WO2009150833A1 - ポリブチレンテレフタレート樹脂組成物及び成形品 - Google Patents
ポリブチレンテレフタレート樹脂組成物及び成形品 Download PDFInfo
- Publication number
- WO2009150833A1 WO2009150833A1 PCT/JP2009/002610 JP2009002610W WO2009150833A1 WO 2009150833 A1 WO2009150833 A1 WO 2009150833A1 JP 2009002610 W JP2009002610 W JP 2009002610W WO 2009150833 A1 WO2009150833 A1 WO 2009150833A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polybutylene terephthalate
- terephthalate resin
- weight
- parts
- resin composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K13/00—Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
- C08K13/02—Organic and inorganic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
Definitions
- the present invention relates to a polybutylene terephthalate resin composition and a molded product excellent in low warpage and heat shock resistance.
- Polybutylene terephthalate resin is excellent in mechanical properties, electrical properties, other physical and chemical properties, and has good processability, so it can be used as an engineering plastic for a wide range of applications such as automotive parts and electrical / electronic components. in use.
- heat resistance and strength can be improved by blending a fibrous filler such as glass fiber, it is often used by being reinforced with a fibrous filler.
- polybutylene terephthalate is often used as a housing material for sensors and ECUs used for electric control. Since such products require low warpage, alloying with an amorphous resin such as polycarbonate, and flaky or powdery inorganic fillers with a high aspect ratio are often added.
- Japanese Patent Application Laid-Open No. 53-121843 discloses that low warpage is improved by combining a fibrous filler and a plate filler, but this material has low heat shock resistance.
- Japanese Patent Laid-Open No. 4-169214 discloses that polybutylene terephthalate is mixed with polycarbonate, fibrous and / or non-fibrous fillers to improve the adhesion to the insert metal. However, the heat shock resistance is not sufficient with such a composition.
- the present invention has been devised in view of the above-described problems of the prior art, and aims to provide a polybutylene terephthalate resin composition and a molded product that achieve both low warpage and high durability in a thermal cycle environment. To do.
- the present inventors mainly have a polybutylene terephthalate resin having a terminal carboxyl group amount of 30 meq / kg or less, and a specific amount thereof.
- the carbodiimide compound, the fibrous filler, and the composition containing the polycarbonate resin and / or polyethylene terephthalate resin are found to be extremely excellent in heat shock resistance and low warpage without significant deterioration in mechanical properties.
- the present invention has been completed.
- the present invention (A) with respect to 100 parts by weight of polybutylene terephthalate resin having a terminal carboxyl group amount of 30 meq / kg or less, (B) Carbodiimide compound; (A) When the amount of terminal carboxyl group of polybutylene terephthalate resin is 1, the amount of carbodiimide functional group amount is 0.3 to 2 equivalents (C) Fibrous filler; 20 to 100 parts by weight (D) one or more thermoplastic resins selected from polycarbonate resins and polyethylene terephthalate resins; a polybutylene terephthalate resin composition blended with 15 to 65 parts by weight, and a molded product formed by molding such a resin composition; In particular, it is an insert molded product.
- the present invention also provides: (A) 100 parts by weight of a polybutylene terephthalate resin having a terminal carboxyl group amount of 30 meq / kg or less, (B) a carbodiimide compound; (A) when the amount of terminal carboxyl groups of the polybutylene terephthalate resin is 1, an amount such that the amount of carbodiimide functional groups is 0.3 to 2 equivalents; (C) fibrous filler; 20-100 parts by weight and (D) One or more thermoplastic resins selected from polycarbonate resins and polyethylene terephthalate resins; a polybutylene terephthalate resin composition containing 15 to 65 parts by weight.
- this invention is an insert injection molded product which uses the said polybutylene terephthalate resin composition as a resin material. Furthermore, the present invention is based on (A) 100 parts by weight of a polybutylene terephthalate resin having a terminal carboxyl group amount of 30 meq / kg or less.
- the polybutylene terephthalate resin composition excellent in performance such as high durability in a thermal cycle environment, and low warpage property is provided.
- the polybutylene terephthalate resin composition of the present invention is useful as various molded products, particularly as insert molded products. Detailed Description of the Invention
- polybutylene terephthalate resin which is the base resin of the resin composition of the present invention, is a dicarboxylic acid component containing at least terephthalic acid or an ester-forming derivative thereof (such as a lower alcohol ester), and an alkylene glycol having at least 4 carbon atoms.
- the polybutylene terephthalate resin is not limited to a homopolybutylene terephthalate resin, but may be a copolymer containing 60 mol% or more (particularly about 75 to 95 mol%) of a butylene terephthalate unit.
- a pulverized sample of polybutylene terephthalate is dissolved in benzyl alcohol at 215 ° C. for 10 minutes and then titrated with a 0.01N sodium hydroxide aqueous solution, and the amount of terminal carboxyl groups measured is 30 meq / kg or less, preferably 25 meq / kg or less of polybutylene terephthalate resin is used.
- the lower limit of the amount of terminal carboxyl groups is not particularly limited, but generally less than 5 meq / kg is difficult to produce, and if less than 5 meq / kg, the reaction with the carbodiimide compound does not proceed sufficiently, and resistance There is a possibility that the effect of improving the heat shock property is insufficient. Accordingly, the amount of terminal carboxyl groups of the polybutylene terephthalate resin is preferably 5 meq / kg or more, particularly preferably 10 meq / kg or more.
- the intrinsic viscosity (IV) of the (A) polybutylene terephthalate resin to be used is 0.67 to 0.90 dL / g. If the intrinsic viscosity exceeds 0.90 dL / g, the fluidity at the time of molding required for the insert molded product may not be obtained.
- polybutylene terephthalate resins having different intrinsic viscosities for example, by blending polybutylene terephthalate resins with intrinsic viscosities of 1.00 dL / g and 0.70 dL / g, an intrinsic viscosity of 0.90 dL / g or less is achieved. Also good.
- the intrinsic viscosity can be measured, for example, in o-chlorophenol at a temperature of 35 ° C.
- dicarboxylic acid components other than terephthalic acid and its ester-forming derivatives
- aromatic dicarboxylic acid components isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, diphenyl ether dicarboxylic acid, etc. 6 to C 12 aryl dicarboxylic acids
- aliphatic dicarboxylic acid components C 4 -C 16 alkyl dicarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and C 5 -C 10 cycloalkyl such as cyclohexane dicarboxylic acid
- dicarboxylic acids can be used alone or in combination of two or more.
- Preferred dicarboxylic acid components include aromatic dicarboxylic acid components (particularly C 6 -C 10 aryl dicarboxylic acids such as isophthalic acid), aliphatic dicarboxylic acid components (particularly C such as adipic acid, azelaic acid, sebacic acid, etc.) 6 ⁇ C 12 alkyl dicarboxylic acids) are included.
- glycol components (comonomer components) other than 1,4-butanediol include, for example, aliphatic diol components [for example, alkylene glycol (ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol, neopentyl glycol, 1,3 - C 2 ⁇ C 10 alkylene glycols such as octanediol, diethylene glycol, triethylene glycol, polyoxy C 2 ⁇ C 4 alkylene glycol such as dipropylene glycol), cyclohexane dimethanol, hydrogenated bisphenol a alicyclic diols, etc.], such as an aromatic diol component [bisphenol a, 4,4-aromatic, such as dihydroxybiphenyl alcohols, C 2 ⁇ C 4 alkylene oxide adduct of bisphenol a (e.g., Ethylene oxide 2 mol adduct of scan phenol A, prop
- Preferred glycol components include aliphatic diol components (especially polyoxy C 2 -C 3 alkylene glycols such as C 2 -C 6 alkylene glycol, diethylene glycol, and alicyclic diols such as cyclohexane dimethanol). .
- any of the polybutylene terephthalate polymers produced by polycondensation using the above compounds as monomer components can be used as the (A) soot component of the present invention.
