WO2009144858A1 - ジアシルグリセロール高含有油脂の製造方法 - Google Patents
ジアシルグリセロール高含有油脂の製造方法 Download PDFInfo
- Publication number
- WO2009144858A1 WO2009144858A1 PCT/JP2009/000513 JP2009000513W WO2009144858A1 WO 2009144858 A1 WO2009144858 A1 WO 2009144858A1 JP 2009000513 W JP2009000513 W JP 2009000513W WO 2009144858 A1 WO2009144858 A1 WO 2009144858A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diacylglycerol
- reaction
- oil
- raw material
- content
- Prior art date
Links
- 150000001982 diacylglycerols Chemical class 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 108090001060 Lipase Proteins 0.000 claims abstract description 91
- 102000004882 Lipase Human genes 0.000 claims abstract description 91
- 239000004367 Lipase Substances 0.000 claims abstract description 91
- 235000019421 lipase Nutrition 0.000 claims abstract description 91
- 238000005809 transesterification reaction Methods 0.000 claims abstract description 84
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 73
- 238000000034 method Methods 0.000 claims abstract description 52
- 150000002759 monoacylglycerols Chemical class 0.000 claims abstract description 40
- 239000003921 oil Substances 0.000 claims description 107
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 81
- 238000006243 chemical reaction Methods 0.000 claims description 78
- 239000003925 fat Substances 0.000 claims description 56
- 238000004332 deodorization Methods 0.000 claims description 53
- 235000011187 glycerol Nutrition 0.000 claims description 40
- 150000004665 fatty acids Chemical class 0.000 claims description 37
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 35
- 229930195729 fatty acid Natural products 0.000 claims description 35
- 239000000194 fatty acid Substances 0.000 claims description 35
- 238000004821 distillation Methods 0.000 claims description 17
- 235000021122 unsaturated fatty acids Nutrition 0.000 claims description 16
- 150000004670 unsaturated fatty acids Chemical class 0.000 claims description 16
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 10
- 239000000470 constituent Substances 0.000 claims description 5
- 239000002994 raw material Substances 0.000 description 132
- 235000019198 oils Nutrition 0.000 description 98
- 229940040461 lipase Drugs 0.000 description 81
- 238000012360 testing method Methods 0.000 description 79
- 235000019197 fats Nutrition 0.000 description 45
- 238000003756 stirring Methods 0.000 description 43
- 239000000203 mixture Substances 0.000 description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 27
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 27
- 239000007795 chemical reaction product Substances 0.000 description 24
- 125000005456 glyceride group Chemical group 0.000 description 23
- 108010048733 Lipozyme Proteins 0.000 description 22
- 239000000796 flavoring agent Substances 0.000 description 17
- 235000019634 flavors Nutrition 0.000 description 17
- 230000001877 deodorizing effect Effects 0.000 description 15
- 238000001914 filtration Methods 0.000 description 15
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 238000005406 washing Methods 0.000 description 12
- 239000012299 nitrogen atmosphere Substances 0.000 description 10
- 238000007789 sealing Methods 0.000 description 10
- 235000019484 Rapeseed oil Nutrition 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000012153 distilled water Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 235000010692 trans-unsaturated fatty acids Nutrition 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000012467 final product Substances 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 5
- 244000068988 Glycine max Species 0.000 description 5
- 235000010469 Glycine max Nutrition 0.000 description 5
- 239000008351 acetate buffer Substances 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 230000001766 physiological effect Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- 239000003549 soybean oil Substances 0.000 description 5
- 235000012424 soybean oil Nutrition 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 4
- -1 beef tallow and lard Chemical compound 0.000 description 4
- 239000007853 buffer solution Substances 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 4
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000006911 enzymatic reaction Methods 0.000 description 4
- 125000004185 ester group Chemical group 0.000 description 4
- 238000005886 esterification reaction Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 235000019668 heartiness Nutrition 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 230000007794 irritation Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000008363 phosphate buffer Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000001256 steam distillation Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- 235000019486 Sunflower oil Nutrition 0.000 description 3
- 238000010306 acid treatment Methods 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 235000015278 beef Nutrition 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 235000005687 corn oil Nutrition 0.000 description 3
- 239000002285 corn oil Substances 0.000 description 3
- 235000012343 cottonseed oil Nutrition 0.000 description 3
- 239000002385 cottonseed oil Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- 229960004488 linolenic acid Drugs 0.000 description 3
- 239000000944 linseed oil Substances 0.000 description 3
- 235000021388 linseed oil Nutrition 0.000 description 3
- 235000019626 lipase activity Nutrition 0.000 description 3
- 235000014593 oils and fats Nutrition 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 235000021313 oleic acid Nutrition 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 235000005713 safflower oil Nutrition 0.000 description 3
- 239000003813 safflower oil Substances 0.000 description 3
- 239000002600 sunflower oil Substances 0.000 description 3
- 239000003760 tallow Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 2
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 239000005639 Lauric acid Substances 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 241000228143 Penicillium Species 0.000 description 2
- 241000235402 Rhizomucor Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000008162 cooking oil Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 2
- 235000021323 fish oil Nutrition 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 150000004671 saturated fatty acids Chemical class 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 235000019615 sensations Nutrition 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 235000019640 taste Nutrition 0.000 description 2
- 235000019583 umami taste Nutrition 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- 240000004160 Capsicum annuum Species 0.000 description 1
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 description 1
- 235000007862 Capsicum baccatum Nutrition 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 241000588881 Chromobacterium Species 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 241000235395 Mucor Species 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 102000019280 Pancreatic lipases Human genes 0.000 description 1
- 108050006759 Pancreatic lipases Proteins 0.000 description 1
- 235000004347 Perilla Nutrition 0.000 description 1
- 244000124853 Perilla frutescens Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001728 capsicum frutescens Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 1
- 229940090949 docosahexaenoic acid Drugs 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 235000020673 eicosapentaenoic acid Nutrition 0.000 description 1
- 229960005135 eicosapentaenoic acid Drugs 0.000 description 1
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 235000019579 kokumi taste sensations Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 229960002969 oleic acid Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 229940116369 pancreatic lipase Drugs 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003445 sucroses Chemical class 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/64—Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
- C12P7/6436—Fatty acid esters
- C12P7/6445—Glycerides
- C12P7/6458—Glycerides by transesterification, e.g. interesterification, ester interchange, alcoholysis or acidolysis
Definitions
- the present invention relates to a method for producing fats and oils with a high diacylglycerol content.
- Oils and fats containing diacylglycerol at a high concentration are widely used as edible oils because they have physiological actions such as body fat burning action.
- the production of diacylglycerol is generally performed by a method using a glycerolysis reaction between glycerin and an oil or fat, or a method using an esterification reaction between glycerin and a fatty acid (see, for example, Patent Documents 1 to 3). There is also an exchange reaction method (see Patent Document 4).
- the present invention provides a method for producing fats and oils with a high content of diacylglycerol, in which monoacylglycerols are transesterified using lipase in the presence of water.
- the purity of diacylglycerol is low because the obtained reaction product itself has a low diacylglycerol purity, and a high-vacuum distillation facility is required to obtain a high purity.
- the purity of diacylglycerol can be increased by setting the purity of fatty acid used as a reaction raw material and setting conditions, but it is not always satisfactory in terms of balance between production efficiency and quality and cost. . Therefore, the present invention relates to providing a method for efficiently producing a diacylglycerol-rich oil and fat under industrially advantageous conditions.
- the present inventor has conducted various studies on production methods of diacylglycerol, and has found that high-accuracy diacylglycerol can be obtained efficiently by transesterification of monoacylglycerols.
- oils and fats having a high diacylglycerol content can be efficiently obtained without using expensive raw materials and special equipment, which is extremely advantageous industrially.
- the monoacylglycerols used in the method of the present invention are those in which the hydroxyl group at the 1-position of glycerin is esterified with a fatty acid (1-monoacylglycerol) and those at the 2-position.
- Examples include those in which the hydroxyl group is esterified with a fatty acid (2-monoacylglycerol) and those in which the hydroxyl group at the 3-position is esterified with a fatty acid (3-monoacylglycerol).
- Those having a high ratio of acylglycerol are preferred.
- the carbon number of the fatty acid residue of the raw material monoacylglycerols is not particularly limited, but is preferably 8 to 24 carbon atoms, more preferably 14 to 24 carbon atoms, and particularly preferably 16 to 22 carbon atoms.
- Fatty acid residues include those saturated and unsaturated, specifically caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, Acyl group derived from eicosapentaenoic acid and docosahexaenoic acid, animal oils such as beef tallow and lard, rapeseed oil, soybean oil, corn oil, sunflower oil, cottonseed oil, perilla oil, red pepper oil, flaxseed oil, safflower oil And acyl groups derived from fatty acids derived from vegetable oils such as sesame oil and palm oil. These raw material monoacylglycerols can be
- the content of unsaturated fatty acids in all the constituent fatty acids of the raw material monoacylglycerols is 50% by mass (hereinafter, simply referred to as “%”) or more from the viewpoint of the appearance, physiological effect and industrial productivity of the final product, Further, it is preferably 60% or more, particularly 70% or more. Moreover, as an unsaturated fatty acid, oleic acid, linoleic acid, and linolenic acid are preferable.
- the content of the trans unsaturated fatty acid is preferably 8% or less, preferably 4% or less from the viewpoint of reducing the content of the trans unsaturated fatty acid in the final product. More preferably, it is 2% or less, more preferably 1.5% or less, especially 1% or less, especially 0.5% or less from the viewpoint of further reducing the content of trans-unsaturated fatty acids in the final product. Preferably there is.
- Raw material monoacylglycerols are rapeseed oil, sunflower oil, corn oil, soybean oil, rice oil, safflower oil, cottonseed oil, beef tallow, linseed oil, fish oil, etc. It can be obtained by any method such as an esterification reaction between the fatty acid derived from fats and oils and glycerin.
- the fats and oils can be used after separation and mixing, and those whose fatty acid composition has been adjusted by hydrogenation or transesterification, etc. This is preferable from the viewpoint of reducing the saturated fatty acid content.
- the reaction method may be either a chemical method using an alkali catalyst or the like, or an enzymatic method using an enzyme such as lipase. Desired raw material monoacylglycerols can be obtained by distillation, fractionation, solvent extraction, steam distillation and the like of the obtained reaction product.
- the raw material monoacylglycerols are produced from a reaction-finished oil (hereinafter, “ It is preferable to use a glycerolysis reaction finished oil).
- the raw fats and oils used in the glycerolysis reaction have a content of trans-unsaturated fatty acids in the constituent fatty acids of 3% or less, more 2% or less, particularly 1% or less, especially 0.5% or less. From the viewpoint of reducing the content of trans-unsaturated fatty acids.
- it is preferable to use undeodorized fats and oils such as rapeseed oil, sunflower oil, corn oil, soybean oil, rice oil, safflower oil, cottonseed oil, beef tallow, linseed oil, fish oil and the like.
- undeodorized fats and oils mean the fats and oils which are not deodorized in the refinement
- a lipase is preferably used as the enzyme, and examples of the lipase include the same lipases used for transesterification.
