[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009144858A1 - ジアシルグリセロール高含有油脂の製造方法 - Google Patents

ジアシルグリセロール高含有油脂の製造方法 Download PDF

Info

Publication number
WO2009144858A1
WO2009144858A1 PCT/JP2009/000513 JP2009000513W WO2009144858A1 WO 2009144858 A1 WO2009144858 A1 WO 2009144858A1 JP 2009000513 W JP2009000513 W JP 2009000513W WO 2009144858 A1 WO2009144858 A1 WO 2009144858A1
Authority
WO
WIPO (PCT)
Prior art keywords
diacylglycerol
reaction
oil
raw material
content
Prior art date
Application number
PCT/JP2009/000513
Other languages
English (en)
French (fr)
Inventor
加瀬 実
小松 利照
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to JP2010514334A priority Critical patent/JP5307806B2/ja
Priority to EP09754368.0A priority patent/EP2287325A4/en
Priority to CN2009801175513A priority patent/CN102027126A/zh
Priority to US12/995,096 priority patent/US20110076358A1/en
Publication of WO2009144858A1 publication Critical patent/WO2009144858A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6458Glycerides by transesterification, e.g. interesterification, ester interchange, alcoholysis or acidolysis

Definitions

  • the present invention relates to a method for producing fats and oils with a high diacylglycerol content.
  • Oils and fats containing diacylglycerol at a high concentration are widely used as edible oils because they have physiological actions such as body fat burning action.
  • the production of diacylglycerol is generally performed by a method using a glycerolysis reaction between glycerin and an oil or fat, or a method using an esterification reaction between glycerin and a fatty acid (see, for example, Patent Documents 1 to 3). There is also an exchange reaction method (see Patent Document 4).
  • the present invention provides a method for producing fats and oils with a high content of diacylglycerol, in which monoacylglycerols are transesterified using lipase in the presence of water.
  • the purity of diacylglycerol is low because the obtained reaction product itself has a low diacylglycerol purity, and a high-vacuum distillation facility is required to obtain a high purity.
  • the purity of diacylglycerol can be increased by setting the purity of fatty acid used as a reaction raw material and setting conditions, but it is not always satisfactory in terms of balance between production efficiency and quality and cost. . Therefore, the present invention relates to providing a method for efficiently producing a diacylglycerol-rich oil and fat under industrially advantageous conditions.
  • the present inventor has conducted various studies on production methods of diacylglycerol, and has found that high-accuracy diacylglycerol can be obtained efficiently by transesterification of monoacylglycerols.
  • oils and fats having a high diacylglycerol content can be efficiently obtained without using expensive raw materials and special equipment, which is extremely advantageous industrially.
  • the monoacylglycerols used in the method of the present invention are those in which the hydroxyl group at the 1-position of glycerin is esterified with a fatty acid (1-monoacylglycerol) and those at the 2-position.
  • Examples include those in which the hydroxyl group is esterified with a fatty acid (2-monoacylglycerol) and those in which the hydroxyl group at the 3-position is esterified with a fatty acid (3-monoacylglycerol).
  • Those having a high ratio of acylglycerol are preferred.
  • the carbon number of the fatty acid residue of the raw material monoacylglycerols is not particularly limited, but is preferably 8 to 24 carbon atoms, more preferably 14 to 24 carbon atoms, and particularly preferably 16 to 22 carbon atoms.
  • Fatty acid residues include those saturated and unsaturated, specifically caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, Acyl group derived from eicosapentaenoic acid and docosahexaenoic acid, animal oils such as beef tallow and lard, rapeseed oil, soybean oil, corn oil, sunflower oil, cottonseed oil, perilla oil, red pepper oil, flaxseed oil, safflower oil And acyl groups derived from fatty acids derived from vegetable oils such as sesame oil and palm oil. These raw material monoacylglycerols can be
  • the content of unsaturated fatty acids in all the constituent fatty acids of the raw material monoacylglycerols is 50% by mass (hereinafter, simply referred to as “%”) or more from the viewpoint of the appearance, physiological effect and industrial productivity of the final product, Further, it is preferably 60% or more, particularly 70% or more. Moreover, as an unsaturated fatty acid, oleic acid, linoleic acid, and linolenic acid are preferable.
  • the content of the trans unsaturated fatty acid is preferably 8% or less, preferably 4% or less from the viewpoint of reducing the content of the trans unsaturated fatty acid in the final product. More preferably, it is 2% or less, more preferably 1.5% or less, especially 1% or less, especially 0.5% or less from the viewpoint of further reducing the content of trans-unsaturated fatty acids in the final product. Preferably there is.
  • Raw material monoacylglycerols are rapeseed oil, sunflower oil, corn oil, soybean oil, rice oil, safflower oil, cottonseed oil, beef tallow, linseed oil, fish oil, etc. It can be obtained by any method such as an esterification reaction between the fatty acid derived from fats and oils and glycerin.
  • the fats and oils can be used after separation and mixing, and those whose fatty acid composition has been adjusted by hydrogenation or transesterification, etc. This is preferable from the viewpoint of reducing the saturated fatty acid content.
  • the reaction method may be either a chemical method using an alkali catalyst or the like, or an enzymatic method using an enzyme such as lipase. Desired raw material monoacylglycerols can be obtained by distillation, fractionation, solvent extraction, steam distillation and the like of the obtained reaction product.
  • the raw material monoacylglycerols are produced from a reaction-finished oil (hereinafter, “ It is preferable to use a glycerolysis reaction finished oil).
  • the raw fats and oils used in the glycerolysis reaction have a content of trans-unsaturated fatty acids in the constituent fatty acids of 3% or less, more 2% or less, particularly 1% or less, especially 0.5% or less. From the viewpoint of reducing the content of trans-unsaturated fatty acids.
  • it is preferable to use undeodorized fats and oils such as rapeseed oil, sunflower oil, corn oil, soybean oil, rice oil, safflower oil, cottonseed oil, beef tallow, linseed oil, fish oil and the like.
  • undeodorized fats and oils mean the fats and oils which are not deodorized in the refinement
  • a lipase is preferably used as the enzyme, and examples of the lipase include the same lipases used for transesterification.
  • the reaction temperature is 0 to 100 ° C., more preferably 20 to 80 ° C., particularly 30 to 80 ° C. from the viewpoint of improving the reaction rate and suppressing the inactivation of lipase. preferable.
  • the use of an alkali such as sodium hydroxide or calcium hydroxide, or an acid such as an organic acid or a salt thereof as a catalyst improves the reaction rate, and the hue of the reaction oil It is preferable from the point of improving.
  • the reaction temperature is preferably 100 to 300 ° C., more preferably 150 to 250 ° C. from the viewpoint of improving the reaction rate and suppressing the production of trans-unsaturated fatty acid.
  • the raw material monoacylglycerols in the present invention may contain monoacylglycerol, diacylglycerol, triacylglycerol and glycerin.
  • glycerin is preferably 15% or less, more preferably 10% or less, further 0 to 5%, particularly 0 to 3%, particularly 0 to 3%, from the viewpoint of increasing the diacylglycerol content and the purification load of the raw material. It is preferably 1 to 1%.
  • the glycerin removal method is a method of removing the glycerin layer by centrifugation, a method of distilling off the glycerin by decompression, a method of removing the glycerin by steam distillation, a method of removing the glycerin layer by separation, a removal method by washing with water, adsorption
  • the method of removing using an agent etc. is mentioned, it is not limited to these, You may combine these.
  • the triacylglycerol content in the raw material monoacylglycerols is preferably 50% or less, more preferably 40% or less, and particularly preferably 0.1 to 30%.
  • the diacylglycerol content in the raw material monoacylglycerols is preferably 40% or less, more preferably 30% or less, and particularly preferably 0.1 to 20%.
  • the fatty acid content in the raw material monoacylglycerols is preferably 50% or less, more preferably 40% or less, further 0.1 to 30%, particularly 0.1 to 20%, and particularly preferably 0.1 to 10%.
  • the monoacylglycerol content in the raw material monoacylglycerols is preferably 45% or more, more preferably 50% or more, and particularly preferably 55 to 99%.
  • transesterification lipases include the genus Risopus, the genus Aspergillus, the genus Chromobacterium, the genus Mucor, the genus Rhizomucor, and the genus Pseudomonio Examples include lipases originating from microorganisms such as genus, Penicillium, Candida, and animal lipases such as pancreatic lipase.
  • the genus Penicillium, Rhizomucor, Candida, etc. are preferable from the microbial origin.
  • an immobilized lipase in which a lipase is immobilized on a carrier from the viewpoint that the lipase activity can be effectively used.
  • the use of an immobilized lipase is also preferable from the viewpoint of easy separation of the reaction product and the lipase.
  • immobilization carriers Celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, ceramics and other inorganic carriers, ceramic powder, polyvinyl alcohol, polypropylene, chitosan, ion exchange resin, hydrophobic adsorption Examples thereof include organic polymers such as resins, chelate resins, and synthetic adsorption resins, and ion exchange resins are particularly preferable from the viewpoint of high water retention. Of the ion exchange resins, a porous surface is preferable from the viewpoint that the amount of lipase adsorbed can be increased by having a large surface area.
  • the particle size of the resin used as the immobilization carrier is preferably 50 to 2000 ⁇ m, more preferably 100 to 1000 ⁇ m.
  • the pore diameter is preferably 10 to 150 nm, more preferably 10 to 100 nm.
  • the material include phenol formaldehyde, polystyrene, acrylamide, divinylbenzene, and the like, and phenol formaldehyde resin (for example, Duolite A-568 manufactured by Rohm and Hass) is particularly preferable from the viewpoint of improving lipase adsorption.
  • the lipase When the lipase is immobilized, the lipase may be directly adsorbed on the immobilization support. However, in order to obtain an adsorption state that exhibits high activity, the support is treated with a fat-soluble fatty acid or a derivative thereof in advance before lipase adsorption. May be used.
  • the fat-soluble fatty acid to be used include saturated or unsaturated, linear or branched fatty acids having 8 to 18 carbon atoms, which may be substituted with a hydroxyl group. Specific examples include capric acid, lauric acid, myristyl acid, oleic acid, linoleic acid, ⁇ -linolenic acid, ricinoleic acid, isostearic acid and the like.
  • esters of these fatty acids with mono- or polyhydric alcohols examples include esters of these fatty acids with mono- or polyhydric alcohols, phospholipids, and derivatives obtained by adding ethylene oxide to these esters.
  • Specific examples include methyl esters, ethyl esters, monoglycerides, diglycerides, ethylene oxide adducts thereof, polyglycerin esters, sorbitan esters, and sucrose esters of the above fatty acids. Two or more of these fat-soluble fatty acids or derivatives thereof may be used in combination.
  • these may be added directly to a carrier in water or an organic solvent, but in order to improve dispersibility, a fat-soluble fatty acid or derivative thereof is added to an organic solvent. Once dispersed and dissolved, it may be added to a carrier dispersed in water.
  • the organic solvent include chloroform, hexane, acetone, ethanol, and the like.
  • the amount of the fat-soluble fatty acid or derivative thereof used is preferably 1 to 1000 parts, more preferably 10 to 500 parts, with respect to 100 parts by mass of the carrier (hereinafter simply referred to as “parts”).
  • the contact temperature is preferably 0 to 80 ° C., more preferably 20 to 60 ° C., and the contact time is preferably about 5 minutes to 5 hours.
  • the carrier after this treatment is collected by filtration, but may be dried.
  • the drying temperature is preferably 0 to 80 ° C. and may be dried under reduced pressure.
  • the temperature at which the lipase is immobilized can be determined by the characteristics of the lipase, but is preferably a temperature at which the lipase is not deactivated, that is, 0 to 80 ° C., more preferably 20 to 60 ° C.
  • the pH of the lipase solution used at the time of immobilization may be within a range where lipase denaturation does not occur, and can be determined by the lipase characteristics as well as the temperature, but is preferably pH 3-9.
  • a buffer solution is used. Examples of the buffer solution include an acetate buffer solution, a phosphate buffer solution, and a Tris-HCl buffer solution.
  • the lipase concentration in the lipase solution is preferably not more than the saturation solubility of lipase and sufficient from the viewpoint of immobilization efficiency. Moreover, the lipase solution can also use the supernatant which removed the insoluble part by centrifugation as needed, and what was refine
  • the lipase mass used varies depending on the lipase activity, but is preferably 5 to 1000 parts, more preferably 10 to 500 parts, relative to 100 parts of the carrier.
  • the water content in the immobilized lipase after contact varies depending on the type of carrier used, but is 0.1 to 100 parts, more preferably 0.5 to 50 parts, particularly 1 to 30 parts, relative to 100 parts of the immobilized carrier. Is preferred.
  • it may be sealed in a packed container such as a column and the raw material may be circulated by a pump or the like, or the immobilized lipase may be dispersed in the raw material.
  • the contact temperature is preferably 0 to 80 ° C., and can be selected according to the characteristics of the lipase. Further, the contact time may be about 0.2 hours to 200 hours, and 3 hours to 100 hours are preferable from the viewpoint of industrial productivity. From the viewpoint of industrial productivity, it is preferable to perform filtration at the end of this contact and recover the immobilized lipase.
  • the transesterification activity of the immobilized lipase was carried out under the same conditions as those described in Test Example 1 below, and the transesterification was carried out with the reaction time being only 3 hours, and the diacylglycerol content in the reaction product was the diacyl in the reaction raw material. It is preferable that the glycerol content is increased by 1% or more, further increased by 3% or more, particularly increased by 10% or more.
  • the transesterification reaction of monoacylglycerols can be carried out batchwise, continuously or semi-continuously.
  • the raw material supplied to the reaction apparatus is preferable from the viewpoint of increasing the diacylglycerol content of the reaction product obtained by performing dehydration, degassing, or deoxygenation in advance under reduced pressure to suppress deterioration.