- a combined use of homopolybutylene terephthalate polymer and polybutylene terephthalate copolymer is also useful.
- the (B) carbodiimide compound used in the present invention is a compound having a carbodiimide group (—N ⁇ C ⁇ N—) in the molecule.
- the carbodiimide compound any of an aliphatic carbodiimide compound having an aliphatic main chain, an alicyclic carbodiimide compound having an alicyclic main chain, and an aromatic carbodiimide compound having an aromatic main chain can be used. In view of the above, it is preferable to use an aromatic carbodiimide compound.
- Examples of the aliphatic carbodiimide compound include diisopropyl carbodiimide and dioctyl decyl carbodiimide, and examples of the alicyclic carbodiimide compound include dicyclohexyl carbodiimide.
- Aromatic carbodiimide compounds include diphenylcarbodiimide, di-2,6-dimethylphenylcarbodiimide, N-triyl-N′-phenylcarbodiimide, di-p-nitrophenylcarbodiimide, di-p-aminophenylcarbodiimide, di-p- Hydroxyphenylcarbodiimide, di-p-chlorophenylcarbodiimide, di-p-methoxyphenylcarbodiimide, di-3,4-dichlorophenylcarbodiimide, di-2,5-dichlorophenylcarbodiimide, di-o-chlorophenylcarbodiimide, p-phenylene-bis-di-o-triylcarbodiimide, p-phenylene-bis-dicyclohexylcarbodiimide, p-phenylene-bis-di-p-chlorophenylcarbodiimide,
- di-2,6-dimethylphenylcarbodiimide poly (4,4'-diphenylmethanecarbodiimide), poly (phenylenecarbodiimide) and poly (triisopropylphenylenecarbodiimide) are particularly preferably used.
- a carbodiimide compound (B) having a molecular weight of 2000 or more it is preferable to use a carbodiimide compound (B) having a molecular weight of 2000 or more.
- the molecular weight is less than 2000, gas or odor may be generated when the residence time is long during melt kneading or molding.
- the blending amount of the (B) carbodiimide compound is such that when the terminal carboxyl group amount of the (A) polybutylene terephthalate resin is 1, the carbodiimide functional group amount is 0.3 to 2.0 equivalents.
- component (B) If the amount of component (B) is too small, the effect of improving heat shock resistance, which is the object of the present invention, cannot be obtained. If the amount is too high, fluidity is reduced, gel components and carbides are easily generated during compounding and molding, mechanical properties such as tensile strength and bending strength are reduced, and sudden strength reduction occurs under humid heat. . This is because the adhesion between the polybutylene terephthalate resin and the glass fiber is hindered by the component (B).
- a preferred blending amount is such that the carbodiimide functional group amount is 0.5 to 2.0 equivalents, and more preferably 0.8 to 1.5 equivalents.
- Examples of the (C) fibrous filler used in the present invention include glass fiber, carbon fiber, potassium titanate fiber, silica / alumina fiber, zirconia fiber, metal fiber, and organic fiber, with glass fiber being preferred.
- any known glass fiber is preferably used, and the glass fiber diameter, the shape of a cylinder, a bowl-shaped cross section, an oval cross section, etc., or the length and glass cut when used for the production of chopped strands, rovings, etc. It does not depend on the method.
- E glass or corrosion resistant glass containing zirconium element in the composition is preferably used in terms of quality.
- a fibrous filler surface-treated with an organic treating agent such as an aminosilane compound or an epoxy compound is particularly preferably used, and the heating loss value is used.
- the glass fiber whose organic processing agent amount shown by is 1 weight% or more is used especially preferably. Any known aminosilane compound or epoxy compound used for the fibrous filler can be preferably used, and depends on the type of aminosilane compound and epoxy compound used for the surface treatment of the fibrous filler in the present invention. do not do.
- the fibrous filler is used in an amount of 20 to 100 parts by weight with respect to 100 parts by weight of (A) polybutylene terephthalate resin. If it is less than this range, the linear expansion change accompanying the cooling and heating cycle is large, which is not preferable in terms of heat shock resistance. When it exceeds this range, the allowable strain amount of the material is lowered, which is not preferable in terms of heat shock resistance.
- the amount is preferably 20 to 80 parts by weight, particularly preferably 30 to 60 parts by weight.
- non-fibrous filler that does not form a fibrous form such as component (C), that is, a plate-like or granular inorganic filler or a mixture thereof may be used in combination.
- Non-fibrous fillers include glass flakes, glass beads, mica, talc, carbon black, calcium carbonate and the like.
- the component (D) used in the present invention is one or more thermoplastic resins selected from polycarbonate resins and polyethylene terephthalate resins.
- the polycarbonate resin is obtained by a reaction between a dihydroxy compound and a carbonate such as phosgene or diphenyl carbonate.
- the dihydroxy compound may be an alicyclic compound or the like, but is preferably an aromatic compound (particularly a bisphenol compound).
- the bisphenol compounds bisphenols [for example, bis (hydroxyaryl) C 1 ⁇ 6 alkane; bis (hydroxyaryl) C 4 ⁇ 10 cycloalkane; 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfone; 4,4′-dihydroxydiphenyl sulfide; 4,4′-dihydroxydiphenyl ketone and the like] propane, dipropoxylated bisphenol A and the like.
- Preferred polycarbonate resins include bisphenol A type polycarbonate.
- polyethylene terephthalate resin a homopolyester or copolyester (ethylene terephthalate-based copolymer) containing ethylene terephthalate as a main component (for example, about 50 to 100% by weight, preferably about 60 to 100% by weight, more preferably about 75 to 100% by weight).
- ethylene terephthalate-based copolymer ethylene terephthalate-based copolymer
- Polymer or modified polyethylene terephthalate resin) and the like, and in particular, copolyester is excellent in low warpage.
- copolymerizable monomer in the copolyester examples include dicarboxylic acid excluding terephthalic acid, diol excluding ethylene glycol, oxycarboxylic acid, lactone, and the like.
- one of the monomers mentioned in the section of the polybutylene terephthalate resin is one kind. Or it can be used in combination of two or more.
- Preferred copolymerizable monomers for example, diols [C 3 ⁇ 6 alkylene glycol (trimethylene glycol, propylene glycol, a linear or branched alkylene glycols such as butanediol and the like), (poly) oxyalkylene glycol, bisphenols or alkylene oxide adduct thereof, dicarboxylic acids [C 6 ⁇ 12 aliphatic dicarboxylic acid, an asymmetric aromatic dicarboxylic acid, 1,4-cyclohexane dimethanol, etc.] and the like.
- diols C 3 ⁇ 6 alkylene glycol (trimethylene glycol, propylene glycol, a linear or branched alkylene glycols such as butanediol and the like)
- (poly) oxyalkylene glycol bisphenols or alkylene oxide adduct thereof
- dicarboxylic acids [C 6 ⁇ 12 aliphatic dicarboxylic acid, an
- the proportion (modification amount) of the copolymerizable monomer is 1 to 30 mol%, preferably 3 to 25 mol%, more preferably about 5 to 20 mol%.
- the polyethylene terephthalate resin is obtained by (co) polymerizing terephthalic acid and ethylene glycol and, if necessary, a copolymerizable monomer by a conventional method such as transesterification or direct esterification.
- the blending amount of component (D) is 15 to 65 parts by weight, preferably 20 to 55 parts by weight, based on 100 parts by weight of (A) polybutylene terephthalate resin. If the blending amount exceeds 65 parts by weight, the hydrolysis characteristics deteriorate, and if it is less than 15 parts by weight, the low warping effect becomes insufficient.
- a phosphorus stabilizer can be added as the component (E).
- Phosphorus stabilizers include inorganic phosphorus stabilizers (alkali metal or alkaline earth metal phosphates) and organic phosphorus stabilizers (organic phosphites, organic phosphates, organic phosphonites, organic And at least one selected from phosphonic acid esters and the like.