- the reaction temperature is 0 to 100 ° C., more preferably 20 to 80 ° C., particularly 30 to 80 ° C. from the viewpoint of improving the reaction rate and suppressing the inactivation of lipase. preferable.
- the use of an alkali such as sodium hydroxide or calcium hydroxide, or an acid such as an organic acid or a salt thereof as a catalyst improves the reaction rate, and the hue of the reaction oil It is preferable from the point of improving.
- the reaction temperature is preferably 100 to 300 ° C., more preferably 150 to 250 ° C. from the viewpoint of improving the reaction rate and suppressing the production of trans-unsaturated fatty acid.
- the raw material monoacylglycerols in the present invention may contain monoacylglycerol, diacylglycerol, triacylglycerol and glycerin.
- glycerin is preferably 15% or less, more preferably 10% or less, further 0 to 5%, particularly 0 to 3%, particularly 0 to 3%, from the viewpoint of increasing the diacylglycerol content and the purification load of the raw material. It is preferably 1 to 1%.
- the glycerin removal method is a method of removing the glycerin layer by centrifugation, a method of distilling off the glycerin by decompression, a method of removing the glycerin by steam distillation, a method of removing the glycerin layer by separation, a removal method by washing with water, adsorption
- the method of removing using an agent etc. is mentioned, it is not limited to these, You may combine these.
- the triacylglycerol content in the raw material monoacylglycerols is preferably 50% or less, more preferably 40% or less, and particularly preferably 0.1 to 30%.
- the diacylglycerol content in the raw material monoacylglycerols is preferably 40% or less, more preferably 30% or less, and particularly preferably 0.1 to 20%.
- the fatty acid content in the raw material monoacylglycerols is preferably 50% or less, more preferably 40% or less, further 0.1 to 30%, particularly 0.1 to 20%, and particularly preferably 0.1 to 10%.
- the monoacylglycerol content in the raw material monoacylglycerols is preferably 45% or more, more preferably 50% or more, and particularly preferably 55 to 99%.
- transesterification lipases include the genus Risopus, the genus Aspergillus, the genus Chromobacterium, the genus Mucor, the genus Rhizomucor, and the genus Pseudomonio Examples include lipases originating from microorganisms such as genus, Penicillium, Candida, and animal lipases such as pancreatic lipase.
- the genus Penicillium, Rhizomucor, Candida, etc. are preferable from the microbial origin.
- an immobilized lipase in which a lipase is immobilized on a carrier from the viewpoint that the lipase activity can be effectively used.
- the use of an immobilized lipase is also preferable from the viewpoint of easy separation of the reaction product and the lipase.
- immobilization carriers Celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, ceramics and other inorganic carriers, ceramic powder, polyvinyl alcohol, polypropylene, chitosan, ion exchange resin, hydrophobic adsorption Examples thereof include organic polymers such as resins, chelate resins, and synthetic adsorption resins, and ion exchange resins are particularly preferable from the viewpoint of high water retention. Of the ion exchange resins, a porous surface is preferable from the viewpoint that the amount of lipase adsorbed can be increased by having a large surface area.
- the particle size of the resin used as the immobilization carrier is preferably 50 to 2000 ⁇ m, more preferably 100 to 1000 ⁇ m.
- the pore diameter is preferably 10 to 150 nm, more preferably 10 to 100 nm.
- the material include phenol formaldehyde, polystyrene, acrylamide, divinylbenzene, and the like, and phenol formaldehyde resin (for example, Duolite A-568 manufactured by Rohm and Hass) is particularly preferable from the viewpoint of improving lipase adsorption.
- the lipase When the lipase is immobilized, the lipase may be directly adsorbed on the immobilization support. However, in order to obtain an adsorption state that exhibits high activity, the support is treated with a fat-soluble fatty acid or a derivative thereof in advance before lipase adsorption. May be used.
- the fat-soluble fatty acid to be used include saturated or unsaturated, linear or branched fatty acids having 8 to 18 carbon atoms, which may be substituted with a hydroxyl group. Specific examples include capric acid, lauric acid, myristyl acid, oleic acid, linoleic acid, ⁇ -linolenic acid, ricinoleic acid, isostearic acid and the like.
- esters of these fatty acids with mono- or polyhydric alcohols examples include esters of these fatty acids with mono- or polyhydric alcohols, phospholipids, and derivatives obtained by adding ethylene oxide to these esters.
- Specific examples include methyl esters, ethyl esters, monoglycerides, diglycerides, ethylene oxide adducts thereof, polyglycerin esters, sorbitan esters, and sucrose esters of the above fatty acids. Two or more of these fat-soluble fatty acids or derivatives thereof may be used in combination.
- these may be added directly to a carrier in water or an organic solvent, but in order to improve dispersibility, a fat-soluble fatty acid or derivative thereof is added to an organic solvent. Once dispersed and dissolved, it may be added to a carrier dispersed in water.
- the organic solvent include chloroform, hexane, acetone, ethanol, and the like.
- the amount of the fat-soluble fatty acid or derivative thereof used is preferably 1 to 1000 parts, more preferably 10 to 500 parts, with respect to 100 parts by mass of the carrier (hereinafter simply referred to as “parts”).
- the contact temperature is preferably 0 to 80 ° C., more preferably 20 to 60 ° C., and the contact time is preferably about 5 minutes to 5 hours.
- the carrier after this treatment is collected by filtration, but may be dried.
- the drying temperature is preferably 0 to 80 ° C. and may be dried under reduced pressure.
- the temperature at which the lipase is immobilized can be determined by the characteristics of the lipase, but is preferably a temperature at which the lipase is not deactivated, that is, 0 to 80 ° C., more preferably 20 to 60 ° C.
- the pH of the lipase solution used at the time of immobilization may be within a range where lipase denaturation does not occur, and can be determined by the lipase characteristics as well as the temperature, but is preferably pH 3-9.
- a buffer solution is used. Examples of the buffer solution include an acetate buffer solution, a phosphate buffer solution, and a Tris-HCl buffer solution.
- the lipase concentration in the lipase solution is preferably not more than the saturation solubility of lipase and sufficient from the viewpoint of immobilization efficiency. Moreover, the lipase solution can also use the supernatant which removed the insoluble part by centrifugation as needed, and what was refine
- the lipase mass used varies depending on the lipase activity, but is preferably 5 to 1000 parts, more preferably 10 to 500 parts, relative to 100 parts of the carrier.
- the water content in the immobilized lipase after contact varies depending on the type of carrier used, but is 0.1 to 100 parts, more preferably 0.5 to 50 parts, particularly 1 to 30 parts, relative to 100 parts of the immobilized carrier. Is preferred.
- it may be sealed in a packed container such as a column and the raw material may be circulated by a pump or the like, or the immobilized lipase may be dispersed in the raw material.
- the contact temperature is preferably 0 to 80 ° C., and can be selected according to the characteristics of the lipase. Further, the contact time may be about 0.2 hours to 200 hours, and 3 hours to 100 hours are preferable from the viewpoint of industrial productivity. From the viewpoint of industrial productivity, it is preferable to perform filtration at the end of this contact and recover the immobilized lipase.
- the transesterification activity of the immobilized lipase was carried out under the same conditions as those described in Test Example 1 below, and the transesterification was carried out with the reaction time being only 3 hours, and the diacylglycerol content in the reaction product was the diacyl in the reaction raw material. It is preferable that the glycerol content is increased by 1% or more, further increased by 3% or more, particularly increased by 10% or more.
- the transesterification reaction of monoacylglycerols can be carried out batchwise, continuously or semi-continuously.
- the raw material supplied to the reaction apparatus is preferable from the viewpoint of increasing the diacylglycerol content of the reaction product obtained by performing dehydration, degassing, or deoxygenation in advance under reduced pressure to suppress deterioration.
- the amount of lipase used in the reaction can be appropriately determined in consideration of the activity of lipase, but is 0.01 to 100 parts, more preferably 0.1 to 50 parts, particularly 100 parts relative to the raw material monoacylglycerols to be decomposed. 0.2 to 30 parts are preferred.
- the transesterification reaction is performed in the presence of water.
- the amount of water in the reaction system is preferably 4% or less, more preferably 0.01 to 3%, and particularly preferably 0.02 to 2% from the viewpoint of increasing the diacylglycerol content of the reaction product.
- the water may be any of distilled water, ion exchange water, tap water, well water and the like. Further, other water-soluble components such as glycerin may be mixed. If necessary, a buffer solution having a pH of 3 to 9 may be used so that the stability of the lipase can be maintained. Water may be contained in lipase and raw material monoacylglycerols, but it is preferable to control so that the total amount of water is 4% or less.
- the control method includes (i) There are a method of measuring the water content of each component by the Karl Fischer method and the like, and a method of controlling the total water content, and (ii) a method of completely dehydrating the reaction components and adding a predetermined amount of water later.
- the method (i) is preferable because the handling of a hygroscopic material such as a powdered lipase is simple. The amount of water retained by the immobilized lipase is also included in the amount of water.
- the reaction temperature is preferably 0 to 80 ° C., more preferably 20 to 70 ° C., which is a temperature at which the lipase activity is more effectively extracted and free fatty acids generated by decomposition do not become crystals.
- the reaction is preferably carried out in the presence of an inert gas such as nitrogen so that contact with air is avoided as much as possible.
- the reaction may be performed in a solvent such as hexane, cyclohexane, petroleum ether or the like.
- the purity of diacylglycerol as a reaction product is preferably 50% or more, more preferably 60 to 99%, further 70 to 98%, and particularly preferably 80 to 97%. From the viewpoint of productivity.
- the diacylglycerol purity is [diacylglycerol / (diacylglycerol + triacylglycerol) ⁇ 100].
- the diacylglycerol + triacylglycerol content [% by mass] in the reaction product is preferably 50% or more, more preferably 50 to 99%, further 55 to 98%, and particularly 60 to 97%. It is preferable from the viewpoint of physiological effects and industrial productivity.
- the monoacylglycerol content in the reaction product is preferably 2 to 60%, more preferably 3 to 50%, particularly 5 to 50% from the viewpoint of reducing the distillation load and increasing the reaction efficiency. It is particularly preferably 10 to 40%.
- the reaction product obtained by transesterification using lipase by the method of the present invention has high diacylglycerol purity, and is therefore useful as an oil having high physiological effects.
- the oil and fat with a high diacylglycerol content obtained by the transesterification reaction can be made into a product by performing post-treatment.
- the post-treatment is preferably performed by distillation, acid treatment, water washing, and deodorization.
- the distillation step refers to a step of removing fatty acid and unreacted monoacylglycerol by-produced from the reaction product by distillation under reduced pressure of the diacylglycerol-rich oil obtained by the transesterification reaction.
- the reaction that is removed by the distillation process during the production of the fats and oils with high diacylglycerol content It is preferable to recover the by-produced fatty acid and unreacted monoacylglycerol from the product, and reuse this as a part of or all of the next reaction raw material as a distillation recovery oil. In addition, it is also preferable to use a distillate recovered oil because the diacylglycerol content can be increased.