  • the amount of lipase used in the reaction can be appropriately determined in consideration of the activity of lipase, but is 0.01 to 100 parts, more preferably 0.1 to 50 parts, particularly 100 parts relative to the raw material monoacylglycerols to be decomposed. 0.2 to 30 parts are preferred.
  • the transesterification reaction is performed in the presence of water.
  • the amount of water in the reaction system is preferably 4% or less, more preferably 0.01 to 3%, and particularly preferably 0.02 to 2% from the viewpoint of increasing the diacylglycerol content of the reaction product.
  • the water may be any of distilled water, ion exchange water, tap water, well water and the like. Further, other water-soluble components such as glycerin may be mixed. If necessary, a buffer solution having a pH of 3 to 9 may be used so that the stability of the lipase can be maintained. Water may be contained in lipase and raw material monoacylglycerols, but it is preferable to control so that the total amount of water is 4% or less.
  • the control method includes (i) There are a method of measuring the water content of each component by the Karl Fischer method and the like, and a method of controlling the total water content, and (ii) a method of completely dehydrating the reaction components and adding a predetermined amount of water later.
  • the method (i) is preferable because the handling of a hygroscopic material such as a powdered lipase is simple. The amount of water retained by the immobilized lipase is also included in the amount of water.
  • the reaction temperature is preferably 0 to 80 ° C., more preferably 20 to 70 ° C., which is a temperature at which the lipase activity is more effectively extracted and free fatty acids generated by decomposition do not become crystals.
  • the reaction is preferably carried out in the presence of an inert gas such as nitrogen so that contact with air is avoided as much as possible.
  • the reaction may be performed in a solvent such as hexane, cyclohexane, petroleum ether or the like.
  • the purity of diacylglycerol as a reaction product is preferably 50% or more, more preferably 60 to 99%, further 70 to 98%, and particularly preferably 80 to 97%. From the viewpoint of productivity.
  • the diacylglycerol purity is [diacylglycerol / (diacylglycerol + triacylglycerol) ⁇ 100].
  • the diacylglycerol + triacylglycerol content [% by mass] in the reaction product is preferably 50% or more, more preferably 50 to 99%, further 55 to 98%, and particularly 60 to 97%. It is preferable from the viewpoint of physiological effects and industrial productivity.
  • the monoacylglycerol content in the reaction product is preferably 2 to 60%, more preferably 3 to 50%, particularly 5 to 50% from the viewpoint of reducing the distillation load and increasing the reaction efficiency. It is particularly preferably 10 to 40%.
  • the reaction product obtained by transesterification using lipase by the method of the present invention has high diacylglycerol purity, and is therefore useful as an oil having high physiological effects.
  • the oil and fat with a high diacylglycerol content obtained by the transesterification reaction can be made into a product by performing post-treatment.
  • the post-treatment is preferably performed by distillation, acid treatment, water washing, and deodorization.
  • the distillation step refers to a step of removing fatty acid and unreacted monoacylglycerol by-produced from the reaction product by distillation under reduced pressure of the diacylglycerol-rich oil obtained by the transesterification reaction.
  • the reaction that is removed by the distillation process during the production of the fats and oils with high diacylglycerol content It is preferable to recover the by-produced fatty acid and unreacted monoacylglycerol from the product, and reuse this as a part of or all of the next reaction raw material as a distillation recovery oil. In addition, it is also preferable to use a distillate recovered oil because the diacylglycerol content can be increased.
  • the conditions of the distillation step are preferably a pressure of 1 to 300 Pa, more preferably 1.5 to 200 Pa, particularly 2 to 100 Pa, in terms of reducing equipment costs and operating costs, increasing the distillation capacity, and distillation.
  • This is preferable from the viewpoint that the temperature can be optimally selected, the increase in the amount of trans-unsaturated fatty acids due to the thermal history, and the thermal deterioration can be suppressed.
  • the temperature is preferably 180 to 280 ° C., more preferably 190 to 260 ° C., and particularly preferably 200 to 250 ° C., from the viewpoint of suppressing the increase in trans unsaturated fatty acids.
  • the residence time is preferably 0.2 to 30 minutes, more preferably 0.2 to 20 minutes, and particularly preferably 0.2 to 10 minutes from the viewpoint of suppressing the increase in trans unsaturated fatty acid.
  • the residence time refers to the average residence time during which the fats and oils reach the distillation temperature.
  • the acid treatment step refers to a step of adding and mixing a chelating agent such as citric acid to the distilled oil and further dehydrating under reduced pressure. Further, the obtained acid-treated oil may be subjected to a decoloring step by contact with an adsorbent from the viewpoint of further improving the hue and flavor.
  • the water washing step refers to a step of performing an operation of adding water to the acid-treated oil and vigorously stirring to perform oil-water separation. Washing with water is preferably repeated a plurality of times (for example, 3 times) to obtain washing oil.
  • Deodorization treatment is basically performed by reduced-pressure steam distillation, and examples thereof include a batch type, a semi-continuous type, and a continuous type.
  • the semi-continuous apparatus include a tray-type deodorization apparatus (Gardler-type deodorization apparatus) composed of a deodorization tower equipped with several trays. This apparatus is deodorized by supplying the fat and oil to be deodorized from the upper part and moving the oil intermittently descending one after another to the lower tray.
  • a device in the case of a continuous type there is a thin film deodorization device or the like in which a structure having both gas-liquid contact efficiency and low pressure loss is filled in a deodorization tower and contact efficiency with water vapor is improved.
  • the deodorizing process using the thin film deodorizing apparatus and the deodorizing process using the tray type deodorizing apparatus are combined.
  • the content of trans-unsaturated fatty acid, and the flavor peculiar to diacylglycerol a method of performing deodorization with a thin film deodorizer or a tray type deodorizer alone is preferable.
  • odorous components contained in washing oil are removed by deodorizing treatment, and carotenoid pigments are lightly colored because they are thermally decomposed, and impurities contained in a trace amount are deactivated and become stable substances. Therefore, in the deodorization using normal fats and oils, it becomes preferable in terms of flavor by making the conditions stricter.
  • the body quality is affected by the deodorization process, so the quality of the product depends on the conditions of the deodorization treatment.
  • the deodorization treatment is performed so that the deodorization time (x [min]) and the deodorization temperature (y [° C.]) are within a range satisfying the following formula (i). (I) 350 ⁇ (y ⁇ 210) ⁇ x ⁇ 2100 (However, 215 ⁇ y ⁇ 280)
  • the deodorizing treatment is performed with a heat history lower than the range defined by the formula (i)
  • the deodorizing treatment is performed at a deodorizing temperature (y) lower than 215 ° C., an oil and fat with reduced irritation and weight is obtained.
  • the deodorizing treatment is performed at a heat history higher than the range defined by the formula (i) or a deodorizing temperature (y) higher than 280 ° C.
  • a fat and oil having an excellent body taste cannot be obtained, and the transformer is unsaturated.
  • the effect of suppressing the increase in fatty acids is not sufficient.
  • x represents the deodorization time (minutes)
  • y represents the deodorization temperature (° C.).
  • the deodorization treatment is further carried out in the following formula (ii) from the viewpoint of suppressing the deodorization efficiency, the improvement of flavor, and the increase in trans acid unsaturated fatty acid.
  • the deodorization time varies depending on the deodorization temperature. Specifically, when the deodorization process is performed at 250 to 270 ° C., the deodorization time is 6 to 35 minutes, when the deodorization process is performed at 235 to 250 ° C., the deodorization time is 9 to 53 minutes, and the deodorization process is 220 to 220 minutes. When it is carried out at 235 ° C., the deodorization time is preferably 14 to 120 minutes.
  • the amount of water vapor used is 0.3 to 20%, particularly 0.5 to 10%, based on fats and oils. From the point which makes the flavor of this good. Further, the pressure is preferably 0.01 to 4 kPa, particularly 0.06 to 0.6 kPa from the same point.
  • the deodorization temperature is 255 to 280 ° C.
  • the amount of water vapor is 0.3 to 3%, more preferably 0.4 to 2.5%, particularly 0.5 to 2.2% with respect to fats and oils. From the viewpoint of improving flavors such as “umami” and “kokumi” peculiar to diacylglycerol.
  • the deodorization temperature is 250 to 255 ° C.
  • the amount of water vapor is 2.1 to 5%, more preferably 2.2 to 4.5%, particularly 2.5 to 4% with respect to fats and oils. From the point of view, it is preferable. Further, it is also possible that the deodorization temperature is 215 to 250 ° C. and the amount of water vapor is 2.1 to 10%, more preferably 2.2 to 8%, particularly 2.5 to 6% with respect to fats and oils. To preferred.
  • the temperature rise time to the deodorization temperature is 0.5 to 60 minutes from the temperature 70 ° C. to the temperature 200 ° C., and 0.5 to 45 minutes from the temperature 200 ° C. to the deodorization temperature from the viewpoint of suppressing the increase of the trans unsaturated fatty acid. Further, it is preferable that the temperature is from 70 ° C. to 200 ° C. for 1 to 30 minutes, the temperature from 200 ° C. to the deodorization temperature is 1 to 20 minutes, in particular, the temperature from 70 ° C. to the temperature of 200 ° C. is 2 to 20 minutes, The temperature is preferably 2 to 15 minutes.
  • the cooling time from the deodorization temperature is preferably 0.2 to 35 minutes from the deodorization temperature to 200 ° C.
  • the temperature 200 ° C. to 70 ° C. from the viewpoint of suppressing the increase in trans unsaturated fatty acid. Furthermore, from the deodorization temperature to 200 ° C. for 0.5 to 25 minutes, from the temperature 200 ° C. to 70 ° C. for 0.5 to 30 minutes, in particular, from the deodorization temperature to 200 ° C. for 1 to 20 minutes, the temperature from 200 ° C. to 70 ° C. It is preferable that the temperature is 1 to 25 minutes.
  • the amount of increase in trans unsaturated fatty acid in the refining process can be suppressed to 1% or less, and the content of trans unsaturated fatty acid in all fatty acids constituting the oil and fat is as low as 2% or less. Can be obtained.
  • the content of trans-unsaturated fatty acid in the diacylglycerol-rich oil is preferably 0 to 1.5%, particularly 0.1 to 1.2%.
  • the diacylglycerol-rich oil and fat produced by the method of the present invention has a good flavor and a good hue.
  • the diacylglycerol content in the oil and fat with a high diacylglycerol content is preferably in the range of the “diacylglycerol purity”.
  • the immobilized lipase was collected by filtration, and washed with 2500 mL of 50 mM acetate buffer (pH 5) to remove the non-immobilized lipase and protein. All the above operations were performed at a temperature of 20 ° C. Thereafter, 2000 g of soybean fatty acid was added, and the mixture was dehydrated while being stirred at a temperature of 40 ° C. until the pressure reached 400 Pa. Then, after stirring for 30 minutes with 2500 mL of hexane, operation which separates a hexane phase by filtration was performed 3 times. Thereafter, the solvent was removed using an evaporator at a temperature of 40 ° C. for 1 hour, followed by drying under reduced pressure for 15 hours under conditions of a temperature of 40 ° C. and a pressure of 1300 Pa to obtain an immobilized lipase G.
  • 50 mM acetate buffer pH 5
  • ⁇ Immobilized lipase AY> 500 g of Duolite A-568 (Rohm & Hass) was stirred for 1 hour in 5000 mL of 0.1N aqueous sodium hydroxide. Then, it was washed with 5000 mL of distilled water for 1 hour, and equilibrated to pH with 5000 mL of 500 mM phosphate buffer (pH 7) for 2 hours. Thereafter, the pH was equilibrated with 5000 mL of 50 mM phosphate buffer (pH 7) twice for 2 hours. Thereafter, filtration was performed and the carrier was recovered, followed by ethanol replacement with 2500 mL of ethanol for 30 minutes.
  • the immobilized lipase was collected by filtration, and washed with 2500 mL of 50 mM phosphate buffer (pH 7) to remove the non-immobilized lipase and protein. All the above operations were performed at a temperature of 20 ° C. Thereafter, 2000 g of deodorized soybean oil was added, stirred at a temperature of 40 ° C. for 10 hours, and then filtered to separate from the deodorized soybean oil. Then, after stirring for 30 minutes with 2500 mL of hexane, operation which separates a hexane phase by filtration was performed 3 times. Thereafter, the solvent was removed using an evaporator at a temperature of 40 ° C. for 1 hour, followed by drying under reduced pressure for 15 hours under the conditions of a temperature of 40 ° C. and a pressure of 1300 Pa to obtain an immobilized lipase AY.
  • O-95R (Kao Co., Ltd., the same shall apply hereinafter) was used as the raw material for the transesterification reaction (raw material A). Also, rapeseed oil is added to O-95R to prepare glyceride mixed oils with different triacylglycerol contents (raw materials B, C, D, E), and health econa cooking oil (Kao Corporation) is added to O-95R. The same applies hereinafter) to prepare glyceride mixed oils having different diacylglycerol contents (raw materials F and G).
  • rapeseed oil and healthy econa cooking oil were added to O-95R to prepare a glyceride mixed oil having substantially the same content of monoacylglycerol, diacylglycerol and triacylglycerol (raw material H).
  • Table 1 shows the glyceride composition of the raw oil.
  • Table 1 shows the glyceride composition of undeodorized rapeseed oil and raw material I.
  • the undeodorized rapeseed oil and raw material I had trans-unsaturated fatty acid contents of 0.1% and 0.2%, respectively.
  • Test example 1 In a 500 ML four-necked flask equipped with a stirring blade (75 mm ⁇ 20 mm), 250 g of the raw material A was put and allowed to stand at a temperature of 50 ° C. for 30 minutes to stabilize the raw material A in the flask at 50 ° C. Next, 5% (12.5 g) of immobilized lipase G (water content 2.1%) is added to the raw material A while stirring at a temperature of 50 ° C. and stirring of 300 r / min, and the ester exchange reaction is performed. Started. Immediately, nitrogen sealing was performed to create a nitrogen atmosphere. When the transesterification reaction was carried out for 50 hours, the glyceride composition reached equilibrium, and the immobilized lipase G was filtered off to obtain sample A.
  • Test example 2 A transesterification reaction was performed in the same manner as in Test Example 1 except that a commercially available immobilized lipase Lipozyme RM IM (Novozymes Japan Co., Ltd. (hereinafter the same), moisture content 2.2%) was used as the immobilized lipase.
