[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009028331A1 - Cell for fuel cell and fuel cell - Google Patents

Cell for fuel cell and fuel cell Download PDF

Info

Publication number
WO2009028331A1
WO2009028331A1 PCT/JP2008/064502 JP2008064502W WO2009028331A1 WO 2009028331 A1 WO2009028331 A1 WO 2009028331A1 JP 2008064502 W JP2008064502 W JP 2008064502W WO 2009028331 A1 WO2009028331 A1 WO 2009028331A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
gas diffusion
diffusion member
manifold
region
Prior art date
Application number
PCT/JP2008/064502
Other languages
French (fr)
Japanese (ja)
Inventor
Chisato Kato
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007315737A external-priority patent/JP5012469B2/en
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2008801026923A priority Critical patent/CN101779318B/en
Priority to CA2702015A priority patent/CA2702015C/en
Priority to US12/672,748 priority patent/US8795922B2/en
Priority to DE112008002146.5T priority patent/DE112008002146B8/en
Publication of WO2009028331A1 publication Critical patent/WO2009028331A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell and a fuel cell.
  • the first and second gas diffusion members in the anode and the cathode suppress the impregnation of the liquid resin into the power generation region while hermetically sealing the manifold opening.
  • the present invention relates to a fuel cell and a fuel cell capable of reducing the layer thickness while preventing cross leak and short circuit.
  • a polymer electrolyte fuel cell is composed of an electrolyte membrane 92 made of a solid polymer membrane sandwiched between two electrodes, a fuel electrode 96 and an air electrode 94 (ME A- Memb rane E lectrode As s emb ly) is the smallest unit of cells that are sandwiched between two separators 90. Usually, multiple cells are stacked to form a fuel cell stack (FC stack). I am trying to get it.
  • FC stack fuel cell stack
  • the power generation mechanism of a polymer electrolyte fuel cell is such that a fuel gas (anode side electrode) 96 is a fuel gas, for example, a hydrogen-containing gas, while an air electrode (force sword side electrode) 94 is an oxidant gas, for example, A gas or air containing mainly oxygen (0 2 ) is supplied.
  • the hydrogen-containing gas is supplied to the fuel electrode 96 through the fuel gas flow path, and is decomposed into electrons and hydrogen ions (H +) by the action of the electrode catalyst.
  • the electrons move from the fuel electrode 96 to the air electrode 94 through an external circuit, and produce an electric current.
  • this fuel cell component is composed of electrolyte membrane 1 and electrolyte membrane 1 on both sides. It has MEA consisting of gas diffusion layers 2 and 3 integrally formed through catalyst support layers 2 a and 3 a constituting the electrode, and has a constant width from the periphery of gas diffusion layers 2 and 3 to the inside.
  • impregnation zone portions 2 b and 3 b made of liquid rubber or synthetic resin are provided, and the gasket member 4 made of an elastic material is molded so as to wrap the entire outer surface of the impregnation zone portions 2 b and 3 b. ing.
  • reinforcing layers 5 are provided on both surfaces of the electrolyte membrane 1, and catalyst layers 2 a and 3 a are respectively provided on a part of each reinforcing layer 5.
  • the gas diffusion layers 2 and 3 are laminated and formed.
  • the manifold opening 11 of the membrane electrode assembly is provided with reinforcing layers 5 on both sides of the electrolyte membrane 1, and each reinforcing layer 5 has an adhesive layer 8, a spacer layer 6 and an impregnated portion 7.
  • the seal portion 9 is formed on the surface of the impregnation portion 7 in the in-plane inner direction and the in-plane outer direction with respect to the manifold opening portion 11. Therefore, as shown in FIG.
  • an adhesive layer 8 and a spacer layer 6 are formed on the outer peripheral portion of the joined body, and the outer peripheral portions of the gas diffusion layers 2 and 3 of the anode and the force sword are further managed.
  • the gas diffusion layer is prevented from biting into the joined body due to the compressive stress during molding, and the electrolyte Membrane electrode assemblies that suppress the occurrence of membrane damage have been proposed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 06 6-2 3 6 9 5 7
  • Patent Document 2 Japanese Patent Laid-Open No. 2 07 4-4 3 4 8
  • the present invention has been made in view of the above problems, and provides a fuel cell and a fuel cell that can reduce the number of parts of a unit cell, improve gas sealability, and can be downsized. .
  • the fuel cell and fuel cell of the present invention have the following characteristics.
  • a joined body having a fuel electrode and an air electrode on an electrolyte membrane, a first gas diffusion member for supplying fuel gas to the fuel electrode, and a second gas diffusion member for supplying oxidant gas to the air electrode And a pair of separators sandwiching the first gas diffusion member, the joined body, and the second diffusion member, and a power generation region in which the joined body is located.
  • a manifold region provided around the power generation region and formed with a manifold opening through which a fuel gas, an oxidant gas, and a coolant are circulated, and the first gas diffusion member or the first At least one of the two gas diffusion members extends to the manifold region and is impregnated with a liquid resin and hermetically sealed, and the power generation in the first gas diffusion member and the second gas diffusion member is performed.
  • Areas and the above two hold The porosity of the boundary between the band is at least the first gas diffusion member and the relatively small fuel cell compared to the porosity of the power generation region and Ma two hold area of the second gas diffusion member.
  • the boundary between the first gas diffusion member and the second gas diffusion member has a porosity that is suitable for preventing the impregnated liquid resin from entering the power generation region and is difficult for gas to pass through.
  • the gas diffusion area is maintained in the power generation region and the gas diffusibility in the power generation region is improved.
  • either one of the second gas diffusion members is a fuel cell that extends to the manifold region and is impregnated with a liquid resin and hermetically sealed.
  • Either the first gas diffusion member or the second gas diffusion member is extended to the manifold region to prevent gas leakage and short circuit between the anode and the cathode in the manifold region. be able to. Since the liquid resin is impregnated in the extended gas diffusion member, even if there is no adhesive layer as in Patent Document 2, it is mechanically bonded and gas sealing performance is improved.
  • the joined body may further include a liquid resin extending to the manifold region and hermetically sealing. It is a fuel cell to be bonded.
  • the joined body Since the joined body generally has a high affinity with the liquid resin that hermetically seals the manifold region, the joined body that extends to the manifold region and the liquid resin that hermetically seals the manifold region. Adhesion reliability of the fuel cell is further ensured by bonding. Therefore, even without an adhesive layer as in Patent Document 2, the fuel cells are more mechanically coupled and the gas sealability is improved.
  • the first diffusion member and the second diffusion member are provided on the fuel electrode and the air electrode, respectively. It is the cell for fuel cells which is a gas diffusion layer.
  • the separator is a flat separator whose surface on the joined body side is a smooth surface, and the first diffusion.
  • the member and the second diffusion member are for a fuel cell, which is a porous channel layer disposed between each gas diffusion layer provided in each of the fuel electrode and the air electrode and the flat separator overnight. Cell.
  • the porous channel layer is made of metal, the strength of the manifold region, particularly during heating, is improved by impregnating the liquid resin in the manifold region compared to the gas diffusion layer. As a result, deformation of the manifold region due to pressing and gas pressure during molding is suppressed, and gas sealing performance is further improved.
  • a pore diameter at a boundary portion between the first gas diffusion member and the second gas diffusion member is 20 m or less. This is a fuel cell.
  • the pore diameter at which the liquid resin cannot flow is 20 / m or less, and the pores at the boundary between the first gas diffusion member and the second gas diffusion member.
  • the porous body flow path layer has a porosity at a boundary between the power generation region, the manifold region, and the power generation region and the manifold region. It is a cell for fuel cells that is a different type of lath cut metal or expanded metal.
  • the above-mentioned lath cut metal and expanded metal can be variably processed to a desired porosity and can be formed to a desired thickness, and also function as a current collector because they are made of metal. Can be made.
  • the manifold region includes the first gas diffusion member, the joined body, and a second diffusion.
  • the peripheral portion enlarged in the manifold region is a fuel cell unit located at the center in the thickness direction of the gasket.
  • the number of parts of a unit cell can be reduced, the gas sealing performance can be improved, and the power generation efficiency per fuel cell can be improved.
  • FIG. 1 is a cross-sectional view illustrating an example of the configuration of a membrane electrode assembly in a fuel cell according to the present invention.
  • FIG. 2 is a cross-sectional view for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention.
  • FIG. 3 is a cross-sectional view for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention.
  • FIG. 4 is a cross-sectional view for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention.
  • FIG. 5 is a diagram for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention.
  • FIG. 6 is a cross-sectional view for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention.
  • FIG. 7 is a cross-sectional view for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention.
  • FIG. 8 is a cross-sectional view for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention.
  • FIG. 9 is a cross-sectional view for explaining a production example of another membrane electrode assembly in the fuel cell of the invention.
  • FIG. 10 is a diagram for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention.
  • FIG. 11 is a perspective view showing an example of a gas diffusion member used for the porous body flow path layer.
  • FIG. 12 is a schematic diagram showing the configuration of a lasscut device for manufacturing a gas diffusion member used for a porous body flow path layer.
  • FIG. 13 is a diagram for explaining an example of the process of the method for producing a gasket-type membrane electrode assembly.
  • FIG. 14 is a cross-sectional view showing an example of the structure of a fuel cell in the present invention.
  • FIG. 15 is a cross-sectional view showing an example of the structure of another fuel cell according to the present invention.
  • FIG. 16 is a cross-sectional view showing an example of the structure of another fuel cell according to the present invention.
  • FIG. 17 is a cross-sectional view showing an example of the structure of another fuel cell according to the present invention.
  • FIG. 18A is a diagram for explaining an example of forming a sealing portion.
  • FIG. 18B is a diagram for explaining another example of forming a sealing portion.
  • FIG. 19 is a diagram for explaining the cell configuration of the fuel cell and the mechanism during power generation.
  • FIG. 20 is a partial cross-sectional view showing an example of the configuration of a conventional fuel cell component.
  • FIG. 21 is a partial cross-sectional view showing an example of the structure of a conventional membrane electrode assembly.
  • the fuel cell cell of the present embodiment (hereinafter also referred to as “unit cell”) includes a joined body 12 having a fuel electrode and an air electrode on an electrolyte membrane, a fuel electrode in the joined body 12, and A membrane electrode assembly 1 OA composed of first and second gas diffusion layers 14 for supplying fuel gas and oxidant gas to each air electrode is sandwiched by a pair of separators (not shown) described later.
  • the first and second gas diffusion members of the present invention are gas diffusion layers.
  • the fuel cell according to the present embodiment includes a power generation region in which the joined body 12 and the first and second gas diffusion layers 14 are stacked and capable of generating power, and is provided around the power generation region.
  • a manifold region in which a manifold opening 18 for allowing the fuel gas, the oxidant gas and the refrigerant to circulate is formed, and one of the first and second gas diffusion layers 14 is The gas diffusion layer 14 is impregnated with a liquid resin and hermetically sealed.
  • a gasket body 16 having elasticity formed by curing a liquid resin is formed, and the peripheral portion 14 c also functions as a core material of the gasket body 16. Yes.
  • the porosity of the boundary portion 14b between the power generation region and the manifold region in the first and second gas diffusion layers 14 described above is at least the first.
  • Porosity and power generation region 14a in the second gas diffusion layer 14 It is relatively small compared to the porosity of the peripheral edge 14 c in the two-hold region.
  • the porosity of the boundary portion 14 b in the first and second gas diffusion layers 14 is equal to the porosity of the peripheral portion 14 c of the manifold region in the first and second gas diffusion layers 14. It is preferable to be smaller.
  • the pore diameter of the boundary portion 14 b between the power generation region and the manifold region in the first and second gas diffusion layers 14 is a pore diameter through which liquid resin cannot pass, For example, it is 20 m or less. As a result, the liquid resin impregnated to form the manifold region at the boundary portion 14 can be prevented from entering the power generation region.
  • the pore diameter in the power generation region portion 14 a of the first and second gas diffusion layers 14 is more than 2, and the pore diameter capable of ensuring gas flowability is selected.
  • the pore diameter of the peripheral portion 14 c of the second gas diffusion layer 14 is also more than 20 m, and the pore diameter that can be impregnated with the liquid resin for forming the manifold is selected.
  • a fluorine-based membrane such as naphthion (Nafion; registered trademark, manufactured by DuPont) or a hydrocarbon-based membrane (HC membrane)
  • the fuel electrode and air electrode are composed of an electrode catalyst supported on a carbon-based support.
  • an electrode catalyst a catalyst made of platinum or a platinum-containing alloy, an alloy containing platinum, or even platinum can be contained. Examples of such metals include iron, cobalt, nickel, chromium, copper, and vanadium, and this electrode catalyst is supported on a carbon-based support.
  • first and second gas diffusion layers 14 for example, paper, cloth, high cushion paper, porous metal can be used, and a carbon particle layer formed of an aggregate of carbon particles having water repellency. It may be.
  • carbon particles include carbon black, graphite, and expanded graphite. Carbon blacks such as oil furnace black, channel black, lamp black, thermal black, and acetylene black, which have excellent electronic conductivity and a large specific surface area. Can be suitably used.
  • the first and second gas diffusion layers 14 are provided with a water repellent, and examples of the water repellent include polytetrafluoroethylene (PTFE).
  • PVDF Polyvinylidene fluoride
  • FEP pyrene copolymer
  • PROM polypropylene
  • polyethylene polyethylene
  • liquid resin for forming the gasket body 16 for example, a thermosetting silicone resin or a thermoplastic resin can be used.
  • peripheral portion 14 c expanded to the manifold region in the first and second gas diffusion layers 14 is not provided with the water repellent and maintains the pore diameter, The affinity of the liquid resin to be impregnated may be improved. Second embodiment.
  • FIG. 2 shows the configuration of the membrane electrode assembly 10 B of the fuel cell according to the second embodiment.
  • the membrane electrode assembly 10 A in the first embodiment shown in FIG. 1 described above only one gas diffusion layer 14 has its end extending to the manifold region.
  • the end portions of the first and second gas diffusion layers 14 extend to the manifold region and the peripheral edges of the first and second gas diffusion layers 14.
  • the configuration of the membrane electrode assembly 10 B of the second embodiment is the same as the configuration of the membrane electrode assembly 1 OA of the first embodiment, except that the portions 14 c are formed so as not to overlap each other. Is the same.
  • the extended peripheral portions 14 c of the first and second gas diffusion layers 14 are formed so as not to overlap each other, but the electrolyte membrane is the same. If the film quality (not shown) is arranged between both diffusion layers and electrical insulation is ensured, the peripheral edges 14 c of both gas diffusion layers 14 may overlap each other. Good. Third embodiment.
  • FIG. 3 shows the configuration of the membrane electrode assembly 10 C of the fuel cell according to the third embodiment.