- the conditions of the distillation step are preferably a pressure of 1 to 300 Pa, more preferably 1.5 to 200 Pa, particularly 2 to 100 Pa, in terms of reducing equipment costs and operating costs, increasing the distillation capacity, and distillation.
- This is preferable from the viewpoint that the temperature can be optimally selected, the increase in the amount of trans-unsaturated fatty acids due to the thermal history, and the thermal deterioration can be suppressed.
- the temperature is preferably 180 to 280 ° C., more preferably 190 to 260 ° C., and particularly preferably 200 to 250 ° C., from the viewpoint of suppressing the increase in trans unsaturated fatty acids.
- the residence time is preferably 0.2 to 30 minutes, more preferably 0.2 to 20 minutes, and particularly preferably 0.2 to 10 minutes from the viewpoint of suppressing the increase in trans unsaturated fatty acid.
- the residence time refers to the average residence time during which the fats and oils reach the distillation temperature.
- the acid treatment step refers to a step of adding and mixing a chelating agent such as citric acid to the distilled oil and further dehydrating under reduced pressure. Further, the obtained acid-treated oil may be subjected to a decoloring step by contact with an adsorbent from the viewpoint of further improving the hue and flavor.
- the water washing step refers to a step of performing an operation of adding water to the acid-treated oil and vigorously stirring to perform oil-water separation. Washing with water is preferably repeated a plurality of times (for example, 3 times) to obtain washing oil.
- Deodorization treatment is basically performed by reduced-pressure steam distillation, and examples thereof include a batch type, a semi-continuous type, and a continuous type.
- the semi-continuous apparatus include a tray-type deodorization apparatus (Gardler-type deodorization apparatus) composed of a deodorization tower equipped with several trays. This apparatus is deodorized by supplying the fat and oil to be deodorized from the upper part and moving the oil intermittently descending one after another to the lower tray.
- a device in the case of a continuous type there is a thin film deodorization device or the like in which a structure having both gas-liquid contact efficiency and low pressure loss is filled in a deodorization tower and contact efficiency with water vapor is improved.
- the deodorizing process using the thin film deodorizing apparatus and the deodorizing process using the tray type deodorizing apparatus are combined.
- the content of trans-unsaturated fatty acid, and the flavor peculiar to diacylglycerol a method of performing deodorization with a thin film deodorizer or a tray type deodorizer alone is preferable.
- odorous components contained in washing oil are removed by deodorizing treatment, and carotenoid pigments are lightly colored because they are thermally decomposed, and impurities contained in a trace amount are deactivated and become stable substances. Therefore, in the deodorization using normal fats and oils, it becomes preferable in terms of flavor by making the conditions stricter.
- the body quality is affected by the deodorization process, so the quality of the product depends on the conditions of the deodorization treatment.
- the deodorization treatment is performed so that the deodorization time (x [min]) and the deodorization temperature (y [° C.]) are within a range satisfying the following formula (i). (I) 350 ⁇ (y ⁇ 210) ⁇ x ⁇ 2100 (However, 215 ⁇ y ⁇ 280)
- the deodorizing treatment is performed with a heat history lower than the range defined by the formula (i)
- the deodorizing treatment is performed at a deodorizing temperature (y) lower than 215 ° C., an oil and fat with reduced irritation and weight is obtained.
- the deodorizing treatment is performed at a heat history higher than the range defined by the formula (i) or a deodorizing temperature (y) higher than 280 ° C.
- a fat and oil having an excellent body taste cannot be obtained, and the transformer is unsaturated.
- the effect of suppressing the increase in fatty acids is not sufficient.
- x represents the deodorization time (minutes)
- y represents the deodorization temperature (° C.).
- the deodorization treatment is further carried out in the following formula (ii) from the viewpoint of suppressing the deodorization efficiency, the improvement of flavor, and the increase in trans acid unsaturated fatty acid.
- the deodorization time varies depending on the deodorization temperature. Specifically, when the deodorization process is performed at 250 to 270 ° C., the deodorization time is 6 to 35 minutes, when the deodorization process is performed at 235 to 250 ° C., the deodorization time is 9 to 53 minutes, and the deodorization process is 220 to 220 minutes. When it is carried out at 235 ° C., the deodorization time is preferably 14 to 120 minutes.
- the amount of water vapor used is 0.3 to 20%, particularly 0.5 to 10%, based on fats and oils. From the point which makes the flavor of this good. Further, the pressure is preferably 0.01 to 4 kPa, particularly 0.06 to 0.6 kPa from the same point.
- the deodorization temperature is 255 to 280 ° C.
- the amount of water vapor is 0.3 to 3%, more preferably 0.4 to 2.5%, particularly 0.5 to 2.2% with respect to fats and oils. From the viewpoint of improving flavors such as “umami” and “kokumi” peculiar to diacylglycerol.
- the deodorization temperature is 250 to 255 ° C.
- the amount of water vapor is 2.1 to 5%, more preferably 2.2 to 4.5%, particularly 2.5 to 4% with respect to fats and oils. From the point of view, it is preferable. Further, it is also possible that the deodorization temperature is 215 to 250 ° C. and the amount of water vapor is 2.1 to 10%, more preferably 2.2 to 8%, particularly 2.5 to 6% with respect to fats and oils. To preferred.
- the temperature rise time to the deodorization temperature is 0.5 to 60 minutes from the temperature 70 ° C. to the temperature 200 ° C., and 0.5 to 45 minutes from the temperature 200 ° C. to the deodorization temperature from the viewpoint of suppressing the increase of the trans unsaturated fatty acid. Further, it is preferable that the temperature is from 70 ° C. to 200 ° C. for 1 to 30 minutes, the temperature from 200 ° C. to the deodorization temperature is 1 to 20 minutes, in particular, the temperature from 70 ° C. to the temperature of 200 ° C. is 2 to 20 minutes, The temperature is preferably 2 to 15 minutes.
- the cooling time from the deodorization temperature is preferably 0.2 to 35 minutes from the deodorization temperature to 200 ° C.
- the temperature 200 ° C. to 70 ° C. from the viewpoint of suppressing the increase in trans unsaturated fatty acid. Furthermore, from the deodorization temperature to 200 ° C. for 0.5 to 25 minutes, from the temperature 200 ° C. to 70 ° C. for 0.5 to 30 minutes, in particular, from the deodorization temperature to 200 ° C. for 1 to 20 minutes, the temperature from 200 ° C. to 70 ° C. It is preferable that the temperature is 1 to 25 minutes.
- the amount of increase in trans unsaturated fatty acid in the refining process can be suppressed to 1% or less, and the content of trans unsaturated fatty acid in all fatty acids constituting the oil and fat is as low as 2% or less. Can be obtained.
- the content of trans-unsaturated fatty acid in the diacylglycerol-rich oil is preferably 0 to 1.5%, particularly 0.1 to 1.2%.
- the diacylglycerol-rich oil and fat produced by the method of the present invention has a good flavor and a good hue.
- the diacylglycerol content in the oil and fat with a high diacylglycerol content is preferably in the range of the “diacylglycerol purity”.
- the immobilized lipase was collected by filtration, and washed with 2500 mL of 50 mM acetate buffer (pH 5) to remove the non-immobilized lipase and protein. All the above operations were performed at a temperature of 20 ° C. Thereafter, 2000 g of soybean fatty acid was added, and the mixture was dehydrated while being stirred at a temperature of 40 ° C. until the pressure reached 400 Pa. Then, after stirring for 30 minutes with 2500 mL of hexane, operation which separates a hexane phase by filtration was performed 3 times. Thereafter, the solvent was removed using an evaporator at a temperature of 40 ° C. for 1 hour, followed by drying under reduced pressure for 15 hours under conditions of a temperature of 40 ° C. and a pressure of 1300 Pa to obtain an immobilized lipase G.
- 50 mM acetate buffer pH 5
- ⁇ Immobilized lipase AY> 500 g of Duolite A-568 (Rohm & Hass) was stirred for 1 hour in 5000 mL of 0.1N aqueous sodium hydroxide. Then, it was washed with 5000 mL of distilled water for 1 hour, and equilibrated to pH with 5000 mL of 500 mM phosphate buffer (pH 7) for 2 hours. Thereafter, the pH was equilibrated with 5000 mL of 50 mM phosphate buffer (pH 7) twice for 2 hours. Thereafter, filtration was performed and the carrier was recovered, followed by ethanol replacement with 2500 mL of ethanol for 30 minutes.
- the immobilized lipase was collected by filtration, and washed with 2500 mL of 50 mM phosphate buffer (pH 7) to remove the non-immobilized lipase and protein. All the above operations were performed at a temperature of 20 ° C. Thereafter, 2000 g of deodorized soybean oil was added, stirred at a temperature of 40 ° C. for 10 hours, and then filtered to separate from the deodorized soybean oil. Then, after stirring for 30 minutes with 2500 mL of hexane, operation which separates a hexane phase by filtration was performed 3 times. Thereafter, the solvent was removed using an evaporator at a temperature of 40 ° C. for 1 hour, followed by drying under reduced pressure for 15 hours under the conditions of a temperature of 40 ° C. and a pressure of 1300 Pa to obtain an immobilized lipase AY.
- O-95R (Kao Co., Ltd., the same shall apply hereinafter) was used as the raw material for the transesterification reaction (raw material A). Also, rapeseed oil is added to O-95R to prepare glyceride mixed oils with different triacylglycerol contents (raw materials B, C, D, E), and health econa cooking oil (Kao Corporation) is added to O-95R. The same applies hereinafter) to prepare glyceride mixed oils having different diacylglycerol contents (raw materials F and G).
- rapeseed oil and healthy econa cooking oil were added to O-95R to prepare a glyceride mixed oil having substantially the same content of monoacylglycerol, diacylglycerol and triacylglycerol (raw material H).
- Table 1 shows the glyceride composition of the raw oil.
- Table 1 shows the glyceride composition of undeodorized rapeseed oil and raw material I.
- the undeodorized rapeseed oil and raw material I had trans-unsaturated fatty acid contents of 0.1% and 0.2%, respectively.
- Test example 1 In a 500 ML four-necked flask equipped with a stirring blade (75 mm ⁇ 20 mm), 250 g of the raw material A was put and allowed to stand at a temperature of 50 ° C. for 30 minutes to stabilize the raw material A in the flask at 50 ° C. Next, 5% (12.5 g) of immobilized lipase G (water content 2.1%) is added to the raw material A while stirring at a temperature of 50 ° C. and stirring of 300 r / min, and the ester exchange reaction is performed. Started. Immediately, nitrogen sealing was performed to create a nitrogen atmosphere. When the transesterification reaction was carried out for 50 hours, the glyceride composition reached equilibrium, and the immobilized lipase G was filtered off to obtain sample A.
- Test example 2 A transesterification reaction was performed in the same manner as in Test Example 1 except that a commercially available immobilized lipase Lipozyme RM IM (Novozymes Japan Co., Ltd. (hereinafter the same), moisture content 2.2%) was used as the immobilized lipase.
- a commercially available immobilized lipase Lipozyme RM IM Novozymes Japan Co., Ltd. (hereinafter the same), moisture content 2.2%) was used as the immobilized lipase.
- the transesterification was carried out for 67 hours, the glyceride composition reached equilibrium, and the immobilized lipase Lipozyme RM IM was filtered off to obtain Sample B.
- Test example 3 A transesterification reaction was carried out in the same manner as in Test Example 1 except that immobilized lipase AY (water content 2.5%) was used as the immobilized lipase. When the transesterification was carried out for 530 hours, the glyceride composition reached equilibrium, and the immobilized lipase AY was filtered off to obtain sample C.
- Test example 4 In a 2000 ML four-necked flask equipped with a stirring blade (90 mm ⁇ 24 mm) and an air-cooled tube (inner diameter 11 mm, length 1 m), 250 g of raw material A and 500 mL of hexane were placed and allowed to stand at a temperature of 50 ° C. for 30 minutes. Raw material A was stabilized at 50 ° C. Next, 5% (12.5 g) of immobilized lipase G (water content 2.1%) is added to the raw material A while stirring at a temperature of 50 ° C. and stirring of 300 r / min, and the ester exchange reaction is performed. Started. When the transesterification reaction was carried out for 50 hours, the glyceride composition reached equilibrium, and the immobilized lipase G was filtered off to obtain sample D.
- Test Example 5 In a 200 ML four-necked flask equipped with a stirring blade (50 mm ⁇ 18 mm), 90 g of raw material I was placed and allowed to stand at a temperature of 50 ° C. for 30 minutes to stabilize the raw material I in the flask at 50 ° C. Next, while stirring at a temperature of 50 ° C. and stirring of 300 r / min, 10% (9.0 g) of immobilized lipase G (water content 2.8%) is added to the raw material I, and the ester exchange reaction is performed. Started. Immediately, nitrogen sealing was performed to create a nitrogen atmosphere. Transesterification was carried out for 24 hours, and immobilized lipase G was filtered off to obtain sample U. Sample U had a trans unsaturated fatty acid content of 0.2%.
- Test Example 6 A transesterification reaction was carried out in the same manner as in Test Example 5 except that a commercially available immobilized lipase Lipozyme RM IM (water content 2.6%) was used as the immobilized lipase. Transesterification was carried out for 2 hours, and the immobilized lipase Lipozyme RM IM was filtered off to obtain sample V. Sample V had a trans-unsaturated fatty acid content of 0.2%.
- Table 2 shows the water content in the reaction systems of Test Examples 1 to 6 and the glyceride composition of the obtained reaction products.
- the glyceride composition is obtained after removing the separated glycerin from the reaction-finished oil according to the “analysis method” (the same applies hereinafter).
- Test Example 7 In a 500 ML four-necked flask equipped with a stirring blade (75 mm ⁇ 20 mm), 250 g of the raw material A was put and allowed to stand at a temperature of 50 ° C. for 30 minutes to stabilize the raw material A in the flask at 50 ° C. Next, 5% (12.5 g) of immobilized lipase Lipozyme RM IM (water content 2.5%) was added to the raw material A while stirring at a temperature of 50 ° C. and stirring of 300 r / min, and the ester exchange was performed. The reaction was started. Immediately, nitrogen sealing was performed and a nitrogen atmosphere was established. The transesterification was carried out for 24 hours, and the immobilized lipase Lipozyme RM IM was filtered off to obtain sample E.
- Test Example 8 Distilled water was added at the start of the transesterification reaction, and a transesterification reaction was carried out in the same manner as in Test Example 7 except that the water content in the reaction system was 1.1%.
- Test Example 9 Distilled water was added at the start of the transesterification reaction, and a transesterification reaction was performed in the same manner as in Test Example 7 except that the water content in the reaction system was changed to 4.9%.
- Test Example 10 Distilled water was added at the start of the transesterification reaction, and a transesterification reaction was carried out in the same manner as in Test Example 7 except that the water content in the reaction system was 9.6%.
- Table 3 shows the water content in the reaction system of Test Examples 7 to 10 and the glyceride composition of the obtained reaction product.
- Test Example 11 A sample I was obtained by carrying out a transesterification reaction in the same manner as in Test Example 7 except that the raw material B was used as the reaction raw material for the transesterification reaction.
- Test Example 12 A sample J was obtained by carrying out a transesterification reaction in the same manner as in Test Example 7 except that the raw material C was used as the reaction raw material for the transesterification reaction.
- Test Example 13 A sample K was obtained in the same manner as in Test Example 7 except that the raw material D was used as the reaction raw material for the transesterification reaction.
- Test Example 14 A sample L was obtained in the same manner as in Test Example 7 except that the raw material E was used as the reaction raw material for the transesterification reaction.
- Test Example 15 A sample M was obtained in the same manner as in Test Example 7 except that the raw material F was used as the reaction raw material for the transesterification reaction.
- Test Example 16 A sample N was obtained in the same manner as in Test Example 7 except that the raw material G was used as the reaction raw material for the transesterification reaction.
- Test Example 17 A sample O was obtained in the same manner as in Test Example 7 except that the raw material H was used as the reaction raw material for the transesterification reaction.
- Table 4 shows the water content in the reaction systems of Test Examples 11 to 17 and the glyceride composition of the obtained reaction products.
- Test Example 19 The sample was subjected to a transesterification reaction in the same manner as in Test Example 18 except that the immobilized lipase Lipozyme RM IM (water content 5.0%) used for the transesterification reaction was changed to 10% (25.0 g) with respect to the raw material A. Q was obtained.
- Test Example 20 The sample was subjected to a transesterification reaction in the same manner as in Test Example 18 except that the immobilized lipase Lipozyme RM IM (moisture content 5.0%) used for the transesterification reaction was 20% (50.0 g) with respect to the raw material A. R was obtained.
- the immobilized lipase Lipozyme RM IM moisture content 5.08% used for the transesterification reaction was 20% (50.0 g) with respect to the raw material A. R was obtained.
- Test Example 21 In a 200 ML four-necked flask equipped with a stirring blade (50 mm ⁇ 18 mm), 90 g of raw material I was placed and allowed to stand at a temperature of 50 ° C. for 30 minutes to stabilize the raw material I in the flask at 50 ° C. Next, 1% (0.9 g) of the immobilized lipase Lipozyme RM IM (water content 2.6%) was added to the raw material I while stirring at a temperature of 50 ° C. and stirring of 300 r / min, and transesterification was performed. The reaction was started. Immediately, nitrogen sealing was performed to create a nitrogen atmosphere. Transesterification was carried out for 24 hours, and the immobilized lipase Lipozyme RM IM was filtered off to obtain sample W. Sample W had a trans unsaturated fatty acid content of 0.2%.
- Test Example 22 The transesterification was carried out in the same manner as in Test Example 21 except that the immobilized lipase Lipozyme RM IM (water content 2.6%) used for the transesterification reaction was changed to 2% (1.8 g) with respect to the raw material I. Transesterification was performed for 5 hours, and the immobilized lipase Lipozyme RM IM was filtered off to obtain Sample X. Sample X had a trans unsaturated fatty acid content of 0.2%.
- Test Example 23 The transesterification was carried out in the same manner as in Test Example 21 except that the immobilized lipase Lipozyme RM IM (water content 2.6%) used for the transesterification reaction was changed to 5% (4.5 g) with respect to the raw material I. Transesterification was carried out for 3 hours, and the immobilized lipase Lipozyme RM IM was filtered off to obtain sample Y. Sample Y had a trans-unsaturated fatty acid content of 0.2%.
- Test Example 24 A transesterification reaction was carried out in the same manner as in Test Example 21 except that the immobilized lipase Lipozyme RM IM (water content 2.6%) used for the transesterification reaction was 20% (18.0 g) with respect to the raw material I. Transesterification was carried out for 1 hour, and the immobilized lipase Lipozyme RM IM was filtered off to obtain sample Z. Sample Z had a trans unsaturated fatty acid content of 0.2%.
- Table 5 shows the water content in the reaction system of Test Examples 18 to 24 and the glyceride composition of the obtained reaction product.
- Test Example 26 100 g of raw material A was placed in a 200 ML four-necked flask equipped with a stirring blade (75 mm ⁇ 20 mm) and allowed to stand at a temperature of 50 ° C. for 30 minutes to stabilize the raw material A in the flask at 50 ° C. Next, 1% (1.0 g) of Paratase (Novozymes Japan Co., Ltd., moisture content 51%), which is not immobilized, was stirred with stirring at a temperature of 50 ° C. and a stirring rate of 300 r / min. ) was added to initiate the transesterification reaction. Immediately, nitrogen sealing was performed to create a nitrogen atmosphere. When the transesterification reaction was carried out for 48 hours, the glyceride composition reached an equilibrium, and centrifugation was performed at 3000 r / min for 10 minutes to precipitate lipase.
- Paratase Novozymes Japan Co., Ltd., moisture content 51%)
- Table 6 shows the water content in the reaction system of Test Examples 25 and 26 and the glyceride composition of the obtained reaction product.
- Test Example 28 As a reaction raw material for the transesterification reaction, a transesterification reaction was conducted for 4 hours in the same manner as in Test Example 27 except that 2.7 g of glycerin was mixed with 87.3 g of the raw material (glycerin content in the reaction raw material was 3%). Obtained.
- Test Example 29 As a reaction raw material for the transesterification reaction, a transesterification reaction was conducted for 4 hours in the same manner as in Test Example 27 except that 4.5 g of glycerin was mixed with 85.5 g of the raw material (glycerin content in the reaction raw material was 5%). Obtained.
- Test Example 30 As a reaction raw material for the transesterification reaction, a sample AD was obtained by performing the transesterification reaction for 4 hours in the same manner as in Test Example 27 except that 6.3 g of glycerin was mixed with 73.7 g of the raw material J (containing 7% glycerin in the reaction raw material). It was.
- Test Example 31 As a reaction raw material for the transesterification reaction, a transesterification reaction was performed for 4 hours in the same manner as in Test Example 27 except that 8.1 g of glycerin was mixed with 81.9 g of the raw material (containing 9% glycerin in the reaction raw material) to obtain sample AE It was.
- Test Example 32 As a reaction raw material for the transesterification reaction, a sample AF was obtained by conducting the transesterification reaction for 4 hours in the same manner as in Test Example 27 except that 9.9 g of glycerin was mixed with 80.1 g of the raw material J (containing 11% glycerin in the reaction raw material). It was.
- Table 7 shows the water content in the reaction systems of Test Examples 27 to 32 and the glyceride composition of the obtained reaction products.
- Deodorization treatment was performed in a batch manner.
- the vacuum pump used was a Hitachi rotary vacuum pump TYPE160VP-D CuteVac.
- a steam generator was connected to the 300 ML glass Claisen flask with a capillary glass tube having an inner diameter of 2.5 mm.
- Nitrogen was circulated while bubbling at a flow rate of 1 L / min for 10 minutes at a temperature of 70 ° C. to completely replace the inside of the apparatus.