  • a commercially available immobilized lipase Lipozyme RM IM Novozymes Japan Co., Ltd. (hereinafter the same), moisture content 2.2%) was used as the immobilized lipase.
  • the transesterification was carried out for 67 hours, the glyceride composition reached equilibrium, and the immobilized lipase Lipozyme RM IM was filtered off to obtain Sample B.
  • Test example 3 A transesterification reaction was carried out in the same manner as in Test Example 1 except that immobilized lipase AY (water content 2.5%) was used as the immobilized lipase. When the transesterification was carried out for 530 hours, the glyceride composition reached equilibrium, and the immobilized lipase AY was filtered off to obtain sample C.
  • Test example 4 In a 2000 ML four-necked flask equipped with a stirring blade (90 mm ⁇ 24 mm) and an air-cooled tube (inner diameter 11 mm, length 1 m), 250 g of raw material A and 500 mL of hexane were placed and allowed to stand at a temperature of 50 ° C. for 30 minutes. Raw material A was stabilized at 50 ° C. Next, 5% (12.5 g) of immobilized lipase G (water content 2.1%) is added to the raw material A while stirring at a temperature of 50 ° C. and stirring of 300 r / min, and the ester exchange reaction is performed. Started. When the transesterification reaction was carried out for 50 hours, the glyceride composition reached equilibrium, and the immobilized lipase G was filtered off to obtain sample D.
  • Test Example 5 In a 200 ML four-necked flask equipped with a stirring blade (50 mm ⁇ 18 mm), 90 g of raw material I was placed and allowed to stand at a temperature of 50 ° C. for 30 minutes to stabilize the raw material I in the flask at 50 ° C. Next, while stirring at a temperature of 50 ° C. and stirring of 300 r / min, 10% (9.0 g) of immobilized lipase G (water content 2.8%) is added to the raw material I, and the ester exchange reaction is performed. Started. Immediately, nitrogen sealing was performed to create a nitrogen atmosphere. Transesterification was carried out for 24 hours, and immobilized lipase G was filtered off to obtain sample U. Sample U had a trans unsaturated fatty acid content of 0.2%.
  • Test Example 6 A transesterification reaction was carried out in the same manner as in Test Example 5 except that a commercially available immobilized lipase Lipozyme RM IM (water content 2.6%) was used as the immobilized lipase. Transesterification was carried out for 2 hours, and the immobilized lipase Lipozyme RM IM was filtered off to obtain sample V. Sample V had a trans-unsaturated fatty acid content of 0.2%.
  • Table 2 shows the water content in the reaction systems of Test Examples 1 to 6 and the glyceride composition of the obtained reaction products.
  • the glyceride composition is obtained after removing the separated glycerin from the reaction-finished oil according to the “analysis method” (the same applies hereinafter).
  • Test Example 7 In a 500 ML four-necked flask equipped with a stirring blade (75 mm ⁇ 20 mm), 250 g of the raw material A was put and allowed to stand at a temperature of 50 ° C. for 30 minutes to stabilize the raw material A in the flask at 50 ° C. Next, 5% (12.5 g) of immobilized lipase Lipozyme RM IM (water content 2.5%) was added to the raw material A while stirring at a temperature of 50 ° C. and stirring of 300 r / min, and the ester exchange was performed. The reaction was started. Immediately, nitrogen sealing was performed and a nitrogen atmosphere was established. The transesterification was carried out for 24 hours, and the immobilized lipase Lipozyme RM IM was filtered off to obtain sample E.
  • Test Example 8 Distilled water was added at the start of the transesterification reaction, and a transesterification reaction was carried out in the same manner as in Test Example 7 except that the water content in the reaction system was 1.1%.
  • Test Example 9 Distilled water was added at the start of the transesterification reaction, and a transesterification reaction was performed in the same manner as in Test Example 7 except that the water content in the reaction system was changed to 4.9%.
  • Test Example 10 Distilled water was added at the start of the transesterification reaction, and a transesterification reaction was carried out in the same manner as in Test Example 7 except that the water content in the reaction system was 9.6%.
  • Table 3 shows the water content in the reaction system of Test Examples 7 to 10 and the glyceride composition of the obtained reaction product.
  • Test Example 11 A sample I was obtained by carrying out a transesterification reaction in the same manner as in Test Example 7 except that the raw material B was used as the reaction raw material for the transesterification reaction.
  • Test Example 12 A sample J was obtained by carrying out a transesterification reaction in the same manner as in Test Example 7 except that the raw material C was used as the reaction raw material for the transesterification reaction.
  • Test Example 13 A sample K was obtained in the same manner as in Test Example 7 except that the raw material D was used as the reaction raw material for the transesterification reaction.
  • Test Example 14 A sample L was obtained in the same manner as in Test Example 7 except that the raw material E was used as the reaction raw material for the transesterification reaction.
  • Test Example 15 A sample M was obtained in the same manner as in Test Example 7 except that the raw material F was used as the reaction raw material for the transesterification reaction.
  • Test Example 16 A sample N was obtained in the same manner as in Test Example 7 except that the raw material G was used as the reaction raw material for the transesterification reaction.
  • Test Example 17 A sample O was obtained in the same manner as in Test Example 7 except that the raw material H was used as the reaction raw material for the transesterification reaction.
  • Table 4 shows the water content in the reaction systems of Test Examples 11 to 17 and the glyceride composition of the obtained reaction products.
  • Test Example 19 The sample was subjected to a transesterification reaction in the same manner as in Test Example 18 except that the immobilized lipase Lipozyme RM IM (water content 5.0%) used for the transesterification reaction was changed to 10% (25.0 g) with respect to the raw material A. Q was obtained.
  • Test Example 20 The sample was subjected to a transesterification reaction in the same manner as in Test Example 18 except that the immobilized lipase Lipozyme RM IM (moisture content 5.0%) used for the transesterification reaction was 20% (50.0 g) with respect to the raw material A. R was obtained.
  • the immobilized lipase Lipozyme RM IM moisture content 5.08% used for the transesterification reaction was 20% (50.0 g) with respect to the raw material A. R was obtained.
  • Test Example 21 In a 200 ML four-necked flask equipped with a stirring blade (50 mm ⁇ 18 mm), 90 g of raw material I was placed and allowed to stand at a temperature of 50 ° C. for 30 minutes to stabilize the raw material I in the flask at 50 ° C. Next, 1% (0.9 g) of the immobilized lipase Lipozyme RM IM (water content 2.6%) was added to the raw material I while stirring at a temperature of 50 ° C. and stirring of 300 r / min, and transesterification was performed. The reaction was started. Immediately, nitrogen sealing was performed to create a nitrogen atmosphere. Transesterification was carried out for 24 hours, and the immobilized lipase Lipozyme RM IM was filtered off to obtain sample W. Sample W had a trans unsaturated fatty acid content of 0.2%.
  • Test Example 22 The transesterification was carried out in the same manner as in Test Example 21 except that the immobilized lipase Lipozyme RM IM (water content 2.6%) used for the transesterification reaction was changed to 2% (1.8 g) with respect to the raw material I. Transesterification was performed for 5 hours, and the immobilized lipase Lipozyme RM IM was filtered off to obtain Sample X. Sample X had a trans unsaturated fatty acid content of 0.2%.
  • Test Example 23 The transesterification was carried out in the same manner as in Test Example 21 except that the immobilized lipase Lipozyme RM IM (water content 2.6%) used for the transesterification reaction was changed to 5% (4.5 g) with respect to the raw material I. Transesterification was carried out for 3 hours, and the immobilized lipase Lipozyme RM IM was filtered off to obtain sample Y. Sample Y had a trans-unsaturated fatty acid content of 0.2%.
  • Test Example 24 A transesterification reaction was carried out in the same manner as in Test Example 21 except that the immobilized lipase Lipozyme RM IM (water content 2.6%) used for the transesterification reaction was 20% (18.0 g) with respect to the raw material I. Transesterification was carried out for 1 hour, and the immobilized lipase Lipozyme RM IM was filtered off to obtain sample Z. Sample Z had a trans unsaturated fatty acid content of 0.2%.
  • Table 5 shows the water content in the reaction system of Test Examples 18 to 24 and the glyceride composition of the obtained reaction product.
  • Test Example 26 100 g of raw material A was placed in a 200 ML four-necked flask equipped with a stirring blade (75 mm ⁇ 20 mm) and allowed to stand at a temperature of 50 ° C. for 30 minutes to stabilize the raw material A in the flask at 50 ° C. Next, 1% (1.0 g) of Paratase (Novozymes Japan Co., Ltd., moisture content 51%), which is not immobilized, was stirred with stirring at a temperature of 50 ° C. and a stirring rate of 300 r / min. ) was added to initiate the transesterification reaction. Immediately, nitrogen sealing was performed to create a nitrogen atmosphere. When the transesterification reaction was carried out for 48 hours, the glyceride composition reached an equilibrium, and centrifugation was performed at 3000 r / min for 10 minutes to precipitate lipase.
  • Paratase Novozymes Japan Co., Ltd., moisture content 51%)
  • Table 6 shows the water content in the reaction system of Test Examples 25 and 26 and the glyceride composition of the obtained reaction product.
  • Test Example 28 As a reaction raw material for the transesterification reaction, a transesterification reaction was conducted for 4 hours in the same manner as in Test Example 27 except that 2.7 g of glycerin was mixed with 87.3 g of the raw material (glycerin content in the reaction raw material was 3%). Obtained.
  • Test Example 29 As a reaction raw material for the transesterification reaction, a transesterification reaction was conducted for 4 hours in the same manner as in Test Example 27 except that 4.5 g of glycerin was mixed with 85.5 g of the raw material (glycerin content in the reaction raw material was 5%). Obtained.
  • Test Example 30 As a reaction raw material for the transesterification reaction, a sample AD was obtained by performing the transesterification reaction for 4 hours in the same manner as in Test Example 27 except that 6.3 g of glycerin was mixed with 73.7 g of the raw material J (containing 7% glycerin in the reaction raw material). It was.
  • Test Example 31 As a reaction raw material for the transesterification reaction, a transesterification reaction was performed for 4 hours in the same manner as in Test Example 27 except that 8.1 g of glycerin was mixed with 81.9 g of the raw material (containing 9% glycerin in the reaction raw material) to obtain sample AE It was.
  • Test Example 32 As a reaction raw material for the transesterification reaction, a sample AF was obtained by conducting the transesterification reaction for 4 hours in the same manner as in Test Example 27 except that 9.9 g of glycerin was mixed with 80.1 g of the raw material J (containing 11% glycerin in the reaction raw material). It was.
  • Table 7 shows the water content in the reaction systems of Test Examples 27 to 32 and the glyceride composition of the obtained reaction products.
  • Deodorization treatment was performed in a batch manner.
  • the vacuum pump used was a Hitachi rotary vacuum pump TYPE160VP-D CuteVac.
  • a steam generator was connected to the 300 ML glass Claisen flask with a capillary glass tube having an inner diameter of 2.5 mm.
  • Nitrogen was circulated while bubbling at a flow rate of 1 L / min for 10 minutes at a temperature of 70 ° C. to completely replace the inside of the apparatus.
  • a vacuum was applied with a vacuum pump and the mixture was heated with a mantle heater. The heating time was 6 to 8 minutes from a temperature of 70 ° C.
  • the deodorization temperature, the deodorization time, and the water vapor amount were as shown in Table 8, and the pressure was 0.2 to 0.4 kPa.
  • the mantle heater was removed, and the mixture was cooled with a cool air blower from the deodorization temperature to a temperature of 200 ° C for 1 to 2 minutes and from a temperature of 200 ° C to a temperature of 70 ° C for 5 to 7 minutes. After cooling to a temperature of 70 ° C., nitrogen was blown into the deodorizing apparatus and returned to normal pressure.
  • Tocopherol (RIKEN E Oil 600: Riken Vitamin Co., Ltd.) was added at 200 ppm to the washing oil to obtain deodorized oils of Test Examples 33 to 36.
  • Table 8 shows the physical property values of the deodorized oils of Test Examples 33 to 36.
  • “Irritation” and “weight” are flavors caused by undeodorized fats and oils that are raw materials and unfavorable flavors caused by impurities generated in the production process of fats and oils with a high content of diacylglycerol. This refers to the stimulating sensation (stimulation) that occurs and the mouth sensation (weight) that is tangled.
  • Test Example 37 In a 1 L four-necked flask equipped with a stirring blade (90 mm ⁇ 24 mm), 280 g (39 wt%) of the distilled recovered oil shown in Table 1 and 438 g (61 wt%) of the raw material J were placed, and the temperature was 50 ° C. for 30 minutes. It left still and the raw material J in a flask was stabilized at 50 degreeC. Next, while stirring at a temperature of 50 ° C. and stirring of 300 r / min, a commercially available immobilized lipase Lipozyme RM IM (water content: 3.2%) was 10% (71 8 g) was added to initiate the transesterification reaction.
  • a commercially available immobilized lipase Lipozyme RM IM water content: 3.2%) was 10% (71 8 g) was added to initiate the transesterification reaction.
  • the content of diacylglycerol + triacylglycerol in the reaction product increases as the content of triacylglycerol or diacylglycerol in the reaction material increases, but from the point of diacylglycerol purity, the reaction material It was found that the content in the inside is preferably small (Test Examples 11 to 17). From Table 5, it was also found that it is preferable to increase the lipase concentration from the viewpoint that the reaction time can be shortened (Test Examples 18 to 24).
  • transesterification was performed by performing a transesterification reaction using the glycerolysis anti-end oil obtained by the glycerolysis reaction of undeodorized fat and glycerin, and then performing a deodorization treatment so that the heat history was within a certain range. It was found that oils and fats with a high content of diacylglycerol having a low saturated fatty acid content and good hue and flavor unique to diacylglycerol such as “umami” and “kokumi” can be obtained efficiently (Test Examples 33 to 37).
  • fats and oils with high flavor and high content of diacylglycerol can also be obtained by using fats and oils recovered in the distillation step after the transesterification reaction as raw material monoacylglycerols for the transesterification reaction. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Abstract

 ジアシルグリセロール高含有油脂を工業的に有利な条件で効率よく製造する方法の提供。  モノアシルグリセロール類を水の存在下に、リパーゼを用いてエステル交換反応させるジアシルグリセロール高含有油脂の製造方法。

Description

ジアシルグリセロール高含有油脂の製造方法
 本発明は、ジアシルグリセロール高含有油脂の製造方法に関する。
 ジアシルグリセロールを高濃度に含む油脂は、体脂肪燃焼作用等の生理作用を有することから、食用油として広く使用されている。ジアシルグリセロールの製造は、通常、グリセリンと油脂とのグリセロリシス反応による方法や、グリセリンと脂肪酸とのエステル化反応による方法が一般的であるが(例えば特許文献1~3参照)、モノグリセライドと油脂をエステル交換反応する方法もある(特許文献4参照)。
 また、エステル化反応に用いる脂肪酸を、原料油脂を高圧分解法と酵素分解法を組み合わせて加水分解することにより製造し、次いで当該脂肪酸とグリセリンとをエステル化するという方法がある(特許文献5参照)。
 これらの製造法は、アルカリ触媒等を用いた化学法と、リパーゼ等の酵素を用いた酵素法に大別される。
特公平6-65310号公報 特公平6-65311号公報 特開平4-330289号公報 特開2000-345189号公報 特開2006-137923号公報
 本発明は、モノアシルグリセロール類を水の存在下に、リパーゼを用いてエステル交換反応させるジアシルグリセロール高含有油脂の製造方法を提供するものである。
発明の詳細な説明
 前記従来技術において、グリセロリシス反応やエステル交換反応による方法では、得られた反応生成物自体のジアシルグリセロール純度が低く、高純度とするためには高真空の蒸留設備を必要とするなどジアシルグリセロールの純度の点及び工業的生産性の点で課題がある。また、エステル化によれば反応原料とする脂肪酸の純度や条件設定により、ジアシルグリセロールの純度を高めることはできるが、製造効率と品質との兼ね合いやコストの点で必ずしも満足するものとはいえない。
 そこで、本発明は、ジアシルグリセロール高含有油脂を工業的に有利な条件で効率よく製造する方法を提供することに関する。
 本発明者は、ジアシルグリセロールの製造方法について種々検討してきたところ、モノアシルグリセロール類をエステル交換反応させることにより、高純度のジアシルグリセロールが効率よく得られることを見出した。
 本発明の製造方法によれば、高価な原料や特殊な設備を用いることなく、ジアシルグリセロール含量の高い油脂を効率よく得られることから、工業的に極めて有利である。
 本発明方法に用いるモノアシルグリセロール類(以下、「原料モノアシルグリセロール類」ともいう)としては、グリセリンの1位の水酸基が脂肪酸でエステル化されたもの(1-モノアシルグリセロール)、2位の水酸基が脂肪酸でエステル化されたもの(2-モノアシルグリセロール)及び3位の水酸基が脂肪酸でエステル化されたもの(3-モノアシルグリセロール)が挙げられるが、1-モノアシルグリセロール又は3-モノアシルグリセロールの比率が高いものが好ましい。
 原料モノアシルグリセロール類の脂肪酸残基の炭素数に特に制限はないが、炭素数8~24、更に炭素数14~24、特に炭素数16~22が好ましい。脂肪酸残基としては、飽和のもの及び不飽和のものが挙げられ、具体的には、カプリル酸、カプリン酸、ラウリル酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、エイコサペンタエン酸、ドコサヘキサエン酸由来のアシル基や、これらの酸を含有する牛脂、豚脂等の動物油、菜種油、大豆油、トウモロコシ油、ヒマワリ油、綿実油、シソ油、トウハゼ油、アマニ油、紅花油、エゴマ油、パーム油等の植物油から誘導される脂肪酸由来のアシル基が挙げられる。
 これらの原料モノアシルグリセロール類は一種又は二種以上を用いることができる。
 原料モノアシルグリセロール類の全構成脂肪酸中不飽和脂肪酸含有量は、最終製品の外観、生理効果や、工業的生産性の点から、50質量%(以下、単に「%」と記載する)以上、更に60%以上、特に70%以上であることが好ましい。また、不飽和脂肪酸としては、オレイン酸、リノール酸、リノレン酸が好ましい。
 また、原料モノアシルグリセロール類の構成脂肪酸のうち、トランス不飽和脂肪酸含有量は、最終製品中のトランス不飽和脂肪酸含有量を低減させる点から、8%以下であることが好ましく、4%以下であることがより好ましく、更に最終製品中のトランス不飽和脂肪酸含有量をより高度に低減させる点からは、2%以下、更に1.5%以下、特に1%以下、殊更0.5%以下であることが好ましい。
 原料モノアシルグリセロール類は、菜種油、ひまわり油、とうもろこし油、大豆油、米油、紅花油、綿実油、牛脂、あまに油、魚油等の油脂の加水分解反応、これら各種油脂とグリセリンとのグリセロリシス反応、かかる油脂由来の脂肪酸とグリセリンとのエステル化反応等任意の方法により得ることができる。また、前記油脂は、分別、混合したもの、水素添加やエステル交換反応などにより脂肪酸組成を調整したものも利用できるが、水素添加していないものであることが、油脂の構成脂肪酸中のトランス不飽和脂肪酸含有量を低減させる点から好ましい。反応方法は、アルカリ触媒等を用いた化学法、リパーゼ等の酵素を用いた酵素法のいずれでもよい。得られた反応生成物を蒸留、分画、溶剤抽出、水蒸気蒸留等により所期の原料モノアシルグリセロール類を得ることができる。
 原料モノアシルグリセロール類は、製造工程の簡略化、コスト低減、最終製品中のトランス不飽和脂肪酸含有量を低減させる点から、油脂とグリセリンとのグリセロリシス反応によって得られた反応終了油(以下、「グリセロリシス反応終了油」ともいう)を用いることが好ましい。また、グリセロリシス反応に用いる原料油脂は、その構成脂肪酸中のトランス不飽和脂肪酸含有量が3%以下、更に2%以下、特に1%以下、殊更0.5%以下であることが、最終製品中のトランス不飽和脂肪酸含有量を低減させる点から好ましい。具体的には、菜種油、ひまわり油、とうもろこし油、大豆油、米油、紅花油、綿実油、牛脂、あまに油、魚油等の未脱臭油脂を用いることが好ましい。なお、本発明において未脱臭油脂とは、油脂の精製処理において脱臭を行っていない油脂をいう。
 油脂とグリセリンをグリセロリシス反応する方法は、従来公知の方法を採用すればよく、化学法、酵素法のいずれでも可能である。最終製品中のトリアシルグリセロール含有量を低減するという点からは、化学法によるのが好ましい。また、最終製品中のトランス不飽和脂肪酸含有量を増加させないという点からは、酵素法によるのが好ましい。酵素としてはリパーゼを用いることが好ましく、リパーゼとしては、エステル交換反応に用いるリパーゼと同様のものを挙げることができる。グリセロリシス反応を酵素法で行う場合、例えば反応速度を向上する点、リパーゼの失活を抑制する点から、反応温度は0~100℃、更に20~80℃、特に30~80℃とするのが好ましい。
 また、グリセロリシス反応を化学法で行う場合、触媒として水酸化ナトリウム、水酸化カルシウム等のアルカリ、又は有機酸などの酸やその塩を使用することが、反応速度を向上する点、反応油の色相を良くする点から好ましい。反応温度は、反応速度を向上する点、トランス不飽和脂肪酸の生成を抑制する点から100~300℃、更に150~250℃が好ましい。
 本発明における原料モノアシルグリセロール類中には、モノアシルグリセロール、ジアシルグリセロール、トリアシルグリセロール及びグリセリンを含んでいてもよい。本発明の態様においては、ジアシルグリセロール含有量を高める点、原料の精製負荷の点からグリセリンは15%以下が好ましく、更に10%以下、更に0~5%、特に0~3%、殊更0.1~1%であることが好ましい。なお、原料モノアシルグリセロール類として、油脂とグリセリンとのグリセロリシス反応によるグリセロリシス反応終了油を用いる場合には、グリセロリシス反応終了油からグリセリンを除去して用いるのが好ましい。
 グリセリンの除去方法は、遠心分離によりグリセリン層を除去する方法、減圧によりグリセリンを留去する方法、水蒸気蒸留によりグリセリンを除去する方法、分層によりグリセリン層を除去する方法、水洗による除去方法、吸着剤等を用いて除去する方法等が挙げられるが、これらに限定されるものではなく、これらを組み合わせても良い。
 最終製品のジアシルグリセロール純度を向上させる点から、原料モノアシルグリセロール類中のトリアシルグリセロール含有量は、50%以下が好ましく、更に40%以下、特に0.1~30%が好ましい。また、原料モノアシルグリセロール類中のジアシルグリセロール含有量は、40%以下が好ましく、更に30%以下、特に0.1~20%が好ましい。原料モノアシルグリセロール類中の脂肪酸含有量は、50%以下が好ましく、更に40%以下、更に0.1~30%、特に0.1~20%、殊更0.1~10%が好ましい。原料モノアシルグリセロール類中のモノアシルグリセロール含有量は、45%以上が好ましく、更に50%以上、特に55~99%が好ましい。
 エステル交換反応に用いるリパーゼは、動物由来、植物由来のものはもとより、微生物由来の市販リパーゼ、更にリパーゼを固定化した固定化リパーゼを使用することもできる。例えば、エステル交換用リパーゼは、リゾプス(Rizopus)属、アスペルギルス(Aspergillus)属、クロモバクテリウム(Chromobacterium)属、ムコール(Mucor)属、リゾムコール(Rhizomucor)属、シュードモナス(Pseudomonas)属、ジオトリケム(Geotrichum)属、ペニシリウム(Penicillium)属、キャンディダ(Candida)属等の微生物起源のリパーゼ及び膵臓リパーゼ等の動物リパーゼが挙げられる。特に、エステル交換反応による機能性油脂を製造することを目的とする場合、微生物起源では、ペニシリウム(Penicillium)属、リゾムコール(Rhizomucor)属、及びキャンディダ(Candida)属等が良い。
 更に、リパーゼを担体に固定化した固定化リパーゼを用いることがリパーゼ活性を有効利用できる点から好ましい。また、固定化リパーゼを用いることは、反応生成物とリパーゼの分離が簡便である点からも好ましい。
 固定化担体としては、セライト、ケイソウ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、炭酸カルシウム、セラミックス等の無機担体、セラミックスパウダー、ポリビニルアルコール、ポリプロピレン、キトサン、イオン交換樹脂、疎水吸着樹脂、キレート樹脂、合成吸着樹脂等の有機高分子等が挙げられるが、特に保水力が高い点からイオン交換樹脂が好ましい。また、イオン交換樹脂の中でも、大きな表面積を有することによりリパーゼの吸着量を高くできるという点から、多孔質であることが好ましい。
 固定化担体として用いる樹脂の粒子径は50~2000μmが好ましく、更に100~1000μmが好ましい。細孔径は10~150nmが好ましく、更に10~100nmが好ましい。材質としては、フェノールホルムアルデヒド系、ポリスチレン系、アクリルアミド系、ジビニルベンゼン系等が挙げられ、特にフェノールホルムアルデヒド系樹脂(例えば、Rohm and Hass社製Duolite A-568)がリパーゼ吸着性向上の点から好ましい。
 リパーゼを固定化する場合、リパーゼを固定化担体に直接吸着してもよいが、高活性を発現するような吸着状態にするため、リパーゼ吸着前にあらかじめ担体を脂溶性脂肪酸又はその誘導体で処理して使用してもよい。使用する脂溶性脂肪酸としては、炭素数8~18の飽和又は不飽和の、直鎖又は分岐鎖の、水酸基が置換していてもよい脂肪酸が挙げられる。具体的には、カプリン酸、ラウリン酸、ミスチリン酸、オレイン酸、リノール酸、α-リノレン酸、リシノール酸、イソステアリン酸等が挙げられる。またその誘導体としては、これらの脂肪酸と一価又は多価アルコールとのエステル、リン脂質、及びこれらのエステルにエチレンオキサイドを付加した誘導体が挙げられる。具体的には、上記脂肪酸のメチルエステル、エチルエステル、モノグリセライド、ジグリセライド、それらのエチレンオキサイド付加体、ポリグリセリンエステル、ソルビタンエステル、ショ糖エステル等が挙げられる。これらの脂溶性脂肪酸又はその誘導体は、2種以上を併用してもよい。
 これらの脂溶性脂肪酸又はその誘導体と担体の接触法としては、水又は有機溶剤中の担体にこれらを直接加えてもよいが、分散性を良くするため、有機溶剤に脂溶性脂肪酸又はその誘導体を一旦分散、溶解させた後、水に分散させた担体に加えてもよい。この有機溶剤としては、クロロホルム、ヘキサン、アセトン、エタノール等が挙げられる。脂溶性脂肪酸又はその誘導体の使用量は、担体100質量部(以下、単に「部」で示す)に対して1~1000部、更に10~500部が好ましい。接触温度は0~80℃、更に20~60℃が好ましく、接触時間は5分~5時間程度が好ましい。この処理を終えた担体は、ろ過して回収するが、乾燥してもよい。乾燥温度は0~80℃が好ましく、減圧乾燥を行ってもよい。
 リパーゼの固定化を行う温度は、リパーゼの特性によって決定することができるが、リパーゼの失活が起きない温度、すなわち0~80℃、更に20~60℃が好ましい。また固定化時に使用するリパーゼ溶液のpHは、リパーゼの変性が起きない範囲であればよく、温度同様リパーゼの特性によって決定することができるが、pH3~9が好ましい。このpHを維持するためには緩衝液を使用するが、緩衝液としては、酢酸緩衝液、リン酸緩衝液、トリス塩酸緩衝液等が挙げられる。上記リパーゼ溶液中のリパーゼ濃度は、固定化効率の点からリパーゼの飽和溶解度以下で、かつ十分な濃度であることが好ましい。またリパーゼ溶液は、必要に応じて不溶部を遠心分離で除去した上澄や、限外濾過等によって精製したものを使用することもできる。また用いるリパーゼ質量はそのリパーゼ活性によっても異なるが、担体100部に対して5~1000部、更に10~500部が好ましい。
 リパーゼの固定化後にエステル交換反応に適した状態にする点から、リパーゼ溶液から濾過により、固定化リパーゼを回収し、余分な水分を除去したのち、乾燥することなしに反応基質となる原料に接触させることが好ましい。接触後の固定化リパーゼ中の水分は、用いる担体の種類によっても異なるが、固定化担体100部に対し0.1~100部、更に0.5~50部、特に1~30部であることが好ましい。このときカラム等の充填容器に封入して、ポンプ等により原料を循環しても良いし、原料中に固定化リパーゼを分散させても良い。接触させる温度は0~80℃が良く、リパーゼの特性によって選ぶことができる。更に、接触する時間は0.2時間~200時間程度で良く、工業的生産性の点から3時間~100時間が好ましい。この接触が終わったところで濾過し、固定化リパーゼを回収することが、工業的生産性の点から好ましい。
 固定化リパーゼのエステル交換活性は、後述の試験例1に記載した方法と同じ条件で、反応時間のみ3時間としてエステル交換反応を行い、反応生成物中のジアシルグリセロール含有量が反応原料中のジアシルグリセロール含有量よりも1%以上増加、更に3%以上増加、特に10%以上増加するものであることが好ましい。
 本発明において、モノアシルグリセロール類のエステル交換反応は、回分式、連続式、又は半連続式で行うことができる。反応装置に供給される原料は、予め減圧による脱水、脱気又は脱酸素を行うことが得られる反応生成物のジアシルグリセロール含有量を高くし、劣化抑制する点から好ましい。
 反応に用いるリパーゼ量は、リパーゼの活性を考慮して適宜決定することができるが、分解する原料モノアシルグリセロール類100部に対して0.01~100部、更に0.1~50部、特に0.2~30部が好ましい。
 エステル交換反応は水の存在下で行われる。反応系内における水の量は、4%以下、更に0.01~3%、特に0.02~2%とするのが、反応生成物のジアシルグリセロール含有量を増加させる点から好ましい。水は、蒸留水、イオン交換水、水道水、井戸水等いずれのものでも構わない。また、グリセリン等その他の水溶性成分が混合されていても良い。必要に応じて、リパーゼの安定性が維持できるようにpH3~9の緩衝液を用いてもよい。
 水は、リパーゼ、原料モノアシルグリセロール類中に含まれるものでもよいが、合計の水の量が4%以下になる様にコントロールすることが好ましく、該コントロールの方法としては、(i)あらかじめ、各成分の水分量をカールフィッシャー法等により測定しておき、合計の水分量をコントロールする方法、(ii)反応成分を完全に脱水して、後で所定量の水を加える方法等があるが、(i)の方法が、粉末のリパーゼ等吸湿性のあるものの取り扱いが簡略なので好ましい。なお固定化リパーゼが保持している水分量も、前記水分量に含めるものとする。
 反応温度は、リパーゼの活性をより有効に引き出し、分解により生じた遊離脂肪酸が結晶とならない温度である0~80℃、更に20~70℃とすることが好ましい。また反応は、空気との接触が出来るだけ回避されるように、窒素等の不活性ガス存在下で行うことが好ましい。
 反応は、ヘキサン、シクロヘキサン、石油エーテル等の溶剤下で行ってもよい。
 本発明において、反応生成物のジアシルグリセロールの純度は、50%以上であることが好ましく、より好ましくは60~99%、更に70~98%、特に80~97%であることが生理効果、工業的生産性の点から好ましい。ここで、ジアシルグリセロール純度は、[ジアシルグリセロール/(ジアシルグリセロール+トリアシルグリセロール)×100]である。
 本発明において、反応生成物中のジアシルグリセロール+トリアシルグリセロール含有量[質量%]は50%以上であることが好ましく、より好ましくは50~99%、更に55~98%、特に60~97%であることが、生理効果、工業的生産性の点から好ましい。
また、反応生成物中のモノアシルグリセロール含有量は、蒸留負荷を低減する点、反応効率を高くする点から2~60%であることが好ましく、更に3~50%、特に5~50%、殊更10~40%であることが好ましい。
 本発明方法によりリパーゼを用いてエステル交換反応して得られた反応生成物は、ジアシルグリセロール純度が高いため、高い生理効果を有する油脂として有用である。
 エステル交換反応により得られたジアシルグリセロール高含有油脂は、後処理を行うことにより製品とすることができる。後処理は、蒸留、酸処理、水洗、脱臭の各工程を行うことが好ましい。
 蒸留工程は、エステル交換反応により得られたジアシルグリセロール高含有油脂を減圧蒸留することにより、反応生成物から副生した脂肪酸及び未反応のモノアシルグリセロールを除去する工程をいう。
 近年、環境問題に対して社会の要請が高まってきており、高品質の製品の製造と、環境負荷の低減とを両立させ得る製造技術が強く望まれている。環境負荷を低減するためには製造工程から排出される廃棄物量を少なくすることが効果的である点から、本発明の態様において、ジアシルグリセロール高含有油脂の製造時に、蒸留工程により除去される反応生成物から副生した脂肪酸及び未反応のモノアシルグリセロールを回収し、これを蒸留回収油として次の反応原料の一部又は全部に再利用することが好ましい。また、蒸留回収油を用いるとジアシルグリセロール含有量を高めることができる点からも好ましい。
 蒸留工程の条件は、圧力は1~300Paであることが好ましく、更に1.5~200Pa、特に2~100Paであることが、設備コストや運転コストを小さくする点、蒸留能力を上げる点、蒸留温度を最適に選定できる点、熱履歴によるトランス不飽和脂肪酸の増加抑制や熱劣化を抑制する点から好ましい。温度は180~280℃、更に190~260℃、特に200~250℃であることが、トランス不飽和脂肪酸の増加を抑制する点から好ましい。滞留時間は0.2~30分、更に0.2~20分、特に0.2~10分であることが、トランス不飽和脂肪酸の増加を抑制する点から好ましい。ここで、滞留時間とは、油脂が蒸留温度に達している間の平均滞留時間をいう。
 酸処理工程は、前記蒸留油にクエン酸等のキレート剤を添加、混合し、更に減圧脱水する工程をいう。また、得られた酸処理油は、色相、風味を更に良好とする点から、吸着剤との接触による脱色工程を行っても良い。水洗工程は、前記酸処理油に水を添加して強攪拌し、油水分離を行う操作を行う工程をいう。水洗は複数回(例えば3回)繰り返し、水洗油を得るのが好ましい。
 脱臭処理は、基本的に減圧水蒸気蒸留で行われ、バッチ式、半連続式、連続式等が挙げられる。少量の場合はバッチ式を用い、多量になると半連続式、連続式を用いることが好ましい。半連続式の場合の装置としては、数段のトレイを備えた脱臭塔からなるトレイ式脱臭装置(ガードラー式脱臭装置)等が挙げられる。本装置は、上部から脱臭すべき油脂が供給され、油が下段のトレイへ間欠的に次々と下降しながら移動することにより脱臭される。連続式の場合の装置としては、脱臭塔内に気液接触効率と低圧力損失を両立した構造物が充填され、水蒸気との接触効率を向上させた薄膜脱臭装置等がある。
 脱臭処理を行うには、以上の薄膜脱臭装置又はトレイ式脱臭装置の単独で行う方法の他、これら薄膜脱臭装置を用いた脱臭処理とトレイ式脱臭装置を用いた脱臭処理とを組み合わせて行う方法があるが、本願発明の場合には、装置コスト、トランス不飽和脂肪酸含量、ジアシルグリセロール特有の風味の点から、薄膜脱臭装置又はトレイ式脱臭装置の単独で脱臭を行う方法が好ましい。
 一般に脱臭処理により、水洗油に含まれる有臭成分が除去され、また、カロチノイド系色素は熱分解されるため淡色となり、更に、微量に含まれる不純物質が不活性化し安定な物質となる。よって、通常の油脂を用いた脱臭においては、条件を厳しくすることにより風味的には好ましいものとなる。しかし、ジアシルグリセロール高含有油脂においては、脱臭工程によりコク味が影響を受けるため、製品の品質は脱臭処理の条件により左右されることとなる。
 本発明において、当該脱臭処理は、脱臭時間(x[分])と脱臭温度(y[℃])が次式(i)を満たす範囲内となるよう行う。
 (i)350≦(y-210)×x≦2100
(但し、215≦y≦280)
 式(i)で規定される範囲より低い熱履歴で脱臭処理を行う場合、あるいは215℃より低い脱臭温度(y)で脱臭処理を行う場合は、刺激感及び重さが低減された油脂は得られず、式(i)で規定される範囲より高い熱履歴、あるいは280℃より高い脱臭温度(y)で脱臭処理を行う場合は、コク味に優れた油脂は得られず、またトランス不飽和脂肪酸の増加抑制効果が十分ではない。ここで、xは脱臭時間(分)、yは脱臭温度(℃)を示す。ただし、脱臭中に経時的に温度が変化する場合は、それらの平均値とする。また、脱臭処理は、脱臭効率、風味の向上、トランス酸不飽和脂肪酸の増加を抑制する点から、更に次式(ii)
 (ii)400<(y-210)×x<1900
を満たす範囲で行うことがより好ましく、特に次式(iii)
 (iii)450<(y-210)×x<1700
を満たす範囲で行うことがより好ましく、殊更に次式(iv)
 (iv)500<(y-210)×x<1600
を満たす範囲で行うことが好ましい。なお、いずれも215≦y≦280を満たす範囲である。
 本発明においては、前記式(i)で規定される条件で脱臭処理を行うので、脱臭温度により脱臭時間が変化する。具体的には、脱臭処理を250~270℃で行う場合には脱臭時間を6~35分、脱臭処理を235~250℃で行う場合には脱臭時間を9~53分、脱臭処理を220~235℃で行う場合には脱臭時間を14~120分とすることが好ましい。
 脱臭処理としては、減圧水蒸気蒸留が好ましく、用いる水蒸気量は油脂に対して0.3~20%、特に0.5~10%とすることが、ジアシルグリセロール特有の「旨味」「コク味」等の風味を良好にする点から好ましい。また、圧力は0.01~4kPa、特に0.06~0.6kPaとすることが、同様の点から好ましい。
 中でも、脱臭温度が255~280℃で、水蒸気量を油脂に対して0.3~3%、より好ましくは0.4~2.5%、特に0.5~2.2%とすることが、ジアシルグリセロール特有の「旨味」「コク味」等の風味を良好にする点から好ましい。また、脱臭温度が250~255℃で、水蒸気量を油脂に対して2.1~5%、より好ましくは2.2~4.5%、特に2.5~4%とすることが、同様の点から好ましい。更に、脱臭温度が215~250℃で、水蒸気量を油脂に対して2.1~10%、より好ましくは2.2~8%、特に2.5~6%とすることが、同様の点から好ましい。
 脱臭温度への昇温時間は、トランス不飽和脂肪酸増加抑制の点から、温度70℃から温度200℃まで0.5~60分、温度200℃から脱臭温度まで0.5~45分とするのが好ましく、更に、温度70℃から温度200℃まで1~30分、温度200℃から脱臭温度まで1~20分、特に、温度70℃から温度200℃まで2~20分、温度200℃から脱臭温度まで2~15分とするのが好ましい。脱臭温度からの冷却時間は、トランス不飽和脂肪酸増加抑制の点から、脱臭温度から温度200℃まで0.2~35分、温度200℃から70℃まで0.2~40分とするのが好ましく、更に、脱臭温度から温度200℃まで0.5~25分、温度200℃から70℃まで0.5~30分、特に、脱臭温度から温度200℃まで1~20分、温度200℃から70℃まで1~25分とするのが好ましい。
 当該脱臭処理の結果、精製工程におけるトランス不飽和脂肪酸増加量を1%以下に抑えることができ、油脂を構成する全脂肪酸中のトランス不飽和脂肪酸含有量が2%以下と少ないジアシルグリセロール高含有油脂を得ることができる。ジアシルグリセロール高含有油脂中のトランス不飽和脂肪酸含有量は、更に0~1.5%、特に0.1~1.2%であることが、生理効果の点から好ましい。
 以上の後処理により、ジアシルグリセロール及びトリアシルグリセロール以外の未反応物、副生成物は除去される。従って、本発明方法により製造されたジアシルグリセロール高含有油脂は、風味がよく、色相も良好である。また、トランス不飽和脂肪酸の生成が少なく、ジアシルグリセロール含量が高いため、高い生理効果を有する油脂として有用である。製品となったジアシルグリセロール高含有油脂中のジアシルグリセロール含有量は、前記「ジアシルグリセロール純度」の範囲となることが好ましい。
〔分析方法〕
(i)グリセリド組成の測定
 遠心分離が可能な試験管にサンプルを約3g採取し、3000r/minで10分間遠心分離を行い、沈降したグリセリンを除去した。次いで、ガラス製サンプル瓶に、上層を約10mgとトリメチルシリル化剤(「シリル化剤TH」、関東化学製)0.5mLを加え、密栓し、70℃で15分間加熱した。これに水1.5mLとヘキサン1.5mLを加え、振とうした。静置後、上層をガスクロマトグラフィー(GLC)に供して、グリセリド組成の分析を行った。
(ii)構成脂肪酸中のトランス不飽和脂肪酸含有量
 日本油化学協会編「基準油脂分析試験法」中の「脂肪酸メチルエステルの調製法(2.4.1.2-1996)」に従って脂肪酸メチルエステルを調製し、得られたサンプルを、American Oil Chemists. Society Official Method Ce 1f-96(GLC法)により測定した。
(iii)反応系内の水分量
 固定化リパーゼ又は固定化していない粉末のリパーゼ、及び原料モノアシルグリセロール類中の水分含有量を、AQUACOUNTER AQ-7(平沼産業(株))を用いて測定し、当該水分量及び各原料の使用量から反応系内の水分量を求めた。
(IV)色相
 脱臭油の色相は、American Oil Chemists. Society Official Method Ca 13e-92(Lovibond法)で5.25インチセルにより測定し、次の式(1)で求めた値をいう。
   色相C=10R+Y   (1)
   (式中、R=Red値、Y=Yellow値)
〔固定化リパーゼの調製〕
<固定化リパーゼG>
 Duolite A-568(Rohm & Hass社製)500gを0.1Nの水酸化ナトリウム水溶液5000mL中で、1時間攪拌した。その後、5000mLの蒸留水で1時間洗浄し、500mMの酢酸緩衝液(pH5)5000mLで、2時間pHの平衡化を行った。その後50mMの酢酸緩衝液(pH5)5000mLで2時間ずつ2回、pHの平衡化を行った。この後、濾過を行い、担体を回収した後、エタノール2500mLでエタノール置換を30分間行った。濾過した後、大豆脂肪酸を500g含むエタノール2500mLを加え30分間、大豆脂肪酸を担体に吸着させた。この後濾過し、担体を回収した後、50mMの酢酸緩衝液(pH5)2500mLで4回洗浄し、エタノールを除去し、濾過して担体を回収した。その後、油脂に作用する市販のリパーゼ(リパーゼG「アマノ」50、天野エンザイム(株))の10%溶液10000mLと2時間接触させ、固定化を行った。さらに、濾過し固定化リパーゼを回収して、50mMの酢酸緩衝液(pH5)2500mLで洗浄を行い、固定化していないリパーゼや蛋白を除去した。以上の操作はいずれも温度20℃で行った。その後、大豆脂肪酸2000gを加え、温度40℃で攪拌しながら、圧力400Paに達するまで減圧して脱水した。その後、ヘキサン2500mLで30分間攪拌後、ヘキサン相を濾別する操作を3回行った。その後、温度40℃でエバポレーターを使って1時間脱溶剤し、次いで、温度40℃、圧力1300Paの条件で15時間減圧乾燥して脱溶剤を行い、固定化リパーゼGを得た。
<固定化リパーゼAY>
 Duolite A-568(Rohm & Hass社製)500gを0.1Nの水酸化ナトリウム水溶液5000mL中で、1時間攪拌した。その後、5000mLの蒸留水で1時間洗浄し、500mMのリン酸緩衝液(pH7)5000mLで、2時間pHの平衡化を行った。その後50mMのリン酸緩衝液(pH7)5000mLで2時間ずつ2回、pHの平衡化を行った。この後、濾過を行い、担体を回収した後、エタノール2500mLでエタノール置換を30分間行った。濾過した後、大豆脂肪酸を500g含むエタノール2500mLを加え30分間、大豆脂肪酸を担体に吸着させた。この後濾過し、担体を回収した後、50mMのリン酸緩衝液(pH7)2500mLで4回洗浄し、エタノールを除去し、濾過して担体を回収した。その後、油脂に作用する市販のリパーゼ(リパーゼAY「アマノ」30G、天野エンザイム(株))の10%溶液10000mLと4時間接触させ、固定化を行った。さらに、濾過し固定化リパーゼを回収して、50mMのリン酸緩衝液(pH7)2500mLで洗浄を行い、固定化していないリパーゼや蛋白を除去した。以上の操作はいずれも温度20℃で行った。その後、脱臭大豆油2000gを加え、温度40℃、10時間攪拌した後、濾過して脱臭大豆油と分離した。その後、ヘキサン2500mLで30分間攪拌後、ヘキサン相を濾別する操作を3回行った。その後、温度40℃でエバポレーターを使って1時間脱溶剤し、次いで、温度40℃、圧力1300Paの条件で15時間減圧乾燥して脱溶剤を行い、固定化リパーゼAYを得た。
〔原料油脂の調製1〕
 エステル交換反応の原料となるモノアシルグリセロールはO-95R(花王(株)、以下同じ)を用いた(原料A)。また、O-95Rに菜種油を添加し、トリアシルグリセロール含有量の異なるグリセリド混合油を調製し(原料B、C、D、E)、更に、O-95Rに健康エコナクッキングオイル(花王(株)、以下同じ)を添加し、ジアシルグリセロール含有量の異なるグリセリド混合油を調製した(原料F、G)。また、O-95Rに菜種油及び健康エコナクッキングオイルを添加し、モノアシルグリセロール、ジアシルグリセロール及びトリアシルグリセロールの含有量がほぼ同じであるグリセリド混合油を調製した(原料H)。表1に、原料油脂のグリセリド組成を示した。
〔原料油脂の調製2〕
 未脱臭菜種油1000g及びグリセリン343gを、攪拌羽根(90mm×24mm)を取り付けた2L4ツ口フラスコに入れ、攪拌500r/minの条件で攪拌しながら、触媒として水酸化カルシウム0.134gを添加した。次に、窒素ガスを流通しながら、温度210℃、反応時間1時間の条件にてグリセロリシス反応を行い、100℃以下に冷却後、リン酸を0.158g添加して触媒を中和した。次いで、25℃まで冷却し、6000r/minで10分間遠心分離を行い、分離したグリセリンを除去して原料モノアシルグリセロールである原料Iを得た。表1に未脱臭菜種油と原料Iのグリセリド組成を示した。未脱臭菜種油及び原料Iのトランス不飽和脂肪酸含有量は、それぞれ0.1%及び0.2%であった。
〔原料油脂の調製3〕
 上記未脱臭菜種油2500g及びグリセリン858gを、攪拌羽根(90mm×24mm)を取り付けた5L4ツ口フラスコに入れ、攪拌500r/minの条件で攪拌しながら、触媒として水酸化カルシウム0.335gを添加した。次に、窒素ガスを流通しながら、温度210℃、反応時間1.5時間の条件にてグリセロリシス反応を行い、リン酸を0.395g添加して触媒を中和した。次いで、25℃まで冷却し、6000r/minで10分間遠心分離を行い、分離したグリセリンを除去した。次いで、油相を5L4ツ口フラスコに入れ、攪拌500r/minの条件で攪拌し、温度、圧力を徐々に上げながらグリセリンの留去を開始し、温度190℃、圧力100Pa、反応時間30分の条件にてグリセリンを完全に留去した。その後、70℃まで冷却して原料モノアシルグリセロールである原料Jを得た。表1に原料Jのグリセリド組成を示した。原料Jのトランス不飽和脂肪酸含有量は0.2%であった。
Figure JPOXMLDOC01-appb-T000001
〔リパーゼ種の影響〕
試験例1
 攪拌羽根(75mm×20mm)を取り付けた500ML4ツ口フラスコに、原料Aを250g入れ、温度50℃で30分間静置し、フラスコ内の原料Aを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化リパーゼG(水分含有量2.1%)を原料Aに対して5%(12.5g)添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を50時間行ったところでグリセリド組成は平衡に達し、固定化リパーゼGを濾別してサンプルAを得た。
試験例2
 固定化リパーゼとして市販の固定化リパーゼLipozyme RM IM(ノボザイムズ ジャパン(株)(以下同じ)、水分含有量2.2%)を用いた以外は、試験例1と同様にエステル交換反応を行った。エステル交換反応を67時間行ったところでグリセリド組成は平衡に達し、固定化リパーゼLipozyme RM IMを濾別してサンプルBを得た。
試験例3
 固定化リパーゼとして固定化リパーゼAY(水分含有量2.5%)を用いた以外は、試験例1と同様にエステル交換反応を行った。エステル交換反応を530時間行ったところでグリセリド組成は平衡に達し、固定化リパーゼAYを濾別してサンプルCを得た。
試験例4
 攪拌羽根(90mm×24mm)、空冷管(内径11mm、長さ1m)を取り付けた2000ML4ツ口フラスコに、原料Aを250g、ヘキサンを500ML入れ、温度50℃で30分間静置し、フラスコ内の原料Aを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化リパーゼG(水分含有量2.1%)を原料Aに対して5%(12.5g)添加し、エステル交換反応を開始した。エステル交換反応を50時間行ったところでグリセリド組成は平衡に達し、固定化リパーゼGを濾別してサンプルDを得た。
試験例5
 攪拌羽根(50mm×18mm)を取り付けた200ML4ツ口フラスコに、原料Iを90g入れ、温度50℃で30分間静置し、フラスコ内の原料Iを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化リパーゼG(水分含有量2.8%)を原料Iに対して10%(9.0g)添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を24時間行い、固定化リパーゼGを濾別して、サンプルUを得た。サンプルUのトランス不飽和脂肪酸含有量は0.2%であった。
試験例6
 固定化リパーゼとして市販の固定化リパーゼLipozyme RM IM(水分含有量2.6%)を用いた以外は、試験例5と同様にエステル交換反応を行った。エステル交換反応を2時間行い、固定化リパーゼLipozyme RM IMを濾別して、サンプルVを得た。サンプルVのトランス不飽和脂肪酸含有量は0.2%であった。
 表2に、試験例1~6の反応系内水分及び得られた反応生成物のグリセリド組成を示した。なお、グリセリド組成は、反応終了油から前記「分析方法」に従って、分離したグリセリンを除去した後のものである(以下同じ)。
Figure JPOXMLDOC01-appb-T000002
〔反応系内の水分量の影響〕
試験例7
 攪拌羽根(75mm×20mm)を取り付けた500ML4ツ口フラスコに、原料Aを250g入れ、温度50℃で30分間静置し、フラスコ内の原料Aを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化リパーゼLipozyme RM IM(水分含有量2.5%)を原料Aに対して5%(12.5g)添加し、エステル交換反応を開始した。ただちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を24時間行い、固定化リパーゼLipozyme RM IMを濾別してサンプルEを得た。
試験例8
 エステル交換反応の開始時に蒸留水を添加し、反応系内の水分量を1.1%とした以外は試験例7と同様にエステル交換反応を行い、サンプルFを得た。
試験例9
 エステル交換反応の開始時に蒸留水を添加し、反応系内の水分量を4.9%とした以外は試験例7と同様にエステル交換反応を行い、サンプルGを得た。
試験例10
 エステル交換反応の開始時に蒸留水を添加し、反応系内の水分量を9.6%とした以外は試験例7と同様にエステル交換反応を行い、サンプルHを得た。
 表3に、試験例7~10の反応系内水分及び得られた反応生成物のグリセリド組成を示した。
Figure JPOXMLDOC01-appb-T000003
〔原料油脂のグリセリド組成の影響〕
試験例11
 エステル交換反応の反応原料を原料Bとした以外は試験例7と同様にエステル交換反応を行い、サンプルIを得た。
試験例12
 エステル交換反応の反応原料を原料Cとした以外は試験例7と同様にエステル交換反応を行い、サンプルJを得た。
試験例13
 エステル交換反応の反応原料を原料Dとした以外は試験例7と同様にエステル交換反応を行い、サンプルKを得た。
試験例14
 エステル交換反応の反応原料を原料Eとした以外は試験例7と同様にエステル交換反応を行い、サンプルLを得た。
試験例15
 エステル交換反応の反応原料を原料Fとした以外は試験例7と同様にエステル交換反応を行い、サンプルMを得た。
試験例16
 エステル交換反応の反応原料を原料Gとした以外は試験例7と同様にエステル交換反応を行い、サンプルNを得た。
試験例17
 エステル交換反応の反応原料を原料Hとした以外は試験例7と同様にエステル交換反応を行い、サンプルOを得た。
 表4に、試験例11~17の反応系内水分及び得られた反応生成物のグリセリド組成を示した。
Figure JPOXMLDOC01-appb-T000004
〔リパーゼ濃度の影響〕
試験例18
 攪拌羽根(75mm×20mm)を取り付けた500ML4ツ口フラスコに、原料Aを250g入れ、温度50℃で30分間静置し、フラスコ内の原料Aを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化リパーゼLipozyme RM IM(水分含有量5.0%)を原料Aに対して5%(12.5g)添加し、エステル交換反応を開始した。ただちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を8時間行い、固定化リパーゼLipozyme RM IMを濾別してサンプルPを得た。
試験例19
 エステル交換反応に用いる固定化リパーゼLipozyme RM IM(水分含有量5.0%)を原料Aに対して10%(25.0g)とした以外は試験例18と同様にエステル交換反応を行い、サンプルQを得た。
試験例20
 エステル交換反応に用いる固定化リパーゼLipozyme RM IM(水分含有量5.0%)を原料Aに対して20%(50.0g)とした以外は試験例18と同様にエステル交換反応を行い、サンプルRを得た。
試験例21
 攪拌羽根(50mm×18mm)を取り付けた200ML4ツ口フラスコに、原料Iを90g入れ、温度50℃で30分間静置し、フラスコ内の原料Iを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化リパーゼLipozyme RM IM(水分含有量2.6%)を原料Iに対して1%(0.9g)添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を24時間行い、固定化リパーゼLipozyme RM IMを濾別して、サンプルWを得た。サンプルWのトランス不飽和脂肪酸含有量は0.2%であった。
試験例22
 エステル交換反応に用いる固定化リパーゼLipozyme RM IM(水分含有量2.6%)を原料Iに対して2%(1.8g)とした以外は試験例21と同様にエステル交換反応を行った。エステル交換反応を5時間行い、固定化リパーゼLipozyme RM IMを濾別して、サンプルXを得た。サンプルXのトランス不飽和脂肪酸含有量は0.2%であった。
試験例23
 エステル交換反応に用いる固定化リパーゼLipozyme RM IM(水分含有量2.6%)を原料Iに対して5%(4.5g)とした以外は試験例21と同様にエステル交換反応を行った。エステル交換反応を3時間行い、固定化リパーゼLipozyme RM IMを濾別して、サンプルYを得た。サンプルYのトランス不飽和脂肪酸含有量は0.2%であった。
試験例24
 エステル交換反応に用いる固定化リパーゼLipozyme RM IM(水分含有量2.6%)を原料Iに対して20%(18.0g)とした以外は試験例21と同様にエステル交換反応を行った。エステル交換反応を1時間行い、固定化リパーゼLipozyme RM IMを濾別して、サンプルZを得た。サンプルZのトランス不飽和脂肪酸含有量は0.2%であった。
 表5に、試験例18~24の反応系内水分及び得られた反応生成物のグリセリド組成を示した。
Figure JPOXMLDOC01-appb-T000005
〔リパーゼ形態の影響〕
試験例25
 攪拌羽根(75mm×20mm)を取り付けた200ML4ツ口フラスコに、原料Aを100g入れ、温度50℃で30分間静置し、フラスコ内の原料Aを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化していないリパーゼであるリパーゼOF(名糖産業(株)、水分含有量6.5%)を原料Aに対して1%(1.0g)と蒸留水0.5gを添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を48時間行ったところでグリセリド組成は平衡に達し、3000r/minで10分間遠心分離を行い、リパーゼを沈降させサンプルSを得た。
試験例26
 攪拌羽根(75mm×20mm)を取り付けた200ML4ツ口フラスコに、原料Aを100g入れ、温度50℃で30分間静置し、フラスコ内の原料Aを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化していないリパーゼであるパラターゼ(ノボザイムズ ジャパン(株)、水分含有量51%)を原料Aに対して1%(1.0g)添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を48時間行ったところでグリセリド組成は平衡に達し、3000r/minで10分間遠心分離を行い、リパーゼを沈降させサンプルTを得た。
 表6に、試験例25及び26の反応系内水分及び得られた反応生成物のグリセリド組成を示した。
Figure JPOXMLDOC01-appb-T000006
〔原料中のグリセリン量の影響〕
試験例27
 攪拌羽根(50mm×18mm)を取り付けた200ML4ツ口フラスコに、原料Jを90g入れ、温度50℃で30分間静置し、フラスコ内の原料Jを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化リパーゼLipozyme RM IM(水分含有量3.2%)を原料Jに対して5%(4.5g)添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を1.5時間行い、固定化リパーゼLipozyme RM IMを濾別して、サンプルAAを得た。
試験例28
 エステル交換反応の反応原料として、原料J87.3gにグリセリン2.7gを混合(反応原料中のグリセリン含有量3%)した以外は試験例27と同様にエステル交換反応を4時間行い、サンプルABを得た。
試験例29
 エステル交換反応の反応原料として、原料J85.5gにグリセリン4.5gを混合(反応原料中のグリセリン含有量5%)した以外は試験例27と同様にエステル交換反応を4時間行い、サンプルACを得た。
試験例30
 エステル交換反応の反応原料として、原料J83.7gにグリセリン6.3gを混合(反応原料中のグリセリン含有7%)した以外は試験例27と同様にエステル交換反応を4時間行い、サンプルADを得た。
試験例31
 エステル交換反応の反応原料として、原料J81.9gにグリセリン8.1gを混合(反応原料中のグリセリン含有9%)した以外は試験例27と同様にエステル交換反応を4時間行い、サンプルAEを得た。
試験例32
 エステル交換反応の反応原料として、原料J80.1gにグリセリン9.9gを混合(反応原料中のグリセリン含有11%)した以外は試験例27と同様にエステル交換反応を4時間行い、サンプルAFを得た。
 表7に、試験例27~32の反応系内水分及び得られた反応生成物のグリセリド組成を示した。
Figure JPOXMLDOC01-appb-T000007
〔脱臭条件の影響〕
試験例33~36
[酵素エステル交換反応処理]
 攪拌羽根(90mm×24mm)を取り付けた2L4ツ口フラスコに、原料Jを1000g入れ、温度50℃で30分間静置し、フラスコ内の原料Jを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、市販の固定化リパーゼLipozyme RM IM(水分含有量3.2%)を原料Jに対して5%(50g)添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を3時間行ったところで、固定化リパーゼを濾別し、反応生成物を得た。
[蒸留処理]
 反応生成物を、ワイプトフィルム蒸発装置(神鋼パンテック社 2-03型、内径5cm、伝熱面積0.03m)を用い、加熱ヒーター設定温度235℃、圧力1.5Pa、流量150ml/hの操作条件で蒸留し、蒸留油を得た。反応生成物に対する比率は蒸留油が61%、蒸留回収油が39%であった。蒸留回収油のグリセリド組成を表1に示す。
[酸処理]
 蒸留油に10%クエン酸水溶液を2%添加し、温度70℃で30分間、400r/minで混合後、温度100℃、真空度400Pa、400r/minで混合しながら、30分間減圧脱水し、酸処理油を得た。
[水洗処理]
 温度70℃に加温した蒸留水を酸処理油に対して10%添加し、温度70℃で30分間、600r/minで強混合後、遠心分離して油相を分取した。この水洗操作を3回行い、温度100℃、真空度400Paで30分間減圧脱水し、水洗油を得た。
[脱臭処理]
 脱臭処理はバッチ式で行った。真空ポンプは日立製ロータリーバキュームポンプ TYPE160VP-D CuteVacを用いた。300MLガラス製クライゼンフラスコに、前記水洗油100gを投入した後、水蒸気発生装置を内径2.5mmのキャピラリーガラス管で300MLガラス製クライゼンフラスコに接続した。温度70℃、10分間、窒素を流量1L/minでバブリングしながら流通させ装置内を完全に窒素置換した。真空ポンプで真空状態にし、マントルヒーターで加熱した。加熱時間は、温度70℃から温度200℃まで6~8分、温度200℃から245℃まで2~6分要した。脱臭温度、脱臭時間及び水蒸気量は表8に示す各条件とし、圧力は0.2~0.4kPaで行った。脱臭終了後、マントルヒーターを取り外し、冷風機にて、脱臭温度から温度200℃まで1~2分、温度200℃から温度70℃まで5~7分かけて冷却した。温度70℃まで冷却後、脱臭装置内に窒素を吹き込み、常圧まで戻した。トコフェロール(理研Eオイル600:理研ビタミン(株))を水洗油に対し200ppm添加し、試験例33~36の脱臭油を得た。表8に、試験例33~36の脱臭油の物性値を示す。
[官能評価]
 試験例33~36の脱臭油についての風味(コク味、刺激感及び重さ)の評価は、5人のパネルにより、各人0.5~5gを生食し、下記表9に示す基準にて官能評価することにより行った。結果を表8に示す。
 本発明において「コク味」とは、本発明の製造方法で製造されたジアシルグリセロールに特有の好ましい風味であり、旨み等が口中で広がり、口あたりの調和のとれた濃厚感のある風味をいう。また、「刺激感」及び「重さ」は、原料である未脱臭油脂に起因する風味や、ジアシルグリセロール高含有油脂の製造工程で生成する不純物からもたらされる好ましくない風味であり、口中やのどにおいて生じる刺激的な感覚(刺激感)及びねっとりと絡みつくような口中感覚(重さ)をいう。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
〔蒸留回収油の再利用〕
試験例37
 攪拌羽根(90mm×24mm)を取り付けた1L4ツ口フラスコに、前記表1に示した蒸留回収油を280g(39重量%)、原料Jを438g(61重量%)入れ、温度50℃で30分間静置し、フラスコ内の原料Jを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、市販の固定化リパーゼLipozyme RM IM(水分含有量3.2%)を蒸留回収油と原料Jの合計に対して10%(71.8g)添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を5時間行ったところで、固定化リパーゼを濾別し、反応生成物を得た。次いで、試験例35と同様の条件で蒸留以降の工程を行い、試験例37の脱臭油を得た。当該脱臭油について、風味(コク味、刺激感及び重さ)の評価を上記[風味の評価基準]に従って行った。
 表8に試験例37の脱臭油の物性値及び風味の評価の結果を示す。
 表2~8より明らかなように、リパーゼを用いてモノアシルグリセロール類を水の存在下でエステル交換反応させると、ジアシルグリセロール含有量の高い油脂組成物を効率的に得られることが判った。表2より明らかなように、ヘキサン溶媒中で、リパーゼを用いてモノアシルグリセロール類を水の存在下でエステル交換反応させると、ジアシルグリセロール含有量の高い油脂組成物を得られることが判った(試験例4)。また、エステル交換反応の原料モノアシルグリセロール類として、未脱臭油脂とグリセリンとをグリセロリシス反応して得られた反応終了油を用いると、トランス不飽和脂肪酸含有量の少ないジアシルグリセロール高含有油脂を得られることが判った(試験例5および6)。
 表3より、反応系内の水分量が高くなると、反応生成物中の脂肪酸濃度が上昇することから、ジアシルグリセロール含有量の高い油脂組成物を得るためには水分量が低いこと、特にジアシルグリセロール純度を80%以上とするためには水分量は4%以下とするのが好ましいことが判った(試験例7~10)。
 表4より、反応原料中のトリアシルグリセロール含有量やジアシルグリセロール含有量が高くなると、反応生成物中のジアシルグリセロール+トリアシルグリセロール含有量は増加するが、ジアシルグリセロール純度の点からは、反応原料中の含有量が少ないことが好ましいことが判った(試験例11~17)。
 表5より、反応時間を短縮することができる点から、リパーゼ濃度を高くするのが好ましいことも判った(試験例18~24)。また、表6より、固定化していないリパーゼを用いても、反応生成物中のジアシルグリセロール+トリアシルグリセロール含有量が少なくなる傾向は見られるものの、ジアシルグリセロール純度の高い油脂組成物が得られることが判った(試験例25及び26)。表7より、反応原料中のグリセリン量を低くすると、ジアシルグリセロール含有量が高い油脂組成物を得られることが判った(試験例27~32)。
 表8より、未脱臭油脂とグリセリンとのグリセロリシス反応によって得られたグリセロリシス反終油を使用してエステル交換反応し、その後、熱履歴が一定範囲内となるよう脱臭処理を行うことにより、トランス不飽和脂肪酸含有量が低く、色相及び「旨味」「コク味」等のジアシルグリセロール特有の風味が良好なジアシルグリセロール高含有油脂を効率よく得られることがわかった(試験例33~37)。また、エステル交換反応の原料モノアシルグリセロール類として、エステル交換反応を行った後の蒸留工程で回収された油脂を用いることによっても、風味の良好なジアシルグリセロール高含有油脂を得ることができることが判った。

Claims (9)

  1.  モノアシルグリセロール類を水の存在下に、リパーゼを用いてエステル交換反応させるジアシルグリセロール高含有油脂の製造方法。
  2.  反応系内に4質量%以下の水が含まれる請求項1記載のジアシルグリセロール高含有油脂の製造方法。
  3.  モノアシルグリセロール類中のトリアシルグリセロール含有量が50質量%以下である請求項1又は2記載のジアシルグリセロール高含有油脂の製造方法。
  4.  モノアシルグリセロール類が、油脂とグリセリンとのグリセロリシス反応によって得られたグリセロリシス反応終了油である請求項1~3のいずれか1項記載のジアシルグリセロール高含有油脂の製造方法。
  5.  モノアシルグリセロール類中のグリセリン含有量が15質量%以下である請求項1~4のいずれか1項記載のジアシルグリセロール高含有油脂の製造方法。
  6.  モノアシルグリセロール類の構成脂肪酸中のトランス不飽和脂肪酸含有量が2質量%以下である請求項1~5のいずれか1項記載の製造方法。
  7.  ジアシルグリセロール高含有油脂のジアシルグリセロール純度[ジアシルグリセロール/(ジアシルグリセロール+トリアシルグリセロール)×100]が50質量%以上である請求項1~6のいずれか1項記載のジアシルグリセロール高含有油脂の製造方法。
  8.  エステル交換反応後に、脱臭時間(x)と脱臭温度(y)の関係が、次式(i)
    (i)350≦(y-210)×x≦2100
    (但し、215≦y≦280)
    (ここで、xは脱臭時間(分)、yは脱臭温度(℃)を示す。)
    を満たす範囲内で脱臭処理を行う請求項1~7のいずれか1項記載のジアシルグリセロール高含有油脂の製造方法。
  9.  ジアシルグリセロール高含有油脂の蒸留工程で回収した蒸留回収油を、モノアシルグリセロール類の一部又は全部として用いる請求項1~8のいずれか1項記載のジアシルグリセロール高含有油脂の製造方法。
PCT/JP2009/000513 2008-05-29 2009-02-09 ジアシルグリセロール高含有油脂の製造方法 WO2009144858A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010514334A JP5307806B2 (ja) 2008-05-29 2009-02-09 ジアシルグリセロール高含有油脂の製造方法
EP09754368.0A EP2287325A4 (en) 2008-05-29 2009-02-09 PROCESS FOR PRODUCTION OF FATTY OR OIL CONTAINING LARGE QUANTITY OF DIACYLGLYCEROL
CN2009801175513A CN102027126A (zh) 2008-05-29 2009-02-09 二酰基甘油含量高的油脂的制造方法
US12/995,096 US20110076358A1 (en) 2008-05-29 2009-02-09 Process for producing diacylglycerol-rich fat or oil

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008141071 2008-05-29
JP2008-141071 2008-05-29
JP2008200360 2008-08-04
JP2008-200360 2008-08-04

Publications (1)

Publication Number Publication Date
WO2009144858A1 true WO2009144858A1 (ja) 2009-12-03

Family

ID=41376750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000513 WO2009144858A1 (ja) 2008-05-29 2009-02-09 ジアシルグリセロール高含有油脂の製造方法

Country Status (7)

Country Link
US (1) US20110076358A1 (ja)
EP (1) EP2287325A4 (ja)
JP (1) JP5307806B2 (ja)
KR (1) KR20110018878A (ja)
CN (1) CN102027126A (ja)
MY (1) MY173770A (ja)
WO (1) WO2009144858A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884043B2 (en) 2009-12-15 2014-11-11 Kao Corporation Oil or fat composition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5101206B2 (ja) * 2007-08-08 2012-12-19 花王株式会社 ジアシルグリセロール高含有油脂の製造方法
CN104039750A (zh) * 2011-11-22 2014-09-10 阿彻丹尼尔斯米德兰德公司 富含不饱和脂肪酸的棕榈油
EP3694962B1 (en) * 2017-10-13 2023-12-13 GlycosBio Inc. Processed oil comprising monoacylglycerides
CN108977471B (zh) * 2018-08-27 2021-07-02 潘志杰 天然甘油酯型深海鱼油非乙酯型途径转化为浓缩型甘油酯的方法
EP3911164A1 (en) * 2019-01-18 2021-11-24 GlycosBio Inc. Method of making monoacylglyceride oils and food products containing monoacylglyceride oils

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330289A (ja) 1991-01-24 1992-11-18 Kao Corp ジグリセリドの製造法
JPH0665310A (ja) 1992-08-20 1994-03-08 Sanshin Chem Ind Co Ltd 重合開始剤および重合方法
JPH0665311A (ja) 1992-08-21 1994-03-08 Sekisui Chem Co Ltd ポリビニルアセタール樹脂の製造方法
JPH08294394A (ja) * 1995-04-28 1996-11-12 Kao Corp ジグリセリドの製造法
WO2000003031A1 (fr) * 1998-07-09 2000-01-20 Kao Corporation Procede de production d'un glyceride partiel
JP2000345189A (ja) 1999-03-29 2000-12-12 Kanegafuchi Chem Ind Co Ltd ジグリセライド含有油脂組成物の製造方法、およびこれを用いてなる油脂組成物
JP2006137923A (ja) 2004-04-28 2006-06-01 Kao Corp 油脂組成物
JP2006328383A (ja) * 2005-04-28 2006-12-07 Kao Corp 油脂の製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2727913A (en) * 1952-10-11 1955-12-20 Eastman Kodak Co Method of obtaining concentrated monoglycerides
US3208857A (en) * 1962-12-28 1965-09-28 Procter & Gamble Fluid shortening for cream icings
US4263216A (en) * 1978-10-20 1981-04-21 The Procter & Gamble Company Diglyceride manufacture
JPS578787A (en) * 1980-03-14 1982-01-18 Fuji Oil Co Ltd Esterification by enzyme
DE3227669C1 (de) * 1982-07-23 1983-07-07 Hermann Dr. 4400 Münster Stage Verfahren und Anlage zum Desodorieren und/oder Entsaeuern von Speiseoelen,Fetten und Estern
US5270188A (en) * 1985-02-06 1993-12-14 Amano Pharmaceutical Co., Ltd. Preparation of glycerides having a high content of monglycerides with a lipase from Penicillium cyclopium ATCC 34613
JPH0665311B2 (ja) * 1987-09-09 1994-08-24 花王株式会社 ジグリセリドの製造法
JP2691608B2 (ja) * 1989-04-13 1997-12-17 花王株式会社 パック化粧料
US6261812B1 (en) * 1997-08-18 2001-07-17 Kao Corporation Process for producing diglycerides
JP3720057B2 (ja) * 1998-03-24 2005-11-24 花王株式会社 植物ステロール含有油脂組成物
JP3853552B2 (ja) * 1999-12-17 2006-12-06 花王株式会社 ジグリセリドの製造方法
AU2002367050A1 (en) * 2002-01-15 2003-07-30 Kao Corporation Process for the production of diglycerides
US7806945B2 (en) * 2003-01-27 2010-10-05 Seneca Landlord, Llc Production of biodiesel and glycerin from high free fatty acid feedstocks
EP1618085A1 (en) * 2003-04-25 2006-01-25 Ilshinwells Co., Ltd. Preparation method of conjugated linoleic acid diglycerides
KR100540875B1 (ko) * 2003-04-25 2006-01-11 주식회사 일신웰스 공역 리놀레산을 포함하는 고순도 디글리세라이드 유지조성물 및 그 제조방법
TW200503634A (en) * 2003-06-10 2005-02-01 Archer Daniels Midland Co Method for the production of fatty acids having a low trans-fatty acid content
TWI414245B (zh) * 2003-12-19 2013-11-11 Kao Corp Edible fat and oil composition
DE102004007795A1 (de) * 2004-02-18 2005-09-22 Weber, Nikolaus, Dr. Enzymatisches Umesterungsverfahren zur Herstellung von Diglyceriden und Diglycerid-Konzentraten
EP1741342B1 (en) * 2004-04-28 2011-11-23 Kao Corporation Fat composition
JP4280234B2 (ja) * 2004-12-24 2009-06-17 花王株式会社 ジグリセリド高含有油脂の製造法
US7709667B2 (en) * 2005-04-28 2010-05-04 Kao Corporation Process for producing fat or oil
CN100574638C (zh) * 2007-04-20 2009-12-30 杨天奎 含二酰基甘油的组合物及其制备方法
US8227010B2 (en) * 2008-10-10 2012-07-24 Kao Corporation Process for producing oil and fat rich in diacylglycerol

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330289A (ja) 1991-01-24 1992-11-18 Kao Corp ジグリセリドの製造法
JPH0665310A (ja) 1992-08-20 1994-03-08 Sanshin Chem Ind Co Ltd 重合開始剤および重合方法
JPH0665311A (ja) 1992-08-21 1994-03-08 Sekisui Chem Co Ltd ポリビニルアセタール樹脂の製造方法
JPH08294394A (ja) * 1995-04-28 1996-11-12 Kao Corp ジグリセリドの製造法
WO2000003031A1 (fr) * 1998-07-09 2000-01-20 Kao Corporation Procede de production d'un glyceride partiel
JP2000345189A (ja) 1999-03-29 2000-12-12 Kanegafuchi Chem Ind Co Ltd ジグリセライド含有油脂組成物の製造方法、およびこれを用いてなる油脂組成物
JP2006137923A (ja) 2004-04-28 2006-06-01 Kao Corp 油脂組成物
JP2006328383A (ja) * 2005-04-28 2006-12-07 Kao Corp 油脂の製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KRISTENSEN, JANNI BROGAARD ET AL.: "Process optimization using response surface design and pilot plant production of dietary diacylglycerols by lipase-catalyzed glycerolysis.", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 53, no. 18, 2005, pages 7059 - 7066, XP002402019 *
METHOD FOR PREPARING FATTY ACID METHYL ESTERS, vol. 2, 1996, pages 4
See also references of EP2287325A4
SHIZUYUKI OTA ET AL.: "Shokuyo Yushi no Gijutsuteki Hensen", SHOKUHIN KIKAI SOCHI, vol. 293, January 1989 (1989-01-01), pages 76 - 83, XP008147058 *
SHIZUYUKI OTA ET AL.: "Shokuyo Yushi no Gijutsuteki Hensen", SHOKUHIN KIKAI SOCHI, vol. 294, February 1989 (1989-02-01), pages 70 - 79, XP008129225 *
SHIZUYUKI OTA ET AL.: "Shokuyo Yushi no Gijutsuteki Hensen", SHOKUHIN KIKAI SOCHI, vol. 295, March 1989 (1989-03-01), pages 73 - 80, XP008129224 *
TAKEYUKI HAMAMOTO ET AL.: "Yushi no Dasshu to Shokuyo Abura no Anteisei", NIPPON YUKA GAKKAISHI, vol. 48, no. 10, 1999, pages 1123 - 1131, XP008147059 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884043B2 (en) 2009-12-15 2014-11-11 Kao Corporation Oil or fat composition

Also Published As

Publication number Publication date
EP2287325A4 (en) 2013-10-02
US20110076358A1 (en) 2011-03-31
KR20110018878A (ko) 2011-02-24
JPWO2009144858A1 (ja) 2011-10-06
JP5307806B2 (ja) 2013-10-02
EP2287325A1 (en) 2011-02-23
MY173770A (en) 2020-02-20
CN102027126A (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
JP5101206B2 (ja) ジアシルグリセロール高含有油脂の製造方法
RU2422498C2 (ru) Способ получения диолеоил пальмитоил глицерида
JP5586914B2 (ja) ジアシルグリセロール高含有油脂の製造方法
US7709667B2 (en) Process for producing fat or oil
KR101832001B1 (ko) 정제 유지의 제조 방법
JP5307806B2 (ja) ジアシルグリセロール高含有油脂の製造方法
WO2012173281A1 (en) Method for manufacturing refined fats and oils
KR102124754B1 (ko) 유지 조성물
KR101774063B1 (ko) 정제 유지의 제조 방법
JP6150582B2 (ja) 精製油脂の製造方法
JP6645804B2 (ja) 構造油脂の製造方法
JP4694939B2 (ja) 脂肪酸類の製造方法
JP6990076B2 (ja) 脂肪酸類の製造方法
CN116406233A (zh) 脂肪组合物
JP7092460B2 (ja) 構造油脂の製造方法
JP4694938B2 (ja) 脂肪酸類の製造方法
JP2019094445A (ja) アマニ油の製造方法
JP5550282B2 (ja) ジアシルグリセロール高含有油脂の製造方法
JP5527983B2 (ja) ドコサヘキサエン酸高含有油脂の製造方法
JP2013542727A (ja) ジアシルグリセロール富化な油又は油脂の製造プロセス
JP6990019B2 (ja) 脂肪酸類の製造方法
Kulås Extraction, refining, concentration, and stabilization of long-chain omega-3 oils
JP2008253196A (ja) 脂肪酸類の製造方法
KR102548822B1 (ko) 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980117551.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514334

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107025984

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009754368

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009754368

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12995096

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE