[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009028429A1 - Elliptically polarizing plate, method for producing the same, and liquid crystal display device using the same - Google Patents

Elliptically polarizing plate, method for producing the same, and liquid crystal display device using the same Download PDF

Info

Publication number
WO2009028429A1
WO2009028429A1 PCT/JP2008/065060 JP2008065060W WO2009028429A1 WO 2009028429 A1 WO2009028429 A1 WO 2009028429A1 JP 2008065060 W JP2008065060 W JP 2008065060W WO 2009028429 A1 WO2009028429 A1 WO 2009028429A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
layer
adhesive layer
polarizing plate
Prior art date
Application number
PCT/JP2008/065060
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoo Hirai
Gorou Suzaki
Tetsuya Uesaka
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to CN200880101710A priority Critical patent/CN101772718A/en
Publication of WO2009028429A1 publication Critical patent/WO2009028429A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/01Number of plates being 1

Definitions

  • the present invention relates to an elliptically polarizing plate composed of a liquid crystal layer with a fixed homeotopic orientation structure and a method for producing the same, and further to a liquid crystal display device using the elliptically polarizing plate.
  • Retardation films play an important industrial role, such as being used to improve the image quality of liquid crystal display devices.
  • Retardation films can be broadly classified into those obtained by stretching a plastic film and those obtained by aligning liquid crystals. The latter is more remarkable because it has the potential to realize various refractive index structures.
  • a film having a larger refractive index in the film thickness direction is considered to be effective for improving the viewing angle of a liquid crystal display device.
  • a film has a shortcut to use the homeotropic alignment (vertical alignment) of the liquid crystal.
  • the homeotropic alignment of liquid crystal molecules is that the long-axis molecular direction of the liquid crystal is aligned in a direction substantially perpendicular to the substrate. It is well known that home-to-mouth pick alignment can be obtained by applying an electric field by placing liquid crystal in two glass substrates, as in a liquid crystal display device. It is very difficult and there are problems with the methods reported so far.
  • Patent Documents 1 to 3 For example, after a main chain type polymer liquid crystal is home-to-mouth pick-oriented, a film is obtained by glass fixation (Patent Documents 1 to 3). However, in home-to-mouth orientation, it is assumed that there is a problem that cracks are likely to occur in the in-plane direction because the polymers are aligned in the film thickness direction, but in these reports, measures such as strengthening the material by crosslinking are taken. Not. In Patent Document 4, the home-orientation pick orientation of the side chain type liquid crystal is fixed by vitrification, but it is considered that there is a problem in strength as compared with the main chain type polymer liquid crystal.
  • Patent Documents 5 to 6 there are reports of adding polymerizable low-molecular liquid crystals to side-chain liquid crystal polymers.
  • Patent Documents 5 to 6 since low-molecular liquid crystals polymerize alone, the strength of side-chain liquid crystal polymers is low. Reinforcement Has its limits.
  • Patent Document 7 a material in which a radically polymerizable group, a cationically polymerizable group such as a vinyl ether group or an epoxy group is introduced into a side chain type liquid crystal polymer is used.
  • radical polymerization is generally subject to oxygen inhibition, the polymerization may be insufficient, and equipment will be large if it is attempted to remove oxygen by equipment.
  • the bull ether group and epoxy group are advantageous in this respect because they are not affected by oxygen inhibition, but there is a problem that the ether bond of the bull ether group is unstable and easily cleaved, and the epoxy group is introduced into the liquid crystal material. Is difficult, and it is difficult to obtain a high degree of polymerization when a crosslinking treatment is applied. Furthermore, in order to obtain homeo-mouth pick alignment, a large amount of non-liquid crystalline structural units are introduced into the liquid crystal material, and there is a question about the stable liquid crystallinity. As described above, problems remain in the production of conventional home-orientated pick-oriented films.
  • Patent Document 1 Japanese Patent No. 2 8 5 3 0 6 4
  • Patent Document 2 Japanese Patent No. 3 0 1 8 1 2 0
  • Patent Document 3 Japanese Patent No. 3 0 7 8 9 4 8
  • Patent Document 4 Japanese Patent Laid-Open No. 2 0 0 2 1 7 4 7 2 5
  • Patent Document 5 Japanese Patent Laid-Open No. 2000-32-3 3 3 5 2 4
  • Patent Document 6 Japanese Patent Laid-Open No. 2 0 2 3 3 3 6 4 2
  • Patent Document 7 Japanese Patent Laid-Open No. 2 0 3 2 9 2 7
  • the object of the present invention is to have a liquid crystal layer with a fixed homeotopic orientation structure, and by simplifying the layer structure, the thickness can be suppressed, and when incorporated in a liquid crystal display device, not only the viewing angle but also the contrast is achieved.
  • An object of the present invention is to provide an improved elliptically polarizing plate, a method for producing the same, and a liquid crystal display device using the same.
  • the present inventors have found that the object can be achieved by the following elliptically polarizing plate, a manufacturing method thereof, and a liquid crystal display device using the same. It came to be completed.
  • the first aspect of the present invention is that a liquid crystal composition exhibiting positive uniaxiality is homeo-mouth pick-aligned in a liquid crystal state, and then the homeo-mouth pick-alignment liquid crystal layer in which the orientation is fixed, a retardation function Translucent protection only on one side of retardation film and polarizing element
  • An elliptically polarizing plate comprising at least a linear polarizing plate having a laminated structure protected by a film, wherein the elliptically polarizing plate has one of the following laminated structures (A) or (B): It is.
  • the oxetanyl is then used.
  • the elliptically polarizing plate according to the first aspect of the present invention which is a home-mouth pick-alignment liquid crystal layer in which a home-mouth pick-alignment is fixed by reacting a group.
  • a third aspect of the present invention is the elliptically polarizing plate according to the first or second aspect of the present invention, characterized in that the homeotropic pick alignment liquid crystal layer satisfies the following [1] and [2].
  • D 1 is the thickness of the homeotopic orientation liquid crystal layer
  • Nx l and Nyl are the main refractive index in the plane of the homeotopic orientation liquid crystal layer
  • N z 1 is the main refractive index in the thickness direction, N z 1> Nx 1 ⁇ Ny 1.
  • a fourth aspect of the present invention is the elliptically polarizing plate according to any one of the first to third aspects of the present invention, wherein the retardation film satisfies the following [3] and [4].
  • R e 2 means an in-plane retardation value of the retardation film
  • R th 2 means a retardation value in the thickness direction of the retardation film.
  • R t h 2 (N x 2 ⁇ N z 2) X d 2 [nm].
  • D 2 is the thickness of the retardation film
  • Nx 2 and Ny 2 are the main refractive index in the retardation film plane
  • N z 2 is the main refractive index in the thickness direction
  • a fifth aspect of the present invention is the elliptically polarizing plate according to any one of the first to fourth aspects of the present invention, which is formed by laminating at least one optical film.
  • a sixth aspect of the present invention is the elliptically polarizing plate according to any one of the first to fifth aspects of the present invention, wherein the translucent protective film is triacetyl cellulose or a cycloolefin-based polymer. It is.
  • a seventh aspect of the present invention is the elliptically polarizing plate according to any one of the sixth to sixth aspects of the present invention, wherein the total film thickness is within 175 ⁇ m.
  • a translucent protective film is bonded to a polarizing element via an adhesive layer 1, and a laminate (I) comprising the translucent protective film / adhesive layer 1Z polarizing element is formed.
  • a method for producing an elliptically polarizing plate characterized by passing through each of the steps.
  • the ninth aspect of the present invention is: (1) A light-transmitting protective film is bonded to a polarizing element via an adhesive layer 1, and a laminate (I) comprising the light-transmitting protective film Z adhesive layer 1Z polarizing element is formed.
  • a layer of liquid crystalline composition exhibiting positive uniaxiality is formed on the retardation film, and the layer is homeotropically aligned, and then a homeotropically aligned liquid crystal layer in which the alignment is fixed is formed.
  • the tenth aspect of the present invention is: (1) a laminate comprising a translucent protective film, an adhesive layer 1 and a polarizing element, wherein the translucent protective film is bonded to the polarizing element via the adhesive layer 1 (I) The first step,
  • a layer of a liquid crystalline composition exhibiting positive uniaxiality is formed on an alignment substrate, and the layer is homeotropically aligned, and then a homeotropically aligned liquid crystal layer with a fixed orientation is formed.
  • the first aspect of the present invention is: (1) a laminate comprising a translucent protective film, an adhesive layer 1 and a Z polarizing element, wherein the translucent protective film is bonded to the polarizing element via the adhesive layer 1; The first step,
  • a layer of a liquid crystalline composition exhibiting positive uniaxiality is formed on an alignment substrate, and the layer is homeotropically aligned, and then a homeotropically aligned liquid crystal layer with a fixed orientation is formed.
  • a method for producing an elliptically polarizing plate wherein at least each of the steps is performed.
  • a first aspect of the present invention is a liquid crystal display device in which the elliptically polarizing plate according to any one of the first to seventh aspects of the present invention is disposed on at least one surface of a liquid crystal cell.
  • a first aspect of the present invention is the liquid crystal display device according to the first aspect of the present invention, wherein the liquid crystal cell is a VA liquid crystal cell or an IPS liquid crystal cell.
  • the elliptically polarizing plate of the present invention using a homeotopically picked liquid crystal layer can not only widen the viewing angle, particularly when placed in a vertically aligned liquid crystal display device,
  • the display is bright and high-contrast display is possible in all directions.
  • the elliptically polarizing plate of the present invention will be described.
  • the elliptically polarizing plate of the present invention has a homeomorphic alignment liquid crystal layer in which a liquid crystal composition exhibiting at least positive uniaxial property is homeoportally picked in a liquid crystal state and then the orientation is fixed.
  • At least one of the retardation film and the polarizing element is composed of a linear polarizing plate having a laminated structure protected by a translucent protective film.
  • a liquid crystalline composition layer formed on a retardation film, an alignment substrate, or an alignment film on an alignment substrate is used as a homeoto alignment port.
  • the liquid crystal material used in the liquid crystal composition may be a positive uniaxial liquid crystal material capable of homeo-mouth pick alignment.
  • Child liquid crystal compound it may also be a material comprising a liquid crystalline polymer compound or a mixture thereof les, 0
  • the low-molecular liquid crystal compound a compound having a reactive group that reacts with light or heat is preferable because the alignment can be easily fixed.
  • a vinyl group, a (meth) acryloyl group, a buroxy group, an oxylanyl group, an oxetanyl group, an aziridinyl group, and the like are preferable, but other reactive groups such as an isocyanate group, a hydroxyl group, an amino group, Acid anhydride groups, carboxyl groups, and the like can be used depending on the reaction conditions.
  • the liquid crystalline polymer compound includes a main chain type liquid crystalline polymer compound and a side chain type liquid crystalline polymer compound, both of which can be used.
  • main chain type liquid crystalline polymer compound examples include polyester, polyester imide, polyamide, and polycarbonate.
  • liquid crystalline polyesters are preferable from the viewpoints of ease of synthesis, orientation, glass transition point, and the like.
  • side chain type liquid crystalline polymer compound examples include poly (meth) acrylate, polymalonate, polysiloxane and the like. These liquid crystalline polymer compounds are preferably those in which the reactive groups are bonded. Of these, poly (meth) acrylates bonded with a reactive group represented by the following general formula (1) are preferred.
  • each R 3 independently represents hydrogen or a methyl group
  • each R 4 independently represents hydrogen, a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group, or a nonyl group.
  • Decyl group dodecyl group, methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, decyloxy group, dodecyloxy group, cyano group, bromo group, black mouth group, Fluoro group or carboxyl group
  • R 5 independently represents hydrogen, methyl group or ethyl group
  • R 6 represents a hydrocarbon group having 1 to 24 carbon atoms
  • L 2 each independently Represents a single bond, —O—, —O—CO—, —CO — O—, one CH ⁇ CH— or one C ⁇ C—
  • p represents an integer from 1 to 10 and q represents , 0 to 1 Represents an integer up to 0, and a, b, c, d, e and f are the molar ratio of each unit in the polymer (a + b + c + d +
  • the molar ratio of each component may be arbitrary as long as this requirement is satisfied, but is preferably as follows.
  • a preferably 0 to 0.80, more preferably 0.05 to 0.50
  • b preferably 0 to 0.90, more preferably 0.1 0 to 0.70
  • c preferably 0 to 0.50, more preferably 0.10 to 0.30
  • d preferably 0 to 0.50, more preferably 0.1 0 to 0.30
  • e preferably 0 to 0.50, more preferably 0.1 0 to 0.30
  • f preferably 0 to 0.30, more preferably 0.0 1 to 0.10
  • Each component in these poly (meth) acrylates does not need to be present in all six types as long as the above conditions are met. Outside these ranges, the liquid crystallinity becomes insufficient and the reactivity of the oxetanyl group becomes unfavorable.
  • R 4 is preferably hydrogen, a methyl group, a butyl group, a methoxy group, a cyano group, a bromo group, or a fluoro group, particularly preferably hydrogen, a methoxy group, or a cyano group
  • L 2 is preferably a single bond, 1 O—, 1 O—CO— or 1 CO—O—
  • R 6 is preferably carbonized with 2, 3, 4, 6, 8 or 18 carbon atoms. Represents a hydrogen group.
  • the birefringence of the side chain type liquid crystalline polymer represented by the general formula (1) varies depending on the molar ratio of each component a to f and the orientation form. The rate is preferably from 0.001 to 0.300, more preferably from 0.05 to 0.25.
  • Each (meth) acrylic compound corresponding to each component of the above-mentioned side chain type liquid crystalline polymer compound can be obtained by an ordinary organic chemistry synthesis method.
  • a (meth) acrylic compound having an oxetanyl group combines a site having an oxetanyl group and a site having a (meth) acrylic group by means of, for example, Williamson's ether synthesis or ester synthesis using a condensing agent. By doing so, a (meth) acrylic compound having an oxetanyl group having two reactive functional groups, an oxetanyl group and a (meth) ataryl group, can be synthesized.
  • Said side chain type liquid crystalline polymer compound is easily obtained by copolymerizing the (meth) acrylic group of each (meth) acrylic compound obtained by the above method corresponding to each component by radical polymerization or anion polymerization. Can be synthesized.
  • the polymerization conditions are not particularly limited, and normal conditions can be employed.
  • radical polymerization a (meth) acrylic compound corresponding to each component is dissolved in a solvent such as dimethylformamide (DMF) or diethylene glycol dimethyl ether, and 2,2'-azobisisobutyronitrile (AI BN) is used.
  • a solvent such as dimethylformamide (DMF) or diethylene glycol dimethyl ether
  • AI BN 2,2'-azobisisobutyronitrile
  • B 3 PO benzoyl peroxide
  • copper bromide (I) Z2, 2 'monobiviridyl series and 2, 2, 6, 6-tetramethylpiperidinoxy' free radical (TEMPO) series are launched to make the liquid crystal phase appear stably.
  • Another effective method is to control the molecular weight distribution by conducting Lib radical polymerization as an agent. These radical polymerizations must be carried out under deoxygenated conditions.
  • (meth) acrylic compounds corresponding to each component are dissolved in a solvent such as tetrahydrofuran (THF), and a strong base such as an organic lithium compound, organic sodium compound, or Grignard reagent is used as an initiator.
  • a strong base such as an organic lithium compound, organic sodium compound, or Grignard reagent.
  • the method of making it react is mentioned.
  • it is possible to control the molecular weight distribution by optimizing the initiator and reaction temperature for riving anion polymerization.
  • These anion polymerizations must be performed under dehydration and deoxygenation conditions.
  • the side chain type liquid crystalline polymer compound preferably has a weight average molecular weight of 1,000 to 200,000, particularly preferably 3,000 to 50,000. Outside this range, the strength is insufficient or the orientation is deteriorated.
  • a liquid crystal material or a liquid crystal composition comprising the low-molecular liquid crystal compound, the liquid crystal polymer compound, or a mixture thereof may contain a dioxetane compound represented by the following general formula (2). preferable.
  • each R 7 independently represents hydrogen, a methyl group or an ethyl group
  • each L 3 independently represents a single bond or one (CH 2 ) n- (n is 1 to 1 2
  • X 1 represents each independently a single bond, _ ⁇ 1, one O—CO— or one CO_0_
  • M 1 is represented by Formula (3) or Formula (4)
  • P 1 in formulas (3) and (4) each independently represents a group selected from formula (5)
  • P 2 represents a group selected from formula (6)
  • L 4 each independently represents a single bond, —CH ⁇ CH—, one C ⁇ C one, one OO—CO— or one CO—O—.
  • Et represents an ethyl group
  • iPr represents an isopropyl group
  • nBu represents a normal butyl group
  • tBu represents a tertiary butyl group.
  • the linking groups connecting the left and right oxetanyl groups as seen from the M 1 group may be different (asymmetric) or the same (symmetric), especially when the two L 3 are different or other Depending on the structure of the linking group, it may not exhibit liquid crystallinity, but it is not a restriction on its use.
  • Compound represented by the general formula (2) can be exemplified many compounds from a combination of M 1 L 3 and X 1, preferably, can be force s include the following compounds.
  • the oxetanyl group since the oxetanyl group has cationic polymerizability, it is necessary to select reaction conditions in consideration of the occurrence of side reactions such as polymerization and ring opening under strong acidic conditions.
  • the oxetal group is less likely to cause side reactions than the similar cationic polymerizable functional group oxylanyl group.
  • various compounds such as similar alcohols, phenols, and carboxylic acids may be reacted successively, and the use of protecting groups may be considered as appropriate.
  • hydroxybenzoic acid is used as a starting compound, an oxetanyl group is bonded by Williamson's ether synthesis method, etc., and a diol suitable for the present invention and a diol suitable for the present invention are used.
  • hydroxyl group of hydroxybenzoic acid is protected in advance with an appropriate protecting group, and after condensation with a diol suitable for the present invention,
  • Examples include a method in which a protecting group is removed and a compound having an appropriate oxetanyl group (oxetane compound), for example, a haloalkyloxetane or the like is reacted with a hydroxyl group.
  • a reaction condition suitable for the form and reactivity of the compound to be used may be selected.
  • the reaction temperature is 120 ° C. to 180 ° C., preferably A temperature of 10 ° C. to 1550 ° C. is selected, and the reaction time is 10 minutes to 48 hours, preferably 30 minutes to 24 hours. Outside these ranges, the reaction does not proceed sufficiently or side reactions occur, which is not preferable.
  • the mixing ratio of the two is preferably 0.8 to 1.2 equivalents of oxetane compound per equivalent of hydroxyl group.
  • the liquid crystal material used in the present invention may contain various compounds that can be mixed without impairing the liquid crystal properties in addition to the low-molecular liquid crystal compound and the liquid crystalline polymer compound.
  • compounds that can be contained include compounds having a cationic polymerizable functional group such as an oxetanyl group, an epoxy group, and a vinyloxy group, various polymer materials having film-forming ability, and various low-molecular liquid crystals exhibiting liquid crystallinity.
  • liquid crystalline compounds When the side chain type liquid crystalline polymer compound is used as a composition, the proportion of the side chain type liquid crystalline polymer compound in the entire composition is 10% by mass or more, preferably 30% by mass. Above, more preferably 50% by mass or more.
  • the content of the side chain type liquid crystalline polymer compound is less than 10% by mass, the film forming ability is insufficient. Or the concentration of the polymerizable group in the composition is lowered, and the mechanical strength after polymerization becomes insufficient, which is not preferable.
  • the liquid crystal material after the liquid crystal material has been subjected to an alignment treatment, for example, when it has an oxetanyl group as a reactive group, the liquid crystal state can be fixed by cationic polymerization and crosslinking. For this reason, it is preferable that the liquid crystal material contains a light-power thione generator and Z or a thermal cation generator that generate caton by an external stimulus such as light and heat. If necessary, various sensitizers may be used in combination.
  • the photopower thione generator means a compound capable of generating a cation by irradiating with light of an appropriate wavelength, and examples thereof include organic sulfone salt systems, podonium salt systems, and phosphonium salt systems. Antimonates, phosphates, borates and the like are preferably used as counter ions of these compounds.
  • Specific compounds include Ar 3 S + S b F 6 —, A r 3 P + BF 4 —, A r 2 I + PF 6 "(where A r represents a phenyl group or a substituted phenyl group)
  • sulfonic acid esters, triazines, diazomethanes, J3-ketosulfone, iminosulfonate, benzoinsulfonate and the like can also be used.
  • Thermal cation generators are compounds that can generate cations when heated to a suitable temperature, such as benzylsulfonium salts, benzylammonium salts, benzylpyridinium salts, benzylphosphonium.
  • the amount of these cation generators added to the liquid crystal material varies depending on the structure of the mesogenic portion or spacer portion constituting the liquid crystalline polymer compound used, the oxetanyl group equivalent, the alignment conditions of the liquid crystal, etc. However, it is usually 100 mass ppm to 20 mass%, preferably 10 mass ppm to 10 mass%, more preferably 0.2 mass% to 7 mass% with respect to the liquid crystal polymer compound. mass. / 0, which is the range of. If the amount is less than 100 mass m, the amount of cations generated is not sufficient and polymerization may not proceed, and 20 mass. When it is more than 0, the force remaining in the alignment liquid crystal layer is undesirably increased due to the decomposition residue of the thione generator, which may deteriorate the light resistance. Next, the alignment substrate will be described.
  • a retardation film When a retardation film is used as an alignment substrate, some retardation films have homeo-mouth pick alignment ability with respect to the liquid crystal material, but if not, alignment treatment (formation of alignment film) described later is necessary if necessary. It is preferable to perform a rubbing process.
  • a substrate having a smooth plane is preferable, and examples thereof include films and sheets made of organic polymer materials, glass plates, metal plates and the like. From the viewpoint of continuous productivity, it is preferable to use a material made of an organic polymer.
  • organic polymer materials include polyvinyl alcohol, polyimide, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyether ketone, polyether ether ketone, polyarylate, polyethylene terephthalate and polyethylene naphthalate.
  • Examples thereof include a film made of a transparent polymer such as a nore polymer, a senorelose polymer such as diacetylenose / relose and triacetylenose / relose, a polycarbonate polymer, and an acryl polymer such as polymethyl methacrylate.
  • a transparent polymer such as a nore polymer
  • a senorelose polymer such as diacetylenose / relose and triacetylenose / relose
  • a polycarbonate polymer such as polymethyl methacrylate.
  • polystyrene, talitor nitriles, styrene polymers such as styrene copolymers, polyethylene, polypropylene, ethylene polymers such as propylene copolymers, polycyclohexylene, vinyl chloride polymers, nylon and aromatic polyamides, etc.
  • films made of transparent polymers such as amide polymers. These may be
  • the materials constituting these substrates are long chain (usually 4 or more carbon atoms, preferably 8 or more) alkyl groups fluorinated. It is more preferable to have a hydrocarbon group or to have a compound layer having these groups on the substrate surface.
  • These organic polymer materials may be used alone as a substrate, or may be formed as a thin film on another substrate. The process of forming a compound layer (alignment film) having a long chain (usually 4 or more carbon atoms, preferably 8 or more) alkyl group or fluorinated hydrocarbon group will be described.
  • the material for forming the alignment film is preferably applied in a solution state from the viewpoint of controlling the alignment film thickness and surface properties.
  • the solution can be appropriately performed using a solvent capable of dissolving the material. wear.
  • the solvent for preparing a solution of an alkyl group-modified polybulal alcohol (PVA) is not particularly limited as long as it is a solvent that can dissolve the PVA, and usually, water, methanol, ethanol, isopropyl alcohol, etc. A lower alcohol or a mixture of these is used.
  • the coating method used to form the alignment film on the substrate is a flexographic printing method using a soft resin plate, a dispenser method, and a gravure coating. System, micro gravure system, screen printing system, rip coat system, and die coat system. Of these, the Daravia coating method, lip coating method and die coating method are preferred.
  • the applied alignment film is dried if necessary.
  • the drying temperature is usually limited in the case of PVA because of its heat resistance, but may be higher depending on the purpose. Generally, it is 50 ° C to 180 ° C, preferably 80 ° C to 160 ° C.
  • the drying time is not particularly limited, but usually 10 seconds to 60 minutes, preferably 1 minute to 30 minutes.
  • the relative movement speed between the film to be dried and the drying wind is preferably 6 O m / min to 1 2200 m / min, relative to the wind speed.
  • the home-orientation pick-alignment liquid crystal layer used in the present invention has in-plane anisotropy. Since the orientation structure does not basically generate, rubbing treatment is not necessarily required. However, it is more preferable to apply a weak rubbing treatment from the viewpoint of suppressing repelling when a liquid crystal material is applied.
  • An important setting value that defines the rubbing conditions is the peripheral speed ratio. This represents the ratio of the movement speed of the cloth and the movement speed of the substrate when the rubbing cloth is wound around a roll and rubbed while rotating the substrate.
  • the weak rubbing treatment usually has a peripheral speed ratio of 50 or less, more preferably 25 or less, and particularly preferably 10 or less. If the peripheral speed ratio is larger than 50, the rubbing effect is too strong, and the liquid crystal material cannot be perfectly aligned vertically, and the alignment may be tilted in the in-plane direction from the vertical direction.
  • a method for producing a homeotopic pick alignment liquid crystal layer used in the present invention will be described. Light up.
  • the production method of the liquid crystal layer is not limited to these, but the above-mentioned liquid crystal material is spread on a retardation film or an alignment substrate, the liquid crystal material is aligned, and then light irradiation and / or heat treatment is performed. Thus, it can be manufactured by fixing the orientation state.
  • a method of forming a liquid crystal material layer by spreading the liquid crystal material on a retardation film or an alignment substrate a method in which the liquid crystal material is applied directly on the alignment substrate in a molten state, or a solution of the liquid crystal material is applied on the alignment substrate. Then, the method of drying a coating film and distilling a solvent off is mentioned.
  • the solvent used for preparing the solution is not particularly limited as long as it can dissolve the liquid crystal material of the present invention and can be distilled off under suitable conditions. Generally, ketones such as acetone, methyl ethyl ketone, isophorone, and cyclohexanone are used.
  • Ether alcohols such as butoxychetyl alcohol, hexyloxychetilanolol, and methoxy-2-norenole, glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether , Ethenols such as ethyl acetate, lactate, and butyl lactolone, phenols such as phenol / le, black mouth phenol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrole Amides such as dong, black mouth form, tetrachloro Tan, halogen-like or a mixture of these systems, such as dichlorobenzene are preferably used.
  • a surfactant, an antifoaming agent, a leveling agent, a coloring agent, and the like may be added to the solution.
  • two groups having the same reactivity as the polymerizable group bonded to the liquid crystal polymer compound are contained in one molecule.
  • Various low molecular compounds whether liquid crystalline or non-liquid crystalline) or various compounds that can improve adhesion can be added.
  • the application method is not particularly limited as long as the uniformity of the coating film is ensured, and a known method is adopted. be able to. Examples include spin coating, die coating, curtain coating, dip coating, and roll coating.
  • the drying step can be any known method without particular limitation as long as the uniformity of the coating film is maintained.
  • Examples include heaters (furnace) and hot air blowing.
  • the film thickness of the liquid crystal layer depends on the type of liquid crystal cell and various optical parameters, it cannot be generally stated, but is usually 0.2 ⁇ ! ⁇ 10 ⁇ m, preferably 0.3 m to 5 ⁇ m, more preferably 0.5 ⁇ m to 2 / Zm. If the film thickness is thinner than 0.2 / zm, it may not be possible to obtain a sufficient viewing angle improvement or brightness enhancement effect. If it exceeds 10 ⁇ , the liquid crystal display device may be unnecessarily colored.
  • the liquid crystalline composition layer formed on the alignment substrate is formed into a liquid crystal alignment by a method such as heat treatment, and is cured and fixed by light irradiation and / or heat treatment.
  • the liquid crystal is aligned by the self-alignment ability inherent in the liquid crystal composition by heating to the liquid crystal phase expression temperature range of the liquid crystal composition used.
  • the conditions for the heat treatment cannot be generally stated because the optimum conditions and limit values differ depending on the liquid crystal phase behavior temperature (transition temperature) of the liquid crystal composition to be used. Is in the range of 30 ° C.
  • the liquid crystal alignment may not proceed sufficiently, and at high temperatures, the cationic polymerizable reactive groups in the liquid crystalline composition and the alignment substrate may be adversely affected.
  • the heat treatment time is usually in the range of 3 seconds to 30 minutes, preferably 10 seconds to 20 minutes. If the heat treatment time is shorter than 3 seconds, the liquid crystal alignment may not be completed sufficiently, and if the heat treatment time exceeds 30 minutes, the productivity will deteriorate, so it is preferable in either case.
  • the liquid crystal composition After forming the liquid crystal alignment of the liquid crystal composition layer by a method such as heat treatment, the liquid crystal composition is hardened by reacting the oxetanyl group in the composition while maintaining the liquid crystal alignment state.
  • the purpose of the curing process is to fix the completed liquid crystal alignment by a curing (crosslinking) reaction, thereby modifying the liquid crystal alignment state into a stronger film.
  • the liquid crystalline composition used in the present invention has a polymerizable oxetaryl group, it is preferable to use a cationic polymerization initiator (cation generator) for the polymerization (crosslinking). It is as follows.
  • cation generator cationic polymerization initiator
  • the polymerization initiator it is preferable to use a light thione generator rather than a thermal cation generator.
  • the process from the addition of the light thione generator to the heat treatment for liquid crystal alignment is a drastic condition (light blocking conditions that do not cause the light thione generator to dissociate).
  • the liquid crystal composition can be aligned with sufficient fluidity without being cured until the alignment stage.
  • the liquid crystal composition layer is cured by generating cations by irradiating light from a light source that emits light of an appropriate wavelength.
  • the light irradiation method includes light from a light source such as a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon lamp, an arc lamp, or a laser that has a spectrum in the absorption wavelength region of the photoactive thione generator. Irradiate to cleave the light thione generator. As the amount of irradiation per square centimeter, the cumulative amount of irradiation is usually: ⁇ 2 0 0 0 m J, preferably 1 0 ⁇ ! It is the range of O O O m J.
  • the temperature at the time of light irradiation needs to be within a temperature range in which the liquid crystalline composition takes liquid crystal alignment. In order to sufficiently enhance the curing effect, it is preferable to perform light irradiation at a temperature of T g or more of the liquid crystalline composition.
  • the liquid crystalline composition layer produced by the above process is a sufficiently strong film.
  • the mesogens are three-dimensionally bonded by the curing reaction, which not only improves the heat resistance (upper limit temperature of liquid crystal alignment) compared to before curing, but also scratch resistance, wear resistance, crack resistance.
  • the mechanical strength such as property is also greatly improved.
  • the obtained liquid crystal layer is finally opaque in the intended use wavelength region, or the alignment substrate is too thick, resulting in problems in actual use. If there is a problem such as the above, it is also possible to use a form that is transferred from a form formed on an oriented substrate to a substrate that does not become an obstacle in the intended wavelength range of use or a stretched film having a retardation function.
  • a transfer method a known method can be employed. For example, as described in Japanese Patent Laid-Open No. 4-7570 17 or Japanese Patent Laid-Open No. 5-3 3 3 3 1 3, the liquid crystal layer is different from the alignment substrate through an adhesive or an adhesive. Examples include a method of transferring only the liquid crystal layer by peeling the alignment substrate from the laminate after laminating the substrates.
  • the pressure-sensitive adhesive or adhesive used for transfer is not particularly limited as long as it is an optical grade as described later, and is generally used such as acrylic, epoxy, and urethane. Can be used.
  • the home-mouth pick-aligned liquid crystal layer obtained as described above can be quantified by measuring the optical phase difference of the liquid crystal layer at an angle inclined from normal incidence. In the case of a homeotopically picked liquid crystal layer, this retardation value is symmetric with respect to normal incidence.
  • Several methods can be used to measure the optical phase difference. For example, an automatic birefringence measuring device (manufactured by Oji Scientific Instruments) and a polarizing microscope can be used. This homeotopic pick alignment liquid crystal layer appears black between the crossed Nicol polarizers. In this way, homeo-mouth pick orientation was evaluated.
  • the R e 1 and R th 1 values which are the optical parameters of the homeotropic alignment liquid crystal layer, cannot be generally described because they depend on the type of the liquid crystal display device and various optical parameters.
  • the in-plane retardation value (R e 1) is usually ⁇ ⁇ ! -20 nm, preferably 0 nm to 10 nm, more preferably O nm to 5 nm
  • the thickness direction retardation value (R thl) is usually from 1 to 500 nm to 1 to 30 nm
  • it is controlled from 1 400 nm to 1 50 nm, more preferably from 1 400 nm to ⁇ 100 nm.
  • the viewing angle improving film of the liquid crystal display device can widen the viewing angle while correcting the color tone of the liquid crystal display.
  • the Re 1 value is larger than 20 nm
  • the front characteristic of the liquid crystal display device may be deteriorated due to the large in-plane retardation value.
  • the R th 1 value is larger than –30 nm or smaller than 1 500 nm, sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction.
  • the homeotopic pick alignment liquid crystal layer preferably satisfies the condition represented by the following [5].
  • a stretched film is used as an optically anisotropic element that has positive uniaxiality in the thickness direction instead of the homeotropic alignment liquid crystal layer, so there is a limit to stretching in the thickness direction, so there is a wide range of retardation in the thickness direction. Can not be controlled.
  • a method in which a long film is thermally shrunk and stretched in the thickness direction using a heat shrinkable film is also used, but the birefringence in the thickness direction is 0.03 or less, and the resulting film thickness is It is about 50 to 100 m, thicker than the original long film, and it is difficult to meet the demand for thinning the entire elliptically polarizing plate accompanying the demand for thinning liquid crystal display devices.
  • the film thickness of the elliptically polarizing plate is desirably 1 75 ⁇ or less, particularly preferably 1550 ⁇ m or less, in view of the recent demand for thinning.
  • the linearly polarizing plate constituting the elliptically polarizing plate of the present invention has a translucent protective film only on one side of the polarizer.
  • the polarizer to be used is not particularly limited, and various types can be used, such as polyvinyl alcohol film, partially formalized polyalcohol film, ethylene / acetic acid copolymer copolymer partially saponified film, etc.
  • Polyethylene films such as uniaxially stretched by adsorbing a dichroic substance such as a dichroic dye on a hydrophilic polymer film, dehydrated polyvinyl alcohol or dehydrochlorinated polyvinyl chloride An oriented film etc. are mentioned.
  • the thickness of the polarizer is not particularly limited, but is generally about 5 to 80 ⁇ m.
  • a polarizer obtained by uniaxially stretching a polybulal alcohol film with iodine is prepared by immersing polyvinyl alcohol in an aqueous solution of iodine and stretching it 3 to 7 times the original length. be able to. If necessary, it can be immersed in an aqueous solution of boric acid or potassium oxalate. Furthermore, if necessary, the polybulal alcohol film may be immersed in water and washed before dyeing. Polyvinyl alcohol film by washing polyvinyl alcohol film with water In addition to cleaning surface stains and antiblocking agents, it also has the effect of preventing unevenness such as uneven dyeing by swelling the polyvinyl alcohol film.
  • the stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching.
  • the film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • the translucent protective film provided on one side of the polarizer preferably has excellent transparency, mechanical strength, thermal stability, moisture shielding properties, isotropic properties, and the like.
  • the material of the translucent protective film include, for example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, and acrylic polymers such as polymethyl methacrylate.
  • Styrene polymers such as polystyrene and acrylonitrile styrene copolymer (AS resin), polycarbonate polymers and the like.
  • Polyolefin-based polymers such as polyethylene, polypropylene, and ethylene / propylene copolymers, cycloolefin-based polymers, chlorinated butyl-based polymers, amide-based polymers such as nylon and aromatic polyamide, imide-based polymers, and sulfonate-based polymers
  • Polymers polyethersulfone polymers, polyetheretherketone polymers, polyphenylene sulfide polymers, butyl alcohol polymers, vinylidene chloride polymers, vinyl butyral polymers, arylate polymers, polyoxymethylenes
  • Examples of polymers that form translucent protective films include polymer-based polymers, epoxy-based polymers, and blends of the aforementioned polymers.
  • the thickness of the translucent protective film is generally 100 m or less, and preferably 1 to 80 m. In particular, it is preferably 5 to 50 m.
  • the translucent protective film is preferably a cellulose polymer such as triacetyl cellulose or cycloolefin-based polymer from the viewpoint of polarization characteristics or durability.
  • the polarizer and the translucent protective film are usually an adhesive or an adhesive. It is in close contact through etc.
  • Examples of the pressure-sensitive adhesive and adhesive include polybulal alcohols, gelatins, bull latexes, water-based polyurethanes and water-based polyesters.
  • a hard coat layer As the translucent protective film, a hard coat layer, an antireflection treatment, an anti-sticking treatment, or a treatment for diffusion or anti-glare can be used.
  • Hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate.
  • a protective film is applied to a cured film having excellent hardness and sliding properties by an appropriate UV curable resin such as acryl or silicone. It can be formed by a method of adding to the surface.
  • the antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be achieved by forming an antireflection film or the like according to the conventional art.
  • the anti-sticking treatment is performed for the purpose of preventing adhesion with an adjacent layer.
  • Anti-glare treatment is applied for the purpose of preventing external light from being reflected on the surface of the polarizing plate and obstructing the visibility of the light transmitted through the polarizing plate.
  • the anti-glare treatment is performed by a sandblast method or an embossing method. It can be formed by imparting a fine concavo-convex structure to the surface of the protective film by an appropriate method such as a roughening method or a blending method of transparent fine particles.
  • the fine particles to be included in the formation of the fine surface uneven structure include silica, alumina, titania, zircoure, tin oxide, indium oxide, cadmium oxide, and antimony oxide having an average particle diameter of 0.5 to 50 / m.
  • Transparent fine particles such as inorganic fine particles that may be conductive and organic fine particles made of a crosslinked or uncrosslinked polymer are used.
  • the amount of fine particles used is generally about 2 to 50 parts by weight with respect to 100 parts by weight of the transparent resin forming the surface fine uneven structure, and 5 to 25 Part by weight is preferred.
  • the antiglare layer may also serve as a diffusion layer (viewing angle expanding function or the like) for diffusing the light transmitted through the polarizing plate to expand the viewing angle.
  • the anti-reflection layer, anti-sticking layer, diffusion layer, anti-glare layer, etc. can be provided on the translucent protective film itself, and separately provided as a separate optical layer from the translucent protective film. You can also. Next, a retardation film having a retardation function will be described.
  • the retardation film only needs to have a desired retardation function.
  • a film obtained by uniaxially or biaxially stretching a polymer film, a film subjected to orientation treatment in the thickness direction (Z-axis), or a material exhibiting liquid crystallinity is used. Examples include coating and oriented film.
  • the retardation film having a retardation function preferably satisfies the following formulas [3] and [4].
  • R e 2 means an in-plane retardation value of the retardation film
  • R t h 2 means a retardation value in the thickness direction of the retardation film.
  • D 2 is the thickness of the retardation film
  • Nx 2 and Ny 2 are the main refractive index in the retardation film plane
  • N z 2 is the main refractive index in the thickness direction
  • the Re 2 and R th 2 values which are the optical parameters of the retardation film, cannot be generally described because they depend on the type of liquid crystal display device and various optical parameters, but for monochromatic light at 550 nm.
  • the in-plane retardation value (R e 2) is usually 20 nn! ⁇ 200 nm, preferably 30 ⁇ ! ⁇ 1 80 nm, more preferably 50 n ⁇ !
  • the retardation value (R t h 2) in the thickness direction is usually from 0 nm to 30 nm, preferably 0 n ⁇ ! ⁇ 25 nm, more preferably 0 ⁇ ! Controlled to ⁇ 15 nm.
  • the viewing angle improving film of the liquid crystal display device can widen the viewing angle while correcting the color tone of the liquid crystal display. If the R e 2 value is less than 2 O nm, but greater than 200 nm, the front characteristics of the liquid crystal display device may be deteriorated due to the influence of the in-plane retardation value. If the Rth2 value is less than 0 nm or greater than 3 O nm, sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction. .
  • a method of subjecting a film made of an appropriate polymer to uniaxial or biaxial stretching treatment may be a long film made of a heat-condensation film as disclosed in Japanese Patent Laid-Open No. 5-157991.
  • a birefringent film manufactured by a method in which the width direction is thermally shrunk to increase the retardation in the thickness direction is preferable.
  • the raw material include films and sheets made of organic polymer materials.
  • polybutyl alcohol polyimide, polyphenylene oxide, polysulfone
  • poly Polyester polymers such as etherenoketone, polyethylenate etherenoketone, polyethylene terephthalate, polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, polycarbonate polymers, acrylics such as polymethyl methacrylate And a film made of a transparent polymer such as a polymer.
  • Styrene polymers such as polystyrene, acrylonitrile and styrene copolymers, polyethylene, polypropylene, polycyclohexylene, olefin polymers such as ethylene and propylene copolymers, chlorinated polymers, nylon and aromatic polyamides, etc.
  • a film made of a transparent polymer such as a polymer is also included.
  • Further examples include vinylidene chloride polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers, films made of transparent polymers such as epoxy polymers and blends of the aforementioned polymers.
  • plastic films such as triacetyl cellulose, polycarbonate, and polycyclohexylene used as optical films are used award.
  • organic polymer film examples include ZENOA (trade name, manufactured by ZEON CORPORATION), ZEONEX (trade name, manufactured by ZEON CORPORATION), Arton (trade name, manufactured by JSR Corporation), etc.
  • a plastic film made of a polymer material having a norbornene structure is preferably used.
  • the thickness of the retardation film obtained by stretching or the like depends on Re 2 and R th 2 as described above, but is usually 5 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 80. ⁇ m.
  • An alignment film made of a liquid crystal material such as a liquid crystal polymer is a substrate on which a liquid crystalline polymer that exhibits uniform and monodomain nematic alignment and can easily fix the alignment state is applied on a substrate or an alignment film.
  • An alignment film produced by heat treatment above to form a uniform, monodomain nematic structure, and then cooled to fix the alignment without impairing the alignment in the liquid crystal state, or a photopolymerizable liquid crystal to the liquid crystalline polymer An alignment film obtained by blending a compound to form a liquid crystalline composition, coating, orienting and polymerizing on a substrate or a substrate coated with an alignment film can be mentioned.
  • the optical film may be a positive uniaxial optically anisotropic layer, a negative uniaxial optically anisotropic layer, or a biaxial optically anisotropic layer.
  • NZ coefficient ( ⁇ ⁇ - ⁇ ⁇ ) / ( ⁇ ⁇ - ⁇ y)
  • NZ> 1 negative 2 axes
  • NZ + 1 is positive It can be classified as two axes.
  • a retardation film having a retardation value in the following range may be appropriately selected from the above retardation films having a retardation function.
  • the in-plane retardation R e is 20 ⁇ ⁇ ! ⁇ 500 nm, preferably 50 nm to 300 nm. Outside this range, the effect of improving the viewing angle when applied to a liquid crystal display device becomes poor, which is not preferable.
  • Re is the same as the formula defined for the retardation film having a phase difference function.
  • the optical film having a negative uniaxial optically anisotropic layer is not particularly limited, but non-liquid crystal materials have excellent heat resistance, chemical resistance, transparency, and high rigidity.
  • Polyolefins such as sylate, ZEONEX, ZEONOR (both manufactured by Nippon Zeon Co., Ltd.) and ARTON (manufactured by JSR Co., Ltd.), polyamide, polyimide, polyester, polyetherketone, polyaryletherketone, polyamido Polymers such as polyimide and polyesterimide are preferred. Any one of these polymers may be used alone, or a mixture of two or more kinds having different functional groups such as a mixture of polyaryl ether ketone and polyamide may be used. .
  • polyimide is particularly preferable because of its high transparency and high orientation.
  • a polyimide having high in-plane orientation and soluble in an organic solvent is preferable.
  • a polymer containing one or more repeating units shown in (7) can be used.
  • R 3 to R 6 are hydrogen, halogen, a phenyl group, 1 to 4 halogen atoms, or C i to. It is at least one kind of substituent each independently selected from the group consisting of a phenyl group substituted with an alkyl group and a C i to i 0 alkyl group.
  • R 3 to R 6 is halogen, phenyl group, 1 to 4 halogen atom or C i ⁇ i.
  • Z is, for example, C 6 ⁇ 2.
  • the tetravalent aromatic group is preferably a pyromerite group, a polycyclic aromatic group, a derivative of a polycyclic aromatic group, or a group represented by the following formula (8).
  • Z ' is a covalent bond, C (R 7) 2 group, CO group, O atom, S atom, S_ ⁇ 2 group, S i (C 2 H 5 ) 2 group, or NR 8 groups, and when plural, they are the same or different.
  • W represents an integer from 1 to 10;
  • Each R 7 is independently hydrogen or C (R 9 ) 3 .
  • R 8 is hydrogen, 1 to about 20 alkyl carbon atoms or C 6 ⁇ 2,. In case of multiple groups, they are the same or different.
  • R 9 is independently hydrogen, fluorine, or chlorine.
  • the liquid crystal material includes liquid crystal materials such as cholesteric liquid crystalline polymers.
  • Cholesteric alignment film a film in which a cholesteric alignment layer is supported by a film, a discotic liquid crystal layer, and the like.
  • the cholesteric alignment film is preferably one having a uniform brilliant orientation such that the cholesteric helical axis exists in the normal direction of the film by an appropriate method such as heat treatment, and the selective reflection wavelength s is 300 nm or less. Preferably there is.
  • the material for realizing cholesteric alignment is not limited to a liquid crystal polymer, but a liquid crystal monomer molecule having a polymerizable group capable of realizing cholesteric alignment alone, or a liquid crystal monomer having a polymerizable group and a chiral compound. A mixture of these is also preferably used. After these materials are cholesterically oriented by a method selected appropriately, such as heat treatment, the polymerizable group can be cured by a suitably used means such as heat or light, and the cholesteric orientation can be fixed.
  • a polymerizable discotic liquid crystal compound that is homogeneously aligned is also preferably used.
  • the thickness of the optical film having the negative uniaxial optically anisotropic layer is d 3
  • the main refractive index in the optical anisotropic layer surface is Nx 3 and Ny 3
  • the main refractive index in the thickness direction is N z 3 and Nx 3 ⁇ Ny 3> N z 3
  • thickness direction retardation value (R t h 3 (N X 3 -N z 3) X d 3 [n m])
  • the R e 3 and R th 3 values which are the optical parameters of an optical film having negative uniaxial optical anisotropy, cannot be generally described because they depend on the type of liquid crystal display device and various optical parameters.
  • the in-plane retardation (R e 3) for 550 nm monochromatic light is usually 0 ⁇ ! ⁇ 20 nm, preferably 0 ⁇ ! ⁇ 10 nm, more preferably 0 nn!
  • the retardation value in the thickness direction (R t h 3) is usually 50 ⁇ ! ⁇ 500 nm, preferably 80 ⁇ ⁇ ! It is controlled to ⁇ 400 nm, more preferably 100 nm to 300 nm.
  • the viewing angle improving film of the liquid crystal display device can widen the viewing angle while correcting the color tone of the liquid crystal display. If the Re 3 value is larger than 20 nm, the front characteristics of the liquid crystal display element may be deteriorated due to the large front phase difference value. R th 3 value is 5 If it is smaller than 0 nm or larger than 500 nm, a sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction. Next, the manufacturing method of the elliptically polarizing plate of this invention is demonstrated.
  • the elliptically polarizing plate of the present invention comprises a linearly polarizing plate having a laminated structure in which only one surface of the polarizing element is protected by a light-transmitting protective film, a retardation film having a retardation function, and a homeotropic alignment liquid crystal layer, and further required Can be produced by incorporating the above-described optical films and bonding them to each other via a pressure-sensitive adhesive layer or an adhesive layer (hereinafter referred to as a “viscous adhesive layer”).
  • the home-orientated pick-aligned liquid crystal layer formed on the alignment substrate is attached to the linearly polarizing plate, the retardation film or the optical film via the adhesive / adhesive layer, and then the alignment substrate is peeled off to remove the homeo-mouth. It can also be laminated by a method in which only the pick-aligned liquid crystal layer is transferred to a linearly polarizing plate, a retardation film or an optical film.
  • a transparent protective film is bonded to a polarizing element through an adhesive layer 1, and a laminate (I) (linear polarizing plate comprising the transparent protective film Z adhesive layer 1 / polarizing element )
  • a layer of a liquid crystalline composition exhibiting positive uniaxiality is formed on a retardation film, and the layer is homeotropically aligned, and then a homeotropically aligned liquid crystal layer with a fixed orientation is formed.
  • Retardation film Z Home-made liquid crystal layer
  • the manufacturing method of the elliptically polarizing plate characterized by passing through each process of these.
  • a translucent protective film is bonded to a polarizing element via an adhesive layer 1, and a laminated body comprising a translucent protective film Z adhesive layer 1 Z polarizing element (I) (linear polarizing plate ) First step to get,
  • the manufacturing method of the elliptically polarizing plate characterized by passing through each process of these.
  • a translucent protective film is bonded to a polarizing element via an adhesive layer 1, and a laminated body comprising the translucent protective film Z adhesive layer 1 Z polarizing element (I) (linear polarizing plate ) To obtain the first step,
  • a layer of a liquid crystalline composition exhibiting positive uniaxiality is formed on an alignment substrate, and the layer is home-mouth pick-aligned, and then a home-mouth pick-alignment liquid crystal layer with a fixed orientation is formed.
  • a laminated body (in) composed of an alignment substrate Z homeotropic alignment liquid crystal layer.
  • a method for producing an elliptically polarizing plate characterized by passing through each of the steps.
  • a translucent protective film is bonded to a polarizing element via an adhesive layer 1, and a laminated body comprising a translucent protective film Z adhesive layer 1 Z polarizing element (I) (linear polarizing plate ) To obtain the first step,
  • a layer of liquid crystalline composition exhibiting positive uniaxiality is formed on the alignment substrate, and the layer is A second step of obtaining a laminate (III) composed of an alignment substrate / homeotope picked liquid crystal layer by forming a home picked liquid crystal layer having a fixed orientation after photo-pic orientation.
  • the manufacturing method of the elliptically polarizing plate characterized by passing through each process of these.
  • a method of laminating a linear polarizing plate, a retardation film, or an optical film for example, a method of directly laminating both using an adhesive layer described later, a liquid crystal alignment ability is imparted to the optical film, and a uniform and mono
  • a method of providing a liquid crystalline polymer that exhibits domain-like liquid crystal orientation and can easily fix the orientation state by means such as coating, a liquid crystalline polymer provided on a film substrate, and a composition containing them For example, a method of transferring the film to another linearly polarizing plate or a film using an adhesive or an adhesive described later is preferably used.
  • the pressure-sensitive adhesives and adhesives used to form linear adhesive plates, home-orientated pick-aligned liquid crystal layers and optically anisotropic layers, and adhesive / adhesive layers used for transfer are optically isotropic and transparent. If there is no particular limitation. For example, acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyethers, fluorine-based or rubber-based polymers can be appropriately selected and used. . For these adhesives and adhesives, various additives such as surfactants, antifoaming agents, thickeners, tackifiers, A leveling agent may be added.
  • reactive materials that react by an external stimulus such as light, electron beam, heat, and the like to be polymerized or cross-linked, and fluorine-based or rubber-based materials can be used.
  • those that are excellent in optical transparency, such as acrylic adhesives, exhibit appropriate wettability, cohesiveness, and adhesive properties, and are excellent in weather resistance and heat resistance are preferable. Can be used.
  • the linearly polarizing plate used in the present invention has a translucent protective film on one side, since the linearly polarizing plate is usually incorporated in a liquid crystal display device and the translucent protective film layer is the outermost layer,
  • the light-transmitting protective film is preferably excellent in transparency, mechanical strength, thermal stability, moisture shielding property, isotropy and the like as described above.
  • the polarizer side without a translucent protective film is not the outermost layer, but the liquid crystal layer or retardation film is not the outermost layer, but it is used to prevent (protect) scratches during various processing.
  • the adhesive can also have a function to relieve the stress caused by heat deformation. Further, the adhesive / adhesive layer need not be a single layer, and a plurality of layers may be laminated.
  • the adhesive layer can be formed by an appropriate method.
  • examples thereof include, for example, about 10 to 40% by mass of a base polymer or a composition thereof dissolved or dispersed in a solvent composed of an appropriate solvent alone or a mixture such as toluene cetyl acetate.
  • an adhesive layer is formed on a separator and transferred onto the linearly polarizing plate, retardation film, liquid crystal layer or optically anisotropic layer.
  • the adhesive / adhesive layer for example, natural or synthetic resins, in particular, adhesive resins, fillers made of glass fibers, glass beads, metal powders, other inorganic powders, pigments, etc.
  • An additive that may be added to the adhesive such as a colorant and an antioxidant may be contained. It can also be an adhesive layer that contains fine particles and exhibits light diffusivity.
  • the thickness of the adhesive layer is not particularly limited as long as the member to be adhered can be adhered and sufficient adhesion can be maintained, depending on the properties of the adhesive and the adhesive and the material to be adhered. Can be selected. Since there is a strong demand for reducing the total thickness of the elliptically polarizing plate, it is preferable that the thickness of the adhesive and the adhesive is thin, but usually 2 to 80 ⁇ , preferably 5 to 50 ⁇ m, more preferably 5 to 40 ⁇ m. Outside this range, it is not preferable because the adhesive strength is insufficient, or it oozes out from the edge during lamination or storage of the elliptically polarizing plate.
  • the liquid crystal layer is directly bonded to the linearly polarizing plate, retardation film or optical film via the adhesive layer 1 and aligned.
  • the substrate is peeled off, and the home-orientated pick-aligned liquid crystal layer is transferred to a linear polarizing plate, a retardation film or an optical film.
  • Adhesive layer 2 Removable substrate 2 Intermediate 2 is produced, and a non-carrier paste with a separate film is further bonded to the adhesive layer 1 side. Is peeled off and attached to a linear polarizing plate, a retardation film or an optical film as appropriate, and the releasable substrate 2 is peeled off.
  • (U) Home-to-mouth pick alignment in which the liquid crystal alignment formed on the alignment substrate is fixed.
  • the alignment substrate is peeled off and the homeotope is aligned.
  • Transfer the lip-pick orientation liquid crystal layer to the removable substrate 1 and re-peel the substrate 1 Z adhesive layer 1 Create intermediate 1 consisting of home-pick orientation liquid crystal layer, and then re-peel through the adhesive layer 2
  • the releasable substrate 1 is peeled off to produce an intermediate 2 consisting of an adhesive layer 1 / homeotopick orientation liquid crystal layer Z adhesive layer 2 / removable substrate 2
  • the re-peelable substrate 2 is peeled off and the separate film is applied.
  • Adhesive layer 1 Adhesive layer 1 Home-to-mouth orientation liquid crystal layer
  • Adhesive layer Intermediate 3 consisting of 2 and adhesive layer 2
  • a non-carrying glue with a separate film, separate film adhesive layer no adhesive layer 1 / homeo orientation liquid crystal layer adhesive layer 2
  • Z adhesive layer intermediate 4 consisting of Z separate film Prepare, peel off the separate film, and stick to a linear polarizing plate, retardation film, or optical film.
  • the adhesion between the releasable substrate and the home-to-mouth pick alignment liquid crystal layer can be reduced and re-peeled.
  • the adhesive layer can be peeled off while being adhered to the removable substrate side.
  • (E) Home-to-mouth pick alignment in which the liquid crystal alignment formed on the alignment substrate is fixed. After the liquid crystal layer is bonded to the removable substrate 1 through the adhesive layer 1, the alignment substrate is peeled off and the homeotope is aligned. Transfer the lip-pickup alignment liquid crystal layer to the removable substrate 1, re-peelable substrate 1 Adhesive layer 1 Create intermediate 1 consisting of homeo-pick alignment liquid crystal layer, and re-peelability through the adhesive layer 2 After adhering to the substrate 2, the releasable substrate 1 is peeled off, and the intermediate layer 2 made of the adhesive layer 1 Z homeotope orientation liquid crystal layer adhesive layer 2 Z removable substrate 2 is prepared.
  • Adhesive layer 1 Non-carrier paste with separate film is pasted, then peelable substrate 2 is peeled off with adhesive layer 2 attached, separate film Z adhesive layer Adhesive layer 1 Z An intermediate 5 consisting of a homeotopic pick alignment liquid crystal layer was produced, and A non-carrier paste with a separate film is also bonded to the liquid crystal layer side of the meto-mouth pick orientation layer.
  • Adhesive layer 2 / Adhesive layer No separate film Intermediate 6 is prepared, and the separate film is peeled off. Adhere to the difference film or optical film.
  • (G) Home-mouth pick alignment with fixed liquid crystal alignment formed on the alignment substrate After the liquid crystal layer is adhered to the re-peelable substrate 1 via the adhesive layer 1, the alignment substrate is peeled off and the homeotope is aligned. Transfer the lip-pick orientation liquid crystal layer to the removable substrate 1 and re-peel the substrate 1 Z adhesive layer 1 Create intermediate 1 consisting of home-pick orientation liquid crystal layer, and then re-peel through the adhesive layer 2 After adhering to the releasable substrate 2, the releasable substrate 2 is peeled off, and the intermediate 2 comprising the releasable substrate 1 / adhesive layer 1 home-to-mouth pick alignment liquid crystal layer adhesive layer 2 is prepared and further bonded Adhesive layer 2 Adhesive layer 2 Adhesive layer 2 Adhesive layer 2 After peeling non-carrier paste with a separate film on the side of the adhesive layer 1 and peeling the removable substrate 1 with the adhesive layer 1 attached.
  • Intermediate 7 made of Z separate film was prepared, and A non-carrier paste with a separate film is also bonded to the top-pick orientation liquid crystal layer side to produce a separate film, adhesive layer, Z homeotropic alignment liquid crystal layer, adhesive layer, 2 adhesive layer, and intermediate 8 consisting of a separate film. Separate the separator film and attach it to a linearly polarizing plate, retardation film or optical film as appropriate.
  • the surface of the member to be processed can be surface-treated to improve the adhesion to the adhesive / adhesive layer.
  • the surface treatment means is not particularly limited, but corona discharge treatment, sputtering treatment, low-pressure UV capable of maintaining the transparency of the liquid crystal layer surface.
  • Surface treatment methods such as irradiation and plasma treatment can be suitably employed. Among these surface treatment methods, corona discharge treatment is good.
  • the removable substrate examples include polyethylene, polypropylene, and olefin-based resins such as poly (4-methylpentene-1) resin, polyamide, polyimide, polyamide imide, polyether imide, polyether ketone, and polyketone.
  • transparent and optically isotropic films with excellent optical defect inspection properties include poly (4-methylpentene 1), polymethyl methacrylate, polystyrene, polycarbonate, and polyethenores norephone.
  • films of polyarylate, monomeric polyolefin, norbornene resin, triacetyl cellulose, or epoxy resin examples thereof include films of polyarylate, monomeric polyolefin, norbornene resin, triacetyl cellulose, or epoxy resin.
  • the surface thereof can be coated with silicone or the like in advance, or an organic thin film or an organic thin film can be formed.
  • the surface of the plastic film can be subjected to chemical treatment such as hatching treatment or physical treatment such as corona treatment.
  • the plastic film may contain a lubricant or a surface modifier.
  • a lubricant or a surface modifier.
  • the type and amount of the lubricant include fine silica, fine alumina, and the like.
  • the haze value of the removable substrate is usually 50% or less, preferably 30% or less. Good. If the addition amount is too small, the effect of addition is not recognized. On the other hand, if the addition amount is too large, the optical defect inspection property deteriorates, which is not preferable.
  • the peelability of a removable substrate even a releasable substrate manufactured from the same material cannot be determined unconditionally because it changes depending on the manufacturing method, surface condition, wettability with the adhesive used, etc.
  • the peel force at the interface with the adhesive (1800 ° peel, peel rate 30 cm / min, measured at room temperature) is usually 0.38 ⁇ : I 2 N / m, preferably 0 ⁇ 3 8 to 8.0 NZm is desirable.
  • the peel-off force is too low when the alignment substrate is peeled off after the liquid crystal material layer on the alignment substrate is bonded to the re-peelable substrate.
  • the transfer of the liquid crystal material layer to the releasable substrate becomes insufficient, and when the peel force is too high, the releasable substrate is peeled off. It is not preferable because the liquid crystal material layer is broken or it cannot be peeled off at the interface with the desired layer.
  • the thickness of the removable substrate may affect the releasability, preferably 16 to 100 Aim, particularly preferably 25 to 50 xm. If the thickness is too thick, the peeling point may not be stable and the peelability may deteriorate. On the other hand, if the thickness is too thin, the mechanical strength of the film cannot be maintained, which may cause problems such as tearing during production. .
  • the liquid crystal material described above is developed on the linearly polarizing plate, the retardation film, or the optical film, and the liquid crystal material is aligned, without the home-orientated pick-aligned liquid crystal layer having a viscosity or adhesive layer. It can also be produced by fixing the alignment state by light irradiation and / or heat treatment. If necessary, install the alignment film on the linearly polarizing plate, retardation film or optical film, and then expand the liquid crystal material, align the liquid crystal material, and then apply light irradiation and / or It can also be produced by fixing the orientation state by heat treatment.
  • the elliptically polarizing plate of the present invention is an elliptical polarizing plate comprising a linearly polarizing plate, a home-to-mouth pick alignment liquid crystal layer in which home-to-mouth pick alignment is fixed, and a retardation film having a retardation function.
  • a retardation film having a retardation function for example, the following configurations (1) to (6) can be given.
  • liquid crystal display device having the elliptically polarizing plate of the present invention members such as a light diffusion layer, a light control film, a light guide plate, and a prism sheet may be added as necessary.
  • members such as a light diffusion layer, a light control film, a light guide plate, and a prism sheet may be added as necessary.
  • Examples of the liquid crystal display device using the elliptically polarizing plate of the present invention include the following configurations (7) to (14).
  • Linear polarizing plate Home-phase pick-aligned liquid crystal layer with fixed phase-difference film homeo-topic pick-up with Z-phase difference function Positive uniaxial optically anisotropic layer with phase difference in the film plane Negative uniaxial optically anisotropic layer with retardation in the thickness direction Liquid crystal cell Positive uniaxial optically anisotropic layer with retardation in the Z film plane Polarizing plate Z back light
  • the in-plane retardation value (R e) of each optically anisotropic layer preferably exhibiting a retardation of 14 wavelengths is 10 0 ⁇ ⁇ ! It is in the range of ⁇ 180 nm, preferably in the range of 120 nm to 160 nm, and more preferably in the range of 130 nm to 150 nm. If it is out of the above range, sufficient circular polarization when combined with a polarizing plate cannot be obtained, and the display characteristics when viewed from the front may be deteriorated.
  • the thickness of the negative biaxial optically anisotropic layer of (2), (5), (1 0) to (1 2) above Is d4 the in-plane main refractive index is Nx 4, Ny 4, the refractive index in the thickness direction is N z 4, and NX 4> N y 4> N z 4
  • the retardation value in the thickness direction of the vertical alignment type liquid crystal cell it is in the range of 50 nm to 600 nm, preferably 100 nm to 400 nm, and more preferably 20 O nm to 300 nm. If it is out of the above range, sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction.
  • liquid crystal alignment modes in liquid crystal cells include TN type, S TN type, VA (vertical alignment) type, MVA (mult l-domain vertical alignment) type, u CB k optically compensated bend type, ECB (electrically controlled birief ringence) type, HAN (hybrid-aligned nematic) type, IPS (in-plane switching) 3 ⁇ 4 bi- woman constant Nemachi' click (Bistable Nematic) type, ASM (Axially Symmetric Aligned Microcell) type, half-tone gray scale type And display methods using ferroelectric liquid crystals and antiferroelectric liquid crystals.
  • the transparent substrate constituting the liquid crystal cell is not particularly limited as long as the liquid crystal material constituting the liquid crystal layer is aligned in a specific alignment direction.
  • a transparent substrate having the property of orienting liquid crystals by the substrate itself, a force that lacks the alignment ability of the substrate itself, a transparent substrate having an alignment film having the property of orienting liquid crystals, etc. Can also be used.
  • a known liquid crystal cell electrode such as ITO can be used. The electrode can usually be provided on the surface of the transparent substrate with which the liquid crystal layer is in contact, and when a substrate having an alignment film is used, it can be provided between the substrate and the alignment film.
  • the liquid crystal alignment may have a single direction in the plane of the cell, or may be used for a liquid crystal display element in which the alignment is divided.
  • a liquid crystal display driven by a passive method using an ITO electrode for example, a liquid crystal display driven by a passive method using an ITO electrode, an active method using a TFT (thin film transistor) electrode or a TFD (thin film diode) electrode, etc.
  • An element can be mentioned.
  • Appropriate liquid crystal display devices such as a liquid crystal display device in which a polarizing plate and an optical film are arranged on one side or both sides of the liquid crystal cell, and a backlight or reflector used in an illumination system can be formed. In that case, the optical film can be placed on one or both sides of the liquid crystal cell.
  • a polarizing plate and an optical film When a polarizing plate and an optical film are provided on both sides, they may be the same or different. Furthermore, when forming a liquid crystal display device, for example, appropriate components such as a diffusion plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffusion plate, and a backlight are placed at appropriate positions. Two or more layers can be arranged.
  • a transflective liquid crystal display element can be obtained.
  • the region having a reflection function (hereinafter sometimes referred to as a reflective layer) included in the transflective electrode used in the transflective liquid crystal display element is not particularly limited, and is composed of aluminum, silver. Examples thereof include metals such as gold, chromium and platinum, alloys containing them, oxides such as magnesium oxide, dielectric multilayer films, liquid crystals exhibiting selective reflection, or combinations thereof. These reflective layers may be flat or curved. In addition, the reflective layer is processed to have a surface shape such as a concavo-convex shape so as to have diffuse reflectivity, and is provided with electrodes on the electrode substrate on the side opposite to the observer side of the liquid crystal cell. It may be a combination.
  • the liquid crystal display device of the present invention can be provided with other constituent members in addition to the constituent members described above.
  • a color filter to the liquid crystal display device of the present invention, a powerful liquid crystal display device capable of performing multicolor or full color display with high color purity can be manufactured.
  • each measuring method used in the Example is as follows.
  • the compound is dissolved in tetrahydrofuran, and TSK-GE LS upper Hl OOO, Super H 2000, Super H 3000, Super H 4000 is connected in series with Tosoh 8020 GPC system. Measurements were made using a droflan. Polystyrene standards were used for molecular weight calibration.
  • the alignment state of the liquid crystal was observed with a BH 2 polarizing microscope manufactured by Olympus Optical Co., Ltd.
  • a differential scanning calorimeter (DSC, DSC-7 manufactured by Perkin E 1mer) was used and measured at a heating rate of 20 ° CZmin.
  • Triacetyl cellulose (TAC) film (40 ⁇ , manufactured by Fuji Film Co., Ltd.) is immersed in a 2% by weight aqueous solution of hydroxylated hydrogen for 5 minutes at room temperature, tested, washed in running water and dried. It was.
  • TAC Triacetyl cellulose
  • One surface of a polarizing element obtained by adsorbing iodine to stretched polyvinyl alcohol was bonded with an experimental TAC film using an acrylic adhesive as the adhesive layer 1, and the laminate 1 (T AC film / adhesive layer 1 polarizing element).
  • a side chain liquid crystalline polymer compound represented by the following formula (9) was synthesized by radical copolymerization.
  • Formula (9) is represented by the structure of the block polymer, but represents the composition ratio of the monomers.
  • the alignment substrate was prepared as follows. 6 Continuously on a polyethylene terephthalate (PET) film (manufactured by Toray Industries, Inc.) of 50 mm width and thickness 3 8 ⁇ , alkyl-modified polybutyl alcohol (PVA, manufactured by Kuraray Co., Ltd., MP-203) Apply a 5% by weight solution (solvent is a mixed solvent of water and isopropyl alcohol in a mass ratio of 1: 1) using a die coater. Dry and heat-treat at 30 ° C. PVA layer thickness 1.2 A ⁇ m oriented substrate film 1 was obtained.
  • PET polyethylene terephthalate
  • PVA alkyl-modified polybutyl alcohol
  • the PV A layer was then rubbed with a rayon rubbing cloth.
  • the peripheral speed ratio during rubbing (moving speed of rubbing cloth and moving speed of substrate film) was set to 4.
  • the liquid crystal composition solution obtained above is continuously applied and dried on the alignment substrate thus obtained using a die coater, followed by heat treatment at 130 ° C. for 10 minutes for liquid crystal.
  • the composition layer was homeo-mouth pick oriented.
  • UV ultraviolet light
  • 600 m JZ cm 2 however, measured at 365 nm
  • high-pressure mercury lamp a high-pressure mercury lamp
  • Laminate 3 was prepared for the measurement of the optical parameters of the obtained homeo-mouth pick alignment liquid crystal layer. Since the PET film used as the alignment substrate has a large birefringence, it is difficult to measure the optical parameters (Re, Rth, etc.) of the homeotropic liquid crystal layer in the laminate 2 form. ) A homeotopic orientation liquid crystal layer was transferred onto the film as follows.
  • an ultraviolet curable adhesive was applied to the optical anisotropic element on the PET film to a thickness of 5 m, laminated with a T AC film (40 ⁇ thickness), and ⁇ UV rays were applied from the AC film side. After the irradiation, the adhesive was cured, and then the PVA layer and the PET film were peeled off to obtain a laminate 3 (homeotope orientation liquid crystal layer adhesive layer 2 TAC film).
  • the in-plane direction retardation value (R e) of laminate 3 measured using KOBRA2 1 ADH was 0.5 nm
  • the thickness direction retardation value (R th) was 1 140 nm.
  • the TAC film used alone was negative uniaxial, with a Re of 0.5 nm and a scale of 1111, which was +4011111. th was estimated to be 1100 nm.
  • a retardation film (Pure Ace WR, manufactured by Teijin Ltd.) having an in-plane retardation was longitudinally uniaxially stretched at 230 ° C. to obtain a film 1 having negative biaxiality.
  • the in-plane phase difference was 140 nm.
  • Film 1 is subjected to corona discharge treatment (250 W min / m 2 ), and a polarizing plate protected with a TAC film is attached to both sides of the polarizing element as an isotropic protective film via an adhesive.
  • a polarizing plate A film 1 pressure-sensitive adhesive layer ZT AC film pressure-sensitive adhesive layer polarizing element pressure-sensitive adhesive layer ZTAC film
  • the film thickness of the elliptically polarizing plate A is 1 9 0 m.
  • the solution was continuously applied and dried using a die coater, and then heated at 130 ° C. for 10 minutes to cause the liquid crystalline composition layer to be home-orientated.
  • UV ultraviolet light
  • the liquid crystalline composition was cured to obtain a laminate 4 (Zeonor film homeo-mouth pick alignment liquid crystal layer).
  • Corona discharge treatment (25 OW ⁇ min / m 2 ) is applied to the Xenore film side of Laminate 4, and Laminate 1 is attached as a linearly polarizing plate via an adhesive, and elliptical polarizing plate 1 of the present invention (TAC film adhesion) Agent layer 1 / polarizing element adhesive layer nozono film nootropic liquid crystal layer).
  • Corona discharge treatment (25 OW ⁇ min / m 2 ) is applied to the home-orientated picked liquid crystal layer side of the laminate 4, and the laminate 1 is adhered as a linearly polarizing plate via an adhesive.
  • TAC film adhesive layer 1Z polarizing element Z pressure-sensitive adhesive layer / homeotope orientation liquid crystal layer ZENOA film was obtained.
  • the film thickness of the elliptically polarizing plate 2 was 126 ⁇ m.
  • the liquid crystal composition solution obtained in Reference Example 1 is continuously applied and dried on the above-mentioned oriented substrate film 2 using a die coater, and then heated at 130 ° C. for 10 minutes for liquid crystal.
  • the composition layer was homeo-mouth pick oriented.
  • a metal drum heated to 60 ° C, it was irradiated with 60 Om JZC m 2 of ultraviolet light (UV) (however, measured at 365 nm) with a high-pressure mercury lamp.
  • UV ultraviolet light
  • the composition was cured to obtain a laminate 5 (Zeonor film PVA layer Z homeo-mouth pick alignment liquid crystal layer).
  • Corona discharge treatment (25 OW ⁇ min / m 2 ) is applied to the home-orientated pick-aligned liquid crystal layer side of Laminate 5, and Laminate 1 is attached as a linearly polarizing plate via an adhesive.
  • UV curable adhesive A commercially available UV curable adhesive (UV—1)
  • the ozonized film side of the laminate 6 is subjected to a corona discharge treatment (250 W ⁇ min / m 2 ), and the laminate 1 is adhered as a linear polarizing plate via an adhesive.
  • the laminate 6 is subjected to corona discharge treatment (250 W ⁇ min / m 2 ) on the home-mouth-pick-aligned liquid crystal layer side, and the laminate 1 is adhered as a linearly polarizing plate via an adhesive.
  • 5 TAC film Z Adhesive layer 1 Polarizing element Z Adhesive layer Z Home port Pick alignment liquid crystal layer adhesive layer 3 / Zeonor film).
  • Film 1 is subjected to corona discharge treatment (2500 W ⁇ min / m 2 ) and attached to the home-orientated liquid crystal layer side of elliptically polarizing plate 4 via an adhesive, and elliptically polarizing plate 6 (TAC film)
  • TAC film elliptically polarizing plate 6
  • Adhesive Layer No Film 1 was obtained.
  • the film thickness of the elliptically polarizing plate 6 was 1 7 2 ⁇ m.
  • FIG. 2 For the commercially available IPS type liquid crystal televisions arranged in the order of the backlight, the backlight side polarizing plate, the IPS type liquid crystal cell, and the viewing side polarizing plate, as shown in FIG.
  • the elliptically polarizing plate 2 was disposed. As a result, it was found that the viewing angle was larger than when the elliptical polarizing plate 2 was not used, and that a good image was obtained even when viewed from an oblique direction.
  • Figure 2 shows the viewing angle dependence of contrast. In the figure, a thick solid line indicates a region with a contrast of 100 or more. Concentric circles represent a viewing angle of 20 degrees (hereinafter the same).
  • the present invention is used instead of the viewing side polarizing plate as shown in FIG.
  • the elliptically polarizing plate 6 obtained in Reference Example 2 was placed in place of the elliptically polarizing plate 6 instead of the backlight side polarizing plate.
  • Figure 4 shows the viewing angle dependence of the contrast.
  • a commercially available UV curable adhesive (UV-3400, manufactured by Toagosei Co., Ltd.) was applied as an adhesive layer 4 on the homeotropically picked liquid crystal layer of Laminate 2 to a thickness of 5 ⁇ .
  • UV-3400 manufactured by Toagosei Co., Ltd.
  • UV light is irradiated from the PET film side to cure the adhesive layer 4, and then the PVA layer is attached to the PVA layer adjacent to the PVA layer
  • the laminate 7 (PET film adhesive layer 4 / homeotropic alignment liquid crystal layer) was obtained.
  • Corona discharge treatment (250W, min / m 2 ) is applied to the adhesive layer 4 side of the laminate 8, and the laminate 1 is pasted as a linear polarizer through an adhesive, and then the TAC film is peeled off and the elliptical polarizer is removed.
  • B TAC film adhesive layer 1 Z-polarizing element Z pressure-sensitive adhesive layer / adhesive layer 4 normal homeotropic alignment liquid crystal layer Z adhesive layer 4) was obtained.
  • a retardation film (Zeonor film, manufactured by Nippon Zeon Co., Ltd.) with an in-plane retardation of 1400 nm and a retardation of 0 nm in the film thickness direction is subjected to corona discharge treatment (250 W min / m 2 ) Then, the laminate 1 was adhered as a linearly polarizing plate to obtain an elliptically polarizing plate C (TAC film Z adhesive layer 1 polarizing element pressure-sensitive adhesive layer noonor film). (Production of IPS liquid crystal display device)
  • IPS liquid crystal TVs arranged in the order of backlight, back light side polarizing plate, IPS type liquid crystal cell, and viewing side polarizing plate, as shown in Fig. 5, instead of the viewing side polarizing plate, a reference example The elliptically polarizing plate A obtained in 2 was disposed. As a result, the viewing angle was narrower than when the elliptical polarizing plate 2 was used, and the total thickness of the elliptical polarizing plate A was so thick that it was difficult to incorporate it into the module and to bond it.
  • FIG. 1 is a cross-sectional view schematically showing a layer structure of an IPS type liquid crystal display device manufactured in Example 5.
  • FIG. 1 is a cross-sectional view schematically showing a layer structure of an IPS type liquid crystal display device manufactured in Example 5.
  • FIG. 2 is a diagram showing the viewing angle dependence of contrast of the IPS type liquid crystal display device fabricated in Example 5.
  • FIG. 2 is a diagram showing the viewing angle dependence of contrast of the IPS type liquid crystal display device fabricated in Example 5.
  • FIG. 3 is a cross-sectional view schematically showing the layer structure of the VA type liquid crystal display device fabricated in Example 6.
  • FIG. 4 is a view showing the viewing angle dependence of contrast of the VA type liquid crystal display device fabricated in Example 6.
  • FIG. 4 is a view showing the viewing angle dependence of contrast of the VA type liquid crystal display device fabricated in Example 6.
  • FIG. 5 is a cross-sectional view schematically showing the layer structure of the IPS liquid crystal display device manufactured in Comparative Example 1.
  • FIG. 6 is a diagram showing the viewing angle dependence of the contrast of the IPS liquid crystal display device fabricated in Comparative Example 1.
  • FIG. 6 is a diagram showing the viewing angle dependence of the contrast of the IPS liquid crystal display device fabricated in Comparative Example 1.
  • FIG. 7 is a diagram showing the viewing angle dependence of contrast of the IPS type liquid crystal display device fabricated in Comparative Example 2.
  • an elliptical polarizing plate having a liquid crystal layer with a fixed homeotopic orientation structure, an improved viewing angle and contrast, and a reduced thickness is provided, which has great industrial value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

Disclosed is an elliptically polarizing plate having a homeotropically aligned liquid crystal layer, which is improved in viewing angle and contrast, while being reduced in thickness. This elliptically polarizing plate is composed of at least a homeotropically aligned liquid crystal layer, which is formed by homeotropically aligning a positive uniaxial liquid crystal composition in a liquid crystal state and then fixing the alignment, a retardation film having a retardation function, and a linear polarizing plate having a multilayer structure wherein one side of a polarizer is protected by a light-transmitting protective film. The elliptically polarizing plate is characterized by having either of the following multilayer structures: (A) the light-transmitting protective film/the polarizer/the retardation film/the homeotropically aligned liquid crystal layer; and (B) the light-transmitting protective film/the polarizer/the homeotropically aligned liquid crystal layer/the retardation film.

Description

楕円偏光板、 その製造方法およびそれを用いた液晶表示装置  Elliptical polarizing plate, manufacturing method thereof, and liquid crystal display device using the same
[技術分野] [Technical field]
本発明は、 ホメオト口ピック配向構造を固定化した液晶層からなる楕円偏光板 およびその製造方法に関し、 さらには該楕円偏光板を用いた液晶表示装置に関す る。  The present invention relates to an elliptically polarizing plate composed of a liquid crystal layer with a fixed homeotopic orientation structure and a method for producing the same, and further to a liquid crystal display device using the elliptically polarizing plate.
 Light
[背景技術] [Background]
 Rice field
位相差フィルムは、 液晶表示装置の画質向上に用いられるなど工業的に重要な 役割を担っている。 位相差フィルムとしては、 プラスチックフィルムの延伸によ るものと、 液晶を配向させたものとに大別できる。 後者は、 多様な屈折率構造を 実現できるポテンシャルをもっているため、 より注目に値する。  Retardation films play an important industrial role, such as being used to improve the image quality of liquid crystal display devices. Retardation films can be broadly classified into those obtained by stretching a plastic film and those obtained by aligning liquid crystals. The latter is more remarkable because it has the potential to realize various refractive index structures.
例えば、 膜厚方向により大きな屈折率を有するフィルムは、 液晶表示装置の視 野角改善に有効と考えられるが、 このようなフィルムは液晶のホメォトロピック 配向 (垂直配向) を利用するのが近道と考えられる。 液晶分子のホメオトロピッ ク配向は、 液晶の長軸分子方向が基板に対して実質的に垂直方向に整列すること である。 ホメオト口ピック配向は、 液晶表示装置のように、 2枚のガラス基板の 中に液晶を入れて電界をかけることで得られることは良く知られているが、 この 配向状態をフィルムにすることは非常に難しく、 また従来報告されている方法に は課題がある。 例えば主鎖型高分子液晶をホメオト口ピック配向させた後、 ガラ ス固定化によりフィルムを得ている (特許文献 1〜 3 )。 しかしホメオト口ピック 配向においては、 高分子が膜厚方向に並ぶため面内方向にクラックが入りやすい という問題があると推察されるが、 これらの報告では架橋による材料の強化など の対策は講じられていない。 特許文献 4では側鎖型液晶のホメォト口ピック配向 をガラス化により固定化しているが、 前記主鎖型高分子液晶以上に強度的には問 題があると考えられる。  For example, a film having a larger refractive index in the film thickness direction is considered to be effective for improving the viewing angle of a liquid crystal display device. However, such a film has a shortcut to use the homeotropic alignment (vertical alignment) of the liquid crystal. Conceivable. The homeotropic alignment of liquid crystal molecules is that the long-axis molecular direction of the liquid crystal is aligned in a direction substantially perpendicular to the substrate. It is well known that home-to-mouth pick alignment can be obtained by applying an electric field by placing liquid crystal in two glass substrates, as in a liquid crystal display device. It is very difficult and there are problems with the methods reported so far. For example, after a main chain type polymer liquid crystal is home-to-mouth pick-oriented, a film is obtained by glass fixation (Patent Documents 1 to 3). However, in home-to-mouth orientation, it is assumed that there is a problem that cracks are likely to occur in the in-plane direction because the polymers are aligned in the film thickness direction, but in these reports, measures such as strengthening the material by crosslinking are taken. Not. In Patent Document 4, the home-orientation pick orientation of the side chain type liquid crystal is fixed by vitrification, but it is considered that there is a problem in strength as compared with the main chain type polymer liquid crystal.
一方、 側鎖型液晶高分子に重合性の低分子液晶を加えている報告もあるが (特 許文献 5〜 6 )、低分子液晶は単独で重合するため側鎖型液晶高分子の強度の補強 には限界がある。特許文献 7では、側鎖型の液晶高分子にラジカル重合性の基や、 ビニルエーテル基、 エポキシ基といったカチオン重合性の基を導入した材料を用 いている。 しかし、 ラジカル重合は一般に酸素阻害を受けるため、 重合が不十分 になる恐れがあり、 設備的に酸素を取り除こうとすると装置が大掛かりになる。 ビュルエーテル基やエポキシ基は酸素阻害の影響を受けないためこの点では有利 であるが、 ビュルエーテル基のエーテル結合は不安定で開裂しやすいという問題 があり、 エポキシ基は液晶材料中への導入が煩雑であり、 また架橋処理を施した とき高い重合度を得ることが難しい。 さらにはホメオト口ピック配向を得るため に、 液晶材料中に多量の非液晶性の構造単位を導入しており、 安定した液晶性の 発現に疑問が残る。 このように従来のホメォト口ピック配向性フィルムの製造に は課題が残されていた。 On the other hand, there are reports of adding polymerizable low-molecular liquid crystals to side-chain liquid crystal polymers (Patent Documents 5 to 6). However, since low-molecular liquid crystals polymerize alone, the strength of side-chain liquid crystal polymers is low. Reinforcement Has its limits. In Patent Document 7, a material in which a radically polymerizable group, a cationically polymerizable group such as a vinyl ether group or an epoxy group is introduced into a side chain type liquid crystal polymer is used. However, since radical polymerization is generally subject to oxygen inhibition, the polymerization may be insufficient, and equipment will be large if it is attempted to remove oxygen by equipment. The bull ether group and epoxy group are advantageous in this respect because they are not affected by oxygen inhibition, but there is a problem that the ether bond of the bull ether group is unstable and easily cleaved, and the epoxy group is introduced into the liquid crystal material. Is difficult, and it is difficult to obtain a high degree of polymerization when a crosslinking treatment is applied. Furthermore, in order to obtain homeo-mouth pick alignment, a large amount of non-liquid crystalline structural units are introduced into the liquid crystal material, and there is a question about the stable liquid crystallinity. As described above, problems remain in the production of conventional home-orientated pick-oriented films.
(1) 特許文献 1 :特許第 2 8 5 3 0 6 4号公報  (1) Patent Document 1: Japanese Patent No. 2 8 5 3 0 6 4
(2) 特許文献 2 :特許第 3 0 1 8 1 2 0号公報  (2) Patent Document 2: Japanese Patent No. 3 0 1 8 1 2 0
(3) 特許文献 3 :特許第 3 0 7 8 9 4 8号公報  (3) Patent Document 3: Japanese Patent No. 3 0 7 8 9 4 8
(4) 特許文献 4 :特開 2 0 0 2一 1 7 4 7 2 5号公報  (4) Patent Document 4: Japanese Patent Laid-Open No. 2 0 0 2 1 7 4 7 2 5
(5) 特許文献 5 :特開 2 0 0 2 ― 3 3 3 5 2 4号公報  (5) Patent Document 5: Japanese Patent Laid-Open No. 2000-32-3 3 3 5 2 4
(6) 特許文献 6 :特開 2 0 0 2 3 3 3 6 4 2号公報  (6) Patent Document 6: Japanese Patent Laid-Open No. 2 0 2 3 3 3 6 4 2
(7) 特許文献 7 :特開 2 0 0 3 2 9 2 7号公報  (7) Patent Document 7: Japanese Patent Laid-Open No. 2 0 3 2 9 2 7
[発明の開示] [Disclosure of the Invention]
本発明の目的は、 ホメオト口ピック配向構造を固定化した液晶層を有し、 層構 造を簡略化することによって、 厚みが抑えられ、 液晶表示装置に組み込むと視野 角ばかりでなくコントラス トも改良される楕円偏光板と、 その製造方法およびそ れを使用した液晶表示装置を提供することを目的とする。  The object of the present invention is to have a liquid crystal layer with a fixed homeotopic orientation structure, and by simplifying the layer structure, the thickness can be suppressed, and when incorporated in a liquid crystal display device, not only the viewing angle but also the contrast is achieved. An object of the present invention is to provide an improved elliptically polarizing plate, a method for producing the same, and a liquid crystal display device using the same.
本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、 以下に示す楕円偏 光板、 その製造方法およびそれを用いた液晶表示装置により、 前記目的を達成で きることを見出し本発明を完成するに至った。  As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the object can be achieved by the following elliptically polarizing plate, a manufacturing method thereof, and a liquid crystal display device using the same. It came to be completed.
- すなわち、 本発明の第 1は、 正の一軸性を示す液晶性組成物を液晶状態におい てホメオト口ピック配向させた後、 該配向を固定化したホメオト口ピック配向液 晶層、 位相差機能を有する位相差フィルムおよび偏光素子の片面のみ透光性保護 フィルムにより保護された積層構造を有する直線偏光板から少なく とも構成され る楕円偏光板であって、 下記 (A) または (B) いずれかの積層構成を有するこ とを特徴とする楕円偏光板、 である。 -The first aspect of the present invention is that a liquid crystal composition exhibiting positive uniaxiality is homeo-mouth pick-aligned in a liquid crystal state, and then the homeo-mouth pick-alignment liquid crystal layer in which the orientation is fixed, a retardation function Translucent protection only on one side of retardation film and polarizing element An elliptically polarizing plate comprising at least a linear polarizing plate having a laminated structure protected by a film, wherein the elliptically polarizing plate has one of the following laminated structures (A) or (B): It is.
(A) 透光性保護フィルム 偏光素子 位相差フイルム/ホメオト口ピック配 向液晶層  (A) Translucent protective film Polarizing element Retardation film / homeotope pick orientation liquid crystal layer
(B) 透光性保護フィルムノ偏光素子 Zホメオト口ピック配向液晶層 Z位相差 フィ /レム  (B) Translucent Protective Film No Polarizing Element Z Home Port Mouth Pick Oriented Liquid Crystal Layer Z Retardation F / REM
本発明の第 2は、 前記ホメォト口ピック配向液晶層がォキセタニル基を有する 側鎖型の液晶性高分子化合物を含有する液晶性組成物を、 液晶状態でホメォト口 ピック配向させた後、 前記ォキセタニル基を反応せしめて前記ホメオト口ピック 配向を固定化したホメォト口ピック配向液晶層であることを特徴とする本発明の 第 1に記載の楕円偏光板、 である。  According to a second aspect of the present invention, after the liquid crystal composition containing a side chain type liquid crystalline polymer compound in which the home-mouthed liquid crystal layer has an oxetanyl group is homeotropically oriented in a liquid crystal state, the oxetanyl is then used. The elliptically polarizing plate according to the first aspect of the present invention, which is a home-mouth pick-alignment liquid crystal layer in which a home-mouth pick-alignment is fixed by reacting a group.
本発明の第 3は、 前記ホメオト口ピック配向液晶層が以下の [1] および [2] を満たすことを特徴とする本発明の第 1または 2に記載の楕円偏光板、 である。  A third aspect of the present invention is the elliptically polarizing plate according to the first or second aspect of the present invention, characterized in that the homeotropic pick alignment liquid crystal layer satisfies the following [1] and [2].
[ 1 ] 0 nm≤R e 1≤ 20 n m  [1] 0 nm≤R e 1≤ 20 n m
[2] - 500 nm≤R t h l≤- 30 nm  [2]-500 nm≤R t h l≤- 30 nm
(ここで、 R e 1は前記ホメォト口ピック配向液晶層の面内のリターデーション 値を意味し、 R t h 1は前記ホメオト口ピック配向液晶層の厚さ方向のリターデ ーション値を意味する。 前記 R e 1及び R t h 1は、 それぞれ R e 1 = (N x 1 -N y 1 ) X d 1 [nm]、 R t h l = (Nx l— N z l) X d 1 [nm] である。 また、 d 1は前記ホメオト口ピック配向液晶層の厚さ、 Nx lおよび Ny lは前 記ホメオト口ピック配向液晶層面内の主屈折率、 N z 1は厚さ方向の主屈折率で あり、 N z 1〉Nx 1≥Ny 1である。)  (Here, Re 1 means an in-plane retardation value of the home-mouth pick-aligned liquid crystal layer, and R th 1 means a retardation value in the thickness direction of the home-mouth pick-aligned liquid crystal layer.) R e 1 and R th 1 are R e 1 = (N x 1 −N y 1) X d 1 [nm] and R thl = (Nx 1 −N zl) X d 1 [nm], respectively. , D 1 is the thickness of the homeotopic orientation liquid crystal layer, Nx l and Nyl are the main refractive index in the plane of the homeotopic orientation liquid crystal layer, and N z 1 is the main refractive index in the thickness direction, N z 1> Nx 1≥Ny 1.)
本発明の第 4は、 前記位相差フィルムが以下の [3] および [4] を満たすこ とを特徴とする本発明の第 1〜3のいずれかに記載の楕円偏光板、 である。  A fourth aspect of the present invention is the elliptically polarizing plate according to any one of the first to third aspects of the present invention, wherein the retardation film satisfies the following [3] and [4].
[ 3 ] 20 nm≤R e 2≤ 200 nm  [3] 20 nm≤R e 2≤ 200 nm
[4] 0 nm≤R t h 2≤ 30 nm  [4] 0 nm≤R t h 2≤ 30 nm
(ここで、 R e 2は位相差フィルムの面内のリタ一デーシヨン値を意味し、 R t h 2は前記位相差フィルムの厚さ方向のリターデ一ション値を意味する。 前記 R e 2及び R t h 2は、 それぞれ R e 2 = (Nx 2— Ny 2) X d 2 [nm]、 R t h 2 = (N x 2 -N z 2) X d 2 [nm] である。 また、 d 2は前記位相差フィ ルムの厚さ、 Nx 2および Ny 2は前記位相差フィルム面内の主屈折率、 N z 2 は厚さ方向の主屈折率であり、 Nx 2 >Ny 2≥N z 2である。) (Here, R e 2 means an in-plane retardation value of the retardation film, and R th 2 means a retardation value in the thickness direction of the retardation film. R e 2 and R th 2 is R e 2 = (Nx 2— Ny 2) X d 2 [nm], R t h 2 = (N x 2 −N z 2) X d 2 [nm]. D 2 is the thickness of the retardation film, Nx 2 and Ny 2 are the main refractive index in the retardation film plane, N z 2 is the main refractive index in the thickness direction, and Nx 2> Ny 2 ≥N z 2 )
本発明の第 5は、 少なく とも 1枚以上の光学フィルムを積層してなる本発明の 第 1〜4のいずれかに記載の楕円偏光板、 である。  A fifth aspect of the present invention is the elliptically polarizing plate according to any one of the first to fourth aspects of the present invention, which is formed by laminating at least one optical film.
本発明の第 6は、 前記透光性保護フィルムがトリァセチルセルロース、 もしく はシクロォレフィン系ポリマーであることを特徴とする本発明の第 1〜 5のいず れかに記載の楕円偏光板、 である。  A sixth aspect of the present invention is the elliptically polarizing plate according to any one of the first to fifth aspects of the present invention, wherein the translucent protective film is triacetyl cellulose or a cycloolefin-based polymer. It is.
本発明の第 7は、 総膜厚が 1 75 μ m以内であることを特徴とする本発明の第 :!〜 6のいずれかに記載の楕円偏光板、 である。  A seventh aspect of the present invention is the elliptically polarizing plate according to any one of the sixth to sixth aspects of the present invention, wherein the total film thickness is within 175 μm.
本発明の第 8は、 (1) 透光性保護フィルムを、 接着剤層 1を介して偏光素子と 接着し、 透光性保護フィルム/接着剤層 1Z偏光素子からなる積層体 ( I ) を得 る第 1工程、  According to the eighth aspect of the present invention, (1) a translucent protective film is bonded to a polarizing element via an adhesive layer 1, and a laminate (I) comprising the translucent protective film / adhesive layer 1Z polarizing element is formed. The first step,
(2) 位相差フィルム上に正の一軸性を示す液晶性組成物の層を形成し、 該層 をホメオト口ピック配向させた後、 配向を固定化したホメォト口ピック配向液晶 層を形成して、 位相差フィルム ホメォトロピック配向液晶層からなる積層体 (2) A layer of a liquid crystalline composition exhibiting positive uniaxiality is formed on a retardation film, and the layer is hometo-pick oriented, and then a home-mouthed picked liquid crystal layer with a fixed orientation is formed. , Retardation film Laminated body composed of homeotropic alignment liquid crystal layer
(II) を得る第 2工程、 A second step of obtaining (II),
(3) 前記積層体 (II) の位相差フィルム側を、 接着剤層 2を介して、 前記積 層体 ( I ) の偏光素子側と接着し、 透光性保護フィルム/接着剤層 1/偏光素子 Z接着剤層 2 /位相差フィルム /ホメオト口ピック配向液晶層からなる楕円偏光 板を得る第 3工程、  (3) The retardation film side of the laminate (II) is adhered to the polarizing element side of the laminate (I) via the adhesive layer 2, and the translucent protective film / adhesive layer 1 / Polarizing element Z adhesive layer 2 / retardation film / third step to obtain an elliptically polarizing plate consisting of a homeomorphic liquid crystal layer,
の各工程を少なく とも経ることを特徴とする楕円偏光板の製造方法、 である。 本発明の第 9は、 (1) 透光性保護フィルムを、 接着剤層 1を介して偏光素子と 接着し、 透光性保護フィルム Z接着剤層 1Z偏光素子からなる積層体 ( I ) を得 る第 1工程、 A method for producing an elliptically polarizing plate, characterized by passing through each of the steps. The ninth aspect of the present invention is: (1) A light-transmitting protective film is bonded to a polarizing element via an adhesive layer 1, and a laminate (I) comprising the light-transmitting protective film Z adhesive layer 1Z polarizing element is formed. The first step,
(2) 位相差フィルム上に正の一軸性を示す液晶性組成物の層を形成し、 該層 をホメオト口ピック配向させた後、 配向を固定化したホメオト口ピック配向液晶 層を形成して、 位相差フィルム/ホメォト口ピック配向液晶層からなる積層体 (II) を得る第 2工程、  (2) A layer of liquid crystalline composition exhibiting positive uniaxiality is formed on the retardation film, and the layer is homeotropically aligned, and then a homeotropically aligned liquid crystal layer in which the alignment is fixed is formed. A second step of obtaining a laminate (II) comprising a retardation film / home-orientation pick-aligned liquid crystal layer,
(3) 前記積層体 (II) のホメオト口ピック配向液晶相側を、 接着剤層 2を介 して、 前記積層体 ( I ) の偏光素子側と接着し、 透光性保護フィルム 接着剤層 1 偏光素子 接着剤層 2 /ホメオト口ピック配向液晶層 位相差フィルムから なる楕円偏光板を得る第 3工程、 (3) The home-orientated pick-aligned liquid crystal phase side of the laminate (II) is interposed through the adhesive layer 2 Then, the laminate (I) is bonded to the polarizing element side to obtain an elliptically polarizing plate comprising a translucent protective film, an adhesive layer 1, a polarizing element, an adhesive layer 2 / home-orientated pick-aligned liquid crystal layer, and a retardation film. 3 processes,
の各工程を少なくとも経ることを特徴とする楕円偏光板の製造方法、 である。 本発明の第 1 0は、 (1 ) 透光性保護フィルムを、 接着剤層 1を介して偏光素子 と接着し、 透光性保護フィルム 接着剤層 1ノ偏光素子からなる積層体 ( I ) を 得る第 1工程、 A method for producing an elliptically polarizing plate, wherein at least each of the steps is performed. The tenth aspect of the present invention is: (1) a laminate comprising a translucent protective film, an adhesive layer 1 and a polarizing element, wherein the translucent protective film is bonded to the polarizing element via the adhesive layer 1 (I) The first step,
( 2 ) 配向基板上に正の一軸性を示す液晶性組成物の層を形成し、 該層をホメ オト口ピック配向させた後、 配向を固定化したホメオト口ピック配向液晶層を形 成して、 配向基板 ホメオト口ピック配向液晶層からなる積層体 (III) を得る第 2工程、  (2) A layer of a liquid crystalline composition exhibiting positive uniaxiality is formed on an alignment substrate, and the layer is homeotropically aligned, and then a homeotropically aligned liquid crystal layer with a fixed orientation is formed. A second step of obtaining a laminate (III) composed of an alignment substrate homeotropic alignment liquid crystal layer,
( 3 ) 前記積層体 (III) のホメオト口ピック配向液晶層側を、 接着剤層 2を介 して、 位相差フィルムと接着せしめた後、 配向基板を剥離してホメオト口ピック 配向液晶層を位相差フィルムに転写し、 位相差フィルム Z接着剤層 2 ホメオト 口ピック配向液晶層からなる積層体 (IV) を得る第 3工程、  (3) After adhering the home-orientation pick-aligned liquid crystal layer side of the laminate (III) to the retardation film via the adhesive layer 2, the orientation substrate is peeled off to form the home-orientation pick-alignment liquid crystal layer. Third step to obtain a laminate (IV) consisting of a retardation film Z adhesive layer 2 home-orientated pick-aligned liquid crystal layer, transferred to a retardation film,
( 4 ) 前記積層体 (IV) の位相差フィルム側を、 接着剤層 3を介して、 前記積層 体 ( I ) の偏光素子側と接着し、 透光性保護フィルム/接着剤層 1ノ偏光素子/ 接着剤層 3 位相差フィルム Z接着剤層 2 Zホメオト口ピック配向液晶層からな る楕円偏光板を得る第 4工程、  (4) The retardation film side of the laminate (IV) is bonded to the polarizing element side of the laminate (I) via the adhesive layer 3, and the translucent protective film / adhesive layer 1 is polarized. Element / Adhesive layer 3 Retardation film Z Adhesive layer 2 4th step of obtaining an elliptically polarizing plate composed of a Z homeotopick orientation liquid crystal layer,
の各工程を少なくとも経ることを特徵とする楕円偏光板の製造方法、 である。 本発明の第 1 1は、 (1 ) 透光性保護フィルムを、 接着剤層 1を介して偏光素子 と接着し、 透光性保護フィルム 接着剤層 1 Z偏光素子からなる積層体 ( I ) を 得る第 1工程、 A method for producing an elliptically polarizing plate characterized by passing through at least each of the steps. The first aspect of the present invention is: (1) a laminate comprising a translucent protective film, an adhesive layer 1 and a Z polarizing element, wherein the translucent protective film is bonded to the polarizing element via the adhesive layer 1; The first step,
( 2 ) 配向基板上に正の一軸性を示す液晶性組成物の層を形成し、 該層をホメ オト口ピック配向させた後、 配向を固定化したホメオト口ピック配向液晶層を形 成して、 配向基板 Zホメオト口ピック配向液晶層からなる積層体 (ΠΙ) を得る第 2工程、  (2) A layer of a liquid crystalline composition exhibiting positive uniaxiality is formed on an alignment substrate, and the layer is homeotropically aligned, and then a homeotropically aligned liquid crystal layer with a fixed orientation is formed. A second step of obtaining a laminated body (ΠΙ) composed of an alignment substrate Z homeotropic alignment liquid crystal layer,
( 3 ) 前記積層体 (III) のホメオト口ピック配向液晶層側を、 接着剤層 2を介 して、 位相差フィルムと接着せしめた後、 配向基板を剥離してホメオト口ピック 配向液晶層を位相差フィルムに転写し、 位相差フィルム 接着剤層 2 ホメォト 口ピック配向液晶層からなる積層体 (IV) を得る第 3工程、 (3) After adhering the home-orientation pick-aligned liquid crystal layer side of the laminate (III) to the retardation film via the adhesive layer 2, the orientation substrate is peeled off to form the home-orientation pick-alignment liquid crystal layer. Transfer to phase difference film, phase difference film Adhesive layer 2 Home A third step of obtaining a laminate (IV) comprising a mouth-pick aligned liquid crystal layer;
( 4 ) 前記積層体 (IV) のホメオト口ピック配向液晶層側を、 接着剤層 3を介し て、 前記積層体 (A) の偏光素子側と接着し、 透光性保護フィルム 接着剤層 1 /偏光素子 Z接着剤層 3 /ホメオト口ピック配向液晶層 接着剤層 2 位相差フ イルムからなる楕円偏光板を得る第 4工程、  (4) The home-orientated pick-aligned liquid crystal layer side of the laminate (IV) is adhered to the polarizing element side of the laminate (A) via the adhesive layer 3, and the translucent protective film adhesive layer 1 / Polarizing element Z Adhesive layer 3 / Home-orientated pick-aligned liquid crystal layer Adhesive layer 2 Fourth step of obtaining an elliptically polarizing plate composed of retardation film,
の各工程を少なくとも経ることを特徴とする楕円偏光板の製造方法、 である。 A method for producing an elliptically polarizing plate, wherein at least each of the steps is performed.
本発明の第 1 2は、 液晶セルの少なくとも片側の面に本発明の第 1〜 7のいず れかに記載の楕円偏光板を配置した液晶表示装置、 である。  A first aspect of the present invention is a liquid crystal display device in which the elliptically polarizing plate according to any one of the first to seventh aspects of the present invention is disposed on at least one surface of a liquid crystal cell.
本発明の第 1 3は、 前記液晶セルが V A液晶セルもしくは I P S液晶セルであ ることを特徴とする本発明の第 1 2に記載の液晶表示装置、 である。  A first aspect of the present invention is the liquid crystal display device according to the first aspect of the present invention, wherein the liquid crystal cell is a VA liquid crystal cell or an IPS liquid crystal cell.
[発明の効果] [The invention's effect]
ホメオト口ピック配向液晶層を用いた本発明の楕円偏光板は、 特に垂直配向型 液晶表示装置に配置した場合、 視野角を広くすることができるばかりでなく、 該 垂直配向型液晶表示装置は、 表示が明るく、 全方位において高コントラストな表 示が可能である。  The elliptically polarizing plate of the present invention using a homeotopically picked liquid crystal layer can not only widen the viewing angle, particularly when placed in a vertically aligned liquid crystal display device, The display is bright and high-contrast display is possible in all directions.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の楕円偏光板について説明する。  The elliptically polarizing plate of the present invention will be described.
本発明の楕円偏光板は、 少なく とも正の一軸性を示す液晶性組成物を液晶状態 においてホメオト口ピック配向させた後、 該配向を固定化したホメオト口ピック 配向液晶層、 位相差機能を有する位相差フィルムおよび偏光素子の片面のみ透光 性保護フィルムにより保護された積層構造を有する直線偏光板から少なく とも構 成される。 本発明において、 ホメオト口ピック配向を固定化したホメオトロピッ ク配向液晶層を得るに当たっては、 位相差フィルム上や配向基板上もしくは配向 基板上の配向膜上に形成させた液晶性組成物層をホメオト口ピック配向させた後、 必要により光照射および Zまたは加熱処理した後冷却することにより当該配向状 態を固定化することにより製造することができる。 液晶性組成物に使用される液 晶材料は、 ホメオト口ピック配向しうる正の一軸性液晶材料であればよく、 低分 子液晶化合物、 液晶性高分子化合物やこれらの混合物からなる材料であってもよ レ、0 The elliptically polarizing plate of the present invention has a homeomorphic alignment liquid crystal layer in which a liquid crystal composition exhibiting at least positive uniaxial property is homeoportally picked in a liquid crystal state and then the orientation is fixed. At least one of the retardation film and the polarizing element is composed of a linear polarizing plate having a laminated structure protected by a translucent protective film. In the present invention, in order to obtain a homeotropic alignment liquid crystal layer in which homeotropic pick alignment is fixed, a liquid crystalline composition layer formed on a retardation film, an alignment substrate, or an alignment film on an alignment substrate is used as a homeoto alignment port. After the orientation of the pick, if necessary, it can be manufactured by fixing the orientation state by light irradiation and Z or heat treatment and then cooling. The liquid crystal material used in the liquid crystal composition may be a positive uniaxial liquid crystal material capable of homeo-mouth pick alignment. Child liquid crystal compound, it may also be a material comprising a liquid crystalline polymer compound or a mixture thereof les, 0
前記の低分子液晶化合物は光や熱により反応する反応性基を結合した化合物が 配向を容易に固定化できるので好ましい。 反応性基としては、 ビニル基、 (メタ) ァクリロイル基、 ビュルォキシ基、 ォキシラニル基、 ォキセタニル基、 アジリジ ニル基等が好ましいが、 他の反応性基、 例えばイソシアナ一ト基、 水酸基、 アミ ノ基、 酸無水物基、 カルボキシル基なども反応条件等によっては使用することが できる。  As the low-molecular liquid crystal compound, a compound having a reactive group that reacts with light or heat is preferable because the alignment can be easily fixed. As the reactive group, a vinyl group, a (meth) acryloyl group, a buroxy group, an oxylanyl group, an oxetanyl group, an aziridinyl group, and the like are preferable, but other reactive groups such as an isocyanate group, a hydroxyl group, an amino group, Acid anhydride groups, carboxyl groups, and the like can be used depending on the reaction conditions.
前記の液晶性高分子化合物には主鎖型液晶性高分子化合物と側鎖型液晶性高分 子化合物とがあるがいずれも使用することができる。  The liquid crystalline polymer compound includes a main chain type liquid crystalline polymer compound and a side chain type liquid crystalline polymer compound, both of which can be used.
主鎖型液晶性高分子化合物としては、 ポリエステル、 ポリエステルイミ ド、 ポ リアミ ド、 ポリカーボネート等が挙げられる。 なかでも合成の容易さ、 配向性、 ガラス転移点などの面から液晶性ポリエステルが好ましい。  Examples of the main chain type liquid crystalline polymer compound include polyester, polyester imide, polyamide, and polycarbonate. Among these, liquid crystalline polyesters are preferable from the viewpoints of ease of synthesis, orientation, glass transition point, and the like.
側鎖型液晶性高分子化合物としては、 ポリ (メタ) アタリ レート、 ポリマロネ ート、 ポリシロキサン等を挙げることができる。 これらの液晶性高分子化合物は 前記の反応性基を結合したものが好ましい。 中でも下記一般式 ( 1 ) で表される 反応性基を結合したポリ (メタ) アタリレートが好ましい。  Examples of the side chain type liquid crystalline polymer compound include poly (meth) acrylate, polymalonate, polysiloxane and the like. These liquid crystalline polymer compounds are preferably those in which the reactive groups are bonded. Of these, poly (meth) acrylates bonded with a reactive group represented by the following general formula (1) are preferred.
Figure imgf000009_0001
式 (1) において、 R3は、 それぞれ独立に、 水素またはメチル基を表し、 R4 は、 それぞれ独立に、 水素、 メチル基、 ェチル基、 ブチル基、 へキシル基、 オタ チル基、 ノニル基、 デシル基、 ドデシル基、 メ トキシ基、 エトキシ基、 プロポキ シ基、 ブトキシ基、 ペンチルォキシ基、 へキシルォキシ基、 ヘプチルォキシ基、 ォクチルォキシ基、 デシルォキシ基、 ドデシルォキシ基、 シァノ基、 ブロモ基、 クロ口基、 フルォロ基またはカルボキシル基を表し、 R5は、 それぞれ独立に、 水素、 メチル基またはェチル基を表し、 R6は、 炭素数 1から 24までの炭化水 素基を表し、 L2は、 それぞれ独立に、 単結合、 — O—、 — O— CO—、 -CO — O—、 一 CH=CH—または一 C≡C—を表し、 pは、 1から 1 0までの整数 を表し、 qは、 0から 1 0までの整数を表し、 a、 b、 c、 d、 eおよび f は、 ポリマー中の各ユニットのモル比 (a + b + c + d + e + f = l . 0、 ただし、 c + d + e = 0ではない) を表す。
Figure imgf000009_0001
In the formula (1), each R 3 independently represents hydrogen or a methyl group, and each R 4 independently represents hydrogen, a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group, or a nonyl group. Decyl group, dodecyl group, methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, decyloxy group, dodecyloxy group, cyano group, bromo group, black mouth group, Fluoro group or carboxyl group, R 5 independently represents hydrogen, methyl group or ethyl group, R 6 represents a hydrocarbon group having 1 to 24 carbon atoms, and L 2 each independently Represents a single bond, —O—, —O—CO—, —CO — O—, one CH═CH— or one C≡C—, p represents an integer from 1 to 10 and q represents , 0 to 1 Represents an integer up to 0, and a, b, c, d, e and f are the molar ratio of each unit in the polymer (a + b + c + d + e + f = l. 0, where c + d + e = not 0)
式 (1) で表される側鎖型液晶性高分子化合物を構成する各成分のモル比は、 a + b + c + d + e + f = l . 0、 c + d + e = 0ではなく、 かつ、 液晶性を示 すことが必要である。 この要件を満たせば各成分のモル比は任意でよいが、 以下 のとおりであることが好ましい。  The molar ratio of each component constituting the side chain type liquid crystalline polymer represented by the formula (1) is a + b + c + d + e + f = l. 0, c + d + e = 0 It is necessary to exhibit liquid crystallinity. The molar ratio of each component may be arbitrary as long as this requirement is satisfied, but is preferably as follows.
a :好ましくは 0 〜0. 80、 より好ましくは 0. 0 5 〜 0. 50  a: preferably 0 to 0.80, more preferably 0.05 to 0.50
b :好ましくは 0 〜0. 90、 より好ましくは 0. 1 0 〜 0. 70  b: preferably 0 to 0.90, more preferably 0.1 0 to 0.70
c :好ましくは 0 〜0. 50、 より好ましくは 0. 1 0 〜 0. 30  c: preferably 0 to 0.50, more preferably 0.10 to 0.30
d :好ましくは 0 〜 0. 50、 より好ましくは 0. 1 0 〜0. 30  d: preferably 0 to 0.50, more preferably 0.1 0 to 0.30
e :好ましくは 0 〜0. 50、 より好ましくは 0. 1 0 〜0. 30  e: preferably 0 to 0.50, more preferably 0.1 0 to 0.30
f :好ましくは 0 〜 0. 30、 より好ましくは 0. 0 1 〜 0. 1 0  f: preferably 0 to 0.30, more preferably 0.0 1 to 0.10
これらのポリ (メタ) ァクリレート中の各成分は、 上記の条件を満たせば、 6 種類の成分すべてが存在する必要はない。 これらの範囲外では液晶性が不十分に なったり、 ォキセタニル基の反応性が乏しくなったりして好ましくない。  Each component in these poly (meth) acrylates does not need to be present in all six types as long as the above conditions are met. Outside these ranges, the liquid crystallinity becomes insufficient and the reactivity of the oxetanyl group becomes unfavorable.
また、 R4は、 好ましくは、 水素、 メチル基、 ブチル基、 メ トキシ基、 シァノ 基、 ブロモ基、 フルォロ基であり、 特に好ましくは、 水素、 メ トキシ基またはシ ァノ基であり、 L2は、 好ましくは、 単結合、 一 O—、 一O— CO—または一 C O— O—であり、 R6は、 好ましくは、 炭素数 2、 3、 4、 6、 8または 1 8の 炭化水素基を表す。 さらに、 一般式 (1) で表される側鎖型液晶性高分子化合物は、 各成分 a〜 f のモル比や配向形態により複屈折率が変化するが、 ネマチック配向をとつた場合 の複屈折率は 0. 00 1〜0. 300であることが好ましく、より好ましくは 0. 05〜 0. 25である。 R 4 is preferably hydrogen, a methyl group, a butyl group, a methoxy group, a cyano group, a bromo group, or a fluoro group, particularly preferably hydrogen, a methoxy group, or a cyano group, and L 2 is preferably a single bond, 1 O—, 1 O—CO— or 1 CO—O—, and R 6 is preferably carbonized with 2, 3, 4, 6, 8 or 18 carbon atoms. Represents a hydrogen group. Furthermore, the birefringence of the side chain type liquid crystalline polymer represented by the general formula (1) varies depending on the molar ratio of each component a to f and the orientation form. The rate is preferably from 0.001 to 0.300, more preferably from 0.05 to 0.25.
上記の側鎖型液晶性高分子化合物の各成分に該当するそれぞれの (メタ) ァク リル化合物は、 通常の有機化学の合成方法により得ることができる。 ォキセタニ ル基を有する (メタ) アクリル化合物は、 例えば、 ウィ リアムソンのエーテル合 成や、縮合剤を用いたエステル合成などの手段でォキセタニル基を持つ部位と(メ タ) アクリル基を持つ部位を結合することで、 ォキセタニル基と (メタ) アタリ ル基の 2つの反応性官能基を持つォキセタニル基を有する (メタ) アク リル化合 物を合成することができる。  Each (meth) acrylic compound corresponding to each component of the above-mentioned side chain type liquid crystalline polymer compound can be obtained by an ordinary organic chemistry synthesis method. A (meth) acrylic compound having an oxetanyl group combines a site having an oxetanyl group and a site having a (meth) acrylic group by means of, for example, Williamson's ether synthesis or ester synthesis using a condensing agent. By doing so, a (meth) acrylic compound having an oxetanyl group having two reactive functional groups, an oxetanyl group and a (meth) ataryl group, can be synthesized.
上記の側鎖型液晶性高分子化合物は、 各成分に該当する上記方法等で得られた それぞれの (メタ) アクリル化合物の (メタ) アクリル基をラジカル重合または ァニオン重合により共重合することにより容易に合成することができる。 重合条 件は特に限定されるものではなく、 通常の条件を採用することができる。  Said side chain type liquid crystalline polymer compound is easily obtained by copolymerizing the (meth) acrylic group of each (meth) acrylic compound obtained by the above method corresponding to each component by radical polymerization or anion polymerization. Can be synthesized. The polymerization conditions are not particularly limited, and normal conditions can be employed.
ラジカル重合の例としては、 各成分に該当する (メタ) アクリル化合物をジメ チルホルムアミ ド (DMF)、 ジエチレングリ コールジメチルエーテルなどの溶媒 に溶かし、 2, 2 ' —ァゾビスイソブチロニトリル (A I BN) や過酸化べンゾ ィル (B PO) などを開始剤として、 60〜 1 20°Cで数時間反応させる方法が 挙げられる。 また、 液晶相を安定に出現させるために、 臭化銅 ( I ) Z2, 2 ' 一ビビリジル系や 2, 2, 6, 6—テトラメチルピペリジノォキシ ' フリーラジ カル (TEMPO) 系などを開始剤としたリ ビングラジカル重合を行い、 分子量 分布を制御する方法も有効である。 これらのラジカル重合は脱酸素条件下に行う 必要がある。  As an example of radical polymerization, a (meth) acrylic compound corresponding to each component is dissolved in a solvent such as dimethylformamide (DMF) or diethylene glycol dimethyl ether, and 2,2'-azobisisobutyronitrile (AI BN) is used. ) And benzoyl peroxide (B 3 PO) as initiators, and reacting at 60 to 120 ° C for several hours. In addition, copper bromide (I) Z2, 2 'monobiviridyl series and 2, 2, 6, 6-tetramethylpiperidinoxy' free radical (TEMPO) series are launched to make the liquid crystal phase appear stably. Another effective method is to control the molecular weight distribution by conducting Lib radical polymerization as an agent. These radical polymerizations must be carried out under deoxygenated conditions.
ァニオン重合の例としては、 各成分に該当する (メタ) アク リル化合物をテト ラヒ ドロフラン (THF) などの溶媒に溶かし、 有機リチウム化合物、 有機ナト リゥム化合物、 グリニャール試薬などの強塩基を開始剤として反応させる方法が 挙げられる。 また、 開始剤や反応温度を最適化することでリ ビングァニオン重合 とし、 分子量分布を制御することもできる。 これらのァニオン重合は、 脱水かつ 脱酸素条件で行う必要がある。 側鎖型液晶性高分子化合物は、 重量平均分子量が 1 , 000〜 200, 000 であるものが好ましく、 3, 000〜50, 000のものが特に好ましい。 この 範囲外では強度が不足したり、 配向性が悪化したりして好ましくない。 As an example of anionic polymerization, (meth) acrylic compounds corresponding to each component are dissolved in a solvent such as tetrahydrofuran (THF), and a strong base such as an organic lithium compound, organic sodium compound, or Grignard reagent is used as an initiator. The method of making it react is mentioned. In addition, it is possible to control the molecular weight distribution by optimizing the initiator and reaction temperature for riving anion polymerization. These anion polymerizations must be performed under dehydration and deoxygenation conditions. The side chain type liquid crystalline polymer compound preferably has a weight average molecular weight of 1,000 to 200,000, particularly preferably 3,000 to 50,000. Outside this range, the strength is insufficient or the orientation is deteriorated.
本発明において、 前記の低分子液晶化合物、 液晶性高分子化合物やこれらの混 合物からなる液晶材料や液晶性組成物は下記一般式 (2) で表されるジォキセタ ン化合物を含有することが好ましい。  In the present invention, a liquid crystal material or a liquid crystal composition comprising the low-molecular liquid crystal compound, the liquid crystal polymer compound, or a mixture thereof may contain a dioxetane compound represented by the following general formula (2). preferable.
R R
0: X Ό-L3- X1-M1-X1- -ひ 0 (2) 0: X Ό-L 3 -X 1 -M 1 -X 1 --H 0 (2)
式 (2) において、 R7は、 それぞれ独立に、 水素、 メチル基またはェチル基 を表し、 L3は、 それぞれ独立に、 単結合または一 (CH2) n- (nは 1〜 1 2 の整数) を表し、 X1は、 それぞれ独立に、 単結合、 _〇一、 一 O— CO—また は一 CO_0_を表し、 M1は、 式 (3) または式 (4) で表されるいずれかで あり、 式 (3) および式 (4) 中の P1は、 それぞれ独立に式 (5) から選ばれ る基を表し、 P2は式 (6) から選ばれる基を表し、 L4は、 それぞれ独立に単結 合、 — CH=CH— , 一 C≡C一、 一 O O— CO—または一 CO— O—を 表す。 In the formula (2), each R 7 independently represents hydrogen, a methyl group or an ethyl group, and each L 3 independently represents a single bond or one (CH 2 ) n- (n is 1 to 1 2 X 1 represents each independently a single bond, _〇1, one O—CO— or one CO_0_, and M 1 is represented by Formula (3) or Formula (4) P 1 in formulas (3) and (4) each independently represents a group selected from formula (5), P 2 represents a group selected from formula (6), and L 4 each independently represents a single bond, —CH═CH—, one C≡C one, one OO—CO— or one CO—O—.
一 P 1—: L4一 P L4一 P1— (3) One P 1 —: L 4 One PL 4 One P 1 — (3)
- P 1 - L 4- P (4) -P 1 -L 4 -P (4)
Figure imgf000012_0001
Figure imgf000012_0001
Figure imgf000013_0001
式 (5) および式 (6) において、 E tはェチル基を、 i P rはイソプロピル 基を、 n B uはノルマルブチル基を、 t B uはターシャリーブチル基をそれぞれ 表す。
Figure imgf000013_0001
In the formulas (5) and (6), Et represents an ethyl group, iPr represents an isopropyl group, nBu represents a normal butyl group, and tBu represents a tertiary butyl group.
より具体的には、 M1基から見て左右のォキセタニル基を結合している連結基 は異なっても (非対称型) 同一でも (対称型) よく、 特に 2つの L3が異なる場 合や他の連結基の構造によっては液晶性を示さないこともあるが、 使用には制約 とならない。 More specifically, the linking groups connecting the left and right oxetanyl groups as seen from the M 1 group may be different (asymmetric) or the same (symmetric), especially when the two L 3 are different or other Depending on the structure of the linking group, it may not exhibit liquid crystallinity, but it is not a restriction on its use.
一般式 (2) で表される化合物は、 M1 L3および X1の組み合わせから多く の化合物を例示することができるが、 好ましくは、 下記の化合物を挙げること力 s できる。 Compound represented by the general formula (2) can be exemplified many compounds from a combination of M 1 L 3 and X 1, preferably, can be force s include the following compounds.
Figure imgf000013_0002
これらの化合物は有機化学における通常の合成方法に従って合成することがで き、 合成方法は特に限定されるものではない。
Figure imgf000013_0002
These compounds can be synthesized according to ordinary synthesis methods in organic chemistry, and the synthesis method is not particularly limited.
合成にあたっては、 ォキセタニル基がカチオン重合性を有するため、 強い酸性 条件下では、 重合や開環などの副反応を起こすことを考慮して、 反応条件を選ぶ 必要がある。 なお、 ォキセタ-ル基は類似のカチオン重合性官能基であるォキシ ラニル基などと比べて、 副反応を起こす可能性が低い。 さらに、 類似したアルコ ール、 フエノール、 カルボン酸などの各種化合物をつぎつぎに反応させることも あり、 適宜保護基の活用を考慮してもよい。  In the synthesis, since the oxetanyl group has cationic polymerizability, it is necessary to select reaction conditions in consideration of the occurrence of side reactions such as polymerization and ring opening under strong acidic conditions. The oxetal group is less likely to cause side reactions than the similar cationic polymerizable functional group oxylanyl group. Furthermore, various compounds such as similar alcohols, phenols, and carboxylic acids may be reacted successively, and the use of protecting groups may be considered as appropriate.
より具体的な合成方法としては、 例えば、 ヒ ドロキシ安息香酸を出発化合物と して、 ウィリアムソンのエーテル合成法等によりォキセタニル基を結合させ、 次 いで得られた化合物と本発明に適したジオールとを、 酸クロリ ド法ゃカルボジィ ミ ドによる縮合法等を用いて結合させる方法や、 逆に予めヒ ドロキシ安息香酸の 水酸基を適当な保護基で保護し、 本発明に適したジオールと縮合後、 保護基を脱 離させ、 適当なォキセタニル基を有する化合物 (ォキセタン化合物)、 例えばハロ アルキルォキセタン等と水酸基とを反応させる方法などが挙げられる。  As a more specific synthesis method, for example, hydroxybenzoic acid is used as a starting compound, an oxetanyl group is bonded by Williamson's ether synthesis method, etc., and a diol suitable for the present invention and a diol suitable for the present invention are used. Are bonded using an acid chloride method using a condensation method using carbodiimide or the like, and conversely, the hydroxyl group of hydroxybenzoic acid is protected in advance with an appropriate protecting group, and after condensation with a diol suitable for the present invention, Examples include a method in which a protecting group is removed and a compound having an appropriate oxetanyl group (oxetane compound), for example, a haloalkyloxetane or the like is reacted with a hydroxyl group.
ォキセタン化合物と水酸基との反応は、 用いられる化合物の形態や反応性によ り適した反応条件を選定すればよいが、 通常、 反応温度は一 2 0 °C〜 1 8 0 °C、 好ましくは 1 0 °C〜 1 5 0 °Cが選ばれ、 反応時間は 1 0分〜 4 8時間、 好ましく は 3 0分〜 2 4時間である。これらの範囲外では反応が充分に進行しなかったり、 副反応が生じたり して好ましくない。 また、 両者の混合割合は、 水酸基 1当量に つき、 ォキセタン化合物 0 . 8〜1 . 2当量が好ましい。  For the reaction between the oxetane compound and the hydroxyl group, a reaction condition suitable for the form and reactivity of the compound to be used may be selected. Usually, the reaction temperature is 120 ° C. to 180 ° C., preferably A temperature of 10 ° C. to 1550 ° C. is selected, and the reaction time is 10 minutes to 48 hours, preferably 30 minutes to 24 hours. Outside these ranges, the reaction does not proceed sufficiently or side reactions occur, which is not preferable. The mixing ratio of the two is preferably 0.8 to 1.2 equivalents of oxetane compound per equivalent of hydroxyl group.
本発明で用いる液晶材料においては、 前記の低分子液晶化合物や液晶性高分子 化合物の他に、 液晶性を損なわずに混和し得る種々の化合物を含有することがで きる。 含有することができる化合物としては、 ォキセタニル基、 エポキシ基、 ビ ニルォキシ基などのカチオン重合性官能基を有する化合物、 フィルム形成能を有 する各種の高分子物質、 液晶性を示す各種の低分子液晶性化合物や高分子液晶性 化合物などが挙げられる。 前記の側鎖型液晶性高分子化合物を組成物として用い る場合、 組成物全体に占める前記の側鎖型液晶性高分子化合物の割合は、 1 0質 量%以上、好ましくは 3 0質量%以上、さらに好ましくは 5 0質量%以上である。 側鎖型液晶性高分子化合物の含有量が 1 0質量%未満ではフィルム形成能が不足 したり組成物中に占める重合性基の濃度が低くなり、 重合後の機械的強度が不十 分となるため好ましくない。 The liquid crystal material used in the present invention may contain various compounds that can be mixed without impairing the liquid crystal properties in addition to the low-molecular liquid crystal compound and the liquid crystalline polymer compound. Examples of compounds that can be contained include compounds having a cationic polymerizable functional group such as an oxetanyl group, an epoxy group, and a vinyloxy group, various polymer materials having film-forming ability, and various low-molecular liquid crystals exhibiting liquid crystallinity. And liquid crystalline compounds. When the side chain type liquid crystalline polymer compound is used as a composition, the proportion of the side chain type liquid crystalline polymer compound in the entire composition is 10% by mass or more, preferably 30% by mass. Above, more preferably 50% by mass or more. If the content of the side chain type liquid crystalline polymer compound is less than 10% by mass, the film forming ability is insufficient. Or the concentration of the polymerizable group in the composition is lowered, and the mechanical strength after polymerization becomes insufficient, which is not preferable.
また前記液晶材料は配向処理された後、 例えば反応性基としてォキセタニル基 を有する場合は、 カチオン重合させて架橋することにより、 当該液晶状態を固定 化することができる。 このため、 液晶材料中に、 光や熱などの外部刺激でカチォ ンを発生する光力チオン発生剤および Zまたは熱カチオン発生剤を含有させてお くことが好ましい。 また必要によっては各種の増感剤を併用してもよい。  Further, after the liquid crystal material has been subjected to an alignment treatment, for example, when it has an oxetanyl group as a reactive group, the liquid crystal state can be fixed by cationic polymerization and crosslinking. For this reason, it is preferable that the liquid crystal material contains a light-power thione generator and Z or a thermal cation generator that generate caton by an external stimulus such as light and heat. If necessary, various sensitizers may be used in combination.
光力チオン発生剤とは、 適当な波長の光を照射することによりカチオンを発生 できる化合物を意味し、 有機スルフォニゥム塩系、 ョードニゥム塩系、 フォスフ ォニゥム塩系などを例示することが出来る。 これら化合物の対イオンとしては、 アンチモネ一ト、 フォスフェート、 ボレートなどが好ましく用いられる。 具体的 な化合物としては、 A r 3 S + S b F 6—、 A r 3 P + B F 4—、 A r 2 I + P F 6 " (た だし、 A rはフエニル基または置換フヱニル基を示す。)などが挙げられる。また、 スルホン酸エステル類、 トリアジン類、 ジァゾメタン類、 J3—ケトスルホン、 ィ ミノスルホナート、 ベンゾィンスルホナートなども用いることができる。 The photopower thione generator means a compound capable of generating a cation by irradiating with light of an appropriate wavelength, and examples thereof include organic sulfone salt systems, podonium salt systems, and phosphonium salt systems. Antimonates, phosphates, borates and the like are preferably used as counter ions of these compounds. Specific compounds include Ar 3 S + S b F 6 —, A r 3 P + BF 4 —, A r 2 I + PF 6 "(where A r represents a phenyl group or a substituted phenyl group) In addition, sulfonic acid esters, triazines, diazomethanes, J3-ketosulfone, iminosulfonate, benzoinsulfonate and the like can also be used.
熱カチオン発生剤とは、 '適当な温度に加熱されることによりカチオンを発生で きる化合物であり、 例えば、 ベンジルスルホニゥム塩類、 ベンジルアンモニゥム 塩類、 ベンジルピリジニゥム塩類、 ベンジルホスホニゥム塩類、 ヒ ドラジニゥム 塩類、 カルボン酸エステル類、 スルホン酸エステル類、 ァミンイミ ド類、 五塩化 アンチモン一塩化ァセチル錯体、 ジァリ一ルョードニゥム塩一ジベンジルォキシ 銅、 ハロゲン化ホウ素一三級アミン付加物などを挙げることができる。  Thermal cation generators are compounds that can generate cations when heated to a suitable temperature, such as benzylsulfonium salts, benzylammonium salts, benzylpyridinium salts, benzylphosphonium. C. Salts, hydrazinium salts, carboxylic acid esters, sulfonic acid esters, ammine imides, antimony pentachloride acetyl chloride complex, gallium rhodium salt dibenzyloxy copper, boron halides tertiary amine adducts, etc. Can do.
これらのカチオン発生剤の液晶材料中への添加量は、 用いる液晶性高分子化合 物を構成するメソゲン部分ゃスぺーサ部分の構造や、 ォキセタニル基当量、 液晶 の配向条件などにより異なるため一概には言えないが、 液晶性高分子化合物に対 し、 通常 1 0 0質量 p p m〜2 0質量%、 好ましくは 1 0 0 0質量 p p m〜 1 0 質量%、 より好ましくは 0 . 2質量%〜 7質量。 /0の範囲である。 1 0 0質量 mよりも少ない場合には、 発生するカチオンの量が十分でなく重合が進行しない おそれがあり、 また 2 0質量。 /0よりも多い場合には、 配向液晶層中に残存する力 チオン発生剤の分解残存物等が多くなり耐光性などが悪化するおそれがあるため 好ましくない。 次に配向基板について説明する。 The amount of these cation generators added to the liquid crystal material varies depending on the structure of the mesogenic portion or spacer portion constituting the liquid crystalline polymer compound used, the oxetanyl group equivalent, the alignment conditions of the liquid crystal, etc. However, it is usually 100 mass ppm to 20 mass%, preferably 10 mass ppm to 10 mass%, more preferably 0.2 mass% to 7 mass% with respect to the liquid crystal polymer compound. mass. / 0, which is the range of. If the amount is less than 100 mass m, the amount of cations generated is not sufficient and polymerization may not proceed, and 20 mass. When it is more than 0, the force remaining in the alignment liquid crystal layer is undesirably increased due to the decomposition residue of the thione generator, which may deteriorate the light resistance. Next, the alignment substrate will be described.
位相差フィルムを配向基板とする場合は、 位相差フィルムそのままでも液晶材 料に対してホメオト口ピック配向能を有するものもあるが、 そうでない場合は必 要により後述する配向処理 (配向膜の形成ゃラビング処理等) を行うことが好ま しい。  When a retardation film is used as an alignment substrate, some retardation films have homeo-mouth pick alignment ability with respect to the liquid crystal material, but if not, alignment treatment (formation of alignment film) described later is necessary if necessary. It is preferable to perform a rubbing process.
位相差フィルム以外の配向基板としては、 まず平滑な平面を有するものが好ま しく、 有機高分子材料からなるフィルムやシート、 ガラス板、 金属板などを挙げ ることができる。 コストゃ連続生産性の観点からは有機高分子からなる材料を用 いることが好ましい。 有機高分子材料の例としては、 ポリビニルアルコール、 ポ リイ ミ ド、ポリフエ二レンォキシド、ポリフエ二レンスルフィ ド、ポリスルホン、 ポリエーテルケトン、 ポリエーテルエーテルケトン、 ポリアリ レート、 ポリェチ レンテレフタレートゃポリエチレンナフタレート等のポリエステノレ系ポリマー、 ジァセチノレセ/レロースやトリァセチノレセ /レロース等のセノレロース系ポリマー、 ポ リカーボネート系ポリマー、 ポリメチルメタクリ レート等のァクリル系ポリマー 等の透明ポリマーからなるフィルムが挙げられる。 またポリスチレン、 アタリ口 二トリル ' スチレン共重合体等のスチレン系ポリマー、 ポリエチレン、 ポリプロ ピレン、 エチレン ' プロピレン共重合体等のォレフィン系ポリマー、 ポリシクロ ォレフィン、 塩化ビニル系ポリマー、 ナイロンや芳香族ポリアミ ド等のアミ ド系 ポリマー等の透明ポリマーからなるフィルムも挙げられる。 これらはブレンド物 であってもよレヽ。  As the orientation substrate other than the retardation film, a substrate having a smooth plane is preferable, and examples thereof include films and sheets made of organic polymer materials, glass plates, metal plates and the like. From the viewpoint of continuous productivity, it is preferable to use a material made of an organic polymer. Examples of organic polymer materials include polyvinyl alcohol, polyimide, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyether ketone, polyether ether ketone, polyarylate, polyethylene terephthalate and polyethylene naphthalate. Examples thereof include a film made of a transparent polymer such as a nore polymer, a senorelose polymer such as diacetylenose / relose and triacetylenose / relose, a polycarbonate polymer, and an acryl polymer such as polymethyl methacrylate. In addition, polystyrene, talitor nitriles, styrene polymers such as styrene copolymers, polyethylene, polypropylene, ethylene polymers such as propylene copolymers, polycyclohexylene, vinyl chloride polymers, nylon and aromatic polyamides, etc. Examples thereof include films made of transparent polymers such as amide polymers. These may be blends.
前述の液晶材料を用い、 安定してホメオト口ピック配向を得るためには、 これ らの基板を構成する材料が長鎖 (通常炭素数 4以上、 好ましくは 8以上) のアル キル基ゃフッ素化炭化水素基を有しているか、 基板表面にこれらの基を有する化 合物の層を有することがより好ましい。 なお、 これら有機高分子材料は単独で基 板として用いても良いし、 他の基板の上に薄膜として形成させていても良い。 長鎖 (通常炭素数 4以上、 好ましくは 8以上) のアルキル基やフッ素化炭化水 素基を有する化合物の層 (配向膜) の形成工程について説明する。  In order to stably obtain homeotopic orientation using the liquid crystal materials described above, the materials constituting these substrates are long chain (usually 4 or more carbon atoms, preferably 8 or more) alkyl groups fluorinated. It is more preferable to have a hydrocarbon group or to have a compound layer having these groups on the substrate surface. These organic polymer materials may be used alone as a substrate, or may be formed as a thin film on another substrate. The process of forming a compound layer (alignment film) having a long chain (usually 4 or more carbon atoms, preferably 8 or more) alkyl group or fluorinated hydrocarbon group will be described.
配向膜を形成する材料は溶液状態にしての塗布が、 配向膜厚や表面性の制御か ら好ましい。 当該溶液は、 当該材料を溶解できる溶媒を用いて適宜行うことがで きる。 例えばアルキル基変性ポリビュルアルコール(P V A)の溶液を調製する溶 媒は、 当該 P V Aを溶解できる溶媒であれば特に制限はなく、 通常は水ゃメタノ ール、 エタノール、 イソプロピルァノレコーノレ等の低級ァノレコールやこれらの混合 物が使用される。 The material for forming the alignment film is preferably applied in a solution state from the viewpoint of controlling the alignment film thickness and surface properties. The solution can be appropriately performed using a solvent capable of dissolving the material. wear. For example, the solvent for preparing a solution of an alkyl group-modified polybulal alcohol (PVA) is not particularly limited as long as it is a solvent that can dissolve the PVA, and usually, water, methanol, ethanol, isopropyl alcohol, etc. A lower alcohol or a mixture of these is used.
なお、 溶解に当たっては塗布や液晶の配向に悪影響を及ぼさない各種の添加剤 を添加してもよい。 また、 溶解を促進するために加温してもよい。  In the dissolution, various additives that do not adversely affect the coating and the alignment of the liquid crystal may be added. Moreover, you may heat in order to accelerate | stimulate melt | dissolution.
基材上に配向膜を形成するために使用される塗布方式は特に制限はなく、 特に 大面積の配向膜の塗布方法は、 やわらかい榭脂版を用いるフレキソ印刷方式、 デ イスペンサー方式、 グラビアコート方式、 マイクログラビア方式、 スクリーン印 刷方式、 リ ップコート方式、 ダイコート方式など挙げることができる。 これらの 中でダラビアコート方式、 リップコ一ト方式やダイコート方式が好ましい。  There are no particular restrictions on the coating method used to form the alignment film on the substrate. Especially, the large-area alignment film coating method is a flexographic printing method using a soft resin plate, a dispenser method, and a gravure coating. System, micro gravure system, screen printing system, rip coat system, and die coat system. Of these, the Daravia coating method, lip coating method and die coating method are preferred.
塗布された配向膜は、 必要により乾燥を行う。 乾燥温度は、 通常、 P V Aの場 合はその耐熱性から限定されるが、 目的によってはそれ以上であってもよい。 一 般には、 5 0 °C〜 1 8 0 °C、 好ましくは 8 0 °C〜 1 6 0 °Cである。 また乾燥時間 も特に制限はないが、通常は、 1 0秒〜 6 0分、好ましくは 1分〜 3 0分がよレ、。 被乾燥膜と乾燥風との相対的な移動速度は相対風速で 6 O m/m i n〜 1 2 0 0 m/m i nが好ましレ、。  The applied alignment film is dried if necessary. The drying temperature is usually limited in the case of PVA because of its heat resistance, but may be higher depending on the purpose. Generally, it is 50 ° C to 180 ° C, preferably 80 ° C to 160 ° C. The drying time is not particularly limited, but usually 10 seconds to 60 minutes, preferably 1 minute to 30 minutes. The relative movement speed between the film to be dried and the drying wind is preferably 6 O m / min to 1 2200 m / min, relative to the wind speed.
液晶の分野においては、 基板に対して布等で一定方向に擦るラビング処理を行 うことが一般的であるが、 本発明に使用されるホメオト口ピック配向液晶層は、 面内の異方性が基本的に生じない配向構造であるため、 必ずしもラビング処理を 必要としない。 しかしながら、 液晶材料を塗布したときのはじき抑制の観点から は弱いラビング処理を施すことがより好ましい。 ラビング条件を規定する重要な 設定値としては周速比がある。 これはラビング布をロールに巻きつけて回転させ つつ基板を擦る場合の、 布の移動速度と基板の移動速度の比を表す。 本発明にお いては弱いラビング処理とは、通常周速比が 5 0以下、より好ましくは 2 5以下、 特に好ましくは 1 0以下である。 周速比が 5 0より大きい場合、 ラビングの効果 が強すぎて液晶材料が完全に垂直に配向しきれず、 垂直方向より面内方向に倒れ た配向となる恐れがある。 次に、 本発明に使用されるホメオト口ピック配向液晶層の製造方法について説 明する。 液晶層の製造方法としてはこれらに限定されるものではないが、 前述の 液晶材料を位相差フィルムや配向基板上に展開し、当該液晶材料を配向させた後、 光照射および または加熱処理することにより当該配向状態を固定化することに より製造することができる。 In the field of liquid crystals, it is common to perform rubbing treatment by rubbing the substrate with a cloth or the like in a certain direction. However, the home-orientation pick-alignment liquid crystal layer used in the present invention has in-plane anisotropy. Since the orientation structure does not basically generate, rubbing treatment is not necessarily required. However, it is more preferable to apply a weak rubbing treatment from the viewpoint of suppressing repelling when a liquid crystal material is applied. An important setting value that defines the rubbing conditions is the peripheral speed ratio. This represents the ratio of the movement speed of the cloth and the movement speed of the substrate when the rubbing cloth is wound around a roll and rubbed while rotating the substrate. In the present invention, the weak rubbing treatment usually has a peripheral speed ratio of 50 or less, more preferably 25 or less, and particularly preferably 10 or less. If the peripheral speed ratio is larger than 50, the rubbing effect is too strong, and the liquid crystal material cannot be perfectly aligned vertically, and the alignment may be tilted in the in-plane direction from the vertical direction. Next, a method for producing a homeotopic pick alignment liquid crystal layer used in the present invention will be described. Light up. The production method of the liquid crystal layer is not limited to these, but the above-mentioned liquid crystal material is spread on a retardation film or an alignment substrate, the liquid crystal material is aligned, and then light irradiation and / or heat treatment is performed. Thus, it can be manufactured by fixing the orientation state.
液晶材料を位相差フィルムや配向基板上に展開して液晶材料層を形成する方法 としては、 液晶材料を溶融状態で直接配向基板上に塗布する方法や、 液晶材料の 溶液を配向基板上に塗布後、塗膜を乾燥して溶媒を留去させる方法が挙げられる。 溶液の調製に用いる溶媒に関しては、 本発明の液晶材料を溶解でき適当な条件 で留去できる溶媒であれば特に制限はなく、 一般的にアセ トン、 メチルェチルケ トン、 イソホロン、 シクロへキサノンなどのケトン類、 ブトキシェチルアルコー ル、 へキシルォキシェチルァノレコール、 メ トキシー 2—プロ ノ ノーノレなどのエー テルアルコール類、 エチレングリ コ一ノレジメチルエーテル、 ジエチレングリ コー ルジメチルェ一テルなどのグリ コールエーテル類、 酢酸ェチル、 乳酸ェチル、 Ί ーブチロラク トンなどのエステノレ類、 フエノー/レ、 クロ口フエノーノレなどのフエ ノール類、 N , N—ジメチルホルムアミ ド、 N , N—ジメチルァセ トアミ ド、 N —メチルピロ リ ドンなどのアミ ド類、 クロ口ホルム、 テ トラクロロェタン、 ジク ロロベンゼンなどのハロゲン系などやこれらの混合系が好ましく用いられる。 ま た、 配向基板上に均一な塗膜を形成するために、 界面活性剤、 消泡剤、 レベリ ン グ剤、 着色剤などを溶液に添加してもよい。  As a method of forming a liquid crystal material layer by spreading the liquid crystal material on a retardation film or an alignment substrate, a method in which the liquid crystal material is applied directly on the alignment substrate in a molten state, or a solution of the liquid crystal material is applied on the alignment substrate. Then, the method of drying a coating film and distilling a solvent off is mentioned. The solvent used for preparing the solution is not particularly limited as long as it can dissolve the liquid crystal material of the present invention and can be distilled off under suitable conditions. Generally, ketones such as acetone, methyl ethyl ketone, isophorone, and cyclohexanone are used. Ether alcohols such as butoxychetyl alcohol, hexyloxychetilanolol, and methoxy-2-norenole, glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether , Ethenols such as ethyl acetate, lactate, and butyl lactolone, phenols such as phenol / le, black mouth phenol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrole Amides such as dong, black mouth form, tetrachloro Tan, halogen-like or a mixture of these systems, such as dichlorobenzene are preferably used. In addition, in order to form a uniform coating film on the alignment substrate, a surfactant, an antifoaming agent, a leveling agent, a coloring agent, and the like may be added to the solution.
さらに、 前述の液晶性高分子化合物の配向の固定化を容易ならしめるために、 液晶性高分子化合物に結合されている重合可能な基と同一の反応性を有する基を 1分子内に 2個以上有する低分子化合物 (液晶性、 非液晶性を問わない) や接着 性を向上させうるような各種化合物を添加することもできる。  Furthermore, in order to facilitate the fixing of the alignment of the liquid crystalline polymer compound described above, two groups having the same reactivity as the polymerizable group bonded to the liquid crystal polymer compound are contained in one molecule. Various low molecular compounds (whether liquid crystalline or non-liquid crystalline) or various compounds that can improve adhesion can be added.
液晶性組成物を直接塗布する方法でも、 溶液を塗布する方法でも、 塗布方法に ついては、 塗膜の均一性が確保される方法であれば、 特に限定されることはなく 公知の方法を採用することができる。 例えば、 スピンコート法、 ダイコート法、 カーテンコート法、 ディップコート法、 ロールコート法などが挙げられる。  Regardless of the method of directly applying the liquid crystalline composition or the method of applying a solution, the application method is not particularly limited as long as the uniformity of the coating film is ensured, and a known method is adopted. be able to. Examples include spin coating, die coating, curtain coating, dip coating, and roll coating.
液晶性組成物の溶液を塗布する方法では、 塗布後に溶媒を除去するための乾燥 工程を入れることが好ましい。 この乾燥工程は、 塗膜の均一性が維持される方法 であれば、特に限定されることなく公知の方法を採用することができる。例えば、 ヒーター (炉)、 温風吹きつけなどの方法が挙げられる。 In the method of applying the solution of the liquid crystalline composition, it is preferable to include a drying step for removing the solvent after the application. The drying step can be any known method without particular limitation as long as the uniformity of the coating film is maintained. For example, Examples include heaters (furnace) and hot air blowing.
液晶層の膜厚は、 液晶セルの方式や種々の光学パラメーターに依存することか ら一概には言えないが、 通常 0 . 2 μ π!〜 1 0 μ m、 好ましくは 0 . 3 m〜 5 μ m , さらに好ましくは 0 . 5 μ m〜 2 /Z mである。 膜厚が 0 . 2 /z mより薄い 場合、十分な視野角改良あるいは輝度向上効果を得ることができない恐れがある。 また 1 0 μ πιを越えると、 液晶表示装置が不必要に色付く等の恐れがある。  Although the film thickness of the liquid crystal layer depends on the type of liquid crystal cell and various optical parameters, it cannot be generally stated, but is usually 0.2 μπ! ˜10 μm, preferably 0.3 m to 5 μm, more preferably 0.5 μm to 2 / Zm. If the film thickness is thinner than 0.2 / zm, it may not be possible to obtain a sufficient viewing angle improvement or brightness enhancement effect. If it exceeds 10 μπι, the liquid crystal display device may be unnecessarily colored.
続いて、 配向基板上に形成された液晶性組成物層を、 熱処理などの方法で液晶 配向を形成し、 光照射および/または加熱処理で硬化を行い固定化する。 最初の 熱処理では、 使用した液晶性組成物の液晶相発現温度範囲に加熱することで、 該 液晶性組成物が本来有する自己配向能により液晶を配向させる。 熱処理の条件と しては、 用いる液晶性組成物の液晶相挙動温度 (転移温度) により最適条件や限 界値が異なるため一概には言えないが、 通常 1 0〜2 5 0 °C、 好ましくは 3 0 °C 〜 1 6 0 °Cの範囲であり、 該液晶性組成物のガラス転移点 (T g ) 以上の温度、 さらに好ましくは T gより 1 0 °C以上高い温度で熱処理するのが好ましい。 あま り低温では、 液晶配向が充分に進行しないおそれがあり、 また高温では液晶性組 成物中のカチオン重合性反応基や配向基板に悪影響を与えるおそれがある。また、 熱処理時間については、 通常 3秒〜 3 0分、 好ましくは 1 0秒〜 2 0分の範囲で ある。 3秒より短い熱処理時間では、液晶配向が充分に完成しないおそれがあり、 また 3 0分を超える熱処理時間では、 生産性が悪くなるため、 どちらの場合も好 ましくなレ、。  Subsequently, the liquid crystalline composition layer formed on the alignment substrate is formed into a liquid crystal alignment by a method such as heat treatment, and is cured and fixed by light irradiation and / or heat treatment. In the first heat treatment, the liquid crystal is aligned by the self-alignment ability inherent in the liquid crystal composition by heating to the liquid crystal phase expression temperature range of the liquid crystal composition used. The conditions for the heat treatment cannot be generally stated because the optimum conditions and limit values differ depending on the liquid crystal phase behavior temperature (transition temperature) of the liquid crystal composition to be used. Is in the range of 30 ° C. to 160 ° C., and is heat-treated at a temperature not lower than the glass transition point (T g) of the liquid crystalline composition, more preferably not lower than 10 ° C. above T g. Is preferred. At very low temperatures, the liquid crystal alignment may not proceed sufficiently, and at high temperatures, the cationic polymerizable reactive groups in the liquid crystalline composition and the alignment substrate may be adversely affected. The heat treatment time is usually in the range of 3 seconds to 30 minutes, preferably 10 seconds to 20 minutes. If the heat treatment time is shorter than 3 seconds, the liquid crystal alignment may not be completed sufficiently, and if the heat treatment time exceeds 30 minutes, the productivity will deteriorate, so it is preferable in either case.
該液晶性組成物層を熱処理などの方法で液晶配向を形成したのち、 液晶配向状 態を保ったまま液晶性組成物を該組成物中のォキセタニル基を反応させることに より硬ィヒさせる。 硬化工程は、 完成した液晶配向を硬化 (架橋) 反応により液晶 配向状態を固定化し、 より強固な膜に変性することを目的にしている。  After forming the liquid crystal alignment of the liquid crystal composition layer by a method such as heat treatment, the liquid crystal composition is hardened by reacting the oxetanyl group in the composition while maintaining the liquid crystal alignment state. The purpose of the curing process is to fix the completed liquid crystal alignment by a curing (crosslinking) reaction, thereby modifying the liquid crystal alignment state into a stronger film.
本発明に使用される液晶性組成物は重合性のォキセタ二ル基を持っため、 その 重合 (架橋) には、 カチオン重合開始剤 (カチオン発生剤) を用いるのが好まし いことは前述のとおりである。 また、 重合開始剤としては、 熱カチオン発生剤よ り光力チオン発生剤の使用が好ましい。  Since the liquid crystalline composition used in the present invention has a polymerizable oxetaryl group, it is preferable to use a cationic polymerization initiator (cation generator) for the polymerization (crosslinking). It is as follows. As the polymerization initiator, it is preferable to use a light thione generator rather than a thermal cation generator.
光力チオン発生剤を用いた場合、 光力チオン発生剤の添加後、 液晶配向のため の熱処理までの工程を喑条件(光力チオン発生剤が解離しない程度の光遮断条件) で行えば、 液晶性組成物は配向段階までは硬化することなく、 充分な流動性をも つて液晶配向することができる。 この後、 適当な波長の光を発する光源からの光 を照射することによりカチオンを発生させ、 液晶組成物層を硬化させる。 When a light thione generator is used, the process from the addition of the light thione generator to the heat treatment for liquid crystal alignment is a drastic condition (light blocking conditions that do not cause the light thione generator to dissociate). Thus, the liquid crystal composition can be aligned with sufficient fluidity without being cured until the alignment stage. Thereafter, the liquid crystal composition layer is cured by generating cations by irradiating light from a light source that emits light of an appropriate wavelength.
光照射の方法としては、 用いる光力チオン発生剤の吸収波長領域にスぺク トル を有するようなメタルハライ ドランプ、 高圧水銀灯、 低圧水銀灯、 キセノンラン プ、 アークランプ、 レーザーなどの光源からの光を照射し、 光力チオン発生剤を 開裂させる。 1平方センチメートルあたりの照射量としては、 積算照射量として 通常:!〜 2 0 0 0 m J、 好ましくは 1 0〜:! O O O m Jの範囲である。 ただし、 光力チオン発生剤の吸収領域と光源のスぺク トルが著しく異なる場合や、 液晶性 組成物自身に光源からの光の吸収能がある場合などはこの限りではない。 これら の場合には、 適当な光増感剤や、 吸収波長の異なる 2種以上の光力チオン発生剤 を混合して用いるなどの方法を採ることもできる。  The light irradiation method includes light from a light source such as a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon lamp, an arc lamp, or a laser that has a spectrum in the absorption wavelength region of the photoactive thione generator. Irradiate to cleave the light thione generator. As the amount of irradiation per square centimeter, the cumulative amount of irradiation is usually: ~ 2 0 0 0 m J, preferably 1 0 ~! It is the range of O O O m J. However, this does not apply when the absorption region of the light-power thione generator and the spectrum of the light source are significantly different, or when the liquid crystalline composition itself has the ability to absorb light from the light source. In these cases, an appropriate photosensitizer or a mixture of two or more photopower thione generators having different absorption wavelengths may be used.
光照射時の温度は、 該液晶性組成物が液晶配向をとる温度範囲である必要があ る。 また、 硬化の効果を充分にあげるためには、 該液晶性組成物の T g以上の温 度で光照射を行うのが好ましい。  The temperature at the time of light irradiation needs to be within a temperature range in which the liquid crystalline composition takes liquid crystal alignment. In order to sufficiently enhance the curing effect, it is preferable to perform light irradiation at a temperature of T g or more of the liquid crystalline composition.
以上のような工程により製造した液晶性組成物層は、 充分強固な膜となってい る。 具体的には、 硬化反応によりメソゲンが 3次元的に結合され、 硬化前と比べ て耐熱性 (液晶配向保持の上限温度) が向上するのみでなく、 耐スクラッチ性、 耐磨耗性、 耐クラック性などの機械的強度に関しても大幅に向上する。  The liquid crystalline composition layer produced by the above process is a sufficiently strong film. Specifically, the mesogens are three-dimensionally bonded by the curing reaction, which not only improves the heat resistance (upper limit temperature of liquid crystal alignment) compared to before curing, but also scratch resistance, wear resistance, crack resistance. The mechanical strength such as property is also greatly improved.
なお、 配向基板として、 光学的に等方でない、 あるいは得られる液晶層が最終 的に目的とする使用波長領域において不透明である、 もしくは配向基板の膜厚が 厚すぎて実際の使用に支障を生じるなどの問題がある場合、 配向基板上に形成さ れた形態から、 目的とする使用波長領域で障害とならないような基板や位相差機 能を有する延伸フィルムに転写した形態も使用しうる。 転写方法としては公知の 方法を採用することができる。 例えば、 特開平 4一 5 7 0 1 7号公報ゃ特開平 5 - 3 3 3 3 1 3号公報に記載されているように液晶層を粘着剤もしくは接着剤を 介して、 配向基板とは異なる基板を積層した後に、 該積層体から配向基板を剥離 することで液晶層のみを転写する方法等を挙げることができる。  As an alignment substrate, it is not optically isotropic, or the obtained liquid crystal layer is finally opaque in the intended use wavelength region, or the alignment substrate is too thick, resulting in problems in actual use. If there is a problem such as the above, it is also possible to use a form that is transferred from a form formed on an oriented substrate to a substrate that does not become an obstacle in the intended wavelength range of use or a stretched film having a retardation function. As a transfer method, a known method can be employed. For example, as described in Japanese Patent Laid-Open No. 4-7570 17 or Japanese Patent Laid-Open No. 5-3 3 3 3 1 3, the liquid crystal layer is different from the alignment substrate through an adhesive or an adhesive. Examples include a method of transferring only the liquid crystal layer by peeling the alignment substrate from the laminate after laminating the substrates.
転写に使用する粘着剤もしくは接着剤は、 後述のように光学グレードのもので あれば特に制限はなく、 アクリル系、 エポキシ系、 ウレタン系など一般に用いら れているものを用いることができる。 The pressure-sensitive adhesive or adhesive used for transfer is not particularly limited as long as it is an optical grade as described later, and is generally used such as acrylic, epoxy, and urethane. Can be used.
以上のようにして得られるホメォト口ピック配向液晶層は、 当該液晶層の光学 位相差を垂直入射から傾けた角度で測定することによって定量化することができ る。 ホメオト口ピック配向液晶層の場合、 この位相差値は垂直入射について対称 的である。 光学位相差の測定には数種の方法を利用することができ、 例えば自動 複屈折測定装置 (王子計測機器 (株) 製) および偏光顕微鏡を利用することがで きる。このホメオト口ピック配向液晶層はクロスニコル偏光子間で黒色に見える。 このようにしてホメオト口ピック配向性を評価した。  The home-mouth pick-aligned liquid crystal layer obtained as described above can be quantified by measuring the optical phase difference of the liquid crystal layer at an angle inclined from normal incidence. In the case of a homeotopically picked liquid crystal layer, this retardation value is symmetric with respect to normal incidence. Several methods can be used to measure the optical phase difference. For example, an automatic birefringence measuring device (manufactured by Oji Scientific Instruments) and a polarizing microscope can be used. This homeotopic pick alignment liquid crystal layer appears black between the crossed Nicol polarizers. In this way, homeo-mouth pick orientation was evaluated.
本発明に使用されるホメオト口ピック配向液晶層は、 液晶層の厚さを d l、 液 晶層面内の主屈折率を Nx 1および Ny 1、厚さ方向の主屈折率を N z 1、かつ、 N z l〉Nx l≥Ny lとした場合に、面内のリターデーション値(R e 1 = (N X 1 -N y 1 ) X d 1 [nm]) および厚さ方向のリタ一デーション値 (R t h 1 = (N x 1 -N z 1 ) X d 1 [nm]) 、 以下の [1] および [2] を満たすこ とが好ましい。  The homeotropic alignment liquid crystal layer used in the present invention has a liquid crystal layer thickness of dl, a main refractive index in the liquid crystal layer plane of Nx 1 and Ny 1, a main refractive index in the thickness direction of N z 1, and , N zl> Nx l≥Ny l, in-plane retardation value (R e 1 = (NX 1 -N y 1) X d 1 [nm]) and thickness direction retardation value ( R th 1 = (N x 1 -N z 1) X d 1 [nm]), preferably satisfying the following [1] and [2].
[ 1 ] 0 n m≤ R e 1≤ 20 n m  [1] 0 n m ≤ Re 1 ≤ 20 n m
[2] - 500 nm≤R t h l≤- 30 nm  [2]-500 nm≤R t h l≤- 30 nm
ホメオト口ピック配向液晶層の光学パラメータである R e 1値、 R t h 1値は、 液晶表示装置の方式や種々の光学パラメーターに依存することから一概には言え ないが、 5 50 nmの単色光に対して、面内のリターデーション値(R e 1 ) は、 通常 Ο ηπ!〜 20 nm、 好ましくは 0 n m〜 1 0 n m、 さらに好ましくは O n m 〜5 nmの範囲であり、 かつ、 厚さ方向のリタ一デーシヨン値 (R t h l) は、 通常一 500 n m〜一 30 n m、 好ましくは一 400 n m〜一 50 n m、 さらに 好ましくは一 400 nm ~— 1 00 n mに制御されたものである。  The R e 1 and R th 1 values, which are the optical parameters of the homeotropic alignment liquid crystal layer, cannot be generally described because they depend on the type of the liquid crystal display device and various optical parameters. On the other hand, the in-plane retardation value (R e 1) is usually Ο ηπ! -20 nm, preferably 0 nm to 10 nm, more preferably O nm to 5 nm, and the thickness direction retardation value (R thl) is usually from 1 to 500 nm to 1 to 30 nm Preferably, it is controlled from 1 400 nm to 1 50 nm, more preferably from 1 400 nm to −100 nm.
前記 R e 1値及び R t h 1値を上記範囲にすることにより、 液晶表示装置の視 野角改良フィルムとしては、 液晶表示の色調補正を行いながら視野角を広げるこ とが可能となる。 R e 1値が 20 nmより大きい場合、 大きい面内の位相差値の 影響で、 液晶表示装置の正面特性を悪化させる恐れがある。 また、 R t h 1値が — 30 nmより大きいあるいは一 500 nmより小さい場合には、 十分な視野角 改良効果が得られないかあるいは、 斜めから見たときに不必要な色付きが生じる 恐れがある。 またホメオト口ピック配向液晶層は、 下記 [ 5 ] で表される条件を満たすこと が好ましい。 By setting the Re 1 value and the R th 1 value in the above ranges, the viewing angle improving film of the liquid crystal display device can widen the viewing angle while correcting the color tone of the liquid crystal display. When the Re 1 value is larger than 20 nm, the front characteristic of the liquid crystal display device may be deteriorated due to the large in-plane retardation value. Also, if the R th 1 value is larger than –30 nm or smaller than 1 500 nm, sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction. . In addition, the homeotopic pick alignment liquid crystal layer preferably satisfies the condition represented by the following [5].
[ 5 ] - 0 . 5≤Δ η≤— 0 . 0 0 0 5 ( Δ η = Ν χ 1 - Ν ζ 1 ) なお、 生産性の向上や、 ホメオト口ピック配向液晶層を含む楕円偏光板の薄型 化の点から、 より好ましくは一 0 . 2≤Δ η≤— 0 . 0 0 5である。  [5]-0.5 ≤ Δ η ≤ 0. 0 0 0 5 (Δ η = Ν χ 1-ζ ζ 1) It should be noted that the productivity of the elliptically polarizing plate including the homeotropic alignment liquid crystal layer is improved. From the viewpoint of reducing the thickness, more preferably, 0.2≤Δη≤-0.005.
ホメオト口ピック配向液晶層に替えて厚さ方向に正の 1軸性を有する光学異方 素子として延伸フィルムを用いようとしても厚み方向の延伸には限界があるため、 厚み方向の位相差を広範囲に制御することができない。 また熱収縮フィルムによ り、長尺フィルムを熱収縮させて厚み方向に延伸させる手法も用いられているが、 厚さ方向の複屈折率は 0 . 0 0 3以下で得られるフィルムの厚みは 5 0〜 1 0 0 m程度あり、 元の長尺フィルムよりも厚みが増してしまい、 液晶表示装置の薄 型化要求に伴う楕円偏光板全体の薄膜化の要求に対応することは困難である 楕円偏光板の膜厚は近年の薄型化要求から望ましくは 1 7 5 μ πι以下、 特に望 ましくは 1 5 0 μ m以下がよい。  Even if a stretched film is used as an optically anisotropic element that has positive uniaxiality in the thickness direction instead of the homeotropic alignment liquid crystal layer, there is a limit to stretching in the thickness direction, so there is a wide range of retardation in the thickness direction. Can not be controlled. In addition, a method in which a long film is thermally shrunk and stretched in the thickness direction using a heat shrinkable film is also used, but the birefringence in the thickness direction is 0.03 or less, and the resulting film thickness is It is about 50 to 100 m, thicker than the original long film, and it is difficult to meet the demand for thinning the entire elliptically polarizing plate accompanying the demand for thinning liquid crystal display devices. The film thickness of the elliptically polarizing plate is desirably 1 75 μπι or less, particularly preferably 1550 μm or less, in view of the recent demand for thinning.
本発明の楕円偏光板を構成する直線偏光板は、 偏光子の片側のみに透光性保護 フィルムを有するものである。 使用される偏光子は、 特に制限されず、 各種のも のを使用でき、 例えば、 ポリビニルアルコール系フィルム、 部分ホルマール化ポ リ ビュルアルコール系フィルム、 エチレン .酢酸ビュル共重合体系部分ケン化フ イルム等の親水性高分子フィルムに、 ョゥ素ゃ二色性染料等の二色性物質を吸着 させて一軸延伸したもの、 ポリビニルアルコールの脱水処理物やポリ塩化ビュル の脱塩酸処理物等のポリェン系配向フィルム等が挙げられる。 これらのなかでも ポリビュルアルコール系フィルムを延伸して二色性材料 (沃素、 染料) を吸着 · 配向したものが好適に用いられる。 偏光子の厚さも特に制限されないが、 5〜8 0 μ m程度が一般的である。  The linearly polarizing plate constituting the elliptically polarizing plate of the present invention has a translucent protective film only on one side of the polarizer. The polarizer to be used is not particularly limited, and various types can be used, such as polyvinyl alcohol film, partially formalized polyalcohol film, ethylene / acetic acid copolymer copolymer partially saponified film, etc. Polyethylene films such as uniaxially stretched by adsorbing a dichroic substance such as a dichroic dye on a hydrophilic polymer film, dehydrated polyvinyl alcohol or dehydrochlorinated polyvinyl chloride An oriented film etc. are mentioned. Of these, those obtained by stretching a polybulal alcohol film and adsorbing and orienting a dichroic material (iodine, dye) are preferably used. The thickness of the polarizer is not particularly limited, but is generally about 5 to 80 μm.
ポリビュルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、 例 えば、 ポリビニルアルコールをョゥ素の水溶液に浸漬することによって染色し、 元長の 3〜 7倍に延伸することで作製することができる。 必要に応じてホウ酸や ョゥ化カリゥムなどの水溶液に浸漬することもできる。 さらに必要に応じて染色 の前にポリビュルアルコール系フィルムを水に浸漬して水洗してもよい。 ポリ ビ ニルアルコール系フィルムを水洗することでポリ ビュルアルコール系フィルム表 面の汚れやブロッキング防止剤を洗浄することができるほかに、 ポリ ビニルアル コール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果も ある。 延伸はヨウ素で染色した後に行っても良いし、 染色しながら延伸してもよ し、 また延伸してからヨウ素で染色してもよい。 ホウ酸やヨウ化カリウムなどの 水溶液中や水浴中でも延伸することができる。 A polarizer obtained by uniaxially stretching a polybulal alcohol film with iodine, for example, is prepared by immersing polyvinyl alcohol in an aqueous solution of iodine and stretching it 3 to 7 times the original length. be able to. If necessary, it can be immersed in an aqueous solution of boric acid or potassium oxalate. Furthermore, if necessary, the polybulal alcohol film may be immersed in water and washed before dyeing. Polyvinyl alcohol film by washing polyvinyl alcohol film with water In addition to cleaning surface stains and antiblocking agents, it also has the effect of preventing unevenness such as uneven dyeing by swelling the polyvinyl alcohol film. The stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching. The film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
前記偏光子の片側に設けられている透光性保護フィルムには、 透明性、 機械的 強度、 熱安定性、 水分遮蔽性、 等方性などに優れるものが好ましい。 前記透光性 保護フィルムの材料としては、 例えば、 ポリエチレンテレフタレートやポリェチ レンナフタレート等のポリエステル系ポリマー、 ジァセチルセルロースやトリア セチルセノレロース等のセルロース系ポリマー、 ポリメチルメタクリ レート等のァ クリル系ポリマー、 ポリスチレンやアクリロニトリル 'スチレン共重合体 (A S 樹脂)等のスチレン系ポリマー、ポリカーボネート系ポリマーなどが挙げられる。 また、 ポリエチレン、 ポリプロピレン、 エチレン 'プロピレン共重合体の如きポ リオレフィン系ポリマー、シクロォレフィン系ポリマー、塩化ビュル系ポリマー、 ナイロンや芳香族ポリアミ ド等のアミ ド系ポリマー、 イミ ド系ポリマー、 スルホ ン系ポリマー、 ポリエーテルスルホン系ポリマー、 ポリエーテルエーテルケトン 系ポリマー、 ポリフヱニレンスルフイ ド系ポリマー、 ビュルアルコール系ポリマ 一、 塩化ビニリデン系ポリマー、 ビニルブチラール系ポリマー、 ァリ レート系ポ リマー、 ポリオキシメチレン系ポリマー、 エポキシ系ポリマー、 あるいは前記ポ リマーのブレンド物などが透光性保護フィルムを形成するポリマーの例として挙 げられる。その他、ァクリル系やウレタン系、ァクリルウレタン系やエポキシ系、 シリコーン系等の熱硬化型ないし紫外線硬化型樹脂などをフィルム化したものな どが挙げられる。透光性保護フィルムの厚さは、一般には 1 0 0 m以下であり、 1〜8 0 mが好ましい。 特に 5〜5 0 mとするのが好ましい。  The translucent protective film provided on one side of the polarizer preferably has excellent transparency, mechanical strength, thermal stability, moisture shielding properties, isotropic properties, and the like. Examples of the material of the translucent protective film include, for example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, and acrylic polymers such as polymethyl methacrylate. Styrene polymers such as polystyrene and acrylonitrile styrene copolymer (AS resin), polycarbonate polymers and the like. Polyolefin-based polymers such as polyethylene, polypropylene, and ethylene / propylene copolymers, cycloolefin-based polymers, chlorinated butyl-based polymers, amide-based polymers such as nylon and aromatic polyamide, imide-based polymers, and sulfonate-based polymers Polymers, polyethersulfone polymers, polyetheretherketone polymers, polyphenylene sulfide polymers, butyl alcohol polymers, vinylidene chloride polymers, vinyl butyral polymers, arylate polymers, polyoxymethylenes Examples of polymers that form translucent protective films include polymer-based polymers, epoxy-based polymers, and blends of the aforementioned polymers. Other examples include acryl-based, urethane-based, acryl-urethane-based, epoxy-based, and silicone-based thermosetting or ultraviolet curable resins. The thickness of the translucent protective film is generally 100 m or less, and preferably 1 to 80 m. In particular, it is preferably 5 to 50 m.
透光性保護フィルムとしては、 偏光特性や耐久性などの点より、 トリァセチル セルロース等のセルロース系ポリマーゃシクロォレフィン系ポリマーが好ましい, 前記偏光子と透光性保護フィルムとは通常、 粘着剤や接着剤等を介して密着し ている。  The translucent protective film is preferably a cellulose polymer such as triacetyl cellulose or cycloolefin-based polymer from the viewpoint of polarization characteristics or durability. The polarizer and the translucent protective film are usually an adhesive or an adhesive. It is in close contact through etc.
粘着剤や接着剤としては、 ポリ ビュルアルコール系、 ゼラチン系、 ビュル系ラ テックス系、 水系ポリウレタン、 水系ポリエステル等を例示できる。 前記透光性保護フィルムは、 ハードコート層や反射防止処理、 ステイツキング 防止や、 拡散ないしアンチグレアを目的とした処理を施したものを用いることが できる。 Examples of the pressure-sensitive adhesive and adhesive include polybulal alcohols, gelatins, bull latexes, water-based polyurethanes and water-based polyesters. As the translucent protective film, a hard coat layer, an antireflection treatment, an anti-sticking treatment, or a treatment for diffusion or anti-glare can be used.
ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、 例えばァクリル系、 シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑 り特性等に優れる硬化皮膜を保護フィルムの表面に付加する方式などにて形成す ることができる。 反射防止処理は偏光板表面での外光の反射防止を目的に施され るものであり、従来に準じた反射防止膜などの形成により達成することができる。 また、 スティッキング防止処理は隣接層との密着防止を目的に施される。  Hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate. For example, a protective film is applied to a cured film having excellent hardness and sliding properties by an appropriate UV curable resin such as acryl or silicone. It can be formed by a method of adding to the surface. The antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be achieved by forming an antireflection film or the like according to the conventional art. In addition, the anti-sticking treatment is performed for the purpose of preventing adhesion with an adjacent layer.
またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を 阻害することの防止等を目的に施されるものであり、 例えば、 サンドブラス ト方 式やエンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方 式にて保護フィルムの表面に微細凹凸構造を付与することにより形成することが できる。 前記表面微細凹凸構造の形成に含有させる微粒子としては、 例えば平均 粒径が 0 . 5 〜 5 0 / mのシリカ、 アルミナ、 チタニア、 ジルコユア、 酸化錫、 酸化インジウム、 酸化カドミウム、 酸化アンチモン等からなる導電性のこともあ る無機系微粒子、 架橋又は未架橋のポリマー等からなる有機系微粒子などの透明 微粒子が用いられる。 表面微細凹凸構造を形成する場合、 微粒子の使用量は、 表 面微細凹凸構造を形成する透明樹脂 1 0 0重量部に対して一般的に 2 〜 5 0重量 部程度であり、 5 〜 2 5重量部が好ましい。 アンチグレア層は、 偏光板透過光を 拡散して視角などを拡大するための拡散層 (視角拡大機能など) を兼ねるもので あってもよい。  Anti-glare treatment is applied for the purpose of preventing external light from being reflected on the surface of the polarizing plate and obstructing the visibility of the light transmitted through the polarizing plate. For example, the anti-glare treatment is performed by a sandblast method or an embossing method. It can be formed by imparting a fine concavo-convex structure to the surface of the protective film by an appropriate method such as a roughening method or a blending method of transparent fine particles. Examples of the fine particles to be included in the formation of the fine surface uneven structure include silica, alumina, titania, zircoure, tin oxide, indium oxide, cadmium oxide, and antimony oxide having an average particle diameter of 0.5 to 50 / m. Transparent fine particles such as inorganic fine particles that may be conductive and organic fine particles made of a crosslinked or uncrosslinked polymer are used. In the case of forming a surface fine uneven structure, the amount of fine particles used is generally about 2 to 50 parts by weight with respect to 100 parts by weight of the transparent resin forming the surface fine uneven structure, and 5 to 25 Part by weight is preferred. The antiglare layer may also serve as a diffusion layer (viewing angle expanding function or the like) for diffusing the light transmitted through the polarizing plate to expand the viewing angle.
なお、前記反射防止層、スティッキング防止層、拡散層やアンチグレア層等は、 透光性保護フィルムそのものに設けることができるほか、 別途光学層として透光 性保護フィルムとは別体のものとして設けることもできる。 次に、 位相差機能を有する位相差フィルムについて説明する。  The anti-reflection layer, anti-sticking layer, diffusion layer, anti-glare layer, etc. can be provided on the translucent protective film itself, and separately provided as a separate optical layer from the translucent protective film. You can also. Next, a retardation film having a retardation function will be described.
当該位相差フィルムは所望の位相差機能を有すればよく、 例えば、 ポリマーフ イルムを一軸延伸または二軸延伸したもの、 厚さ方向 (Z軸) への配向処理した ものや液晶性を示す材料を塗工 ·配向させた配向フィルム、 等が挙げられる。 位相差機能を有する位相差フィルムは、 以下の式 [3] および [4] を満たす ことが好ましい。 The retardation film only needs to have a desired retardation function. For example, a film obtained by uniaxially or biaxially stretching a polymer film, a film subjected to orientation treatment in the thickness direction (Z-axis), or a material exhibiting liquid crystallinity is used. Examples include coating and oriented film. The retardation film having a retardation function preferably satisfies the following formulas [3] and [4].
[3] 20 nm≤R e 2≤ 200 nm  [3] 20 nm≤R e 2≤ 200 nm
[4] 0 nm≤R t h 2≤ 30 nm  [4] 0 nm≤R t h 2≤ 30 nm
ここで、 R e 2は位相差フィルムの面内のリタ一デーシヨン値を意味し、 R t h 2は前記位相差フィルムの厚さ方向のリターデーション値を意味する。 前記 R e 2及び R t h 2は、 それぞれ R e 2 = (N x 2 -N y 2) X d 2 [nm]、 R t h 2 = (N x 2 -N z 2) X d 2 [nm] である。 また、 d 2は前記位相差フィ ルムの厚さ、 Nx 2および Ny 2は前記位相差フィルム面内の主屈折率、 N z 2 は厚さ方向の主屈折率であり、 Nx 2 >Ny 2 N z 2である。  Here, R e 2 means an in-plane retardation value of the retardation film, and R t h 2 means a retardation value in the thickness direction of the retardation film. The R e 2 and R th 2 are R e 2 = (N x 2 -N y 2) X d 2 [nm], R th 2 = (N x 2 -N z 2) X d 2 [nm], respectively. It is. D 2 is the thickness of the retardation film, Nx 2 and Ny 2 are the main refractive index in the retardation film plane, N z 2 is the main refractive index in the thickness direction, and Nx 2> Ny 2 N z 2
位相差フィルムの光学パラメータである R e 2値、 R t h 2値は、 液晶表示装 置の方式や種々の光学パラメーターに依存することから一概には言えないが、 5 50 nmの単色光に対して、 面内のリターデーション値 (R e 2) は、 通常 20 nn!〜 200 nm、 好ましくは 30 ηπ!〜 1 80 nm、 さらに好ましくは 50 n π!〜 1 6 0 nmの範囲であり、 かつ、 厚さ方向のリターデーション値 (R t h 2) は、 通常 0 n m〜 30 n m、 好ましくは 0 n π!〜 25 n m、 さらに好ましくは 0 ηπ!〜 1 5 nmに制御されたものである。  The Re 2 and R th 2 values, which are the optical parameters of the retardation film, cannot be generally described because they depend on the type of liquid crystal display device and various optical parameters, but for monochromatic light at 550 nm. The in-plane retardation value (R e 2) is usually 20 nn! ~ 200 nm, preferably 30 ηπ! ~ 1 80 nm, more preferably 50 n π! The retardation value (R t h 2) in the thickness direction is usually from 0 nm to 30 nm, preferably 0 n π! ~ 25 nm, more preferably 0 ηπ! Controlled to ~ 15 nm.
前記 R e 2値及び R t h 2値を上記範囲にすることにより、 液晶表示装置の視 野角改良フィルムとしては、 液晶表示の色調補正を行いながら視野角を広げるこ とが可能となる。 R e 2値が 2 O nmより小さいあるレ、は 200 nmより大きい 場合、 面内の位相差値の影響で、 液晶表示装置の正面特性を悪化させる恐れがあ る。また、 R t h 2値が 0 nmより小さいあるいは 3 O nmより大きい場合には、 十分な視野角改良効果が得られないかあるいは、 斜めから見たときに不必要な色 付きが生じる恐れがある。  By setting the R e 2 value and the R t h 2 value in the above ranges, the viewing angle improving film of the liquid crystal display device can widen the viewing angle while correcting the color tone of the liquid crystal display. If the R e 2 value is less than 2 O nm, but greater than 200 nm, the front characteristics of the liquid crystal display device may be deteriorated due to the influence of the in-plane retardation value. If the Rth2 value is less than 0 nm or greater than 3 O nm, sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction. .
前記位相差フィルムとしては、 適宜なポリマーからなるフィルムを一軸あるい は二軸延伸処理する手法ゃ特開平 5— 1 5 79 1 1号公報に示されるような熱収 縮フィルムにより長尺フィルムの幅方向を熱収縮させて厚み方向に位相差を大き くする手法により製造した複屈折フィルムが好ましく、上記原料としては例えば、 有機高分子材料からなるフィルムやシートを挙げることができる。 例えば、 ポリ ビュルアルコール、 ポリイ ミ ド、 ポリフエ二レンォキシド、 ポリスルホン、 ポリ エーテノレケトン、 ポリエーテノレエーテノレケトン、 ポリエチレンテレフタレ一ト、 ポリエチレンナフタレート等のポリエステル系ポリマー、ジァセチルセルロース、 トリァセチルセルロース等のセルロース系ポリマー、 ポリカーボネート系ポリマ 一、 ポリメチルメタクリ レート等のァクリル系ポリマー等の透明ポリマーからな るフィルムが挙げられる。 またポリスチレン、 アク リ ロニトリル ' スチレン共重 合体等のスチレン系ポリマー、 ポリエチレン、 ポリプロピレン、 ポリシクロォレ フィン、 エチレン 'プロピレン共重合体等のォレフィン系ポリマー、 塩化ビュル 系ポリマー、 ナイロンや芳香族ポリアミ ド等のアミ ド系ポリマー等の透明ポリマ 一からなるフィルムも挙げられる。 さらに塩化ビニリデン系ポリマー、 ビニルブ チラール系ポリマー、 ァリ レート系ポリマー、 ポリオキシメチレン系ポリマー、 エポキシ系ポリマーや前記ポリマーのブレンド物等の透明ポリマーからなるフィ ルムなども挙げられる。 これらのなかでも、 光学フィルムとして用いられるトリ ァセチルセルロース、 ポリカーボネート、 ポリシクロォレフィン等のプラスチッ クフィルムが賞用される。 有機高分子材料のフィルムとしては、 特に、 ゼォノア (商品名, 日本ゼオン (株) 製)、 ゼォネックス (商品名, 日本ゼオン (株) 製)、 アートン (商品名, J S R (株) 製) などのノルボルネン構造を有するポリマー 物質からなるプラスチックフィルムが好適に用いられる。 As the retardation film, a method of subjecting a film made of an appropriate polymer to uniaxial or biaxial stretching treatment may be a long film made of a heat-condensation film as disclosed in Japanese Patent Laid-Open No. 5-157991. A birefringent film manufactured by a method in which the width direction is thermally shrunk to increase the retardation in the thickness direction is preferable. Examples of the raw material include films and sheets made of organic polymer materials. For example, polybutyl alcohol, polyimide, polyphenylene oxide, polysulfone, poly Polyester polymers such as etherenoketone, polyethylenate etherenoketone, polyethylene terephthalate, polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, polycarbonate polymers, acrylics such as polymethyl methacrylate And a film made of a transparent polymer such as a polymer. Styrene polymers such as polystyrene, acrylonitrile and styrene copolymers, polyethylene, polypropylene, polycyclohexylene, olefin polymers such as ethylene and propylene copolymers, chlorinated polymers, nylon and aromatic polyamides, etc. A film made of a transparent polymer such as a polymer is also included. Further examples include vinylidene chloride polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers, films made of transparent polymers such as epoxy polymers and blends of the aforementioned polymers. Among these, plastic films such as triacetyl cellulose, polycarbonate, and polycyclohexylene used as optical films are used award. Examples of organic polymer film include ZENOA (trade name, manufactured by ZEON CORPORATION), ZEONEX (trade name, manufactured by ZEON CORPORATION), Arton (trade name, manufactured by JSR Corporation), etc. A plastic film made of a polymer material having a norbornene structure is preferably used.
延伸等により得られる位相差フィルムの膜厚は、 上述のように R e 2や R t h 2に依存するが、 通常は 5 μ m〜 1 0 0 μ m、 好ましくは 1 0 μ m〜 8 0 μ mで ある。  The thickness of the retardation film obtained by stretching or the like depends on Re 2 and R th 2 as described above, but is usually 5 μm to 100 μm, preferably 10 μm to 80. μm.
液晶ポリマーなどの液晶材料からなる配向フィルムとしては、 均一でモノ ドメ インなネマチック配向性を示し、 かつその配向状態を容易に固定化できる液晶性 高分子を基板上、 もしくは配向膜を塗布した基板上で熱処理し、 均一、 モノ ドメ インなネマチック構造を形成させたのち冷却することによって液晶状態における 配向を損なうことなく固定化して製造される配向フィルムや、 前記液晶性高分子 に光重合性液晶化合物を配合して液晶性組成物とし基板上もしくは配向膜を塗布 した基板上に塗布 ·配向し重合させた配向フィルムを挙げることができる。 次に、 本発明の楕円偏光板へ積層することができる光学フィルムについて説明 する。 前記の光学フィルムとしては、 正の 1軸光学異方性層でも負の 1軸光学異方性 層であってもよく、 さらに 2軸光学異方性層であってもよい。 An alignment film made of a liquid crystal material such as a liquid crystal polymer is a substrate on which a liquid crystalline polymer that exhibits uniform and monodomain nematic alignment and can easily fix the alignment state is applied on a substrate or an alignment film. An alignment film produced by heat treatment above to form a uniform, monodomain nematic structure, and then cooled to fix the alignment without impairing the alignment in the liquid crystal state, or a photopolymerizable liquid crystal to the liquid crystalline polymer An alignment film obtained by blending a compound to form a liquid crystalline composition, coating, orienting and polymerizing on a substrate or a substrate coated with an alignment film can be mentioned. Next, an optical film that can be laminated on the elliptically polarizing plate of the present invention will be described. The optical film may be a positive uniaxial optically anisotropic layer, a negative uniaxial optically anisotropic layer, or a biaxial optically anisotropic layer.
面内方向に X方向、 y方向を取り、 厚さ方向を z方向とする場合、 正の 1軸性 光学異方素子は、 屈折率として n X〉 n y = n zの関係を有する。 また、 正の 2 軸性光学異方素子は、 屈折率として n X > n z > n yの関係を有する。 負の 1軸 性光学異方素子は、 屈折率として n x = n y〉n zの関係を有する。 負の 2軸性 光学異方素子は、 屈折率として n x >n y >n zの関係を有する。 When the X direction and the y direction are taken in the in-plane direction and the thickness direction is the z direction, the positive uniaxial optical anisotropic element has a relationship of refractive index n X> ny = nz. Further, a positive biaxial optical anisotropic element has a relationship of n X>nz> ny as a refractive index. A negative uniaxial optical anisotropic element has a relationship of nx = ny> nz as a refractive index. A negative biaxial optical anisotropic element has a relationship of nx > ny > nz as a refractive index.
2軸性を NZ係数 = (η χ-η ζ) / (η χ-η y ) で定義した場合、 NZ〉 1が負の 2軸、 NZ= 1が正の 1軸、 NZく 1が正の 2軸と分類できる。  When biaxiality is defined by NZ coefficient = (η χ-η ζ) / (η χ-η y), NZ> 1 is negative 2 axes, NZ = 1 is positive 1 axis, NZ + 1 is positive It can be classified as two axes.
正の 1軸光学異方性層としては上述の位相差機能を有する位相差フィルムから リターデーション値が下記の範囲のものを適宜選定すればよい。  As the positive uniaxial optically anisotropic layer, a retardation film having a retardation value in the following range may be appropriately selected from the above retardation films having a retardation function.
当該フィルムの面内のリタ一デーシヨン R eは、 20 η π!〜 500 n m、 好ま しくは 50 nm〜300 nmである。 この範囲外では液晶表示装置に適用したと きの視野角改良等の効果が乏しくなるので好ましくない。 なお、 R eは前述の位 相差機能を有する位相差フィルムで定義した式と同様である。  The in-plane retardation R e is 20 η π! ˜500 nm, preferably 50 nm to 300 nm. Outside this range, the effect of improving the viewing angle when applied to a liquid crystal display device becomes poor, which is not preferable. Re is the same as the formula defined for the retardation film having a phase difference function.
負の 1軸光学異方性層を有する光学フィルムとしては、 特に限定されないが、 非液晶材料としては、耐熱性、耐薬品性、透明性に優れ、剛性にも富むことから、 例えば、 セルローストリアシレート、 ゼォネックス、 ゼォノア (共に日本ゼオン (株) 製) やアートン (J SR (株) 製) のようなポリオレフイン類、 ポリアミ ド、 ポリイミ ド、 ポリエステル、 ポリエーテルケトン、 ポリアリールエーテルケ トン、 ポリアミ ドイミ ド、 ポリエステルイミ ド等のポリマーが好ましい。 これら のポリマーは、 いずれか一種類を単独で使用してもよいし、 ポリアリールエーテ ルケトンとポリアミ ドとの混合物のように、 異なる官能基を持つ 2種以上の混合 物として使用してもよい。 このようなポリマーの中でも、 高透明性、 高配向性で あることから、 ポリイミ ドが特に好ましい。 ポリイミ ドとしては、 例えば、 面内 配向性が高く、 有機溶剤に可溶なポリイミ ドが好ましい。 例えば、 特表 2000 — 5 1 1 29 6号公報に開示された、 9, 9一ビス (アミノアリール) フルォレ ンと芳香族テトラカルボン酸二無水物との縮合重合生成物、 具体的には、 下記式 The optical film having a negative uniaxial optically anisotropic layer is not particularly limited, but non-liquid crystal materials have excellent heat resistance, chemical resistance, transparency, and high rigidity. Polyolefins such as sylate, ZEONEX, ZEONOR (both manufactured by Nippon Zeon Co., Ltd.) and ARTON (manufactured by JSR Co., Ltd.), polyamide, polyimide, polyester, polyetherketone, polyaryletherketone, polyamido Polymers such as polyimide and polyesterimide are preferred. Any one of these polymers may be used alone, or a mixture of two or more kinds having different functional groups such as a mixture of polyaryl ether ketone and polyamide may be used. . Among these polymers, polyimide is particularly preferable because of its high transparency and high orientation. As the polyimide, for example, a polyimide having high in-plane orientation and soluble in an organic solvent is preferable. For example, a condensation polymerization product of 9,9-bis (aminoaryl) fluorene and an aromatic tetracarboxylic dianhydride disclosed in JP 2000-5 1 1 296, specifically, Following formula
(7) に示す繰り返し単位を 1つ以上含むポリマーが使用できる。 A polymer containing one or more repeating units shown in (7) can be used.
Figure imgf000028_0001
Figure imgf000028_0001
前記式 (7) 中、 R3〜R6は、 水素、 ハロゲン、 フエ二ル基、 1〜4個のハロ ゲン原子または C i〜 。アルキル基で置換されたフエニル基、 および C i〜 i 0ァ ルキル基からなる群からそれぞれ独立に選択される少なく とも一種類の置換基で ある。 好ましくは、 R3〜R6は、 ハロゲン、 フエニル基、 1〜4個のハロゲン原 子または C i〜i。アルキル基で置換されたフエニル基、 および C i〜i。アルキル 基からなる群からそれぞれ独立に選択される少なく とも一種類の置換基である。 前記式 (7) 中、 Zは、 例えば、 C62。の 4価芳香族基であり、 好ましくは、 ピロメ リ ッ ト基、多環式芳香族基、多環式芳香族基の誘導体、または、下記式(8) で表される基である。 In the formula (7), R 3 to R 6 are hydrogen, halogen, a phenyl group, 1 to 4 halogen atoms, or C i to. It is at least one kind of substituent each independently selected from the group consisting of a phenyl group substituted with an alkyl group and a C i to i 0 alkyl group. Preferably, R 3 to R 6 is halogen, phenyl group, 1 to 4 halogen atom or C i~i. A phenyl group substituted with an alkyl group, and Ci to i. It is at least one substituent selected independently from the group consisting of alkyl groups. In the formula (7), Z is, for example, C 6 ~ 2. The tetravalent aromatic group is preferably a pyromerite group, a polycyclic aromatic group, a derivative of a polycyclic aromatic group, or a group represented by the following formula (8).
Figure imgf000028_0002
前記式 (8) 中、 Z' は、 例えば、 共有結合、 C (R7) 2基、 CO基、 O原子、 S原子、 S〇2基、 S i (C2H5) 2基、 または、 NR8基であり、 複数の場合、 それぞれ同一であるかまたは異なる。また、 wは、 1から 1 0までの整数を表す。 R7は、 それぞれ独立に、 水素または C (R9) 3である。 R8は、 水素、 炭素原子 数 1〜約 20のアルキル基、 または C62。ァリール基であり、 複数の場合、 そ れぞれ同一であるかまたは異なる。 R9は、 それぞれ独立に、 水素、 フッ素、 ま たは塩素である。
Figure imgf000028_0002
In the formula (8), Z 'is a covalent bond, C (R 7) 2 group, CO group, O atom, S atom, S_〇 2 group, S i (C 2 H 5 ) 2 group, or NR 8 groups, and when plural, they are the same or different. W represents an integer from 1 to 10; Each R 7 is independently hydrogen or C (R 9 ) 3 . R 8 is hydrogen, 1 to about 20 alkyl carbon atoms or C 6 ~ 2,. In case of multiple groups, they are the same or different. R 9 is independently hydrogen, fluorine, or chlorine.
また液晶材料としては、 コレステリ ック液晶性ポリマーなどの液晶材料からな るコレステリック配向フィルム、 コレステリック配向層をフィルムにて支持した もの、 およびディスコティック液晶層等が挙げられる。 まずコレステリック配向 フィルムは熱処理等適宜選択される手法によってコレステリ ックらせん軸がフィ ルム法線方向に存在するような均一なブラナー配向したものが好ましく、 また選 択反射波長え sが 300 nm以下であることが好ましい。 The liquid crystal material includes liquid crystal materials such as cholesteric liquid crystalline polymers. Cholesteric alignment film, a film in which a cholesteric alignment layer is supported by a film, a discotic liquid crystal layer, and the like. First, the cholesteric alignment film is preferably one having a uniform brilliant orientation such that the cholesteric helical axis exists in the normal direction of the film by an appropriate method such as heat treatment, and the selective reflection wavelength s is 300 nm or less. Preferably there is.
また、コレステリ ック配向を実現する材料としては、液晶性ポリマーに限らず、 単体でコレステリック配向を実現できる重合性基を有する液晶モノマー分子、 も しくは重合性基を有する液晶性モノマーとキラル化合物の混合物等も好ましく用 いられる。 これらの材料を熱処理等適宜選択される手法によってコレステリック 配向させた後、 重合性基を熱、 光等好適に用いられる手段によって硬化させ、 コ レステリック配向を固定化して用いることも出来る。  The material for realizing cholesteric alignment is not limited to a liquid crystal polymer, but a liquid crystal monomer molecule having a polymerizable group capable of realizing cholesteric alignment alone, or a liquid crystal monomer having a polymerizable group and a chiral compound. A mixture of these is also preferably used. After these materials are cholesterically oriented by a method selected appropriately, such as heat treatment, the polymerizable group can be cured by a suitably used means such as heat or light, and the cholesteric orientation can be fixed.
また、 負の 1軸性光学異方性層を形成する上記以外の液晶材料としてはホモジ 二ァス配向させた重合性のディスコティック液晶化合物も好ましく用いられる。 上記の負の 1軸光学異方性層を有する光学フィルムの厚さを d 3、 該光学異方 性層面内の主屈折率を Nx 3および Ny 3、厚さ方向の主屈折率を N z 3、かつ、 Nx 3≥Ny 3〉N z 3とした場合に、面内のリターデーション値(R e 3 = (N X 3 -N y 3) X d 3 [nm]) が O nn!〜 20 nm、 厚さ方向のリターデーショ ン値 (R t h 3 = (N X 3 -N z 3 ) X d 3 [n m]) 力 S 50 n n!〜 500 n mで あることが好ましい。  Further, as a liquid crystal material other than the above that forms the negative uniaxial optically anisotropic layer, a polymerizable discotic liquid crystal compound that is homogeneously aligned is also preferably used. The thickness of the optical film having the negative uniaxial optically anisotropic layer is d 3, the main refractive index in the optical anisotropic layer surface is Nx 3 and Ny 3, and the main refractive index in the thickness direction is N z 3 and Nx 3≥Ny 3> N z 3, the in-plane retardation value (R e 3 = (NX 3 -N y 3) X d 3 [nm]) is O nn! ~ 20 nm, thickness direction retardation value (R t h 3 = (N X 3 -N z 3) X d 3 [n m]) Force S 50 n n! It is preferably ~ 500 nm.
負の 1軸光学異方性を有する光学フィルムの光学パラメータである R e 3値、 R t h 3値は、 液晶表示装置の方式や種々の光学パラメーターに依存することか ら一概には言えないが、 550 nmの単色光に対して面内のリターデーション値 (R e 3) は、 通常 0 ηπ!〜 20 nm、 好ましくは 0 ηπ!〜 1 0 nm、 さらに好 ましくは 0 nn!〜 5 nmの範囲であり、かつ、厚さ方向のリターデ一ション値(R t h 3 ) は、 通常 50 η π!〜 500 n m、 好ましくは 80 η π!〜 400 n m、 さ らに好ましくは 1 00 nm〜300 n mに制御されたものである。  The R e 3 and R th 3 values, which are the optical parameters of an optical film having negative uniaxial optical anisotropy, cannot be generally described because they depend on the type of liquid crystal display device and various optical parameters. The in-plane retardation (R e 3) for 550 nm monochromatic light is usually 0 ηπ! ~ 20 nm, preferably 0 ηπ! ~ 10 nm, more preferably 0 nn! The retardation value in the thickness direction (R t h 3) is usually 50 ηπ! ~ 500 nm, preferably 80 η π! It is controlled to ˜400 nm, more preferably 100 nm to 300 nm.
前記 R e 3値及び R t h 3値を上記範囲にすることにより、 液晶表示装置の視 野角改良フィルムとしては、 液晶表示の色調補正を行いながら視野角を広げるこ とが可能となる。 R e 3値が 20 nmより大きい場合、 大きい正面位相差値の影 響で、 液晶表示素子の正面特性を悪化させる恐れがある。 また、 R t h 3値が 5 0 n mより小さいあるいは 5 0 0 n mより大きい場合には、 十分な視野角改良効 果が得られないかあるいは、 斜めから見たときに不必要な色付きが生じる恐れが ある。 次に、 本発明の楕円偏光板の製造方法について説明する。 By setting the Re 3 value and the R th 3 value in the above ranges, the viewing angle improving film of the liquid crystal display device can widen the viewing angle while correcting the color tone of the liquid crystal display. If the Re 3 value is larger than 20 nm, the front characteristics of the liquid crystal display element may be deteriorated due to the large front phase difference value. R th 3 value is 5 If it is smaller than 0 nm or larger than 500 nm, a sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction. Next, the manufacturing method of the elliptically polarizing plate of this invention is demonstrated.
本発明の楕円偏光板は、 偏光素子の片面のみ透光性保護フィルムにより保護さ れた積層構造を有する直線偏光板、 位相差機能を有する位相差フィルムおよびホ メォトロピック配向液晶層からなり、 さらに必要により前述の光学フィルムを組 み込んでなり、 それぞれ粘着剤層または接着剤層 (以下、 粘 ·接着剤層という) を介して互いに貼り合わせることにより製造することができる。 また、 配向基板 上に形成されたホメオト口ピック配向液晶層を、 粘 ·接着剤層を介して前記直線 偏光板、 位相差フィルムあるいは光学フィルムに貼着した後、 配向基板を剥離し てホメオト口ピック配向液晶層のみを直線偏光板、 位相差フィルムあるいは光学 フィルムに転写する手法によっても積層させることができる。  The elliptically polarizing plate of the present invention comprises a linearly polarizing plate having a laminated structure in which only one surface of the polarizing element is protected by a light-transmitting protective film, a retardation film having a retardation function, and a homeotropic alignment liquid crystal layer, and further required Can be produced by incorporating the above-described optical films and bonding them to each other via a pressure-sensitive adhesive layer or an adhesive layer (hereinafter referred to as a “viscous adhesive layer”). In addition, the home-orientated pick-aligned liquid crystal layer formed on the alignment substrate is attached to the linearly polarizing plate, the retardation film or the optical film via the adhesive / adhesive layer, and then the alignment substrate is peeled off to remove the homeo-mouth. It can also be laminated by a method in which only the pick-aligned liquid crystal layer is transferred to a linearly polarizing plate, a retardation film or an optical film.
具体的な製造方法としては、 以下のような 〔1〕 〜 〔4〕 の方法が例示できる。 なお、 以下の記載において 「 」 は層の界面を表す。  Specific examples of the production method include the following methods [1] to [4]. In the following description, “” represents a layer interface.
[ 1 3 ( 1 ) 透光性保護フィルムを、 接着剤層 1を介して偏光素子と接着し、 透 光性保護フィルム Z接着剤層 1 /偏光素子からなる積層体 ( I ) (直線偏光板) を 搏る第 1工程、  [1 3 (1) A transparent protective film is bonded to a polarizing element through an adhesive layer 1, and a laminate (I) (linear polarizing plate comprising the transparent protective film Z adhesive layer 1 / polarizing element )
( 2 ) 位相差フィルム上に正の一軸性を示す液晶性組成物の層を形成し、 該層 をホメオト口ピック配向させた後、 配向を固定化したホメオト口ピック配向液晶 層を形成して、 位相差フィルム Zホメォト口ピック配向液晶層からなる積層体 (2) A layer of a liquid crystalline composition exhibiting positive uniaxiality is formed on a retardation film, and the layer is homeotropically aligned, and then a homeotropically aligned liquid crystal layer with a fixed orientation is formed. , Retardation film Z Home-made liquid crystal layer
(II) を得る第 2工程、 A second step of obtaining (II),
( 3 ) 前記積層体 (II) の位相差フィルム側を、 接着剤層 2を介して、 前記積 層体 ( I ) の偏光素子側と接着し、 透光性保護フィルム/接着剤層 1 Z偏光素子 接着剤層 2 位相差フィルム/ホメオト口ピック配向液晶層からなる楕円偏光 板を得る第 3工程、  (3) The retardation film side of the laminate (II) is adhered to the polarizing element side of the laminate (I) via the adhesive layer 2, and the translucent protective film / adhesive layer 1 Z Polarizing element Adhesive layer 2 Third step to obtain an elliptically polarizing plate consisting of a retardation film / homeotope picked alignment liquid crystal layer,
の各工程を少なくとも経ることを特徴とする楕円偏光板の製造方法。 The manufacturing method of the elliptically polarizing plate characterized by passing through each process of these.
〔2〕 ( 1 ) 透光性保護フィルムを、 接着剤層 1を介して偏光素子と接着し、 透 光性保護フィルム Z接着剤層 1 Z偏光素子からなる積層体 ( I ) (直線偏光板) を 得る第 1工程、 [2] (1) A translucent protective film is bonded to a polarizing element via an adhesive layer 1, and a laminated body comprising a translucent protective film Z adhesive layer 1 Z polarizing element (I) (linear polarizing plate ) First step to get,
(2) 位相差フィルム上に正の一軸性を示す液晶性組成物の層を形成し、 該層 をホメオト口ピック配向させた後、 配向を固定化したホメオト口ピック配向液晶 層を形成して、 位相差フィルム Zホメォト口ピック配向液晶層からなる積層体 (2) A layer of liquid crystalline composition exhibiting positive uniaxiality is formed on the retardation film, and the layer is homeotropically aligned, and then a homeotropically aligned liquid crystal layer in which the alignment is fixed is formed. , Retardation film Z Home-made liquid crystal layer
(II) を得る第 2工程、 A second step of obtaining (II),
(3) 前記積層体 (II) のホメオト口ピック配向液晶相側を、 接着剤層 2を介 して、 前記積層体 ( I ) の偏光素子側と接着し、 透光性保護フィルム Z接着剤層 1 偏光素子 Z接着剤層 2 ホメオト口ピック配向液晶層 位相差フィルムから なる楕円偏光板を得る第 3工程、  (3) The homeotropic orientation liquid crystal phase side of the laminate (II) is adhered to the polarizing element side of the laminate (I) via the adhesive layer 2, and the translucent protective film Z adhesive Layer 1 Polarizing element Z Adhesive layer 2 Home-orientated pick-aligned liquid crystal layer Third step of obtaining an elliptically polarizing plate comprising a retardation film,
の各工程を少なくとも経ることを特徴とする楕円偏光板の製造方法。 The manufacturing method of the elliptically polarizing plate characterized by passing through each process of these.
〔3〕 ( 1 ) 透光性保護フィルムを、 接着剤層 1を介して偏光素子と接着し、 透 光性保護フィルム Z接着剤層 1 Z偏光素子からなる積層体 ( I ) (直線偏光板) を 得る第 1工程、  [3] (1) A translucent protective film is bonded to a polarizing element via an adhesive layer 1, and a laminated body comprising the translucent protective film Z adhesive layer 1 Z polarizing element (I) (linear polarizing plate ) To obtain the first step,
(2) 配向基板上に正の一軸性を示す液晶性組成物の層を形成し、 該層をホメ オト口ピック配向させた後、 配向を固定化したホメオト口ピック配向液晶層を形 成して、 配向基板 Zホメオト口ピック配向液晶層からなる積層体 (in) を得る第 (2) A layer of a liquid crystalline composition exhibiting positive uniaxiality is formed on an alignment substrate, and the layer is home-mouth pick-aligned, and then a home-mouth pick-alignment liquid crystal layer with a fixed orientation is formed. To obtain a laminated body (in) composed of an alignment substrate Z homeotropic alignment liquid crystal layer.
2工程、 2 processes,
(3) 前記積層体 (III) のホメオト口ピック配向液晶層側を、 接着剤層 2を介 して、 位相差フィルムと接着せしめた後、 配向基板を剥離してホメオト口ピック 配向液晶層を位相差フィルムに転写し、 位相差フィルム Z接着剤層 2 Zホメオト 口ピック配向液晶層からなる積層体 (IV) を得る第 3工程、  (3) After adhering the homeotropic orientation liquid crystal layer side of the laminate (III) to the retardation film via the adhesive layer 2, the orientation substrate is peeled off to form the homeotropic orientation liquid crystal layer. A third step of obtaining a laminate (IV) comprising a retardation film, a Z adhesive layer, a 2 Z homeotopic pick alignment liquid crystal layer, and transferred to the retardation film;
(4) 前記積層体 (IV) の位相差フィルム側を、 接着剤層 3を介して、 前記積層 体 ( I ) の偏光素子側と接着し、 透光性保護フィルム 接着剤層 1Z偏光素子ノ 接着剤層 3 位相差フィルム Z接着剤層 2 ホメオト口ピック配向液晶層からな る楕円偏光板を得る第 4工程、  (4) The retardation film side of the laminate (IV) is adhered to the polarizing element side of the laminate (I) via the adhesive layer 3, and the translucent protective film adhesive layer 1Z polarizing element Adhesive layer 3 Retardation film Z Adhesive layer 2 Fourth step of obtaining an elliptically polarizing plate consisting of a home-orientated pick-aligned liquid crystal layer,
の各工程を少なく とも経ることを特徴とする楕円偏光板の製造方法。 A method for producing an elliptically polarizing plate, characterized by passing through each of the steps.
〔4〕 ( 1 ) 透光性保護フィルムを、 接着剤層 1を介して偏光素子と接着し、 透 光性保護フィルム Z接着剤層 1 Z偏光素子からなる積層体 ( I ) (直線偏光板) を 得る第 1工程、  [4] (1) A translucent protective film is bonded to a polarizing element via an adhesive layer 1, and a laminated body comprising a translucent protective film Z adhesive layer 1 Z polarizing element (I) (linear polarizing plate ) To obtain the first step,
(2) 配向基板上に正の一軸性を示す液晶性組成物の層を形成し、 該層をホメ オト口ピック配向させた後、 配向を固定化したホメォト口ピック配向液晶層を形 成して、 配向基板/ホメオト口ピック配向液晶層からなる積層体 (III) を得る第 2工程、 (2) A layer of liquid crystalline composition exhibiting positive uniaxiality is formed on the alignment substrate, and the layer is A second step of obtaining a laminate (III) composed of an alignment substrate / homeotope picked liquid crystal layer by forming a home picked liquid crystal layer having a fixed orientation after photo-pic orientation.
( 3 ) 前記積層体 (III) のホメオト口ピック配向液晶層側を、 接着剤層 2を介 して、 位相差フィルムと接着せしめた後、 配向基板を剥離してホメオト口ピック 配向液晶層を位相差フィルムに転写し、 位相差フィルム /接着剤層 2 ホメオト 口ピック配向液晶層からなる積層体 (IV) を得る第 3工程、  (3) After adhering the home-orientation pick-aligned liquid crystal layer side of the laminate (III) to the retardation film via the adhesive layer 2, the orientation substrate is peeled off to form the home-orientation pick-alignment liquid crystal layer. A third step of obtaining a laminate (IV) comprising a retardation film / adhesive layer 2 home-orientated pick-aligned liquid crystal layer, transferred to a retardation film,
( 4 ) 前記積層体 (IV) のホメオト口ピック配向液晶層側を、 接着剤層 3を介し て、 前記積層体 ( I ) の偏光素子側と接着し、 透光性保護フィルム Z接着剤層 1 Z偏光素子/接着剤層 3 ホメオト口ピック配向液晶層 Z接着剤層 2 位相差フ イルムからなる楕円偏光板を得る第 4工程、  (4) The homeotropic orientation liquid crystal layer side of the laminate (IV) is adhered to the polarizing element side of the laminate (I) via the adhesive layer 3, and the translucent protective film Z adhesive layer 1 Z-polarization element / adhesive layer 3 Home-orientated pick-alignment liquid crystal layer Z adhesive layer 2 Fourth step to obtain an elliptically polarizing plate composed of retardation film,
の各工程を少なくとも経ることを特徴とする楕円偏光板の製造方法。 The manufacturing method of the elliptically polarizing plate characterized by passing through each process of these.
また、 直線偏光板、 位相差フィルム、 あるいは光学フィルムの積層方法として は、 例えば後述の粘 ·接着剤層を用いて直接両者を積層する手法、 光学フィルム に液晶配向能を付与し、 均一でモノ ドメインな液晶配向性を示し、 かつその配向 状態を容易に固定化できる液晶性高分子等を塗布等の手段により設ける手法、 フ イルム基板上に設けられた液晶性高分子やそれらを含む組成物を後述の粘着剤も しくは接着剤を用いて別の直線偏光板やフィルムへ転写する手法等が好適に用い られる。  In addition, as a method of laminating a linear polarizing plate, a retardation film, or an optical film, for example, a method of directly laminating both using an adhesive layer described later, a liquid crystal alignment ability is imparted to the optical film, and a uniform and mono A method of providing a liquid crystalline polymer that exhibits domain-like liquid crystal orientation and can easily fix the orientation state by means such as coating, a liquid crystalline polymer provided on a film substrate, and a composition containing them For example, a method of transferring the film to another linearly polarizing plate or a film using an adhesive or an adhesive described later is preferably used.
直線偏光板、 ホメオト口ピック配向液晶層や各光学異方性層の積層や転写に用 いる粘 ·接着剤層を形成する粘着剤や接着剤は光学的に等方性で透明なものであ れば特に制限されない。 例えば、 アク リル系重合体、 シリ コーン系ポリマー、 ポ リエステル、 ポリ ウレタン、 ポリアミ ド、 ポリエーテル、 フッ素系やゴム系などの ポリマーをべ一スポリマーとするものを適宜に選択して用いることができる。 こ れらの粘 ·接着剤には、 塗布性や接着性、 剥離性等を調整するために、 各種の添 加剤、 例えば界面活性剤、 消泡剤、 增粘剤、 粘着性付与剤、 レべリ ング剤を添加 してもよい。 また、 光や電子線、 熱などの外部刺激により反応して重合や架橋す るような反応性のものや、 フッ素系やゴム系などを用いることができる。 これら の中でも特に、 アク リル系粘着剤の如く光学的透明性に優れ、 適度な濡れ性、 凝 集性や接着性の粘着特性を示して、 耐候性や耐熱性などに優れるものが好ましく 用いうる。 The pressure-sensitive adhesives and adhesives used to form linear adhesive plates, home-orientated pick-aligned liquid crystal layers and optically anisotropic layers, and adhesive / adhesive layers used for transfer are optically isotropic and transparent. If there is no particular limitation. For example, acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyethers, fluorine-based or rubber-based polymers can be appropriately selected and used. . For these adhesives and adhesives, various additives such as surfactants, antifoaming agents, thickeners, tackifiers, A leveling agent may be added. In addition, reactive materials that react by an external stimulus such as light, electron beam, heat, and the like to be polymerized or cross-linked, and fluorine-based or rubber-based materials can be used. Among these, those that are excellent in optical transparency, such as acrylic adhesives, exhibit appropriate wettability, cohesiveness, and adhesive properties, and are excellent in weather resistance and heat resistance are preferable. Can be used.
本発明に使用される直線偏光板は片側に透光性保護フィルムを有しているが、 通常、 直線偏光板は液晶表示装置に組み込まれて透光性保護フィルム層が最外層 となるため、 透光性保護フィルムは偏光子保護のためにも前述のように透明性、 機械的強度、熱安定性、水分遮蔽性、等方性などに優れるものが好ましい。一方、 透光性保護フィルムのない偏光子側ゃホメオト口ピック配向液晶層や位相差フィ ルム等が最外層となることはないが、 各種加工時の傷発生防止 (保護) のためや 加工 ·熱による変形等に伴う応力を緩和する機能を粘 ·接着剤に持たせることも できる。 また、 粘 ·接着剤層は 1層である必要はなく複数層が積層されてもいて もよい。  Although the linearly polarizing plate used in the present invention has a translucent protective film on one side, since the linearly polarizing plate is usually incorporated in a liquid crystal display device and the translucent protective film layer is the outermost layer, For the purpose of protecting the polarizer, the light-transmitting protective film is preferably excellent in transparency, mechanical strength, thermal stability, moisture shielding property, isotropy and the like as described above. On the other hand, the polarizer side without a translucent protective film is not the outermost layer, but the liquid crystal layer or retardation film is not the outermost layer, but it is used to prevent (protect) scratches during various processing. The adhesive can also have a function to relieve the stress caused by heat deformation. Further, the adhesive / adhesive layer need not be a single layer, and a plurality of layers may be laminated.
粘 ·接着剤層の形成は、 適宜な方式で行うことができる。 その例としては、 例 えば、 トルェンゃ酢酸ェチル等の適宜な溶剤の単独物又は混合物からなる溶媒に ベースポリマーまたはその組成物を溶解又は分散させた 1 0〜4 0質量%程度の 粘 ·接着剤の溶液を調製し、 それを流延方式や塗工方式等の適宜な展開方式で前 記の直線偏光板、位相差フィルム、液晶層や光学異方性層上に直接付設する方式、 あるいは前記に準じセパレータ上に粘 ·接着剤層を形成してそれを前記の直線偏 光板、 位相差フィルム、 液晶層や光学異方性層上に移着する方式などが挙げられ る。 また、 粘 ·接着剤層には、 例えば天然物や合成物の樹脂類、 特に、 粘着性付 与樹脂や、 ガラス繊維、 ガラスビーズ、 金属粉、 その他の無機粉末等からなる充 填剤、 顔料、 着色剤、 酸化防止剤などの粘 ·接着剤に添加されることのある添加 剤を含有していてもよい。 また微粒子を含有して光拡散性を示す粘 ·接着剤層な どであってもよレ、。  The adhesive layer can be formed by an appropriate method. Examples thereof include, for example, about 10 to 40% by mass of a base polymer or a composition thereof dissolved or dispersed in a solvent composed of an appropriate solvent alone or a mixture such as toluene cetyl acetate. A method of preparing a solution of the agent and attaching it directly on the linear polarizing plate, retardation film, liquid crystal layer or optically anisotropic layer by an appropriate development method such as a casting method or a coating method, or In accordance with the above, there may be mentioned a method in which an adhesive layer is formed on a separator and transferred onto the linearly polarizing plate, retardation film, liquid crystal layer or optically anisotropic layer. For the adhesive / adhesive layer, for example, natural or synthetic resins, in particular, adhesive resins, fillers made of glass fibers, glass beads, metal powders, other inorganic powders, pigments, etc. An additive that may be added to the adhesive such as a colorant and an antioxidant may be contained. It can also be an adhesive layer that contains fine particles and exhibits light diffusivity.
粘 ·接着剤層の厚さは、 貼着する部材を貼着しかつ十分な密着力を維持できる 限り特に膜厚に制限はなく、 粘 ·接着剤の特性や粘 ·接着される部材により適宜 選定することができる。 楕円偏光板の総厚の低減要求の強いことから、 粘,接着 剤の厚さは薄いほうが好ましいが、 通常は 2〜8 0 μ πι、 好ましくは 5〜5 0 μ m、 さらに好ましくは 5〜4 0 μ mである。 この範囲外では、 接着力が不足した り、 積層時や楕円偏光板の保存時に端部から滲み出すなどして好ましくない。 なお、ホメオト口ピック配向液晶層を粘 ·接着剤層を介して、前記直線偏光板、 位相差フィルムあるいは光学フィルムに転写する際には、 転写が容易となるよう 下記 (ァ) 〜 (キ) のようなプロセスを適宜用いることもできる。 The thickness of the adhesive layer is not particularly limited as long as the member to be adhered can be adhered and sufficient adhesion can be maintained, depending on the properties of the adhesive and the adhesive and the material to be adhered. Can be selected. Since there is a strong demand for reducing the total thickness of the elliptically polarizing plate, it is preferable that the thickness of the adhesive and the adhesive is thin, but usually 2 to 80 μπι, preferably 5 to 50 μm, more preferably 5 to 40 μm. Outside this range, it is not preferable because the adhesive strength is insufficient, or it oozes out from the edge during lamination or storage of the elliptically polarizing plate. It should be noted that, when transferring the home-orientated pick-aligned liquid crystal layer to the linearly polarizing plate, retardation film or optical film via the adhesive layer, the transfer is facilitated. The following processes (a) to (ki) can be used as appropriate.
(ァ) 配向基板上に形成された液晶配向が固定化されたホメオト口ピック配向 液晶層を、 接着剤層 1を介して直接、 直線偏光板、 位相差フィルムあるいは光学 フィルムへ貼着し、 配向基板を剥離してホメオト口ピック配向液晶層を直線偏光 板、 位相差フィルムあるいは光学フィルムへ転写する。  (A) Home-to-mouth pick alignment in which the liquid crystal alignment formed on the alignment substrate is fixed. The liquid crystal layer is directly bonded to the linearly polarizing plate, retardation film or optical film via the adhesive layer 1 and aligned. The substrate is peeled off, and the home-orientated pick-aligned liquid crystal layer is transferred to a linear polarizing plate, a retardation film or an optical film.
(ィ) 配向基板上に形成された液晶配向が固定化されたホメオト口ピック配向 液晶層を、 接着剤層 1を介して再剥離性基板 1と接着せしめた後、 配向基板を剥 離してホメオト口ピック配向液晶層を再剥離性基板 1に転写し、 再剥離性基板 1 (Ii) Home-to-mouth pick alignment in which the liquid crystal alignment formed on the alignment substrate is fixed. After the liquid crystal layer is bonded to the re-peelable substrate 1 through the adhesive layer 1, the alignment substrate is peeled off and the homeotope is aligned. Mouth pick alignment liquid crystal layer is transferred to removable substrate 1 and removable substrate 1
Z接着剤層 1 ホメオト口ピック配向液晶層からなる中間体 1を作製し、 さらに 接着剤層 2を介して再剥離性基板 2と接着せしめた後、再剥離性基板 1を剥離し、 接着剤層 1ノホメオト口ピック配向液晶層ノ接着剤層 2 再剥離性基板 2からな る中間体 2を作製し、 さらに接着剤層 1側にセパレートフイルム付きのノンキヤ リア糊を貼合した後、 セパレートフィルムを剥離し適宜直線偏光板、 位相差フィ ルムあるいは光学フィルムへ貼着し、 再剥離性基板 2を剥離する。 Z adhesive layer 1 Prepare intermediate 1 consisting of home-orientated pick-aligned liquid crystal layer, and further adhere to removable substrate 2 through adhesive layer 2, then peel off removable substrate 1 and adhesive Layer 1 No-homeo orientation liquid crystal layer Adhesive layer 2 Removable substrate 2 Intermediate 2 is produced, and a non-carrier paste with a separate film is further bonded to the adhesive layer 1 side. Is peeled off and attached to a linear polarizing plate, a retardation film or an optical film as appropriate, and the releasable substrate 2 is peeled off.
(ゥ) 配向基板上に形成された液晶配向が固定化されたホメオト口ピック配向 液晶層を、 接着剤層 1を介して再剥離性基板 1と接着せしめた後、 配向基板を剥 離してホメオト口ピック配向液晶層を再剥離性基板 1に転写し、 再剥離性基板 1 Z接着剤層 1 ホメオト口ピック配向液晶層からなる中間体 1を作製し、 さらに 接着剤層 2を介して再剥離性基板 2と接着せしめた後、再剥離性基板 1を剥離し、 接着剤層 1 /ホメオト口ピック配向液晶層 Z接着剤層 2 /再剥離性基板 2からな る中間体 2を作製し、 さらに接着剤層 1側にセパレートフィルム付きのノンキヤ リア糊 (粘着剤) を貼合した後、 再剥離性基板 2を剥離しセパレートフィルム 粘着剤層 接着剤層 1 ホメオト口ピック配向液晶層 接着剤層 2からなる中間 体 3を作製し、 さらに接着剤層 2側にもセパレートフイルム付きのノンキヤリァ 糊を貼合し、 セパレートフィルムノ粘着剤層ノ接着剤層 1 /ホメオト口ピック配 向液晶層ノ接着剤層 2 Z粘着剤層 Zセパレートフィルムからなる中間体 4を作製 し、 セパレートフィルムを剥離し、 直線偏光板、 位相差フィルムあるいは光学フ イルムへ貼着する。  (U) Home-to-mouth pick alignment in which the liquid crystal alignment formed on the alignment substrate is fixed. After the liquid crystal layer is bonded to the removable substrate 1 through the adhesive layer 1, the alignment substrate is peeled off and the homeotope is aligned. Transfer the lip-pick orientation liquid crystal layer to the removable substrate 1 and re-peel the substrate 1 Z adhesive layer 1 Create intermediate 1 consisting of home-pick orientation liquid crystal layer, and then re-peel through the adhesive layer 2 After adhering to the releasable substrate 2, the releasable substrate 1 is peeled off to produce an intermediate 2 consisting of an adhesive layer 1 / homeotopick orientation liquid crystal layer Z adhesive layer 2 / removable substrate 2, Furthermore, after sticking a non-carrier paste with a separate film (adhesive) on the adhesive layer 1 side, the re-peelable substrate 2 is peeled off and the separate film is applied. Adhesive layer 1 Adhesive layer 1 Home-to-mouth orientation liquid crystal layer Adhesive layer Intermediate 3 consisting of 2 and adhesive layer 2 Also paste a non-carrying glue with a separate film, separate film adhesive layer no adhesive layer 1 / homeo orientation liquid crystal layer adhesive layer 2 Z adhesive layer intermediate 4 consisting of Z separate film Prepare, peel off the separate film, and stick to a linear polarizing plate, retardation film, or optical film.
さらに接着剤に適宜表面改質剤等の添加剤を添加することで、 再剥離性基板と ホメオト口ピック配向液晶層との貼着の際の両者の密着力を低減させかつ再剥離 性基板と接着剤層との密着力を維持させることで再剥離性基板側に接着剤層が貼 着したまま剥離することもできる。 その際に用いられる表面改質剤として作用す る例えば界面活性剤等は製品の光学的欠陥の検査性や剥離性に悪影響を及ぼさな い範囲であれば種類、 添加量に特に制限はない。 このような手法によりホメオト 口ピック配向液晶層を前記直線偏光板、 位相差フィルムあるいは光学フィルムに 転写する際には、 転写が容易となるよう下記 (ェ) 〜 (キ) のようなプロセスを 適宜用いることもできる。 Furthermore, by adding appropriate additives such as surface modifiers to the adhesive, the adhesion between the releasable substrate and the home-to-mouth pick alignment liquid crystal layer can be reduced and re-peeled. By maintaining the adhesion between the adhesive substrate and the adhesive layer, the adhesive layer can be peeled off while being adhered to the removable substrate side. There are no particular restrictions on the type and amount of the surfactant that acts as the surface modifier used in this case, for example, as long as it does not adversely affect the optical defect inspection and peelability of the product. When transferring the home-orientation-pick-aligned liquid crystal layer to the linearly polarizing plate, the retardation film or the optical film by such a method, the following processes (e) to (g) are appropriately performed to facilitate the transfer. It can also be used.
(ェ) 配向基板上に形成された液晶配向が固定化されたホメォト口ピック配向 液晶層を、 接着剤層 1を介して再剥離性基板 1 と接着せしめた後、 配向基板を剥 離してホメオト口ピック配向液晶層を再剥離性基板 1に転写し、 再剥離性基板 1 接着剤層 1 Zホメオト口ピック配向液晶層からなる中間体 1を作製し、 さらに 接着剤層 2を介して再剥離性基板 2と接着せしめた後、再剥離性基板 1を剥離し、 接着剤層 1 /ホメオト口ピック配向液晶層 接着剤層 2 再剥離性基板 2からな る中間体 2を作製し、 さらに接着剤層 1側にセパレートフイルム付きのノンキヤ リア糊を貼合した後、 セパレートフィルムを剥離し適宜直線偏光板、 位相差フィ ルムあるいは光学フィルムへ貼着し、 再剥離性基板 2を接着剤層 2が貼着した状 態で剥離する。  (D) Home-mouth pick alignment with fixed liquid crystal alignment formed on the alignment substrate After the liquid crystal layer is bonded to the re-peelable substrate 1 via the adhesive layer 1, the alignment substrate is peeled off and the homeotope is aligned. Transfer the mouth-pick orientation liquid crystal layer to the re-peelable substrate 1 and re-peel the substrate 1 Adhesive layer 1 Make the intermediate 1 consisting of the Z home-to-mouth pick-alignment liquid crystal layer, and then re-peel it through the adhesive layer 2 Adhesive to adhesive substrate 2 and then peel off removable substrate 1 to produce intermediate 2 consisting of adhesive layer 1 / home-to-mouth pick alignment liquid crystal layer adhesive layer 2 removable substrate 2 and further adhesion Adhere non-carrier paste with separate film on the adhesive layer 1 side, then peel off the separate film and attach it to a linear polarizing plate, retardation film or optical film as appropriate, and attach the releasable substrate 2 to the adhesive layer 2 Peels off in the state of sticking.
(ォ) 配向基板上に形成された液晶配向が固定化されたホメオト口ピック配向 液晶層を、 接着剤層 1を介して再剥離性基板 1 と接着せしめた後、 配向基板を剥 離してホメオト口ピック配向液晶層を再剥離性基板 1に転写し、 再剥離性基板 1 接着剤層 1 ホメオト口ピック配向液晶層からなる中間体 1を作製し、 さらに 接着剤層 2を介して再剥離性基板 2と接着せしめた後、再剥離性基板 1を剥離し、 接着剤層 1 Zホメオト口ピック配向液晶層ノ接着剤層 2 Z再剥離性基板 2からな る中間体 2を作製し、 さらに接着剤層 1側にセパレートフィルム付きのノンキヤ リア糊を貼合した後、 再剥離性基板 2を接着剤層 2が貼着した状態で剥離し、 セ パレートフイルム Z粘着剤層 接着剤層 1 Zホメオト口ピック配向液晶層からな る中間体 5を作製し、 さらにホメオト口ピック配向液晶層側にもセパレートフィ ルム付きのノンキヤリァ糊を貼合しセパレートフィルム 粘着剤層/接着剤層 1 /ホメオト口ピック配向液晶層 Z接着剤層 2 /粘着剤層ノセパレートフィルムか らなる中間体 6を作製し、 セパレートフィルムを剥離し、 適宜直線偏光板、 位相 差フィルムあるいは光学フィルムへ貼着する。 (E) Home-to-mouth pick alignment in which the liquid crystal alignment formed on the alignment substrate is fixed. After the liquid crystal layer is bonded to the removable substrate 1 through the adhesive layer 1, the alignment substrate is peeled off and the homeotope is aligned. Transfer the lip-pickup alignment liquid crystal layer to the removable substrate 1, re-peelable substrate 1 Adhesive layer 1 Create intermediate 1 consisting of homeo-pick alignment liquid crystal layer, and re-peelability through the adhesive layer 2 After adhering to the substrate 2, the releasable substrate 1 is peeled off, and the intermediate layer 2 made of the adhesive layer 1 Z homeotope orientation liquid crystal layer adhesive layer 2 Z removable substrate 2 is prepared. Adhesive layer 1 Non-carrier paste with separate film is pasted, then peelable substrate 2 is peeled off with adhesive layer 2 attached, separate film Z adhesive layer Adhesive layer 1 Z An intermediate 5 consisting of a homeotopic pick alignment liquid crystal layer was produced, and A non-carrier paste with a separate film is also bonded to the liquid crystal layer side of the meto-mouth pick orientation layer. Separate film Adhesive layer / Adhesive layer 1 / Home-pick orientation liquid crystal layer Z Adhesive layer 2 / Adhesive layer No separate film Intermediate 6 is prepared, and the separate film is peeled off. Adhere to the difference film or optical film.
(力) 配向基板上に形成された液晶配向が固定化されたホメオト口ピック配向 液晶層を、 接着剤層 1を介して再剥離性基板 1と接着せしめた後、 配向基板を剥 離してホメオト口ピック配向液晶層を再剥離性基板 1に転写し、 再剥離性基板 1 接着剤層 1ノホメオト口ピック配向液晶層からなる中間体 1を作製し、 さらに 接着剤層 2を介して再剥離性基板 2と接着せしめた後、再剥離性基板 2を剥離し、 再剥離性基板 1 接着剤層 1 /ホメオト口ピック配向液晶層 接着剤層 2からな る中間体 2を作製し、 さらに接着剤層 2側にセパレートフィルム付きのノンキヤ リア糊を貼合した後、 セパレートフィルムを剥離し適宜直線偏光板、 位相差フィ ルムあるいは光学フィルムへ貼着し、 再剥離性基板 1を接着剤層 1が貼着した状 態で剥離する。  (Strength) Home-to-mouth pick alignment in which the liquid crystal alignment formed on the alignment substrate is fixed. After the liquid crystal layer is adhered to the re-peelable substrate 1 through the adhesive layer 1, the alignment substrate is peeled off and the homeotope is aligned. Transfer the mouth-pick orientation liquid crystal layer to the re-peelable substrate 1 and make the re-peelable substrate 1 Adhesive layer 1 Intermediate 1 consisting of no-homeo-mouth-pick orientation liquid crystal layer, and then re-peel through the adhesive layer 2 After adhering to substrate 2, releasable substrate 2 is peeled off, removable substrate 1 adhesive layer 1 / homeotopic orientation liquid crystal layer intermediate 2 consisting of adhesive layer 2 is produced, and further adhesive After laminating a non-carrier paste with a separate film on the layer 2 side, the separate film is peeled off and appropriately stuck to a linearly polarizing plate, retardation film or optical film, and the releasable substrate 1 is attached to the adhesive layer 1 Peel off in the attached state.
(キ) 配向基板上に形成された液晶配向が固定化されたホメォト口ピック配向 液晶層を、 接着剤層 1を介して再剥離性基板 1と接着せしめた後、 配向基板を剥 離してホメオト口ピック配向液晶層を再剥離性基板 1に転写し、 再剥離性基板 1 Z接着剤層 1 ホメオト口ピック配向液晶層からなる中間体 1を作製し、 さらに 接着剤層 2を介して再剥離性基板 2と接着せしめた後、再剥離性基板 2を剥離し、 再剥離性基板 1 /接着剤層 1 ホメオト口ピック配向液晶層 接着剤層 2からな る中間体 2を作製し、 さらに接着剤層 2側にセパレートフイルム付きのノンキヤ リァ糊を貼合した後、 再剥離性基板 1を接着剤層 1が貼着した状態で剥離しホメ オト口ピック配向液晶層 接着剤層 2 粘着剤層 Zセパレー トフィルムからなる 中間体 7を作製し、 さらにホメオト口ピック配向液晶層側にもセパレー トフィル ム付きのノンキヤリァ糊を貼合しセパレートフィルム 粘着剤層 Zホメオトロピ ック配向液晶層 接着剤層 2ノ粘着剤層 セパレートフィルムからなる中間体 8 を作製し、 セパレー トフィルムを剥離し適宜直線偏光板、 位相差フィルムあるい は光学フィルムへ貼着する。  (G) Home-mouth pick alignment with fixed liquid crystal alignment formed on the alignment substrate After the liquid crystal layer is adhered to the re-peelable substrate 1 via the adhesive layer 1, the alignment substrate is peeled off and the homeotope is aligned. Transfer the lip-pick orientation liquid crystal layer to the removable substrate 1 and re-peel the substrate 1 Z adhesive layer 1 Create intermediate 1 consisting of home-pick orientation liquid crystal layer, and then re-peel through the adhesive layer 2 After adhering to the releasable substrate 2, the releasable substrate 2 is peeled off, and the intermediate 2 comprising the releasable substrate 1 / adhesive layer 1 home-to-mouth pick alignment liquid crystal layer adhesive layer 2 is prepared and further bonded Adhesive layer 2 Adhesive layer 2 Adhesive layer 2 After peeling non-carrier paste with a separate film on the side of the adhesive layer 1 and peeling the removable substrate 1 with the adhesive layer 1 attached. Intermediate 7 made of Z separate film was prepared, and A non-carrier paste with a separate film is also bonded to the top-pick orientation liquid crystal layer side to produce a separate film, adhesive layer, Z homeotropic alignment liquid crystal layer, adhesive layer, 2 adhesive layer, and intermediate 8 consisting of a separate film. Separate the separator film and attach it to a linearly polarizing plate, retardation film or optical film as appropriate.
またホメオト口ピック配向液晶層を粘 ·接着剤層を介して、 前記直線偏光板、 位相差フィルムあるいは光学フィルムに転写する際には、 ホメオト口ピック配向 液晶層表面のみでなく他の粘 ·接着される部材の表面を表面処理して粘 ·接着剤 層との密着性を向上することができる。表面処理の手段は、特に制限されないが、 前記液晶層表面の透明性を維持できるコロナ放電処理、 スパッタ処理、 低圧 U V 照射、 プラズマ処理などの表面処理法を好適に採用できる。 これら表面処理法の なかでもコロナ放電処理が良好である。 In addition, when transferring the homeotopic orientation liquid crystal layer to the linearly polarizing plate, retardation film or optical film via the adhesive layer, not only the homeotopic orientation liquid crystal layer surface but also other adhesives and adhesives are used. The surface of the member to be processed can be surface-treated to improve the adhesion to the adhesive / adhesive layer. The surface treatment means is not particularly limited, but corona discharge treatment, sputtering treatment, low-pressure UV capable of maintaining the transparency of the liquid crystal layer surface. Surface treatment methods such as irradiation and plasma treatment can be suitably employed. Among these surface treatment methods, corona discharge treatment is good.
上記の再剥離性基板としては、 ポリエチレン、 ポリプロピレン、 ポリ(4—メチ ルペンテン— 1 ) 樹脂等のォレフィン系樹脂、 ポリアミ ド、 ポリイミ ド、 ポリア ミ ドイミ ド、 ポリエーテルイミ ド、 ポリエーテルケトン、 ポリエーテルエーテル ケ トン、 ポリエーテルスルホン、 ポリケ トンサルファイ ド、 ポリスルホン、 ポリ スチレン、 ポリフエ二レンサルファイ ド、 ポリフエ二レンオキサイ ド、 ポリェチ レンテレフタレート、 ポリブチレンテレフタレート、 ポリアリ レート、 ポリアセ タール、 一軸延伸ポリエステル、 ポリカーボネート、 ポリ ビュルアルコール、 ポ リメチルメタク リ レート、 ポリアリ レート、 アモルファスポリオレフイン、 ノノレ ボルネン系樹脂、 トリァセチルセルロース、 あるいはエポキシ樹脂等のフィルム が使用できる。  Examples of the removable substrate include polyethylene, polypropylene, and olefin-based resins such as poly (4-methylpentene-1) resin, polyamide, polyimide, polyamide imide, polyether imide, polyether ketone, and polyketone. Ether ether ketone, polyethersulfone, polyketone sulfide, polysulfone, polystyrene, polyphenylene sulfide, polyphenylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyarylate, polyacetal, uniaxially stretched polyester, polycarbonate, poly Bull alcohol, polymethyl methacrylate, polyarylate, amorphous polyolefin, nonole bornene resin, triacetyl cellulose, or epoxy Film of butter, and the like can be used.
とりわけ、 光学的欠陥の検査性に優れる透明性で光学的に等方性のフィルムと しては、 ポリ (4—メチルペンテン一 1 ) 、 ポリメチルメタク リ レート、 ポリスチ レン、 ポリカーボネート、 ポリエーテノレスノレホン、 ポリアリ レート、 ァモノレファ スポリオレフイン、 ノルボルネン系樹脂、 ト リァセチルセルロース、 あるいはェ ポキシ樹脂などの各フィルムが例示できる。  In particular, transparent and optically isotropic films with excellent optical defect inspection properties include poly (4-methylpentene 1), polymethyl methacrylate, polystyrene, polycarbonate, and polyethenores norephone. Examples thereof include films of polyarylate, monomeric polyolefin, norbornene resin, triacetyl cellulose, or epoxy resin.
これらのプラスチックフィルムには、 適度な再剥離性を持たせるために、 予め その表面にシリコーン等をコートしておくことができ、 あるいは有機薄膜又は無 機薄膜を形成しておくことができる。 また、 同様な目的で、 プラスチックフィル ムの表面に鹼化処理などの化学処理を施すか、 あるいはコロナ処理のような物理 的処理を施しておくこともできる。  In order to give these plastic films appropriate removability, the surface thereof can be coated with silicone or the like in advance, or an organic thin film or an organic thin film can be formed. For the same purpose, the surface of the plastic film can be subjected to chemical treatment such as hatching treatment or physical treatment such as corona treatment.
また、 再剥離性基板の剥離性を調整するために、 上記のプラスチックフィルム に滑剤や表面改質剤を含有させることもできる。 前記滑剤としては、 光学的欠陥 の検査性や剥離性に悪影響を及ぼさない範囲であれば、 種類、 添加量に特に制限 は無い。 滑剤の具体例としては、 微細シリカ、 微細アルミナ等が挙げられ、 添加 量の指標としては、再剥離性基板のヘイズ値が通常 5 0 %以下、好ましくは 3 0 % 以下となるようにすればよい。 添加量が少なすぎると添加効果が認められず、 一 方、 多すぎる場合には、 光学的欠陥の検査性が悪化し好ましくない。  Further, in order to adjust the peelability of the releasable substrate, the plastic film may contain a lubricant or a surface modifier. There are no particular limitations on the type and amount of the lubricant as long as it does not adversely affect the inspection and releasability of optical defects. Specific examples of the lubricant include fine silica, fine alumina, and the like. As an indicator of the amount of addition, the haze value of the removable substrate is usually 50% or less, preferably 30% or less. Good. If the addition amount is too small, the effect of addition is not recognized. On the other hand, if the addition amount is too large, the optical defect inspection property deteriorates, which is not preferable.
また、必要に応じてその他の公知の各種添加剤、例えば、ブロッキング防止剤、 酸化防止剤、 帯電防止剤、 熱安定剤、 耐衝撃性改良剤などを含有させてもよい。 再剥離性基板の剥離力に関しては、 同一材料から製造される再剥離性基板であ つても製造方法、 表面状態や使用される接着剤との濡れ性などにより変化するた め一概には決定できないが、 接着剤との界面での剥離力 (1 8 0 ° 剥離、 剥離速 度 3 0 c m/分、 室温下測定) は、 通常 0 . 3 8〜: I 2 N/m , 好ましくは 0 · 3 8〜8 . 0 NZmであることが望ましい。 剥離力がこの値より低い場合には、 配向基板上の液晶物質層を再剥離性基板と接着後、 配向基板を剥離する際、 剥離 力が低すぎ再剥離性基板に浮きが見られたりして所望する面での良好な剥離状態 が得られず、 再剥離性基板への液晶物質層の転写が不十分になる、 また剥離力が 高すぎる場合には、 再剥離性基板を剥離する際、 液晶物質層の破壊、 あるいは、 所望する層との界面で剥離ができないなどして好ましくない。 Also, if necessary, other known various additives such as anti-blocking agents, Antioxidants, antistatic agents, heat stabilizers, impact resistance improvers and the like may be included. Regarding the peelability of a removable substrate, even a releasable substrate manufactured from the same material cannot be determined unconditionally because it changes depending on the manufacturing method, surface condition, wettability with the adhesive used, etc. However, the peel force at the interface with the adhesive (1800 ° peel, peel rate 30 cm / min, measured at room temperature) is usually 0.38 ~: I 2 N / m, preferably 0 · 3 8 to 8.0 NZm is desirable. If the peel force is lower than this value, the peel-off force is too low when the alignment substrate is peeled off after the liquid crystal material layer on the alignment substrate is bonded to the re-peelable substrate. When the desired peeled surface cannot be obtained, the transfer of the liquid crystal material layer to the releasable substrate becomes insufficient, and when the peel force is too high, the releasable substrate is peeled off. It is not preferable because the liquid crystal material layer is broken or it cannot be peeled off at the interface with the desired layer.
また、 再剥離性基板の厚みも剥離性に影響する場合があり、 望ましくは 1 6〜 1 0 0 Ai m、 特に望ましくは 2 5〜5 0 x mがよレ、。 厚みが厚すぎると剥離ボイ ントが安定せず剥離性が悪化する恐れがあり、 一方薄すぎるとフィルムの機械強 度が保てなくなるため、 製造中に引き裂かれるなどのトラブルが生じる恐れがあ る。  In addition, the thickness of the removable substrate may affect the releasability, preferably 16 to 100 Aim, particularly preferably 25 to 50 xm. If the thickness is too thick, the peeling point may not be stable and the peelability may deteriorate. On the other hand, if the thickness is too thin, the mechanical strength of the film cannot be maintained, which may cause problems such as tearing during production. .
さらに、 ホメオト口ピック配向液晶層を粘,接着剤層を介さずとも、 前記直線 偏光板、 位相差フィルムあるいは光学フィルム上に前述の液晶材料を展開し、 当 該液晶材料を配向させた後、 光照射および/または加熱処理することにより当該 配向状態を固定化することにより製造することもできる。 適宜必要であれば前記 直線偏光板、 位相差フィルムあるいは光学フィルム上に前述の配向膜を設置して から前述の液晶材料を展開し、 当該液晶材料を配向させた後、 光照射および ま たは加熱処理することにより当該配向状態を固定化することにより製造すること もできる。  Further, the liquid crystal material described above is developed on the linearly polarizing plate, the retardation film, or the optical film, and the liquid crystal material is aligned, without the home-orientated pick-aligned liquid crystal layer having a viscosity or adhesive layer. It can also be produced by fixing the alignment state by light irradiation and / or heat treatment. If necessary, install the alignment film on the linearly polarizing plate, retardation film or optical film, and then expand the liquid crystal material, align the liquid crystal material, and then apply light irradiation and / or It can also be produced by fixing the orientation state by heat treatment.
本発明の楕円偏光板は、 直線偏光板、 ホメオト口ピック配向を固定化したホメ オト口ピック配向液晶層および位相差機能を有する位相差フィルムとからなる楕 円偏光板である力 必要により光学フィルムを積層した楕円偏光板としてもよく、 例えば下記 (1 ) 〜 (6 ) のような構成を挙げることができる。  The elliptically polarizing plate of the present invention is an elliptical polarizing plate comprising a linearly polarizing plate, a home-to-mouth pick alignment liquid crystal layer in which home-to-mouth pick alignment is fixed, and a retardation film having a retardation function. For example, the following configurations (1) to (6) can be given.
なお、 以下の記載において 「 」 は前述のように層の界面を表すが、 粘 ·接着 剤層は省略した。 ( 1 ) 直線偏光板 位相差機能を有する位相差フイルム ホメオト口ピック配向 液晶層/フィルム面内に位相差を有する正の 1軸性光学異方性層 膜厚方向に位 相差を有する負の 1軸性光学異方性層 In the following description, “” represents a layer interface as described above, but the adhesive / adhesive layer is omitted. (1) Linearly polarizing plate Retardation film having phase difference function Homeo-mouth pick alignment Positive uniaxial optical anisotropic layer having phase difference in liquid crystal layer / film plane Negative 1 having phase difference in film thickness direction Axial optically anisotropic layer
( 2 ) 直線偏光板 Z位相差機能を有する位相差フィルム Zホメオト口ピック配向 液晶層 Z負の 2軸性光学異方性層  (2) Linearly polarizing plate Z Phase difference film with phase difference function Z Home-to-mouth pick alignment Liquid crystal layer Z Negative biaxial optical anisotropic layer
( 3 ) 直線偏光板 Z位相差機能を有する位相差フィルム Zホメオト口ピック配向 液晶層 Zフィルム面内に位相差を有する正の 1軸性光学異方性層  (3) Linearly polarizing plate Z Phase difference film with retardation function Z Home-to-mouth pick alignment Liquid crystal layer Z Positive positive uniaxial optical anisotropic layer with retardation in the plane of the film
( 4 ) 直線偏光板ノホメオト口ピック配向液晶層/位相差機能を有する位相差フ ィルム zフィルム面内に位相差を有する正の 1軸性光学異方性層 膜厚方向に位 相差を有する負の 1軸性光学異方性層  (4) Linearly-polarized plate, homeomorphic liquid crystal layer / retardation film with retardation function z Positive uniaxial optically anisotropic layer with retardation in the film plane Negative with retardation in film thickness direction Uniaxial optically anisotropic layer
( 5 ) 直線偏光板 ホメオト口ピック配向液晶層/位相差機能を有する位相差フ イルム Z負の 2軸性光学異方性層  (5) Linear polarizing plate Home-orientated pick-aligned liquid crystal layer / retardation film with retardation function Z negative biaxial optically anisotropic layer
( 6 ) 直線偏光板 Zホメオト口ピック配向液晶層 位相差機能を有する位相差フ イルム フィルム面内に位相差を有する正の 1軸性光学異方性層  (6) Linearly polarizing plate Z Home-to-mouth pick alignment liquid crystal layer Retardation film having retardation function Positive uniaxial optically anisotropic layer having retardation in the film plane
本発明の楕円偏光板を配置した液晶表示装置の作製に当たっては必要に応じて 光拡散層、光制御フィルム、導光板、プリズムシート等の部材を追加してもよい。 本発明の楕円偏光板を用いた液晶表示装置としては、 例えば、 以下の (7 ) 〜 ( 1 4 ) の構成を挙げることができる。  In manufacturing the liquid crystal display device having the elliptically polarizing plate of the present invention, members such as a light diffusion layer, a light control film, a light guide plate, and a prism sheet may be added as necessary. Examples of the liquid crystal display device using the elliptically polarizing plate of the present invention include the following configurations (7) to (14).
( 7 ) 直線偏光板 Z位相差機能を有する位相差フイルムノホメオト口ピック配向 を固定化したホメォト口ピック配向液晶層 フィルム面内に位相差を有する正の 1軸性光学異方性層 膜厚方向に位相差を有する負の 1軸性光学異方性層 液晶 セル Zフィルム面内に位相差を有する正の 1軸性光学異方性層 偏光板 Zバック ライ ト  (7) Linear polarizing plate Home-phase pick-aligned liquid crystal layer with fixed phase-difference film homeo-topic pick-up with Z-phase difference function Positive uniaxial optically anisotropic layer with phase difference in the film plane Negative uniaxial optically anisotropic layer with retardation in the thickness direction Liquid crystal cell Positive uniaxial optically anisotropic layer with retardation in the Z film plane Polarizing plate Z back light
( 8 ) 直線偏光板 Z位相差機能を有する位相差フィルム Zホメオト口ピック配向 を固定化したホメォト口ピック配向液晶層 フィルム面内に位相差を有する正の (8) Linear polarizing plate Z retardation film with retardation function Z home-orientated liquid crystal layer with fixed home-orientated pick-alignment layer
1軸性光学異方性層 膜厚方向に位相差を有する負の 1軸性光学異方性層 液晶 セル /膜厚方向に位相差を有する負の 1軸性光学異方性層 フィルム面内に位相 差を有する正の 1軸性光学異方性層/偏光板ノバックライ ト Uniaxial optically anisotropic layer Negative uniaxial optically anisotropic layer with retardation in the film thickness direction Liquid crystal cell / Negative uniaxial optically anisotropic layer with retardation in the film thickness direction In-plane Positive uniaxial optically anisotropic layer / polarizing plate no backlight with phase difference
( 9 ) 直線偏光板 Z位相差機能を有する位相差フィルム Zホメオト口ピック配向 を固定化したホメォトロピック配向液晶層 フィルム面内に位相差を有する正の 1軸性光学異方性層 液晶セル 膜厚方向に位相差を有する負の 1軸性光学異方 性層 フィルム面内に位相差を有する正の 1軸性光学異方性層 偏光板ノバック ライ 卜 (9) Linearly polarizing plate Retardation film with phase difference function Z Homeotropic orientation liquid crystal layer with fixed homeotropic orientation Pickup positive with phase difference in the film plane Uniaxial optically anisotropic layer Liquid crystal cell Negative uniaxial optically anisotropic layer with retardation in the film thickness direction Positive uniaxial optically anisotropic layer with retardation in the film plane卜
( 1 0) 直線偏光板 Z位相差機能を有する位相差フィルム ホメオト口ピック配 向を固定化したホメオト口ピック配向液晶層 負の 2軸性光学異方性層 液晶セ ルノフイルム面内に位相差を有する正の 1軸性光学異方性層 Z偏光板ノバックラ ィ ト  (1 0) Linear polarizing plate Z retardation film with retardation function Homeotopick alignment liquid crystal layer with fixed homeotopic picking orientation Negative biaxial optically anisotropic layer Retardation in liquid crystal cernofilm plane Positive uniaxial optically anisotropic layer with Z-polarizer no backlight
( 1 1 ) 直線偏光板 位相差機能を有する位相差フィルム/ホメオト口ピック配 向を固定化したホメォト口ピック配向液晶層 負の 2軸性光学異方性層 Z液晶セ ル 負の 2軸性光学異方性層/偏光板ノバックライ ト  (1 1) Linearly polarizing plate Retardation film with retardation function / Home-mouth pick orientation liquid crystal layer with fixed home-order pick orientation Negative biaxial optically anisotropic layer Z liquid crystal cell Negative biaxiality Optically anisotropic layer / polarizing plate no backlight
( 1 2) 直線偏光板ノ位相差機能を有する位相差フィルム Zホメオト口ピック配 向を固定化したホメオト口ピック配向液晶層 Zフィルム面内に位相差を有する正 の 1軸性光学異方性層 Z液晶セル 負の 2軸性光学異方性層/偏光板 バックラ ィ 卜  (1 2) Retardation film with phase difference function of linear polarizer Z Home-to-mouth pick alignment liquid crystal layer with fixed home-to-mouth pick orientation Fixed positive uniaxial optical anisotropy with retardation in the Z film plane Layer Z liquid crystal cell Negative biaxial optically anisotropic layer / polarizing plate Backer 卜
( 1 3) 直線偏光板/位相差機能を有する位相差フィルム Zホメオト口ピック配 向を固定化したホメオト口ピック配向液晶層/液晶セル/偏光板 バックライ ト (1 3) Linearly polarizing plate / retardation film with retardation function Z homeotopic orientation liquid crystal layer / liquid crystal cell / polarizing plate with fixed orientation.
( 1 4) 直線偏光板 ホメオト口ピック配向を固定化したホメオト口ピック配向 液晶層 位相差機能を有する位相差フィルム 液晶セル Z偏光板 Zバックライ ト さらに前記 (1 ) 〜 (6) に記載された正の 1軸性光学異方性層光学異方性層 および負の 2軸性光学異方性層、 (7) 〜 (9) の液晶セル、 もしくは負の 1軸性 光学異方性層と隣接しているフィルム面内に位相差を有する正の 1軸性光学異方 性層、 および (1 0) 〜 (1 2) の負の 2軸性光学異方性層は、 面内で 1Z4波 長の位相差を示すことが好ましい。 (14) Linear polarizing plate Home-to-mouth pick orientation with fixed home-to-mouth pick orientation Liquid crystal layer Retardation film having retardation function Liquid crystal cell Z-polarizing plate Z backlight Further described in (1) to (6) above A positive uniaxial optically anisotropic layer and a negative biaxial optically anisotropic layer, a liquid crystal cell of (7) to (9), or a negative uniaxial optically anisotropic layer A positive uniaxial optical anisotropic layer having a phase difference in the adjacent film plane, and a negative biaxial optical anisotropic layer of (1 0) to (1 2) It is preferable to show the phase difference of the wavelength.
1 4波長の位相差を示すことが好ましい上記各光学異方性層の面内のリタ一 デーション値 (R e ) は、 波長 5 5 0 nmの光に対して、 1 0 0 η π!〜 1 8 0 η m、 好ましくは 1 2 0 nm〜 1 6 0 nm、 さらに好ましくは 1 3 0 nm〜 1 5 0 nmの範囲である。 上記範囲を外れた場合には、 偏光板と組み合わせたときの円 偏光性が十分得られなくなり、 正面から見た場合の表示特性が低下する恐れがあ る。  The in-plane retardation value (R e) of each optically anisotropic layer preferably exhibiting a retardation of 14 wavelengths is 10 0 η π! It is in the range of ˜180 nm, preferably in the range of 120 nm to 160 nm, and more preferably in the range of 130 nm to 150 nm. If it is out of the above range, sufficient circular polarization when combined with a polarizing plate cannot be obtained, and the display characteristics when viewed from the front may be deteriorated.
また、 上記 (2)、 (5)、 ( 1 0) 〜 (1 2) の負の 2軸性光学異方性層の厚さ を d 4、 面内の主屈折率を Nx 4、 Ny 4、 厚さ方向の屈折率を N z 4とし、 か つ N X 4 >N y 4 >N z 4とした場合に、 厚さ方向のリタデーシヨン値 (R t h 4 = (N 4 -N z 4 ) X d 4 [n m]) は、 垂直配向型液晶セルの厚さ方向の位 相差を補償することによる視野角補償の効果を発揮するよう条件設定する必要が ある。 従って、 垂直配向型液晶セルの厚さ方向の位相差値にもよるが、 50 nm 〜600 nm、 好ましくは 1 00 n m〜 400 n m、 さらに好ましくは 20 O n m〜300 nmの範囲である。 上記範囲を外れた場合には、 十分な視野角改良効 果が得られないかあるいは、 斜めから見たときに不必要な色付きが生じる恐れが ある。 Also, the thickness of the negative biaxial optically anisotropic layer of (2), (5), (1 0) to (1 2) above Is d4, the in-plane main refractive index is Nx 4, Ny 4, the refractive index in the thickness direction is N z 4, and NX 4> N y 4> N z 4 The retardation value (R th 4 = (N 4 -N z 4) X d 4 [nm]) seems to exert the effect of viewing angle compensation by compensating for the phase difference in the thickness direction of the vertically aligned liquid crystal cell. It is necessary to set conditions. Therefore, depending on the retardation value in the thickness direction of the vertical alignment type liquid crystal cell, it is in the range of 50 nm to 600 nm, preferably 100 nm to 400 nm, and more preferably 20 O nm to 300 nm. If it is out of the above range, sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction.
本発明に使用される液晶セルとしては、 特に制限はないが、 透過型、 反射型、 半透過型の各種液晶セルを挙げることができる。 液晶セルにおける液晶配向によ るモードとして例を挙げると、 TN型、 S TN型、 VA (vertical alignment) 型、 M V A (mult l- domain vertical alignment)型、 u C B k optically compensated bend) 型、 E C B ( electrically controlled birief ringence ) 型、 H A N (hybrid-aligned nematic) 型、 I P S (in-plane switching) ¾ 双女定ネマチッ ク (Bistable Nematic) 型、 ASM (Axially Symmetric Aligned Microcell) 型、 ハーフ トーングレイスケール型、 強誘電性液晶、 反強誘電性液晶を利用した表示 方式等を挙げることができる。 Although there is no restriction | limiting in particular as a liquid crystal cell used for this invention, Various liquid crystal cells of a transmissive type, a reflective type, and a semi-transmissive type can be mentioned. Examples of liquid crystal alignment modes in liquid crystal cells include TN type, S TN type, VA (vertical alignment) type, MVA (mult l-domain vertical alignment) type, u CB k optically compensated bend type, ECB (electrically controlled birief ringence) type, HAN (hybrid-aligned nematic) type, IPS (in-plane switching) ¾ bi-woman constant Nemachi' click (Bistable Nematic) type, ASM (Axially Symmetric Aligned Microcell) type, half-tone gray scale type And display methods using ferroelectric liquid crystals and antiferroelectric liquid crystals.
液晶セルを構成する透明基板としては、 液晶層を構成する液晶性を示す材料を 特定の配向方向に配向させるものであれば特に制限はない。 具体的には、 基板自 体が液晶を配向させる性質を有している透明基板、基板自体は配向能に欠ける力 液晶を配向させる性質を有する配向膜等をこれに設けた透明基板等がいずれも使 用できる。 また、 液晶セルの電極は、 I TO等の公知のものが使用できる。 電極 は通常、 液晶層が接する透明基板の面上に設けることができ、 配向膜を有する基 板を使用する場合は、 基板と配向膜との間に設けることができる。  The transparent substrate constituting the liquid crystal cell is not particularly limited as long as the liquid crystal material constituting the liquid crystal layer is aligned in a specific alignment direction. Specifically, a transparent substrate having the property of orienting liquid crystals by the substrate itself, a force that lacks the alignment ability of the substrate itself, a transparent substrate having an alignment film having the property of orienting liquid crystals, etc. Can also be used. In addition, a known liquid crystal cell electrode such as ITO can be used. The electrode can usually be provided on the surface of the transparent substrate with which the liquid crystal layer is in contact, and when a substrate having an alignment film is used, it can be provided between the substrate and the alignment film.
当該液晶配向については、 セルの面内で単一の方向性を持つものでも良いし、 配向が分割された液晶表示素子等にも用いることができる。 さらに液晶セルに電 圧を印加する方法で言えば、 例えば、 I TO電極などを用いるパッシブ方式、 T F T (薄膜トランジスター) 電極や TF D (薄膜ダイオード) 電極などを用いる ァクティブ方式等で駆動する液晶表示素子を挙げることができる。 液晶セルの片側又は両側に偏光板、 光学フィルムを配置した液晶表示装置や、 照明システムにバックライ トあるいは反射板を用いたものなどの適宜な液晶表示 装置を形成することができる。 その場合、 光学フィルムは液晶セルの片側又は両 側に設置することができる。 両側に、 偏光板、 光学フィルムを設ける場合、 それ らは同じものであってもよいし、 異なるものであってもよい。 さらに、 液晶表示 装置の形成に際しては、例えば、拡散板、 アンチグレア層、反射防止膜、保護板、 プリズムアレイ、 レンズアレイシート、 光拡散板、 バックライ トなどの適宜な部 品を適宜な位置に 1層又は 2層以上配置することができる。 The liquid crystal alignment may have a single direction in the plane of the cell, or may be used for a liquid crystal display element in which the alignment is divided. Furthermore, in terms of the method of applying voltage to the liquid crystal cell, for example, a liquid crystal display driven by a passive method using an ITO electrode, an active method using a TFT (thin film transistor) electrode or a TFD (thin film diode) electrode, etc. An element can be mentioned. Appropriate liquid crystal display devices such as a liquid crystal display device in which a polarizing plate and an optical film are arranged on one side or both sides of the liquid crystal cell, and a backlight or reflector used in an illumination system can be formed. In that case, the optical film can be placed on one or both sides of the liquid crystal cell. When a polarizing plate and an optical film are provided on both sides, they may be the same or different. Furthermore, when forming a liquid crystal display device, for example, appropriate components such as a diffusion plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffusion plate, and a backlight are placed at appropriate positions. Two or more layers can be arranged.
また、 前記液晶セルの一方の基板を反射機能を有する領域と透過機能を有する 領域とを有する基板とすることにより半透過反射型の液晶表示素子とすることが できる。  In addition, by using one substrate of the liquid crystal cell as a substrate having a region having a reflection function and a region having a transmission function, a transflective liquid crystal display element can be obtained.
半透過反射型の液晶表示素子に使用する半透過反射性電極に含まれる反射機能 を有する領域 (以下、 反射層ということがある。) としては、 特に制限されず、 ァ ルミ二ゥム、 銀、 金、 クロム、 白金等の金属やそれらを含む合金、 酸化マグネシ ゥム等の酸化物、 誘電体の多層膜、 選択反射を示す液晶又は、 これらの組み合わ せ等を例示することができる。 これら反射層は平面であっても良く、 また曲面で あっても良い。 さらに反射層は、 凹凸形状など表面形状に加工を施して拡散反射 性を持たせたもの、 液晶セルの観察者側と反対側の該電極基板上の電極を兼備さ せたもの、 またそれらを組み合わせたものであっても良い。  The region having a reflection function (hereinafter sometimes referred to as a reflective layer) included in the transflective electrode used in the transflective liquid crystal display element is not particularly limited, and is composed of aluminum, silver. Examples thereof include metals such as gold, chromium and platinum, alloys containing them, oxides such as magnesium oxide, dielectric multilayer films, liquid crystals exhibiting selective reflection, or combinations thereof. These reflective layers may be flat or curved. In addition, the reflective layer is processed to have a surface shape such as a concavo-convex shape so as to have diffuse reflectivity, and is provided with electrodes on the electrode substrate on the side opposite to the observer side of the liquid crystal cell. It may be a combination.
本発明の液晶表示装置は、 前記した構成部材以外にも他の構成部材を付設する ことができる。 例えば、 カラーフィルターを本発明の液晶表示装置に付設するこ とにより、 色純度の高いマルチカラー又はフルカラー表示を行うことができる力 ラー液晶表示装置を作製することができる。  The liquid crystal display device of the present invention can be provided with other constituent members in addition to the constituent members described above. For example, by attaching a color filter to the liquid crystal display device of the present invention, a powerful liquid crystal display device capable of performing multicolor or full color display with high color purity can be manufactured.
[実施例] [Example]
以下に実施例により本発明を具体的に説明するが、 本発明はこれらに限定され るものではない。  EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
なお、 実施例で用いた各測定方法は以下の通りである。  In addition, each measuring method used in the Example is as follows.
( 1 ) — N M Rの測定  (1) — Measurement of N M R
化合物を重水素化クロ口ホルムに溶解し、 4 0 O MH zの1 H— N M R ( V a r i a n t社製 I NOVA— 400) で測定した。 The compound is dissolved in deuterated black form and 1 H-NMR (V a Measured with riant I NOVA-400).
(2) G PCの測定  (2) G PC measurement
化合物をテトラヒ ドロフランに溶解し、東ソ一社製 8020 GPCシステムで、 T SK— GE L S u p e r H l O O O, S u p e r H 2000、 S u p e r H 3000、 S u p e r H4000を直列につなぎ、 溶出液としてテトラヒ ドロフ ランを用いて測定した。 分子量の較正にはポリスチレンスタンダードを用いた。 The compound is dissolved in tetrahydrofuran, and TSK-GE LS upper Hl OOO, Super H 2000, Super H 3000, Super H 4000 is connected in series with Tosoh 8020 GPC system. Measurements were made using a droflan. Polystyrene standards were used for molecular weight calibration.
(3) 顕微鏡観察 (3) Microscopic observation
ォリンパス光学社製 B H 2偏光顕微鏡で液晶の配向状態を観察した。  The alignment state of the liquid crystal was observed with a BH 2 polarizing microscope manufactured by Olympus Optical Co., Ltd.
(4) 液晶フィルムのパラメータ測定  (4) Liquid crystal film parameter measurement
王子計測機器社製自動複屈折計 K O BRA2 1 ADHを用いた。  An automatic birefringence meter K O BRA2 1 ADH manufactured by Oji Scientific Instruments was used.
(5) DS Cの測定 (ガラス転移点(T g)の測定)  (5) DS C measurement (glass transition point (T g) measurement)
液晶層をかきとった後、 示差走査型熱量計 (D S C、 P e r k i n E 1 m e r社製 DSC— 7) を用い、 昇温速度 20°CZm i nで測定した。  After scraping off the liquid crystal layer, a differential scanning calorimeter (DSC, DSC-7 manufactured by Perkin E 1mer) was used and measured at a heating rate of 20 ° CZmin.
(6) 視野角測定  (6) Viewing angle measurement
E LD I M社製 EzContrast により液晶表示装置の視野角測定を実施し等コン トラス ト曲線を得た。 ぐ参考例 1〉  The viewing angle of the liquid crystal display device was measured with EzContrast manufactured by E LDIM, and an equal contrast curve was obtained. Reference Example 1>
(積層体 1の作製)  (Production of laminate 1)
トリァセチルセルロース (TAC) フィルム (40 μπι、 富士フィルム社製) を室温で、 2質量%の水酸化力リゥム水溶液中に 5分間浸漬して験化処理を行い、 流水中で洗浄した後乾燥させた。 延伸したポリビニルアルコールに沃素を吸着さ せて得た偏光素子の一方の面に、 接着剤層 1 としてアク リル系接着剤を用いて、 験化した T ACフィルムを貼り合わせ、 積層体 1 (T ACフィルム/接着剤層 1 偏光素子) を作製した。  Triacetyl cellulose (TAC) film (40 μπι, manufactured by Fuji Film Co., Ltd.) is immersed in a 2% by weight aqueous solution of hydroxylated hydrogen for 5 minutes at room temperature, tested, washed in running water and dried. It was. One surface of a polarizing element obtained by adsorbing iodine to stretched polyvinyl alcohol was bonded with an experimental TAC film using an acrylic adhesive as the adhesive layer 1, and the laminate 1 (T AC film / adhesive layer 1 polarizing element).
(積層体 2の作製)  (Production of laminate 2)
ラジカル共重合により、 下記式 (9) で示される側鎖型液晶性高分子化合物を 合成した。 G P Cによる分子量はポリスチレン換算で、 数平均分子量 Mn = 80 00、 重量平均分子量 Mw= 1 5000であった。 なお、 式 (9) はブロック重 合体の構造で表記しているがモノマーの構成比を表すものである。 A side chain liquid crystalline polymer compound represented by the following formula (9) was synthesized by radical copolymerization. The molecular weight by GPC was, in terms of polystyrene, number average molecular weight Mn = 800, and weight average molecular weight Mw = 15,000. Formula (9) is represented by the structure of the block polymer, but represents the composition ratio of the monomers.
Figure imgf000044_0001
式 (9) の側鎖型液晶性高分子化合物 1 0. 0 gを、 9 Om lのシクロへキサ ノンに溶かし、 喑所でトリァリルスルフォニゥムへキサフルォロアンチモネ一ト 50%プロピレンカーボネート溶液 (アルドリッチ社製、 試薬) 1. 0 gを加え た後、 孔径 0. 45 μ mのポリテトラフルォロエチレン製フィルターでろ過して 液晶性組成物の溶液を調製した。
Figure imgf000044_0001
Dissolve 10.0 g of the side-chain liquid crystalline polymer of formula (9) in 9 Oml cyclohexanone, and then add triarylsulfonium hexaoxafluoroantimonate at some point. % Propylene carbonate solution (manufactured by Aldrich, reagent) 1.0 g was added, followed by filtration with a polytetrafluoroethylene filter having a pore size of 0.45 μm to prepare a liquid crystal composition solution.
配向基板は以下のようにして調製した。 6 50mm幅、 厚さ 3 8 μπιの長尺の ポリエチレンテレフタレート (PET) フィルム (東レ (株) 製) 上に連続的に、 アルキル変性ポリ ビュルアルコール (PVA、 (株) クラレ製、 MP— 203) の 5質量%溶液 (溶媒は、 水とイソプロピルアルコールの質量比 1 : 1の混合溶媒) をダイコーターを用いて塗布 .乾燥し、 1 30°Cで加熱処理して P VA層厚 1. 2 μ mの配向基板フィルム 1を得た。  The alignment substrate was prepared as follows. 6 Continuously on a polyethylene terephthalate (PET) film (manufactured by Toray Industries, Inc.) of 50 mm width and thickness 3 8 μπι, alkyl-modified polybutyl alcohol (PVA, manufactured by Kuraray Co., Ltd., MP-203) Apply a 5% by weight solution (solvent is a mixed solvent of water and isopropyl alcohol in a mass ratio of 1: 1) using a die coater. Dry and heat-treat at 30 ° C. PVA layer thickness 1.2 A μm oriented substrate film 1 was obtained.
次いで、 PV A層をレーヨンのラビング布でラビングした。 ラビング時の周速 比 (ラビング布の移動速度 基板フィルムの移動速度) は 4とした。  The PV A layer was then rubbed with a rayon rubbing cloth. The peripheral speed ratio during rubbing (moving speed of rubbing cloth and moving speed of substrate film) was set to 4.
このようにして得られた配向基板に、 上記で得た液晶性組成物の溶液を、 ダイ コーターを用いて連続的に塗布 ·乾燥した後、 1 30°CX 1 0分間加熱処理をし て液晶性組成物層をホメオト口ピック配向させた。 次いで、 60°Cに加熱した金 属ドラムに密着させながら、 その上から、 高圧水銀灯ランプにより 600m JZ c m2の紫外光 (UV) (ただし 36 5 nmで測定した光量) を照射して、 液晶性 組成物を硬化させて、 積層体 2 (?£丁フィルム ? 八層ノホメォトロピック 配向液晶層) を得た。 The liquid crystal composition solution obtained above is continuously applied and dried on the alignment substrate thus obtained using a die coater, followed by heat treatment at 130 ° C. for 10 minutes for liquid crystal. The composition layer was homeo-mouth pick oriented. Next, while in close contact with a metal drum heated to 60 ° C, it was irradiated with ultraviolet light (UV) of 600 m JZ cm 2 (however, measured at 365 nm) with a high-pressure mercury lamp, and the liquid crystal The composition was cured to obtain a laminate 2 (?? film ?? 8 layer nootropically aligned liquid crystal layer).
(積層体 3の作製)  (Preparation of laminate 3)
得られたホメオト口ピック配向液晶層の光学パラメータの測定のために積層体 3を作製した。 配向基板として用いた PETフィルムは大きな複屈折を有するため、 積層体 2 の形態ではホメオト口ピック配向液晶層の光学パラメータ (R e、 R t h等) の 測定が困難なため、 トリァセチルセルロース (TAC) フィルム上に次のように してホメオト口ピック配向液晶層を転写した。 Laminate 3 was prepared for the measurement of the optical parameters of the obtained homeo-mouth pick alignment liquid crystal layer. Since the PET film used as the alignment substrate has a large birefringence, it is difficult to measure the optical parameters (Re, Rth, etc.) of the homeotropic liquid crystal layer in the laminate 2 form. ) A homeotopic orientation liquid crystal layer was transferred onto the film as follows.
すなわち、 P ETフィルム上の光学異方素子上に、 紫外線硬化型接着剤を 5 m厚となるように塗布し、 T ACフィルム (40 μπι厚) でラミネートして、 Τ A Cフィルム側から紫外線を照射して接着剤を硬化させた後、 P V A層および P ETフィルムを剥離し、 積層体 3 (ホメオト口ピック配向液晶層 接着剤層 2 T ACフィルム) を得た。  In other words, an ultraviolet curable adhesive was applied to the optical anisotropic element on the PET film to a thickness of 5 m, laminated with a T AC film (40 μπι thickness), and 紫外線 UV rays were applied from the AC film side. After the irradiation, the adhesive was cured, and then the PVA layer and the PET film were peeled off to obtain a laminate 3 (homeotope orientation liquid crystal layer adhesive layer 2 TAC film).
得られた積層体 3を偏光顕微鏡下で観察すると、 ディスクリネーションがなく モノ ドメインの均一な配向で、 コノスコープ観察から正の一軸性屈折率構造を有 するホメオト口ピック配向であることがわかった。 KOBRA2 1 ADHを用い て測定した積層体 3の面内方向のリタ一デーシヨン値 (R e) は 0. 5 nm、 厚 さ方向のリタ一デーシヨン値 (R t h) は一 1 40 nmであった。 なお、 用いた TACフィルム単体は負の一軸性で R eが一 0. 5 nm、 尺 1 11は+4011111で あったことから、 ホメオト口ピック配向液晶層単独の R eは 0 n m、 また R t h は一 1 00 nmと見積もられた。  When the obtained laminate 3 is observed under a polarizing microscope, it is found that there is no disclination and that the monodomain has a uniform orientation, and that conoscopic observation shows a homeotropic orientation with a positive uniaxial refractive index structure. It was. The in-plane direction retardation value (R e) of laminate 3 measured using KOBRA2 1 ADH was 0.5 nm, and the thickness direction retardation value (R th) was 1 140 nm. . The TAC film used alone was negative uniaxial, with a Re of 0.5 nm and a scale of 1111, which was +4011111. th was estimated to be 1100 nm.
さらに積層体 3のホメオト口ピック配向液晶層部分のみをかきとり、 D S Cを 用いてガラス転移点を測定したところ、 T gは 1 00°Cであった。 またホメオト 口ピック配向液晶層表面の鉛筆硬度は 2 H程度で、 充分に強固な膜が得られた。 <参考例 2 >  Further, only the homeotopic orientation liquid crystal layer portion of the laminate 3 was scraped, and the glass transition point was measured using DSC. As a result, T g was 100 ° C. The pencil hardness on the surface of the homeotopic orientation liquid crystal layer was about 2 H, and a sufficiently strong film was obtained. <Reference Example 2>
(フィルム 1の作製)  (Production of film 1)
面内に位相差を有する位相差フィルム (ピュアエース WR、 帝人 (株) 製) を 230°Cで縦一軸延伸し、 負の 2軸性を有するフィルム 1を得た。 面内の位相差 は 140 n mであった。  A retardation film (Pure Ace WR, manufactured by Teijin Ltd.) having an in-plane retardation was longitudinally uniaxially stretched at 230 ° C. to obtain a film 1 having negative biaxiality. The in-plane phase difference was 140 nm.
(楕円偏光板 Aの作製)  (Preparation of elliptically polarizing plate A)
フィルム 1にコロナ放電処理 (2 50 W · m i n/m2) を施し、 粘着剤を介 して偏光素子の両側を等方性保護フィルムとして T A Cフィルムで保護された偏 光板を貼着し、 楕円偏光板 A (フィルム 1 粘着剤層 ZT ACフィルム 粘着剤 層 偏光素子 粘着剤層 ZTACフィルム) を得た。 楕円偏光板 Aの膜厚は 1 9 0 mであった。 Film 1 is subjected to corona discharge treatment (250 W min / m 2 ), and a polarizing plate protected with a TAC film is attached to both sides of the polarizing element as an isotropic protective film via an adhesive. A polarizing plate A (film 1 pressure-sensitive adhesive layer ZT AC film pressure-sensitive adhesive layer polarizing element pressure-sensitive adhesive layer ZTAC film) was obtained. The film thickness of the elliptically polarizing plate A is 1 9 0 m.
<実施例 1 > <Example 1>
(積層体 4の作製)  (Production of laminate 4)
面内位相差 140 nm、 膜厚方向の位相差 0 n mの位相差フィルム (ゼォノア フィルム、 日本ゼオン (株) 製) にレーヨン布にてラビング処理を施し、 参考例 1で得た液晶性組成物の溶液を、 ダイコーターを用いて連続的に塗布 ·乾燥した 後、 1 30°CX 1 0分間加熱処理をして液晶性組成物層をホメオト口ピック配向 させた。 次いで、 60°Cに加熱した金属ドラムに密着させながら、 その上から、 高圧水銀灯ランプにより 60 Om j/c m2の紫外光 (UV) (ただし 36 5 n m で測定した光量) を照射して、 液晶性組成物を硬化させて、 積層体 4 (ゼォノア フィルム ホメオト口ピック配向液晶層) を得た。 A liquid crystal composition obtained in Reference Example 1 after rubbing with a rayon cloth on a retardation film (Zeonor film, manufactured by Nippon Zeon Co., Ltd.) having an in-plane retardation of 140 nm and a retardation in the thickness direction of 0 nm. The solution was continuously applied and dried using a die coater, and then heated at 130 ° C. for 10 minutes to cause the liquid crystalline composition layer to be home-orientated. Next, while in close contact with a metal drum heated to 60 ° C, it was irradiated with 60 Om j / cm 2 of ultraviolet light (UV) (however, measured at 365 nm) with a high-pressure mercury lamp. The liquid crystalline composition was cured to obtain a laminate 4 (Zeonor film homeo-mouth pick alignment liquid crystal layer).
(楕円偏光板 1の作製)  (Production of elliptically polarizing plate 1)
積層体 4のゼォノアフィルム側にコロナ放電処理 (25 OW · m i n/m2) を施し、 粘着剤を介して直線偏光板として積層体 1を貼着し本発明の楕円偏光板 1 (T ACフィルム 接着剤層 1 /偏光素子ノ粘着剤層ノゼォノアフィルムノホ メォトロピック配向液晶層) を得た。 Corona discharge treatment (25 OW · min / m 2 ) is applied to the Xenore film side of Laminate 4, and Laminate 1 is attached as a linearly polarizing plate via an adhesive, and elliptical polarizing plate 1 of the present invention (TAC film adhesion) Agent layer 1 / polarizing element adhesive layer nozono film nootropic liquid crystal layer).
(楕円偏光板 2の作製)  (Production of elliptically polarizing plate 2)
積層体 4のホメォト口ピック配向液晶層側にコロナ放電処理 ( 25 OW · m i n/m2) を施し、 粘着剤を介して直線偏光板として積層体 1を貼着し本発明の 楕円偏光板 2 (T ACフィルム 接着剤層 1Z偏光素子 Z粘着剤層/ホメオト口 ピック配向液晶層 ゼォノアフィルム) を得た。 楕円偏光板 2の膜厚は 1 26 μ mであった。 Corona discharge treatment (25 OW · min / m 2 ) is applied to the home-orientated picked liquid crystal layer side of the laminate 4, and the laminate 1 is adhered as a linearly polarizing plate via an adhesive. (TAC film adhesive layer 1Z polarizing element Z pressure-sensitive adhesive layer / homeotope orientation liquid crystal layer ZENOA film) was obtained. The film thickness of the elliptically polarizing plate 2 was 126 μm.
<実施例 2 > <Example 2>
(積層体 5の作製)  (Preparation of laminate 5)
面内位相差 1 40 nm、 膜厚方向の位相差 0 n mの位相差フィルム (ゼォノア フィルム、 日本ゼオン (株) 製) 上に、 アルキル変性ポリ ビニルアルコール (P VA、 (株) クラレ製、 MP— 20 3) の 5質量0 /0溶液 (溶媒は、 水とィソプロピ ルアルコールの質量比 i : 1の混合溶媒)をダイコーターを用いて塗布'乾燥し、 1 30°〇で加熱処理して 層厚 1. 2 mの配向基板フィルム 2を得た。 上記配向基板フィルム 2上へ、 参考例 1で得た液晶性組成物の溶液を、 ダイコ 一ターを用いて連続的に塗布 ·乾燥した後、 1 30°CX 1 0分間加熱処理をして 液晶性組成物層をホメオト口ピック配向させた。 次いで、 60°Cに加熱した金属 ドラムに密着させながら、 その上から、 高圧水銀灯ランプにより 60 Om JZC m2の紫外光 (UV) (ただし 365 nmで測定した光量) を照射して、 液晶性組 成物を硬化させて、 積層体 5 (ゼォノアフィルム PVA層 Zホメオト口ピック 配向液晶層) を得た。 In-plane retardation 1 40 nm, film thickness direction retardation 0 nm retardation film (Zeonor film, manufactured by Nippon Zeon Co., Ltd.), alkyl-modified polyvinyl alcohol (PVA, manufactured by Kuraray Co., Ltd., MP) - 20 3) 5 weight 0/0 solution (solvent of water and Isopuropi Le weight ratio of alcohol i: applied 'dried using a solvent mixture) a die coater 1, and heated at 1 30 ° 〇 An oriented substrate film 2 having a layer thickness of 1.2 m was obtained. The liquid crystal composition solution obtained in Reference Example 1 is continuously applied and dried on the above-mentioned oriented substrate film 2 using a die coater, and then heated at 130 ° C. for 10 minutes for liquid crystal. The composition layer was homeo-mouth pick oriented. Next, while in close contact with a metal drum heated to 60 ° C, it was irradiated with 60 Om JZC m 2 of ultraviolet light (UV) (however, measured at 365 nm) with a high-pressure mercury lamp. The composition was cured to obtain a laminate 5 (Zeonor film PVA layer Z homeo-mouth pick alignment liquid crystal layer).
(楕円偏光板 3の作製)  (Production of elliptically polarizing plate 3)
積層体 5のホメオト口ピック配向液晶層側にコロナ放電処理 (25 OW · m i n/m2) を施し、 粘着剤を介して直線偏光板として積層体 1を貼着し本発明の 楕円偏光板 3 (T ACフィルム/接着剤層 1 偏光素子 Z粘着剤層 Zホメォト口 ピック配向液晶層 P V A層 ゼォノアフィルム) を得た。 Corona discharge treatment (25 OW · min / m 2 ) is applied to the home-orientated pick-aligned liquid crystal layer side of Laminate 5, and Laminate 1 is attached as a linearly polarizing plate via an adhesive. (TAC film / adhesive layer 1 polarizing element Z pressure-sensitive adhesive layer Z home-mouthed liquid crystal layer PVA layer Xenoah film).
<実施例 3 > <Example 3>
(積層体 6の作製)  (Production of laminate 6)
積層体 2のホメオト口ピック配向液晶層上に市販の UV硬化型接着剤 (UV— A commercially available UV curable adhesive (UV—
3400、東亞合成(株)製) を接着剤層 3として 5 μπ厚となるように塗布し、 面内位相差 1 40 nm、 膜厚方向の位相差 0 n mの位相差フィルム (ゼオノァフ イルム、 日本ゼオン (株) 製) でラミネートして、 ゼォノアフィルム側から紫外 線を照射して接着剤層 3を硬化させた後、 P ETフィルムを P VA層が貼着した 状態で剥離して、 積層体 6 (ゼォノアフィルム 接着剤層 3 ホメオト口ピック 配向液晶層) を得た。 3400 (manufactured by Toagosei Co., Ltd.) was applied as an adhesive layer 3 to a thickness of 5 μπ, and a retardation film with an in-plane retardation of 140 nm and a retardation in the thickness direction of 0 nm (ZEONOA FILM, Japan) Laminated with ZEON Co., Ltd., and the adhesive layer 3 was cured by irradiating ultraviolet rays from the ZENOA film side, and then the PET film was peeled off with the PVA layer adhered, and the laminate 6 (Zeonor film adhesive layer 3 home-to-mouth pick alignment liquid crystal layer) was obtained.
(楕円偏光板 4の作製)  (Preparation of elliptically polarizing plate 4)
積層体 6のゼオノァフィルム側にコロナ放電処理 (250W · m i n/m2) を施し、 粘着剤を介して直線偏光板として積層体 1を貼着し本発明の楕円偏光板The ozonized film side of the laminate 6 is subjected to a corona discharge treatment (250 W · min / m 2 ), and the laminate 1 is adhered as a linear polarizing plate via an adhesive.
4 ( T A Cフィルム 接着剤層 1 偏光素子/粘着剤層 ゼオノァフィルム/接 着剤層 3Zホメオト口ピック配向液晶層) を得た。 4 (TAC film adhesive layer 1 polarizing element / adhesive layer ZEONOR film / adhesive layer 3Z homeo-mouth pick alignment liquid crystal layer).
(楕円偏光板 5の作製)  (Preparation of elliptical polarizing plate 5)
積層体 6のホメォト口ピック配向液晶層側にコロナ放電処理 ( 2 50 W · m i n/m2) を施し、 粘着剤を介して直線偏光板として積層体 1を貼着し本発明の 楕円偏光板 5 (T A Cフィルム Z接着剤層 1 偏光素子 Z粘着剤層 Zホメオト口 ピック配向液晶層ノ接着剤層 3 /ゼォノアフィルム) を得た。 The laminate 6 is subjected to corona discharge treatment (250 W · min / m 2 ) on the home-mouth-pick-aligned liquid crystal layer side, and the laminate 1 is adhered as a linearly polarizing plate via an adhesive. 5 (TAC film Z Adhesive layer 1 Polarizing element Z Adhesive layer Z Home port Pick alignment liquid crystal layer adhesive layer 3 / Zeonor film).
<実施例 4 > <Example 4>
(楕円偏光板 6の作製)  (Preparation of elliptically polarizing plate 6)
フィルム 1にコロナ放電処理 (2 5 0 W · m i n / m 2 ) を施し、 粘着剤を介 して楕円偏光板 4のホメオト口ピック配向液晶層側と貼着し、 楕円偏光板 6 ( T A Cフィルム Z接着剤層 1 偏光素子ノ粘着剤層 ゼオノァフィルム Z接着剤層 3 ホメオト口ピック配向液晶層 Z粘着剤層ノフィルム 1 ) を得た。 楕円偏光板 6の膜厚は 1 7 2 μ mであった。 Film 1 is subjected to corona discharge treatment (2500 W · min / m 2 ) and attached to the home-orientated liquid crystal layer side of elliptically polarizing plate 4 via an adhesive, and elliptically polarizing plate 6 (TAC film) Z Adhesive Layer 1 Polarizing Element No Adhesive Layer Zeonore Film Z Adhesive Layer 3 Home Port Pick Oriented Liquid Crystal Layer Z Adhesive Layer No Film 1) was obtained. The film thickness of the elliptically polarizing plate 6 was 1 7 2 μm.
<実施例 5 > <Example 5>
( I P S型液晶表示装置の作製)  (Production of IPS type liquid crystal display device)
バックライ ト、 バックライ ト側偏光板、 I P S型液晶セル、 視認側偏光板の順 で配置された市販の I P S型の液晶テレビに対し、 図 1に示すように、 視認側偏 光板の替わりに本発明の楕円偏光板 2を配置した。 すると本楕円偏光板 2を用い ない場合に比べ、 視野角が拡大し、 斜めから見ても良好な画像が得られることが 分かった。 なお、 コントラス トの視野角依存性を図 2に示す。 同図において太実 線はコントラス ト 1 0 0以上の領域を示す。 また同心円は 2 0度間隔の視野角を 表す (以下、 同じ)。  For the commercially available IPS type liquid crystal televisions arranged in the order of the backlight, the backlight side polarizing plate, the IPS type liquid crystal cell, and the viewing side polarizing plate, as shown in FIG. The elliptically polarizing plate 2 was disposed. As a result, it was found that the viewing angle was larger than when the elliptical polarizing plate 2 was not used, and that a good image was obtained even when viewed from an oblique direction. Figure 2 shows the viewing angle dependence of contrast. In the figure, a thick solid line indicates a region with a contrast of 100 or more. Concentric circles represent a viewing angle of 20 degrees (hereinafter the same).
<実施例 6 > <Example 6>
( V A型液晶表示装置の作製)  (Production of V A type liquid crystal display device)
バックライ ト、 バックライ ト側偏光板、 I P S型液晶セル、 視認側偏光板の順 で配置された市販の V A型の液晶テレビに対し、 図 3に示すように、 視認側偏光 板の替わりに本発明の楕円偏光板 6を、 バックライ ト側偏光板の替わりに参考例 2で得た楕円偏光板 Aを配置した。すると本楕円偏光板 6を用いない場合に比べ、 視野角が拡大し、 斜めから見ても良好な画像が得られることが分かった。 コント ラス トの視野角依存性を図 4に示す。  For the commercially available VA type liquid crystal television arranged in the order of the backlight, the backlight side polarizing plate, the IPS type liquid crystal cell, and the viewing side polarizing plate, the present invention is used instead of the viewing side polarizing plate as shown in FIG. The elliptically polarizing plate 6 obtained in Reference Example 2 was placed in place of the elliptically polarizing plate 6 instead of the backlight side polarizing plate. As a result, it was found that the viewing angle was widened compared to the case where the elliptically polarizing plate 6 was not used, and a good image was obtained even when viewed from an oblique direction. Figure 4 shows the viewing angle dependence of the contrast.
<比較例 1〉 <Comparative Example 1>
(積層体 8の作製)  (Production of laminate 8)
積層体 2のホメオト口ピック配向液晶層上に市販の U V硬化型接着剤 (U V— 3 4 0 0、東亞合成(株)製) を接着剤層 4として 5 μ ηι厚となるように塗布し、 P ETフィルムでラミネ一トして、 P ETフィルム側から紫外線を照射して接着 剤層 4を硬化させた後、 P VA層と隣接する側の P ETフィルムを P VA層が貼 着した状態で剥離して、 積層体 7 (PETフィルム 接着剤層 4/ホメオトロピ ック配向液晶層) を得た。 A commercially available UV curable adhesive (UV-3400, manufactured by Toagosei Co., Ltd.) was applied as an adhesive layer 4 on the homeotropically picked liquid crystal layer of Laminate 2 to a thickness of 5 μηι. , Laminated with PET film, UV light is irradiated from the PET film side to cure the adhesive layer 4, and then the PVA layer is attached to the PVA layer adjacent to the PVA layer The laminate 7 (PET film adhesive layer 4 / homeotropic alignment liquid crystal layer) was obtained.
さらに積層体 7のホメオト口ピック配向液晶層側上に市販の UV硬化型接着剤 Furthermore, a commercially available UV curable adhesive is applied on the liquid crystal layer side of the home-top pick-aligned layer 7
(UV— 3400、 東亞合成 (株) 製) を接着剤層 5として 5 m厚となるよう に塗布し、 T ACフィルムでラミネートして T ACフィルム側から紫外線を照射 して接着剤層 5を硬化させた後、 PETフィルムを剥離して、 積層体 8 (接着剤 層 4 ホメオト口ピック配向液晶層ノ接着剤層 5 ZT A Cフィルム) を得た。 (UV-3400, manufactured by Toagosei Co., Ltd.) was applied as an adhesive layer 5 to a thickness of 5 m, laminated with a TAC film, and irradiated with ultraviolet rays from the TAC film side to form the adhesive layer 5 After curing, the PET film was peeled off to obtain a laminate 8 (adhesive layer 4 home-to-mouth orientation liquid crystal layer adhesive layer 5 ZT AC film).
(楕円偏光板 Bの作製)  (Preparation of elliptically polarizing plate B)
積層体 8の接着剤層 4側にコロナ放電処理(250W, m i n/m2) を施し、 粘着剤を介して直線偏光板として積層体 1を貼着したのち T ACフィルムを剥離 し楕円偏光板 B (T A Cフィルム 接着剤層 1 Z偏光素子 Z粘着剤層/接着剤層 4ノホメオト口ピック配向液晶層 Z接着剤層 4) を得た。 Corona discharge treatment (250W, min / m 2 ) is applied to the adhesive layer 4 side of the laminate 8, and the laminate 1 is pasted as a linear polarizer through an adhesive, and then the TAC film is peeled off and the elliptical polarizer is removed. B (TAC film adhesive layer 1 Z-polarizing element Z pressure-sensitive adhesive layer / adhesive layer 4 normal homeotropic alignment liquid crystal layer Z adhesive layer 4) was obtained.
( I P S型液晶表示装置の作製)  (Production of IPS type liquid crystal display device)
バックライ ト、 バックライ ト側偏光板、 I P S型液晶セル、 視認側偏光板の順 で配置された市販の I P S型の液晶テレビに対し、 図 5に示すように、 視認側偏 光板の替わりに楕円偏光板 Bを配置した。 すると楕円偏光板 2を用いた場合に比 ベ、 視野角が狭くなつた。 コントラス トの視野角依存性を図 6に示す。  In contrast to the commercially available IPS liquid crystal televisions arranged in the order of backlight, back light side polarizing plate, IPS liquid crystal cell, and viewing side polarizing plate, as shown in Fig. 5, instead of the viewing side polarizing plate, elliptically polarized light is used. Plate B was placed. As a result, the viewing angle became narrower than when the elliptically polarizing plate 2 was used. Figure 6 shows the viewing angle dependence of contrast.
<比較例 2 > <Comparative Example 2>
(楕円偏光板 Cの作製)  (Preparation of elliptically polarizing plate C)
面内位相差 1 40 nm、 膜厚方向の位相差 0 n mの位相差フィルム (ゼォノア フィルム、 日本ゼオン (株) 製) にコロナ放電処理 (250W . m i n/m2) を施し、 粘着剤を介して直線偏光板として積層体 1を貼着し楕円偏光板 C (TA Cフィルム Z接着剤層 1 偏光素子 粘着剤層ノゼオノァフィルム) を得た。 ( I P S型液晶表示装置の作製) A retardation film (Zeonor film, manufactured by Nippon Zeon Co., Ltd.) with an in-plane retardation of 1400 nm and a retardation of 0 nm in the film thickness direction is subjected to corona discharge treatment (250 W min / m 2 ) Then, the laminate 1 was adhered as a linearly polarizing plate to obtain an elliptically polarizing plate C (TAC film Z adhesive layer 1 polarizing element pressure-sensitive adhesive layer noonor film). (Production of IPS liquid crystal display device)
比較例 1の I P S型液晶表示装置の作製において、 楕円偏光板 Bに替えて楕円 偏光板 Cを配置した以外は同様に行った。 比較例 1と同様に楕円偏光板 2を用い た場合に比べ、視野角が狭くなった。コントラス トの視野角依存性を図 7に示す。 <比較例 3 > ( I P s型液晶表示装置の作製) The production of the IPS liquid crystal display device of Comparative Example 1 was performed in the same manner except that the elliptically polarizing plate C was disposed instead of the elliptically polarizing plate B. As with Comparative Example 1, the viewing angle was narrower than when elliptical polarizing plate 2 was used. Figure 7 shows the viewing angle dependence of contrast. <Comparative Example 3> (Production of IP s type liquid crystal display device)
バックライ ト、 バックライ ト側偏光板、 I P S型液晶セル、 視認側偏光板の順 で配置された市販の I P S型の液晶テレビに対し、 図 5に示すように、 視認側偏 光板の替わりに参考例 2で得た楕円偏光板 Aを配置した。 すると楕円偏光板 2を 用いた場合に比べ視野角が狭くなり、 楕円偏光板 Aの総膜厚が厚いためモジユー ルへの組み込み、 貼合が困難となった。  For the commercially available IPS liquid crystal TVs arranged in the order of backlight, back light side polarizing plate, IPS type liquid crystal cell, and viewing side polarizing plate, as shown in Fig. 5, instead of the viewing side polarizing plate, a reference example The elliptically polarizing plate A obtained in 2 was disposed. As a result, the viewing angle was narrower than when the elliptical polarizing plate 2 was used, and the total thickness of the elliptical polarizing plate A was so thick that it was difficult to incorporate it into the module and to bond it.
[図面の簡単な説明] [Brief description of drawings]
図 1は、 実施例 5で作製した I P S型液晶表示装置の層構成を模式的に示す断 面図である。  FIG. 1 is a cross-sectional view schematically showing a layer structure of an IPS type liquid crystal display device manufactured in Example 5. FIG.
図 2は、 実施例 5で作製した I P S型液晶表示装置のコントラストの視野角依 存性を示す図である。  FIG. 2 is a diagram showing the viewing angle dependence of contrast of the IPS type liquid crystal display device fabricated in Example 5. FIG.
図 3は、 実施例 6で作製した V A型液晶表示装置の層構成を模式的に示す断面 図である。  FIG. 3 is a cross-sectional view schematically showing the layer structure of the VA type liquid crystal display device fabricated in Example 6.
図 4は、 実施例 6で作製した V A型液晶表示装置のコントラストの視野角依存 性を示す図である。  FIG. 4 is a view showing the viewing angle dependence of contrast of the VA type liquid crystal display device fabricated in Example 6. FIG.
図 5は、 比較例 1で作製した I P S型液晶表示装置の層構成を模式的に示す断 面図である。  FIG. 5 is a cross-sectional view schematically showing the layer structure of the IPS liquid crystal display device manufactured in Comparative Example 1.
図 6は、 比較例 1で作製した I P S型液晶表示装置のコントラストの視野角依 存性を示す図である。  FIG. 6 is a diagram showing the viewing angle dependence of the contrast of the IPS liquid crystal display device fabricated in Comparative Example 1. FIG.
図 7は、 比較例 2で作製した I P S型液晶表示装置のコントラストの視野角依 存性を示す図である。  FIG. 7 is a diagram showing the viewing angle dependence of contrast of the IPS type liquid crystal display device fabricated in Comparative Example 2.
[産業上の利用可能性] [Industrial applicability]
本発明により、 ホメオト口ピック配向構造を固定化した液晶層を有し、 視野角 およびコントラス トが改良され、 厚みが抑えられた楕円偏光板が提供されるため 産業的価値は大きい。  According to the present invention, an elliptical polarizing plate having a liquid crystal layer with a fixed homeotopic orientation structure, an improved viewing angle and contrast, and a reduced thickness is provided, which has great industrial value.

Claims

請 求 の 範 囲 The scope of the claims
1. 正の一軸性を示す液晶性組成物を液晶状態においてホメォトロピック 配向させた後、 該配向を固定化したホメオト口ピック配向液晶層、 位相差機能を 有する位相差フィルムおよび偏光素子の片面のみ透光性保護フィルムにより保護 された積層構造を有する直線偏光板から少なく とも構成される楕円偏光板であつ て、 下記 (A) または (B) いずれかの積層構成を有することを特徴とする楕円 偏光板。 1. a homeotropic alignment liquid crystal layer in which a liquid crystalline composition exhibiting positive uniaxiality is homeotropically aligned in a liquid crystal state and then the alignment is fixed; a phase difference film having a phase difference function; and one side of a polarizing element An elliptically polarizing plate composed of at least a linearly polarizing plate having a laminated structure protected by a translucent protective film, characterized in that it has any one of the following laminated structures (A) or (B) Ellipse polarizing plate.
(A) 透光性保護フィルム Z偏光素子/位相差フィルム ホメオト口ピック配 向液晶層  (A) Translucent protective film Z-polarization element / retardation film Homeotopick orientation liquid crystal layer
(B) 透光性保護フィルム 偏光素子 Zホメオト口ピック配向液晶層 位相差 フィノレム  (B) Translucent protective film Polarizing element Z Homeotopick orientation liquid crystal layer Retardation Finolem
2. 前記ホメオト口ピック配向液晶層がォキセタニル基を有する側鎖型の 液晶性高分子化合物を含有する液晶性組成物を、 液晶状態でホメオト口ピック配 向させた後、 前記ォキセタニル基を反応せしめて前記ホメオト口ピック配向を固 定化したホメオト口ピック配向液晶層であることを特徴とする請求項 1に記載の 楕円偏光板。 2. A liquid crystalline composition containing a side chain type liquid crystalline polymer compound having an oxetanyl group in the homeotopic orientation liquid crystal layer is homeotropically oriented in a liquid crystal state, and then reacted with the oxetanyl group. 2. The elliptically polarizing plate according to claim 1, wherein the elliptical polarizing plate is a homeotopic orientation liquid crystal layer in which the homeotopic orientation is fixed.
3. 前記ホメオト口ピック配向液晶層が以下の [1] および [2] を満た すことを特徴とする請求項 1または 2に記載の楕円偏光板。 3. The elliptically polarizing plate according to claim 1 or 2, wherein the homeotopic orientation liquid crystal layer satisfies the following [1] and [2].
[ 1 ] 0 n m≤ R e 1≤ 20 n m  [1] 0 n m ≤ Re 1 ≤ 20 n m
[2] - 500 nm≤R t h l≤- 30 nm  [2]-500 nm≤R t h l≤- 30 nm
(ここで、 R e 1は前記ホメォト口ピック配向液晶層の面内のリターデーショ ン値を意味し、 R t h 1は前記ホメオト口ピック配向液晶層の厚さ方向のリタ ーデーション値を意味する。前記 R e 1及び R t h 1は、それぞれ R e 1 = (N X 1 -N y 1 ) X d 1 [nm]、 R t h 1 = (N x 1 -N z 1 ) X d 1 [n m] である。 また、 d 1は前記ホメオト口ピック配向液晶層の厚さ、 Nx lおよび N y 1は前記ホメォト口ピック配向液晶層面内の主屈折率、 N z 1は厚さ方向 の主屈折率であり、 N z 1 >N X 1≥N y 1である。) (Here, Re 1 means an in-plane retardation value of the home-mouth pick-aligned liquid crystal layer, and R th 1 means a retardation value in the thickness direction of the home-mouth pick-aligned liquid crystal layer.) R e 1 and R th 1 are R e 1 = (NX 1 −N y 1) X d 1 [nm] and R th 1 = (N x 1 −N z 1) X d 1 [nm], respectively. D 1 is the thickness of the home-orifice-pick-aligned liquid crystal layer, Nx 1 and N y 1 are main refractive indices in the plane of the home-ortho-pick aligned liquid crystal layer, and N z 1 is the main refractive index in the thickness direction. N z 1> NX 1≥N y 1)
4. 前記位相差フィルムが以下の [3] および [4] を満たすことを特徴 とする請求項 1〜3のいずれかに記載の楕円偏光板。 4. The elliptically polarizing plate according to any one of claims 1 to 3, wherein the retardation film satisfies the following [3] and [4].
[3] 20 nm≤R e 2≤ 200 nm  [3] 20 nm≤R e 2≤ 200 nm
[4] 0 nm≤R t h 2≤ 30 nm  [4] 0 nm≤R t h 2≤ 30 nm
(ここで、 R e 2は位相差フィルムの面内のリタ一デーシヨン値を意味し、 R t h 2は前記位相差フィルムの厚さ方向のリターデーション値を意味する。 前記 R e 2及び R t h 2は、 それぞれ R e 2 = (N x 2 -N y 2) X d 2 [nm]、 R t h 2 = (N x 2 -N z 2) X d 2 [nm] である。 また、 d 2は前記位相差フィ ルムの厚さ、 N X 2および N y 2は前記位相差フィルム面内の主屈折率、 N z 2 は厚さ方向の主屈折率であり、 Nx 2 >Ny 2 N z 2である。)  (Here, R e 2 means an in-plane retardation value of the retardation film, and R th 2 means a retardation value in the thickness direction of the retardation film. Re 2 and R th above) 2 represents R e 2 = (N x 2 −N y 2) X d 2 [nm] and R th 2 = (N x 2 −N z 2) X d 2 [nm], respectively, and d 2 Is the thickness of the retardation film, NX 2 and N y 2 are the main refractive index in the retardation film plane, N z 2 is the main refractive index in the thickness direction, and Nx 2> Ny 2 N z 2 .)
5. 少なくとも 1枚以上の光学フィルムを積層してなる請求項 1〜4のい ずれかに記載の楕円偏光板。 5. The elliptically polarizing plate according to any one of claims 1 to 4, wherein at least one optical film is laminated.
6. 前記透光性保護フィルムがトリァセチルセルロースもしくはシクロォ レフィン系ポリマーであることを特徴とする請求項 1〜 5のいずれかに記載の楕 円偏光板。 6. The elliptically polarizing plate according to any one of claims 1 to 5, wherein the translucent protective film is triacetyl cellulose or a cyclohexylene-based polymer.
7. 総膜厚が 1 75 μπι以内であることを特徴とする請求項 1〜6のいず れかに記載の楕円偏光板。 7. The elliptically polarizing plate according to any one of claims 1 to 6, wherein the total film thickness is within 1 75 μπι.
8. (1)透光性保護フィルムを、接着剤層 1を介して偏光素子と接着し、 透光性保護フィルム 接着剤層 1 偏光素子からなる積層体 ( I ) を得る第 1ェ 程、 8. (1) The first step of adhering the translucent protective film to the polarizing element through the adhesive layer 1 to obtain a laminate (I) comprising the translucent protective film adhesive layer 1 polarizing element,
(2) 位相差フィルム上に正の一軸性を示す液晶性組成物の層を形成し、 該層 をホメオト口ピック配向させた後、 配向を固定化したホメオト口ピック配向液晶 層を形成して、 位相差フィルム Zホメォト口ピック配向液晶層からなる積層体 (II) を得る第 2工程、  (2) A layer of liquid crystalline composition exhibiting positive uniaxiality is formed on the retardation film, and the layer is homeotropically aligned, and then a homeotropically aligned liquid crystal layer in which the alignment is fixed is formed. A second step of obtaining a laminate (II) comprising a retardation film Z-home-pick aligned liquid crystal layer,
(3) 前記積層体 (II) の位相差フィルム側を、 接着剤層 2を介して、 前記積 層体 ( i ) の偏光素子側と接着し、 透光性保護フィルム 接着剤層 1Z偏光素子(3) The phase difference film side of the laminate (II) is bonded to the product through the adhesive layer 2. Adhering to the polarizing element side of the layered body (i), translucent protective film Adhesive layer 1Z polarizing element
/接着剤層 2 位相差フィルム ホメオト口ピック配向液晶層からなる楕円偏光 板を得る第 3工程、 / Adhesive layer 2 Retardation film Third step of obtaining an elliptically polarizing plate consisting of a home-orientated pick-aligned liquid crystal layer,
の各工程を少なく とも経ることを特徴とする楕円偏光板の製造方法。 A method for producing an elliptically polarizing plate, characterized by passing through each of the steps.
9. (1)透光性保護フィルムを、接着剤層 1を介して偏光素子と接着し、 透光性保護フィルム 接着剤層 1ノ偏光素子からなる積層体 ( I ) を得る第 1ェ 程、 9. (1) First step of obtaining a laminate (I) comprising a translucent protective film, an adhesive layer 1 and a non-polarizing element by adhering the translucent protective film to the polarizing element through the adhesive layer 1 ,
(2) 位相差フィルム上に正の一軸性を示す液晶性組成物の層を形成し、 該層 をホメオト口ピック配向させた後、 配向を固定化したホメオト口ピック配向液晶 層を形成して、 位相差フィルム ホメォト口ピック配向液晶層からなる積層体 (II) を得る第 2工程、  (2) A layer of liquid crystalline composition exhibiting positive uniaxiality is formed on the retardation film, and the layer is homeopic pick-aligned, and then a homeo-mouth pick-aligned liquid crystal layer having a fixed orientation is formed. A second step of obtaining a laminate (II) comprising a retardation film home-orientated pick-aligned liquid crystal layer,
(3) 前記積層体 (II) のホメオト口ピック配向液晶相側を、 接着剤層 2を介 して、 前記積層体 ( I ) の偏光素子側と接着し、 透光性保護フィルム 接着剤層 1 偏光素子 Z接着剤層 2 ホメォト口ピック配向液晶層 Z位相差フィルムから なる楕円偏光板を得る第 3工程、  (3) The homeotropic orientation liquid crystal phase side of the laminate (II) is adhered to the polarizing element side of the laminate (I) via the adhesive layer 2, and the light-transmitting protective film adhesive layer 1 Polarizing element Z Adhesive layer 2 Home-orientation pick alignment liquid crystal layer Z Third step of obtaining an elliptically polarizing plate made of Z retardation film,
の各工程を少なく とも経ることを特徴とする楕円偏光板の製造方法。 A method for producing an elliptically polarizing plate, characterized by passing through each of the steps.
1 0. (1)透光性保護フィルムを、接着剤層 1を介して偏光素子と接着し、 透光性保護フィルム 接着剤層 1Z偏光素子からなる積層体 ( I ) を得る第 1ェ 程、 1 0. (1) First step of obtaining a laminate (I) comprising a translucent protective film, an adhesive layer, and a 1Z polarizing element by adhering the translucent protective film to the polarizing element through the adhesive layer 1 ,
(2) 配向基板上に正の一軸性を示す液晶性組成物の層を形成し、 該層をホメ オト口ピック配向させた後、 配向を固定化したホメオト口ピック配向液晶層を形 成して、 配向基板 ホメオト口ピック配向液晶層からなる積層体 (III) を得る第 2工程、  (2) A layer of liquid crystalline composition exhibiting positive uniaxiality is formed on an alignment substrate, the layer is home-pic picked, and then a home-pic pick-aligned liquid crystal layer with a fixed orientation is formed. A second step of obtaining a laminate (III) composed of an alignment substrate homeotropic alignment liquid crystal layer,
(3) 前記積層体 (III) のホメオト口ピック配向液晶層側を、 接着剤層 2を介 して、 位相差フィルムと接着せしめた後、 配向基板を剥離してホメオト口ピック 配向液晶層を位相差フィルムに転写し、 位相差フィルム Z接着剤層 2 ホメオト 口ピック配向液晶層からなる積層体 (IV) を得る第 3工程、  (3) After adhering the homeotropic orientation liquid crystal layer side of the laminate (III) to the retardation film via the adhesive layer 2, the orientation substrate is peeled off to form the homeotropic orientation liquid crystal layer. Third step to obtain a laminate (IV) consisting of a retardation film Z adhesive layer 2 home-orientated pick-aligned liquid crystal layer, transferred to a retardation film,
(4) 前記積層体 (IV) の位相差フィルム側を、 接着剤層 3を介して、 前記積層 体 ( i ) の偏光素子側と接着し、 透光性保護フィルム 接着剤層 1Z偏光素子 接着剤層 3 Z位相差フィルム 接着剤層 2 Zホメオト口ピック配向液晶層からな る楕円偏光板を得る第 4工程、 (4) The retardation film side of the laminate (IV) is bonded to the laminate via the adhesive layer 3. Adhering to the polarizing element side of the body (i), translucent protective film Adhesive layer 1Z polarizing element Adhesive layer 3 Z retardation film Adhesive layer 2 Obtaining an elliptically polarizing plate made of Z homeotopically picked liquid crystal layer 4th process,
の各工程を少なくとも経ることを特徴とする楕円偏光板の製造方法。 The manufacturing method of the elliptically polarizing plate characterized by passing through each process of these.
1 1. (1)透光性保護フィルムを、接着剤層 1を介して偏光素子と接着し、 透光性保護フィルム Z接着剤層 1ノ偏光素子からなる積層体 ( I ) を得る第 1ェ 程、 1 1. (1) A translucent protective film is bonded to a polarizing element via an adhesive layer 1 to obtain a laminate (I) comprising a translucent protective film Z adhesive layer 1 and a non-polarizing element. Oh,
(2) 配向基板上に正の一軸性を示す液晶性組成物の層を形成し、 該層をホメ オト口ピック配向させた後、 配向を固定化したホメオト口ピック配向液晶層を形 成して、 配向基板 ホメオト口ピック配向液晶層からなる積層体 (III) を得る第 2工程、  (2) A layer of liquid crystalline composition exhibiting positive uniaxiality is formed on an alignment substrate, the layer is home-pic picked, and then a home-pic pick-aligned liquid crystal layer with a fixed orientation is formed. A second step of obtaining a laminate (III) composed of an alignment substrate homeotropic alignment liquid crystal layer,
(3) 前記積層体 (III) のホメオト口ピック配向液晶層側を、 接着剤層 2を介 して、 位相差フィルムと接着せしめた後、 配向基板を剥離してホメオト口ピック 配向液晶層を位相差フィルムに転写し、 位相差フィルム Z接着剤層 2 Zホメォト 口ピック配向液晶層からなる積層体 (IV) を得る第 3工程、  (3) After adhering the homeotropic orientation liquid crystal layer side of the laminate (III) to the retardation film via the adhesive layer 2, the orientation substrate is peeled off to form the homeotropic orientation liquid crystal layer. A third step of transferring to a retardation film to obtain a laminate (IV) comprising a retardation film Z adhesive layer 2 a Z-home-pick orientation liquid crystal layer,
(4) 前記積層体 (IV) のホメオト口ピック配向液晶層側を、 接着剤層 3を介し て、 前記積層体 (A) の偏光素子側と接着し、 透光性保護フィルム Z接着剤層 1 ノ偏光素子 Z接着剤層 3ノホメオト口ピック配向液晶層 接着剤層 2 Z位相差フ イルムからなる楕円偏光板を得る第 4工程、  (4) The laminated body (IV) is bonded to the home-orientated pick-aligned liquid crystal layer side through the adhesive layer 3 and the polarizing element side of the laminated body (A), and the transparent protective film Z adhesive layer 1 No-polarizing element Z Adhesive layer 3 Noh homeomorphic orientation liquid crystal layer Adhesive layer 2
の各工程を少なくとも経ることを特徴とする楕円偏光板の製造方法。 The manufacturing method of the elliptically polarizing plate characterized by passing through each process of these.
1 2. 液晶セルの少なく とも片側の面に請求項 1〜 7のいずれかに記載の楕 円偏光板を配置した液晶表示装置。 1 2. A liquid crystal display device in which the elliptically polarizing plate according to any one of claims 1 to 7 is disposed on at least one surface of the liquid crystal cell.
1 3. 前記液晶セルが V A液晶セルもしくは I P S液晶セルであることを特 徴とする請求項 1 2に記載の液晶表示装置。 13. The liquid crystal display device according to claim 12, wherein the liquid crystal cell is a VA liquid crystal cell or an IPS liquid crystal cell.
PCT/JP2008/065060 2007-08-24 2008-08-18 Elliptically polarizing plate, method for producing the same, and liquid crystal display device using the same WO2009028429A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200880101710A CN101772718A (en) 2007-08-24 2008-08-18 Ellipsoidal polarizing plate, its manufacture method and the liquid crystal indicator that has used it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007217766A JP2009053292A (en) 2007-08-24 2007-08-24 Elliptically polarizing plate, method for manufacturing the same and liquid crystal display apparatus using the plate
JP2007-217766 2007-08-24

Publications (1)

Publication Number Publication Date
WO2009028429A1 true WO2009028429A1 (en) 2009-03-05

Family

ID=40387151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065060 WO2009028429A1 (en) 2007-08-24 2008-08-18 Elliptically polarizing plate, method for producing the same, and liquid crystal display device using the same

Country Status (5)

Country Link
JP (1) JP2009053292A (en)
KR (1) KR20100057654A (en)
CN (1) CN101772718A (en)
TW (1) TWI449971B (en)
WO (1) WO2009028429A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059663A (en) * 2009-08-10 2011-03-24 Jx Nippon Oil & Energy Corp Liquid-crystal film and optical element and elliptically polarizing plate obtained using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073429A (en) * 2010-09-29 2012-04-12 Fujifilm Corp Polarizing plate, liquid crystal display device using the same and moisture-heat resistant polarizing plate protection film
JP5582947B2 (en) * 2010-09-29 2014-09-03 富士フイルム株式会社 Polarizing plate, liquid crystal display using the same, and protective film for moisture and heat resistant polarizing plate
KR101309816B1 (en) * 2010-12-17 2013-09-23 제일모직주식회사 Optical filter and liquid crystal display comprising the same
JP5932234B2 (en) * 2011-04-05 2016-06-08 日東電工株式会社 Polarizing element and manufacturing method thereof
JP6171276B2 (en) * 2011-07-12 2017-08-02 住友化学株式会社 Polarizer and manufacturing method thereof
WO2013094263A1 (en) * 2011-12-19 2013-06-27 コニカミノルタ株式会社 Ips mode liquid crystal display device
JP5956276B2 (en) * 2012-08-06 2016-07-27 株式会社クラレ Manufacturing method of polarizing film
JP2015079230A (en) 2013-09-10 2015-04-23 住友化学株式会社 Manufacturing method for laminate
JP7165491B2 (en) * 2017-02-23 2022-11-04 住友化学株式会社 Optical film and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195424A (en) * 2004-12-14 2006-07-27 Nitto Denko Corp Elliptical polarization plate, manufacturing method thereof and image display device using elliptical polarization plate
JP2006337575A (en) * 2005-05-31 2006-12-14 Nippon Oil Corp Homeotropically oriented liquid-crystal film, and device using the same
JP2007017637A (en) * 2005-07-06 2007-01-25 Nippon Oil Corp Laminated optical retardation plate, method for producing the same, luminance-improving film, and image display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI413809B (en) * 2004-12-27 2013-11-01 Dainippon Ink & Chemicals Optical film, elliptically polarizing plate, circularly polarizing plate, liquid crystal display element, and method of producing optical film
WO2006085454A1 (en) * 2005-02-08 2006-08-17 Nippon Oil Corporation Homeotropically oriented liquid-crystal film, optical film comprising the same, and image display
JP2006268007A (en) * 2005-02-25 2006-10-05 Nitto Denko Corp Method of producing elliptically polarizing plate and image display device using the elliptically polarizing plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195424A (en) * 2004-12-14 2006-07-27 Nitto Denko Corp Elliptical polarization plate, manufacturing method thereof and image display device using elliptical polarization plate
JP2006337575A (en) * 2005-05-31 2006-12-14 Nippon Oil Corp Homeotropically oriented liquid-crystal film, and device using the same
JP2007017637A (en) * 2005-07-06 2007-01-25 Nippon Oil Corp Laminated optical retardation plate, method for producing the same, luminance-improving film, and image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059663A (en) * 2009-08-10 2011-03-24 Jx Nippon Oil & Energy Corp Liquid-crystal film and optical element and elliptically polarizing plate obtained using the same

Also Published As

Publication number Publication date
TW200918967A (en) 2009-05-01
KR20100057654A (en) 2010-05-31
JP2009053292A (en) 2009-03-12
TWI449971B (en) 2014-08-21
CN101772718A (en) 2010-07-07

Similar Documents

Publication Publication Date Title
WO2009028429A1 (en) Elliptically polarizing plate, method for producing the same, and liquid crystal display device using the same
WO2009150779A1 (en) Elliptical light polarizing plate and vertically oriented liquid crystal display device using the same
WO2008059721A1 (en) Elliptic polarizing plate and vertically aligned liquid crystal display using the same
WO2006085454A1 (en) Homeotropically oriented liquid-crystal film, optical film comprising the same, and image display
JP5723077B1 (en) Retardation plate, elliptically polarizing plate and display device using the same
JP2008009403A (en) Elliptical polarizing plate, method for production of the same, and liquid crystal display device
JP2008129175A (en) Elliptical polarizing plate and vertically aligned liquid crystal display apparatus using the same
JP6677722B2 (en) Horizontal alignment type liquid crystal display
US20120133882A1 (en) Liquid crystal film and optical element produced using same
JP2008191630A (en) Elliptically polarizing plate, manufacturing method thereof, luminance improving film, and image display device
WO2005116741A1 (en) Liquid crystal display
JP2009288440A (en) Retardation film, method for manufacturing retardation film, polarizing plate, and liquid crystal display
TW201447399A (en) Optical film, polarizing plate, image display device, and optical film fabrication method
WO2008105218A1 (en) Elliptical polarizing plate for vertically aligned liquid crystal display and vertically aligned liquid crystal display using the same
JP6727284B2 (en) Optical film, method of manufacturing optical film, and display device
JP2009294521A (en) Retardation film, method for manufacturing retardation film, sheet polarizer and liquid crystal display device
WO2014157182A1 (en) Laminated polarizing plate and horizontal alignment liquid crystal display device
JP2010072439A (en) Photocuring adhesive composition for liquid crystal layer, and liquid crystal film
JP2010072448A (en) Adhesive for liquid crystal film, liquid crystal film, and optical element film
US20100208182A1 (en) Method for manufacturing optical film
JP2009249482A (en) Liquid crystal film and liquid crystal display element mounting optical film composed of the liquid crystal film
JP2008129176A (en) Elliptical polarizing plate and vertically aligned liquid crystal display apparatus using the same
JP2007017637A (en) Laminated optical retardation plate, method for producing the same, luminance-improving film, and image display device
JP4994309B2 (en) Tilted phase difference film, method for producing tilted phase difference film, polarizing plate and liquid crystal display device
JP2007072213A (en) Viewing angle compensation plate for homeotropically oriented liquid crystal display device and homeotropically oriented liquid crystal display device using same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880101710.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107006144

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08792669

Country of ref document: EP

Kind code of ref document: A1