- a vacuum was applied with a vacuum pump and the mixture was heated with a mantle heater. The heating time was 6 to 8 minutes from a temperature of 70 ° C.
- the deodorization temperature, the deodorization time, and the water vapor amount were as shown in Table 8, and the pressure was 0.2 to 0.4 kPa.
- the mantle heater was removed, and the mixture was cooled with a cool air blower from the deodorization temperature to a temperature of 200 ° C for 1 to 2 minutes and from a temperature of 200 ° C to a temperature of 70 ° C for 5 to 7 minutes. After cooling to a temperature of 70 ° C., nitrogen was blown into the deodorizing apparatus and returned to normal pressure.
- Tocopherol (RIKEN E Oil 600: Riken Vitamin Co., Ltd.) was added at 200 ppm to the washing oil to obtain deodorized oils of Test Examples 33 to 36.
- Table 8 shows the physical property values of the deodorized oils of Test Examples 33 to 36.
- “Irritation” and “weight” are flavors caused by undeodorized fats and oils that are raw materials and unfavorable flavors caused by impurities generated in the production process of fats and oils with a high content of diacylglycerol. This refers to the stimulating sensation (stimulation) that occurs and the mouth sensation (weight) that is tangled.
- Test Example 37 In a 1 L four-necked flask equipped with a stirring blade (90 mm ⁇ 24 mm), 280 g (39 wt%) of the distilled recovered oil shown in Table 1 and 438 g (61 wt%) of the raw material J were placed, and the temperature was 50 ° C. for 30 minutes. It left still and the raw material J in a flask was stabilized at 50 degreeC. Next, while stirring at a temperature of 50 ° C. and stirring of 300 r / min, a commercially available immobilized lipase Lipozyme RM IM (water content: 3.2%) was 10% (71 8 g) was added to initiate the transesterification reaction.
- a commercially available immobilized lipase Lipozyme RM IM water content: 3.2%) was 10% (71 8 g) was added to initiate the transesterification reaction.
- the content of diacylglycerol + triacylglycerol in the reaction product increases as the content of triacylglycerol or diacylglycerol in the reaction material increases, but from the point of diacylglycerol purity, the reaction material It was found that the content in the inside is preferably small (Test Examples 11 to 17). From Table 5, it was also found that it is preferable to increase the lipase concentration from the viewpoint that the reaction time can be shortened (Test Examples 18 to 24).
- transesterification was performed by performing a transesterification reaction using the glycerolysis anti-end oil obtained by the glycerolysis reaction of undeodorized fat and glycerin, and then performing a deodorization treatment so that the heat history was within a certain range. It was found that oils and fats with a high content of diacylglycerol having a low saturated fatty acid content and good hue and flavor unique to diacylglycerol such as “umami” and “kokumi” can be obtained efficiently (Test Examples 33 to 37).
- fats and oils with high flavor and high content of diacylglycerol can also be obtained by using fats and oils recovered in the distillation step after the transesterification reaction as raw material monoacylglycerols for the transesterification reaction. It was.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Fats And Perfumes (AREA)
Abstract
Description
また、エステル化反応に用いる脂肪酸を、原料油脂を高圧分解法と酵素分解法を組み合わせて加水分解することにより製造し、次いで当該脂肪酸とグリセリンとをエステル化するという方法がある(特許文献5参照)。
これらの製造法は、アルカリ触媒等を用いた化学法と、リパーゼ等の酵素を用いた酵素法に大別される。
そこで、本発明は、ジアシルグリセロール高含有油脂を工業的に有利な条件で効率よく製造する方法を提供することに関する。
これらの原料モノアシルグリセロール類は一種又は二種以上を用いることができる。
固定化担体としては、セライト、ケイソウ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、炭酸カルシウム、セラミックス等の無機担体、セラミックスパウダー、ポリビニルアルコール、ポリプロピレン、キトサン、イオン交換樹脂、疎水吸着樹脂、キレート樹脂、合成吸着樹脂等の有機高分子等が挙げられるが、特に保水力が高い点からイオン交換樹脂が好ましい。また、イオン交換樹脂の中でも、大きな表面積を有することによりリパーゼの吸着量を高くできるという点から、多孔質であることが好ましい。
水は、リパーゼ、原料モノアシルグリセロール類中に含まれるものでもよいが、合計の水の量が4%以下になる様にコントロールすることが好ましく、該コントロールの方法としては、(i)あらかじめ、各成分の水分量をカールフィッシャー法等により測定しておき、合計の水分量をコントロールする方法、(ii)反応成分を完全に脱水して、後で所定量の水を加える方法等があるが、(i)の方法が、粉末のリパーゼ等吸湿性のあるものの取り扱いが簡略なので好ましい。なお固定化リパーゼが保持している水分量も、前記水分量に含めるものとする。
反応は、ヘキサン、シクロヘキサン、石油エーテル等の溶剤下で行ってもよい。
また、反応生成物中のモノアシルグリセロール含有量は、蒸留負荷を低減する点、反応効率を高くする点から2~60%であることが好ましく、更に3~50%、特に5~50%、殊更10~40%であることが好ましい。
(i)350≦(y-210)×x≦2100
(但し、215≦y≦280)
式(i)で規定される範囲より低い熱履歴で脱臭処理を行う場合、あるいは215℃より低い脱臭温度(y)で脱臭処理を行う場合は、刺激感及び重さが低減された油脂は得られず、式(i)で規定される範囲より高い熱履歴、あるいは280℃より高い脱臭温度(y)で脱臭処理を行う場合は、コク味に優れた油脂は得られず、またトランス不飽和脂肪酸の増加抑制効果が十分ではない。ここで、xは脱臭時間(分)、yは脱臭温度(℃)を示す。ただし、脱臭中に経時的に温度が変化する場合は、それらの平均値とする。また、脱臭処理は、脱臭効率、風味の向上、トランス酸不飽和脂肪酸の増加を抑制する点から、更に次式(ii)
(ii)400<(y-210)×x<1900
を満たす範囲で行うことがより好ましく、特に次式(iii)
(iii)450<(y-210)×x<1700
を満たす範囲で行うことがより好ましく、殊更に次式(iv)
(iv)500<(y-210)×x<1600
を満たす範囲で行うことが好ましい。なお、いずれも215≦y≦280を満たす範囲である。
中でも、脱臭温度が255~280℃で、水蒸気量を油脂に対して0.3~3%、より好ましくは0.4~2.5%、特に0.5~2.2%とすることが、ジアシルグリセロール特有の「旨味」「コク味」等の風味を良好にする点から好ましい。また、脱臭温度が250~255℃で、水蒸気量を油脂に対して2.1~5%、より好ましくは2.2~4.5%、特に2.5~4%とすることが、同様の点から好ましい。更に、脱臭温度が215~250℃で、水蒸気量を油脂に対して2.1~10%、より好ましくは2.2~8%、特に2.5~6%とすることが、同様の点から好ましい。
(i)グリセリド組成の測定
遠心分離が可能な試験管にサンプルを約3g採取し、3000r/minで10分間遠心分離を行い、沈降したグリセリンを除去した。次いで、ガラス製サンプル瓶に、上層を約10mgとトリメチルシリル化剤(「シリル化剤TH」、関東化学製)0.5mLを加え、密栓し、70℃で15分間加熱した。これに水1.5mLとヘキサン1.5mLを加え、振とうした。静置後、上層をガスクロマトグラフィー(GLC)に供して、グリセリド組成の分析を行った。
日本油化学協会編「基準油脂分析試験法」中の「脂肪酸メチルエステルの調製法(2.4.1.2-1996)」に従って脂肪酸メチルエステルを調製し、得られたサンプルを、American Oil Chemists. Society Official Method Ce 1f-96(GLC法)により測定した。
固定化リパーゼ又は固定化していない粉末のリパーゼ、及び原料モノアシルグリセロール類中の水分含有量を、AQUACOUNTER AQ-7(平沼産業(株))を用いて測定し、当該水分量及び各原料の使用量から反応系内の水分量を求めた。
脱臭油の色相は、American Oil Chemists. Society Official Method Ca 13e-92(Lovibond法)で5.25インチセルにより測定し、次の式(1)で求めた値をいう。
色相C=10R+Y (1)
(式中、R=Red値、Y=Yellow値)
<固定化リパーゼG>
Duolite A-568(Rohm & Hass社製)500gを0.1Nの水酸化ナトリウム水溶液5000mL中で、1時間攪拌した。その後、5000mLの蒸留水で1時間洗浄し、500mMの酢酸緩衝液(pH5)5000mLで、2時間pHの平衡化を行った。その後50mMの酢酸緩衝液(pH5)5000mLで2時間ずつ2回、pHの平衡化を行った。この後、濾過を行い、担体を回収した後、エタノール2500mLでエタノール置換を30分間行った。濾過した後、大豆脂肪酸を500g含むエタノール2500mLを加え30分間、大豆脂肪酸を担体に吸着させた。この後濾過し、担体を回収した後、50mMの酢酸緩衝液(pH5)2500mLで4回洗浄し、エタノールを除去し、濾過して担体を回収した。その後、油脂に作用する市販のリパーゼ(リパーゼG「アマノ」50、天野エンザイム(株))の10%溶液10000mLと2時間接触させ、固定化を行った。さらに、濾過し固定化リパーゼを回収して、50mMの酢酸緩衝液(pH5)2500mLで洗浄を行い、固定化していないリパーゼや蛋白を除去した。以上の操作はいずれも温度20℃で行った。その後、大豆脂肪酸2000gを加え、温度40℃で攪拌しながら、圧力400Paに達するまで減圧して脱水した。その後、ヘキサン2500mLで30分間攪拌後、ヘキサン相を濾別する操作を3回行った。その後、温度40℃でエバポレーターを使って1時間脱溶剤し、次いで、温度40℃、圧力1300Paの条件で15時間減圧乾燥して脱溶剤を行い、固定化リパーゼGを得た。
Duolite A-568(Rohm & Hass社製)500gを0.1Nの水酸化ナトリウム水溶液5000mL中で、1時間攪拌した。その後、5000mLの蒸留水で1時間洗浄し、500mMのリン酸緩衝液(pH7)5000mLで、2時間pHの平衡化を行った。その後50mMのリン酸緩衝液(pH7)5000mLで2時間ずつ2回、pHの平衡化を行った。この後、濾過を行い、担体を回収した後、エタノール2500mLでエタノール置換を30分間行った。濾過した後、大豆脂肪酸を500g含むエタノール2500mLを加え30分間、大豆脂肪酸を担体に吸着させた。この後濾過し、担体を回収した後、50mMのリン酸緩衝液(pH7)2500mLで4回洗浄し、エタノールを除去し、濾過して担体を回収した。その後、油脂に作用する市販のリパーゼ(リパーゼAY「アマノ」30G、天野エンザイム(株))の10%溶液10000mLと4時間接触させ、固定化を行った。さらに、濾過し固定化リパーゼを回収して、50mMのリン酸緩衝液(pH7)2500mLで洗浄を行い、固定化していないリパーゼや蛋白を除去した。以上の操作はいずれも温度20℃で行った。その後、脱臭大豆油2000gを加え、温度40℃、10時間攪拌した後、濾過して脱臭大豆油と分離した。その後、ヘキサン2500mLで30分間攪拌後、ヘキサン相を濾別する操作を3回行った。その後、温度40℃でエバポレーターを使って1時間脱溶剤し、次いで、温度40℃、圧力1300Paの条件で15時間減圧乾燥して脱溶剤を行い、固定化リパーゼAYを得た。
エステル交換反応の原料となるモノアシルグリセロールはO-95R(花王(株)、以下同じ)を用いた(原料A)。また、O-95Rに菜種油を添加し、トリアシルグリセロール含有量の異なるグリセリド混合油を調製し(原料B、C、D、E)、更に、O-95Rに健康エコナクッキングオイル(花王(株)、以下同じ)を添加し、ジアシルグリセロール含有量の異なるグリセリド混合油を調製した(原料F、G)。また、O-95Rに菜種油及び健康エコナクッキングオイルを添加し、モノアシルグリセロール、ジアシルグリセロール及びトリアシルグリセロールの含有量がほぼ同じであるグリセリド混合油を調製した(原料H)。表1に、原料油脂のグリセリド組成を示した。
未脱臭菜種油1000g及びグリセリン343gを、攪拌羽根(90mm×24mm)を取り付けた2L4ツ口フラスコに入れ、攪拌500r/minの条件で攪拌しながら、触媒として水酸化カルシウム0.134gを添加した。次に、窒素ガスを流通しながら、温度210℃、反応時間1時間の条件にてグリセロリシス反応を行い、100℃以下に冷却後、リン酸を0.158g添加して触媒を中和した。次いで、25℃まで冷却し、6000r/minで10分間遠心分離を行い、分離したグリセリンを除去して原料モノアシルグリセロールである原料Iを得た。表1に未脱臭菜種油と原料Iのグリセリド組成を示した。未脱臭菜種油及び原料Iのトランス不飽和脂肪酸含有量は、それぞれ0.1%及び0.2%であった。
上記未脱臭菜種油2500g及びグリセリン858gを、攪拌羽根(90mm×24mm)を取り付けた5L4ツ口フラスコに入れ、攪拌500r/minの条件で攪拌しながら、触媒として水酸化カルシウム0.335gを添加した。次に、窒素ガスを流通しながら、温度210℃、反応時間1.5時間の条件にてグリセロリシス反応を行い、リン酸を0.395g添加して触媒を中和した。次いで、25℃まで冷却し、6000r/minで10分間遠心分離を行い、分離したグリセリンを除去した。次いで、油相を5L4ツ口フラスコに入れ、攪拌500r/minの条件で攪拌し、温度、圧力を徐々に上げながらグリセリンの留去を開始し、温度190℃、圧力100Pa、反応時間30分の条件にてグリセリンを完全に留去した。その後、70℃まで冷却して原料モノアシルグリセロールである原料Jを得た。表1に原料Jのグリセリド組成を示した。原料Jのトランス不飽和脂肪酸含有量は0.2%であった。
試験例1
攪拌羽根(75mm×20mm)を取り付けた500ML4ツ口フラスコに、原料Aを250g入れ、温度50℃で30分間静置し、フラスコ内の原料Aを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化リパーゼG(水分含有量2.1%)を原料Aに対して5%(12.5g)添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を50時間行ったところでグリセリド組成は平衡に達し、固定化リパーゼGを濾別してサンプルAを得た。
固定化リパーゼとして市販の固定化リパーゼLipozyme RM IM(ノボザイムズ ジャパン(株)(以下同じ)、水分含有量2.2%)を用いた以外は、試験例1と同様にエステル交換反応を行った。エステル交換反応を67時間行ったところでグリセリド組成は平衡に達し、固定化リパーゼLipozyme RM IMを濾別してサンプルBを得た。
固定化リパーゼとして固定化リパーゼAY(水分含有量2.5%)を用いた以外は、試験例1と同様にエステル交換反応を行った。エステル交換反応を530時間行ったところでグリセリド組成は平衡に達し、固定化リパーゼAYを濾別してサンプルCを得た。
攪拌羽根(90mm×24mm)、空冷管(内径11mm、長さ1m)を取り付けた2000ML4ツ口フラスコに、原料Aを250g、ヘキサンを500ML入れ、温度50℃で30分間静置し、フラスコ内の原料Aを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化リパーゼG(水分含有量2.1%)を原料Aに対して5%(12.5g)添加し、エステル交換反応を開始した。エステル交換反応を50時間行ったところでグリセリド組成は平衡に達し、固定化リパーゼGを濾別してサンプルDを得た。
攪拌羽根(50mm×18mm)を取り付けた200ML4ツ口フラスコに、原料Iを90g入れ、温度50℃で30分間静置し、フラスコ内の原料Iを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化リパーゼG(水分含有量2.8%)を原料Iに対して10%(9.0g)添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を24時間行い、固定化リパーゼGを濾別して、サンプルUを得た。サンプルUのトランス不飽和脂肪酸含有量は0.2%であった。
固定化リパーゼとして市販の固定化リパーゼLipozyme RM IM(水分含有量2.6%)を用いた以外は、試験例5と同様にエステル交換反応を行った。エステル交換反応を2時間行い、固定化リパーゼLipozyme RM IMを濾別して、サンプルVを得た。サンプルVのトランス不飽和脂肪酸含有量は0.2%であった。
試験例7
攪拌羽根(75mm×20mm)を取り付けた500ML4ツ口フラスコに、原料Aを250g入れ、温度50℃で30分間静置し、フラスコ内の原料Aを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化リパーゼLipozyme RM IM(水分含有量2.5%)を原料Aに対して5%(12.5g)添加し、エステル交換反応を開始した。ただちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を24時間行い、固定化リパーゼLipozyme RM IMを濾別してサンプルEを得た。
エステル交換反応の開始時に蒸留水を添加し、反応系内の水分量を1.1%とした以外は試験例7と同様にエステル交換反応を行い、サンプルFを得た。
エステル交換反応の開始時に蒸留水を添加し、反応系内の水分量を4.9%とした以外は試験例7と同様にエステル交換反応を行い、サンプルGを得た。
エステル交換反応の開始時に蒸留水を添加し、反応系内の水分量を9.6%とした以外は試験例7と同様にエステル交換反応を行い、サンプルHを得た。
試験例11
エステル交換反応の反応原料を原料Bとした以外は試験例7と同様にエステル交換反応を行い、サンプルIを得た。
エステル交換反応の反応原料を原料Cとした以外は試験例7と同様にエステル交換反応を行い、サンプルJを得た。
エステル交換反応の反応原料を原料Dとした以外は試験例7と同様にエステル交換反応を行い、サンプルKを得た。
エステル交換反応の反応原料を原料Eとした以外は試験例7と同様にエステル交換反応を行い、サンプルLを得た。
エステル交換反応の反応原料を原料Fとした以外は試験例7と同様にエステル交換反応を行い、サンプルMを得た。
エステル交換反応の反応原料を原料Gとした以外は試験例7と同様にエステル交換反応を行い、サンプルNを得た。
エステル交換反応の反応原料を原料Hとした以外は試験例7と同様にエステル交換反応を行い、サンプルOを得た。
試験例18
攪拌羽根(75mm×20mm)を取り付けた500ML4ツ口フラスコに、原料Aを250g入れ、温度50℃で30分間静置し、フラスコ内の原料Aを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化リパーゼLipozyme RM IM(水分含有量5.0%)を原料Aに対して5%(12.5g)添加し、エステル交換反応を開始した。ただちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を8時間行い、固定化リパーゼLipozyme RM IMを濾別してサンプルPを得た。
エステル交換反応に用いる固定化リパーゼLipozyme RM IM(水分含有量5.0%)を原料Aに対して10%(25.0g)とした以外は試験例18と同様にエステル交換反応を行い、サンプルQを得た。
エステル交換反応に用いる固定化リパーゼLipozyme RM IM(水分含有量5.0%)を原料Aに対して20%(50.0g)とした以外は試験例18と同様にエステル交換反応を行い、サンプルRを得た。
攪拌羽根(50mm×18mm)を取り付けた200ML4ツ口フラスコに、原料Iを90g入れ、温度50℃で30分間静置し、フラスコ内の原料Iを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化リパーゼLipozyme RM IM(水分含有量2.6%)を原料Iに対して1%(0.9g)添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を24時間行い、固定化リパーゼLipozyme RM IMを濾別して、サンプルWを得た。サンプルWのトランス不飽和脂肪酸含有量は0.2%であった。
エステル交換反応に用いる固定化リパーゼLipozyme RM IM(水分含有量2.6%)を原料Iに対して2%(1.8g)とした以外は試験例21と同様にエステル交換反応を行った。エステル交換反応を5時間行い、固定化リパーゼLipozyme RM IMを濾別して、サンプルXを得た。サンプルXのトランス不飽和脂肪酸含有量は0.2%であった。
エステル交換反応に用いる固定化リパーゼLipozyme RM IM(水分含有量2.6%)を原料Iに対して5%(4.5g)とした以外は試験例21と同様にエステル交換反応を行った。エステル交換反応を3時間行い、固定化リパーゼLipozyme RM IMを濾別して、サンプルYを得た。サンプルYのトランス不飽和脂肪酸含有量は0.2%であった。
エステル交換反応に用いる固定化リパーゼLipozyme RM IM(水分含有量2.6%)を原料Iに対して20%(18.0g)とした以外は試験例21と同様にエステル交換反応を行った。エステル交換反応を1時間行い、固定化リパーゼLipozyme RM IMを濾別して、サンプルZを得た。サンプルZのトランス不飽和脂肪酸含有量は0.2%であった。
試験例25
攪拌羽根(75mm×20mm)を取り付けた200ML4ツ口フラスコに、原料Aを100g入れ、温度50℃で30分間静置し、フラスコ内の原料Aを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化していないリパーゼであるリパーゼOF(名糖産業(株)、水分含有量6.5%)を原料Aに対して1%(1.0g)と蒸留水0.5gを添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を48時間行ったところでグリセリド組成は平衡に達し、3000r/minで10分間遠心分離を行い、リパーゼを沈降させサンプルSを得た。
攪拌羽根(75mm×20mm)を取り付けた200ML4ツ口フラスコに、原料Aを100g入れ、温度50℃で30分間静置し、フラスコ内の原料Aを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化していないリパーゼであるパラターゼ(ノボザイムズ ジャパン(株)、水分含有量51%)を原料Aに対して1%(1.0g)添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を48時間行ったところでグリセリド組成は平衡に達し、3000r/minで10分間遠心分離を行い、リパーゼを沈降させサンプルTを得た。
試験例27
攪拌羽根(50mm×18mm)を取り付けた200ML4ツ口フラスコに、原料Jを90g入れ、温度50℃で30分間静置し、フラスコ内の原料Jを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、固定化リパーゼLipozyme RM IM(水分含有量3.2%)を原料Jに対して5%(4.5g)添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を1.5時間行い、固定化リパーゼLipozyme RM IMを濾別して、サンプルAAを得た。
エステル交換反応の反応原料として、原料J87.3gにグリセリン2.7gを混合(反応原料中のグリセリン含有量3%)した以外は試験例27と同様にエステル交換反応を4時間行い、サンプルABを得た。
エステル交換反応の反応原料として、原料J85.5gにグリセリン4.5gを混合(反応原料中のグリセリン含有量5%)した以外は試験例27と同様にエステル交換反応を4時間行い、サンプルACを得た。
エステル交換反応の反応原料として、原料J83.7gにグリセリン6.3gを混合(反応原料中のグリセリン含有7%)した以外は試験例27と同様にエステル交換反応を4時間行い、サンプルADを得た。
エステル交換反応の反応原料として、原料J81.9gにグリセリン8.1gを混合(反応原料中のグリセリン含有9%)した以外は試験例27と同様にエステル交換反応を4時間行い、サンプルAEを得た。
エステル交換反応の反応原料として、原料J80.1gにグリセリン9.9gを混合(反応原料中のグリセリン含有11%)した以外は試験例27と同様にエステル交換反応を4時間行い、サンプルAFを得た。
試験例33~36
[酵素エステル交換反応処理]
攪拌羽根(90mm×24mm)を取り付けた2L4ツ口フラスコに、原料Jを1000g入れ、温度50℃で30分間静置し、フラスコ内の原料Jを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、市販の固定化リパーゼLipozyme RM IM(水分含有量3.2%)を原料Jに対して5%(50g)添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を3時間行ったところで、固定化リパーゼを濾別し、反応生成物を得た。
反応生成物を、ワイプトフィルム蒸発装置(神鋼パンテック社 2-03型、内径5cm、伝熱面積0.03m2)を用い、加熱ヒーター設定温度235℃、圧力1.5Pa、流量150ml/hの操作条件で蒸留し、蒸留油を得た。反応生成物に対する比率は蒸留油が61%、蒸留回収油が39%であった。蒸留回収油のグリセリド組成を表1に示す。
蒸留油に10%クエン酸水溶液を2%添加し、温度70℃で30分間、400r/minで混合後、温度100℃、真空度400Pa、400r/minで混合しながら、30分間減圧脱水し、酸処理油を得た。
温度70℃に加温した蒸留水を酸処理油に対して10%添加し、温度70℃で30分間、600r/minで強混合後、遠心分離して油相を分取した。この水洗操作を3回行い、温度100℃、真空度400Paで30分間減圧脱水し、水洗油を得た。
脱臭処理はバッチ式で行った。真空ポンプは日立製ロータリーバキュームポンプ TYPE160VP-D CuteVacを用いた。300MLガラス製クライゼンフラスコに、前記水洗油100gを投入した後、水蒸気発生装置を内径2.5mmのキャピラリーガラス管で300MLガラス製クライゼンフラスコに接続した。温度70℃、10分間、窒素を流量1L/minでバブリングしながら流通させ装置内を完全に窒素置換した。真空ポンプで真空状態にし、マントルヒーターで加熱した。加熱時間は、温度70℃から温度200℃まで6~8分、温度200℃から245℃まで2~6分要した。脱臭温度、脱臭時間及び水蒸気量は表8に示す各条件とし、圧力は0.2~0.4kPaで行った。脱臭終了後、マントルヒーターを取り外し、冷風機にて、脱臭温度から温度200℃まで1~2分、温度200℃から温度70℃まで5~7分かけて冷却した。温度70℃まで冷却後、脱臭装置内に窒素を吹き込み、常圧まで戻した。トコフェロール(理研Eオイル600:理研ビタミン(株))を水洗油に対し200ppm添加し、試験例33~36の脱臭油を得た。表8に、試験例33~36の脱臭油の物性値を示す。
試験例33~36の脱臭油についての風味(コク味、刺激感及び重さ)の評価は、5人のパネルにより、各人0.5~5gを生食し、下記表9に示す基準にて官能評価することにより行った。結果を表8に示す。
本発明において「コク味」とは、本発明の製造方法で製造されたジアシルグリセロールに特有の好ましい風味であり、旨み等が口中で広がり、口あたりの調和のとれた濃厚感のある風味をいう。また、「刺激感」及び「重さ」は、原料である未脱臭油脂に起因する風味や、ジアシルグリセロール高含有油脂の製造工程で生成する不純物からもたらされる好ましくない風味であり、口中やのどにおいて生じる刺激的な感覚(刺激感)及びねっとりと絡みつくような口中感覚(重さ)をいう。
試験例37
攪拌羽根(90mm×24mm)を取り付けた1L4ツ口フラスコに、前記表1に示した蒸留回収油を280g(39重量%)、原料Jを438g(61重量%)入れ、温度50℃で30分間静置し、フラスコ内の原料Jを50℃に安定化させた。次いで、温度50℃、攪拌300r/minの条件で攪拌しながら、市販の固定化リパーゼLipozyme RM IM(水分含有量3.2%)を蒸留回収油と原料Jの合計に対して10%(71.8g)添加し、エステル交換反応を開始した。直ちに窒素シールを行い、窒素雰囲気下とした。エステル交換反応を5時間行ったところで、固定化リパーゼを濾別し、反応生成物を得た。次いで、試験例35と同様の条件で蒸留以降の工程を行い、試験例37の脱臭油を得た。当該脱臭油について、風味(コク味、刺激感及び重さ)の評価を上記[風味の評価基準]に従って行った。
表8に試験例37の脱臭油の物性値及び風味の評価の結果を示す。
表3より、反応系内の水分量が高くなると、反応生成物中の脂肪酸濃度が上昇することから、ジアシルグリセロール含有量の高い油脂組成物を得るためには水分量が低いこと、特にジアシルグリセロール純度を80%以上とするためには水分量は4%以下とするのが好ましいことが判った(試験例7~10)。
表4より、反応原料中のトリアシルグリセロール含有量やジアシルグリセロール含有量が高くなると、反応生成物中のジアシルグリセロール+トリアシルグリセロール含有量は増加するが、ジアシルグリセロール純度の点からは、反応原料中の含有量が少ないことが好ましいことが判った(試験例11~17)。
表5より、反応時間を短縮することができる点から、リパーゼ濃度を高くするのが好ましいことも判った(試験例18~24)。また、表6より、固定化していないリパーゼを用いても、反応生成物中のジアシルグリセロール+トリアシルグリセロール含有量が少なくなる傾向は見られるものの、ジアシルグリセロール純度の高い油脂組成物が得られることが判った(試験例25及び26)。表7より、反応原料中のグリセリン量を低くすると、ジアシルグリセロール含有量が高い油脂組成物を得られることが判った(試験例27~32)。
表8より、未脱臭油脂とグリセリンとのグリセロリシス反応によって得られたグリセロリシス反終油を使用してエステル交換反応し、その後、熱履歴が一定範囲内となるよう脱臭処理を行うことにより、トランス不飽和脂肪酸含有量が低く、色相及び「旨味」「コク味」等のジアシルグリセロール特有の風味が良好なジアシルグリセロール高含有油脂を効率よく得られることがわかった(試験例33~37)。また、エステル交換反応の原料モノアシルグリセロール類として、エステル交換反応を行った後の蒸留工程で回収された油脂を用いることによっても、風味の良好なジアシルグリセロール高含有油脂を得ることができることが判った。
Claims (9)
- モノアシルグリセロール類を水の存在下に、リパーゼを用いてエステル交換反応させるジアシルグリセロール高含有油脂の製造方法。
- 反応系内に4質量%以下の水が含まれる請求項1記載のジアシルグリセロール高含有油脂の製造方法。
- モノアシルグリセロール類中のトリアシルグリセロール含有量が50質量%以下である請求項1又は2記載のジアシルグリセロール高含有油脂の製造方法。
- モノアシルグリセロール類が、油脂とグリセリンとのグリセロリシス反応によって得られたグリセロリシス反応終了油である請求項1~3のいずれか1項記載のジアシルグリセロール高含有油脂の製造方法。
- モノアシルグリセロール類中のグリセリン含有量が15質量%以下である請求項1~4のいずれか1項記載のジアシルグリセロール高含有油脂の製造方法。
- モノアシルグリセロール類の構成脂肪酸中のトランス不飽和脂肪酸含有量が2質量%以下である請求項1~5のいずれか1項記載の製造方法。
- ジアシルグリセロール高含有油脂のジアシルグリセロール純度[ジアシルグリセロール/(ジアシルグリセロール+トリアシルグリセロール)×100]が50質量%以上である請求項1~6のいずれか1項記載のジアシルグリセロール高含有油脂の製造方法。
- エステル交換反応後に、脱臭時間(x)と脱臭温度(y)の関係が、次式(i)
(i)350≦(y-210)×x≦2100
(但し、215≦y≦280)
(ここで、xは脱臭時間(分)、yは脱臭温度(℃)を示す。)
を満たす範囲内で脱臭処理を行う請求項1~7のいずれか1項記載のジアシルグリセロール高含有油脂の製造方法。 - ジアシルグリセロール高含有油脂の蒸留工程で回収した蒸留回収油を、モノアシルグリセロール類の一部又は全部として用いる請求項1~8のいずれか1項記載のジアシルグリセロール高含有油脂の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010514334A JP5307806B2 (ja) | 2008-05-29 | 2009-02-09 | ジアシルグリセロール高含有油脂の製造方法 |
EP09754368.0A EP2287325A4 (en) | 2008-05-29 | 2009-02-09 | PROCESS FOR PRODUCTION OF FATTY OR OIL CONTAINING LARGE QUANTITY OF DIACYLGLYCEROL |
CN2009801175513A CN102027126A (zh) | 2008-05-29 | 2009-02-09 | 二酰基甘油含量高的油脂的制造方法 |
US12/995,096 US20110076358A1 (en) | 2008-05-29 | 2009-02-09 | Process for producing diacylglycerol-rich fat or oil |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008141071 | 2008-05-29 | ||
JP2008-141071 | 2008-05-29 | ||
JP2008200360 | 2008-08-04 | ||
JP2008-200360 | 2008-08-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009144858A1 true WO2009144858A1 (ja) | 2009-12-03 |
Family
ID=41376750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/000513 WO2009144858A1 (ja) | 2008-05-29 | 2009-02-09 | ジアシルグリセロール高含有油脂の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20110076358A1 (ja) |
EP (1) | EP2287325A4 (ja) |
JP (1) | JP5307806B2 (ja) |
KR (1) | KR20110018878A (ja) |
CN (1) | CN102027126A (ja) |
MY (1) | MY173770A (ja) |
WO (1) | WO2009144858A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8884043B2 (en) | 2009-12-15 | 2014-11-11 | Kao Corporation | Oil or fat composition |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5101206B2 (ja) * | 2007-08-08 | 2012-12-19 | 花王株式会社 | ジアシルグリセロール高含有油脂の製造方法 |
CN104039750A (zh) * | 2011-11-22 | 2014-09-10 | 阿彻丹尼尔斯米德兰德公司 | 富含不饱和脂肪酸的棕榈油 |
EP3694962B1 (en) * | 2017-10-13 | 2023-12-13 | GlycosBio Inc. | Processed oil comprising monoacylglycerides |
CN108977471B (zh) * | 2018-08-27 | 2021-07-02 | 潘志杰 | 天然甘油酯型深海鱼油非乙酯型途径转化为浓缩型甘油酯的方法 |
EP3911164A1 (en) * | 2019-01-18 | 2021-11-24 | GlycosBio Inc. | Method of making monoacylglyceride oils and food products containing monoacylglyceride oils |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04330289A (ja) | 1991-01-24 | 1992-11-18 | Kao Corp | ジグリセリドの製造法 |
JPH0665310A (ja) | 1992-08-20 | 1994-03-08 | Sanshin Chem Ind Co Ltd | 重合開始剤および重合方法 |
JPH0665311A (ja) | 1992-08-21 | 1994-03-08 | Sekisui Chem Co Ltd | ポリビニルアセタール樹脂の製造方法 |
JPH08294394A (ja) * | 1995-04-28 | 1996-11-12 | Kao Corp | ジグリセリドの製造法 |
WO2000003031A1 (fr) * | 1998-07-09 | 2000-01-20 | Kao Corporation | Procede de production d'un glyceride partiel |
JP2000345189A (ja) | 1999-03-29 | 2000-12-12 | Kanegafuchi Chem Ind Co Ltd | ジグリセライド含有油脂組成物の製造方法、およびこれを用いてなる油脂組成物 |
JP2006137923A (ja) | 2004-04-28 | 2006-06-01 | Kao Corp | 油脂組成物 |
JP2006328383A (ja) * | 2005-04-28 | 2006-12-07 | Kao Corp | 油脂の製造方法 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2727913A (en) * | 1952-10-11 | 1955-12-20 | Eastman Kodak Co | Method of obtaining concentrated monoglycerides |
US3208857A (en) * | 1962-12-28 | 1965-09-28 | Procter & Gamble | Fluid shortening for cream icings |
US4263216A (en) * | 1978-10-20 | 1981-04-21 | The Procter & Gamble Company | Diglyceride manufacture |
JPS578787A (en) * | 1980-03-14 | 1982-01-18 | Fuji Oil Co Ltd | Esterification by enzyme |
DE3227669C1 (de) * | 1982-07-23 | 1983-07-07 | Hermann Dr. 4400 Münster Stage | Verfahren und Anlage zum Desodorieren und/oder Entsaeuern von Speiseoelen,Fetten und Estern |
US5270188A (en) * | 1985-02-06 | 1993-12-14 | Amano Pharmaceutical Co., Ltd. | Preparation of glycerides having a high content of monglycerides with a lipase from Penicillium cyclopium ATCC 34613 |
JPH0665311B2 (ja) * | 1987-09-09 | 1994-08-24 | 花王株式会社 | ジグリセリドの製造法 |
JP2691608B2 (ja) * | 1989-04-13 | 1997-12-17 | 花王株式会社 | パック化粧料 |
US6261812B1 (en) * | 1997-08-18 | 2001-07-17 | Kao Corporation | Process for producing diglycerides |
JP3720057B2 (ja) * | 1998-03-24 | 2005-11-24 | 花王株式会社 | 植物ステロール含有油脂組成物 |
JP3853552B2 (ja) * | 1999-12-17 | 2006-12-06 | 花王株式会社 | ジグリセリドの製造方法 |
AU2002367050A1 (en) * | 2002-01-15 | 2003-07-30 | Kao Corporation | Process for the production of diglycerides |
US7806945B2 (en) * | 2003-01-27 | 2010-10-05 | Seneca Landlord, Llc | Production of biodiesel and glycerin from high free fatty acid feedstocks |
EP1618085A1 (en) * | 2003-04-25 | 2006-01-25 | Ilshinwells Co., Ltd. | Preparation method of conjugated linoleic acid diglycerides |
KR100540875B1 (ko) * | 2003-04-25 | 2006-01-11 | 주식회사 일신웰스 | 공역 리놀레산을 포함하는 고순도 디글리세라이드 유지조성물 및 그 제조방법 |
TW200503634A (en) * | 2003-06-10 | 2005-02-01 | Archer Daniels Midland Co | Method for the production of fatty acids having a low trans-fatty acid content |
TWI414245B (zh) * | 2003-12-19 | 2013-11-11 | Kao Corp | Edible fat and oil composition |
DE102004007795A1 (de) * | 2004-02-18 | 2005-09-22 | Weber, Nikolaus, Dr. | Enzymatisches Umesterungsverfahren zur Herstellung von Diglyceriden und Diglycerid-Konzentraten |
EP1741342B1 (en) * | 2004-04-28 | 2011-11-23 | Kao Corporation | Fat composition |
JP4280234B2 (ja) * | 2004-12-24 | 2009-06-17 | 花王株式会社 | ジグリセリド高含有油脂の製造法 |
US7709667B2 (en) * | 2005-04-28 | 2010-05-04 | Kao Corporation | Process for producing fat or oil |
CN100574638C (zh) * | 2007-04-20 | 2009-12-30 | 杨天奎 | 含二酰基甘油的组合物及其制备方法 |
US8227010B2 (en) * | 2008-10-10 | 2012-07-24 | Kao Corporation | Process for producing oil and fat rich in diacylglycerol |
-
2009
- 2009-02-09 WO PCT/JP2009/000513 patent/WO2009144858A1/ja active Application Filing
- 2009-02-09 JP JP2010514334A patent/JP5307806B2/ja active Active
- 2009-02-09 MY MYPI2010005615A patent/MY173770A/en unknown
- 2009-02-09 CN CN2009801175513A patent/CN102027126A/zh active Pending
- 2009-02-09 EP EP09754368.0A patent/EP2287325A4/en not_active Withdrawn
- 2009-02-09 US US12/995,096 patent/US20110076358A1/en not_active Abandoned
- 2009-02-09 KR KR1020107025984A patent/KR20110018878A/ko not_active Application Discontinuation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04330289A (ja) | 1991-01-24 | 1992-11-18 | Kao Corp | ジグリセリドの製造法 |
JPH0665310A (ja) | 1992-08-20 | 1994-03-08 | Sanshin Chem Ind Co Ltd | 重合開始剤および重合方法 |
JPH0665311A (ja) | 1992-08-21 | 1994-03-08 | Sekisui Chem Co Ltd | ポリビニルアセタール樹脂の製造方法 |
JPH08294394A (ja) * | 1995-04-28 | 1996-11-12 | Kao Corp | ジグリセリドの製造法 |
WO2000003031A1 (fr) * | 1998-07-09 | 2000-01-20 | Kao Corporation | Procede de production d'un glyceride partiel |
JP2000345189A (ja) | 1999-03-29 | 2000-12-12 | Kanegafuchi Chem Ind Co Ltd | ジグリセライド含有油脂組成物の製造方法、およびこれを用いてなる油脂組成物 |
JP2006137923A (ja) | 2004-04-28 | 2006-06-01 | Kao Corp | 油脂組成物 |
JP2006328383A (ja) * | 2005-04-28 | 2006-12-07 | Kao Corp | 油脂の製造方法 |
Non-Patent Citations (7)
Title |
---|
KRISTENSEN, JANNI BROGAARD ET AL.: "Process optimization using response surface design and pilot plant production of dietary diacylglycerols by lipase-catalyzed glycerolysis.", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 53, no. 18, 2005, pages 7059 - 7066, XP002402019 * |
METHOD FOR PREPARING FATTY ACID METHYL ESTERS, vol. 2, 1996, pages 4 |
See also references of EP2287325A4 |
SHIZUYUKI OTA ET AL.: "Shokuyo Yushi no Gijutsuteki Hensen", SHOKUHIN KIKAI SOCHI, vol. 293, January 1989 (1989-01-01), pages 76 - 83, XP008147058 * |
SHIZUYUKI OTA ET AL.: "Shokuyo Yushi no Gijutsuteki Hensen", SHOKUHIN KIKAI SOCHI, vol. 294, February 1989 (1989-02-01), pages 70 - 79, XP008129225 * |
SHIZUYUKI OTA ET AL.: "Shokuyo Yushi no Gijutsuteki Hensen", SHOKUHIN KIKAI SOCHI, vol. 295, March 1989 (1989-03-01), pages 73 - 80, XP008129224 * |
TAKEYUKI HAMAMOTO ET AL.: "Yushi no Dasshu to Shokuyo Abura no Anteisei", NIPPON YUKA GAKKAISHI, vol. 48, no. 10, 1999, pages 1123 - 1131, XP008147059 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8884043B2 (en) | 2009-12-15 | 2014-11-11 | Kao Corporation | Oil or fat composition |
Also Published As
Publication number | Publication date |
---|---|
EP2287325A4 (en) | 2013-10-02 |
US20110076358A1 (en) | 2011-03-31 |
KR20110018878A (ko) | 2011-02-24 |
JPWO2009144858A1 (ja) | 2011-10-06 |
JP5307806B2 (ja) | 2013-10-02 |
EP2287325A1 (en) | 2011-02-23 |
MY173770A (en) | 2020-02-20 |
CN102027126A (zh) | 2011-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5101206B2 (ja) | ジアシルグリセロール高含有油脂の製造方法 | |
RU2422498C2 (ru) | Способ получения диолеоил пальмитоил глицерида | |
JP5586914B2 (ja) | ジアシルグリセロール高含有油脂の製造方法 | |
US7709667B2 (en) | Process for producing fat or oil | |
KR101832001B1 (ko) | 정제 유지의 제조 방법 | |
JP5307806B2 (ja) | ジアシルグリセロール高含有油脂の製造方法 | |
WO2012173281A1 (en) | Method for manufacturing refined fats and oils | |
KR102124754B1 (ko) | 유지 조성물 | |
KR101774063B1 (ko) | 정제 유지의 제조 방법 | |
JP6150582B2 (ja) | 精製油脂の製造方法 | |
JP6645804B2 (ja) | 構造油脂の製造方法 | |
JP4694939B2 (ja) | 脂肪酸類の製造方法 | |
JP6990076B2 (ja) | 脂肪酸類の製造方法 | |
CN116406233A (zh) | 脂肪组合物 | |
JP7092460B2 (ja) | 構造油脂の製造方法 | |
JP4694938B2 (ja) | 脂肪酸類の製造方法 | |
JP2019094445A (ja) | アマニ油の製造方法 | |
JP5550282B2 (ja) | ジアシルグリセロール高含有油脂の製造方法 | |
JP5527983B2 (ja) | ドコサヘキサエン酸高含有油脂の製造方法 | |
JP2013542727A (ja) | ジアシルグリセロール富化な油又は油脂の製造プロセス | |
JP6990019B2 (ja) | 脂肪酸類の製造方法 | |
Kulås | Extraction, refining, concentration, and stabilization of long-chain omega-3 oils | |
JP2008253196A (ja) | 脂肪酸類の製造方法 | |
KR102548822B1 (ko) | 조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980117551.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09754368 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010514334 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20107025984 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2009754368 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009754368 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12995096 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |