WO2009030786A1 - Multiphase cold engine employing cold and hot thermodynamics and having engine efficiency greater than 100% and a cold generator with a high coefficient of performance (cop) - Google Patents
Multiphase cold engine employing cold and hot thermodynamics and having engine efficiency greater than 100% and a cold generator with a high coefficient of performance (cop) Download PDFInfo
- Publication number
- WO2009030786A1 WO2009030786A1 PCT/ES2008/000012 ES2008000012W WO2009030786A1 WO 2009030786 A1 WO2009030786 A1 WO 2009030786A1 ES 2008000012 W ES2008000012 W ES 2008000012W WO 2009030786 A1 WO2009030786 A1 WO 2009030786A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- cold
- energy
- phases
- cycle
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 claims abstract description 10
- 238000009835 boiling Methods 0.000 claims abstract description 7
- 230000005611 electricity Effects 0.000 claims description 9
- 230000008901 benefit Effects 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000002551 biofuel Substances 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 239000003990 capacitor Substances 0.000 claims description 2
- 238000010248 power generation Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000000523 sample Substances 0.000 claims 2
- 238000010612 desalination reaction Methods 0.000 claims 1
- 239000013505 freshwater Substances 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000005057 refrigeration Methods 0.000 claims 1
- 150000003839 salts Chemical class 0.000 claims 1
- 238000001704 evaporation Methods 0.000 abstract description 5
- 230000008020 evaporation Effects 0.000 abstract description 5
- 238000009833 condensation Methods 0.000 abstract description 3
- 230000005494 condensation Effects 0.000 abstract description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 239000007788 liquid Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- 229910052729 chemical element Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- IAQRGUVFOMOMEM-ARJAWSKDSA-N cis-but-2-ene Chemical compound C\C=C/C IAQRGUVFOMOMEM-ARJAWSKDSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical compound C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/04—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled condensation heat from one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
Definitions
- the present invention relates to an engine that is framed in the renewable energy production sector, specifically in the conversion of thermal or electrical energy to mechanical energy to generate electricity. And as a high performance cold generator.
- the object of the invention is to produce energy with very high yields, even exceeding 100%. Avoid air pollution. Feed the engine with its own generated energy. Avoid using fuels (fossils, biofuels, etc.). Use of the thermal energy of the environment to produce mechanical energy. Obtain an engine that works with an unconventional system, by using a cold bulb as primary energy. Get as extra energy: cold with a high coefficient of work.
- the steam engine This basically consists of a mechanism under the action of steam pressure. With an approximate yield of 4%
- the steam turbine It consists of a series of blades that rotate when a stream of steam hits them. It has an approximate yield of 20%
- Jet engines These are engines that use the action-reaction principle by. With an approximate yield of 80%
- the present invention relates to a power generation system that opens a range of possibilities such as: Airplanes with 100% more cargo. No danger of fire by not needing fuel.
- the present invention may comprise several energy generating phases differentiated by the origin of the energy used.
- the hot focus phase (1) which can be fed by external thermal energy (9). Understanding this to the energy from outside the generator set and generated by any method (Electricity, solar, hydrocarbons, biofuels, etc.).
- the hot focus phase (2) which can be powered by internal energy. Understanding this as
- the energy supplied by the generator set itself specifically a cooling equipment (4) belonging to the invented system.
- the cold focus phase (3) which can be powered by internal energy. Understanding this, too, as the energy generated within the generator set itself, specifically the cold equipment (4).
- the basic generator set comprises: A phase (1) of hot focus powered by external energy (9), generated this, by any means (Solar, electric, hydrocarbons, etc.). An electric generator (6A) that converts the mechanical energy of phase 1 (1) into electricity. A battery (5) that stores the generated electrical energy. A cold equipment (4) fed by the phase (1) directly or by the batteries. This cold equipment (4) is used to provide heat and cold to phases 2 (2) and 3 (3). A phase, for example Ia 2 (2), which receives heat from the cold equipment. Another phase, for example Ia 3 (3), which receives cold from the cold equipment (4)
- One or several generators (6 a , 6B, ETC.) that convert the kinetic energy of these phases into electricity.
- Each phase comprises several cycles (1001, 1002, 1003, etc.) that base their operation on similar principles.
- cycles Within the cycles are chemical elements with different boiling points to create a staggering between them. Ordered from highest to lowest temperature or vice versa.
- Each cycle comprises: An evaporator (11) that contains a chemical compound inside, which converts this from liquid to gas by means of heat input.
- a turbine (12) that takes advantage of the gas escape velocity from the evaporator and generate movement.
- a condenser-exchanger-evaporator (13) that converts the gas from the turbine into liquid. Yielding heat to the evaporator of the next cycle.
- a recirculation pump (14) to inject the liquid into the evaporator and start the cycle again.
- the first cycle (1001) will be somewhat different from the intermediate cycles and the last one will also be different from the rest, since the evaporator of the first cycle is simple In the intermediates, this evaporator comprises the condenser of the previous cycle. However, the last cycle comprises a condenser that can be cooled by the outside temperature ...
- the total performance of the phases is the sum of the yields of the cycles that compose it. The amount of cycles that can be used depends on the temperature difference between the heat source and the ambient temperature; and of the difference in boiling temperatures, between the chemical compounds used, to form the stepped cycles.
- Carbon sulphide 46.30 0 C
- Acetone 56.20 0 C
- Ethanol 78.30 0 C
- Benzene 80.20 0 C
- the next cycle (1002) of methanol takes advantage of the heat not used in the previous water cycle (1001).
- the condenser of the methanol cycle evaporates by heat transfer to acetone, which belongs to the evaporator of cycle 1003, with a boiling point of 56 ° C. And so on until we can complete the total of the cycles that cover the thermal margin we have.
- phase 1 The total efficiency of phase 1 would be 76.3%
- phase 1 (1) The energy obtained in phase 1 (1) is stored in the batteries (5) or used to power a cold group (4) that will supply cold and heat to the following phases or is consumed directly.
- phase 2 (2) heat is supplied by means of a cold equipment (4) with an (EER) of 2.5 and phase 3 (3) is supplied cold from the cold equipment with a operating coefficient (COP) of 2.5 (approximate average values within the current market).
- EER cold equipment
- COP operating coefficient
- phase 2 (2) Assuming a 25% yield of each cycle we would obtain the results of the following table, for phase 2 (2):
- Cycle i 1000 250 750 55 25 25 47 Cycle 2 750 187.5 562.5 45 25 43 81
- Cycle 3 562.5 140.6 421.6 35 25 57 108
- the total efficiency of phase 2 would be 57.8%.
- the total of phase 2 taking into account the efficiency of the cold equipment would be 110.2%.
- phase 2 not counting the cold equipment
- phase 1 (1) because it has to use 2 cycles less, due to the lower temperature range.
- phase 3 differs from the other 2 phases, because this phase uses the cold of the cold equipment (4) to condense the chemical compound contained in the last cycle.
- the principle of phase 3 being the capacitor of the last cycle thereof.
- Cycle 5 1333 333 1000 -23 33 33 62
- the total efficiency of phase 3 would be 321.4%.
- the total of phase 3 (taking into account the efficiency of the cold equipment) would be 612.8%.
- Phase 1 (1) Total yield of phase 1 (1) 76.3%.
- Phase 2 (2) Performance of Phase 1 (1) (76.3%) multiplied by an EER (250%), multiplied by the performance of Phase 2 (57.8%), gives us a total return of 110.25
- Phase 3 (3) Performance of Phase 1 (1) (76.3%) multiplied by the COP (250%), multiplied by the performance of Phase 3 (321.4%), gives us a total yield of 610.66
- Phase 2 (2) Performance of the battery (5) (100%) multiplied by an EER (250%), multiplied by the performance of Phase 2 (57.8%), gives us a total efficiency of 144.5%
- Phase 3 (3) Battery performance (5) (100%) multiplied by the COP (250%), multiplied by the performance of Phase 3 (321.4%), gives us a total performance of 802.5%
- the method used will depend on the energy we want to contribute to the system. Electric to directly feed the cold equipment through the batteries (5) or through external thermal energy (9) injected in the first phase.
- phase 1 can be used as support for batteries (5) or as a system of security.
- redundant 2 power supplies to the cold equipment (4) The use of the three phases (1, 2, 3, etc.) will depend on the needs. Since they could use us together all the phases to obtain even greater energy. If the performance of the turbines (12) were greater, we would obtain very important yields, of the order of 2000%, mainly due to the energy generated in phase 3 (3).
- the turbines of phase 1 comprise a coupling to a generator (6). As well as phases 2 and 3, it comprises a coupling to another generator (6B) or to that of phase 1 (6) or to other generators (one for phase 2 and one for Ia 3). Likewise, the energy generated can be reinjected to increase the power and to make the system self-powered, without having to use external energy.
- Another characteristic derived from the operation of the generating equipment is that of producing cold with a high coefficient of COP work. Logically due to the heat absorption of the environment. Through the passage of air (7) in the first cycle (1001) of phase 3 (3).
- phase 1 we obtain heat in phase 1 with a yield of 23.7%.
- phase 2 we also obtain heat with an efficiency of 80.4.
- phase 3 the performance absorbs 803.5% with respect to the energy that feeds the cold equipment.
- the motor can also comprise several embodiments, with different phases. That will adapt according to the needs (Safety, size, weight, power, etc.). As for example the following: A phase 1, plus a phase 2, plus a phase 3, plus a cold equipment (It is the one here describe as basic). Or a phase 2, plus a phase 3, plus a cold equipment. Also, a phase 3, plus a cold team. Or several phases 3 with several external cooling equipment, or also several cascade motors for a multiplication of efficiency, etc. Obtaining a multitude of possibilities of the embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
The invention relates to an engine essentially comprising the following three phases differentiated by the origin of the energy supplying same, namely: phase 1 supplied with external thermal energy (9) (heat), phase 2 supplied with internal thermal energy (heat) and phase 3 supplied with internal thermal energy (cold). Each phase includes multiple cycles and each cycle contains a chemical compound each with a different boiling point in order to make use of the energy. The thermal energy is transmitted between the condenser of one cycle and the evaporator of the next, thereby forcing the condensation of the chemical compound of the first cycle and the evaporation of the chemical compound of the next. Energy efficiency greater than 100% can be obtained using said three phases and the greatest efficiency is obtained using the cold phase (3) as the heat is obtained from the environment (8).
Description
MOTOR FRÍO MULTIFASE MEDIANTE TERMODINÁMICA DE FRÍO Y CALOR Y EFICIENCIA SUPERIOR AL 100%. Y GENERADOR DE FRÍO DE ALTO COEFICIENTE DE TRABAJO (COP). MULTIPHASE COLD MOTOR THROUGH COLD THERMODYNAMICS AND HEAT AND EFFICIENCY OVER 100%. AND COLD GENERATOR OF HIGH COEFFICIENT OF WORK (COP).
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La presente invención se refiere a un motor que está encuadrado en el sector de Ia producción de energía renovable, específicamente en Ia conversión de energía térmica o eléctrica a mecánica para generar electricidad. Y como generador de frío de alto rendimiento.The present invention relates to an engine that is framed in the renewable energy production sector, specifically in the conversion of thermal or electrical energy to mechanical energy to generate electricity. And as a high performance cold generator.
El objeto de Ia invención es producir de energía con rendimientos muy altos, incluso superar el 100 %. Evitar Ia contaminación atmosférica. Alimentar el motor con Ia propia energía generada. Evitar uso de combustibles (fósiles, biocombustibles, etc.). Uso de Ia energía térmica del ambiente para producir energía mecánica. Obtener un motor que funcione con un sistema no convencional, al utilizar un foco frío como energía primaria. Obtener como energía extra: frío con un alto coeficiente de trabajo.The object of the invention is to produce energy with very high yields, even exceeding 100%. Avoid air pollution. Feed the engine with its own generated energy. Avoid using fuels (fossils, biofuels, etc.). Use of the thermal energy of the environment to produce mechanical energy. Obtain an engine that works with an unconventional system, by using a cold bulb as primary energy. Get as extra energy: cold with a high coefficient of work.
ANTECEDENTES DE LA INVENCIÓN Actualmente existen varios tipos de motores térmicos.BACKGROUND OF THE INVENTION There are currently several types of thermal engines.
Motores de combustión externa tales como:External combustion engines such as:
La máquina de vapor: Esta consta básicamente de un mecanismo bajo Ia acción de Ia presión del vapor. Con un rendimiento aproximado del 4%The steam engine: This basically consists of a mechanism under the action of steam pressure. With an approximate yield of 4%
La turbina de vapor: Consta de una serie de alabes que rotar cuando incide sobre ellos una corriente de vapor. Tiene un rendimiento aproximado del 20%The steam turbine: It consists of a series of blades that rotate when a stream of steam hits them. It has an approximate yield of 20%
Motores de combustión interna:Internal combustion engines:
Motores alternativos: Poseen el mismo principio de Ia máquina de vapor, solo que aquí el fluido de trabajo experimenta el proceso de Ia combustión. Con un rendimiento aproximado del 35%
Turbina de gas: En esencia Ia misma turbina de vapor, solo que aquí el fluido de trabajo son los gases producto de Ia combustión. Con un rendimiento aproximado del 34%Alternative engines: They have the same principle of the steam engine, only here the working fluid undergoes the combustion process. With an approximate yield of 35% Gas turbine: In essence the same steam turbine, only here the working fluid is the gases produced by combustion. With an approximate yield of 34%
Motores a reacción: Son motores que utilizan el principio de acción- reacción mediante. Con un rendimiento aproximado del 80%Jet engines: These are engines that use the action-reaction principle by. With an approximate yield of 80%
La eficiencia de cada uno de estos motores no superara nunca el 100%.The efficiency of each of these engines will never exceed 100%.
