 이렇게 함에 의해 태양전지모듈(100)의 각종 환경정보를 수집할 수 있고, 이 수집된 환경정보에 따라 각종 제어를 수행할 수 있게 된다.At this time, the wireless communication unit 140 may be implemented in the form of a single IC chip to be installed inside the outer protector 120 of the solar cell module 100. Thus, by doing so, it is possible to collect various environmental information of the solar cell module 100, it is possible to perform various controls according to the collected environmental information.
한편, 본 발명의 부가적인 양상에 따르면, 도 4 에 도시한 바와 같이, 본 발명에 따른 태양전지모듈(100)이 무선전력 전송부(150)를 더 포함할 수도 있다. 상기 무선전력 전송부(150)는 상기 태양전지셀 배열(110)에 의해 발생하는 전력을 외부로 무선 전력 송신할 수 있도록 한 것이다. 이 경우엔 도 1 내지 도 3 실시예와는 달리 전력을 외부로 인출하기 위한 외부 인출 전극이 필요 없다.Meanwhile, according to an additional aspect of the present invention, as shown in FIG. 4, the solar cell module 100 according to the present invention may further include a wireless power transmitter 150. The wireless power transmitter 150 may transmit wireless power generated by the solar cell array 110 to the outside. In this case, unlike the embodiment of FIGS. 1 to 3, no external drawing electrode is required to draw power to the outside.
무선 전력 송신 기술로는 도 4 에 도시한 바와 같이, 상기 태양전지셀 배열(110)에 의해 발생하는 직류를 교류로 변경하여 이격된 두 코일을 통해 유도되는 유도 전류로부터 전력을 얻는 전자기 유도원리를 사용한 인덕턴스 커플링(Induction Coupling) 기법, 고주파수 대역 신호의 방사특성을 사용하는 라디오/마이크로 방사(Radio/Microwave Radiation) 기법, 공명현상을 에너지 전송방식에 접목시킨 공명 커플링(Resonance Coupling) 기법 등이 있다.As a wireless power transmission technology, as shown in Figure 4, by changing the direct current generated by the solar cell array 110 to an alternating current to induce the electromagnetic induction power obtained from the induced current induced through the two coils spaced apart Induction Coupling technique, Radio / Microwave Radiation technique using high frequency band signal, and Resonance Coupling technique incorporating resonance into energy transmission have.
본 발명은 첨부된 도면에 의해 참조되는 바람직한 실시예를 중심으로 기술되었지만, 이러한 기재로부터 후술하는 특허청구범위에 의해 포괄되는 범위 내에서 본 발명의 범주를 벗어남이 없이 다양한 변형이 가능하다는 것은 명백하다.While the invention has been described with reference to the preferred embodiments, which are referred to by the accompanying drawings, it is apparent that various modifications are possible without departing from the scope of the invention within the scope covered by the following claims from this description. .
본 발명은 태양전지의 냉각 기술 분야 및 이의 응용 기술 분야에서 산업상으로 이용 가능하다.The present invention can be used industrially in the field of cooling technology of the solar cell and its application field.
Claims (11)
- 다수의 태양전지 셀(Solar cell)이 배열되는 태양전지셀 배열과;A solar cell array in which a plurality of solar cells are arranged;상기 태양전지셀 배열을 밀봉 수납하되, 투명 단열성 재질의 전면판과, 상기 전면판과 일체 또는 별개로 구성되고 상기 전면판과 동일한 재질의 후면판을 포함하는 외부 보호체를;An outer protective body sealingly storing the solar cell array and including a front plate made of a transparent heat insulating material, and a back plate made of one or more separate parts from the front plate and made of the same material as the front plate;포함하여 이루어지는 것을 특징으로 하는 태양전지모듈.Solar cell module comprising a.
- 제 1 항에 있어서,The method of claim 1,상기 외부 보호체가:The outer protector is:그 내부에 상기 태양전지셀 배열을 냉각시키기 위한 냉기를 수납하는 냉기실을;A cold air chamber accommodating cold air for cooling the solar cell array therein;포함하는 것을 특징으로 하는 태양전지모듈.Solar cell module comprising a.
- 제 2 항에 있어서,The method of claim 2,상기 태양전지모듈이:The solar cell module is:상기 냉기실의 냉기 온도를 낮추는 냉각부를;A cooling unit for lowering a cold air temperature of the cold air chamber;더 포함하는 것을 특징으로 하는 태양전지모듈.Solar cell module characterized in that it further comprises.
- 제 3 항에 있어서,The method of claim 3, wherein상기 냉각부가:The cooling unit:상기 냉기실로 냉기를 주입하기 위한 제1배관과, 냉기실로부터 냉기를 배출하기 위한 제2배관을 포함하는 냉기통로인 것을 특징으로 하는 태양전지모듈.And a cold air passage including a first pipe for injecting cold air into the cold air chamber and a second pipe for discharging cold air from the cold air chamber.
- 제 3 항에 있어서,The method of claim 3, wherein상기 냉각부가:The cooling unit:상기 냉기실의 냉기로부터 열을 빼앗아 외부로 방열하는 방열판인 것을 특징으로 하는 태양전지모듈.The solar cell module, characterized in that the heat sink to take heat from the cold air of the cold chamber to radiate heat to the outside.
- 제 3 항에 있어서,The method of claim 3, wherein상기 냉각부가:The cooling unit:열전소자인 것을 특징으로 하는 태양전지모듈.Solar cell module, characterized in that the thermoelectric element.
- 제 4 항에 있어서,The method of claim 4, wherein상기 제1배관과, 제2배관이 도전성 재질로 이루어져 각각 상기 태양전지셀 배열의 전극으로 사용되는 것을 특징으로 하는 태양전지모듈.The first pipe and the second pipe is made of a conductive material, each solar cell module, characterized in that used as an electrode of the solar cell array.
- 제 5 항에 있어서,The method of claim 5,상기 방열판이 상기 태양전지셀 배열의 전극으로 사용되는 것을 특징으로 하는 태양전지모듈.The heat sink is a solar cell module, characterized in that used as the electrode of the solar cell array.
- 제 2 항 내지 제 8 항 중의 어느 한 항에 있어서,The method according to any one of claims 2 to 8,상기 태양전지모듈이:The solar cell module is:태양전지모듈의 환경정보를 무선 전송하는 무선통신부를;A wireless communication unit for wirelessly transmitting environmental information of the solar cell module;더 포함하는 것을 특징으로 하는 태양전지모듈.Solar cell module characterized in that it further comprises.
- 제 9 항에 있어서,The method of claim 9,상기 무선통신부가:The wireless communication unit:환경정보로 상기 냉기실 내부의 온도를 무선 송신하는 것을 특징으로 하는 태양전지모듈.The solar cell module, characterized in that for wirelessly transmitting the temperature inside the cold chamber as environmental information.
- 제 2 항 내지 제 6 항 중의 어느 한 항에 있어서,The method according to any one of claims 2 to 6,상기 태양전지모듈이:The solar cell module is:상기 태양전지셀 배열에 의해 발생하는 전력을 외부로 무선전력 송신하는 무선전력 전송부를;A wireless power transmitter configured to wirelessly transmit power generated by the solar cell array to the outside;더 포함하는 것을 특징으로 하는 태양전지모듈.Solar cell module characterized in that it further comprises.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801216621A CN102057502B (en) | 2008-06-09 | 2009-06-09 | Solar battery module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2008-0053617 | 2008-06-09 | ||
KR1020080053617A KR100970008B1 (en) | 2008-06-09 | 2008-06-09 | Solar cell module |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009151251A2 true WO2009151251A2 (en) | 2009-12-17 |
WO2009151251A3 WO2009151251A3 (en) | 2010-03-04 |
Family
ID=41417230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/003075 WO2009151251A2 (en) | 2008-06-09 | 2009-06-09 | Solar battery module |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR100970008B1 (en) |
CN (1) | CN102057502B (en) |
WO (1) | WO2009151251A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013122959A3 (en) * | 2012-02-13 | 2014-10-02 | Omnitracs, Llc | Solar powered apparatus having a thermally decoupled solar panel for tracking a portable asset |
US9040339B2 (en) | 2013-10-01 | 2015-05-26 | The Pen | Practical method of producing an aerogel composite continuous thin film thermoelectric semiconductor material |
US9276190B2 (en) | 2013-10-01 | 2016-03-01 | The Pen | Practical method of producing an aerogel composite continuous thin film thermoelectric semiconductor material by modified MOCVD |
EP4106017A1 (en) * | 2021-06-18 | 2022-12-21 | Soltec Innovations, S.L. | Cooling system for a photovoltaic solar panel |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101449097B1 (en) * | 2012-04-05 | 2014-10-10 | 엘지이노텍 주식회사 | Solar cell |
CN106549635A (en) * | 2016-11-04 | 2017-03-29 | 东莞市联洲知识产权运营管理有限公司 | A kind of solar module with good heat radiating function |
CN107911076B (en) * | 2017-11-25 | 2019-08-09 | 扬州市汉讯科技有限公司 | A kind of double-sided solar component and cooling system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1117203A (en) * | 1997-06-20 | 1999-01-22 | Kanegafuchi Chem Ind Co Ltd | Solar cell module |
JPH1154781A (en) * | 1997-08-06 | 1999-02-26 | Sanyo Electric Co Ltd | Laminated glass for sealing solar battery |
JP2003303990A (en) * | 2002-04-10 | 2003-10-24 | Shimizu Corp | Solar battery module |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH026962U (en) * | 1988-06-27 | 1990-01-17 | ||
JP3122508B2 (en) * | 1991-12-28 | 2001-01-09 | 京セラ株式会社 | Solar cell device |
US6018123A (en) * | 1996-01-31 | 2000-01-25 | Canon Kabushiki Kaisha | Heat collector with solar cell and passive solar apparatus |
JPH09266324A (en) * | 1996-03-28 | 1997-10-07 | Mitsubishi Electric Corp | Solar cell device |
CN2927323Y (en) * | 2006-07-18 | 2007-07-25 | 侯国华 | Focus module of solar cell |
CN201051501Y (en) * | 2007-04-11 | 2008-04-23 | 林小军 | Heat insulation protection cover for solar battery board |
-
2008
- 2008-06-09 KR KR1020080053617A patent/KR100970008B1/en not_active IP Right Cessation
-
2009
- 2009-06-09 WO PCT/KR2009/003075 patent/WO2009151251A2/en active Application Filing
- 2009-06-09 CN CN2009801216621A patent/CN102057502B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1117203A (en) * | 1997-06-20 | 1999-01-22 | Kanegafuchi Chem Ind Co Ltd | Solar cell module |
JPH1154781A (en) * | 1997-08-06 | 1999-02-26 | Sanyo Electric Co Ltd | Laminated glass for sealing solar battery |
JP2003303990A (en) * | 2002-04-10 | 2003-10-24 | Shimizu Corp | Solar battery module |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013122959A3 (en) * | 2012-02-13 | 2014-10-02 | Omnitracs, Llc | Solar powered apparatus having a thermally decoupled solar panel for tracking a portable asset |
US8902590B2 (en) | 2012-02-13 | 2014-12-02 | Omnitracs, Llc | Solar powered apparatus having a thermally decoupled solar panel for tracking a portable asset |
US9040339B2 (en) | 2013-10-01 | 2015-05-26 | The Pen | Practical method of producing an aerogel composite continuous thin film thermoelectric semiconductor material |
US9276190B2 (en) | 2013-10-01 | 2016-03-01 | The Pen | Practical method of producing an aerogel composite continuous thin film thermoelectric semiconductor material by modified MOCVD |
EP4106017A1 (en) * | 2021-06-18 | 2022-12-21 | Soltec Innovations, S.L. | Cooling system for a photovoltaic solar panel |
WO2022263538A1 (en) * | 2021-06-18 | 2022-12-22 | Soltec Innovations, S.L. | Cooling system for a photovoltaic solar panel |
Also Published As
Publication number | Publication date |
---|---|
WO2009151251A3 (en) | 2010-03-04 |
CN102057502B (en) | 2013-08-07 |
CN102057502A (en) | 2011-05-11 |
KR20090127569A (en) | 2009-12-14 |
KR100970008B1 (en) | 2010-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009151251A2 (en) | Solar battery module | |
AU2011341551B2 (en) | Diode-included connector, photovoltaic laminate and photovoltaic assembly using same | |
EP2831925B1 (en) | Electronic component housing with heat sink | |
US20210203271A1 (en) | Photovoltaic road system and wireless charging vehicle | |
CN106992351B (en) | Vehicle antenna assembly with cooling | |
WO2011002213A2 (en) | Photovoltaic power-generating apparatus | |
WO2011037374A2 (en) | Solar cell module and method of manufacturing the same | |
WO2013133634A1 (en) | Solar cell module | |
WO2013168855A1 (en) | Solar energy generating system for high temperature environments | |
WO2015160151A1 (en) | Thermoelectric device and thermoelectric system comprising same | |
EP3174197A1 (en) | Power generation device provided with secondary battery | |
WO2014104747A1 (en) | Heat storage tank for use in solar heat power generating system, solar heat power generator for use in same, and solar heat power generating system comprising same | |
WO2017115980A1 (en) | Power generation apparatus using wave force and temperature difference | |
WO2018117337A1 (en) | Solar cell cooling device | |
EP3309958B1 (en) | Solar cell module | |
KR101354507B1 (en) | Junction box for solar battery module | |
WO2015041463A1 (en) | Solar battery module | |
WO2013077673A1 (en) | Solar cell apparatus | |
CN211321238U (en) | Thermoelectric power generation equalizing charging device of power battery pack | |
CN209804869U (en) | Towards extensive MIMO antenna radiator of 5G | |
WO2014038825A1 (en) | Secondary battery module including heat transfer means, and heat transfer method thereof | |
CN217486407U (en) | Energy storage battery module heat production utilizes power generation facility | |
CN221946820U (en) | Composite wire and cable | |
WO2019124784A1 (en) | Pvt composite panel for photovoltaic-thermal power generation | |
WO2013062328A1 (en) | Solar cell module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980121662.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09762638 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09762638 Country of ref document: EP Kind code of ref document: A2 |