- the phosphorus stabilizer may be either liquid or solid.
- transesterification occurs between polybutylene terephthalate resin, polycarbonate resin, and polyethylene terephthalate resin. If the cylinder temperature becomes higher or the residence time becomes longer with molding, transesterification occurs.
- the reaction proceeds rapidly, resulting in variations in permeability, an increase in viscosity resulting in insufficient fluidity, progress of resin decomposition, and inability to release the product.
- a phosphorus stabilizer is used, such a reaction can also be prevented.
- alkali metal or alkaline earth metal phosphate examples include phosphoric acid or a corresponding hydrogen phosphate (for example, potassium phosphate, sodium phosphate [monosodium phosphate (sodium dihydrogen phosphate), disodium phosphate ( Alkali metal salts such as sodium hydrogen phosphate, sodium monohydrogen phosphate, disodium hydrogen phosphate); calcium phosphate [primary calcium phosphate (calcium dihydrogen phosphate), bis (dihydrogen phosphate) calcium monohydrate Etc., alkaline earth metal salts such as dicalcium phosphate (calcium hydrogen phosphate, calcium hydrogen phosphate dihydrate, etc.); magnesium phosphate (magnesium hydrogen phosphate, magnesium dihydrogen phosphate, etc.).
- Such an alkali metal or alkaline earth metal salt may be either an anhydride or a hydrate.
- the organic phosphites bis (2-ethylhexyl) phosphite, tridecyl phosphite, triisodecyl phosphite, alkyl phosphites such as di -n- octadecyl phosphite (mono- to tri-C 6 ⁇ 24 Arukiruhosu Substituted with aryl groups such as diphenylisodecyl phosphite, triphenyl phosphite, tris (2-cyclohexylphenyl) phosphite, bis or tris (t-butylphenyl) phosphite, tris (nonylphenyl) phosphite group (alkyl group, a cycloalkyl group) or an aryl phosphites have a (mono- to tri-C 6 ⁇ 10 aryl phosphite); aral
- organic phosphoric acid ester examples include mono- to trialkyl esters of phosphoric acid (e.g., monostearyl acid phosphate, mono- or di-C 6 ⁇ 24 alkyl esters such as di-stearyl acid phosphate, etc.), mono- or triaryl esters of phosphoric acid ( mono- or di-C 6 ⁇ 10 aryl phosphate, etc.) such as mono- or diphenyl phosphate.
- mono- to trialkyl esters of phosphoric acid e.g., monostearyl acid phosphate, mono- or di-C 6 ⁇ 24 alkyl esters such as di-stearyl acid phosphate, etc.
- mono- or triaryl esters of phosphoric acid mono- or di-C 6 ⁇ 10 aryl phosphate, etc.
- organic phosphonites examples include tetrakis (2,4-di-t-butyl) -4,4′-biphenylenediphosphonite, (2,4-di-t-butylphenyl) -4,4′-.
- organic phosphonites examples include tetrakis (2,4-di-t-butyl) -4,4′-biphenylenediphosphonite, (2,4-di-t-butylphenyl) -4,4′-.
- the organic phosphonic acid esters such as distearyl phosphonate (C 6 ⁇ 24 alkyl phosphonates and the like); diphenyl phosphonate, di (nonylphenyl) substituent (an alkyl group an aryl group such as a phosphonate, a cycloalkyl group ) and has unprotected mono- or diaryl phosphonate also (C 6 ⁇ 10 aryl phosphonates, etc.); dibenzyl phosphonate mono- or di-aralkyl phosphonates such as (C 6 ⁇ 10 aryl -C 1 ⁇ 6 alkyl phosphonates, etc.) and the like It is done.
- distearyl phosphonate C 6 ⁇ 24 alkyl phosphonates and the like
- diphenyl phosphonate, di (nonylphenyl) substituent an alkyl group an aryl group such as a phosphonate, a cycloalkyl group
- a phosphorus stabilizer When (E) a phosphorus stabilizer is used, the proportion thereof is, for example, 0.02 to 0.5 parts by weight, preferably 0.02 to 0.2 parts by weight (eg 0.05 to 0.1 parts by weight) with respect to 100 parts by weight of (A) polybutylene terephthalate resin Part), more preferably about 0.02 to 0.1 part by weight (for example, 0.05 to 0.08 part by weight). For example, if it is added in a large amount of more than 0.5 parts by weight, hydrolysis resistance and heat shock resistance may be reduced.
- an elastomer (F) can be further blended within a range not impairing the effects of the present invention.
- the elastomer is preferably a thermoplastic elastomer or a core-shell elastomer.
- the thermoplastic elastomer include grafted olefin, styrene, and polyester elastomers.
- the amount of (F) elastomer added is 5 to 15 parts by weight, preferably 5 to 10 parts by weight, based on 100 parts by weight of (A) polybutylene terephthalate resin.
- the effect of improving heat shock resistance less than 5 parts by weight cannot be obtained, and if it exceeds 15 parts by weight, the strength decreases.
- the grafted olefin-based elastomer is a copolymer mainly composed of ethylene and / or propylene, and (a-1) an ethylene-unsaturated carboxylic acid alkyl ester copolymer or (a-2) A type of a polymer or copolymer composed of an olefin copolymer comprising an ⁇ -olefin and a glycidyl ester of an ⁇ , ⁇ -unsaturated acid, and (b) a repeating unit mainly represented by the following general formula (1)
- a graft copolymer in which two or more kinds are chemically bonded in a branched or crosslinked structure can be suitably used.
- R is hydrogen or a lower alkyl group
- X is -COOCH 3 , -COOC 2 H 5 , -COOC 4 H 9 , -COOCH 2 CH (C 2 H 5 ) C 4 H 9 , -C 6 H 5 ,
- One or more groups selected from -CN Such a graft copolymer is particularly effective in improving heat shock resistance.
- ethylene-unsaturated carboxylic acid alkyl ester copolymer examples include an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, an ethylene-acrylic acid-ethyl acrylate copolymer, Examples include random copolymers such as ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-ethyl acrylate copolymer, and these copolymers can also be used in combination. it can.
- Examples of the ⁇ -olefin that is one monomer constituting the olefin copolymer (a-2) include ethylene, propylene, and butene-1, and ethylene is preferably used.
- the glycidyl ester of ⁇ , ⁇ -unsaturated acid, which is another monomer constituting the component (a-2), is a compound represented by the following general formula (2), such as glycidyl acrylate, methacryl Acid glycidyl ester, ethacrylic acid glycidyl ester and the like can be mentioned, and methacrylic acid glycidyl ester is particularly preferably used.
- R 1 represents a hydrogen atom or a lower alkyl group
- An olefin copolymer comprising an ⁇ -olefin (for example, ethylene) and a glycidyl ester of an ⁇ , ⁇ -unsaturated acid can be obtained by copolymerization by a well-known radical polymerization reaction.
- the ratio of ⁇ -olefin to ⁇ , ⁇ -unsaturated glycidyl ester is preferably 70 to 99% by weight of ⁇ -olefin and 1 to 30% by weight of glycidyl ester of ⁇ , ⁇ -unsaturated acid.
- the polymer or copolymer (b) to be graft-polymerized with the olefin copolymer (a-1) or (a-2) is composed of a single repeating unit represented by the general formula (1).
- Homopolymers or copolymers composed of two or more types such as polymethyl methacrylate, polyethyl acrylate, polybutyl acrylate, poly-2-ethylhexyl acrylate, polystyrene, polyacrylonitrile, acrylonitrile Examples include styrene copolymers, butyl acrylate-methyl methacrylate copolymers, butyl acrylate-styrene copolymers, and the like, but butyl acrylate-methyl methacrylate copolymers are particularly preferred.
- These polymers or copolymers (b) are also prepared by radical polymerization of the corresponding vinyl monomers.
- the graft copolymer preferably used in the present invention is not the olefin-based copolymer (a-1) or (a-2) or the (co) polymer (b) used alone, This is characterized in that the copolymer (a-1) or (a-2) and the (co) polymer (b) are graft copolymers having a branched or crosslinked structure chemically bonded at at least one point.
- the ratio of (a-1) or (a-2) and (b) for constituting the graft copolymer is 95: 5 to 5:95 (weight ratio), preferably 80:20 to 20: 80 is appropriate.
- the styrene elastomer includes a hard segment composed of an aromatic vinyl monomer such as styrene, ⁇ -methylstyrene, vinyltoluene or a copolymer, and an ⁇ -olefin (ethylene, propylene, 1-butene). 1-hexene, 1-octene and other ⁇ -C2-12 olefins), diene monomers (butadiene, isoprene, etc.), etc. Examples thereof include a block with a soft segment or a graft copolymer (or a hydrogenated product thereof).
- an aromatic vinyl monomer such as styrene, ⁇ -methylstyrene, vinyltoluene or a copolymer
- ⁇ -olefin ethylene, propylene, 1-butene
- 1-hexene, 1-octene and other ⁇ -C2-12 olefins diene monomers (butadiene, is
- the styrene elastomer is an acid-modified elastomer modified with an acid or acid anhydride such as (meth) acrylic acid or maleic anhydride, a copolymerizable monomer having a glycidyl group or an epoxy group (such as glycidyl (meth) acrylate). ), Or an elastomer having a reactive functional group such as an epoxy-modified elastomer obtained by epoxidizing an unsaturated bond of the elastomer.
- an acid or acid anhydride such as (meth) acrylic acid or maleic anhydride, a copolymerizable monomer having a glycidyl group or an epoxy group (such as glycidyl (meth) acrylate).
- an elastomer having a reactive functional group such as an epoxy-modified elastomer obtained by epoxidizing an unsaturated bond of the elastomer.
- Typical styrene elastomers include styrene-diene-styrene block copolymers (styrene-butadiene-styrene block copolymers (SBS), styrene-isoprene-styrene block copolymers (SIS), etc.), hydrogenated blocks Copolymer [Styrene-ethylene-butylene-styrene block copolymer (or hydrogenated (styrene-butadiene-styrene block copolymer)) (SEBS), styrene-ethylene-propylene-styrene block copolymer (or hydrogenated) (Styrene-isoprene-styrene block copolymer)) (SEPS), styrene-ethylene / ethylene / propylene-styrene block copolymer (SEEPS), hydrogenated polymer of random styrene-but
- the core-shell elastomer is a polymer having a multilayer structure composed of a core layer (core portion) and a shell layer covering a part or all of the core layer (the surface of the core layer).
- the core layer is composed of a rubber component (soft component), and is particularly preferably an acrylic rubber.
- the glass transition temperature of the rubber component is, for example, less than 0 ° C. (for example, ⁇ 10 ° C. or less), preferably ⁇ 20 ° C. or less (for example, about ⁇ 180 to ⁇ 25 ° C.), more preferably ⁇ 30 ° C. or less (for example, -150 to -40 ° C).
- Acrylic rubber as a rubber component is an acrylic monomer [particularly alkyl acrylate (C 1 -C 12 alkyl ester of acrylic acid such as butyl acrylate, preferably C 1 -C 8 alkyl ester of acrylic acid, more preferably acrylic acid C 2 ⁇ C 6 alkyl ester) is a polymer mainly containing acrylic acid ester], such as.
- the acrylic rubber may be an acrylic monomer alone or a copolymer (a copolymer of acrylic monomers, a copolymer of an acrylic monomer and another unsaturated bond-containing monomer, etc.). It may be a copolymer of a monomer (and other unsaturated bond-containing monomer) and a crosslinking monomer.
- a vinyl polymer is used for the shell layer of the core-shell elastomer.
- the vinyl polymer is obtained by polymerizing at least one monomer selected from an aromatic vinyl monomer, a vinyl cyanide monomer, a methacrylic ester monomer, and an acrylate monomer. Obtained by copolymerization.
- the rubber layer and shell layer of such a core-shell type copolymer are usually bonded by graft copolymerization. If necessary, this graft copolymerization is obtained by adding a graft crossing agent that reacts with the shell layer during polymerization of the rubber layer, giving a reactive group to the rubber layer, and then forming the shell layer.
- organosiloxane having a vinyl bond or organothiol having a thiol is used for the silicone rubber, and preferably, acoxysiloxane, methacryloxysiloxane, or vinylsiloxane is used.
- the polyester elastomer can be classified into a polyether type and a polyester type, and any can be used as long as its flexural modulus is 1000 MPa or less, preferably 700 MPa or less. If the flexural modulus exceeds 1000 MPa, sufficient flexibility cannot be obtained.
- the polyether type is a polyester elastomer having an aromatic polyester as a hard segment and a polyester composed of a polymer of oxyalkylene glycol and a dicarboxylic acid as a soft segment.
- the aromatic polyester unit in the hard segment is a polycondensation of a dicarboxylic acid compound and a dihydroxy compound, a polycondensation of an oxycarboxylic acid compound, or a polycondensation product of these ternary compounds.
- polybutylene terephthalate or the like is used as the hard segment.
- soft segment a compound obtained by polycondensation of polyalkylene ether and dicarboxylic acid is used.
- an ester compound of polyoxytetramethylene glycol derived from tetrahydrofuran is used.
- polyether elastomers are, for example, Perprene P-30B, P-70B, P-90B, P-280B manufactured by Toyobo Co., Ltd. Hytrel 4057, 4767, 6347, 7247 manufactured by Toray DuPont Co., Ltd. It is also commercially available as Lightflex 655mm.
- the polyester type is a polyester elastomer having an aromatic polyester as a hard segment and an amorphous polyester as a soft segment.
- the aromatic polyester unit in the hard segment is the same as the polyether type.
- Soft segments are ring-opening polymers of lactones, ie polylactones, or aliphatic polyesters derived from aliphatic dicarboxylic acids and aliphatic diols.
- Polyester type elastomers are also commercially available as, for example, Perprene S-1002 and S-2002 manufactured by Toyobo Co., Ltd.
- thermoplastic resins and thermosetting resins that is, antioxidants, heat stabilizers, ultraviolet absorbers, etc.
- Stabilizers, antistatic agents, colorants such as dyes and pigments, lubricants, plasticizers and crystallization accelerators, crystal nucleating agents, epoxy compounds, and the like may be added as long as the effects of the present invention are not impaired.
- antistatic agents, colorants, lubricants, and plasticizers often contain carboxyl groups, hydroxyl groups, and amino groups, but they may react with carbodiimide groups, so those that do not contain such functional groups as much as possible. desirable.
- any mold release agent is preferably used, and examples thereof include olefin polymers, fatty acid amide compounds, fatty acid ester compounds, and the like.
- the olefin polymer which is estimated to have low reactivity with a carbodiimide compound, has a hydroxyl value of 100 or less as measured by the Oil Chemistry Association method 2,4,9,2-71 (pyridine / acetic anhydride method).
- Fatty acid ester compounds are used. It is preferable not to use an additive containing a carboxyl group, a hydroxyl group or an amino group.
- the resin composition used in the present invention can be easily prepared using equipment and methods generally used as a conventional resin composition preparation method. For example, 1) A method in which each component is mixed, kneaded and extruded by a single or twin screw extruder to prepare pellets, and then molded, and 2) once a pellet having a different composition is prepared. Any method can be used, for example, a method in which quantitative mixing is performed and molding is performed to obtain a molded product having the desired composition after molding, or a method in which one or more of each component is directly charged into a molding machine. Further, a method of adding a part of the resin component as a fine powder and mixing it with other components is a preferable method for achieving uniform blending of these components.
- the extruder cylinder temperature When kneading into pellets by an extruder, it is preferable to set the extruder cylinder temperature so that the resin temperature in the extruder is 240 to 300 ° C. More preferably, it is 250 to 270 ° C.
- the temperature is lower than 240 ° C., the reaction between polybutylene terephthalate and carbodiimide is insufficient, hydrolysis resistance and heat shock resistance are insufficient, or the filler is broken due to high melt viscosity. Physical properties may not be obtained.
- it exceeds 300 ° C. the resin is likely to be decomposed, and the hydrolysis resistance and heat shock resistance may be insufficient.
- the extruder cylinder temperature is preferably set so that the resin temperature in the molding machine is 240 to 300 ° C. More preferably, it is 250 to 270 ° C. Outside this range, the physical properties may be insufficient as described above.
- the mold temperature at the time of injection molding is preferably in the range of 40 to 100 ° C., more preferably 60 to 90 ° C. If the temperature is lower than 40 ° C., post-shrinkage occurs and distortion occurs, and the target shape may not be obtained, or heat shock resistance may be insufficient. When it exceeds 100 ° C., a long time is required for the molding cycle, and mass productivity is reduced.
- the (B) carbodiimide compound can be blended as a master batch using a resin as a matrix, and it is often easy to use the master batch from the viewpoint of actual handling.
- a masterbatch made of polybutylene terephthalate resin is preferably used, but a masterbatch prepared with another resin may be used. What is necessary is just to adjust so that it may become in the range of a predetermined compounding quantity in the case of the masterbatch by polybutylene terephthalate resin.
- the master batch may be charged in advance at the time of melt-kneading to form uniform pellets.
- a pellet blend product in which components other than the carbodiimide compound are preliminarily formed into uniform pellets by melt kneading and the like, and a master batch pellet of the carbodiimide compound is dry blended at the time of molding may be used for molding.
- the resin composition of the present invention can have a melt viscosity of 350 Pa ⁇ s or less at a temperature of 260 ° C. and a shear rate of 1000 sec ⁇ 1 in accordance with ISO11443. Furthermore, it can be 300 Pa ⁇ s or less. If the melt viscosity is not 350 Pa ⁇ s or less, the fluidity is insufficient and the mold may not be filled with resin.
- the resin composition of the present invention it is possible to achieve a tensile strength of 120 MPa or more, particularly 130 MPa or more according to ISO 527.
- the polybutylene terephthalate resin composition of the present invention is particularly useful for various insert injection molded products.
- Example 1 The polybutylene terephthalate resin composition of the present invention is particularly useful for various insert injection molded products.
- Septon 4055 polystyrene-poly (ethylene-ethylene / propylene) block / polystyrene copolymer
- G Mold release agent
- G-1 Roxyol VPG861 manufactured by Cognis Japan Co., Ltd. Hydroxyl value of 20 or less (pentaerythritol stearate) ⁇
- G-2) Sanwa Kasei Kogyo Co., Ltd.
- Sun Wax 165P low molecular weight polyethylene
- Rikenmar B-150, hydroxyl group value 80 sorbitan fatty acid ester
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
背景技術
発明の概要
(A)末端カルボキシル基量が30meq/kg以下であるポリブチレンテレフタレート樹脂100重量部に対し、
(B)カルボジイミド化合物;(A)ポリブチレンテレフタレート樹脂の末端カルボキシル基量を1とした場合、カルボジイミド官能基量が0.3~2当量となる量
(C)繊維状充填剤;20~100重量部
(D)ポリカーボネート樹脂及びポリエチレンテレフタレート樹脂より選ばれる1種以上の熱可塑性樹脂;15~65重量部
を配合してなるポリブチレンテレフタレート樹脂組成物、およびかかる樹脂組成物を成形してなる成形品、特にインサート成形品である。
また、本発明は、
(A)末端カルボキシル基量が30meq/kg以下であるポリブチレンテレフタレート樹脂100重量部、
(B)カルボジイミド化合物;(A)ポリブチレンテレフタレート樹脂の末端カルボキシル基量を1とした場合、カルボジイミド官能基量が0.3~2当量となる量、
(C)繊維状充填剤;20~100重量部および
(D)ポリカーボネート樹脂及びポリエチレンテレフタレート樹脂より選ばれる1種以上の熱可塑性樹脂;15~65重量部
を含むポリブチレンテレフタレート樹脂組成物である。
また、本発明は、上記ポリブチレンテレフタレート樹脂組成物を樹脂材料とするインサート射出成形品である。
さらに、本発明は、(A)末端カルボキシル基量が30meq/kg以下であるポリブチレンテレフタレート樹脂100重量部に対し、
(B)カルボジイミド化合物;(A)ポリブチレンテレフタレート樹脂の末端カルボキシル基量を1とした場合、カルボジイミド官能基量が0.3~2当量となる量
(C)繊維状充填剤;20~100重量部
(D)ポリカーボネート樹脂及びポリエチレンテレフタレート樹脂より選ばれる1種以上の熱可塑性樹脂;15~65重量部
を配合することを含む上記ポリブチレンテレフタレート樹脂組成物を製造する方法である。
さらに、本発明は、上記ポリブチレンテレフタレート樹脂組成物を射出成形することを含む成形品またはインサート成型品を製造する方法である。
発明の詳細な説明
かかるグラフト共重合体は、特に耐ヒートショック性の改善に効果がある。
α-オレフィン(例えばエチレン)とα,β-不飽和酸のグリシジルエステルから成るオレフィン系共重合体は、通常よく知られたラジカル重合反応により共重合させることによって得ることができる。α-オレフィンとα,β-不飽和酸のグリシジルエステルとの比率は、α-オレフィン70~99重量%、α,β-不飽和酸のグリシジルエステル1~30重量%が好適である。
また、前記スチレン系エラストマーは、(メタ)アクリル酸、無水マレイン酸などの酸又は酸無水物で変性された酸変性エラストマー、グリシジル基やエポキシ基を有する共重合性モノマー(グリシジル(メタ)アクリレートなど)を用いたり、エラストマーの不飽和結合をエポキシして得られたエポキシ変性エラストマーなどの反応性官能基を有するエラストマーであってもよい。
代表的なスチレン系エラストマーとしては、スチレン-ジエン-スチレンブロック共重合体[スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)など]、水素添加ブロック共重合体[スチレン-エチレン・ブチレン-スチレンブロック共重合体(又は水添(スチレン-ブタジエン-スチレンブロック共重合体))(SEBS)、スチレン-エチレン・プロピレン-スチレンブロック共重合体(又は水添(スチレン-イソプレン-スチレンブロック共重合体))(SEPS)、スチレン-エチレン・エチレン・プロピレン-スチレンブロック共重合体(SEEPS)、ランダムスチレン-ブタジエン共重合体の水素添加重合体など]、これらの共重合体に官能基(エポキシ基、カルボキシル基、酸無水物基など)が導入された変性共重合体[ジエンの不飽和結合がエポキシ化されたエポキシ化スチレン-ジエン共重合体(エポキシ化スチレン-ジエン-スチレンブロック共重合体又はその水素添加重合体など)など]が例示できる。
コアシェル系エラストマーのシェル層は、ビニル系重合体が用いられる。ビニル系重合体は、芳香族ビニル単量体、シアン化ビニル単量体、メタクリル酸エステル系単量体、及びアクリル酸エステル単量体の中から選ばれた少なくとも一種の単量体を重合あるいは共重合させて得られる。かかるコアシェル型共重合体のゴム層とシェル層は、通常グラフト共重合によって結合されている。このグラフト共重合化は、必要な場合には、ゴム層の重合時にシェル層と反応するグラフト交差剤を添加し、ゴム層に反応基を与えた後、シェル層を形成させることによって得られる。グラフト交差剤としては、シリコーン系ゴムでは、ビニル結合を有したオルガノシロキサンあるいはチオールを有したオルガノシロキサンが用いられ、好ましくはアクロキシシロキサン、メタクリロキシシロキサン、ビニルシロキサンが使用される。
特に、帯電防止剤や着色剤、滑剤、可塑剤はカルボキシル基や水酸基、アミノ基を含む場合が多いが、カルボジイミド基と反応する可能性があるため、なるべくこのような官能基を含まないものが望ましい。
本発明において、成形性向上のため、離型剤を添加することも可能である。いずれの離型剤も好ましく用いられるが、例えば、オレフィン系重合体、脂肪酸アミド化合物、脂肪酸エステル化合物などが挙げられる。特に好ましくは、カルボジイミド化合物との反応性が低いと推定されるオレフィン系重合体、油化学協会法2,4,9,2-71(ピリジン・無水酢酸法)により測定される水酸基価100以下の脂肪酸エステル化合物が用いられる。
カルボキシル基、水酸基またはアミノ基を含む添加剤は用いないことが好ましい。
押出機により練り込みペレット化する場合、押出機中での樹脂温度が240~300℃となるように押出機シリンダー温度を設定することが好ましい。さらに好ましくは250~270℃である。240℃より低い場合は、ポリブチレンテレフタレートとカルボジイミドの反応が不十分で耐加水分解性、耐ヒートショック性が不足したり、溶融物の粘度が高いため繊維状充填剤が折れてしまい必要な機械物性が得られないおそれがある。300℃を超える場合は樹脂の分解が生じやすくなり、耐加水分解性、耐ヒートショック性が不足するおそれがある。
成形する場合も同様に、成形機中の樹脂温度が240~300℃となるように押出機シリンダー温度を設定することが好ましい。さらに好ましくは250~270℃である。この範囲外だと上記同様、諸物性の不足するおそれがある。また、射出成形時の金型温度は、好ましくは40~100℃、さらに好ましくは60~90℃の範囲である。40℃より低いと後収縮が発生し歪が生じて目的の形状が得られなかったり、耐ヒートショック性が不足するおそれがある。100℃を超える場合は成形サイクルに長時間を要し、量産性が低下してしまう。
実施例
実施例1~9、比較例1~5
表1に示す成分を秤量後ドライブレンドし、30mmφ2軸押出機((株)日本製鋼所製TEX-30)を用いて溶融混練しペレットを作成した(シリンダー温度260℃、吐出量15kg/h、スクリュー回転数150rpm)。次いで、このペレットから各試験片を作成し、各種物性を測定した。結果をあわせて表1に示す。
(A) ポリブチレンテレフタレート樹脂
・(A-1) ウィンテックポリマー(株)製、固有粘度0.69、末端カルボキシル基量24meq/kg
・(A-2) ウィンテックポリマー(株)製、固有粘度0.70、末端カルボキシル基量44meq/kg
(B) カルボジイミド化合物
・(B-1) 芳香族カルボジイミド化合物;ラインケミージャパン(株)製、スタバックゾールP
・(B-2) 芳香族カルボジイミド化合物;ラインケミージャパン(株)製、スタバックゾールP400
(C) ガラス繊維
・(C-1) 日本電気硝子(株)製、ECS03-T127
(D) 熱可塑性樹脂
・(D-1) 帝人化成(株)、L-1225(ポリカーボネート樹脂)
・(D-2) 帝人ファイバー(株)製、FK-DCX(ポリエチレンテレフタレート樹脂)
(E) リン系安定剤
・(E-1) 第一リン酸カルシウム
・(E-2) 旭電化工業(株)製 アデカスタブPEP-36
(F) エラストマー
・(F-1) (株)クラレ製、セプトン4055(ポリスチレン-ポリ(エチレン-エチレン/プロピレン)ブロック・ポリスチレン共重合体)
(G) 離型剤
・(G-1) コグニスジャパン(株)製 ロキシオールVPG861 水酸基価20以下(ペンタエリスリトールステアリン酸エステル)
・(G-2) 三和化成工業(株)製 サンワックス165P(低分子量ポリエチレン)
・(G-3) 理研ビタミン(株)製 リケマールB-150 水酸基価80(ソルビタン脂肪酸エステル)
[溶融粘度特性]
ISO11443に準拠しシリンダー温度260℃、剪断速度1000sec-1で測定した。
[耐ヒートショック性]
ペレットを用いて、樹脂温度260℃、金型温度65℃、射出時間25秒、冷却時間10秒で、試験片成形用金型(縦22mm、横22mm、高さ51mmの角柱内部に縦18mm、横18mm、高さ30mmの鉄芯をインサートする金型)に、一部の樹脂部の最小肉厚が1mmとなるようにインサート射出成形し、インサート成形品を製造した。得られたインサート成形品について、冷熱衝撃試験機を用いて140℃にて1時間30分加熱後、-40℃に降温して1時間30分冷却後、さらに140℃に昇温する過程を1サイクルとする耐ヒートショック試験を行い、成形品にクラックが入るまでのサイクル数を測定し、耐ヒートショック性を評価した。
[プレッシャークッカーテスト]
ペレットを用いて、樹脂温度260℃、金型温度80℃、射出時間15秒、冷却時間15秒で、ISO3167引張り試験片を射出成形し、ISO527により引張り強さを測定した。次いで、引張り試験片をプレッシャークッカー試験機で121℃、100%RH条件で50hrおよび100hr暴露する。暴露前後の引張り強さから引張り強さ保持率を計算した。
[そり性]
ペレットを用いて、樹脂温度260℃、金型温度65℃、射出時間25秒、冷却時間10秒で、平板成形用金型(80×80×1.5mmt、ゲート幅2mm)にて平板を射出成形し、24時間後の平面度を測定した。
Claims (10)
- (A)末端カルボキシル基量が30meq/kg以下であるポリブチレンテレフタレート樹脂100重量部に対し、
(B)カルボジイミド化合物;(A)ポリブチレンテレフタレート樹脂の末端カルボキシル基量を1とした場合、カルボジイミド官能基量が0.3~2当量となる量
(C)繊維状充填剤;20~100重量部
(D)ポリカーボネート樹脂及びポリエチレンテレフタレート樹脂より選ばれる1種以上の熱可塑性樹脂;15~65重量部
を配合してなるポリブチレンテレフタレート樹脂組成物。 - (B)カルボジイミド化合物の分子量が2000以上である請求項1記載のポリブチレンテレフタレート樹脂組成物。
- (B)カルボジイミド化合物が芳香族カルボジイミド化合物である請求項1又は2記載のポリブチレンテレフタレート樹脂組成物。
- (A)ポリブチレンテレフタレート樹脂の固有粘度が0.67~0.90である請求項1~3の何れか1項記載のポリブチレンテレフタレート樹脂組成物。
- 更に(E)リン系安定剤を(A)ポリブチレンテレフタレート樹脂100重量部に対し0.02~0.5重量部配合してなる請求項1~4の何れか1項記載のポリブチレンテレフタレート樹脂組成物。
- 更に(F)エラストマーを(A)ポリブチレンテレフタレート樹脂100重量部に対し5~15重量部配合してなる請求項1~5の何れか1項記載のポリブチレンテレフタレート樹脂組成物。
- ISO527による引張り強さが120MPa以上である請求項1~6の何れか1項記載のポリブチレンテレフタレート樹脂組成物からなる成形品。
- 請求項1~6の何れか1項記載のポリブチレンテレフタレート樹脂組成物を樹脂材料とするインサート射出成形品。
- (A)末端カルボキシル基量が30meq/kg以下であるポリブチレンテレフタレート樹脂100重量部に対し、
(B)カルボジイミド化合物;(A)ポリブチレンテレフタレート樹脂の末端カルボキシル基量を1とした場合、カルボジイミド官能基量が0.3~2当量となる量
(C)繊維状充填剤;20~100重量部
(D)ポリカーボネート樹脂及びポリエチレンテレフタレート樹脂より選ばれる1種以上の熱可塑性樹脂;15~65重量部
を配合することを含む請求項1~4の何れか1項記載のポリブチレンテレフタレート樹脂組成物を製造する方法。 - 請求項1~6の何れか1項記載のポリブチレンテレフタレート樹脂組成物を射出成形することを含む請求項7又は8記載の成形品を製造する方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/996,490 US8404763B2 (en) | 2008-06-11 | 2009-06-10 | Method for forming an insert injection-molded article exhibiting improved resistance to heat shock comprising a specifically defined polybutylene terephthalate composition |
JP2010516758A JP6038429B2 (ja) | 2008-06-11 | 2009-06-10 | ポリブチレンテレフタレート樹脂組成物及び成形品 |
CN200980121964.9A CN102056988B (zh) | 2008-06-11 | 2009-06-10 | 聚对苯二甲酸丁二醇酯树脂组合物及成形品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008153151 | 2008-06-11 | ||
JP2008-153151 | 2008-06-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009150833A1 true WO2009150833A1 (ja) | 2009-12-17 |
Family
ID=41416547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/002610 WO2009150833A1 (ja) | 2008-06-11 | 2009-06-10 | ポリブチレンテレフタレート樹脂組成物及び成形品 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8404763B2 (ja) |
JP (1) | JP6038429B2 (ja) |
CN (1) | CN102056988B (ja) |
WO (1) | WO2009150833A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012165148A1 (ja) * | 2011-05-30 | 2012-12-06 | ウィンテックポリマー株式会社 | インサート成形体 |
CN103180370A (zh) * | 2010-10-28 | 2013-06-26 | 胜技高分子株式会社 | 一体成形体 |
US20130274390A1 (en) * | 2010-09-17 | 2013-10-17 | Polyplastics Co., Ltd. | Integrated molded product |
US20140058015A1 (en) * | 2011-04-26 | 2014-02-27 | Win Tech Polymer Ltd. | Insert molded article |
KR20140086883A (ko) * | 2012-12-28 | 2014-07-08 | 코오롱플라스틱 주식회사 | 폴리에스터 수지 조성물 및 이로부터 제조된 성형품 |
WO2017026476A1 (ja) * | 2015-08-12 | 2017-02-16 | 東洋紡株式会社 | 熱可塑性ポリエステル樹脂組成物、およびこれを用いた光反射体 |
WO2017038864A1 (ja) * | 2015-09-03 | 2017-03-09 | ウィンテックポリマー株式会社 | ポリブチレンテレフタレート樹脂組成物 |
JPWO2017073629A1 (ja) * | 2015-10-30 | 2017-10-26 | ウィンテックポリマー株式会社 | ポリブチレンテレフタレート樹脂組成物 |
JP2017197676A (ja) * | 2016-04-28 | 2017-11-02 | 東洋紡株式会社 | ポリブチレンテレフタレート樹脂組成物 |
WO2023022138A1 (ja) * | 2021-08-16 | 2023-02-23 | ポリプラスチックス株式会社 | 二色成形品の強度低下抑制方法、二色成形用樹脂組成物、並びに二色成形品及びその製造方法 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5242150B2 (ja) * | 2007-12-21 | 2013-07-24 | ウィンテックポリマー株式会社 | 複合成形体 |
JP5351415B2 (ja) * | 2007-12-26 | 2013-11-27 | ウィンテックポリマー株式会社 | ポリブチレンテレフタレート樹脂組成物 |
WO2010122915A1 (ja) * | 2009-04-20 | 2010-10-28 | ウィンテックポリマー株式会社 | 溶着用ポリブチレンテレフタレート樹脂組成物及び複合成形品 |
CN104272885B (zh) * | 2012-05-01 | 2017-05-17 | 胜技高分子株式会社 | 电子设备用壳体 |
JP5925321B2 (ja) * | 2012-08-01 | 2016-05-25 | ウィンテックポリマー株式会社 | 電子機器用筐体 |
WO2014104754A1 (ko) * | 2012-12-28 | 2014-07-03 | 코오롱플라스틱 주식회사 | 폴리에스터 수지 조성물 및 이로부터 제조된 성형품 |
JP6506306B2 (ja) * | 2014-12-26 | 2019-04-24 | ウィンテックポリマー株式会社 | ポリアルキレンテレフタレート樹脂組成物 |
US20170260372A1 (en) * | 2015-03-09 | 2017-09-14 | Lanxess Deutschland Gmbh | Thermoplastic moulding compounds |
EP3133112B1 (de) * | 2015-03-09 | 2022-01-19 | LANXESS Deutschland GmbH | Thermoplastische formmassen |
CN108026257B (zh) * | 2015-10-30 | 2019-12-10 | 东丽株式会社 | 末端改性聚对苯二甲酸丁二醇酯树脂、包含其的热塑性树脂组合物、以及成型品 |
JP6764800B2 (ja) * | 2017-02-01 | 2020-10-07 | 矢崎総業株式会社 | 自動車用成形部品への高温耐油性付与方法 |
CN110312761B (zh) * | 2017-02-06 | 2022-02-15 | 宝理塑料株式会社 | 热塑性芳香族聚酯树脂组合物的制造方法 |
JP6483194B2 (ja) * | 2017-06-07 | 2019-03-13 | ウィンテックポリマー株式会社 | ポリブチレンテレフタレート樹脂組成物 |
US20220325037A1 (en) * | 2019-05-20 | 2022-10-13 | Mitsubishi Engineering-Plastics Corporation | Thermoplastic resin composition for millimeter-wave radar member, molded article, and method for producing resin composition |
KR20210054605A (ko) * | 2019-11-04 | 2021-05-14 | 현대자동차주식회사 | 차량의 레이더 투과커버용 조성물 |
KR20210133366A (ko) | 2020-04-28 | 2021-11-08 | 현대자동차주식회사 | 차량의 레이더 투과커버용 조성물 |
CN112625404B (zh) * | 2020-11-25 | 2022-03-01 | 金发科技股份有限公司 | 一种具有高强度、低翘曲和高热变形温度的玻纤增强pbt/pc合金及其制备方法和应用 |
JP7212816B2 (ja) * | 2020-12-09 | 2023-01-25 | 三菱エンジニアリングプラスチックス株式会社 | 樹脂組成物、ペレット、成形品、および、樹脂組成物の製造方法 |
CN114479374B (zh) * | 2021-12-27 | 2024-03-19 | 上海金发科技发展有限公司 | 一种pbt组合物及其制备方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4954456A (ja) * | 1972-04-24 | 1974-05-27 | ||
JPS60210659A (ja) * | 1984-04-04 | 1985-10-23 | Polyplastics Co | 耐熱水性に優れたポリエステル組成物 |
JPH069861A (ja) * | 1992-06-24 | 1994-01-18 | Teijin Ltd | 熱可塑性樹脂組成物 |
JPH0841302A (ja) * | 1994-07-27 | 1996-02-13 | Kuraray Co Ltd | 難燃性ポリブチレンテレフタレート系樹脂組成物 |
JPH09124908A (ja) * | 1995-10-27 | 1997-05-13 | Teijin Ltd | 熱可塑性樹脂組成物 |
JP2007112858A (ja) * | 2005-10-19 | 2007-05-10 | Wintech Polymer Ltd | ポリブチレンテレフタレート樹脂組成物の製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53121843A (en) | 1977-04-01 | 1978-10-24 | Polyplastics Kk | Thermoplastic resin mold composition |
US4859741A (en) | 1984-04-04 | 1989-08-22 | Polyplastics Co., Ltd. | Polyester composition |
JPS633055A (ja) * | 1986-06-24 | 1988-01-08 | Mitsubishi Chem Ind Ltd | インサ−ト成形品 |
JP2915130B2 (ja) | 1990-11-01 | 1999-07-05 | ポリプラスチックス株式会社 | 金属端子等をインサートしてなる成形品 |
JP3320588B2 (ja) | 1995-05-23 | 2002-09-03 | ポリプラスチックス株式会社 | ポリエステル樹脂組成物 |
JP4024437B2 (ja) | 1999-03-24 | 2007-12-19 | ポリプラスチックス株式会社 | インサート成形品 |
JP3992980B2 (ja) * | 1999-06-23 | 2007-10-17 | ポリプラスチックス株式会社 | 熱可塑性ポリエステル樹脂組成物 |
JP3933838B2 (ja) * | 2000-02-21 | 2007-06-20 | ポリプラスチックス株式会社 | インサート成形品 |
JP2005240003A (ja) * | 2004-01-27 | 2005-09-08 | Mitsubishi Engineering Plastics Corp | 熱可塑性ポリエステル樹脂組成物及びインサート成形品 |
JP2005290176A (ja) * | 2004-03-31 | 2005-10-20 | Mitsubishi Engineering Plastics Corp | ポリブチレンテレフタレート樹脂組成物 |
JP4657670B2 (ja) * | 2004-10-13 | 2011-03-23 | ウィンテックポリマー株式会社 | ポリブチレンテレフタレート樹脂組成物 |
JP2007169367A (ja) | 2005-12-20 | 2007-07-05 | Mitsubishi Chemicals Corp | ポリエステル樹脂組成物および成形体 |
-
2009
- 2009-06-10 JP JP2010516758A patent/JP6038429B2/ja active Active
- 2009-06-10 US US12/996,490 patent/US8404763B2/en not_active Expired - Fee Related
- 2009-06-10 CN CN200980121964.9A patent/CN102056988B/zh active Active
- 2009-06-10 WO PCT/JP2009/002610 patent/WO2009150833A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4954456A (ja) * | 1972-04-24 | 1974-05-27 | ||
JPS60210659A (ja) * | 1984-04-04 | 1985-10-23 | Polyplastics Co | 耐熱水性に優れたポリエステル組成物 |
JPH069861A (ja) * | 1992-06-24 | 1994-01-18 | Teijin Ltd | 熱可塑性樹脂組成物 |
JPH0841302A (ja) * | 1994-07-27 | 1996-02-13 | Kuraray Co Ltd | 難燃性ポリブチレンテレフタレート系樹脂組成物 |
JPH09124908A (ja) * | 1995-10-27 | 1997-05-13 | Teijin Ltd | 熱可塑性樹脂組成物 |
JP2007112858A (ja) * | 2005-10-19 | 2007-05-10 | Wintech Polymer Ltd | ポリブチレンテレフタレート樹脂組成物の製造方法 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130274390A1 (en) * | 2010-09-17 | 2013-10-17 | Polyplastics Co., Ltd. | Integrated molded product |
US9249296B2 (en) * | 2010-09-17 | 2016-02-02 | Polyplastics Co., Ltd. | Integrated molded product |
CN103180370A (zh) * | 2010-10-28 | 2013-06-26 | 胜技高分子株式会社 | 一体成形体 |
US8906988B2 (en) | 2010-10-28 | 2014-12-09 | Wintech Polymer Ltd. | Integrated molded product |
US20140058015A1 (en) * | 2011-04-26 | 2014-02-27 | Win Tech Polymer Ltd. | Insert molded article |
JPWO2012165148A1 (ja) * | 2011-05-30 | 2015-02-23 | ウィンテックポリマー株式会社 | インサート成形体 |
WO2012165148A1 (ja) * | 2011-05-30 | 2012-12-06 | ウィンテックポリマー株式会社 | インサート成形体 |
KR102116507B1 (ko) * | 2012-12-28 | 2020-05-28 | 코오롱플라스틱 주식회사 | 폴리에스터 수지 조성물 및 이로부터 제조된 성형품 |
KR20140086883A (ko) * | 2012-12-28 | 2014-07-08 | 코오롱플라스틱 주식회사 | 폴리에스터 수지 조성물 및 이로부터 제조된 성형품 |
WO2017026476A1 (ja) * | 2015-08-12 | 2017-02-16 | 東洋紡株式会社 | 熱可塑性ポリエステル樹脂組成物、およびこれを用いた光反射体 |
WO2017038864A1 (ja) * | 2015-09-03 | 2017-03-09 | ウィンテックポリマー株式会社 | ポリブチレンテレフタレート樹脂組成物 |
JPWO2017073629A1 (ja) * | 2015-10-30 | 2017-10-26 | ウィンテックポリマー株式会社 | ポリブチレンテレフタレート樹脂組成物 |
US10526482B2 (en) | 2015-10-30 | 2020-01-07 | Polyplastics Co., Ltd. | Polybutylene terephthalate resin composition |
JP2017197676A (ja) * | 2016-04-28 | 2017-11-02 | 東洋紡株式会社 | ポリブチレンテレフタレート樹脂組成物 |
WO2023022138A1 (ja) * | 2021-08-16 | 2023-02-23 | ポリプラスチックス株式会社 | 二色成形品の強度低下抑制方法、二色成形用樹脂組成物、並びに二色成形品及びその製造方法 |
JP2023026857A (ja) * | 2021-08-16 | 2023-03-01 | ポリプラスチックス株式会社 | 二色成形品の強度低下抑制方法、二色成形用樹脂組成物、並びに二色成形品及びその製造方法 |
JP7261841B2 (ja) | 2021-08-16 | 2023-04-20 | ポリプラスチックス株式会社 | 二色成形品の強度低下抑制方法、二色成形用樹脂組成物、並びに二色成形品及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102056988A (zh) | 2011-05-11 |
US20110092616A1 (en) | 2011-04-21 |
JPWO2009150833A1 (ja) | 2011-11-10 |
CN102056988B (zh) | 2014-12-17 |
US8404763B2 (en) | 2013-03-26 |
JP6038429B2 (ja) | 2016-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6038429B2 (ja) | ポリブチレンテレフタレート樹脂組成物及び成形品 | |
WO2009150831A1 (ja) | ポリブチレンテレフタレート樹脂組成物及び成形品 | |
JP5377869B2 (ja) | 難燃性樹脂組成物及び被覆電線 | |
KR102157130B1 (ko) | 열가소성 폴리에스테르 수지 조성물 및 성형품 | |
JP6264502B2 (ja) | 熱可塑性ポリエステル樹脂組成物および成形品 | |
JP6039432B2 (ja) | 電力計外装用ポリエステル樹脂組成物 | |
JP5875579B2 (ja) | インサート成形品 | |
JP6525110B1 (ja) | 熱可塑性ポリエステル樹脂組成物およびその成形品 | |
JP2013001772A (ja) | 難燃性熱可塑性ポリエステル樹脂組成物および成形品 | |
JP2010037375A (ja) | 難燃性熱可塑性ポリエステル樹脂組成物および成形品 | |
TWI827542B (zh) | 熱塑性聚酯樹脂組成物、成形品及其製造方法 | |
JP2005112994A (ja) | 熱可塑性樹脂組成物 | |
JP5925321B2 (ja) | 電子機器用筐体 | |
JP4657670B2 (ja) | ポリブチレンテレフタレート樹脂組成物 | |
JP6506806B2 (ja) | ポリブチレンテレフタレート樹脂組成物、成形品及び複合体 | |
JP2020084037A (ja) | 熱可塑性樹脂組成物及び成形体 | |
JP2018039970A (ja) | 熱可塑性ポリエステル樹脂組成物および成形品 | |
KR102338727B1 (ko) | 폴리알킬렌 테레프탈레이트 조성물 | |
JP7313187B2 (ja) | 熱可塑性樹脂組成物及び成形体 | |
JP2020033455A (ja) | 熱可塑性ポリエステル樹脂組成物およびその成形品 | |
JP2020084036A (ja) | 熱可塑性樹脂組成物及び成形体 | |
JP2022092143A (ja) | 熱可塑性樹脂組成物 | |
JP2006306918A (ja) | 樹脂成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980121964.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09762264 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010516758 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12996490 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09762264 Country of ref document: EP Kind code of ref document: A1 |