Al utilizar energía de un foco caliente (energía de entrada) y utilizar esta para convertirla en energía cinética (energía de salida) nunca llegaremos a obtener una energía superior a Ia de entrada (rendimiento superior al 100%). Porque Ia energía que suministramos se pierde en calor, según ciclos térmicos Rankine, Carnot, etc. La energía de salida, aprovechable, nunca podrá superar a Ia energía de entrada al sistema.When using energy from a hot spot (input energy) and using it to convert it into kinetic energy (output energy) we will never get an energy higher than the input (yield greater than 100%). Because the energy we supply is lost in heat, according to thermal cycles Rankine, Carnot, etc. The output energy, usable, can never exceed the input power to the system.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
La presente invención se refiere a un sistema de generación de energía que abre un abanico de posibilidades tales como: Aviones con un 100% más de carga. Sin peligro de incendios al no necesitar combustibles. La presente invención puede comprender varias fases generadoras de energía diferenciadas por Ia procedencia de Ia energía utilizada. La fase de foco caliente (1), que puede ser alimentada mediante energía térmica externa (9). Entendiendo por esta a Ia energía proveniente del exterior del conjunto generador y generada por cualquier método (Electricidad, solar, hidrocarburos, biocombustibles, etc.). La fase de foco caliente (2), que puede ser alimentada mediante energía interna. Entendiendo esta comoThe present invention relates to a power generation system that opens a range of possibilities such as: Airplanes with 100% more cargo. No danger of fire by not needing fuel. The present invention may comprise several energy generating phases differentiated by the origin of the energy used. The hot focus phase (1), which can be fed by external thermal energy (9). Understanding this to the energy from outside the generator set and generated by any method (Electricity, solar, hydrocarbons, biofuels, etc.). The hot focus phase (2), which can be powered by internal energy. Understanding this as
Ia energía suministrada por el propio conjunto generador, específicamente un equipo de frío (4) que pertenece al sistema inventado. La fase de foco frío (3), que puede ser alimentada mediante energía interna. Entendiendo esta, también, como Ia energía generada dentro del propio conjunto generador, específicamente el equipo de frío (4).The energy supplied by the generator set itself, specifically a cooling equipment (4) belonging to the invented system. The cold focus phase (3), which can be powered by internal energy. Understanding this, too, as the energy generated within the generator set itself, specifically the cold equipment (4).
El conjunto generador básico comprende: Una fase (1 ) de foco caliente alimentado por energía externa (9), generada esta, por cualquier medio
(Solar, eléctrico, hidrocarburos, etc.). Un generador eléctrico (6A) que convierte Ia energía mecánica de Ia fase 1 (1 ) en electricidad. Una baterías (5) que almacena Ia energía eléctrica generada. Un equipo de frío (4) alimentado por Ia fase (1 ) directamente o por las baterías. Este equipo de frío (4) se utiliza para proporcionar calor y frío a las fases 2(2) y 3(3). Una fase, por ejemplo Ia 2 (2), que recibe calor del equipo de frío. Otra fase, por ejemplo Ia 3 (3), que recibe frío del equipo de frío (4)The basic generator set comprises: A phase (1) of hot focus powered by external energy (9), generated this, by any means (Solar, electric, hydrocarbons, etc.). An electric generator (6A) that converts the mechanical energy of phase 1 (1) into electricity. A battery (5) that stores the generated electrical energy. A cold equipment (4) fed by the phase (1) directly or by the batteries. This cold equipment (4) is used to provide heat and cold to phases 2 (2) and 3 (3). A phase, for example Ia 2 (2), which receives heat from the cold equipment. Another phase, for example Ia 3 (3), which receives cold from the cold equipment (4)
Uno o varios generadores (6a, 6B, ETC.) que convierten Ia energía cinética, de estas fases, en electricidad. Esta electricidad podemos almacenarla en las baterías anteriores (5) o utilizar otra serie de baterías.One or several generators (6 a , 6B, ETC.) that convert the kinetic energy of these phases into electricity. We can store this electricity in the previous batteries (5) or use another series of batteries.
Cada fase comprende varios ciclos (1001 , 1002, 1003, etc.) que basan su funcionamiento en principios similares. Dentro de los ciclos se encuentran elementos químicos con puntos de ebullición diferentes para crear un escalonamiento entre ellos. Ordenados de mayor a menor temperatura o viceversa.Each phase comprises several cycles (1001, 1002, 1003, etc.) that base their operation on similar principles. Within the cycles are chemical elements with different boiling points to create a staggering between them. Ordered from highest to lowest temperature or vice versa.
Cada ciclo comprende: Un evaporador (11 ) que contiene un compuesto químico en su interior, que convierte este de líquido a gas mediante el aporte de calor. Una turbina (12) que aprovecha Ia velocidad de escape del gas desde el evaporador y generar movimiento. Un condensador- intercambiador-evaporador (13) que convierte el gas, proveniente de Ia turbina, en líquido. Cediendo el calor al evaporador del siguiente ciclo. Una bomba de recirculación (14) para inyectar el líquido en el evaporador y comenzar de nuevo el ciclo.Each cycle comprises: An evaporator (11) that contains a chemical compound inside, which converts this from liquid to gas by means of heat input. A turbine (12) that takes advantage of the gas escape velocity from the evaporator and generate movement. A condenser-exchanger-evaporator (13) that converts the gas from the turbine into liquid. Yielding heat to the evaporator of the next cycle. A recirculation pump (14) to inject the liquid into the evaporator and start the cycle again.
Como es fácil entender el primer ciclo (1001 ) será algo diferente a los ciclos intermedios y el último será también diferente al resto, ya que el evaporador del primer ciclo es simple En los intermedios, este evaporador, comprende el condensador del ciclo anterior. Si embargo el último ciclo comprende un condensador que puede estar refrigerado por Ia temperatura exterior...
El rendimiento total de las fases es Ia suma de los rendimientos de los ciclos que Ia componen. La cantidad de ciclos que pueden utilizarse depende de Ia diferencia temperatura entre el foco de calor y Ia temperatura ambiente; y de Ia diferencia de temperaturas de ebullición, entre los compuestos químicos utilizados, para formar los ciclos escalonados.As it is easy to understand the first cycle (1001) will be somewhat different from the intermediate cycles and the last one will also be different from the rest, since the evaporator of the first cycle is simple In the intermediates, this evaporator comprises the condenser of the previous cycle. However, the last cycle comprises a condenser that can be cooled by the outside temperature ... The total performance of the phases is the sum of the yields of the cycles that compose it. The amount of cycles that can be used depends on the temperature difference between the heat source and the ambient temperature; and of the difference in boiling temperatures, between the chemical compounds used, to form the stepped cycles.
Se aconseja que los productos químicos que se puedan utilizar sean estables, no sean dañinos a los componentes del ciclo donde se encuentra alojados, que exista una temperatura mínima entre estos para poder utilizar un máximo número de ciclos y asegurar Ia transferencia de calor entre ciclos que permita Ia condensación y evaporación.It is advised that the chemicals that can be used are stable, not harmful to the components of the cycle where they are housed, that there is a minimum temperature between them to be able to use a maximum number of cycles and ensure heat transfer between cycles that allow condensation and evaporation.
Algunos ejemplos de compuestos químicos con diferentes puntos de evaporación son: Cloro( -35,00 0C); Formaldehído ( -21 ,15 0C); Isobuteno (-Some examples of chemical compounds with different evaporation points are: Chlorine (-35.00 0 C); Formaldehyde (-21, 15 0 C); Isobutene (-
6,90 0C); Ibuteno (-6,26 0C); Trans2buteno (0,96 0C); Cis2buteno (6.90 0 C); Ibutene (-6.26 0 C); Trans2butene (0.96 0 C); Cis2butene (
3,73 0C); Fluoruro de Hidrógeno (19,42 0C); Etanal ( 20,80 0C); Éter etílico (34,6O 0C);3.73 0 C); Hydrogen Fluoride (19.42 0 C); Etanal (20.80 0 C); Ethyl ether (34.6O 0 C);
Sulfuro de carbono (46,30 0C); Acetona (56,20 0C); Etanol ( 78,30 0C); Benceno (80,20 0C)Carbon sulphide (46.30 0 C); Acetone (56.20 0 C); Ethanol (78.30 0 C); Benzene (80.20 0 C)
Algunos no podrán utilizarse debido a que no cumplen alguno de los anteriores consejos. Pero existen miles de compuestos que podrían formar parte de los ciclos.Some may not be used because they do not comply with any of the above tips. But there are thousands of compounds that could be part of the cycles.
Para una mejor comprensión utilizamos el siguiente ejemplo, que es meramente descriptivo y no limitativo. Calentamos el agua, que está contenida en el primer ciclo, por medio de energía externa (madera) a 100 0C hasta su evaporación. Esta aumenta su presión en el evaporador (11) y mediante un regulador (50) ajustamos Ia velocidad de salida del vapor de agua hacia Ia turbina (12). El agua cede energía a Ia turbina (12) perdiendo velocidad. El vapor entra en el condensador (13) que será enfriado por el metanol líquido que se encuentra el evaporador (13) del siguiente ciclo (1002). (La temperatura de ebullición del metanol es de 780C). A estas temperaturas el agua se condensa y el metanol se evapora, por Ia cesión de
calor del agua al metanol. Por Io que el agua en el ciclo 1001 se condensa y el metanol en el ciclo 1002 se evapora.For a better understanding we use the following example, which is merely descriptive and not limiting. We heat the water, which is contained in the first cycle, by means of external energy (wood) at 100 0 C until evaporation. This increases its pressure in the evaporator (11) and by means of a regulator (50) we adjust the rate of water vapor output towards the turbine (12). The water gives energy to the turbine (12) losing speed. The steam enters the condenser (13) that will be cooled by the liquid methanol found in the evaporator (13) of the next cycle (1002). (The boiling point of methanol is 78 0 C). At these temperatures the water condenses and the methanol evaporates, due to the transfer of heat of water to methanol. Therefore, water in cycle 1001 condenses and methanol in cycle 1002 evaporates.
El siguiente ciclo (1002) del metanol aprovecha el calor no utilizado en el ciclo anterior del agua (1001 ) A su vez el condensador del ciclo del metanol, evapora por cesión de calor, a Ia acetona, que pertenece al evaporador del ciclo 1003, con un punto de ebullición de 56° C. Y así sucesivamente hasta poder completar el total de los ciclos que cubren el margen térmico que tengamos.The next cycle (1002) of methanol takes advantage of the heat not used in the previous water cycle (1001). In turn, the condenser of the methanol cycle evaporates by heat transfer to acetone, which belongs to the evaporator of cycle 1003, with a boiling point of 56 ° C. And so on until we can complete the total of the cycles that cover the thermal margin we have.
Suponiendo un rendimiento teórico ideal, para cada ciclo, de un 25% obtendríamos los resultados de Ia siguiente tabla, para Ia fase 1 (1 ):Assuming an ideal theoretical performance, for each cycle, of 25% we would obtain the results of the following table, for phase 1 (1):
ENERGÍA ENERGÍA ENERGÍA TEMPERATURA EFICIENCIA EFICIENCIA EFICIENCIAENERGY ENERGY ENERGY TEMPERATURE EFFICIENCY EFFICIENCY EFFICIENCY
ENTRADA UTIL SALIDA EBULLICIÓN CICLO FASE TOTALUSEFUL INPUT OUTPUT EBULLITION CYCLE TOTAL PHASE
Ciclo 1 1000 250 750 75 25 25 25Cycle 1 1000 250 750 75 25 25 25
Ciclo 2 750 187 5 562 5 65 25 43 43Cycle 2 750 187 5 562 5 65 25 43 43
Ciclo 3 562 5 140 6 421 6 55 25 57 57Cycle 3 562 5 140 6 421 6 55 25 57 57
Ciclo 4 421 8 10547 3164 45 25 68 68Cycle 4 421 8 10547 3164 45 25 68 68
Ciclo 5 3164 79 1 2373 35 25 76 76Cycle 5 3164 79 1 2373 35 25 76 76
La eficiencia total de Ia fase 1 sería del 76.3 %The total efficiency of phase 1 would be 76.3%
La energía obtenida en Ia fase 1 (1 ) se almacena en las baterías (5)o se utiliza para alimentar un grupo de frío (4) que suministrara frío y calor a las siguientes fases o se consume directamente. A Ia fase 2 (2), por ejemplo, se Ie suministra calor por medio de un equipo de frío (4) con un (EER) de 2.5 y a Ia fase 3 (3) se Ie suministra frió desde el equipo de frío con un coeficiente de funcionamiento (COP) de 2.5 (Valores medios aproximados dentro del mercado actual).The energy obtained in phase 1 (1) is stored in the batteries (5) or used to power a cold group (4) that will supply cold and heat to the following phases or is consumed directly. For phase 2 (2), for example, heat is supplied by means of a cold equipment (4) with an (EER) of 2.5 and phase 3 (3) is supplied cold from the cold equipment with a operating coefficient (COP) of 2.5 (approximate average values within the current market).
Suponiendo un rendimiento de cada ciclo de un 25% obtendríamos los resultados de Ia siguiente tabla, para Ia fase 2(2):Assuming a 25% yield of each cycle we would obtain the results of the following table, for phase 2 (2):
ENERGÍA ENERGÍA ENERGÍA TEMPERATURA EFICIENCIA EFICIENCIA EFICIENCIAENERGY ENERGY ENERGY TEMPERATURE EFFICIENCY EFFICIENCY EFFICIENCY
ENTRADA UTIL SALIDA EBULLICIÓN CICLO FASE TOTALUSEFUL INPUT OUTPUT EBULLITION CYCLE TOTAL PHASE
Ciclo i 1000 250 750 55 25 25 47 Ciclo 2 750 187.5 562.5 45 25 43 81Cycle i 1000 250 750 55 25 25 47 Cycle 2 750 187.5 562.5 45 25 43 81
Ciclo 3 562.5 140.6 421.6 35 25 57 108
La eficiencia total de Ia fase 2 seria de 57.8 %. El total de Ia fase 2 teniendo en cuenta Ia eficiencia del equipo de frío sería del 110.2 %.Cycle 3 562.5 140.6 421.6 35 25 57 108 The total efficiency of phase 2 would be 57.8%. The total of phase 2 taking into account the efficiency of the cold equipment would be 110.2%.
El rendimiento de Ia fase 2, sin contar el equipo de frío, es menor que Ia fase 1 (1 ) por tener que utilizar 2 ciclos menos, debido al menor margen de temperaturas.The performance of phase 2, not counting the cold equipment, is lower than phase 1 (1) because it has to use 2 cycles less, due to the lower temperature range.
El comportamiento de Ia fase 3 difiere de las otras 2 fases, porque esta fase utiliza el frío del equipo de frío (4) para condensar el compuesto químico contenido en el último ciclo. Siendo el principio de Ia fase 3 el condensador del ultimo ciclo de Ia misma.The behavior of phase 3 differs from the other 2 phases, because this phase uses the cold of the cold equipment (4) to condense the chemical compound contained in the last cycle. The principle of phase 3 being the capacitor of the last cycle thereof.
Su funcionamiento comprende: Condensación (22) del ciclo (1004) por medio de Ia baja temperatura proporcionada por el equipo de frío. Recirculación (23) del líquido al evaporador. Evaporación (19) del liquido por Ia energía suministrada por el ciclo anterior (1003). Movimiento de Ia turbina (21 ) y repetimos el ciclo. Teniendo en cuenta que al extraer calor de Ia fase anterior (1003) condensa él liquido que se encuentra en esta fase. Estos ciclos se repiten hasta que el primer ciclo se condensa al igual que el resto. La energía térmica que utilizamos es Ia energía que se encuentra en el ambiente. Aunque el rendimiento del ciclo sea del 25 % con respecto a Ia energía suministrada desde el foco de calor, el rendimiento real del ciclo es del 33% con respecto a Ia energía del foco frío. Por Io que el rendimiento efectivo del ciclo es del 33% cuando el rendimiento de Ia turbina sea del 25%. Porque Ia energía que suministramos Ia utilizamos para condensar. Esta fase utiliza Ia energía del ambiente (8) para evaporar el líquido y convertirlo en movimiento por medio de Ia turbina.Its operation includes: Condensation (22) of the cycle (1004) by means of the low temperature provided by the cooling equipment. Recirculation (23) of the liquid to the evaporator. Evaporation (19) of the liquid by the energy supplied by the previous cycle (1003). Turbine movement (21) and we repeat the cycle. Taking into account that when extracting heat from the previous phase (1003) condenses the liquid that is in this phase. These cycles are repeated until the first cycle condenses like the rest. The thermal energy that we use is the energy that is in the environment. Although the efficiency of the cycle is 25% with respect to the energy supplied from the heat source, the actual efficiency of the cycle is 33% with respect to the energy of the cold source. Therefore, the effective efficiency of the cycle is 33% when the turbine efficiency is 25%. Because the energy we supply Ia we use to condense. This phase uses the energy of the environment (8) to evaporate the liquid and convert it into motion by means of the turbine.
Suponiendo un rendimiento de cada ciclo de un 25% y pudiendo obtener 5 ciclos escalonados, obtendríamos los resultados de Ia siguiente tabla, para Ia fase 3 (3):Assuming a 25% yield of each cycle and being able to obtain 5 staggered cycles, we would obtain the results of the following table, for phase 3 (3):
ENERGÍA ENERGÍA ENERGÍA TEMPERATURA EFICIENCIA EFICIENCIA EFICIENCIAENERGY ENERGY ENERGY TEMPERATURE EFFICIENCY EFFICIENCY EFFICIENCY
ENTRADA UTIL SALIDA EBULLICIÓN CICLO FASE TOTALUSEFUL INPUT OUTPUT EBULLITION CYCLE TOTAL PHASE
Ciclo 1 4214 1053 3160 5 33 321 610Cycle 1 4214 1053 3160 5 33 321 610
Ciclo 2 3160 790 2370 -2 33 216 410Cycle 2 3160 790 2370 -2 33 216 410
Ciclo 3 2370 592 1777 -9 33 137 260Cycle 3 2370 592 1777 -9 33 137 260
Ciclo 4 1777 444 1333 -16 33 77 146Cycle 4 1777 444 1333 -16 33 77 146
Ciclo 5 1333 333 1000 -23 33 33 62
La eficiencia total de Ia fase 3 seria del 321.4 %. El total de Ia fase 3 (teniendo en cuenta Ia eficiencia del equipo de frío) sería del 612.8 %.Cycle 5 1333 333 1000 -23 33 33 62 The total efficiency of phase 3 would be 321.4%. The total of phase 3 (taking into account the efficiency of the cold equipment) would be 612.8%.
El calculo del rendimiento total si utilizamos Ia fase 1 (1 ) para alimentar el equipo de frío, seria: Fase 1 (1 ): Rendimiento total de Ia fase 1 (1 ) 76.3 %.The calculation of the total performance if we use phase 1 (1) to feed the cold equipment, would be: Phase 1 (1): Total yield of phase 1 (1) 76.3%.
Fase 2 (2): Rendimiento de Ia Fase 1 (1 ) (76.3 %) multiplicada por un EER (250 %), multiplicada por el rendimiento de Ia Fase 2 (57.8 %) , nos da un rendimiento total de 110.25Phase 2 (2): Performance of Phase 1 (1) (76.3%) multiplied by an EER (250%), multiplied by the performance of Phase 2 (57.8%), gives us a total return of 110.25
Fase 3 (3): Rendimiento de Ia Fase 1 (1 ) (76.3 %) multiplicada por el COP (250 %), multiplicada por el rendimiento de Ia Fase 3 (321.4 %) , nos da un rendimiento total de 610.66Phase 3 (3): Performance of Phase 1 (1) (76.3%) multiplied by the COP (250%), multiplied by the performance of Phase 3 (321.4%), gives us a total yield of 610.66
Rendimiento total: Fase 1 (76.3 %) más Fase 2 (110.25 %) más Fase 3 (610.66 %) menos energía de entrada (100%) es igual a 697.21 %Total performance: Phase 1 (76.3%) plus Phase 2 (110.25%) plus Phase 3 (610.66%) less input power (100%) equals 697.21%
El cálculo del rendimiento total del motor si prescindimos de Ia fase 1The calculation of the total engine performance if we do without phase 1
(1 ) para alimentar el equipo de frío (4) y utilizamos energía de baterías (5), sería:(1) to power the cold equipment (4) and use battery power (5), it would be:
Fase 2 (2): Rendimiento de Ia batería (5) (100 %) multiplicada por un EER (250 %), multiplicada por el rendimiento de Ia Fase 2 (57.8 %) , nos da un rendimiento total de 144.5 %Phase 2 (2): Performance of the battery (5) (100%) multiplied by an EER (250%), multiplied by the performance of Phase 2 (57.8%), gives us a total efficiency of 144.5%
Fase 3 (3): Rendimiento de Ia batería (5) (100 %) multiplicada por el COP (250 %), multiplicada por el rendimiento de Ia Fase 3 (321.4 %) , nos da un rendimiento total de 802.5 %Phase 3 (3): Battery performance (5) (100%) multiplied by the COP (250%), multiplied by the performance of Phase 3 (321.4%), gives us a total performance of 802.5%
Rendimiento total: Fase 2 (144.5 %) más Fase 3 (802.5 %) menos energía de entrada (100%) es igual a 847 %Total performance: Phase 2 (144.5%) plus Phase 3 (802.5%) less input power (100%) equals 847%
El método utilizado dependerá de Ia energía que queramos aportar al sistema. Eléctrica para alimentar directamente al equipo de frío a través de las baterías (5) o a través de energía térmica externa (9) inyectada en Ia primera fase.The method used will depend on the energy we want to contribute to the system. Electric to directly feed the cold equipment through the batteries (5) or through external thermal energy (9) injected in the first phase.
El diseño de cada motor dependerá del uso final del mismo. Ya que Ia fase 1 se puede utilizar como apoyo a las baterías (5) o como sistema de
seguridad. Al redundar 2 fuentes de alimentación al equipo de frío (4). La utilización de las tres fases (1 ,2, 3,etc.) dependerá de las necesidades. Ya que podríannos utilizar en conjunto todas las fases para obtener aún mayor energía. Si el rendimiento de las turbinas (12) fuera mayor, obtendríamos rendimientos muy importantes, del orden del 2000%, principalmente por Ia energía generada en Ia fase 3(3).The design of each engine will depend on its final use. Since phase 1 can be used as support for batteries (5) or as a system of security. By redundant 2 power supplies to the cold equipment (4). The use of the three phases (1, 2, 3, etc.) will depend on the needs. Since they could use us together all the phases to obtain even greater energy. If the performance of the turbines (12) were greater, we would obtain very important yields, of the order of 2000%, mainly due to the energy generated in phase 3 (3).
Las turbinas de Ia fase 1 comprenden un acoplamiento a un generador (6). Así como las fases 2 y 3 comprende un acoplamiento a otro generador (6B) ó al mismo de Ia fase 1 (6) ó a otros generadores (Uno para Ia fase 2 y otro para Ia 3). Así mismo se puede reinyectar Ia energía generada para aumentar Ia potencia y para hacer que el sistema sé autoalimente, sin tener que utilizar energía externa.The turbines of phase 1 comprise a coupling to a generator (6). As well as phases 2 and 3, it comprises a coupling to another generator (6B) or to that of phase 1 (6) or to other generators (one for phase 2 and one for Ia 3). Likewise, the energy generated can be reinjected to increase the power and to make the system self-powered, without having to use external energy.
Otra característica derivada del funcionamiento del equipo generador es Ia de producir frío con un alto coeficiente de trabajo COP. Lógicamente debido a Ia absorción de calor del ambiente. Mediante el paso del aire (7) en el primer ciclo (1001 ) de Ia fase 3 (3).Another characteristic derived from the operation of the generating equipment is that of producing cold with a high coefficient of COP work. Logically due to the heat absorption of the environment. Through the passage of air (7) in the first cycle (1001) of phase 3 (3).
Como resultado obtenemos en Ia fase 1 calor con un rendimiento del 23.7 % En Ia fase 2 obtenemos también calor con un rendimiento de un 80.4As a result, we obtain heat in phase 1 with a yield of 23.7%. In phase 2 we also obtain heat with an efficiency of 80.4.
%%
Y en Ia fase 3 el rendimiento absorbe un 803.5 % con respecto a Ia energía que alimenta el equipo de frío.And in phase 3 the performance absorbs 803.5% with respect to the energy that feeds the cold equipment.
Aunque en los dibujos se han representado solo 4 ciclos, cada fase puede tener un número de ciclos diferente. La representación de los dibujos está hecha como algo descriptivo y no limitativo, para evitar representar multitud de ciclos semejantes. Ya que estos ciclos funcionan de un modo similar.Although only 4 cycles have been represented in the drawings, each phase may have a different number of cycles. The representation of the drawings is made as something descriptive and not limiting, to avoid representing a multitude of similar cycles. Since these cycles work in a similar way.
Así mismo el motor puede comprender varios modos de realización, con fases diferentes. Que se adaptarán según las necesidades (Seguridad, tamaño, peso, potencia, etc.). Como por ejemplo los siguientes: Una fase 1 , más una fase 2 , más una fase 3, mas un equipo de frío (Es Ia que aquí se
describe como básica). O una fase 2, mas una fase 3, más un equipo de frío. También, una fase 3, más un equipo de frío. O varias fases 3 con varios equipos de frío externos, o también varios motores en cascada para una multiplicación de Ia eficiencia, etc. Obteniendo multitud de posibilidades del modo de realización.The motor can also comprise several embodiments, with different phases. That will adapt according to the needs (Safety, size, weight, power, etc.). As for example the following: A phase 1, plus a phase 2, plus a phase 3, plus a cold equipment (It is the one here describe as basic). Or a phase 2, plus a phase 3, plus a cold equipment. Also, a phase 3, plus a cold team. Or several phases 3 with several external cooling equipment, or also several cascade motors for a multiplication of efficiency, etc. Obtaining a multitude of possibilities of the embodiment.
DESCRIPCIÓN DE DIBUJOSDESCRIPTION OF DRAWINGS
Con carácter ilustrativo y no limitativo, para una mayor compresión, se ha representado un sistema básico con las siguientes figuras:For illustrative and non-limiting purposes, for greater compression, a basic system has been represented with the following figures:
Figura 1Figure 1
1-Fase 1 (Foco caliente con energía externa) 2-Fase 2 1 (Foco caliente con propia energía) 3-Fase 31 (Foco frío con propia energía ) 4-Equipo de frío 5-Baterías 6 A y B-Generador 11-Phase 1 (Hot focus with external energy) 2-Phase 2 1 (Hot focus with own energy) 3-Phase 31 (Cold focus with own energy) 4-Cold equipment 5-Batteries 6 A and B-Generator 1
7- Absorbedor - evaporador (Entrada y salida de aire para generar frío de alto rendimiento) 8-Ambiente7- Absorber - evaporator (Air inlet and outlet to generate high performance cold) 8-Environment
9-Calor externo 10-Energía de salida total 30- Salida de frío (Aire) 101 -Dirección de energía térmica 102-Dirección del flujo de los elementos químicos dentro de los ciclos 103-Energía mecánica 104-Energía eléctrica 105- Circulación de aire9-External heat 10-Total output energy 30- Cold output (Air) 101 -Direction of thermal energy 102-Direction of the flow of chemical elements within the cycles 103-Mechanical energy 104-Electrical energy 105- Air circulation
Figura 2Figure 2
11 -Evaporador primer ciclo (Similares en las tres fases) 12-15-18-21 Turbinas (Similares en las tres fases)
13-16-19 Condensadores - Evaporadores (Similares en las tres fases) 14-17-20-23 Bombas de recirculación (Similares en las tres fases) 22- Condensador del último ciclo (Similares en las tres fases) 1001 Ciclo 1 1002 ciclo 2 1003 ciclo 3 10.. Etc. Dependerá de Ia cantidad de ciclos extras
11 -Evaporator first cycle (Similar in the three phases) 12-15-18-21 Turbines (Similar in the three phases) 13-16-19 Condensers - Evaporators (Similar in the three phases) 14-17-20-23 Recirculation pumps (Similar in the three phases) 22- Condenser of the last cycle (Similar in the three phases) 1001 Cycle 1 1002 cycle 2 1003 cycle 3 10 .. Etc. It will depend on the amount of extra cycles
Claims
1. Dispositivo generador de energía, caracterizado por estar comprendido básicamente por: Una fase (1 ) de foco caliente alimentado por energía externa (9), generada esta, por cualquier medio (Solar, eléctrico, hidrocarburos, etc.)1. Energy generating device, characterized by being basically comprised of: A phase (1) of hot spot powered by external energy (9), generated by any means (Solar, electric, hydrocarbons, etc.)
Un generador eléctrico (6) que convierte Ia energía mecánica de Ia fase 1 (1 ) en electricidad.An electric generator (6) that converts the mechanical energy of phase 1 (1) into electricity.
Una baterías (5) que almacena Ia energía eléctrica generada. Un equipo de frío (4) alimentado por Ia fase (1) directamente, o por las baterías (5) o por algún tipo de energía externa. Este equipo de frío se utiliza para proporcionar calor y frío a las fases 2(2) y 3(3).A battery (5) that stores the generated electrical energy. A cold equipment (4) powered by the phase (1) directly, or by the batteries (5) or by some kind of external energy. This cold equipment is used to provide heat and cold to phases 2 (2) and 3 (3).
Una fase, por ejemplo Ia 2 (2), que recibe calor del equipo de frío. Similar a Ia fase 1(1) Otra fase, por ejemplo Ia 3 (3), que recibe frío del equipo de frío (4).A phase, for example Ia 2 (2), which receives heat from the cold equipment. Similar to phase 1 (1) Another phase, for example Ia 3 (3), which receives cold from the cold equipment (4).
Uno o varios generadores (6a, 6B, etc.) que convierten Ia energía cinética, de las fases, en electricidad.One or several generators (6 a , 6B, etc.) that convert the kinetic energy of the phases into electricity.
Sistemas de control que pueden comprender válvulas de control, actuadores, controladores, sondas, sensores, reguladores, indicadores, posicionadores, servomecanismos, sincros y variadores, etc., necesarios para el control del funcionamiento del sistema en todas sus partes (ciclos, fases, enfriadoras etc.).Control systems that can comprise control valves, actuators, controllers, probes, sensors, regulators, indicators, positioners, servomechanisms, sincros and variators, etc., necessary for the control of the operation of the system in all its parts (cycles, phases, chillers etc.)
2. Dispositivo según reivindicación 1 , caracterizado porque las fases (1 , 2 y 3) comprenden varios ciclos (1001 , 1002, 1003, etc.). 2. Device according to claim 1, characterized in that the phases (1, 2 and 3) comprise several cycles (1001, 1002, 1003, etc.).
3. Dispositivo según reivindicaciones 2, caracterizado porque cada ciclo (1001 , 1002, 1003, etc.) está compuesto al menos por: un evaporador, un regulador de presión o caudal, una turbina, un condensador, una bomba de recirculación, válvulas de control, actuadores, controladores, sondas, sensores, reguladores etc., necesarios para el control del funcionamiento del sistema en todas su partes.3. Device according to claims 2, characterized in that each cycle (1001, 1002, 1003, etc.) is composed of at least one: an evaporator, a pressure or flow regulator, a turbine, a condenser, a recirculation pump, valves control, actuators, controllers, probes, sensors, regulators etc., necessary for the control of the operation of the system in all its parts.
4. Dispositivo según reivindicación 3, caracterizado por que cada uno de los ciclos (1001 , 1002, 1003, etc.) comprende elementos o compuestos químicos con diferentes puntos de ebullición para aprovechar Ia energía entre ciclos.4. Device according to claim 3, characterized in that each of the cycles (1001, 1002, 1003, etc.) comprises elements or compounds Chemicals with different boiling points to take advantage of the energy between cycles.
5. Dispositivo según reivindicaciones 3 y 4, caracterizado porque los ciclos térmicos (1001 , 1002, 1003, etc.) están colocados escalonadamente (según las temperaturas de ebullición) para aprovechar Ia energía térmica no utilizada en el ciclo anterior.5. Device according to claims 3 and 4, characterized in that the thermal cycles (1001, 1002, 1003, etc.) are placed stepwise (according to the boiling temperatures) to take advantage of the thermal energy not used in the previous cycle.
6. Dispositivo según reivindicaciones 3, 4 y 5, caracterizado porque los ejes de las turbinas de los ciclos (1001 , 1002, 1003, etc.) que componen cada fase pueden estar unidos entre sí. Device according to claims 3, 4 and 5, characterized in that the axes of the turbines of the cycles (1001, 1002, 1003, etc.) that make up each phase can be linked together.
7. Dispositivo según reivindicaciones 2,3 y 4, caracterizado porque los ciclos comprenden al menos un intercambiador de calor entre condensador de ciclo anterior y evaporador del ciclo siguiente para enlazar los ciclos y aprovechar Ia energía entre estos.7. Device according to claims 2,3 and 4, characterized in that the cycles comprise at least one heat exchanger between condenser of the previous cycle and evaporator of the following cycle to link the cycles and take advantage of the energy between them.
8. Dispositivo según reivindicaciones 2, 3 y 4, caracterizado porque las fases comprende acoplamientos de los ejes en conjunto o individualmente.8. Device according to claims 2, 3 and 4, characterized in that the phases comprise shaft couplings together or individually.
9. Dispositivo según reivindicaciones 1 y 2, caracterizado porque Ia fuente de energía térmica necesaria para Ia fase 1 (1) puede ser generada por cualquier tipo de medio externo (electricidad, biocombustible, solar, etc.)9. Device according to claims 1 and 2, characterized in that the source of thermal energy necessary for phase 1 (1) can be generated by any type of external means (electricity, biofuel, solar, etc.)
10. Dispositivo según reivindicación 1 , caracterizado porque el motor comprende un equipo de frío que puede ser alimentado por las baterías (5) o por electricidad externa o por Ia fase 1.10. Device according to claim 1, characterized in that the motor comprises a cooling unit that can be powered by the batteries (5) or by external electricity or by phase 1.
11. Dispositivo según reivindicación 1 , caracterizado porque el motor comprende un equipo de frío (4) que aprovecha el rendimiento en calor según EER y aumentar Ia energía térmica (calor). 11. Device according to claim 1, characterized in that the engine comprises a cooling unit (4) that takes advantage of the heat performance according to EER and increases the thermal energy (heat).
12. Dispositivo según reivindicación 1 , caracterizado porque el motor comprende un equipo de frío (4) que aprovecha el rendimiento en frío según COP y aumentar el rendimiento del motor.12. Device according to claim 1, characterized in that the engine comprises a cold equipment (4) that takes advantage of the cold performance according to COP and increases the engine performance.
13. Dispositivo según cualquiera de las anteriores reivindicaciones, caracterizado porque el motor comprende un equipo de frío (4) para crear una nueva fase mediante el calor generado en este. 13. Device according to any of the preceding claims, characterized in that the motor comprises a cooling unit (4) to create a new phase by means of the heat generated in it.
14. Dispositivo según cualquiera de las anteriores reivindicaciones, caracterizado porque el motor comprende un equipo de frío (4) para crear otra una nueva fase mediante el frío generado en este.14. Device according to any of the preceding claims, characterized in that the engine comprises a cooling unit (4) to create another a new phase by means of the cold generated therein.
15. Dispositivo según cualquiera de las anteriores reivindicaciones, caracterizado porque el motor comprende fases (1 , 2, 3, etc.) que pueden producir energía sin necesidad de acumularla en baterías y cederla directamente al exterior.15. Device according to any of the preceding claims, characterized in that the motor comprises phases (1, 2, 3, etc.) that can produce energy without the need to accumulate it in batteries and yield it directly to the outside.
16. Dispositivo según reivindicación 1 , caracterizado porque los generadores pueden ser de corriente continua o alterna. 16. Device according to claim 1, characterized in that the generators can be direct or alternating current.
17. Dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado porque el motor comprende un generador que puede ser movido por el conjunto de las fases o de forma independiente.17. Device according to any of the preceding claims, characterized in that the motor comprises a generator that can be moved by the set of phases or independently.
18. Dispositivo según reivindicaciones 1 y 15, caracterizado porque el motor puede comprender baterías (5) que pueden ser independientes para las fases (1 , 2, 3).18. Device according to claims 1 and 15, characterized in that the motor can comprise batteries (5) that can be independent for the phases (1, 2, 3).
19. Dispositivo según cualquier reivindicación anterior, caracterizado porque el motor comprende un sistema de generación de energía, mediante técnica inversa o negativa, en Ia fase alimentada mediante Ia energía interna en frío (el propio motor) proporcionado por el equipo de frío interno (4) o poder alimentarla, también, mediante energía externa (equipo de frío externo).19. Device according to any preceding claim, characterized in that the motor comprises a power generation system, by inverse or negative technique, in the phase fed by the internal cold energy (the motor itself) provided by the internal cold equipment (4 ) or to be able to feed it, also, by external energy (external cold equipment).
20. Dispositivo según cualquier reivindicaciones 1 y 2, caracterizado porque el motor puede comprender una fase (3) que puede servir como equipo de refrigeración de alto rendimiento. 20. Device according to any of claims 1 and 2, characterized in that the motor can comprise a phase (3) that can serve as a high performance refrigeration equipment.
21. Dispositivo según reivindicación 1 , 3, 4, y 5, caracterizado porque el motor puede comprender que los condensadores de los últimos ciclos aprovechen Ia energía térmica de las fases (alimentadas con foco caliente) para que pueda servir como calefacción.21. Device according to claim 1, 3, 4, and 5, characterized in that the motor can comprise that the capacitors of the last cycles take advantage of the thermal energy of the phases (fed with hot focus) so that it can serve as heating.
22. Dispositivo según reivindicación 1 , caracterizado el motor comprende cualquier combinación de equipos de frío (4) en cualquier disposición para aumentar margen térmico en frío y Ia eficiencia. (Equipos de frío en serie, en paralelo o mixto), para aumentar el COP o el EER o Ia temperatura de frío o calor22. Device according to claim 1, characterized in that the motor comprises any combination of cold equipment (4) in any arrangement to increase cold thermal margin and efficiency. (Teams of cold in series, in parallel or mixed), to increase the COP or the EER or the temperature of cold or heat
23. Dispositivo según reivindicación 1 , caracterizado el motor comprende un sistema que usa principalmente Ia energía térmica contenida en Ia atmósfera para generar energía mecánica.23. Device according to claim 1, characterized in that the motor comprises a system that mainly uses the thermal energy contained in the atmosphere to generate mechanical energy.
24. Dispositivo según reivindicación 1 , caracterizado comprende cualquier combinación de modos de realización, según las necesidades (Seguridad, tamaño, peso, potencia, etc.). Como por ejemplo, a modo ilustrativo y no limitativo, los siguientes: Fase 1 , más fase 2, más fase 3, más equipo de frío (Es Ia que aquí se ha descrito como básica).24. Device according to claim 1, characterized in any combination of embodiments, according to needs (safety, size, weight, power, etc.). As for example, by way of illustration and not limitation, the following: Phase 1, more phase 2, more phase 3, more cold equipment (It is the one described here as basic).
O fase 2, más fase 3, más equipo de frío. O también fase 3 más equipo de frío.Or phase 2, more phase 3, more cold equipment. Or also phase 3 plus cold equipment.
O varias fases 3 con varios equipos de frío. O varias fases 3 con equipo de frío externo, etc.Or several phases 3 with several cold equipment. Or several phases 3 with external cooling equipment, etc.
25. Dispositivo según reivindicación 24, caracterizado porque comprende cualquier nueva utilidad que utilice cualquiera de los modos de realización, para obtener un nuevo uso. Como por ejemplo: sistema de desalinización de agua, mediante el uso de un compuesto químico que alcance -1 ,5o C en el primer ciclo de Ia fase 3 para separar el agua dulce, de Ia salda. 25. Device according to claim 24, characterized in that it comprises any new utility that uses any of the embodiments, to obtain a new use. As for example: water desalination system, through the use of a chemical compound that reaches -1, 5 or C in the first cycle of phase 3 to separate the fresh water from the salt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200702363A ES2315191B1 (en) | 2007-09-03 | 2007-09-03 | MULTI-PHASE COLD MOTOR THROUGH HOT AND COLD THERMODYNAMICS AND EFFICIENCY SUPERIOR TO 100%. AND COLD GENERATOR WITH A HIGH WORK COEFFICIENT (COP). |
ESP200702363 | 2007-09-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009030786A1 true WO2009030786A1 (en) | 2009-03-12 |
Family
ID=40410158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2008/000012 WO2009030786A1 (en) | 2007-09-03 | 2008-04-01 | Multiphase cold engine employing cold and hot thermodynamics and having engine efficiency greater than 100% and a cold generator with a high coefficient of performance (cop) |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2315191B1 (en) |
WO (1) | WO2009030786A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997026491A1 (en) * | 1996-01-22 | 1997-07-24 | Thomas Ray Stewart, Iii | Remora ii refrigeration process |
US6035643A (en) * | 1998-12-03 | 2000-03-14 | Rosenblatt; Joel H. | Ambient temperature sensitive heat engine cycle |
WO2006104490A1 (en) * | 2005-03-29 | 2006-10-05 | Utc Power, Llc | Cascaded organic rankine cycles for waste heat utilization |
-
2007
- 2007-09-03 ES ES200702363A patent/ES2315191B1/en not_active Withdrawn - After Issue
-
2008
- 2008-04-01 WO PCT/ES2008/000012 patent/WO2009030786A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997026491A1 (en) * | 1996-01-22 | 1997-07-24 | Thomas Ray Stewart, Iii | Remora ii refrigeration process |
US6035643A (en) * | 1998-12-03 | 2000-03-14 | Rosenblatt; Joel H. | Ambient temperature sensitive heat engine cycle |
WO2006104490A1 (en) * | 2005-03-29 | 2006-10-05 | Utc Power, Llc | Cascaded organic rankine cycles for waste heat utilization |
Also Published As
Publication number | Publication date |
---|---|
ES2315191B1 (en) | 2010-01-11 |
ES2315191A1 (en) | 2009-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7173245B2 (en) | power generation system | |
JP5311366B2 (en) | Turbine system, system and method for supplying energy to a supercritical carbon dioxide turbine | |
ES2719811T3 (en) | Process and device for energy storage and recovery | |
CN203626907U (en) | Power generation station | |
CN104420906B (en) | Steam turbine installation | |
ES2402073T3 (en) | Installation and associated procedure for the conversion of heat energy into mechanical, electrical and / or thermal nerve | |
CN109441573A (en) | The zero carbon emission natural gas cogeneration technique for peak regulation | |
EP2574755A2 (en) | System and method for generating electric power | |
CN103925178B (en) | It is suitable for becoming the solar association cycle generating system of irradiation regulation and control | |
CN103075216A (en) | Brayton-cascade steam Rankine combined cycle power generation system | |
WO2013087949A1 (en) | Hybrid system for generating electricity using solar energy and biomass | |
ES2672495T3 (en) | System and method for producing hot water and / or steam and for storing water in liquid and / or gaseous form for use in a gas turbine power plant | |
US20110265837A1 (en) | Rotary Heat Exchanger | |
KR20130119162A (en) | Direct organic rankine cycle power generation system using solar power | |
BRPI0802550A2 (en) | combined cycle power generation system | |
KR20120111793A (en) | Generator of ship using the organic rankine cycle | |
ES2315191B1 (en) | MULTI-PHASE COLD MOTOR THROUGH HOT AND COLD THERMODYNAMICS AND EFFICIENCY SUPERIOR TO 100%. AND COLD GENERATOR WITH A HIGH WORK COEFFICIENT (COP). | |
US7089740B1 (en) | Method of generating power from naturally occurring heat without fuels and motors using the same | |
KR101531931B1 (en) | Combined cycle power generating system | |
ES2914625T3 (en) | Cogeneration system for a boiler | |
ES2562719B1 (en) | Combined cycle of humid air turbine and organic Rankine cycle integrated for electric power generation | |
CN106288435A (en) | A kind of solar energy thermal-power-generating unit | |
CN204357641U (en) | Solar low-temperature heat collector and parabolic trough type solar thermal collector complementary power generation system | |
Desai et al. | Concentrated solar energy driven multi-generation systems based on the organic Rankine cycle technology | |
RU197736U1 (en) | GAS TURBINE INSTALLATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08718413 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08718413 Country of ref document: EP Kind code of ref document: A1 |