  • the end portion of the assembly 12 extends beyond the power generation region to the boundary portion, but in the third embodiment, In the membrane electrode assembly 10 C, both ends of the assembly 12 extend beyond the boundary to the manifold region, respectively.
  • the configuration of the membrane electrode assembly 10 C of the embodiment is the same as the configuration of the membrane electrode assembly 10 A of the first embodiment. Fourth embodiment.
  • FIG. 4 shows the configuration of the membrane electrode assembly 10 D of the fuel cell according to the fourth embodiment.
  • the end of the assembly 12 extends beyond the power generation region to the boundary portion.
  • the both ends of the assembly 12 extend beyond the boundary to the manifold region, respectively, except for the membrane electrode assembly 10 D of the fourth embodiment.
  • the configuration is the same as that of the membrane electrode assembly 10 B of the second embodiment.
  • the joined body 12 generally has a high affinity with a liquid resin that hermetically seals the manifold region, so that the joined body is extended to the manifold region. However, by adhering to the liquid resin, the adhesion reliability of the fuel cell is further ensured. Fifth embodiment.
  • the fuel cell of the present embodiment includes a joined body 12 having a fuel electrode and an air electrode on an electrolyte membrane, and a fuel gas in each of the fuel electrode and the air electrode in the joined body 12.
  • the membrane electrode assembly 2 OA consisting of is sandwiched by a pair of separators (not shown) described later.
  • the first and second gas diffusion members of the present invention are porous channel layers.
  • the fuel cell according to the present embodiment includes a power generation region in which the joined body 12 and the first and second gas diffusion layers 14 are stacked and capable of generating power, and is provided around the power generation region. And a manifold region formed with a manifold opening 18 through which fuel gas, oxidant gas and refrigerant are circulated, and either of the first and second porous channel layers 24. One of them extends to the manifold region, and one peripheral portion 24 c of the porous channel layer 24 is impregnated with a liquid resin and hermetically sealed. Further, an elastic gasket body 16 formed by curing a liquid resin is formed around the manifold opening portion 18, and the peripheral portion 24 c also functions as a core material of the gasket body 16. is doing.
  • the porosity of the boundary portion 24 b between the power generation region and the manifold region in the first and second porous body flow path layers 24 described above is small. In both cases, the porosity of the power generation region 24 a in the first and second porous channel layers 24 and the porosity of the peripheral portion 24 c in the manifold region are relatively small. Further, the porosity of the boundary portion 24 b in the first and second porous channel layers 24 is equal to the peripheral portion 2 of the manifold region in the first and second porous channel layers 24. It is preferably less than the porosity of 4c.
  • the pore diameter of the boundary portion 24 b between the power generation region and the manifold region in the first and second porous body flow path layers 24 is such that liquid resin cannot pass through.
  • the hole diameter is, for example, 20 / m or less.
  • gas sealability is ensured at the boundary portion 24 b, and the liquid resin impregnated to form the manifold region can be prevented from entering the power generation region.
  • the pore diameter in the power generation region 2 4 a of the first and second porous flow passage layers 24 is more than 20 // m, and the pore diameter can ensure gas flowability and drainage. Is selected.
  • the pore diameter of the peripheral portion 24 c of the first and second porous channel layers 24 also exceeds 20 m, and the pore diameter that can be impregnated with the liquid resin for forming the manifold is large. Selected.
  • porous channel layer 24 for example, a lath cut metal or an expanded metal as shown in FIG. 11 can be used.
  • the term “las cut metal” refers to a small net-like diameter by sequentially processing staggered cuts and bending the cuts on a flat thin metal plate. Through-holes are formed.
  • “expanded metal” refers to a thin metal plate that has a mesh-like small diameter by processing cuts in a staggered arrangement on a flat thin metal plate and pressing and bending the cut cuts. A hole is formed, and further, rolled into a substantially flat plate shape. Since the expanded metal is formed in a substantially flat plate shape, for example, it is not necessary to provide a process for removing unnecessary bending or unevenness in the final molded product, and the manufacturing cost can be reduced.
  • any metal material can be used as long as it is a metal separator used later.
  • a material having a certain degree of rigidity that allows a predetermined gas flow against the pressure at the time of stacking and compressing the above-described cells during production is preferable, for example, titanium, stainless steel, and aluminum are preferable.
  • stainless steel or aluminum it is preferable to perform surface treatment after groove processing and lath cut processing, which will be described later, if necessary, to impart corrosion resistance and electrical conductivity to the surface.
  • FIG. 6 shows the configuration of the membrane electrode assembly 20 B of the fuel cell according to the sixth embodiment.
  • the membrane electrode assembly 2 OA in the fifth embodiment shown in FIG. 5 described above only one porous channel layer 24 has its end extending to the manifold region.
  • the end portions of the first and second porous channel layers 24 extend to the manifold regions, respectively, and the first and second porous channel layers
  • the configuration of the membrane / electrode assembly 20 B of the sixth embodiment is the same as that of the membrane / electrode assembly of the fifth embodiment, except that the peripheral edge portions 2 4 c of 24 are formed so as not to overlap each other. 2 Same as OA configuration.
  • the extended peripheral edge portions 24 c of the first and second porous channel layers 24 are formed so as not to overlap each other.
  • the peripheral portions 24 c of both the porous channel layers 24 may overlap each other.
  • FIG. 7 shows the configuration of the membrane electrode assembly 20 C of the fuel cell in the seventh embodiment.
  • Membrane electrode assembly in the fifth embodiment shown in FIG. 5 described above is the configuration of the membrane electrode assembly 20 C of the fuel cell in the seventh embodiment.
  • the end of the joined body 12 extends beyond the power generation region and extends only to the boundary portion, but in the membrane electrode assembly 20 C of the fuel cell in the seventh embodiment, the joined body
  • the structure of the fuel cell cell electrode assembly 20 C in the seventh embodiment is the same as that of the fifth embodiment except that both ends of 12 extend beyond the boundary to the manifold region.
  • the configuration of the membrane electrode assembly 2 OA in the form is the same. Eighth embodiment.
  • FIG. 8 shows the configuration of the membrane electrode assembly 20 D of the fuel cell according to the eighth embodiment.
  • the end of the assembly 12 extends beyond the power generation region to the boundary portion.
  • both ends of the assembly 12 extend beyond the boundary to the manifold region, respectively, except for the fuel cell cell according to the eighth embodiment.
  • the configuration of the membrane electrode assembly 20 D is the same as the configuration of the membrane electrode assembly 20 B in the sixth embodiment.
  • the joined body 12 generally has a high affinity with the liquid resin that hermetically seals the manifold region, so that the joined body is extended to the manifold region. However, by adhering to the liquid resin, the adhesion reliability of the fuel cell is further ensured.
  • the peripheral edge portions 24 c of the first and second porous channel layers 24 A and 24 B overlap each other in the manifold region. Rather, they are stretched in different directions.
  • the membrane electrode assembly 30 is formed by sandwiching the pre-membrane electrode assembly with the first and second porous channel layers 24 A and 24 B.
  • the cross-sectional structure of the membrane electrode assembly 30 of the present embodiment is the same as the configuration of the membrane electrode assembly 2 OA shown in FIG.
  • first and second porous body flow passage layers 2 4 A and 2 4 B on the anode side and the force sword side are formed as described above, between the anode and the force sword Short circuit and gas leak can be prevented and productivity is improved.
  • Each of the first and second porous channel layers 24 A and 24 B may be a force sword side and an anode side opposite to those described above.
  • the rascut device 50 shown in FIG. 12 is used. can do.
  • the lath cutting device 50 shown in Fig. 1 has a lath cutting blade 5 2 a and a fixed blade 5 2 b which are vertically operated on the end side to which the metal plate 26 to be lascated is fed. Is provided.
  • the fixed blade 5 2 b is fixed to the end side to which the metal plate 26 of the lath cut device 50 is fed, and further, the cut blade is formed on the outer side of the fixed blade 5 2 b.
  • the porosity of each region of the lascut metal can be changed by adjusting the feed amount of the metal plate 26 of the lascut device 50 and the lowering amount of the cutting rascut blade 52a. That is, taking the porous channel layer 24 A shown in FIG.
  • the direction of the lascuit ridges of the porous body flow path layers 24 A and 24 B having regions with different porosities is one direction, but the present invention is not limited to this.
  • a power generation region portion 24 a and a lass cut metal having boundary portions 24 b formed at both ends thereof and a lass cut plate having a pair of peripheral portions 24 c are separately manufactured. These two kinds of lascut metal may be joined so as to have different lascut directions (for example, welding) to form porous channel layers 24 A and 24 B. 10th embodiment.
  • the peripheral edge portion 2 4 c is deformed in advance so that the end portion of the portion 24 c is positioned at the center of the gasket body 16 in the thickness direction.
  • the peripheral edge portion 2 4 c of the porous channel layer 2 4 located in the center functions as a reinforcing layer, and the gasket body 1 6 against the pressure applied to the gasket body 1 6 from above and below when stacking unit cells.
  • the distortion of the gasket 16 due to the pressure can be suppressed. This further improves the gas sealing performance of the fuel cell when unit cells are stacked.
  • the peripheral portion 2 4 c of the porous body flow path layer 24 is deformed to form the reinforcing layer of the gas casing 16, but the present invention is not limited to this.
  • gas diffusion as shown in FIG.
  • the peripheral edge portion 14 c of the layer 14 may be deformed to form a reinforcing layer.
  • the thickness of the porous body flow path layer 24 formed of lascut metal or the like is, for example, 0.2 mm to 0.2 mm. Since the thickness of the gas diffusion layer 14 shown in FIG. 1 is 3 mm, which is thicker than, for example, 100 m to 280 m, it is suitable as a reinforcing layer.
  • FIG. 13 shows an example of injection molding using a mold, for example, liquid injection molding (LIM) molding.
  • LIM liquid injection molding
  • membrane electrode assembly 70 As the LIM material 60 described later, a thermosetting silicone resin or a thermoplastic resin can be used, and the membrane electrode assemblies 10 A to 10 L in the first to tenth embodiments: L 0 D , 20A to 20D, 30, and 40 are collectively referred to herein as “membrane electrode assembly 70” for convenience of explanation.
  • the LIM material 60 made of the above-mentioned material for gasket formation is weighed in the injection unit 54, and the peripheral edge of the membrane electrode assembly 70 is fixed by the fixture 62, so that the membrane electrode assembly 70 is made of gold.
  • the inside of the mold is decompressed through the decompression pipe 58, and the air in the mold is removed (S 1 1 0).
  • the pressure inside the mold reaches a desired reduced pressure state, the pressure reducing operation is stopped, the piston 55 of the injection unit 54 is operated, and the gasket forming metal is injected via the injection pipes 56, 56a, 56b.
  • the mold parts 80a and 80b are each filled with LIM material 60 (S120).
  • Fig. 14 shows an example of the unit cell structure.
  • the membrane electrode assembly 2 OA shown in FIG. 5 is sandwiched between a pair of flat separators 22.
  • the flat separator evening 22 has a smooth surface on the side of the membrane electrode assembly 2 OA (FIG. 5).
  • titanium separators have come to be used as fuel cell separators from the standpoint of durability, but these metal separators are both corrosion resistant and conductive. Standing is essential. Titanium separators are listed as candidates for achieving both the above corrosion resistance and conductivity. However, since titanium has high rigidity and is not easy to press like stainless steel, the flow path must be formed by a method other than pressing. Therefore, a configuration has been devised in which the titanium separator is a flat separator and a flow path is formed by a porous body between the flat separator and the gas diffusion layer. Alternatively, expanded metal is used as the pseudo porous channel layer.
  • the membrane electrode assembly 2 OA shown in FIG. 5 has been described.
  • the present invention is not limited to this, and the membrane electrode assembly 20 B, 30 shown in FIG. 6, FIG. 9, and FIG. , 40 may be used.
  • FIG. 7 Another example of the unit cell structure is shown in FIG.
  • the membrane electrode assembly 20 C shown in FIG. 7 is sandwiched between a pair of flash separators 22.
  • the surface on the side of the membrane electrode assembly 20 C (FIG. 7) is a smooth surface.
  • the membrane electrode assembly 20 C shown in FIG. 7 has been described.
  • the present invention is not limited to this, and the membrane electrode assembly 20 D shown in FIG. 8 may be used.
  • FIG.16 An example of another unit cell structure is shown in Fig.16.
  • the membrane electrode assembly 1 O A shown in FIG. 1 is sandwiched between a pair of separators 28.
  • a reaction gas channel 34 is formed, and a refrigerant channel (not shown) is formed on the opposite side of the surface on which the reaction gas channel 34 is formed.
  • the separator overnight 28 is made of a metal material such as stainless steel or aluminum.
  • the other unit cell has been described using the membrane electrode assembly 1 OA shown in FIG. 1.
  • the present invention is not limited to this, and the membrane electrode assembly 10 B shown in FIG. 2 may be used.
  • Another example of the unit cell structure is shown in Fig. 17.
  • the membrane electrode assembly 10 C shown in FIG. 3 is sandwiched between a pair of flat separators 22.
  • the surface on the side of the membrane electrode assembly 10 C (FIG. 3) is a smooth surface.
  • the membrane electrode assembly 10 C shown in FIG. 3 is used, but the present invention is not limited to this, and the membrane electrode assembly 10 D shown in FIG. 4 is used. May be.
  • the boundary between the porous channel layers 2 4, 2 4 A, 24 B in the membrane electrode assemblies 20 A to 20 D, 30, 40 of the fifth to 10th embodiments described above The parts 2 4 e and 24 f may be sealed in advance as shown in FIGS. 18A and 18B.
  • the boundary portion 24 e may be formed by pressing, or the boundary portion 24 f may be formed by impregnating another resin in advance by brazing, welding, screen printing, or the like. Good.
  • a sealing portion is formed by impregnation with another resin in advance by pressing, brazing, welding, screen printing, or the like. It is desirable. Thereby, it is possible to prevent the liquid resin from being impregnated more than necessary, and to secure an effective electrode area.
  • the unit cells described above are stacked to form a fuel cell.
  • the fuel cell can be reduced in size, the gas sealing performance can be improved, and the power generation efficiency per fuel cell can also be improved.
  • the present invention has been described in detail, the scope of the present invention is not limited to that described above.
  • the Japanese Patent Application filed on August 10th, 2000, 2000, 2 0 0 7—2 0 9 0 6 2, 2 0 0 7 -3 1 5 7 3 7 Detailed description of the invention, claims, drawings and abstract are all incorporated in the present application.
  • the fuel cell and the fuel cell of the present invention are effective for any use as long as the fuel cell is used, but can be used for a fuel cell for vehicles in particular.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Disclosed is a cell for fuel cells comprising a power generation region wherein a junction body (12) and first and second gas diffusion layers (14) are laminated for generating power, and a manifold region formed around the power generation region and provided with a manifold opening (18) for passing a gas or the like therethrough. One of the first and second gas diffusion layers (14) extends to the manifold region, and a peripheral portion (14c) is hermetically sealed by being impregnated with a liquid resin for formation of a gasket body (16) which is formed around the manifold opening (18). The porosity of a boundary portion (14b) of the first and second gas diffusion layers (14) is lower than the porosity of a power generation portion (14a) and the peripheral portion (14c).

Description

明細書 燃料電池用セルおよび燃料電池 技術分野  Technical field of fuel cell and fuel cell
本発明は、 燃料電池用セルおよび燃料電池、 特に、 マ二ホールド開口部を気密 シールしつつ発電領域への液状樹脂含浸を抑制し、 且つアノードおよびカソード における第 1及び第 2のガス拡散部材によるクロスリークや短絡を防止しつつ積 層厚みの薄層化が可能な燃料電池用セルおよび燃料電池に関する。  The present invention relates to a fuel cell and a fuel cell. In particular, the first and second gas diffusion members in the anode and the cathode suppress the impregnation of the liquid resin into the power generation region while hermetically sealing the manifold opening. The present invention relates to a fuel cell and a fuel cell capable of reducing the layer thickness while preventing cross leak and short circuit.
背景技術 Background art
例えば、 固体高分子型燃料電池は、 図 19に示すように、 固体高分子膜からな る電解質膜 92を燃料極 96と空気極 94との 2枚の電極で挟んだ接合体 (ME A -. Memb r a n e E l e c t r o d e As s emb l y) を、 さらに 2 枚のセパレー夕 90に挟持してなるセルを最小単位とし、 通常、 このセルを複数 積み重ねて燃料電池スタック (FCスタック) とし、 高圧電圧を得るようにして いる。  For example, as shown in FIG. 19, a polymer electrolyte fuel cell is composed of an electrolyte membrane 92 made of a solid polymer membrane sandwiched between two electrodes, a fuel electrode 96 and an air electrode 94 (ME A- Memb rane E lectrode As s emb ly) is the smallest unit of cells that are sandwiched between two separators 90. Usually, multiple cells are stacked to form a fuel cell stack (FC stack). I am trying to get it.
固体高分子型燃料電池の発電の仕組みは、 一般に、 燃料極 (アノード側電極) 96に燃料ガス、 例えば水素含有ガスが、 一方、 空気極 (力ソード側電極) 94 には酸化剤ガス、 例えば主に酸素 (02) を含有するガスあるいは空気が供給され る。 水素含有ガスは、 燃料ガス流路を通って燃料極 96に供給され、 電極の触媒 の作用により電子と水素イオン (H+) に分解される。 電子は外部回路を通って、 燃料極 96から空気極 94に移動し、 電流を作り出す。 一方、 水素イオン (H+) は電解質膜 92を通過して空気極 94に達し、 酸素および外部回路を通ってきた 電子と結合し、 反応水 (H2〇) になる。 水素 (H2) と酸素 (02) および電子の 結合反応と同時に発生する熱は、 冷却水によって回収される。 In general, the power generation mechanism of a polymer electrolyte fuel cell is such that a fuel gas (anode side electrode) 96 is a fuel gas, for example, a hydrogen-containing gas, while an air electrode (force sword side electrode) 94 is an oxidant gas, for example, A gas or air containing mainly oxygen (0 2 ) is supplied. The hydrogen-containing gas is supplied to the fuel electrode 96 through the fuel gas flow path, and is decomposed into electrons and hydrogen ions (H +) by the action of the electrode catalyst. The electrons move from the fuel electrode 96 to the air electrode 94 through an external circuit, and produce an electric current. On the other hand, hydrogen ions (H +) pass through the electrolyte membrane 92 and reach the air electrode 94, combine with oxygen and electrons that have passed through the external circuit, and become reaction water (H 2 0). Heat generated at the same time as the bonding reaction of hydrogen (H 2 ), oxygen (0 2 ), and electrons is recovered by cooling water.
近年、 単位セルの部品点数を少なく構成可能な接合体とガス拡散層とがー体型 成形された燃料電池用構成部材が提案されている (例えば、 特許文献 1)。 図 20 に示すように、 この燃料電池用構成部材は、 電解質膜 1と電解質膜 1の両面に電 極を構成する触媒担持層 2 a , 3 aを介して一体成形されたガス拡散層 2, 3と からなる M E Aを有し、 さらにガス拡散層 2 , 3の周縁部分から内側に向かって 一定幅で液状ゴムまたは合成樹脂からなる含浸帯域部 2 b, 3 bが設けられ、 さ らに含浸帯域部 2 b , 3 bの外表面を全体を包むように弾性材製ガスケット体 4 がー体成形されている。 In recent years, a component for a fuel cell in which a joined body and a gas diffusion layer that can be configured with a small number of parts in a unit cell are formed into a body has been proposed (for example, Patent Document 1). As shown in FIG. 20, this fuel cell component is composed of electrolyte membrane 1 and electrolyte membrane 1 on both sides. It has MEA consisting of gas diffusion layers 2 and 3 integrally formed through catalyst support layers 2 a and 3 a constituting the electrode, and has a constant width from the periphery of gas diffusion layers 2 and 3 to the inside. In addition, the impregnation zone portions 2 b and 3 b made of liquid rubber or synthetic resin are provided, and the gasket member 4 made of an elastic material is molded so as to wrap the entire outer surface of the impregnation zone portions 2 b and 3 b. ing.
また、 特許文献 2における膜電極接合体は、 図 2 1に示すように、 電解質膜 1 の両面に補強層 5が設けられ、 各補強層 5の一部にそれぞれ触媒層 2 a, 3 aが 積層されて形成され、 さらにガス拡散層 2, 3が積層されて形成されている。 一 方、 膜電極接合体のマ二ホールド開口部 1 1は、 電解質膜 1の両面に補強層 5が 設けられ、 さらに各補強層 5には接着層 8、 スぺーサ層 6および含浸部 7が積層 されて形成され、 マ二ホールド開口部 1 1に対して面内内側方向および面内外側 方向の含浸部 7表面上にシール部 9が形成されている。 したがって、 図 2 1に示 すように、 接合体の外周部に接着層 8とスぺーサ層 6を形成し、 さらにアノード および力ソードのそれぞれのガス拡散層 2, 3の外周部をマ二ホールド領域まで それぞれ延長し且つ該外周部に封止材料を含浸させ含浸部 7を形成することによ つて、 成型時の圧縮応力によりガス拡散層が接合体に食い込むことを抑制し、 且 つ電解質膜の破損発生を抑制した膜電極接合体が提案されている。  Further, in the membrane electrode assembly in Patent Document 2, as shown in FIG. 21, reinforcing layers 5 are provided on both surfaces of the electrolyte membrane 1, and catalyst layers 2 a and 3 a are respectively provided on a part of each reinforcing layer 5. The gas diffusion layers 2 and 3 are laminated and formed. On the other hand, the manifold opening 11 of the membrane electrode assembly is provided with reinforcing layers 5 on both sides of the electrolyte membrane 1, and each reinforcing layer 5 has an adhesive layer 8, a spacer layer 6 and an impregnated portion 7. The seal portion 9 is formed on the surface of the impregnation portion 7 in the in-plane inner direction and the in-plane outer direction with respect to the manifold opening portion 11. Therefore, as shown in FIG. 21, an adhesive layer 8 and a spacer layer 6 are formed on the outer peripheral portion of the joined body, and the outer peripheral portions of the gas diffusion layers 2 and 3 of the anode and the force sword are further managed. By extending each to the hold region and impregnating the outer periphery with a sealing material to form the impregnated portion 7, the gas diffusion layer is prevented from biting into the joined body due to the compressive stress during molding, and the electrolyte Membrane electrode assemblies that suppress the occurrence of membrane damage have been proposed.
特許文献 1 :特開 2 0 0 6— 2 3 6 9 5 7号公報 Patent Document 1: Japanese Patent Laid-Open No. 2 0 06 6-2 3 6 9 5 7
特許文献 2 :特開 2 0 0 7— 4 2 3 4 8号公報 発明の開示 Patent Document 2: Japanese Patent Laid-Open No. 2 07 4-4 3 4 8
発明が解決しょうとする課題 Problems to be solved by the invention
単にマ二ホールド領域までガス拡散層を延長し、 延長されたガス拡散層の周縁 部に樹脂や封止材料を含浸させたとしても、 上記樹脂や封止材料が確実に含浸さ れなければガスシール性が低下するおそれがあり、 一方、 ガス拡散層の発電領域 にまで上記樹脂や封止材料が含浸された場合には、 発電領域の接合体に供給する ガス供給面積が減少するため、 燃料電池の発電効率が減少するおそれがある。 ま た、 特許文献 2において提案された単位セルの構成では、 接着層やスぺーサ層を 有するため、 単位セルあたりの部品点数が多くなるとともに、 多層積層であるこ とから、 単位セルの厚みが増し、 セルをスタック形成した燃料電池も大型化する おそれがある。 課題を解決するための手段 Even if the gas diffusion layer is simply extended to the manifold region and the periphery of the extended gas diffusion layer is impregnated with resin or sealing material, the gas or the sealing material is not impregnated with certainty. On the other hand, if the resin or sealing material is impregnated into the power generation area of the gas diffusion layer, the gas supply area supplied to the joined body in the power generation area will decrease. The power generation efficiency of the battery may be reduced. In addition, since the unit cell configuration proposed in Patent Document 2 has an adhesive layer and a spacer layer, the number of parts per unit cell is increased, and the multilayer structure is used. Therefore, the thickness of the unit cell increases, and the fuel cell in which the cells are stacked may be increased in size. Means for solving the problem
本発明は、 上記課題に鑑みなされたものであり、 単位セルの部品点数を減らす ことができ、 且つガスシール性を向上させ、 小型化が可能な燃料電池用セルおよ び燃料電池を提供する。 上記目的を達成するために、 本発明の燃料電池用セルおよび燃料電池は以下の 特徴を有する。  The present invention has been made in view of the above problems, and provides a fuel cell and a fuel cell that can reduce the number of parts of a unit cell, improve gas sealability, and can be downsized. . In order to achieve the above object, the fuel cell and fuel cell of the present invention have the following characteristics.
( 1 ) 電解質膜に燃料極と空気極を有する接合体と、 前記燃料極に燃料ガスを 供給する第 1のガス拡散部材と、 前記空気極に酸化剤ガスを供給する第 2のガス 拡散部材と、 前記第 1のガス拡散部材と接合体と第 2の拡散部材とを挟持する一 対のセパレー夕と、 から構成される燃料電池用セルであって、 前記接合体が位置 する発電領域と、 前記発電領域の周囲に設けられ燃料ガス、 酸化剤ガスおよび冷 媒を流通させるマ二ホールド開口部が形成されたマ二ホールド領域と、 を有し、 前記第 1のガス拡散部材または前記第 2のガス拡散部材の少なくとも一方は、 前 記マ二ホールド領域まで延出し且つ液状樹脂が含浸され気密的にシールされ、 前 記第 1のガス拡散部材および前記第 2のガス拡散部材における前記発電領域と前 記マ二ホールド領域との境界部の気孔率は、 少なくとも前記第 1のガス拡散部材 および前記第 2のガス拡散部材における発電領域およびマ二ホールド領域の気孔 率に比べ相対的に小さい燃料電池用セルである。 (1) A joined body having a fuel electrode and an air electrode on an electrolyte membrane, a first gas diffusion member for supplying fuel gas to the fuel electrode, and a second gas diffusion member for supplying oxidant gas to the air electrode And a pair of separators sandwiching the first gas diffusion member, the joined body, and the second diffusion member, and a power generation region in which the joined body is located. A manifold region provided around the power generation region and formed with a manifold opening through which a fuel gas, an oxidant gas, and a coolant are circulated, and the first gas diffusion member or the first At least one of the two gas diffusion members extends to the manifold region and is impregnated with a liquid resin and hermetically sealed, and the power generation in the first gas diffusion member and the second gas diffusion member is performed. Areas and the above two hold The porosity of the boundary between the band is at least the first gas diffusion member and the relatively small fuel cell compared to the porosity of the power generation region and Ma two hold area of the second gas diffusion member.
第 1のガス拡散部材および第 2のガス拡散部材における境界部では、 含浸液状 樹脂の発電領域への進入防止に適し且つガスが通過しにくい気孔率を有するので、 マ二ホールド領域ではガスシール性が確保され、 且つ発電領域ではガス拡散面積 が維持されるとともに発電領域におけるガス拡散性が向上する。  The boundary between the first gas diffusion member and the second gas diffusion member has a porosity that is suitable for preventing the impregnated liquid resin from entering the power generation region and is difficult for gas to pass through. In addition, the gas diffusion area is maintained in the power generation region and the gas diffusibility in the power generation region is improved.
( 2 ) 上記 (1 ) に記載の燃料電池用セルにおいて、 前記第 1のガス拡散部材 または前記第 2のガス拡散部材のいずれか一方は、 前記マ二ホールド領域まで延 出し且つ液状樹脂が含浸され気密的にシールされている燃料電池用セルである。 第 1のガス拡散部材または第 2のガス拡散部材のいずれか一方は、 マ二ホール ド領域まで延出させることにより、 マ二ホールド領域におけるアノードとカソ一 ドとの間のガスリークおよび短絡を防ぐことができる。 液状樹脂は、 延出された ガス拡散部材に含浸されるため、 特許文献 2のような接着層がなくとも、 機械的 に結合されガスシール性が向上する。 (2) The fuel cell according to (1), wherein the first gas diffusion member Alternatively, either one of the second gas diffusion members is a fuel cell that extends to the manifold region and is impregnated with a liquid resin and hermetically sealed. Either the first gas diffusion member or the second gas diffusion member is extended to the manifold region to prevent gas leakage and short circuit between the anode and the cathode in the manifold region. be able to. Since the liquid resin is impregnated in the extended gas diffusion member, even if there is no adhesive layer as in Patent Document 2, it is mechanically bonded and gas sealing performance is improved.
( 3 ) 上記 (1 ) または (2 ) に記載の燃料電池用セルにおいて、 前記第 1の ガス拡散部材および前記第 2のガス拡散部材における前記発電領域と前記マニホ ールド領域との境界部の気孔率は、 前記第 1のガス拡散部材および前記第 2のガ ス拡散部材におけるマ二ホールド領域の気孔率より小さい燃料電池用セルである。 上記構成により、 第 1, 第 2のガス拡散部材における発電領域にまで液状樹脂 が含浸することを抑制することができる。 (3) In the fuel cell cell according to (1) or (2), pores at a boundary portion between the power generation region and the manifold region in the first gas diffusion member and the second gas diffusion member. The rate is a fuel cell that is smaller than the porosity of the manifold region in the first gas diffusion member and the second gas diffusion member. With the above configuration, the liquid resin can be prevented from being impregnated into the power generation region of the first and second gas diffusion members.
( 4 ) 上記 (1 ) から (3 ) のいずれか 1つに記載の燃料電池用セルにおいて、 さらに、 前記接合体は、 前記マ二ホールド領域まで延出し且つ気密的にシールす る液状樹脂と接着される燃料電池用セルである。 (4) In the fuel cell cell according to any one of (1) to (3), the joined body may further include a liquid resin extending to the manifold region and hermetically sealing. It is a fuel cell to be bonded.
接合体は、 一般にマ二ホールド領域を気密的にシールする液状樹脂と親和性が 高いため、 マ二ホールド領域まで延出された接合体が、 マ二ホールド領域を気密 的にシールする液状樹脂と接着することによって、 燃料電池用セルの接着信頼性 がより確保される。 したがって、 特許文献 2のような接着層がなくとも、 より機 械的に燃料電池セルが結合されガスシール性が向上する。  Since the joined body generally has a high affinity with the liquid resin that hermetically seals the manifold region, the joined body that extends to the manifold region and the liquid resin that hermetically seals the manifold region. Adhesion reliability of the fuel cell is further ensured by bonding. Therefore, even without an adhesive layer as in Patent Document 2, the fuel cells are more mechanically coupled and the gas sealability is improved.
( 5 ) 上記 (1 ) から (4 ) のいずれか 1つに記載の燃料電池用セルにおいて、 前記第 1の拡散部材および第 2の拡散部材は、 前記燃料極と空気極にそれぞれ設 けられているガス拡散層である燃料電池用セルである。 (5) In the fuel cell according to any one of (1) to (4), the first diffusion member and the second diffusion member are provided on the fuel electrode and the air electrode, respectively. It is the cell for fuel cells which is a gas diffusion layer.
単位セルの部品点数を減らすことができ、 且つマ二ホールド領域におけるガス シール性を向上させることができる。 ( 6 ) 上記 (1 ) から (4 ) のいずれか 1つに記載の燃料電池用セルにおいて、 前記セパレー夕は、 前記接合体側表面が平滑面であるフラットセパレー夕であり、 前記第 1の拡散部材および第 2の拡散部材は、 前記燃料極と空気極にそれぞれ設 けられている各ガス拡散層と前記フラットセパレ一夕との間にそれぞれ配置され る多孔体流路層である燃料電池用セルである。 The number of parts of the unit cell can be reduced, and the gas sealing performance in the manifold region can be improved. (6) In the fuel cell according to any one of (1) to (4), the separator is a flat separator whose surface on the joined body side is a smooth surface, and the first diffusion. The member and the second diffusion member are for a fuel cell, which is a porous channel layer disposed between each gas diffusion layer provided in each of the fuel electrode and the air electrode and the flat separator overnight. Cell.
多孔体流路層は、 金属製であることからガス拡散層に比べ、 マ二ホールド領域 において液状樹脂を含浸させることにより、 特に加熱時のマ二ホールド領域の強 度は向上する。 これにより、 成型時の押圧およびガス圧によるマ二ホールド領域 の変形が抑制され、 さらにガスシール性が向上する。  Since the porous channel layer is made of metal, the strength of the manifold region, particularly during heating, is improved by impregnating the liquid resin in the manifold region compared to the gas diffusion layer. As a result, deformation of the manifold region due to pressing and gas pressure during molding is suppressed, and gas sealing performance is further improved.
( 7 ) 上記 (1 ) から (6 ) のいずれか 1つに記載の燃料電池用セルにおいて、 前記第 1のガス拡散部材および第 2のガス拡散部材の境界部における気孔径は 2 0 m以下である燃料電池用セルである。 (7) In the fuel cell according to any one of (1) to (6), a pore diameter at a boundary portion between the first gas diffusion member and the second gas diffusion member is 20 m or less. This is a fuel cell.
一般に、 燃料電池用セルにおいて、 液状樹脂が流通不可能な気孔径は 2 0 / m 以下であると言われており、 第 1のガス拡散部材および第 2のガス拡散部材の境 界部における気孔径を 2 0 /i m以下にすることにより、 境界部において液状樹脂 の含浸を抑制することができるため、 良好な成形加工が可能となる。  In general, in a fuel cell, it is said that the pore diameter at which the liquid resin cannot flow is 20 / m or less, and the pores at the boundary between the first gas diffusion member and the second gas diffusion member. By setting the pore diameter to 20 / im or less, it is possible to suppress impregnation of the liquid resin at the boundary portion, and thus it is possible to perform good molding processing.
( 8 ) 上記 (6 ) に記載の燃料電池用セルにおいて、 多孔体流路層は、 前記発 電領域、 前記マ二ホールド領域、 前記発電領域と前記マ二ホールド領域との境界 部において気孔率の異なるラスカットメタルまたはエキスパンドメタルである燃 料電池用セルである。 (8) In the fuel cell according to the above (6), the porous body flow path layer has a porosity at a boundary between the power generation region, the manifold region, and the power generation region and the manifold region. It is a cell for fuel cells that is a different type of lath cut metal or expanded metal.
上記ラスカットメタル、 エキスパンドメタルは、 所望の気孔率に可変可能に加 工することができ、 且つ所望の厚みに形成可能なものであり、 また、 金属製であ るため、 集電体としても機能させることができる。  The above-mentioned lath cut metal and expanded metal can be variably processed to a desired porosity and can be formed to a desired thickness, and also function as a current collector because they are made of metal. Can be made.
( 9 ) 上記 (1 ) から (8 ) のいずれか 1つに記載の燃料電池用セルにおいて、 前記マ二ホールド領域には、 前記前記第 1のガス拡散部材と接合体と第 2の拡散 部材とを一体化させ且つ前記マ二ホールド開口部の周囲を気密的にシールするガ スケッ卜が設けられ、 前記第 1のガス拡散部材または第 2のガス拡散部材のいず れか一方の前記マ二ホールド領域に拡大した周縁部は、 前記ガスケッ卜の厚み方 向の中央に位置する燃料電池用セルである。 (9) In the fuel cell according to any one of (1) to (8), the manifold region includes the first gas diffusion member, the joined body, and a second diffusion. A gasket that integrates the member and hermetically seals the periphery of the manifold opening, and is provided with one of the first gas diffusion member and the second gas diffusion member. The peripheral portion enlarged in the manifold region is a fuel cell unit located at the center in the thickness direction of the gasket.
ガスケッ卜の厚み方向の中央に第 1, 第 2のガス拡散部材のいずれか一方の周 縁部を位置させることにより、 単位セルをスタック形成する際にガスケッ卜に上 下からかかる押圧に対し、 ガスケッ卜を形成する樹脂による反力が均等に働くた め、 押圧によるガスケットの歪みを抑制することができる。 これにより、 単位セ ルを積層した場合の燃料電池のガスシール性はより向上する。  By positioning the peripheral edge of either the first or second gas diffusion member in the center of the thickness direction of the gasket, against the pressure applied to the gasket from above and below when stacking unit cells, Since the reaction force due to the resin forming the gasket works equally, distortion of the gasket due to pressing can be suppressed. This further improves the gas sealing performance of the fuel cell when unit cells are stacked.
( 1 0 ) 上記 (1 ) から (9 ) のいずれか 1つに記載の燃料電池用セルを積層 してなる燃料電池である。 (10) A fuel cell in which the cells for fuel cells according to any one of (1) to (9) above are stacked.
部品点数を削減したセルを積層するため燃料電池を小型化することができ、 且 つガスシール性が向上し、 また燃料電池あたりの発電効率も向上させることでき る。 発明の効果  By stacking cells with a reduced number of parts, it is possible to reduce the size of the fuel cell, improve gas sealing performance, and improve the power generation efficiency per fuel cell. The invention's effect
本発明によれば、 単位セルの部品点数を減らすことができ、 且つガスシール性 を向上させ、 また、 燃料電池用セルあたりの発電効率を向上させることができる。 図面の簡単な説明  According to the present invention, the number of parts of a unit cell can be reduced, the gas sealing performance can be improved, and the power generation efficiency per fuel cell can be improved. Brief Description of Drawings
図 1は、 本発明の燃料電池用セルにおける膜電極接合体の構成の一例を説明す る断面図である。  FIG. 1 is a cross-sectional view illustrating an example of the configuration of a membrane electrode assembly in a fuel cell according to the present invention.
図 2は、 発明の燃料電池用セルにおける他の膜電極接合体の構成の一例を説明 する断面図である。  FIG. 2 is a cross-sectional view for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention.
図 3は、 発明の燃料電池用セルにおける他の膜電極接合体の構成の一例を説明 する断面図である。  FIG. 3 is a cross-sectional view for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention.
図 4は、 発明の燃料電池用セルにおける他の膜電極接合体の構成の一例を説明 する断面図である。 図 5は、 発明の燃料電池用セルにおける他の膜電極接合体の構成の一例を説明 する図である。 FIG. 4 is a cross-sectional view for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention. FIG. 5 is a diagram for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention.
図 6は、 発明の燃料電池用セルにおける他の膜電極接合体の構成の一例を説明 する断面図である。  FIG. 6 is a cross-sectional view for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention.
図 7は、 発明の燃料電池用セルにおける他の膜電極接合体の構成の一例を説明 する断面図である。  FIG. 7 is a cross-sectional view for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention.
図 8は、 発明の燃料電池用セルにおける他の膜電極接合体の構成の一例を説明 する断面図である。  FIG. 8 is a cross-sectional view for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention.
図 9は、 発明の燃料電池用セルにおける他の膜電極接合体の製造例を説明する 断面図である。  FIG. 9 is a cross-sectional view for explaining a production example of another membrane electrode assembly in the fuel cell of the invention.
図 1 0は、 発明の燃料電池用セルにおける他の膜電極接合体の構成の一例を説 明する図である。  FIG. 10 is a diagram for explaining an example of the configuration of another membrane electrode assembly in the fuel cell of the invention.
図 1 1は、 多孔体流路層に用いるガス拡散部材の一例を示す斜視図である。 図 1 2は、 多孔体流路層に用いるガス拡散部材の製造するためのラスカツト装 置の構成を示す概略図である。  FIG. 11 is a perspective view showing an example of a gas diffusion member used for the porous body flow path layer. FIG. 12 is a schematic diagram showing the configuration of a lasscut device for manufacturing a gas diffusion member used for a porous body flow path layer.
図 1 3は、 ガスケットー体型膜電極接合体の製造方法の工程の一例を説明する 図である。  FIG. 13 is a diagram for explaining an example of the process of the method for producing a gasket-type membrane electrode assembly.
図 1 4は、 本発明における燃料電池用セルの構造の一例を示す断面図である。 図 1 5は、 本発明における他の燃料電池用セルの構造の一例を示す断面図であ る。  FIG. 14 is a cross-sectional view showing an example of the structure of a fuel cell in the present invention. FIG. 15 is a cross-sectional view showing an example of the structure of another fuel cell according to the present invention.
図 1 6は、 本発明における他の燃料電池用セルの構造の一例を示す断面図であ る。  FIG. 16 is a cross-sectional view showing an example of the structure of another fuel cell according to the present invention.
図 1 7は、 本発明における他の燃料電池用セルの構造の一例を示す断面図であ る。  FIG. 17 is a cross-sectional view showing an example of the structure of another fuel cell according to the present invention.
図 1 8 Aは、 封止部形成の一例を説明する図である。  FIG. 18A is a diagram for explaining an example of forming a sealing portion.
図 1 8 Bは、 封止部形成の他の例を説明する図である。  FIG. 18B is a diagram for explaining another example of forming a sealing portion.
図 1 9は、 燃料電池のセルの構成および発電時のメカニズムを説明する図であ る。  FIG. 19 is a diagram for explaining the cell configuration of the fuel cell and the mechanism during power generation.
図 2 0は、 従来の燃料電池用構成部材の構成の一例を示す一部断面図である。 図 21は、 従来の膜電極接合体の構造の一例を示す一部断面図である。 符号の説明 FIG. 20 is a partial cross-sectional view showing an example of the configuration of a conventional fuel cell component. FIG. 21 is a partial cross-sectional view showing an example of the structure of a conventional membrane electrode assembly. Explanation of symbols
10 A, 1 0 B, 10 C, 10 D, 20 A, 20 B, 20 C, 20 D, 30, 40 膜電極接合体、 12 接合体、 14 ガス拡散層、 14 a, 24 a 発電 領域部、 14 b, 24 b 境界部、 14 c、 24 c 周縁部、 16 ガスケット 体、 18 マ二ホールド開口部、 24, 24 A, 24 B 多孔体流路層。 発明を実施するための最良の形態  10 A, 1 0 B, 10 C, 10 D, 20 A, 20 B, 20 C, 20 D, 30, 40 Membrane electrode assembly, 12 assembly, 14 gas diffusion layer, 14 a, 24 a Power generation region , 14 b, 24 b border, 14 c, 24 c peripheral edge, 16 gasket body, 18 manifold hold, 24, 24 A, 24 B porous body channel layer. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態について、 図面に基づいて説明する。 第 1の実施の形態.  Hereinafter, embodiments of the present invention will be described with reference to the drawings. First embodiment.
本実施の形態の燃料電池用セル (以下 「単位セル」 ともいう) は、 図 1に示す ように、 電解質膜に燃料極と空気極を有する接合体 1 2と、 接合体 12における 燃料極および空気極のそれぞれに燃料ガス、 酸化剤ガスを供給する第 1, 第 2の ガス拡散層 14とからなる膜電極接合体 1 OAを、 後述する一対のセパレー夕 (図示せず) によって挟持してなる。 本実施の形態において、 本発明の第 1, 第 2のガス拡散部材はガス拡散層である。  As shown in FIG. 1, the fuel cell cell of the present embodiment (hereinafter also referred to as “unit cell”) includes a joined body 12 having a fuel electrode and an air electrode on an electrolyte membrane, a fuel electrode in the joined body 12, and A membrane electrode assembly 1 OA composed of first and second gas diffusion layers 14 for supplying fuel gas and oxidant gas to each air electrode is sandwiched by a pair of separators (not shown) described later. Become. In the present embodiment, the first and second gas diffusion members of the present invention are gas diffusion layers.
さらに、 本実施の形態の燃料電池用セルは、 接合体 1 2と第 1, 第 2のガス拡 散層 14とが積層され発電可能な発電領域と、 前記発電領域の周囲に設けられ、 さらに燃料ガス、 酸化剤ガスおよび冷媒を流通させるマ二ホールド開口部 1 8が 形成されたマ二ホールド領域と、 を有し、 第 1, 第 2のガス拡散層 14のいずれ か一方は、 マ二ホールド領域まで拡大し、 ガス拡散層 14の一方の周縁部 14 c は液状樹脂が含浸されて気密的にシールされる。 さらに、 マ二ホールド開口部 1 8の周囲には、 液状樹脂を硬化させて形成され弾性を有するガスケット体 16が 形成され、 周縁部 14 cは、 ガスケット体 1 6の芯材としても機能している。 本実施の形態の燃料電池用セルでは、 上述した第 1, 第 2のガス拡散層 14に おける前記発電領域と前記マ二ホールド領域との境界部 14 bの気孔率は、 少な くとも第 1, 第 2のガス拡散層 14における発電領域部 14 aの気孔率およびマ 二ホールド領域における周縁部 1 4 cの気孔率に比べ、 相対的に小さい。 さらに、 第 1, 第 2のガス拡散層 1 4における境界部 1 4 bの気孔率は、 第 1, 第 2のガ ス拡散層 1 4におけるマ二ホールド領域の周縁部 1 4 cの気孔率より小さいこと が好ましい。 さらに好ましくは、 第 1, 第 2のガス拡散層 1 4における上記発電 領域とマ二ホールド領域との間の境界部 1 4 bの気孔径は、 液状樹脂が通過不能 な気孔径であって、 例えば 2 0 m以下である。 これにより、 境界部 1 4 にお いて、 マ二ホールド領域を形成するために含浸される液状樹脂が発電領域まで進 入することを抑制することができる。 Furthermore, the fuel cell according to the present embodiment includes a power generation region in which the joined body 12 and the first and second gas diffusion layers 14 are stacked and capable of generating power, and is provided around the power generation region. A manifold region in which a manifold opening 18 for allowing the fuel gas, the oxidant gas and the refrigerant to circulate is formed, and one of the first and second gas diffusion layers 14 is The gas diffusion layer 14 is impregnated with a liquid resin and hermetically sealed. Further, around the manifold opening portion 18, a gasket body 16 having elasticity formed by curing a liquid resin is formed, and the peripheral portion 14 c also functions as a core material of the gasket body 16. Yes. In the fuel cell according to the present embodiment, the porosity of the boundary portion 14b between the power generation region and the manifold region in the first and second gas diffusion layers 14 described above is at least the first. , Porosity and power generation region 14a in the second gas diffusion layer 14 It is relatively small compared to the porosity of the peripheral edge 14 c in the two-hold region. Further, the porosity of the boundary portion 14 b in the first and second gas diffusion layers 14 is equal to the porosity of the peripheral portion 14 c of the manifold region in the first and second gas diffusion layers 14. It is preferable to be smaller. More preferably, the pore diameter of the boundary portion 14 b between the power generation region and the manifold region in the first and second gas diffusion layers 14 is a pore diameter through which liquid resin cannot pass, For example, it is 20 m or less. As a result, the liquid resin impregnated to form the manifold region at the boundary portion 14 can be prevented from entering the power generation region.
また、 上記第 1, 第 2のガス拡散層 1 4の発電領域部 1 4 aにおける気孔径は、 2 を超えて、 且つガス流通性を確保可能な気孔径が選択される。 一方、 第 Further, the pore diameter in the power generation region portion 14 a of the first and second gas diffusion layers 14 is more than 2, and the pore diameter capable of ensuring gas flowability is selected. On the other hand
1, 第 2のガス拡散層 1 4の周縁部 1 4 cの気孔径も、 2 0 mを超え、 且つマ 二ホールドを形成するための液状樹脂の含浸可能な気孔径が選択される。 1. The pore diameter of the peripheral portion 14 c of the second gas diffusion layer 14 is also more than 20 m, and the pore diameter that can be impregnated with the liquid resin for forming the manifold is selected.
次に、 上記接合体における電解質膜として、 例えばナフイオン (N a f i o n ;登録商標、 デュポン社製) などのフッ素系膜、 炭化水素系膜 (H C膜) を用い ることができる。 また燃料極、 空気極は、 電極触媒が炭素系担持体に担持されて なり、 電極触媒としては、 白金または白金を含有する合金からなる触媒、 また白 金を含有する合金、 さらに白金とともに含有可能な金属としては、 鉄、 コバルト、 ニッケル、 クロム、 銅、 バナジウムなどが挙げられ、 この電極触媒が炭素系担持 体に担持されている。  Next, as the electrolyte membrane in the above-mentioned joined body, for example, a fluorine-based membrane such as naphthion (Nafion; registered trademark, manufactured by DuPont) or a hydrocarbon-based membrane (HC membrane) can be used. The fuel electrode and air electrode are composed of an electrode catalyst supported on a carbon-based support. As an electrode catalyst, a catalyst made of platinum or a platinum-containing alloy, an alloy containing platinum, or even platinum can be contained. Examples of such metals include iron, cobalt, nickel, chromium, copper, and vanadium, and this electrode catalyst is supported on a carbon-based support.
第 1 , 第 2のガス拡散層 1 4として、 例えば、 ペーパー、 クロス、 高クッショ ンペーパー、 多孔質の金属を用いることができ、 また撥水性を有するカーボン粒 子の集合体からなるカーボン粒子層であってもよい。 カーボン粒子としては、 例 えばカーボンブラック、 黒鉛、 膨張黒鉛などが挙げられるが、 電子伝導性に優れ、 比表面積が大きいオイルファーネスブラック、 チャネルブラック、 ランプブラッ ク、 サーマルブラック、 アセチレンブラック等のカーボンブラックが好適に用い ることができる。 また、 燃料電池におけるフラッティング現象等を防ぐために、 第 1, 第 2のガス拡散層 1 4には、 撥水剤を付与され、 撥水剤としては、 例えば、 ポリテトラフルォロエチレン (P T F E )、 ポリフッ化ビニリデン (P V D F )、 ポリへキサフルォロプロピレン、 テトラフルォロエチレン一へキサフルォロプロ ピレン共重合体 (F E P ) 等のフッ素系の高分子材料、 ポリプロピレン、 ポリエ チレン等が挙げられる。 As the first and second gas diffusion layers 14, for example, paper, cloth, high cushion paper, porous metal can be used, and a carbon particle layer formed of an aggregate of carbon particles having water repellency. It may be. Examples of carbon particles include carbon black, graphite, and expanded graphite. Carbon blacks such as oil furnace black, channel black, lamp black, thermal black, and acetylene black, which have excellent electronic conductivity and a large specific surface area. Can be suitably used. In addition, in order to prevent a flooding phenomenon or the like in the fuel cell, the first and second gas diffusion layers 14 are provided with a water repellent, and examples of the water repellent include polytetrafluoroethylene (PTFE). ), Polyvinylidene fluoride (PVDF), polyhexafluoropropylene, tetrafluoroethylene monohexafluoropro Examples include fluorine polymer materials such as pyrene copolymer (FEP), polypropylene, and polyethylene.
上記ガスケット体 1 6を形成するための液状樹脂として、 例えば、 熱硬化型シ リコン系樹脂、 熱可塑性樹脂を用いることができる。  As the liquid resin for forming the gasket body 16, for example, a thermosetting silicone resin or a thermoplastic resin can be used.
本実施の形態において、 上記第 1, 第 2のガス拡散層 1 4におけるマ二ホール ド領域まで拡大した周縁部 1 4 cにおいて、 上記撥水剤を付与せず、 気孔径を維 持させ、 含浸させる液状樹脂の親和性を向上させてもよい。 第 2の実施の形態.  In the present embodiment, the peripheral portion 14 c expanded to the manifold region in the first and second gas diffusion layers 14 is not provided with the water repellent and maintains the pore diameter, The affinity of the liquid resin to be impregnated may be improved. Second embodiment.
図 2には、 第 2の実施形態における燃料電池用セルの膜電極接合体 1 0 Bの構 成が示されている。 上述した図 1に示す第 1の実施の形態における膜電極接合体 1 0 Aでは、 一方のガス拡散層 1 4のみその端部が、 マ二ホールド領域まで延出 しているが、 第 2の実施の形態における膜電極接合体 1 0 Bでは、 第 1、 第 2の ガス拡散層 1 4の端部がそれぞれマ二ホールド領域まで延出し且つ第 1、 第 2の ガス拡散層 1 4の周縁部 1 4 cは互いに重層しないように形成されている以外は、 第 2の実施の形態の膜電極接合体 1 0 Bの構成は、 第 1の実施の形態の膜電極接 合体 1 O Aの構成と同じである。  FIG. 2 shows the configuration of the membrane electrode assembly 10 B of the fuel cell according to the second embodiment. In the membrane electrode assembly 10 A in the first embodiment shown in FIG. 1 described above, only one gas diffusion layer 14 has its end extending to the manifold region. In the membrane electrode assembly 10 B according to the embodiment, the end portions of the first and second gas diffusion layers 14 extend to the manifold region and the peripheral edges of the first and second gas diffusion layers 14. The configuration of the membrane electrode assembly 10 B of the second embodiment is the same as the configuration of the membrane electrode assembly 1 OA of the first embodiment, except that the portions 14 c are formed so as not to overlap each other. Is the same.
なお、 上記第 1、 第 2の実施の形態において、 第 1、 第 2のガス拡散層 1 4の 延出した周縁部 1 4 cは互いに重層しないように形成されているが、 電解質膜が 同様に延出または図示しないフィルム質を両拡散層間に配置され、 電気絶縁性が 確保できている場合には、 両ガス拡散層 1 4の周縁部 1 4 cが互いに重なって形 成されていてもよい。 第 3の実施の形態.  In the first and second embodiments, the extended peripheral portions 14 c of the first and second gas diffusion layers 14 are formed so as not to overlap each other, but the electrolyte membrane is the same. If the film quality (not shown) is arranged between both diffusion layers and electrical insulation is ensured, the peripheral edges 14 c of both gas diffusion layers 14 may overlap each other. Good. Third embodiment.
図 3には、 第 3の実施形態における燃料電池用セルの膜電極接合体 1 0 Cの構 成が示されている。 上述した図 1に示す第 1の実施の形態における膜電極接合体 1 O Aでは、 接合体 1 2の端部は発電領域を超え境界部までしか延出していない が、 第 3の実施の形態における膜電極接合体 1 0 Cでは、 接合体 1 2の両端部が それぞれ境界部を超えマ二ホールド領域まで延出している以外は、 第 3の実施の 形態の膜電極接合体 1 0 Cの構成は、 第 1の実施の形態の膜電極接合体 1 0 Aの 構成と同じである。 第 4の実施の形態. FIG. 3 shows the configuration of the membrane electrode assembly 10 C of the fuel cell according to the third embodiment. In the membrane electrode assembly 1 OA in the first embodiment shown in FIG. 1 described above, the end portion of the assembly 12 extends beyond the power generation region to the boundary portion, but in the third embodiment, In the membrane electrode assembly 10 C, both ends of the assembly 12 extend beyond the boundary to the manifold region, respectively. The configuration of the membrane electrode assembly 10 C of the embodiment is the same as the configuration of the membrane electrode assembly 10 A of the first embodiment. Fourth embodiment.
図 4には、 第 4の実施形態における燃料電池用セルの膜電極接合体 1 0 Dの構 成が示されている。 上述した図 2に示す第 2の実施の形態における膜電極接合体 1 0 Bでは、 接合体 1 2の端部は発電領域を超え境界部までしか延出していない が、 第 4の実施の形態における膜電極接合体 1 0 Dでは、 接合体 1 2の両端部が それぞれ境界部を超えマ二ホールド領域まで延出している以外は、 第 4の実施の 形態の膜電極接合体 1 0 Dの構成は、 第 2の実施の形態の膜電極接合体 1 0 Bの 構成と同じである。  FIG. 4 shows the configuration of the membrane electrode assembly 10 D of the fuel cell according to the fourth embodiment. In the membrane electrode assembly 10 B in the second embodiment shown in FIG. 2 described above, the end of the assembly 12 extends beyond the power generation region to the boundary portion. In the membrane electrode assembly 10 D of the fourth embodiment, the both ends of the assembly 12 extend beyond the boundary to the manifold region, respectively, except for the membrane electrode assembly 10 D of the fourth embodiment. The configuration is the same as that of the membrane electrode assembly 10 B of the second embodiment.
上記第 3 , 4の実施の形態によれば、 接合体 1 2は、 一般にマ二ホールド領域 を気密的にシールする液状樹脂と親和性が高いため、 マ二ホールド領域まで延出 された接合体が、 前記液状樹脂と接着することによって、 燃料電池用セルの接着 信頼性がより確保される。 第 5の実施の形態.  According to the third and fourth embodiments, the joined body 12 generally has a high affinity with a liquid resin that hermetically seals the manifold region, so that the joined body is extended to the manifold region. However, by adhering to the liquid resin, the adhesion reliability of the fuel cell is further ensured. Fifth embodiment.
次に、 図 5に用いて第 5の実施の形態の燃料電池用セルについて説明する。 な お、 上記第 1, 第 2, 第 3, 第 4の実施の形態と同じ構成には同じ符号を付し、 その説明を省略する。  Next, a fuel cell according to a fifth embodiment will be described with reference to FIG. The same components as those in the first, second, third, and fourth embodiments are denoted by the same reference numerals, and the description thereof is omitted.
本実施の形態の燃料電池用セルは、 図 5に示すように、 電解質膜に燃料極と空 気極を有する接合体 1 2と、 接合体 1 2における燃料極および空気極のそれぞれ に燃料ガス、 酸化剤ガスを供給する第 1, 第 2のガス拡散層 1 4と第 1, 第 2の ガス拡散層 1 4のそれぞれに積層された第 1, 第 2の多孔体流路層 2 4とからな る膜電極接合体 2 O Aを、 後述する一対のセパレ一夕 (図示せず) によって挟持 してなる。 本実施の形態において、 本発明の第 1, 第 2のガス拡散部材は多孔体 流路層である。  As shown in FIG. 5, the fuel cell of the present embodiment includes a joined body 12 having a fuel electrode and an air electrode on an electrolyte membrane, and a fuel gas in each of the fuel electrode and the air electrode in the joined body 12. The first and second gas diffusion layers 14 for supplying the oxidant gas and the first and second porous flow path layers 24 and 4 stacked on the first and second gas diffusion layers 14 and 4 respectively. The membrane electrode assembly 2 OA consisting of is sandwiched by a pair of separators (not shown) described later. In the present embodiment, the first and second gas diffusion members of the present invention are porous channel layers.
さらに、 本実施の形態の燃料電池用セルは、 接合体 1 2と第 1, 第 2のガス拡 散層 1 4とが積層され発電可能な発電領域と、 前記発電領域の周囲に設けられ、 さらに燃料ガス、 酸化剤ガスおよび冷媒を流通させるマ二ホールド開口部 1 8が 形成されたマ二ホールド領域と、 を有し、 第 1, 第 2の多孔体流路層 2 4のいず れか一方は、 マ二ホールド領域まで延出し、 多孔体流路層 2 4の一方の周縁部 2 4 cは液状樹脂が含浸されて気密的にシールされる。 さらに、 マ二ホールド開口 部 1 8の周囲には、 液状樹脂を硬化させて形成され弾性を有するガスケット体 1 6が形成され、 周縁部 2 4 cは、 ガスケット体 1 6の芯材としても機能している。 本実施の形態の燃料電池用セルでは、 上述した第 1, 第 2の多孔体流路層 2 4 における前記発電領域と前記マ二ホールド領域との境界部 2 4 bの気孔率は、 少 なくとも第 1, 第 2の多孔体流路層 2 4における発電領域部 2 4 aの気孔率およ びマ二ホールド領域における周縁部 2 4 cの気孔率に比べ、 相対的に小さい。 さ らに、 第 1 , 第 2の多孔体流路層 2 4における境界部 2 4 bの気孔率は、 第 1, 第 2の多孔体流路層 2 4におけるマ二ホールド領域の周縁部 2 4 cの気孔率より 小さいことが好ましい。 さらに好ましくは、 第 1 , 第 2の多孔体流路層 2 4にお ける上記発電領域とマ二ホールド領域との間の境界部 2 4 bの気孔径は、 液状樹 脂が通過不能な気孔径であって、 例えば 2 0 / m以下である。 これにより、 境界 部 2 4 bにおいてガスシール性が確保され、 また、 マ二ホールド領域を形成する ために含浸される液状樹脂が発電領域まで進入することを抑制することができる。 また、 上記第 1, 第 2の多孔体流路層 2 4の発電領域部 2 4 aにおける気孔径 は、 2 0 // mを超えて、 且つガス流通性および排水性を確保可能な気孔径が選択 される。 一方、 第 1 , 第 2の多孔体流路層 2 4の周縁部 2 4 cの気孔径も、 2 0 mを超え、 且つマ二ホールドを形成するための液状樹脂の含浸可能な気孔径が 選択される。 Further, the fuel cell according to the present embodiment includes a power generation region in which the joined body 12 and the first and second gas diffusion layers 14 are stacked and capable of generating power, and is provided around the power generation region. And a manifold region formed with a manifold opening 18 through which fuel gas, oxidant gas and refrigerant are circulated, and either of the first and second porous channel layers 24. One of them extends to the manifold region, and one peripheral portion 24 c of the porous channel layer 24 is impregnated with a liquid resin and hermetically sealed. Further, an elastic gasket body 16 formed by curing a liquid resin is formed around the manifold opening portion 18, and the peripheral portion 24 c also functions as a core material of the gasket body 16. is doing. In the fuel cell according to the present embodiment, the porosity of the boundary portion 24 b between the power generation region and the manifold region in the first and second porous body flow path layers 24 described above is small. In both cases, the porosity of the power generation region 24 a in the first and second porous channel layers 24 and the porosity of the peripheral portion 24 c in the manifold region are relatively small. Further, the porosity of the boundary portion 24 b in the first and second porous channel layers 24 is equal to the peripheral portion 2 of the manifold region in the first and second porous channel layers 24. It is preferably less than the porosity of 4c. More preferably, the pore diameter of the boundary portion 24 b between the power generation region and the manifold region in the first and second porous body flow path layers 24 is such that liquid resin cannot pass through. The hole diameter is, for example, 20 / m or less. As a result, gas sealability is ensured at the boundary portion 24 b, and the liquid resin impregnated to form the manifold region can be prevented from entering the power generation region. In addition, the pore diameter in the power generation region 2 4 a of the first and second porous flow passage layers 24 is more than 20 // m, and the pore diameter can ensure gas flowability and drainage. Is selected. On the other hand, the pore diameter of the peripheral portion 24 c of the first and second porous channel layers 24 also exceeds 20 m, and the pore diameter that can be impregnated with the liquid resin for forming the manifold is large. Selected.
多孔体流路層 2 4は、 例えば、 図 1 1に示すようなラスカットメタルまたはェ キスパンドメタルを用いることができる。  For the porous channel layer 24, for example, a lath cut metal or an expanded metal as shown in FIG. 11 can be used.
ここで、 本実施の形態において、 「ラスカットメタル」 とは、 平板状の薄肉金属 板に対して、 順次千鳥配置の切れ目を加工するとともに加工した切れ目を押し曲 げることによって、 網目状の小径の貫通孔が形成されたものである。 また、 「ェキ スパンドメタル」 とは、 平板状の薄肉金属板に対して、 順次千鳥配置の切れ目を 加工するとともに加工した切れ目を押し曲げることによって網目状の小径の貫通 孔が形成され、 さらに、 圧延加工されて略平板状とされたものである。 エキスパ ンドメタルは略平板状に成形されるため、 例えば、 最終成形後の製品において不 必要な曲がりや凹凸などを除去するための工程を設ける必要がなく、 製造コスト を低減することができる。 Here, in the present embodiment, the term “las cut metal” refers to a small net-like diameter by sequentially processing staggered cuts and bending the cuts on a flat thin metal plate. Through-holes are formed. In addition, “expanded metal” refers to a thin metal plate that has a mesh-like small diameter by processing cuts in a staggered arrangement on a flat thin metal plate and pressing and bending the cut cuts. A hole is formed, and further, rolled into a substantially flat plate shape. Since the expanded metal is formed in a substantially flat plate shape, for example, it is not necessary to provide a process for removing unnecessary bending or unevenness in the final molded product, and the manufacturing cost can be reduced.
また、 本実施の形態の多孔体流路層 2 4において、 集電体を兼ねる場合には、 後述する金属セパレ一夕に用いる金属材料であればいかなるものでも用いること ができるが、 燃料電池の製造時に上述したセルを積層圧縮する際の圧力に抗し所 定のガス流通を可能とするある程度の剛性を有する材料が好ましく、 例えば、 チ タン、 ステンレス材、 アルミニウムが好ましい。 なお、 ステンレス材ゃアルミ二 ゥム材を用いる場合には、 必要に応じ後述する溝加工、 ラスカット加工の後に表 面処理を行い、 表面に耐蝕性、 導電性を付与することが好ましい。 第 6の実施の形態.  Further, in the porous channel layer 24 of the present embodiment, when it also serves as a current collector, any metal material can be used as long as it is a metal separator used later. A material having a certain degree of rigidity that allows a predetermined gas flow against the pressure at the time of stacking and compressing the above-described cells during production is preferable, for example, titanium, stainless steel, and aluminum are preferable. When stainless steel or aluminum is used, it is preferable to perform surface treatment after groove processing and lath cut processing, which will be described later, if necessary, to impart corrosion resistance and electrical conductivity to the surface. Sixth embodiment.
図 6には、 第 6の実施形態における燃料電池用セルの膜電極接合体 2 0 Bの構 成が示されている。 上述した図 5に示す第 5の実施の形態における膜電極接合体 2 O Aでは、 一方の多孔体流路層 2 4のみその端部が、 マ二ホールド領域まで延 出しているが、 第 6の実施の形態における膜電極接合体 2 0 Bでは、 第 1、 第 2 の多孔体流路層 2 4の端部がそれぞれマ二ホールド領域まで延出し且つ第 1、 第 2の多孔体流路層 2 4の周縁部 2 4 cは互いに重層しないように形成されている 以外は、 第 6の実施の形態の膜電極接合体 2 0 Bの構成は、 第 5の実施の形態の 膜電極接合体 2 O Aの構成と同じである。  FIG. 6 shows the configuration of the membrane electrode assembly 20 B of the fuel cell according to the sixth embodiment. In the membrane electrode assembly 2 OA in the fifth embodiment shown in FIG. 5 described above, only one porous channel layer 24 has its end extending to the manifold region. In the membrane electrode assembly 20 B according to the embodiment, the end portions of the first and second porous channel layers 24 extend to the manifold regions, respectively, and the first and second porous channel layers The configuration of the membrane / electrode assembly 20 B of the sixth embodiment is the same as that of the membrane / electrode assembly of the fifth embodiment, except that the peripheral edge portions 2 4 c of 24 are formed so as not to overlap each other. 2 Same as OA configuration.
なお、 上記第 5 , 第 6の実施の形態において、 第 1、 第 2の多孔体流路層 2 4 の延出した周縁部 2 4 cは互いに重層しないように形成されているが、 周縁部 2 4 cにおける液状樹脂含浸性が高く十分にガスシールされている場合には、 両多 孔体流路層 2 4の周縁部 2 4 cが互いに重なって形成されていてもよい。 これら の構成では、 多孔体流路間が、 M E A接合体 1 2の厚さ分クリアランスとして確 保できるため、 双方が接触しないように成形またはいずれか一方のマ二ホール部 分に絶縁処理を予め施しておけば、 必ずしも膜やフィルムは必要ない。 第 7の実施の形態. In the fifth and sixth embodiments, the extended peripheral edge portions 24 c of the first and second porous channel layers 24 are formed so as not to overlap each other. In the case where the liquid resin impregnation property at 24 c is high and sufficiently gas-sealed, the peripheral portions 24 c of both the porous channel layers 24 may overlap each other. In these configurations, since the clearance between the porous body flow paths can be ensured by a thickness corresponding to the thickness of the MEA joined body 12, it is molded so that both do not come into contact with each other, or insulation treatment is applied to either one of the two hole portions in advance. If applied, membranes and films are not always necessary. Seventh embodiment.
図 7には、 第 7の実施形態における燃料電池用セルの膜電極接合体 2 0 Cの構 成が示されている。 上述した図 5に示す第 5の実施の形態における膜電極接合体 FIG. 7 shows the configuration of the membrane electrode assembly 20 C of the fuel cell in the seventh embodiment. Membrane electrode assembly in the fifth embodiment shown in FIG. 5 described above
2 O Aでは、 接合体 1 2の端部は発電領域を超え境界部までしか延出していない が、 第 7の実施形態における燃料電池用セルの膜電極接合体 2 0 Cでは、 接合体In 2 O A, the end of the joined body 12 extends beyond the power generation region and extends only to the boundary portion, but in the membrane electrode assembly 20 C of the fuel cell in the seventh embodiment, the joined body
1 2の両端部がそれぞれ境界部を超えマ二ホールド領域まで延出している以外は、 第 7の実施形態における燃料電池用セルの膜電極接合体 2 0 Cの構成は、 第 5の 実施の形態における膜電極接合体 2 O Aの構成と同じである。 第 8の実施の形態. The structure of the fuel cell cell electrode assembly 20 C in the seventh embodiment is the same as that of the fifth embodiment except that both ends of 12 extend beyond the boundary to the manifold region. The configuration of the membrane electrode assembly 2 OA in the form is the same. Eighth embodiment.
図 8には、 第 8の実施形態における燃料電池用セルの膜電極接合体 2 0 Dの構 成が示されている。 上述した図 6に示す第 6の実施の形態における膜電極接合体 2 0 Bでは、 接合体 1 2の端部は発電領域を超え境界部までしか延出していない が、 第 8の実施形態における燃料電池用セルの膜電極接合体 2 0 Dでは、 接合体 1 2の両端部がそれぞれ境界部を超えマ二ホールド領域まで延出している以外は、 第 8の実施形態における燃料電池用セルの膜電極接合体 2 0 Dの構成は、 第 6の 実施の形態における膜電極接合体 2 0 Bの構成と同じである。  FIG. 8 shows the configuration of the membrane electrode assembly 20 D of the fuel cell according to the eighth embodiment. In the membrane electrode assembly 20 B in the sixth embodiment shown in FIG. 6 described above, the end of the assembly 12 extends beyond the power generation region to the boundary portion. In the fuel cell membrane electrode assembly 20 D, both ends of the assembly 12 extend beyond the boundary to the manifold region, respectively, except for the fuel cell cell according to the eighth embodiment. The configuration of the membrane electrode assembly 20 D is the same as the configuration of the membrane electrode assembly 20 B in the sixth embodiment.
上記第 7, 8の実施の形態によれば、 接合体 1 2は、 一般にマ二ホールド領域 を気密的にシールする液状樹脂と親和性が高いため、 マ二ホールド領域まで延出 された接合体が、 前記液状樹脂と接着することによって、 燃料電池用セルの接着 信頼性がより確保される。 第 9の実施の形態.  According to the seventh and eighth embodiments, the joined body 12 generally has a high affinity with the liquid resin that hermetically seals the manifold region, so that the joined body is extended to the manifold region. However, by adhering to the liquid resin, the adhesion reliability of the fuel cell is further ensured. Ninth embodiment.
次に、 図 9を用いて第 9の実施の形態の燃料電池用セルについて説明する。 な お、 上記第 1から第 8の実施の形態と同じ構成には同じ符号を付し、 その説明を 省略する。  Next, a fuel cell according to a ninth embodiment will be described with reference to FIG. The same components as those in the first to eighth embodiments are denoted by the same reference numerals, and the description thereof is omitted.
本実施の形態では、 図 9に示すように、 第 1 , 第 2の多孔体流路層 2 4 A, 2 4 Bのそれぞれの周縁部 2 4 cは、 マ二ホールド領域において互いに重層するこ となく、 異なる方向に延伸成形されている。 そして、 図 9に示すように、 第 1, 第 2の多孔体流路層 2 4 A, 2 4 Bのそれぞれの発電領域部 2 4 aに、 接合体 1 2とその両面にガス拡散層 1 4が形成されたプレ膜電極接合体を位置決めし、 前 記プレ膜電極接合体を第 1, 第 2の多孔体流路層 2 4 A, 2 4 Bにより挟み込む ことによって、 膜電極接合体 3 0が形成される。 なお、 本実施の形態の膜電極接 合体 3 0の断面構造は、 図 5に示す膜電極接合体 2 O Aの構成と同一である。 本実施の形態によれば、 アノード側と力ソード側の第 1, 第 2の多孔体流路層 2 4 A, 2 4 Bを上述のように形成しているため、 アノードと力ソード間の短絡 やガスリークを防止することができ、 生産性も向上する。 なお、 第 1, 第 2の多 孔体流路層 2 4 A, 2 4 Bのそれぞれが上述と逆の力ソード側とアノード側であ つてもよい。 In the present embodiment, as shown in FIG. 9, the peripheral edge portions 24 c of the first and second porous channel layers 24 A and 24 B overlap each other in the manifold region. Rather, they are stretched in different directions. And as shown in Fig. 9, Position the pre-membrane electrode assembly in which the joined body 12 and the gas diffusion layer 14 are formed on both sides of the power generation region 2 4 a of the second porous body flow path layer 2 4 A and 2 4 B. The membrane electrode assembly 30 is formed by sandwiching the pre-membrane electrode assembly with the first and second porous channel layers 24 A and 24 B. The cross-sectional structure of the membrane electrode assembly 30 of the present embodiment is the same as the configuration of the membrane electrode assembly 2 OA shown in FIG. According to the present embodiment, since the first and second porous body flow passage layers 2 4 A and 2 4 B on the anode side and the force sword side are formed as described above, between the anode and the force sword Short circuit and gas leak can be prevented and productivity is improved. Each of the first and second porous channel layers 24 A and 24 B may be a force sword side and an anode side opposite to those described above.
さらに、 上述のような第 1, 第 2の多孔体流路層 2 4 A, 2 4 Bとして、 例え ばラスカツトメタルを用いる場合、 図 1 2に示すようなラスカツト装置 5 0を用 いて形成することができる。  Further, for example, when a rascut metal is used as the first and second porous channel layers 24 A and 24 B as described above, the rascut device 50 shown in FIG. 12 is used. can do.
図 1 2に示すラスカツト装置 5 0は、 ラスカツトを施す金属板 2 6が送られる 端部側に、 上下稼働する切り込み用ラスカツト刃 5 2 aと固定刃 5 2 bとからな るラスカット刃 5 2が設けられている。 また、 固定刃 5 2 bは、 ラスカット装置 5 0の金属板 2 6が送られる端部側に固定され、 さらに固定刃 5 2 bの外側には、 切り込みが形成されたラスカットメタル 5 4が形成されている。 したがって、 ラ スカット装置 5 0の金属板 2 6の送り量と切り込み用ラスカツト刃 5 2 aの降下 量を調整することによって、 ラスカツトメタルの各領域の気孔率を変えることが できる。 すなわち、 図 9に示す多孔体流路層 2 4 Aを例に取って説明すると、 ま ず周縁部 2 4 cを形成する際には、 例えば気孔径 2 0; mを超え且つ液状樹脂含 浸可能な開口率になるように、 金属板 2 6の送り量と切り込み用ラスカツト刃 5 2 aの降下量を調整し、 次いで境界部 2 4 bを形成する際には、 例えば気孔径 2 0 t m以下になるように金属板 2 6の送り量と切り込み用ラスカツト刃 5 2 aの 降下量を調整し、 さらに、 発電領域部 2 4 aを形成する場合には、 例えば気孔径 2 0 / mを超え且つガス流通性および排水性を確保可能な開口率になるように金 属板 2 6の送り量と切り込み用ラスカツト刃 5 2 aの降下量を調整して形成して ゆき、 さらに境界部 2 4 b、 周縁部 2 4 cを上述同様に開口率を可変調整して形 成することによって、 異なる気孔率を有する領域を含む多孔体流路層 2 4 Aを形 成することができる。 境界部 2 4 bの領域は、 金属板 2 6の送りを行い、 ラス力 ット加工をしないことで、 実質的に気孔が存在しない構成とすることが可能であ る。 The lath cutting device 50 shown in Fig. 1 has a lath cutting blade 5 2 a and a fixed blade 5 2 b which are vertically operated on the end side to which the metal plate 26 to be lascated is fed. Is provided. The fixed blade 5 2 b is fixed to the end side to which the metal plate 26 of the lath cut device 50 is fed, and further, the cut blade is formed on the outer side of the fixed blade 5 2 b. Has been. Therefore, the porosity of each region of the lascut metal can be changed by adjusting the feed amount of the metal plate 26 of the lascut device 50 and the lowering amount of the cutting rascut blade 52a. That is, taking the porous channel layer 24 A shown in FIG. 9 as an example, first, when forming the peripheral portion 24 c, for example, the pore diameter exceeds 20 m; When adjusting the feed amount of the metal plate 26 and the lowering amount of the cutting blade 5 2 a so that the opening ratio becomes possible, and then forming the boundary portion 2 4 b, for example, the pore diameter 20 tm When adjusting the feed amount of the metal plate 26 and the descending amount of the cutting lascutter blade 5 2 a so as to be as follows, and further forming the power generation region portion 2 4 a, for example, the pore diameter 20 / m It is formed by adjusting the feed amount of the metal plate 26 and the cutting amount of the cutting blade 5 2 a so that the opening ratio can be exceeded and the gas flowability and drainage performance can be secured, and the boundary 2 4 b, peripheral edge 2 4 c with variable aperture ratio as above As a result, a porous channel layer 24 A including regions having different porosities can be formed. In the region of the boundary portion 24 b, the metal plate 26 is fed and the lath force cutting process is not performed, so that it is possible to have a configuration in which there is substantially no pore.
なお、 本実施の形態では、 気孔率の異なる領域を有する多孔体流路層 2 4 A, 2 4 Bのラスカツ卜の方向は一方方向になっているがこれに限るものではなく、 上記ラスカツト装置 5 0にて、 発電領域部 2 4 aとその両端に境界部 2 4 bが形 成されたラスカツトメタルと、 一対の周縁部 2 4 cが形成されたラスカツトメ夕 ルとを別々に作製し、 この 2種類のラスカツトメタルをラスカツト方向が異なる ように接合 (例として、 溶接が挙げられる) して多孔体流路層 2 4 A, 2 4 Bと してもよい。 第 1 0の実施の形態.  In the present embodiment, the direction of the lascuit ridges of the porous body flow path layers 24 A and 24 B having regions with different porosities is one direction, but the present invention is not limited to this. At 50, a power generation region portion 24 a and a lass cut metal having boundary portions 24 b formed at both ends thereof and a lass cut plate having a pair of peripheral portions 24 c are separately manufactured. These two kinds of lascut metal may be joined so as to have different lascut directions (for example, welding) to form porous channel layers 24 A and 24 B. 10th embodiment.
次に、 図 1 0を用いて第 1 0の実施の形態の燃料電池用セルについて説明する。 なお、 上記第 1から第 9の実施の形態と同じ構成には同じ符号を付し、 その説明 を省略する。  Next, the fuel cell according to the tenth embodiment will be described with reference to FIG. The same components as those in the first to ninth embodiments are denoted by the same reference numerals, and the description thereof is omitted.
本実施の形態では、 図 1 0に示すように、 一方の多孔体流路層 2 4の周縁部 2 4 cの端部に液状樹脂を含浸してガスケット体 1 6を形成した際に、 周縁部 2 4 cの端部がガスケット体 1 6の厚み方向の中央に位置するように、 周縁部 2 4 c を予め変形させておく。 中央に位置する多孔体流路層 2 4の周縁部 2 4 cが補強 層として機能し、 単位セルをスタック形成する際に、 ガスケット体 1 6に上下か らかかる押圧に対し、 ガスケット体 1 6を形成する樹脂による反力を均等に働か せることができ、 その結果、 押圧によるガスケッ卜体 1 6の歪みを抑制すること ができる。 これにより、 単位セルを積層した場合の燃料電池のガスシール性はよ り向上する。  In the present embodiment, as shown in FIG. 10, when the gasket body 16 is formed by impregnating the liquid resin at the end of the peripheral edge portion 24 c of one porous body flow path layer 24, the peripheral edge The peripheral edge portion 2 4 c is deformed in advance so that the end portion of the portion 24 c is positioned at the center of the gasket body 16 in the thickness direction. The peripheral edge portion 2 4 c of the porous channel layer 2 4 located in the center functions as a reinforcing layer, and the gasket body 1 6 against the pressure applied to the gasket body 1 6 from above and below when stacking unit cells. As a result, the distortion of the gasket 16 due to the pressure can be suppressed. This further improves the gas sealing performance of the fuel cell when unit cells are stacked.
図 1 0では、 多孔体流路層 2 4の周縁部 2 4 cを変形させてガスケッ卜体 1 6 の補強層としているが、 これに限るものではなく、 例えば図 1に示すようなガス 拡散層 1 4の周縁部 1 4 cを変形させて、 補強層としてもよい。 なお、 ラスカツ トメタル等により形成された多孔体流路層 2 4の厚みは例えば 0 . 2 mmから 0 . 3 mmあり、 図 1に示すガス拡散層 14の厚み、 例えば 100 mから 280 mに比べ厚いことから、 補強層としては好適である。 さらに、 多孔体流路層 24 をラスカットメタルにより形成する場合、 上述したラスカット装置 50 (図 1 2) におけるラスカツト加工時に始点と終点においてさらに曲げ加工を行い変形 させることにより、 上述した変形した周縁部 24 cを形成することができる。 上記第 1から第 10の実施の形態において、 液状樹脂を含浸させて膜電極接合 体を一体成形する方法の一例を、 図 1 3を用いて説明する。 図 1 3には、 金型を 用いた射出成形、 例えば、 リキッドインジェクションモールディング (L I M) 成形の例が示されている。 なお、 後述する L I M材 60として、 熱硬化型シリコ ン系樹脂、 熱可塑性樹脂を用いることができ、 また、 第 1から第 10の実施の形 態における膜電極接合体 10 A〜: L 0 D, 20A〜20D, 30, 40を、 ここ では説明の便宜上 「膜電極接合体 70」 と総称する。 In FIG. 10, the peripheral portion 2 4 c of the porous body flow path layer 24 is deformed to form the reinforcing layer of the gas casing 16, but the present invention is not limited to this. For example, gas diffusion as shown in FIG. The peripheral edge portion 14 c of the layer 14 may be deformed to form a reinforcing layer. The thickness of the porous body flow path layer 24 formed of lascut metal or the like is, for example, 0.2 mm to 0.2 mm. Since the thickness of the gas diffusion layer 14 shown in FIG. 1 is 3 mm, which is thicker than, for example, 100 m to 280 m, it is suitable as a reinforcing layer. Further, when the porous body flow path layer 24 is formed of a lath cut metal, the above-described deformed peripheral portion is deformed by further bending at the start point and the end point during the lath cutting process in the lath cut apparatus 50 (FIG. 12). 24 c can be formed. An example of a method for integrally forming a membrane electrode assembly by impregnating a liquid resin in the first to tenth embodiments will be described with reference to FIG. FIG. 13 shows an example of injection molding using a mold, for example, liquid injection molding (LIM) molding. As the LIM material 60 described later, a thermosetting silicone resin or a thermoplastic resin can be used, and the membrane electrode assemblies 10 A to 10 L in the first to tenth embodiments: L 0 D , 20A to 20D, 30, and 40 are collectively referred to herein as “membrane electrode assembly 70” for convenience of explanation.
まず、 射出ユニット 54に、 例えばガスケット形成用の上述した材料からなる L I M材 60を計量するとともに、 膜電極接合体 70の周縁部を固定具 62によ り固定して膜電極接合体 70を金型内に設置し、 そののち減圧用配管 58を介し て金型内を減圧させ、 金型内のエアーを抜く (S 1 1 0)。 次に、 金型内が所望の 減圧状態になった時点で減圧動作を停止し、 射出ュニット 54のピストン 55を 動作させて、 射出用配管 56, 56 a, 56 bを介してガスケット形成用金型部 分 80 a, 80 bにそれぞれ L I M材 60を射出充填する (S 120)。 次いで、 ガスケット形成用金型部分 80 a, 80 bにそれぞれ L I M材 60を射出充填が 完了した後、 L I M材 60を加熱硬化させる (S 130)。 これにより、 ガスケッ トー体型の膜電極接合体が形成される。 次に、 単位セル構造の一例を図 14に示す。 図 14に示す単位セルは、 図 5に 示す膜電極接合体 2 OAがー対のフラットセパレ一夕 22により挟持されている。 ここで、 フラットセパレー夕 22は、 膜電極接合体 2 OA (図 5) 側表面が平滑 面である。  First, the LIM material 60 made of the above-mentioned material for gasket formation, for example, is weighed in the injection unit 54, and the peripheral edge of the membrane electrode assembly 70 is fixed by the fixture 62, so that the membrane electrode assembly 70 is made of gold. After installing in the mold, the inside of the mold is decompressed through the decompression pipe 58, and the air in the mold is removed (S 1 1 0). Next, when the pressure inside the mold reaches a desired reduced pressure state, the pressure reducing operation is stopped, the piston 55 of the injection unit 54 is operated, and the gasket forming metal is injected via the injection pipes 56, 56a, 56b. The mold parts 80a and 80b are each filled with LIM material 60 (S120). Next, after the injection filling of the L I M material 60 into the gasket forming mold parts 80a and 80b is completed, the L I M material 60 is heated and cured (S130). As a result, a gasket type membrane electrode assembly is formed. Next, Fig. 14 shows an example of the unit cell structure. In the unit cell shown in FIG. 14, the membrane electrode assembly 2 OA shown in FIG. 5 is sandwiched between a pair of flat separators 22. Here, the flat separator evening 22 has a smooth surface on the side of the membrane electrode assembly 2 OA (FIG. 5).
燃料電池のセパレ一夕として、 近年、 耐久性の観点から金属セパレ一夕が用い られるようになってきているが、 この金属セパレ一夕は耐蝕性および導電性の両 立が必須となる。 この上記耐蝕性および導電性を両立させるものとしてチタン製 のセパレー夕が候補に挙げられている。 しかし、 チタンは、 剛性が高く、 ステン レスのようにプレス加工が容易でないため、 流路をプレス以外の方法で形成する 必要が生じる。 そこで、 チタン製セパレー夕をフラットセパレー夕とし、 このフ ラットセパレー夕とガス拡散層との間に多孔体により流路を形成する構成が案出 され、 この多孔体流路として、 上述したラスカットメタルまたはエキスパンドメ タルを擬似的多孔体流路層として用いる。 In recent years, metal separators have come to be used as fuel cell separators from the standpoint of durability, but these metal separators are both corrosion resistant and conductive. Standing is essential. Titanium separators are listed as candidates for achieving both the above corrosion resistance and conductivity. However, since titanium has high rigidity and is not easy to press like stainless steel, the flow path must be formed by a method other than pressing. Therefore, a configuration has been devised in which the titanium separator is a flat separator and a flow path is formed by a porous body between the flat separator and the gas diffusion layer. Alternatively, expanded metal is used as the pseudo porous channel layer.
上記単位セルでは、 図 5に示す膜電極接合体 2 O Aを用いて説明したが、 これ に限るものではなく、 図 6, 図 9 , 図 1 0に示す膜電極接合体 2 0 B, 3 0 , 4 0のいずれを用いてもよい。  In the above unit cell, the membrane electrode assembly 2 OA shown in FIG. 5 has been described. However, the present invention is not limited to this, and the membrane electrode assembly 20 B, 30 shown in FIG. 6, FIG. 9, and FIG. , 40 may be used.
また、 単位セル構造の他の一例を図 1 5に示す。 図 1 5に示す単位セルは、 図 7に示す膜電極接合体 2 0 Cがー対のフラッ卜セパレ一夕 2 2により挟持されて いる。 ここで、 フラットセパレー夕 2 2は、 膜電極接合体 2 0 C (図 7 ) 側表面 が平滑面である。 なお、 上記単位セルでは、 図 7に示す膜電極接合体 2 0 Cを用 いて説明したが、 これに限るものではなく、 図 8に示す膜電極接合体 2 0 Dを用 いてもよい。  Another example of the unit cell structure is shown in FIG. In the unit cell shown in FIG. 15, the membrane electrode assembly 20 C shown in FIG. 7 is sandwiched between a pair of flash separators 22. Here, in the flat separator evening 22, the surface on the side of the membrane electrode assembly 20 C (FIG. 7) is a smooth surface. In the unit cell, the membrane electrode assembly 20 C shown in FIG. 7 has been described. However, the present invention is not limited to this, and the membrane electrode assembly 20 D shown in FIG. 8 may be used.
また、 他の単位セルの構造の一例を図 1 6に示す。 図 1 6に示す単位セルは、 図 1に示す膜電極接合体 1 O Aがー対のセパレー夕 2 8により挟持されている。 一対のセパレー夕 2 8には、 反応ガス流路 3 4が形成され、 さらに反応ガス流路 3 4が形成されている面の反対面に冷媒流路 (図示せず) が形成されている。 セ パレ一夕 2 8としては、 例えばステンレス材ゃアルミニウム材などの金属材料に より形成される。  An example of another unit cell structure is shown in Fig.16. In the unit cell shown in FIG. 16, the membrane electrode assembly 1 O A shown in FIG. 1 is sandwiched between a pair of separators 28. In the pair of separators 28, a reaction gas channel 34 is formed, and a refrigerant channel (not shown) is formed on the opposite side of the surface on which the reaction gas channel 34 is formed. For example, the separator overnight 28 is made of a metal material such as stainless steel or aluminum.
上記他の単位セルでは、 図 1に示す膜電極接合体 1 O Aを用いて説明したが、 これに限るものではなく、 図 2に示す膜電極接合体 1 0 Bを用いてもよい。 また、 単位セル構造の他の一例を図 1 7に示す。 図 1 7に示す単位セルは、 図 3に示す膜電極接合体 1 0 Cがー対のフラットセパレー夕 2 2により挟持されて いる。 ここで、 フラットセパレ一夕 2 2は、 膜電極接合体 1 0 C (図 3 ) 側表面 が平滑面である。 なお、 上記単位セルでは、 図 3に示す膜電極接合体 1 0 Cを用 いて説明したが、 これに限るものではなく、 図 4に示す膜電極接合体 1 0 Dを用 いてもよい。 The other unit cell has been described using the membrane electrode assembly 1 OA shown in FIG. 1. However, the present invention is not limited to this, and the membrane electrode assembly 10 B shown in FIG. 2 may be used. Another example of the unit cell structure is shown in Fig. 17. In the unit cell shown in FIG. 17, the membrane electrode assembly 10 C shown in FIG. 3 is sandwiched between a pair of flat separators 22. Here, in the flat separator overnight 22, the surface on the side of the membrane electrode assembly 10 C (FIG. 3) is a smooth surface. In the unit cell, the membrane electrode assembly 10 C shown in FIG. 3 is used, but the present invention is not limited to this, and the membrane electrode assembly 10 D shown in FIG. 4 is used. May be.
また、 上述した第 5から第 1 0の実施の形態の膜電極接合体 2 0 A〜2 0 D , 3 0 , 4 0における多孔体流路層 2 4, 2 4 A, 2 4 Bの境界部 2 4 e, 2 4 f を、 予め図 1 8 A, 図 1 8 Bに示すように封止してもよい。 これにより、 ガスケ ットを成形する際に、 多孔体流路層 2 4, 2 4 A, 2 4 Bに必要以上に液状樹脂 が含浸されることを防止することができ有効電極面積を確保することができる。 また、 封止する場合、 プレスにより境界部 2 4 eを形成してもよく、 またロウ付 けや溶接またはスクリーン印刷等により予め別の樹脂を含浸させて境界部 2 4 f を形成してもよい。 また、 多孔体流路層におけるマ二ホールド開口部が形成され ていない辺側においても、 上述同様、 プレス、 ロウ付けや溶接またはスクリーン 印刷等により予め別の樹脂の含浸により封止部を形成することが望ましい。 これ により、 必要以上に、 液状樹脂が含浸されることを防止することができ有効電極 面積を確保することができる。  In addition, the boundary between the porous channel layers 2 4, 2 4 A, 24 B in the membrane electrode assemblies 20 A to 20 D, 30, 40 of the fifth to 10th embodiments described above The parts 2 4 e and 24 f may be sealed in advance as shown in FIGS. 18A and 18B. As a result, when molding the gasket, it is possible to prevent the porous channel layers 24, 24 A, 24 B from being impregnated with liquid resin more than necessary, and to secure an effective electrode area. be able to. In the case of sealing, the boundary portion 24 e may be formed by pressing, or the boundary portion 24 f may be formed by impregnating another resin in advance by brazing, welding, screen printing, or the like. Good. Also on the side of the porous channel layer where the manifold opening is not formed, as described above, a sealing portion is formed by impregnation with another resin in advance by pressing, brazing, welding, screen printing, or the like. It is desirable. Thereby, it is possible to prevent the liquid resin from being impregnated more than necessary, and to secure an effective electrode area.
さらに、 上述した単位セルを積層して、 燃料電池を形成する。 これにより、 部 品点数を削減したセルを積層するため燃料電池を小型化することができ、 且つガ スシール性が向上し、 また燃料電池あたりの発電効率も向上させることできる。 なお、 本発明について詳細に説明したが、 本発明の範囲は、 上述に記載のもの に限定されるものではない。 また、 2 0 0 7年 8月 1 0日に出願された特願 2 0 0 7— 2 0 9 0 6 2、 2 0 0 7年 1 2月 6日に出願された特願 2 0 0 7 - 3 1 5 7 3 7に開示された明細書 の発明の詳細な説明、 特許請求の範囲、 図面および要約の記載すべてが、 本願に 組み込まれる。 産業上の利用可能性  Further, the unit cells described above are stacked to form a fuel cell. As a result, since the cells with the reduced number of parts are stacked, the fuel cell can be reduced in size, the gas sealing performance can be improved, and the power generation efficiency per fuel cell can also be improved. Although the present invention has been described in detail, the scope of the present invention is not limited to that described above. In addition, the Japanese Patent Application filed on August 10th, 2000, 2000, 2 0 0 7—2 0 9 0 6 2, 2 0 0 7 -3 1 5 7 3 7 Detailed description of the invention, claims, drawings and abstract are all incorporated in the present application. Industrial applicability
本発明の燃料電池用セルおよび燃料電池は、 燃料電池を用いる用途であれば、 いかなる用途にも有効であるが、 特に車両用の燃料電池に供することができる。  The fuel cell and the fuel cell of the present invention are effective for any use as long as the fuel cell is used, but can be used for a fuel cell for vehicles in particular.

Claims

請求の範囲 The scope of the claims
1 . 電解質膜に燃料極と空気極を有する接合体と、 前記燃料極に燃料ガスを供 給する第 1のガス拡散部材と、 前記空気極に酸化剤ガスを供給する第 2のガス拡 散部材と、 前記第 1のガス拡散部材と接合体と第 2の拡散部材とを挟持する一対 のセパレー夕と、 から構成される燃料電池用セルであって、 1. a joined body having a fuel electrode and an air electrode on an electrolyte membrane; a first gas diffusion member that supplies fuel gas to the fuel electrode; and a second gas diffusion that supplies oxidant gas to the air electrode A fuel cell unit comprising: a member; and a pair of separators sandwiching the first gas diffusion member, the joined body, and the second diffusion member,
前記接合体が位置する発電領域と、 前記発電領域の周囲に設けられ燃料ガス、 酸化剤ガスおよび冷媒を流通させるマ二ホールド開口部が形成されたマ二ホール ド領域と、 を有し、  A power generation region where the joined body is located; and a manifold region provided around the power generation region and formed with a manifold opening through which fuel gas, oxidant gas and refrigerant are circulated.
前記第 1のガス拡散部材または前記第 2のガス拡散部材の少なくとも一方は、 前記マ二ホールド領域まで延出し且つ液状樹脂が含浸され気密的にシールされ、 前記第 1のガス拡散部材および前記第 2のガス拡散部材における前記発電領域 と前記マ二ホールド領域との境界部の気孔率は、 少なくとも前記第 1のガス拡散 部材および前記第 2のガス拡散部材における発電領域およびマ二ホールド領域の 気孔率に比べ相対的に小さい燃料電池用セル。  At least one of the first gas diffusion member or the second gas diffusion member extends to the manifold region and is impregnated with a liquid resin and hermetically sealed, and the first gas diffusion member and the first gas diffusion member The porosity of the boundary between the power generation region and the manifold region in the second gas diffusion member is at least the porosity of the power generation region and the manifold region in the first gas diffusion member and the second gas diffusion member A fuel cell that is relatively small compared to the rate.
2 . 請求の範囲第 1項に記載の燃料電池用セルにおいて、 2. In the fuel cell according to claim 1,
前記第 1のガス拡散部材または前記第 2のガス拡散部材のいずれか一方は、 前 記マ二ホールド領域まで延出し且つ液状樹脂が含浸され気密的にシールされてい る燃料電池用セル。  Either the first gas diffusion member or the second gas diffusion member extends to the manifold region and is impregnated with a liquid resin and hermetically sealed.
3 . 請求の範囲第 1項に記載の燃料電池用セルにおいて、 3. In the fuel cell according to claim 1,
前記第 1のガス拡散部材および前記第 2のガス拡散部材における前記発電領域 と前記マ二ホールド領域との境界部の気孔率は、 前記第 1のガス拡散部材および 前記第 2のガス拡散部材におけるマ二ホールド領域の気孔率より小さい燃料電池 用セル。 \ The porosity of the boundary between the power generation region and the manifold region in the first gas diffusion member and the second gas diffusion member is the same as in the first gas diffusion member and the second gas diffusion member. Fuel cell smaller than the porosity of the manifold area. \
WO 2009/028331 PCT/JP2008/064502  WO 2009/028331 PCT / JP2008 / 064502
21  twenty one
4 . 請求の範囲第 2項に記載の燃料電池用セルにおいて、  4. In the fuel cell according to claim 2,
前記第 1のガス拡散部材および前記第 2のガス拡散部材における前記発電領域 と前記マ二ホールド領域との境界部の気孔率は、 前記第 1のガス拡散部材および 前記第 2のガス拡散部材におけるマ二ホールド領域の気孔率より小さい燃料電池 用セル。  The porosity of the boundary between the power generation region and the manifold region in the first gas diffusion member and the second gas diffusion member is the same as in the first gas diffusion member and the second gas diffusion member. Fuel cell smaller than the porosity of the manifold area.
5 . 請求の範囲第 1項に記載の燃料電池用セルにおいて、 5. In the fuel cell according to claim 1,
さらに、 前記接合体は、 前記マ二ホールド領域まで延出し且つ気密的にシール する液状樹脂と接着される燃料電池用セル。  Furthermore, the joined body is bonded to a liquid resin that extends to the manifold region and seals hermetically.
6 . 請求の範囲第 2項に記載の燃料電池用セルにおいて、 6. In the fuel cell according to claim 2,
さらに、 前記接合体は、 前記マ二ホールド領域まで延出し且つ気密的にシール する液状樹脂と接着される燃料電池用セル。  Furthermore, the joined body is bonded to a liquid resin that extends to the manifold region and seals hermetically.
7 . 請求の範囲第 3項に記載の燃料電池用セルにおいて、 7. In the fuel cell according to claim 3,
さらに、 前記接合体は、 前記マ二ホールド領域まで延出し且つ気密的にシール する液状樹脂と接着される燃料電池用セル。  Furthermore, the joined body is bonded to a liquid resin that extends to the manifold region and seals hermetically.
8 . 請求の範囲第 4項に記載の燃料電池用セルにおいて、 8. In the fuel cell cell according to claim 4,
さらに、 前記接合体は、 前記マ二ホールド領域まで延出し且つ気密的 ί する液状樹脂と接着される燃料電池用セル。  Furthermore, the joined body is bonded to a liquid resin that extends to the manifold region and is airtight.
9 . 請求の範囲第 1項に記載の燃料電池用セルにおいて、 9. In the fuel cell according to claim 1,
前記第 1の拡散部材および第 2の拡散部材は、 前記燃料極と空気極にそれぞれ 設けられているガス拡散層である燃料電池用セル。 The fuel cell according to claim 1, wherein the first diffusion member and the second diffusion member are gas diffusion layers provided on the fuel electrode and the air electrode, respectively.
1 0 . 請求の範囲第 1項に記載の燃料電池用セルにおいて、 1 0. In the fuel cell according to claim 1,
前記セパレー夕は、 前記接合体側表面が平滑面であるフラットセパレー夕であ り、  The separation evening is a flat separation evening where the joined body side surface is a smooth surface,
前記第 1の拡散部材および第 2の拡散部材は、 前記燃料極と空気極にそれぞれ 設けられている各ガス拡散層と前記フラットセパレー夕との間にそれぞれ配置さ れる多孔体流路層である燃料電池用セル。  The first diffusion member and the second diffusion member are porous flow passage layers respectively disposed between the gas diffusion layers provided in the fuel electrode and the air electrode, respectively, and the flat separator. Fuel cell.
1 1 . 請求の範囲第 1項に記載の燃料電池用セルにおいて、 1 1. In the fuel cell according to claim 1,
前記第 1のガス拡散部材および第 2のガス拡散部材の境界部における気孔径は 2 0 m以下である燃料電池用セル。  A fuel cell having a pore diameter of 20 m or less at a boundary portion between the first gas diffusion member and the second gas diffusion member.
1 2 . 請求の範囲第 1 0項に記載の燃料電池用セルにおいて、 1 2. In the fuel cell according to claim 10,
多孔体流路層は、 前記発電領域、 前記マ二ホールド領域、 前記発電領域と前記 マ二ホールド領域との境界部において気孔率の異なるラス力ットメタルまたはェ キスパンドメタルである燃料電池用セル。  The porous body flow path layer is a fuel cell that is made of a lath metal or expanded metal having different porosity at the boundary between the power generation region, the manifold region, and the power generation region and the manifold region.
1 3 . 請求の範囲第 1項に記載の燃料電池用セルにおいて、 1 3. In the fuel cell according to claim 1,
前記マ二ホールド領域には、 前記第 1のガス拡散部材と接合体と第 2の拡散部 材とを一体化させ且つ前記マ二ホールド開口部の周囲を気密的にシールするガス ケットが設けられ、  The manifold is provided with a gasket that integrates the first gas diffusion member, the joined body, and the second diffusion member and hermetically seals the periphery of the manifold opening. ,
前記第 1のガス拡散部材または第 2のガス拡散部材のいずれか一方の前記マ二 ホールド領域に拡大した周縁部は、 前記ガスケッ卜の厚み方向の中央に位置する 燃料電池用セル。 The peripheral portion of the first gas diffusion member or the second gas diffusion member, which is enlarged in the manifold region, is located at the center in the thickness direction of the gasket.
14. 請求の範囲第 1項に記載の燃料電池用セルを積層してなる燃料電池。14. A fuel cell comprising the fuel cell according to claim 1 stacked thereon.
1 5. 請求の範囲第 2項に記載の燃料電池用セルを積層してなる燃料電池。1 5. A fuel cell obtained by stacking the fuel cell cells according to claim 2.
16. 請求の範囲第 3項に記載の燃料電池用セルを積層してなる燃料電池。16. A fuel cell in which the fuel cell cells according to claim 3 are stacked.
1 7. 請求の範囲第 5項に記載の燃料電池用セルを積層してなる燃料電池。 1 7. A fuel cell comprising the fuel cell according to claim 5 stacked thereon.
PCT/JP2008/064502 2007-08-10 2008-08-06 Cell for fuel cell and fuel cell WO2009028331A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008801026923A CN101779318B (en) 2007-08-10 2008-08-06 Cell for fuel cell and fuel cell
CA2702015A CA2702015C (en) 2007-08-10 2008-08-06 Cell for fuel cell having improved gas sealing properties and fuel cell
US12/672,748 US8795922B2 (en) 2007-08-10 2008-08-06 Cell for fuel cell and fuel cell
DE112008002146.5T DE112008002146B8 (en) 2007-08-10 2008-08-06 Cell for fuel cell, and fuel cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007209062 2007-08-10
JP2007-209062 2007-08-10
JP2007315737A JP5012469B2 (en) 2007-08-10 2007-12-06 Fuel cell and fuel cell
JP2007-315737 2007-12-06

Publications (1)

Publication Number Publication Date
WO2009028331A1 true WO2009028331A1 (en) 2009-03-05

Family

ID=40387057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/064502 WO2009028331A1 (en) 2007-08-10 2008-08-06 Cell for fuel cell and fuel cell

Country Status (1)

Country Link
WO (1) WO2009028331A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097647A1 (en) * 2009-10-28 2011-04-28 Nok Corporation Fuel Cell Sealing Structure And Manufacture Method
US9806361B2 (en) 2012-05-28 2017-10-31 Intelligent Energy Limited Fuel cell plate assemblies

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510932A (en) * 1997-07-16 2001-08-07 バラード パワー システムズ インコーポレイティド Elastic seal for a membrane electrode assembly (MEA) in an electrochemical fuel cell and method of making the seal
WO2002089240A1 (en) * 2001-04-23 2002-11-07 Nok Corporation Fuel cell and method of manufacturing the fuel cell
JP2005158299A (en) * 2003-11-20 2005-06-16 Toyota Motor Corp Fuel cell
JP2006236957A (en) * 2005-01-31 2006-09-07 Uchiyama Mfg Corp Constituent member for fuel cell
JP2007026812A (en) * 2005-07-14 2007-02-01 Toyota Auto Body Co Ltd Manufacturing method of gas flow passage forming material, gas flow passage forming material of metal separator for fuel cell, and through-hole forming device
JP2007042348A (en) * 2005-08-02 2007-02-15 Nissan Motor Co Ltd Membrane electrode assembly and production method therefor
JP2008218304A (en) * 2007-03-07 2008-09-18 Toyota Auto Body Co Ltd Solid polymer fuel cell
JP2008243799A (en) * 2007-02-28 2008-10-09 Toyota Motor Corp Fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510932A (en) * 1997-07-16 2001-08-07 バラード パワー システムズ インコーポレイティド Elastic seal for a membrane electrode assembly (MEA) in an electrochemical fuel cell and method of making the seal
WO2002089240A1 (en) * 2001-04-23 2002-11-07 Nok Corporation Fuel cell and method of manufacturing the fuel cell
JP2005158299A (en) * 2003-11-20 2005-06-16 Toyota Motor Corp Fuel cell
JP2006236957A (en) * 2005-01-31 2006-09-07 Uchiyama Mfg Corp Constituent member for fuel cell
JP2007026812A (en) * 2005-07-14 2007-02-01 Toyota Auto Body Co Ltd Manufacturing method of gas flow passage forming material, gas flow passage forming material of metal separator for fuel cell, and through-hole forming device
JP2007042348A (en) * 2005-08-02 2007-02-15 Nissan Motor Co Ltd Membrane electrode assembly and production method therefor
JP2008243799A (en) * 2007-02-28 2008-10-09 Toyota Motor Corp Fuel cell
JP2008218304A (en) * 2007-03-07 2008-09-18 Toyota Auto Body Co Ltd Solid polymer fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097647A1 (en) * 2009-10-28 2011-04-28 Nok Corporation Fuel Cell Sealing Structure And Manufacture Method
JP2011096419A (en) * 2009-10-28 2011-05-12 Nok Corp Sealing structure for fuel cell, and method of manufacturing the same
US8609299B2 (en) * 2009-10-28 2013-12-17 Nok Corporation Fuel cell sealing structure and manufacture method
US9806361B2 (en) 2012-05-28 2017-10-31 Intelligent Energy Limited Fuel cell plate assemblies

Similar Documents

Publication Publication Date Title
JP5012469B2 (en) Fuel cell and fuel cell
JP5363335B2 (en) Gas diffusion layer with built-in gasket
US9806354B2 (en) Method for manufacturing reinforced membrane electrode assembly and reinforced membrane electrode assembly
CN109148913B (en) Fuel cell and method of manufacturing fuel cell
US10381661B2 (en) Resin frame equipped membrane electrode assembly for fuel cell
JP4367477B2 (en) Fuel cell
KR100968237B1 (en) Electrically conductive porous body for a fuel cell, fuel cell having same, method of manufacturing same
WO2012035579A1 (en) Membrane electrode assembly and manufacturing method for same, and fuel cell using same
JP2009199877A (en) Fuel cell, and method of manufacturing the same
JP2007042348A (en) Membrane electrode assembly and production method therefor
JP5157050B2 (en) Membrane electrode assembly and manufacturing method thereof
JPWO2016157714A1 (en) Fuel cell and fuel cell manufacturing method
WO2009028331A1 (en) Cell for fuel cell and fuel cell
JP2008066084A (en) Electrolyte membrane, membrane electrode assembly, and manufacturing method of them
JP5387059B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5466136B2 (en) Fuel cell separator and method of manufacturing the same
JP5273541B2 (en) Polymer fuel cell
JP2006092891A (en) Manufacturing method of fuel cell and fuel cell
JP2006059661A (en) Solid polymer fuel cell
JP6063284B2 (en) Manufacturing method of electrolyte membrane / electrode structure for fuel cell
JP6197437B2 (en) Conductive sheet, fuel cell, and method for producing conductive sheet
JP2022048654A (en) Manufacturing method of fuel battery cell
JP2010123350A (en) Fuel battery
JP2013109885A (en) Fuel cell
JP2010170914A (en) Fuel cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880102692.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792432

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2702015

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12672748

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112008002146

Country of ref document: DE

Date of ref document: 20100610

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08792432

Country of ref document: EP

Kind code of ref document: A1